National Library of Energy BETA

Sample records for kilo deca deci

  1. So How Do THey DeciDe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Do THey DeciDe wHaT To Do aT THe iNL? nuclear energy Nuclear energy is a clean, safe, vital part of this country's energy mix. S takeholders frequently tell us they're impressed by all the nuclear research we do at the idaho National Laboratory, but they wonder why we don't do more work on renewable energy, like wind, solar and hydro. well, the answer is, we do research in those areas, but our history and our expertise is in nuclear energy research. we don't apologize for that: nuclear

  2. Thermodynamics of Electron Flow in the Bacterial Deca-heme Cytochrome MtrF

    SciTech Connect (OSTI)

    Breuer, Marian; Zarzycki, Piotr P.; Blumberger, Jochen; Rosso, Kevin M.

    2012-07-01

    Electron transporting multiheme cytochromes are essential to the metabolism of microbes that inhabit soils and carry out important biogeochemical processes. Recently the first crystal structure of a prototype bacterial deca-heme cytochrome (MtrF) has been resolved and its electrochemistry characterized. However, the molecular details of electron conductance along heme chains in the cytochrome are difficult to access via experiment due to the nearly identical chemical nature of the heme cofactors. Here we employ large-scale molecular dynamics simulations to compute the reduction potentials of the ten hemes of MtrF in aqueous solution. We find that as a whole they fall within a range of about 0.3 V in agreement with experiment. Individual reduction potentials give rise to a free energy profile for electron conduction that is approximately symmetric with respect to the center of the protein. Our calculations indicate that there is no significant potential bias along the orthogonal octa- and tetra-heme chains suggesting that under aqueous conditions MtrF is a nearly reversible two-dimensional conductor.

  3. Tracking the sources of polybrominated diphenyl ethers in birds: Foraging in waste management facilities results in higher DecaBDE exposure in males

    SciTech Connect (OSTI)

    Gentes, Marie-Line; Mazerolle, Marc J.; Giroux, Jean-François; Patenaude-Monette, Martin; and others

    2015-04-15

    Differences in feeding ecology are now recognized as major determinants of inter-individual variations in contaminant profiles of free-ranging animals, but exceedingly little attention has been devoted to the role of habitat use. Marked inter-individual variations and high levels of polybrominated diphenyl ethers (PBDEs) (e.g., DecaBDE) have previously been documented in ring-billed gulls (Larus delawarensis) breeding in a colony near Montreal (QC, Canada). However, the environmental sources of these compounds, and thus the reasons causing these large inter-individual variations remain unidentified. In the present study, we used GPS-based telemetry (±5 to 10 m precision) to track ring-billed gulls from this colony to reconstruct their movements at the landscape level. We related habitat use of individual gulls (n=76) to plasma concentrations (ng/g ww) and relative contributions (percentages) to Σ{sub 38}PBDEs of major congeners in the internationally restricted PentaBDE and current-use DecaBDE mixtures. Male gulls that visited waste management facilities (WMFs; i.e., landfills, wastewater treatment plants and related facilities; 25% of all GPS-tracked males) exhibited greater DecaBDE (concentrations and percentages) and lower PentaBDE (percentages) relative to those that did not. In contrast, no such relationships were found in females. Moreover, in males, DecaBDE (concentrations and percentages) increased with percentages of time spent in WMFs (i.e., ~5% of total foraging time), while PentaBDE (percentages) decreased. No relationships between percentages of time spent in other habitats (i.e., urban areas, agriculture fields, and St. Lawrence River) were found in either sex. These findings suggest that animals breeding in the vicinity of WMFs as well as mobile species that only use these sites for short stopovers to forage, could be at risk of enhanced DecaBDE exposure. - Highlights: • The study was conducted on breeding gulls with high levels of flame retardants. • Ring-billed gulls were GPS-tracked to associate habitat use with plasma PBDEs. • Males that visited waste management facilities had greater DecaBDE. • DecaBDE also increased with time spent in waste management facilities in males. • No relationships between habitat use and PBDEs were found in females.

  4. Kilo Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    75C348.15 K 167 F 626.67 R 1 USGS Estimated Reservoir Volume: 1 km 1 USGS Mean Capacity: 2 MW 1 Click "Edit With Form" above to add content History and...

  5. KiloPower Project - KRUSTY Experiment Nuclear Design

    SciTech Connect (OSTI)

    Poston, David Irvin; Godfroy, Thomas; Mcclure, Patrick Ray; Sanchez, Rene Gerardo

    2015-07-20

    This PowerPoint presentation covers the following topics: Reference Kilopower configuration; Reference KRUSTY configuration; KRUSTY design sensitivities; KRUSTY reactivity coefficients; KRUSTY criticality safety and control; KRUSTY core activation/dose; and KRUSTY shielding, room activation/dose.

  6. KiloPower Project - KRUSTY Experiment Nuclear Design (Technical...

    Office of Scientific and Technical Information (OSTI)

    KRUSTY design sensitivities; KRUSTY reactivity coefficients; KRUSTY criticality safety and control; KRUSTY core activationdose; and KRUSTY shielding, room activationdose. ...

  7. Lubricants Market to Record 44,165.11 Kilo Tons Volume by 2020...

    Open Energy Info (EERE)

    over 50% of the global market share. Automotive oils sector is further segmented into hydraulic oil, engine oil, and gear oil. Improving GDP in developing nations such as India and...

  8. Image plate characterization and absolute calibration to low kilo-electron-volt electrons

    SciTech Connect (OSTI)

    Busold, S.; Philipp, K.; Otten, A.; Roth, M.

    2014-11-15

    We report on the characterization of an image plate and its absolute calibration to electrons in the low keV energy range (130 keV). In our case, an Agfa MD4.0 without protection layer was used in combination with a Fuji FLA7000 scanner. The calibration data are compared to other published data and a consistent picture of the sensitivity of image plates to electrons is obtained, which suggests a validity of the obtained calibration up to 100 keV.

  9. Annual Site Environmental Report Paducah Site

    Energy Savers [EERE]

    Site Environmental Report Paducah Site 2011 PAD-REG-1012 BACK TABLE OF CONTENTS FORWARD Fractions and Multiples of Units Multiple Decimal Equivalent Prefix Symbol Engineering Format 10 6 1,000,000 mega- M E+06 10 3 1,000 kilo- k E+03 10 2 100 hecto- h E+02 10 10 deka- da E+01 10 -1 0.1 deci- d E-01 10 -2 0.01 centi- c E-02 10 -3 0.001 milli- m E-03 10 -6 0.000001 micro- μ E-06 10 -9 0.000000001 nano- n E-09 10 -12 0.000000000001 pico- P E-12 10 -15 0.000000000000001 femto- F E-15 10 -18

  10. Property:PotentialBiopowerGaseousCapacity | Open Energy Information

    Open Energy Info (EERE)

    1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWA...

  11. Property:GeneratingCapacity | Open Energy Information

    Open Energy Info (EERE)

    1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWA...

  12. Property:GrossProdCapacity | Open Energy Information

    Open Energy Info (EERE)

    1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWA...

  13. Property:InstalledCapacity | Open Energy Information

    Open Energy Info (EERE)

    1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWA...

  14. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... beam, a laser modulator, a laser chirper and two bunch compressors to generate a prebunched kilo-Ampere current electron beam from a few tens Ampere electron beam out of a linac. ...

  15. Microsoft Word - 2016_CNS_Strategic_Plan_December 21 2015 FINAL...

    Office of Environmental Management (EM)

    ... used and the resulting fa- cility ranking. ... Docu- mentation and Critical Deci- sions DOE O 413.3B, Program and Project ... 460.2A Departmental Materials Transportation and ...

  16. CONCUR: AWARD FEE PLAN - FY15

    Office of Environmental Management (EM)

    as Facility Support Services Contract Award Fee Plan Contract Number DE-CI0000004 3 editorial or personnel changes may be made and implemented without being provided to the...

  17. Award Fee Evaluation Period 6 Determination Scorecard Contractor...

    Office of Environmental Management (EM)

    6 Determination Scorecard Contractor: Wastren-EnergX Mission Support, LLC Contract: DE-CI0000004 Award Fee Evaluation Period: Fiscal Year 2015 (October 1, 2014 to September 30, ...

  18. Kim Davis Lebak Returns to New Mexico, excited about joining Field Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phase 1 Preliminary Design Documentation (Technical Report) | SciTech Connect Technical Report: Kilowatt Reactor Using Stirling TechnologY (KRUSTY) Demonstration. CEDT Phase 1 Preliminary Design Documentation Citation Details In-Document Search Title: Kilowatt Reactor Using Stirling TechnologY (KRUSTY) Demonstration. CEDT Phase 1 Preliminary Design Documentation The intent of the integral experiment request IER 299 (called KiloPower by NASA) is to assemble and evaluate the operational

  19. Fermilab | Tevatron | Tevatron Operation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tevatron Operation Fermilab's Accelerator Complex Fermilab's Accelerator Complex has 10 accelerators. The Tevatron, which shuts down on Sept. 30, is one of those accelerators. The Cockcroft Walton accelerates negative hydrogen ions to 740 kilo electron volts (KeV). The negative ions are then accelerated down the LINAC to 400 MeV. The particles enter the booster where the electrons are stripped off, leaving the protons. In the Booster, the protons are then accelerated to 8 GeV. Once the protons

  20. Kilowatt Reactor Using Stirling TechnologY (KRUSTY) Demonstration. CEDT

    Office of Scientific and Technical Information (OSTI)

    Phase 1 Preliminary Design Documentation (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: Kilowatt Reactor Using Stirling TechnologY (KRUSTY) Demonstration. CEDT Phase 1 Preliminary Design Documentation Citation Details In-Document Search Title: Kilowatt Reactor Using Stirling TechnologY (KRUSTY) Demonstration. CEDT Phase 1 Preliminary Design Documentation The intent of the integral experiment request IER 299 (called KiloPower by NASA) is to assemble and

  1. Creating, Diagnosing and Controlling High-energy-density Matter with Lasers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Princeton Plasma Physics Lab October 22, 2013, 3:00pm to 4:15pm Colloquia MBG Auditorium Creating, Diagnosing and Controlling High-energy-density Matter with Lasers Dr. Yuan Ping Lawrence Livermore National Laboratory Abstract: PDF icon COLL.10.22.13A.pdf *** PLEASE NOTE SPECIAL DATE AND TIME OF THIS COLLOQUIUM *** Since their invention in 1960's, lasers with power spanning from KiloWatt to PetaWatt have been widely used in almost every branch of science, leading to numerous discoveries

  2. Unbiased free energy estimates in fast nonequilibrium transformations using Gaussian mixtures

    SciTech Connect (OSTI)

    Procacci, Piero

    2015-04-21

    In this paper, we present an improved method for obtaining unbiased estimates of the free energy difference between two thermodynamic states using the work distribution measured in nonequilibrium driven experiments connecting these states. The method is based on the assumption that any observed work distribution is given by a mixture of Gaussian distributions, whose normal components are identical in either direction of the nonequilibrium process, with weights regulated by the Crooks theorem. Using the prototypical example for the driven unfolding/folding of deca-alanine, we show that the predicted behavior of the forward and reverse work distributions, assuming a combination of only two Gaussian components with Crooks derived weights, explains surprisingly well the striking asymmetry in the observed distributions at fast pulling speeds. The proposed methodology opens the way for a perfectly parallel implementation of Jarzynski-based free energy calculations in complex systems.

  3. Multibody correlations in the hydrophobic solvation of glycine peptides

    SciTech Connect (OSTI)

    Harris, Robert C.; Drake, Justin A.; Pettitt, B. Montgomery

    2014-12-14

    Protein collapse during folding is often assumed to be driven by a hydrophobic solvation energy (ΔG{sub vdw}) that scales linearly with solvent-accessible surface area (A). In a previous study, we argued that ΔG{sub vdw}, as well as its attractive (ΔG{sub att}) and repulsive (ΔG{sub rep}) components, was not simply a linear function of A. We found that the surface tensions, γ{sub rep}, γ{sub att}, and γ{sub vdw}, gotten from ΔG{sub rep}, ΔG{sub att}, and ΔG{sub vdw} against A for four configurations of deca-alanine differed from those obtained for a set of alkanes. In the present study, we extend our analysis to fifty decaglycine structures and atomic decompositions. We find that different configurations of decaglycine generate different estimates of γ{sub rep}. Additionally, we considered the reconstruction of the solvation free energy from scaling the free energy of solvation of each atom type, free in solution. The free energy of the isolated atoms, scaled by the inverse surface area the atom would expose in the molecule does not reproduce the γ{sub rep} for the intact decaglycines. Finally, γ{sub att} for the decaglycine conformations is much larger in magnitude than those for deca-alanine or the alkanes, leading to large negative values of γ{sub vdw} (−74 and −56 cal/mol/Å{sup 2} for CHARMM27 and AMBER ff12sb force fields, respectively). These findings imply that ΔG{sub vdw} favors extended rather than compact structures for decaglycine. We find that ΔG{sub rep} and ΔG{sub vdw} have complicated dependencies on multibody correlations between solute atoms, on the geometry of the molecular surface, and on the chemical identities of the atoms.

  4. Conceptual Design RM

    Office of Environmental Management (EM)

    Conceptual Design Review Module March 2010 CD-0 O 0 OFFICE OF C CD-1 F ENVIRO Standard R Concep Rev Critical Decis CD-2 M ONMENTAL Review Plan ptual De view Module sion (CD) Ap CD March 2010 L MANAGE n (SRP) sign e pplicability D-3 EMENT CD-4 Post Ope eration Standard Review Plan, 2 nd Edition, March 2010 i FOREWORD The Standard Review Plan (SRP) 1 provides a consistent, predictable corporate review framework to ensure that issues and risks that could challenge the success of Office of

  5. Generation and Characterization of Electron Bunches with Ramped Current Profiles in a Dual-Frequency Superconducting Linear Accelerator

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Piot, P.; Behrens, C.; Gerth, C.; Dohlus, M.; Lemery, F.; Mihalcea, D.; Stoltz, P.; Vogt, M.

    2011-09-07

    We report on the successful experimental generation of electron bunches with ramped current profiles. The technique relies on impressing nonlinear correlations in the longitudinal phase space using a superconducing radiofrequency linear accelerator operating at two frequencies and a current-enhancing dispersive section. The produced {approx} 700-MeV bunches have peak currents of the order of a kilo-Ampere. Data taken for various accelerator settings demonstrate the versatility of the method and in particular its ability to produce current profiles that have a quasi-linear dependency on the longitudinal (temporal) coordinate. The measured bunch parameters are shown, via numerical simulations, to produce gigavolt-per-meter peak acceleratingmore » electric fields with transformer ratios larger than 2 in dielectric-lined waveguides.« less

  6. A fluorescence-based method for rapid and direct determination of polybrominated diphenyl ethers in water

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shan, Huimei; Liu, Chongxuan; Wang, Zheming; Ma, Teng; Shang, Jianying; Pan, Duoqiang

    2015-01-01

    A new method was developed for rapid and direct measurement of polybrominated diphenyl ethers (PBDEs) in aqueous samples using fluorescence spectroscopy. The fluorescence spectra of tri- to deca-BDE (BDE 28, 47, 99, 153, 190, and 209) commonly found in environment were measured at variable emission and excitation wavelengths. The results revealed that the PBDEs have distinct fluorescence spectral profiles and peak positions that can be exploited to identify these species and determine their concentrations in aqueous solutions. The detection limits as determined in deionized water spiked with PBDEs are 1.71-5.82 ng/L for BDE 28, BDE 47, BDE 190, and BDEmore » 209 and 45.55–69.95 ng/L for BDE 99 and BDE 153. The effects of environmental variables including pH, humic substance, and groundwater chemical composition on PBDEs measurements were also investigated. These environmental variables affected fluorescence intensity, but their effect can be corrected through linear additivity and separation of spectral signal contribution. Compared with conventional GC-based analytical methods, the fluorescence spectroscopy method is more efficient as it only uses a small amount of samples (2-4 mL), avoids lengthy complicated concentration and extraction steps, and has a low detection limit of a few ng/L.« less

  7. A fluorescence-based method for rapid and direct determination of polybrominated diphenyl ethers in water

    SciTech Connect (OSTI)

    Shan, Huimei; Liu, Chongxuan; Wang, Zheming; Ma, Teng; Shang, Jianying; Pan, Duoqiang

    2015-01-01

    A new method was developed for rapid and direct measurement of polybrominated diphenyl ethers (PBDEs) in aqueous samples using fluorescence spectroscopy. The fluorescence spectra of tri- to deca-BDE (BDE 28, 47, 99, 153, 190, and 209) commonly found in environment were measured at variable emission and excitation wavelengths. The results revealed that the PBDEs have distinct fluorescence spectral profiles and peak positions that can be exploited to identify these species and determine their concentrations in aqueous solutions. The detection limits as determined in deionized water spiked with PBDEs are 1.71-5.82 ng/L for BDE 28, BDE 47, BDE 190, and BDE 209 and 45.5569.95 ng/L for BDE 99 and BDE 153. The effects of environmental variables including pH, humic substance, and groundwater chemical composition on PBDEs measurements were also investigated. These environmental variables affected fluorescence intensity, but their effect can be corrected through linear additivity and separation of spectral signal contribution. Compared with conventional GC-based analytical methods, the fluorescence spectroscopy method is more efficient as it only uses a small amount of samples (2-4 mL), avoids lengthy complicated concentration and extraction steps, and has a low detection limit of a few ng/L.

  8. Toward quantitative modeling of silicon phononic thermocrystals

    SciTech Connect (OSTI)

    Lacatena, V.; Haras, M.; Robillard, J.-F. Dubois, E.; Monfray, S.; Skotnicki, T.

    2015-03-16

    The wealth of technological patterning technologies of deca-nanometer resolution brings opportunities to artificially modulate thermal transport properties. A promising example is given by the recent concepts of 'thermocrystals' or 'nanophononic crystals' that introduce regular nano-scale inclusions using a pitch scale in between the thermal phonons mean free path and the electron mean free path. In such structures, the lattice thermal conductivity is reduced down to two orders of magnitude with respect to its bulk value. Beyond the promise held by these materials to overcome the well-known “electron crystal-phonon glass” dilemma faced in thermoelectrics, the quantitative prediction of their thermal conductivity poses a challenge. This work paves the way toward understanding and designing silicon nanophononic membranes by means of molecular dynamics simulation. Several systems are studied in order to distinguish the shape contribution from bulk, ultra-thin membranes (8 to 15 nm), 2D phononic crystals, and finally 2D phononic membranes. After having discussed the equilibrium properties of these structures from 300 K to 400 K, the Green-Kubo methodology is used to quantify the thermal conductivity. The results account for several experimental trends and models. It is confirmed that the thin-film geometry as well as the phononic structure act towards a reduction of the thermal conductivity. The further decrease in the phononic engineered membrane clearly demonstrates that both phenomena are cumulative. Finally, limitations of the model and further perspectives are discussed.

  9. Ferroelectric opening switches for large-scale pulsed power drivers.

    SciTech Connect (OSTI)

    Brennecka, Geoffrey L.; Rudys, Joseph Matthew; Reed, Kim Warren; Pena, Gary Edward; Tuttle, Bruce Andrew; Glover, Steven Frank

    2009-11-01

    Fast electrical energy storage or Voltage-Driven Technology (VDT) has dominated fast, high-voltage pulsed power systems for the past six decades. Fast magnetic energy storage or Current-Driven Technology (CDT) is characterized by 10,000 X higher energy density than VDT and has a great number of other substantial advantages, but it has all but been neglected for all of these decades. The uniform explanation for neglect of CDT technology is invariably that the industry has never been able to make an effective opening switch, which is essential for the use of CDT. Most approaches to opening switches have involved plasma of one sort or another. On a large scale, gaseous plasmas have been used as a conductor to bridge the switch electrodes that provides an opening function when the current wave front propagates through to the output end of the plasma and fully magnetizes the plasma - this is called a Plasma Opening Switch (POS). Opening can be triggered in a POS using a magnetic field to push the plasma out of the A-K gap - this is called a Magnetically Controlled Plasma Opening Switch (MCPOS). On a small scale, depletion of electron plasmas in semiconductor devices is used to affect opening switch behavior, but these devices are relatively low voltage and low current compared to the hundreds of kilo-volts and tens of kilo-amperes of interest to pulsed power. This work is an investigation into an entirely new approach to opening switch technology that utilizes new materials in new ways. The new materials are Ferroelectrics and using them as an opening switch is a stark contrast to their traditional applications in optics and transducer applications. Emphasis is on use of high performance ferroelectrics with the objective of developing an opening switch that would be suitable for large scale pulsed power applications. Over the course of exploring this new ground, we have discovered new behaviors and properties of these materials that were here to fore unknown. Some of these unexpected discoveries have lead to new research directions to address challenges.

  10. CPT conservation and atmospheric neutrinos in the MINOS far detector

    SciTech Connect (OSTI)

    Becker, Bernard Raymond

    2006-02-01

    The MINOS Far Detector is a 5400 ton iron calorimeter located at the Soudan state park in Soudan Minnesota. The MINOS far detector can observe atmospheric neutrinos and separate charge current {nu}{sub {mu}} and {bar {nu}}{sub {mu}} interactions by using a 1.4 T magnetic field to identify the charge of the produced muon. The CPT theorem requires that neutrinos and anti-neutrinos oscillate in the same way. In a fiducial exposure of 5.0 kilo-ton years a total of 41 candidate neutrino events are observed with an expectation of 53.1 {+-} 7.6(system.) {+-} 7.2(stat.) unoscillated events or 31.6 {+-} 4.7(system.) {+-} 5.6(stat.) events with {Delta}m{sup 2} = 2.4 x 10{sup -3} eV{sup 2}, sin{sup 2}(2{theta}) = 1.0 as oscillation parameters. These include 28 events which can have there charge identified with high confidence. These 28 events consist of 18 events consistent with being produced by {nu}{sub {mu}} and 10 events being consistent with being produced by {bar {nu}}{sub {mu}}. No evidence of CPT violation is observed.

  11. Cosmic Ray Interactions in Shielding Materials

    SciTech Connect (OSTI)

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Ankney, Austin S.; Orrell, John L.; Berguson, Timothy J.; Troy, Meredith D.

    2011-09-08

    This document provides a detailed study of materials used to shield against the hadronic particles from cosmic ray showers at Earth’s surface. This work was motivated by the need for a shield that minimizes activation of the enriched germanium during transport for the MAJORANA collaboration. The materials suitable for cosmic-ray shield design are materials such as lead and iron that will stop the primary protons, and materials like polyethylene, borated polyethylene, concrete and water that will stop the induced neutrons. The interaction of the different cosmic-ray components at ground level (protons, neutrons, muons) with their wide energy range (from kilo-electron volts to giga-electron volts) is a complex calculation. Monte Carlo calculations have proven to be a suitable tool for the simulation of nucleon transport, including hadron interactions and radioactive isotope production. The industry standard Monte Carlo simulation tool, Geant4, was used for this study. The result of this study is the assertion that activation at Earth’s surface is a result of the neutronic and protonic components of the cosmic-ray shower. The best material to shield against these cosmic-ray components is iron, which has the best combination of primary shielding and minimal secondary neutron production.

  12. Hybrid Simulator

    Energy Science and Technology Software Center (OSTI)

    2005-10-15

    HybSim (short for Hybrid Simulator) is a flexible, easy to use screening tool that allows the user to quanti the technical and economic benefits of installing a village hybrid generating system and simulates systems with any combination of —Diesel generator sets —Photovoltaic arrays -Wind Turbines and -Battery energy storage systems Most village systems (or small population sites such as villages, remote military bases, small communities, independent or isolated buildings or centers) depend on diesel generationmore » systems for their source of energy. HybSim allows the user to determine other "sources" of energy that can greatly reduce the dollar to kilo-watt hour ratio. Supported by the DOE, Energy Storage Program, HybSim was initially developed to help analyze the benefits of energy storage systems in Alaskan villages. Soon after its development, other sources of energy were added providing the user with a greater range of analysis opportunities and providing the village with potentially added savings. In addition to village systems, HybSim has generated interest for use from military institutions in energy provisions and USAID for international village analysis.« less

  13. Unmanned airships for near earth remote sensing missions

    SciTech Connect (OSTI)

    Hochstetler, R.D.

    1996-10-01

    In recent years the study of Earth processes has increased significantly. Conventional aircraft have been employed to a large extent in gathering much of this information. However, with this expansion of research has come the need to investigate and measure phenomena that occur beyond the performance capabilities of conventional aircraft. Where long dwell times or observations at very low attitudes are required there are few platforms that can operate safely, efficiently, and cost-effectively. One type of aircraft that meets all three parameters is the unmanned, autonomously operated airship. The UAV airship is smaller than manned airships but has similar performance characteristics. It`s low speed stability permits high resolution observations and provides a low vibration environment for motion sensitive instruments. Maximum airspeed is usually 30mph to 35mph and endurance can be as high as 36 hours. With scientific payload capacities of 100 kilos and more, the UAV airship offers a unique opportunity for carrying significant instrument loads for protracted periods at the air/surface interface. The US Army has operated UAV airships for several years conducting border surveillance and monitoring, environmental surveys, and detection and mapping of unexploded ordinance. The technical details of UAV airships, their performance, and the potential of such platforms for more advanced research roles will be presented. 3 refs., 5 figs.

  14. Electric Power Delivery Testing Feasibility Study Task 6 Final Report

    SciTech Connect (OSTI)

    Thomas Tobin

    2009-07-01

    This Final Report is covers the completion of the Electric Power Delivery Testing Feasibility Study. The objective of this project was to research, engineer, and demonstrate high-power laboratory testing protocols to accurately reproduce the conditions on the electric power grid representing both normal load switching and abnormalities such as short-circuit fault protection. Test circuits, equipment, and techniques were developed and proven at reduced power levels to determine the feasibility of building a large-scale high-power testing laboratory capable of testing equipment and systems at simulated high-power conditions of the U.S. power grid at distribution levels up through 38 kiloVolts (kV) and transmission levels up through 230 kV. The project delivered demonstrated testing techniques, high-voltage test equipment for load testing and synthetic short-circuit testing, and recommended designs for future implementation of a high-power testing laboratory to test equipment and systems, enabling increased reliability of the electric transmission and distribution grid.

  15. Radiation-driven warping of circumbinary disks around eccentric young star binaries

    SciTech Connect (OSTI)

    Hayasaki, Kimitake; Sohn, Bong Won; Jung, Taehyun; Zhao, Guangyao; Okazaki, Atsuo T.; Naito, Tsuguya

    2014-12-10

    We study a warping instability of a geometrically thin, non-self-gravitating, circumbinary disk around young binary stars on an eccentric orbit. Such a disk is subject to both the tidal torques due to a time-dependent binary potential and the radiative torques due to radiation emitted from each star. The tilt angle between the circumbinary disk plane and the binary orbital plane is assumed to be very small. We find that there is a radius within/beyond which the circumbinary disk is unstable to radiation-driven warping, depending on the disk density and temperature gradient indices. This marginally stable warping radius is very sensitive to viscosity parameters, a fiducial disk radius and the temperature measured there, the stellar luminosity, and the disk surface density at a radius where the disk changes from optically thick to thin for the irradiation from the central stars. On the other hand, it is insensitive to the orbital eccentricity and binary irradiation parameter, which is a function of the binary mass ratio and luminosity of each star. Since the tidal torques can suppress the warping in the inner part of the circumbinary disk, the disk starts to be warped in the outer part. While the circumbinary disks are most likely to be subject to the radiation-driven warping on an AU to kilo-AU scale for binaries with young massive stars more luminous than 10{sup 4} L {sub ?}, the radiation-driven warping does not work for those around young binaries with the luminosity comparable to the solar luminosity.

  16. SU-F-18C-15: Model-Based Multiscale Noise Reduction On Low Dose Cone Beam Projection

    SciTech Connect (OSTI)

    Yao, W; Farr, J

    2014-06-15

    Purpose: To improve image quality of low dose cone beam CT for patient positioning in radiation therapy. Methods: In low dose cone beam CT (CBCT) imaging systems, Poisson process governs the randomness of photon fluence at x-ray source and the detector because of the independent binomial process of photon absorption in medium. On a CBCT projection, the variance of fluence consists of the variance of noiseless imaging structure and that of Poisson noise, which is proportional to the mean (noiseless) of the fluence at the detector. This requires multiscale filters to smoothen noise while keeping the structure information of the imaged object. We used a mathematical model of Poisson process to design multiscale filters and established the balance of noise correction and structure blurring. The algorithm was checked with low dose kilo-voltage CBCT projections acquired from a Varian OBI system. Results: From the investigation of low dose CBCT of a Catphan phantom and patients, it showed that our model-based multiscale technique could efficiently reduce noise and meanwhile keep the fine structure of the imaged object. After the image processing, the number of visible line pairs in Catphan phantom scanned with 4 ms pulse time was similar to that scanned with 32 ms, and soft tissue structure from simulated 4 ms patient head-and-neck images was also comparable with scanned 20 ms ones. Compared with fixed-scale technique, the image quality from multiscale one was improved. Conclusion: Use of projection-specific multiscale filters can reach better balance on noise reduction and structure information loss. The image quality of low dose CBCT can be improved by using multiscale filters.

  17. Polybrominated diphenyl ethers in e-waste: Level and transfer in a typical e-waste recycling site in Shanghai, Eastern China

    SciTech Connect (OSTI)

    Li, Yue; Duan, Yan-Ping, E-mail: duanyanping@tongji.edu.cn; Huang, Fan; Yang, Jing; Xiang, Nan; Meng, Xiang-Zhou; Chen, Ling

    2014-06-01

    Highlights: PBDEs were detected in the majority of e-waste. PBDEs were found in TVs made in China after 1990. The levels of ?PBDEs in e-waste made in Japan far exceed the threshold limit of RoHS. The inappropriate recycling and disposal of e-waste is an important source of PBDEs. - Abstract: Very few data for polybrominated diphenyl ethers (PBDEs) were available in the electronic waste (e-waste) as one of the most PBDEs emission source. This study reported concentrations of PBDEs in e-waste including printer, rice cooker, computer monitor, TV, electric iron and water dispenser, as well as dust from e-waste, e-waste dismantling workshop and surface soil from inside and outside of an e-waste recycling plant in Shanghai, Eastern China. The results showed that PBDEs were detected in the majority of e-waste, and the concentrations of ?PBDEs ranged from not detected to 175 g/kg, with a mean value of 10.8 g/kg. PBDEs were found in TVs made in China after 1990. The mean concentrations of ?PBDEs in e-waste made in Korea, Japan, Singapore and China were 1.84 g/kg, 20.5 g/kg, 0.91 g/kg, 4.48 g/kg, respectively. The levels of ?PBDEs in e-waste made in Japan far exceed the threshold limit of RoHS (1.00 g/kg). BDE-209 dominated in e-waste, accounting for over 93%. The compositional patterns of PBDEs congeners resembled the profile of Saytex 102E, indicating the source of deca-BDE. Among the samples of dust and surface soil from a typical e-waste recycling site, the highest concentrations of ?{sub 18}PBDEs and BDE-209 were found in dust in e-waste, ranging from 1960 to 340,710 ng/g and from 910 to 320,400 ng/g, which were 12 orders of magnitude higher than other samples. It suggested that PBDEs released from e-waste via dust, and then transferred to surrounding environment.

  18. SU-E-T-297: Small Field Dosimetry for Superficial Lesions

    SciTech Connect (OSTI)

    Ying, J; Casto, B; Wang, S; Talyor, T; Wichman, A; Ku, L; Taylor, M

    2014-06-01

    Purpose: Kilo-voltage (kV) photons and low megavoltage (MeV) electrons are the most common options for treating small superficial lesions, but they present complex dosimetry. Using a tertiary lead shield may protect the surrounding critical structures. Our goal was to quantitatively evaluate the dosimetric impact resulting from applying tertiary shields on superficial lesions. Method: We directly compared the beam characteristics of 80 kV (0.8 mm Al) photon setup abutting the water phantom surface and 6 MeV electron setup at 100 cm SSD. Profiles and depth doses were acquired using a 3D scanning water tank and an ion chamber (active volume 0.01 cm{sup 3}). Beam profiles were scanned at Dmax. Three lead sheets (2 mm thickness) with 2.7, 2.2, and 1.6, cm diameter circular cutouts were fabricated and placed at the water surface for both photon and electron fields. Results: The penumbra (80% 20%) of the open 44 cm{sup 2} electron insert was 10.7 mm, compared to an average of 7.2 mm with the tertiary cutouts. The penumbra of the open kV photon beam was 2.8 mm compared to an average of 1.8 mm with the tertiary cutouts. For field widths 2.7, 2.2, and 1.6 cm, the flatness of the electron beams was 16%, 17.3%, and 21%, respectively, and for the kV photon beams was 1.4%, 2.3%, 3.3%, respectively. The electron depth dose (PDD) shifted shallower and the photon PDD shifted deeper as the field size became smaller. Conclusion: The penumbra of small electron fields can be improved by adding tertiary lead shields. Both modalities are clinically feasible; however, kV photons still offer sharper penumbra and better flatness than that of 6 MeV electrons with tertiary shielding. Thus, kV photons may still be a superior option for small superficial lesions.

  19. Building opportunities for photovoltaics in the U.S. Final report [PV BONUS

    SciTech Connect (OSTI)

    Michael Nicklas

    1999-09-08

    The objective of the North Carolina's PV Bonus Team was to develop and demonstrate a commercially viable, building-integrated, photovoltaic system that, in addition to providing electricity, would capture and effectively utilize the thermal energy produced by the photovoltaic array. This project objective was successfully achieved by designing, testing, constructing, and monitoring two roof integrated photovoltaic systems--one on a Applebee's Restaurant in Salisbury, North Carolina and the second on a Central Carolina Bank in Bessemer City, North Carolina. The goal of Innovative Design is to now use these successful demonstrations to facilitate entry of building integrated, pv/thermal systems into the marketplace. The strategy was to develop the two systems that could be utilized in future applications. Both systems were designed and then constructed at the North Carolina Solar Center at North Carolina State University. After extensive testing at the North Carolina Solar Center, the systems were moved to the actual construction sites and implemented. The Applebee's Restaurant system was designed to substitute for the roof assembly of a low sloping, south-facing sunspace roof that typically incorporated clay tile. After monitoring the installed system for one year it was determined that the 1.2 kilowatt (peak) system produces an average peak reduction of 1 kilowatt (rated peak is 1.7 kiloWatts), saves 1,529 kilowatt-hours of electricity, and offsets 11,776 kilowatt-hours of thermal energy savings used to pre-heat water. A DC fan connected directly to eight of the thirty-two amorphous modules moves air through air passages mounted on the backside of the modules and into a closed loop duct system to a heat exchanger. This heat exchanger is, in turn, connected to a pre-heat hot water tank that is used to heat the water for the restaurant. The Central Carolina Bank system was designed to substitute for the roof assembly of the drive-in window area of the bank. The design featured a triangulated truss that incorporated ten crystalline photovoltaic modules on one side of the truss and a reflective panel on the opposite side. The system used a utility interactive, programmable inverter and a 18.9 kilowatt-hour battery bank. The system is designed so that a DC fan, connected to one of the modules, forces ambient air across the back side of the modules. In the summer this heat is vented to the outside but in the winter this heated, fresh air is introduced into the building as ventilation air. Like the Applebee's system, the design allowed the entire roof assembly to be constructed off-site, tested, and then shipped to the site in pie-assembled, large components. During the first full year of operation, the 2.2 kilowatt (rated peak is 2.7 kilowatts) system contributed to an average peak reduction of .9 kilowatts. The system, as designed, saves 2,576 kilowatt-hours of electricity and offsets 3,473 kilowatt hours (of a potential thermal benefit of 10,172 collected kWhs) of thermal energy savings that is used as fresh air make-up in the colder months. This report is a summary of their conclusions.

  20. System Modeling of kJ-class Petawatt Lasers at LLNL

    SciTech Connect (OSTI)

    Shverdin, M Y; Rushford, M; Henesian, M A; Boley, C; Haefner, C; Heebner, J E; Crane, J K; Siders, C W; Barty, C P

    2010-04-14

    Advanced Radiographic Capability (ARC) project at the National Ignition Facility (NIF) is designed to produce energetic, ultrafast x-rays in the range of 70-100 keV for backlighting NIF targets. The chirped pulse amplification (CPA) laser system will deliver kilo-Joule pulses at an adjustable pulse duration from 1 ps to 50 ps. System complexity requires sophisticated simulation and modeling tools for design, performance prediction, and comprehension of experimental results. We provide a brief overview of ARC, present our main modeling tools, and describe important performance predictions. The laser system (Fig. 1) consists of an all-fiber front end, including chirped-fiber Bragg grating (CFBG) stretchers. The beam after the final fiber amplifier is split into two apertures and spatially shaped. The split beam first seeds a regenerative amplifier and is then amplified in a multi-pass Nd:glass amplifier. Next, the preamplified chirped pulse is split in time into four identical replicas and injected into one NIF Quad. At the output of the NIF beamline, each of the eight amplified pulses is compressed in an individual, folded, four-grating compressor. Compressor grating pairs have slightly different groove densities to enable compact folding geometry and eliminate adjacent beam cross-talk. Pulse duration is adjustable with a small, rack-mounted compressor in the front-end. We use non-sequential ray-tracing software, FRED for design and layout of the optical system. Currently, our FRED model includes all of the optical components from the output of the fiber front end to the target center (Fig. 2). CAD designed opto-mechanical components are imported into our FRED model to provide a complete system description. In addition to incoherent ray tracing and scattering analysis, FRED uses Gaussian beam decomposition to model coherent beam propagation. Neglecting nonlinear effects, we can obtain a nearly complete frequency domain description of the ARC beam at different stages in the system. We employ 3D Fourier based propagation codes: MIRO, Virtual Beamline (VBL), and PROP for time-domain pulse analysis. These codes simulate nonlinear effects, calculate near and far field beam profiles, and account for amplifier gain. Verification of correct system set-up is a major difficulty to using these codes. VBL and PROP predictions have been extensively benchmarked to NIF experiments, and the verified descriptions of specific NIF beamlines are used for ARC. MIRO has the added capability of treating bandwidth specific effects of CPA. A sample MIRO model of the NIF beamline is shown in Fig. 3. MIRO models are benchmarked to VBL and PROP in the narrow bandwidth mode. Developing a variety of simulation tools allows us to cross-check predictions of different models and gain confidence in their fidelity. Preliminary experiments, currently in progress, are allowing us to validate and refine our models, and help guide future experimental campaigns.

  1. 130 LPW 1000 Lm Warm White LED for Illumination

    SciTech Connect (OSTI)

    Soer, Wouter

    2012-06-14

    An illumination-grade warm-white LED, having correlated color temperature (CCT) between 2700 and 3500 K and capable of producing 1000 lm output at over 130 lm/W at room temperature, has been developed in this program. The high-power warm-white LED is an ideal source for use in indoor and outdoor lighting applications. Over the two year period, we have made the following accomplishments: • Developed a low-cost high-power white LED package and commercialized a series of products with CCT ranging from 2700 to 5700 K under the product name LUXEON M; • Demonstrated a record efficacy of 124.8 lm/W at a flux of 1023 lm, CCT of 3435 K and color rendering index (CRI) over 80 at room temperature in the productized package; • Demonstrated a record efficacy of 133.1 lm/W at a flux of 1015 lm, CCT of 3475 K and CRI over 80 at room temperature in an R&D package. The new high-power LED package is a die-on-ceramic surface mountable LED package. It has four 2 mm2 InGaN pump dice, flip-chip attached to a ceramic submount in a 2x2 array configuration. The submount design utilizes a design approach that combines a high-thermal- conductivity ceramic core for die attach and a low-cost and low-thermal-conductivity ceramic frame for mechanical support and as optical lens carrier. The LED package has a thermal resistance of less than 1.25 K/W. The white LED fabrication also adopts a new batch level (instead of die-by-die) phosphor deposition process with precision layer thickness and composition control, which provides not only tight color control, but also low cost. The efficacy performance goal was achieved through the progress in following key areas: (1) high-efficiency royal blue pump LED development through active region design and epitaxial growth quality improvement (funded by internal programs); (2) improvement in extraction efficiency from the LED package through improvement of InGaN-die-level and package-level optical extraction efficiency; and (3) improvement in phosphor system efficiency by improving the lumen equivalent (LE) and phosphor package efficiency (PPE) through improvement in phosphor-package interactions. The high-power warm-white LED product developed has been proven to have good reliability through extensive reliability tests. The new kilo-lumen package has been commercialized under the product name LUXEON M. As of the end of the program, the LUXEON M product has been released in the following CCT/CRI combinations: 3000K/70, 4000K/70, 5000K/70, 5700K/70, 2700K/80, 3000K/80 and 4000K/80. LM-80 tests for the products with CCTs of 4000 K and higher have reached 8500 hours, and per IESNA TM-21-11 have established an L70 lumen maintenance value of >51,000 hours at A drive current and up to 120 °C board temperature.

  2. Distributed Sensor Coordination for Advanced Energy Systems

    SciTech Connect (OSTI)

    Tumer, Kagan

    2013-07-31

    The ability to collect key system level information is critical to the safe, efficient and reli- able operation of advanced energy systems. With recent advances in sensor development, it is now possible to push some level of decision making directly to computationally sophisticated sensors, rather than wait for data to arrive to a massive centralized location before a decision is made. This type of approach relies on networked sensors (called agents from here on) to actively collect and process data, and provide key control deci- sions to significantly improve both the quality/relevance of the collected data and the as- sociating decision making. The technological bottlenecks for such sensor networks stem from a lack of mathematics and algorithms to manage the systems, rather than difficulties associated with building and deploying them. Indeed, traditional sensor coordination strategies do not provide adequate solutions for this problem. Passive data collection methods (e.g., large sensor webs) can scale to large systems, but are generally not suited to highly dynamic environments, such as ad- vanced energy systems, where crucial decisions may need to be reached quickly and lo- cally. Approaches based on local decisions on the other hand cannot guarantee that each agent performing its task (maximize an agent objective) will lead to good network wide solution (maximize a network objective) without invoking cumbersome coordination rou- tines. There is currently a lack of algorithms that will enable self-organization and blend the efficiency of local decision making with the system level guarantees of global decision making, particularly when the systems operate in dynamic and stochastic environments. In this work we addressed this critical gap and provided a comprehensive solution to the problem of sensor coordination to ensure the safe, reliable, and robust operation of advanced energy systems. The differentiating aspect of the proposed work is in shift- ing the focus towards what to observe rather than how to observe in large sensor networks, allowing the agents to actively determine both the structure of the network and the relevance of the information they are seeking to collect. In addition to providing an implicit coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Outcome Summary: All milestones associated with this project have been completed. In particular, private sensor objective functions were developed which are aligned with the global objective function, sensor effectiveness has been improved by using sensor teams, system efficiency has been improved by 30% using difference evaluation func- tions, we have demonstrated system reconfigurability for 20% changes in system con- ditions, we have demonstrated extreme scalability of our proposed algorithm, we have demonstrated that sensor networks can overcome disruptions of up to 20% in network conditions, and have demonstrated system reconfigurability to 20% changes in system conditions in hardware-based simulations. This final report summarizes how each of these milestones was achieved, and gives insight into future research possibilities past the work which has been completed. The following publications support these milestones [6, 8, 9, 10, 16, 18, 19].