National Library of Energy BETA

Sample records for keywords china cred

  1. Rapid automatic keyword extraction for information retrieval and analysis

    DOE Patents [OSTI]

    Rose, Stuart J (Richland, WA); Cowley,; Wendy E (Richland, WA); Crow, Vernon L (Richland, WA); Cramer, Nicholas O (Richland, WA)

    2012-03-06

    Methods and systems for rapid automatic keyword extraction for information retrieval and analysis. Embodiments can include parsing words in an individual document by delimiters, stop words, or both in order to identify candidate keywords. Word scores for each word within the candidate keywords are then calculated based on a function of co-occurrence degree, co-occurrence frequency, or both. Based on a function of the word scores for words within the candidate keyword, a keyword score is calculated for each of the candidate keywords. A portion of the candidate keywords are then extracted as keywords based, at least in part, on the candidate keywords having the highest keyword scores.

  2. China

    National Nuclear Security Administration (NNSA)

    9%2A en NNSA Transfers Responsibility for Radiation Detection System to China Customs http:nnsa.energy.govmediaroompressreleasesnnsa%E2%80%99s-second-line-defense

  3. National Library of Energy : Main View : Search Results for Keyword...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Search: Keyword: microelectromechanical OR mems OR mem Did you mean ? Create new alert from this search New Search My Selections (0) Alerts Source Status Activity Indicator 0 top...

  4. Hythane project by Hydrogen China Ltd and China Railway Construction...

    Open Energy Info (EERE)

    project by Hydrogen China Ltd and China Railway Construction Corporation Jump to: navigation, search Name: Hythane project by Hydrogen China Ltd and China Railway Construction...

  5. ECOtality China | Open Energy Information

    Open Energy Info (EERE)

    ECOtality China Jump to: navigation, search Name: ECOtality China Place: China Product: China-based manufacturer of electric vehicle charging systems. References: ECOtality...

  6. ESCO Industry in China

    Broader source: Energy.gov [DOE]

    Information about the development, achievements, and functions of the China Energy Conservation project and ESCO.

  7. China Energy Primer

    SciTech Connect (OSTI)

    Ni, Chun Chun

    2009-11-16

    Based on extensive analysis of the 'China Energy Databook Version 7' (October 2008) this Primer for China's Energy Industry draws a broad picture of China's energy industry with the two goals of helping users read and interpret the data presented in the 'China Energy Databook' and understand the historical evolution of China's energy inustry. Primer provides comprehensive historical reviews of China's energy industry including its supply and demand, exports and imports, investments, environment, and most importantly, its complicated pricing system, a key element in the analysis of China's energy sector.

  8. Palcan China | Open Energy Information

    Open Energy Info (EERE)

    Palcan China Place: Shanghai, Shanghai Municipality, China Zip: 200000 Product: Joint venture to produce PEMFC stacks in China at low cost. Coordinates: 31.247709, 121.472618...

  9. Taggart China | Open Energy Information

    Open Energy Info (EERE)

    Taggart China Jump to: navigation, search Name: Taggart China Place: Beijing, Beijing Municipality, China Zip: 100022 Sector: Solar, Wind energy Product: US based Taggart Global...

  10. Natcore China | Open Energy Information

    Open Energy Info (EERE)

    Natcore China Place: China Product: China-based JV formed to develop and manufacture PV cell coating equipment and materials. References: Natcore China1 This article is a stub....

  11. China City Investment Group | Open Energy Information

    Open Energy Info (EERE)

    China City Investment Group Jump to: navigation, search Name: China City Investment Group Place: Nanjing, Jiangsu Province, China Sector: Renewable Energy Product: China-based...

  12. China Power Inc | Open Energy Information

    Open Energy Info (EERE)

    China Power Inc Place: Beijing Municipality, China Zip: 100020 Sector: Renewable Energy Product: China Power Inc., a subsidiary of China Holdings Inc., is a project developer for...

  13. China Photoelectricity Group | Open Energy Information

    Open Energy Info (EERE)

    Photoelectricity Group Jump to: navigation, search Name: China Photoelectricity Group Place: China Product: A PV cell maker in China. References: China Photoelectricity Group1...

  14. China National CDM Board | Open Energy Information

    Open Energy Info (EERE)

    Board Jump to: navigation, search Name: China National CDM Board Place: Beijing Municipality, China Product: Regulator for CDM development in China. References: China National CDM...

  15. GC China Turbine Corp | Open Energy Information

    Open Energy Info (EERE)

    GC China Turbine Corp Jump to: navigation, search Name: GC China Turbine Corp Place: Wuhan, Hubei Province, China Sector: Wind energy Product: China-base wind turbine manufacturer....

  16. Chengdu China Photoelectric Apollo | Open Energy Information

    Open Energy Info (EERE)

    Chengdu China Photoelectric Apollo Jump to: navigation, search Name: Chengdu China Photoelectric Apollo Place: Chengdu, Sichuan Province, China Sector: Solar Product: China-based...

  17. AMF Deployment, Shouxian, China

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    China Shouxian Deployment AMF Home Shouxian Home Data Plots and Baseline Instruments Experiment Planning Proposal Science Plan, (PDF, 1,257K) Outreach Fact Sheets English Version...

  18. Guangdong, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Companies in Guangdong, China BSL-Solar Big China Solar Energy Group China Guangdong Nuclear Power Company Guangdong Baolihua New Energy Corporation Zhuhai Oil Energy Science and...

  19. Guangzhou, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Province in China. Registered Energy Companies in Guangzhou, China China Guangdong Nuclear Power Company Guangdong Baolihua New Energy Corporation References http:...

  20. Category:China | Open Energy Information

    Open Energy Info (EERE)

    Corporation China's National Climate Change Programme China-2050 Wind Technology Roadmap J Jiangsu, China Jiangsu-California MOU N National Development and Reform Commission...

  1. REpower North China Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Ltd Jump to: navigation, search Name: REpower North (China) Ltd Place: Baotou, Inner Mongolia Autonomous Region, China Zip: 14033 Product: Joint venture to manufacture 2MW...

  2. China Solar Tower Development | Open Energy Information

    Open Energy Info (EERE)

    Tower Development Jump to: navigation, search Name: China Solar Tower Development Place: China Sector: Solar Product: Joint venture for development of solar towers in China,...

  3. Tang Energy China | Open Energy Information

    Open Energy Info (EERE)

    Energy China Jump to: navigation, search Name: Tang Energy China Place: Beijing, Beijing Municipality, China Product: Main operational centre for Tang Energy. Coordinates:...

  4. China Gengsheng Minerals Inc | Open Energy Information

    Open Energy Info (EERE)

    Gengsheng Minerals Inc Jump to: navigation, search Name: China Gengsheng Minerals Inc Place: Henan Province, China Product: China-based material technology company. References:...

  5. GE Global Research in Shanghai, China

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shanghai, China Shanghai, China GE's commercial and industrial history meets challenges posed by China's rapid growth to produce work reflecting the advancing world. Click to email...

  6. China Power Equipment Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: China Power Equipment Inc Place: Xian, China Zip: 70075 Product: China-based manufacturer of energy saving transformers and transformer cores....

  7. National Energy Commission (China) | Open Energy Information

    Open Energy Info (EERE)

    Commission (China) Jump to: navigation, search Name: National Energy Commission (China) Place: Beijing References: National Energy Commission (China)1 This article is a stub. You...

  8. Fujian China Power | Open Energy Information

    Open Energy Info (EERE)

    Power Jump to: navigation, search Name: Fujian China Power Place: Fujian Province, China Sector: Hydro Product: A hydro power project developer. References: Fujian China Power1...

  9. China Renewable Energy College | Open Energy Information

    Open Energy Info (EERE)

    Name: China Renewable Energy College Place: Beijing Municipality, China Zip: 102206 Sector: Renewable Energy Product: China's first academic renewable energy College. References:...

  10. China energy databook

    SciTech Connect (OSTI)

    Sinton, J.E.; Levine, M.D.; Feng Liu; Davis, W.B.; Jiang Zhenping; Zhuang Xing; Jiang Kejun; Zhou Dadi

    1992-12-31

    The Energy Analysis Program (EAP) at the Lawrence Berkeley Laboratory (LBL) first became involved in Chinese energy issues through a joint China-US symposium on markets and demand for energy held in Nanjing in November of 1988. Discovering common interests, EAP began to collaborate on projects with the Energy Research Institute (ERI) of China`s State Planning Commission. In the course of this work it became clear that a major issue in the furtherance of our research was the acquisition of reliable data. In addition to other, more focused activities-evaluating programs of energy conservation undertaken in China and the prospects for making Chinese industrics morc energy-efficient, preparing historical reviews of cncrgy supply and demand in the People`s Republic of China, sponsoring researchers from China to work with experts at LBL on such topics as energy efficiency standards for buildings, adaptation of US energy analysis software to Chinese conditions, and transportation issues-we decided to compile, assess, and organize Chinese energy data. Preparing this volume confronted us with a number of difficult issues. The most frustrating usually involved the different approaches to sectoral divisions taken in China and the US. For instance, fuel used by motor vehicles belonging to industrial enterprises is counted as industrial consumption in China; only fuel use by vehicles belonging to enterprises engaged primarily in transportation is countcd as transportation use. The estimated adjustment to count all fuel use by vehicles as transportation energy use is quite large, since a large fraction of motor vehicles belong to industrial enterprises. Similarly, Chinese industrial investment figures are skewed compared to those collected in the US because a large portion of enterprises` investment funds is directed towards providing housing and social services for workers and their families.

  11. China energy databook

    SciTech Connect (OSTI)

    Sinton, J.E.; Levine, M.D.; Feng Liu; Davis, W.B. ); Jiang Zhenping; Zhuang Xing; Jiang Kejun; Zhou Dadi )

    1992-01-01

    The Energy Analysis Program (EAP) at the Lawrence Berkeley Laboratory (LBL) first became involved in Chinese energy issues through a joint China-US symposium on markets and demand for energy held in Nanjing in November of 1988. Discovering common interests, EAP began to collaborate on projects with the Energy Research Institute (ERI) of China's State Planning Commission. In the course of this work it became clear that a major issue in the furtherance of our research was the acquisition of reliable data. In addition to other, more focused activities-evaluating programs of energy conservation undertaken in China and the prospects for making Chinese industrics morc energy-efficient, preparing historical reviews of cncrgy supply and demand in the People's Republic of China, sponsoring researchers from China to work with experts at LBL on such topics as energy efficiency standards for buildings, adaptation of US energy analysis software to Chinese conditions, and transportation issues-we decided to compile, assess, and organize Chinese energy data. Preparing this volume confronted us with a number of difficult issues. The most frustrating usually involved the different approaches to sectoral divisions taken in China and the US. For instance, fuel used by motor vehicles belonging to industrial enterprises is counted as industrial consumption in China; only fuel use by vehicles belonging to enterprises engaged primarily in transportation is countcd as transportation use. The estimated adjustment to count all fuel use by vehicles as transportation energy use is quite large, since a large fraction of motor vehicles belong to industrial enterprises. Similarly, Chinese industrial investment figures are skewed compared to those collected in the US because a large portion of enterprises' investment funds is directed towards providing housing and social services for workers and their families.

  12. China energy databook

    SciTech Connect (OSTI)

    Sinton, J.E.; Levine, M.D.; Feng Liu; Davis, W.B. ); Jiang Zhenping; Zhuang Xing; Jiang Kejun; Zhou Dadi )

    1992-11-01

    The Energy Analysis Program (EAP) at the Lawrence Berkeley Laboratory (LBL) first becamc involved in Chinese energy issues through a joint China-US symposium on markets and demand for energy held in Nanjing in November of 1988. Discovering common interests, EAP began to collaborate on projects with the Energy Research Institute (ERI) of China's State Planning Commission. In the course of this work it became clear that a major issue in the furtherance of our research was the acquisition of reliable data. In addition to other, more focused activities-evaluating programs of energy conservation undertaken in China and the prospects for making Chinese industries more energy-efficient, preparing historical reviews of energy supply and demand in the People's Republic of China, sponsoring researchers from China to work with experts at LBL on such topics as energy efficiency standards for buildings, adaptation of US energy analysis software to Chinese conditions, and transportation issues-we decided to compile, assess, and organize Chinese energy data. We are hopeful that this volume will not only help us in our work, but help build a broader community of Chinese energy policy studies within the US.

  13. Bilateral Agreements with China | Department of Energy

    Energy Savers [EERE]

    Bilateral Agreements with China Bilateral Agreements with China Members of China's Shenhua Group visit FE's National Energy Technology Laboratory. Photo courtesy of NETL. Members of China's Shenhua Group visit FE's National Energy Technology Laboratory. Photo courtesy of NETL. Fossil Energy Protocol between the United States and China The U.S.-China Fossil Energy Protocol is intended to promote scientific and technological cooperation between the United States and China in the field of fossil

  14. China energy databook

    SciTech Connect (OSTI)

    Sinton, J.E.; Fridley, D.G.; Levine, M.D.

    1996-06-01

    The response to the first edition of the China Energy Databook was overwhelmingly positive, and has encouraged us to issue this revised, updated, and expanded edition. It has been a natural counterpart to the Energy Analysis Program`s continuing program of collaborative research with the Energy Research Institute. No other current reference volume dedicated to China`s energy system contains a similar variety and quality of material. We have revised some of the categories and data that appeared in the old volume. The adjustment for energy consumption in the transportation sector, for instance, has been slightly changed to include some fuel use in the commercial sector, which was previously left out. As another example, natural gas consumption statistics in the first edition greatly overstated electric utility use; we have rectified that error. Some tables have changed as statistical collection and reporting practices change in China. Figures on gross output value by sector stop with 1992, and economic output in subsequent years is covered by various measures of value-added, such as national income and gross domestic product.

  15. Innovate in China, Innovate for China | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    overall technological strength of Shanghai and even China. The GE-SJTU Collaborative Research Laboratory, the National Engineering Practice Education Center at Tongji University,...

  16. ZBB China JV | Open Energy Information

    Open Energy Info (EERE)

    JV Jump to: navigation, search Name: ZBB China JV Place: China Product: JV company formed in 2005 to sell ZBB(tm)s zincbromine batteries in China, Macau and Hong Kong,...

  17. Coal in China

    SciTech Connect (OSTI)

    Minchener, A.J.

    2005-07-01

    The article gives an overview of the production and use of coal in China, for power generation and in other sectors. Coal use for power generation was 850 million tonnes in 2003 and 800 million tonnes in the non-power sector. The majority of power will continue to be produced from coal, with a trend towards new larger pulverised coal fired units and introduction of circulating fluidised bed combustors. Stricter regulations are forcing introduction of improved pollution control technologies. It seems likely that China will need international finance to supplement private and state investment to carry out a programme to develop and apply clean coal technologies. The author concludes that there is evidence of a market economy being established but there is a need to resolve inconsistencies with the planned aspects of the economy and that additional policies are needed in certain sectors to achieve sustainable development. 1 ref., 2 figs., 2 tabs.

  18. Environmental protection in China

    SciTech Connect (OSTI)

    Russell, M. Univ. of Knoxville, TN )

    1990-01-01

    Environmental conditions in China are dramatically worse than those in the USA, but the Chinese are acting with commendable vigor in attempting to contain and ultimately reverse the damage. The Chinese have air, water and soil contamination, along with garbage and trash problems. They are also experiencing deforestation, desertification, soil erosion, destruction of wildlife habitat and wetlands, and the depletion of ground water. Attempts are being made to reduce the pollutants being produced, but economic factors weigh heavily against cleaning up current pollution.

  19. Extreme Energy in China

    SciTech Connect (OSTI)

    Khanna, Nina; Fridley, David; Cai, Lixue

    2013-06-01

    Over the last decade, China has focused its policies simultaneously on moderating the rapid energy demand growth that has been driven by three decades of rapid economic growth and industrialization and on increasing its energy supply. In spite of these concerted efforts, however, China continues to face growing energy supply challenges, particularly with accelerating demand for oil and natural gas, both of which are now heavily dependent on imports. On the supply side, the recent 11th and 12th Five-Year Plans have emphasized accelerating conventional and nonconventional oil and gas exploration and development through pricing reforms, pipeline infrastructure expansions and 2015 production targets for shale gas and coal seam methane. This study will analyze China’s new and nonconventional oil and gas resources base, possible development paths and outlook, and the potential role for these nonconventional resources in meeting oil and gas demand. The nonconventional resources currently being considered by China and included in this study include: shale gas, coal seam methane (coal mine methane and coal bed methane), tight gas, in-situ coal gasification, tight oil and oil shale, and gas hydrates.

  20. Key China Energy Statistics 2011

    SciTech Connect (OSTI)

    Levine, Mark; Fridley, David; Lu, Hongyou; Fino-Chen, Cecilia

    2012-01-15

    The China Energy Group at Lawrence Berkeley National Laboratory (LBNL) was established in 1988. Over the years the Group has gained recognition as an authoritative source of China energy statistics through the publication of its China Energy Databook (CED). In 2008 the Group published the Seventh Edition of the CED (http://china.lbl.gov/research/chinaenergy-databook). This handbook summarizes key statistics from the CED and is expressly modeled on the International Energy Agencys Key World Energy Statistics series of publications. The handbook contains timely, clearly-presented data on the supply, transformation, and consumption of all major energy sources.

  1. Key China Energy Statistics 2012

    SciTech Connect (OSTI)

    Levine, Mark; Fridley, David; Lu, Hongyou; Fino-Chen, Cecilia

    2012-05-01

    The China Energy Group at Lawrence Berkeley National Laboratory (LBNL) was established in 1988. Over the years the Group has gained recognition as an authoritative source of China energy statistics through the publication of its China Energy Databook (CED). The Group has published seven editions to date of the CED (http://china.lbl.gov/research/chinaenergy-databook). This handbook summarizes key statistics from the CED and is expressly modeled on the International Energy Agencys Key World Energy Statistics series of publications. The handbook contains timely, clearly-presented data on the supply, transformation, and consumption of all major energy sources.

  2. China Dialogue | Open Energy Information

    Open Energy Info (EERE)

    Dialogue Jump to: navigation, search Name: China Dialogue Place: United Kingdom Product: A non-profit organization aiming to broaden discussion on climate and energy issues,...

  3. China Nuclear Engineering Construction Corporation CNEC | Open...

    Open Energy Info (EERE)

    Nuclear Engineering Construction Corporation CNEC Jump to: navigation, search Name: China Nuclear Engineering & Construction Corporation (CNEC) Place: Beijing, China Zip: 100840...

  4. LBNL China Energy Group | Open Energy Information

    Open Energy Info (EERE)

    organizations, as well as with multilateral organizations working in China such as the IEA, World Bank, UN Development Program."1 "LBNL's China Energy Group can contribute to...

  5. China Building Design Consultants | Open Energy Information

    Open Energy Info (EERE)

    Building Design Consultants Jump to: navigation, search Name: China Building Design Consultants Place: Beijing Municipality, China Sector: Solar Product: Beijing-based architecture...

  6. China Enfi Enginnering Corporation | Open Energy Information

    Open Energy Info (EERE)

    Enfi Enginnering Corporation Jump to: navigation, search Name: China Enfi Enginnering Corporation Place: Beijing Municipality, China Product: Beijing-based engineering company....

  7. ARM - News : AMF Deployment, Shouxian, China

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ChinaNews : AMF Deployment, Shouxian, China Shouxian Deployment AMF Home Shouxian Home Data Plots and Baseline Instruments Experiment Planning Proposal Science Plan, (PDF, 1,257K)...

  8. China Technology Development Corporation | Open Energy Information

    Open Energy Info (EERE)

    Corporation Jump to: navigation, search Name: China Technology Development Corporation Place: Tortola, China Zip: 310012 Sector: Renewable Energy, Solar Product: Chinese company...

  9. China Export Partners | Open Energy Information

    Open Energy Info (EERE)

    Export Partners Jump to: navigation, search Name: China Export Partners Place: Beijing, Beijing Municipality, China Zip: 100027 Sector: Solar Product: A Beijing-based sourcing and...

  10. China Zhaodong Jianye Fuel | Open Energy Information

    Open Energy Info (EERE)

    Zhaodong Jianye Fuel Jump to: navigation, search Name: China Zhaodong Jianye Fuel Place: Zhaodong, Heilongjiang Province, China Product: Zhao Dong Ye Fuel engages in the...

  11. Hebei, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hebei, China: Energy Resources Jump to: navigation, search Name Hebei, China Equivalent URI DBpedia GeoNames ID 1808773 Coordinates 39, 116 Show Map Loading map......

  12. China s Green Beat | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: China's Green Beat Place: Beijing, Beijing Municipality, China Zip: 100088 Product: The body create films and podcasts, with a view to promoting...

  13. China Shoto Plc | Open Energy Information

    Open Energy Info (EERE)

    Shoto Plc Jump to: navigation, search Name: China Shoto Plc Place: Taizhou, Jiangsu Province, China Zip: 225526 Product: Taizhou-based manufacturer of rechargeable lead acid...

  14. China-NETL Cooperation | Open Energy Information

    Open Energy Info (EERE)

    NETL Cooperation Jump to: navigation, search Name NETL-China Cooperation AgencyCompany Organization National Energy Technology Laboratory Partner China Sector Energy Topics...

  15. China 2050 Pathways Calculator | Open Energy Information

    Open Energy Info (EERE)

    2050 Pathways Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: China 2050 Pathways Calculator AgencyCompany Organization: China's Energy Research Institute...

  16. China Hydroelectric Corp | Open Energy Information

    Open Energy Info (EERE)

    Corp Jump to: navigation, search Name: China Hydroelectric Corp Place: Beijing, Beijing Municipality, China Zip: 100010 Sector: Hydro Product: Engaged in the acquisition of small...

  17. China Carbon Finance | Open Energy Information

    Open Energy Info (EERE)

    Finance Jump to: navigation, search Name: China Carbon Finance Place: Auburn, Washington State Zip: 98002 Product: Project developer focused on CDM projects in China References:...

  18. China Guodian Corporation | Open Energy Information

    Open Energy Info (EERE)

    Guodian Corporation Jump to: navigation, search Name: China Guodian Corporation Place: China Coordinates: 35.86166, 104.195397 Show Map Loading map... "minzoom":false,"mapping...

  19. China Wind Energy Association | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Association Jump to: navigation, search Name: China Wind Energy Association Place: Beijing, Beijing Municipality, China Zip: 100013 Sector: Wind energy Product: A...

  20. US-China clean energy report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    US-China clean energy report US-China clean energy report US-China clean energy report PDF icon US-China clean energy report More Documents & Publications FACT SHEET: U.S.-China Clean Energy Cooperation Announcements US-China Clean Energy Cooperation Before the U.S.-China Economic and Security Review Commission

  1. A Glance at Chinas Household Consumption

    SciTech Connect (OSTI)

    Shui, Bin

    2009-10-22

    Known for its scale, China is the most populous country with the worlds third largest economy. In the context of rising living standards, a relatively lower share of household consumption in its GDP, a strong domestic market and globalization, China is witnessing an unavoidable increase in household consumption, related energy consumption and carbon emissions. Chinese policy decision makers and researchers are well aware of these challenges and keen to promote green lifestyles. China has developed a series of energy policies and programs, and launched a wide?range social marketing activities to promote energy conservation.

  2. GIS keyword | OpenEI Community

    Open Energy Info (EERE)

    Open government map data initiatives in the USA or Canada? IRENA launches global atlas of renewable energy potential more Group members (8) Managers: NickL Recent members:...

  3. China Guangdong Nuclear Solar Energy Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Solar Energy Co Ltd Jump to: navigation, search Name: China Guangdong Nuclear Solar Energy Co Ltd Place: China Sector: Solar Product: China Guangdong Nuclear's division on solar...

  4. Promotion of Rural Renewable Energy in Western China | Open Energy...

    Open Energy Info (EERE)

    Energy in Western China Place: Beijing Municipality, China Zip: 100026 Sector: Bioenergy Product: A programme launched by China Association of Rural Energy Industry (CAREI)...

  5. China-Climate Change Research Center | Open Energy Information

    Open Energy Info (EERE)

    China-Climate Change Research Center (Redirected from ClimateWorks-China Climate Change Research Center) Jump to: navigation, search Name China-Climate Change Research Center...

  6. China's National Climate Change Programme | Open Energy Information

    Open Energy Info (EERE)

    China's National Climate Change Programme Jump to: navigation, search Tool Summary LAUNCH TOOL Name: China's National Climate Change Programme AgencyCompany Organization: China...

  7. Vestas Wind Technology China Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Vestas Wind Technology China Co Ltd Jump to: navigation, search Name: Vestas Wind Technology (China) Co Ltd Place: Tianjin Municipality, China Zip: 300462 Sector: Wind energy...

  8. Khazanah Nasional Berhad Beijing China Sciences General Energy...

    Open Energy Info (EERE)

    Khazanah Nasional Berhad Beijing China Sciences General Energy JV Jump to: navigation, search Name: Khazanah Nasional Berhad & Beijing China Sciences General Energy JV Place: China...

  9. Solar Power China Corporation Ltd | Open Energy Information

    Open Energy Info (EERE)

    Corporation Ltd Jump to: navigation, search Name: Solar Power China Corporation Ltd Place: China Sector: Solar Product: China-focused PV project developer, acting as a joint...

  10. China Lucky Film Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Lucky Film Co Ltd Jump to: navigation, search Name: China Lucky Film Co Ltd Place: Baoding, Hebei Province, China Zip: 71054 Sector: Solar Product: China's photosensitive materials...

  11. China Xining New Energy Development | Open Energy Information

    Open Energy Info (EERE)

    New Energy Development Jump to: navigation, search Name: China Xining New Energy Development Place: Ningxia Autonomous Region, China Product: China-based company that manufactures...

  12. China Shaanxi Yulin Huayang New Energy | Open Energy Information

    Open Energy Info (EERE)

    Shaanxi Yulin Huayang New Energy Jump to: navigation, search Name: China Shaanxi Yulin Huayang New Energy Place: Yulin, Shaanxi Province, China Sector: Solar Product: China-based...

  13. Great China New Energy Technology Services Co Ltd GCNETS | Open...

    Open Energy Info (EERE)

    New Energy Technology Services Co Ltd GCNETS Jump to: navigation, search Name: Great China New Energy Technology Services Co Ltd (GCNETS) Place: China Product: China-based...

  14. Chengda Engineering Corporation of China | Open Energy Information

    Open Energy Info (EERE)

    Chengda Engineering Corporation of China Jump to: navigation, search Name: Chengda Engineering Corporation of China Place: Chengdu, Sichuan Province, China Zip: 610041 Product: A...

  15. China Ordnance Equipment Group Corporation COEGC | Open Energy...

    Open Energy Info (EERE)

    China Ordnance Equipment Group Corporation COEGC Jump to: navigation, search Name: China Ordnance Equipment Group Corporation (COEGC) Place: Beijing Municipality, China Sector:...

  16. MOU-CHINA.pdf | Department of Energy

    Energy Savers [EERE]

    MOU-CHINA.pdf MOU-CHINA.pdf PDF icon MOU-CHINA.pdf More Documents & Publications Memorandum of Understanding between the Department of Energy of the United States of America and the National Development and Reform Commission of the People's Republic of China Concerning Industrial Energy Efficiency Cooperation Memorandum of Understanding Between the Department of Agriculture and the Department of Energy and the National Development and Reform Commission of the People's Republic of China on

  17. 15th US-China Oil and Gas Industry Forum Opens in Chongqing, China |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 15th US-China Oil and Gas Industry Forum Opens in Chongqing, China 15th US-China Oil and Gas Industry Forum Opens in Chongqing, China September 17, 2015 - 9:17am Addthis 15th US-China Oil and Gas Industry Forum Opens in Chongqing, China This morning, Assistant Secretary for Fossil Energy Chris Smith, along with Zhang Yuqing, Deputy Administrator of China's National Energy Administration (NEA), opened the 15th US-China Oil and Gas Industry Forum (OGIF) in Chongqing,

  18. China Energy Databook. Revision 4

    SciTech Connect (OSTI)

    Sinton, J. E.; Fridley, D. G.; Levine, M. D.; Yang, F.; Zhenping, J.; Xing, Z.; Kejun, J.; Xiaofeng, L.

    1996-09-01

    The Energy Analysis Program at LBL first became involved in Chinese energy issues through a joint China-US symposium on markets and energy demand held in Nanjing Nov. 1988. EAP began to collaborate on projects with the Energy Research Institute of China`s State Planning Commission. It was decided to compile, assess, and organize Chinese energy data. Primary interest was to use the data to help understand the historical evolution and likely future of the Chinese energy system; thus the primary criterion was to relate the data to the structure of energy supply and demand in the past and to indicate probable developments (eg, as indicated by patterns of investment). Caveats are included in forewords to both the 1992 and 1996 editions. A chapter on energy prices is included in the 1996 edition. 1993 energy consumption data are not included since there was a major disruption in energy statistical collection in China that year.

  19. Total China Investment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Investment Co Ltd Jump to: navigation, search Name: Total (China) Investment Co. Ltd. Place: Beijing, China Zip: 100004 Product: Total has been present in China for about 30...

  20. DOC-DOE Joint China Mission Statement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Joint China Mission Statement DOC-DOE Joint China Mission Statement DOC-DOE Joint China Mission Statement PDF icon DOC-DOE Joint China Mission Statement More Documents &...

  1. PetroSun Biofuels China | Open Energy Information

    Open Energy Info (EERE)

    PetroSun Biofuels China Jump to: navigation, search Name: PetroSun Biofuels China Place: China Sector: Biofuels Product: PetroSun Biofuels China is a wholly owned subsidiary of...

  2. Europe China Clean Energy Centre | Open Energy Information

    Open Energy Info (EERE)

    Europe China Clean Energy Centre Jump to: navigation, search Name: Europe-China Clean Energy Centre Place: Beijing Municipality, China Product: Beijing-based China-EU clean energy...

  3. China Lao Gaixian Wind L P | Open Energy Information

    Open Energy Info (EERE)

    Lao Gaixian Wind L P Jump to: navigation, search Name: China Lao Gaixian Wind L.P. Place: China Sector: Wind energy Product: China-based wind farm developer. References: China Lao...

  4. China energy databook. 1992 Edition

    SciTech Connect (OSTI)

    Sinton, J.E.; Levine, M.D.; Feng Liu; Davis, W.B.; Jiang Zhenping; Zhuang Xing; Jiang Kejun; Zhou Dadi

    1992-11-01

    The Energy Analysis Program (EAP) at the Lawrence Berkeley Laboratory (LBL) first becamc involved in Chinese energy issues through a joint China-US symposium on markets and demand for energy held in Nanjing in November of 1988. Discovering common interests, EAP began to collaborate on projects with the Energy Research Institute (ERI) of China`s State Planning Commission. In the course of this work it became clear that a major issue in the furtherance of our research was the acquisition of reliable data. In addition to other, more focused activities-evaluating programs of energy conservation undertaken in China and the prospects for making Chinese industries more energy-efficient, preparing historical reviews of energy supply and demand in the People`s Republic of China, sponsoring researchers from China to work with experts at LBL on such topics as energy efficiency standards for buildings, adaptation of US energy analysis software to Chinese conditions, and transportation issues-we decided to compile, assess, and organize Chinese energy data. We are hopeful that this volume will not only help us in our work, but help build a broader community of Chinese energy policy studies within the US.

  5. China 2015 Business Development Mission Marketing Flyer | Department of

    Energy Savers [EERE]

    Energy China 2015 Business Development Mission Marketing Flyer China 2015 Business Development Mission Marketing Flyer China 2015 Business Development Mission Marketing Flyer PDF icon China 2015 Business Development Mission Marketing Flyer More Documents & Publications DOC-DOE China Mission Announcement Press Release DOC-DOE Joint China Mission Statement DOE-LPO_Email-Update_001_Through_11

  6. US-China Clean Energy Cooperation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    US-China Clean Energy Cooperation US-China Clean Energy Cooperation US-China Clean Energy Cooperation PDF icon US-China Clean Energy Cooperation More Documents & Publications FACT SHEET: U.S.-China Clean Energy Cooperation Announcements US-China clean energy report THE WHITE HOUSE

  7. HydroChina Corporation | Open Energy Information

    Open Energy Info (EERE)

    China Zip: 100011 Sector: Hydro, Wind energy Product: Beijing-based firm focused on hydro and wind power development. References: HydroChina Corporation1 This article is a...

  8. U.S.-China Energy Efficiency Forum

    Broader source: Energy.gov [DOE]

    The Second U.S.-China Energy Efficiency Forum, held May 5-6, 2011 in the U.S. at Lawrence Berkeley National Laboratory in Berkeley, California, highlighted U.S.-China cooperation on energy...

  9. Shenyang, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Shenyang, China: Energy Resources Jump to: navigation, search Name Shenyang, China Equivalent URI DBpedia GeoNames ID 2034937 Coordinates 41.79222, 123.43278 Show Map Loading...

  10. Baoding, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Baoding, China: Energy Resources Jump to: navigation, search Name Baoding, China Equivalent URI DBpedia GeoNames ID 1816971 Coordinates 38.851111, 115.490278 Show Map Loading...

  11. Tianjin, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tianjin, China: Energy Resources Jump to: navigation, search Name Tianjin, China Equivalent URI DBpedia GeoNames ID 1792947 Coordinates 39.14222, 117.17667 Show Map Loading...

  12. Wind Power in China | Open Energy Information

    Open Energy Info (EERE)

    Wind Power in China Jump to: navigation, search This article is a stub. You can help OpenEI by expanding it. Contents 1 Summary 2 Estimate Potential 3 Current Projects 4 China...

  13. China National Machinery Industry Complete Engineering Corporation...

    Open Energy Info (EERE)

    Industry Complete Engineering Corporation CMCEC Jump to: navigation, search Name: China National Machinery Industry Complete Engineering Corporation (CMCEC) Place: Beijing,...

  14. China Association of Resource Comprehensive Utilisation CARCU...

    Open Energy Info (EERE)

    of Resource Comprehensive Utilisation CARCU Jump to: navigation, search Name: China Association of Resource Comprehensive Utilisation (CARCU) Place: Beijing Municipality,...

  15. Cogeneration development and market potential in China

    SciTech Connect (OSTI)

    Yang, F.; Levine, M.D.; Naeb, J.; Xin, D.

    1996-05-01

    China`s energy production is largely dependent on coal. China currently ranks third in global CO{sub 2} emissions, and rapid economic expansion is expected to raise emission levels even further in the coming decades. Cogeneration provides a cost-effective way of both utilizing limited energy resources and minimizing the environmental impacts from use of fossil fuels. However, in the last 10 years state investments for cogeneration projects in China have dropped by a factor of 4. This has prompted this study. Along with this in-depth analysis of China`s cogeneration policies and investment allocation is the speculation that advanced US technology and capital can assist in the continued growth of the cogeneration industry. This study provides the most current information available on cogeneration development and market potential in China.

  16. US-China_Fact_Sheet_Coal.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coal.pdf US-China_Fact_Sheet_Coal.pdf PDF icon US-China_Fact_Sheet_Coal.pdf More Documents & Publications FACT SHEET: U.S.-China Clean Energy Cooperation Announcements US-China Clean Energy Cooperation Progress Report on U.S.-China Energy Cooperation

  17. Category:Wind power in China | Open Energy Information

    Open Energy Info (EERE)

    Wind power in China Jump to: navigation, search Category: Wind Power in China Pages in category "Wind power in China" The following 2 pages are in this category, out of 2 total. C...

  18. Pan China Puyang Biomass CHP Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Puyang Biomass CHP Co Ltd Jump to: navigation, search Name: Pan-China(Puyang) Biomass CHP Co., Ltd. Place: Puyang, Henan Province, China Zip: 455000 Sector: Biomass Product:...

  19. China Baolv Energy Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Baolv Energy Co Ltd Jump to: navigation, search Name: China Baolv Energy Co Ltd Place: China Product: China Baolv Energy, a subsidiary of Hong Kong Health Check and Laboratory...

  20. China-Low Carbon Development Zones | Open Energy Information

    Open Energy Info (EERE)

    China-Low Carbon Development Zones (Redirected from E3G-China-Low Carbon Development Zones) Jump to: navigation, search Name China-Low Carbon Development Zones AgencyCompany...

  1. Evergreen China Energy Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Technology Co Ltd Jump to: navigation, search Name: Evergreen China Energy Technology Co Ltd Place: China Product: China-based joint venture that develops K-Fuel refined coal...

  2. Big China Solar Energy Group | Open Energy Information

    Open Energy Info (EERE)

    China Solar Energy Group Jump to: navigation, search Logo: Big China Solar Energy Group Name: Big China Solar Energy Group Address: 8-306, Dingtaifenghua Community,Qianhai Road,...

  3. China rationalizes its renewable energy policy

    SciTech Connect (OSTI)

    Su, Jack H.; Hui, Simone S.; Tsen, Kevin H.

    2010-04-15

    China's over-reliance on thermal power generation, especially coal-fired power stations, is well-documented. While nuclear power continues as an option to coal, China's strides in renewable energy are unprecedented. Recent amendments to the Renewable Energy Law, first promulgated in 2006, attempt to rationalize the regulatory regime governing wind, solar, hydropower and biomass projects in China, currently fraught with inadequate interconnection and tariff shock issues. (author)

  4. U.S.-China Clean Energy Cooperation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    China Clean Energy Cooperation A Progress rePort by the U.s. DePArtment of energy January 2011 Science is not a zero-sum game. In my experience as a scientist, collaborations with other research groups greatly accelerated our progress. Similarly, cooperation between the United States and China can greatly accelerate progress on clean energy technologies, benefiting both countries. As the world's largest producers and consumers of energy, the United States and China share many common challenges

  5. China | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    China | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home /

  6. U.S.-China Clean Energy Announcements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -China Clean Energy Announcements U.S.-China Clean Energy Announcements November 17, 2009 - 12:00am Addthis Beijing, China - Today, President Barack Obama and President Hu Jintao announced a far-reaching package of measures to strengthen cooperation between the United States and China on clean energy. Please see the attached fact sheets for additional details on each of the U.S-China clean energy announcements. 1. U.S.-China Clean Energy Research Center. The two Presidents announced the

  7. China BAK Battery Inc | Open Energy Information

    Open Energy Info (EERE)

    China Zip: 518119 Product: Guangdong- based manufacturer of standard and customized Lithium Ion rechargeable batteries. Coordinates: 22.546789, 114.112556 Show Map Loading...

  8. Beijing, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Now Green Capital Consulting Company GCCC Heres Hope Solar Innovation Center for Energy and Transportation ICET Mainsail Energy Ventures Inc Mingyang PetroChina Company...

  9. China Innovation Investment Limited | Open Energy Information

    Open Energy Info (EERE)

    Innovation Investment Limited Jump to: navigation, search Name: China Innovation Investment Limited Place: Hong Kong Sector: Solar Product: Hong Kong-listed alternative energy...

  10. China-NREL Cooperation | Open Energy Information

    Open Energy Info (EERE)

    Eastern Asia References NREL's Bilateral Partnerships 1 Abstract NREL supports biofuels, wind, rural electrification, photovoltaics (PV), and buildings projects in China....

  11. China Integrated Energy | Open Energy Information

    Open Energy Info (EERE)

    integrated energy company in China engaged in three business segments: the production and sale of biodiesel, the wholesale distribution of finished oil and heavy oil...

  12. China Shandong Penglai Electric Power Equipment Manufacturing...

    Open Energy Info (EERE)

    Penglai Electric Power Equipment Manufacturing Jump to: navigation, search Name: China Shandong Penglai Electric Power Equipment Manufacturing Place: Penglai, Shandong Province,...

  13. China Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home China Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References...

  14. China Low Carbon Platform | Open Energy Information

    Open Energy Info (EERE)

    Low Carbon Platform Jump to: navigation, search Name China Low Carbon Platform AgencyCompany Organization Institute of Development Studies, Climate Change and Development Centre,...

  15. Wuxi, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wuxi, China: Energy Resources Jump to: navigation, search Name Wuxi Equivalent URI DBpedia Coordinates 29.228890030194, 117.0703125 Show Map Loading map......

  16. Liaoning, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Liaoning, China: Energy Resources (Redirected from Liaoning Province) Jump to: navigation, search Equivalent URI DBpedia GeoNames ID 2036115 Coordinates 41, 123 Show Map...

  17. Liaoning, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Liaoning, China: Energy Resources Jump to: navigation, search Equivalent URI DBpedia GeoNames ID 2036115 Coordinates 41, 123 Show Map Loading map... "minzoom":false,"mappingse...

  18. China Technology Development Group Corporation | Open Energy...

    Open Energy Info (EERE)

    Development Group Corporation Jump to: navigation, search Name: China Technology Development Group Corporation Place: Hong Kong, Hong Kong Sector: Solar Product: Chinese...

  19. Jiangxi Ganzhong Chlorine Caustic Company aka China Jiangxi Chlor...

    Open Energy Info (EERE)

    Ganzhong Chlorine Caustic Company aka China Jiangxi Chlor Alkali Manufacturing Jump to: navigation, search Name: Jiangxi Ganzhong Chlorine & Caustic Company (aka China Jiangxi...

  20. China United Coalbed Methane Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Coalbed Methane Co Ltd Jump to: navigation, search Name: China United Coalbed Methane Co Ltd Place: Beijing Municipality, China Zip: 100011 Product: Coal bed methane developer in...

  1. China Solar Photovoltaic Group CNPV aka Dongying Photovoltaic...

    Open Energy Info (EERE)

    Group CNPV aka Dongying Photovoltaic Power Co Ltd or China Solar PV Jump to: navigation, search Name: China Solar Photovoltaic Group (CNPV, aka Dongying Photovoltaic Power Co Ltd...

  2. China Guangdong Nuclear Power Company | Open Energy Information

    Open Energy Info (EERE)

    Power Company Jump to: navigation, search Name: China Guangdong Nuclear Power Company Place: Guangzhou, China Coordinates: 23.129075, 113.264423 Show Map Loading map......

  3. China Guangdong Nuclear Power Holding Co Ltd CGNPC | Open Energy...

    Open Energy Info (EERE)

    Nuclear Power Holding Co Ltd CGNPC Jump to: navigation, search Name: China Guangdong Nuclear Power Holding Co Ltd (CGNPC) Place: Shenzhen, Guangdong Province, China Zip: 518031...

  4. Corporate Clean Energy Investment Trends in Brazil, China, India...

    Open Energy Info (EERE)

    Corporate Clean Energy Investment Trends in Brazil, China, India and South Africa Jump to: navigation, search Name Corporate Clean Energy Investment Trends in Brazil, China, India...

  5. China Lithium Energy Electric Vehicle Investment Group CLEEVIG...

    Open Energy Info (EERE)

    Lithium Energy Electric Vehicle Investment Group CLEEVIG Jump to: navigation, search Name: China Lithium Energy Electric Vehicle Investment Group (CLEEVIG) Place: Beijing, China...

  6. China United Cleaning Technology Co Ltd Beijing | Open Energy...

    Open Energy Info (EERE)

    Technology Co Ltd, Beijing Place: Beijing Municipality, China Zip: 100012 Product: A Chinese PV cell equipment provider References: China United Cleaning Technology Co Ltd,...

  7. China Clean Energy Resource Ltd | Open Energy Information

    Open Energy Info (EERE)

    Energy Product: China Clean Energy Resources, Ltd., a manufacturer and distributor of biodiesel fuel and specialty chemicals made from renewable resources References: China...

  8. China-Climate Change Research Center | Open Energy Information

    Open Energy Info (EERE)

    China-Climate Change Research Center Jump to: navigation, search Name China-Climate Change Research Center AgencyCompany Organization ClimateWorks, Energy Foundation Sector...

  9. DOC-DOE China Mission Announcement Press Release | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Press Release More Documents & Publications DOC-DOE Joint China Mission Statement China 2015 Business Development Mission Marketing Flyer DOE-LPOEmail-Update001Through11

  10. China National Renewable Energy Centre (CNREC) | Open Energy...

    Open Energy Info (EERE)

    Centre (CNREC) Jump to: navigation, search Logo: China National Renewable Energy Centre (CNREC) Name China National Renewable Energy Centre (CNREC) AgencyCompany Organization...

  11. PetroChina Company Limited | Open Energy Information

    Open Energy Info (EERE)

    China's largest oil and gas company. PetroChina is involved in exploration, development, production and marketing of crude oil and natural gas; refining, transportation, storage...

  12. India's Energy [In]Security and Growing Competition from China...

    Office of Scientific and Technical Information (OSTI)

    India's Energy InSecurity and Growing Competition from China Citation Details In-Document Search Title: India's Energy InSecurity and Growing Competition from China Authors: ...

  13. China-Partnership for Climate Action | Open Energy Information

    Open Energy Info (EERE)

    Partnership for Climate Action (Redirected from Partnership for Climate Action - China) Jump to: navigation, search Name Partnership for Climate Action - China AgencyCompany...

  14. China Longyuan Power Group Corporation Limited | Open Energy...

    Open Energy Info (EERE)

    Power Group Corporation Limited Jump to: navigation, search Name: China Longyuan Power Group Corporation Limited Place: Beijing, Beijing Municipality, China Zip: 100034 Sector:...

  15. China Resources Wind Power Development Co Ltd Hua Run | Open...

    Open Energy Info (EERE)

    Resources Wind Power Development Co Ltd Hua Run Jump to: navigation, search Name: China Resources Wind Power Development Co Ltd (Hua Run) Place: Shantou, Guangdong Province, China...

  16. China Longyuan Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Co Ltd Jump to: navigation, search Name: China Longyuan Wind Power Co Ltd Place: China Sector: Wind energy Product: Wind farm development subsidiary of Longyuan...

  17. China Institute of Geo Environment Monitoring | Open Energy Informatio...

    Open Energy Info (EERE)

    Institute of Geo Environment Monitoring Jump to: navigation, search Name: China Institute of Geo-Environment Monitoring Place: China Sector: Geothermal energy Product: Chinese...

  18. China Stream Fund Solar Energy JV | Open Energy Information

    Open Energy Info (EERE)

    Solar Energy JV Jump to: navigation, search Name: China Stream Fund Solar Energy JV Place: Changzhou, Jiangsu Province, China Zip: 213000 Product: JV between Stream High-Technology...

  19. China Electronics Technology Group Corporation CETC | Open Energy...

    Open Energy Info (EERE)

    Technology Group Corporation CETC Jump to: navigation, search Name: China Electronics Technology Group Corporation (CETC) Place: Beijing Municipality, China Zip: 100846 Product:...

  20. China Xinjiang Sunoasis Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Sunoasis Co Ltd Jump to: navigation, search Name: China Xinjiang Sunoasis Co Ltd Place: Urumuqi, Xinjiang Autonomous Region, China Zip: 830011 Product: PV module and other...

  1. China New Energy Ltd CNE | Open Energy Information

    Open Energy Info (EERE)

    CNE Jump to: navigation, search Name: China New Energy Ltd (CNE) Place: Guangzhou, Guangdong Province, China Zip: 510640 Product: A provider of production equipment and...

  2. China Energy Conservation Solar Energy Technologies CECS | Open...

    Open Energy Info (EERE)

    Conservation Solar Energy Technologies CECS Jump to: navigation, search Name: China Energy Conservation Solar Energy Technologies (CECS) Place: China Sector: Solar Product:...

  3. China Titans Energy Technology Group Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Titans Energy Technology Group Co Ltd Jump to: navigation, search Name: China Titans Energy Technology Group Co Ltd Place: Zhuhai, Guangdong Province, China Sector: Solar,...

  4. China and India Industrial Efficiency NREL Partnership | Open...

    Open Energy Info (EERE)

    Industrial Efficiency NREL Partnership Jump to: navigation, search Logo: China-NREL Industrial Efficiency Partnership Name China-NREL Industrial Efficiency Partnership Agency...

  5. China Power International Shanghai Green CLP JV | Open Energy...

    Open Energy Info (EERE)

    Shanghai Green CLP JV Jump to: navigation, search Name: China Power International, Shanghai Green & CLP JV Place: Shanghai, Shanghai Municipality, China Sector: Wind energy...

  6. China Technology Solar Power Holdings Ltd | Open Energy Information

    Open Energy Info (EERE)

    Solar Power Holdings Ltd Jump to: navigation, search Name: China Technology Solar Power Holdings Ltd Place: Hong Kong Sector: Solar Product: China-based solar project developer,...

  7. North China Electric Power University Beijing | Open Energy Informatio...

    Open Energy Info (EERE)

    Electric Power University Beijing Jump to: navigation, search Name: North China Electric Power University (Beijing) Place: Beijing, Beijing Municipality, China Zip: 102206 Product:...

  8. China-NREL Rural Electrification Projects | Open Energy Information

    Open Energy Info (EERE)

    Rural Electrification Projects Jump to: navigation, search Logo: China Rural Electrification Name China Rural Electrification AgencyCompany Organization National Renewable Energy...

  9. China Datang Corporation Renewable Power Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Corporation Renewable Power Co Ltd Jump to: navigation, search Name: China Datang Corporation Renewable Power Co Ltd Place: Beijing Municipality, China Sector: Renewable Energy...

  10. China Huadian New Energy Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    New Energy Development Co Ltd Jump to: navigation, search Name: China Huadian New Energy Development Co Ltd Place: Beijing Municipality, China Zip: 100044 Sector: Renewable Energy...

  11. China-GTZ Energy Programs | Open Energy Information

    Open Energy Info (EERE)

    Energy Programs Jump to: navigation, search Logo: China-GTZ Energy Programs Name China-GTZ Energy Programs AgencyCompany Organization GTZ Sector Energy Focus Area Energy...

  12. China Hyper Battery Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Battery Co Ltd Jump to: navigation, search Name: China Hyper Battery Co Ltd Place: Shenzhen, China Zip: 518048 Product: Manufacturer and exporter of batteries and battery packs....

  13. US-China Partnership for Climate Action | Open Energy Information

    Open Energy Info (EERE)

    US-China Partnership for Climate Action Jump to: navigation, search Name US-China Partnership for Climate Action AgencyCompany Organization Institute for Sustainable Communities...

  14. China Electronic Engineering Design Institute CEEDI | Open Energy...

    Open Energy Info (EERE)

    Engineering Design Institute CEEDI Jump to: navigation, search Name: China Electronic Engineering Design Institute (CEEDI) Place: Beijing, Beijing Municipality, China Zip: 100840...

  15. NREL: International Activities - U.S.-China Renewable Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S.-China Renewable Energy Partnership The U.S.-China Renewable Energy Partnership (USCREP) brings together technical, academic, business, and political stakeholders from the...

  16. China South Industries Group Corp CSG | Open Energy Information

    Open Energy Info (EERE)

    Industries Group Corp CSG Jump to: navigation, search Name: China South Industries Group Corp (CSG) Place: Beijing, Beijing Municipality, China Zip: 100821 Product: Beijing-based...

  17. Beijing China Sciences General Energy Environment GEE | Open...

    Open Energy Info (EERE)

    Sciences General Energy Environment GEE Jump to: navigation, search Name: Beijing China Sciences General Energy&Environment (GEE) Place: Beijing Municipality, China Zip: 100080...

  18. China National BlueStar Group Corporation | Open Energy Information

    Open Energy Info (EERE)

    BlueStar Group Corporation Jump to: navigation, search Name: China National BlueStar Group Corporation Place: Beijing, Beijing Municipality, China Zip: 100029 Product: State-owned...

  19. China-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    UNEP Green Economy Advisory Services Jump to: navigation, search Logo: China-UNEP Green Economy Advisory Services Name China-UNEP Green Economy Advisory Services AgencyCompany...

  20. China National Renewable Energy Centre | Open Energy Information

    Open Energy Info (EERE)

    Centre Jump to: navigation, search Logo: China National Renewable Energy Centre Name: China National Renewable Energy Centre Abbreviation: CNREC Address: Guohong Mansion, Mu...

  1. 48th Research Institute of China Electronics Technology Group...

    Open Energy Info (EERE)

    8th Research Institute of China Electronics Technology Group Corporation Jump to: navigation, search Name: 48th Research Institute of China Electronics Technology Group Corporation...

  2. China SC Exact Equipment Co LTD | Open Energy Information

    Open Energy Info (EERE)

    SC Exact Equipment Co LTD Jump to: navigation, search Name: China SC Exact Equipment Co., LTD Place: Shenzhen, Guangdong Province, China Zip: 518125 Sector: Solar Product:...

  3. China New Energy Chamber of Commerce CNECC | Open Energy Information

    Open Energy Info (EERE)

    Chamber of Commerce CNECC Jump to: navigation, search Name: China New Energy Chamber of Commerce (CNECC) Place: Beijing, Beijing Municipality, China Zip: 100052 Product: A Chinese...

  4. China Three Gorges Project Corporation CTGPC | Open Energy Information

    Open Energy Info (EERE)

    Three Gorges Project Corporation CTGPC Jump to: navigation, search Name: China Three Gorges Project Corporation (CTGPC) Place: Yichang, Hubei Province, China Zip: 443002 Sector:...

  5. China Wind Systems formerly Green Power Malex | Open Energy Informatio...

    Open Energy Info (EERE)

    formerly Green Power Malex Jump to: navigation, search Name: China Wind Systems (formerly Green PowerMalex) Place: Wuxi, Jiangsu Province, China Sector: Wind energy Product:...

  6. China and India PV Reliability-NREL Cooperation | Open Energy...

    Open Energy Info (EERE)

    PV Reliability-NREL Cooperation Jump to: navigation, search Logo: China and India PV Reliability under the Asia Pacific Partnership Name China and India PV Reliability under the...

  7. China Power International New Energy Holding Ltd | Open Energy...

    Open Energy Info (EERE)

    New Energy Holding Ltd Jump to: navigation, search Name: China Power International New Energy Holding Ltd Place: Shanghai Municipality, China Zip: 200052 Sector: Biomass, Hydro,...

  8. Shenyang Huachuang Wind Energy Corporation HCWE aka China Creative...

    Open Energy Info (EERE)

    Shenyang Huachuang Wind Energy Corporation HCWE aka China Creative Wind Energy Co Ltd Jump to: navigation, search Name: Shenyang Huachuang Wind Energy Corporation (HCWE) (aka China...

  9. Building Energy Efficiency in Rural China

    SciTech Connect (OSTI)

    Evans, Meredydd; Yu, Sha; Song, Bo; Deng, Qinqin; Liu, Jing; Delgado, Alison

    2014-04-01

    Rural buildings in China now account for more than half of Chinas total building energy use. Forty percent of the floorspace in China is in rural villages and towns. Most of these buildings are very energy inefficient, and may struggle to meet basic needs. They are cold in the winter, and often experience indoor air pollution from fuel use. The Chinese government plans to adopt a voluntary building energy code, or design standard, for rural homes. The goal is to build on Chinas success with codes in urban areas to improve efficiency and comfort in rural homes. The Chinese government recognizes rural buildings represent a major opportunity for improving national building energy efficiency. The challenges of rural China are also greater than those of urban areas in many ways because of the limited local capacity and low income levels. The Chinese government wants to expand on new programs to subsidize energy efficiency improvements in rural homes to build capacity for larger-scale improvement. This article summarizes the trends and status of rural building energy use in China. It then provides an overview of the new rural building design standard, and describes options and issues to move forward with implementation.

  10. China Melamine Formaldehyde Share | OpenEI Community

    Open Energy Info (EERE)

    China Melamine Formaldehyde Share Home There are currently no posts in this category. Syndicate content...

  11. US-China Clean Energy Fora | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    US-China Clean Energy Fora US-China Clean Energy Fora US-China Clean Energy Fora On May 26-27, 2010, U.S. Department of Energy Assistant Secretary David Sandalow co-hosted the inaugural U.S.-China Energy Efficiency Forum, the U.S.-China Renewable Energy Forum and the U.S.-China Advanced Biofuels Forum in Beijing with China's National Energy Administration Director General Zhang Guobao and National Development and Reform Commission Vice Chairman Zhang Xiaoqiang. These three fora were established

  12. China Technology Center Celebrates 15 Years | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    China Technology Center Celebrates 15 Years of Innovation "In China for China" Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE's China Technology Center Celebrates 15 Years of Innovation "In China for China" Unveils Visionary Technology Blueprint called "The Next List" Shanghai, China, 5

  13. Gansu China Power Jiuquan Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Power Jiuquan Wind Power Co Ltd Jump to: navigation, search Name: Gansu China Power Jiuquan Wind Power Co Ltd Place: Gansu Province, China Sector: Wind energy Product:...

  14. DOE Assistant Secretaries in China to Discuss Energy Cooperation |

    Energy Savers [EERE]

    Department of Energy Assistant Secretaries in China to Discuss Energy Cooperation DOE Assistant Secretaries in China to Discuss Energy Cooperation September 14, 2006 - 1:10pm Addthis BEIJING, CHINA - U.S. Department of Energy (DOE) Assistant Secretary for Policy and International Affairs Karen A. Harbert and Assistant Secretary for Fossil Energy Jeffrey Jarrett are in China this week to discuss energy cooperation between the United States and China. In Hangzhou, Assistant Secretary Harbert

  15. US-China Energy Efficiency Forum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    China Energy Efficiency Forum US-China Energy Efficiency Forum US-China Energy Efficiency Forum On May 26th, 2010, the first ever U.S.-China Energy Efficiency Forum was held in Beijing, China The Forum brought together more than 150 U.S. and Chinese officials from government, industry, academia and advocacy groups to share experiences and best practices in promoting energy efficiency in buildings, communities, industry and consumer products. As a public-private partnership, the Forum convened

  16. Solar Power In China | Open Energy Information

    Open Energy Info (EERE)

    Solar Power In China Jump to: navigation, search This article is a stub. You can help OpenEI by expanding it. Working on ask query to display all Chinese solar companies TODO:...

  17. Jordan ships oil shale to China

    SciTech Connect (OSTI)

    Not Available

    1986-12-01

    Jordan and China have signed an agreement to develop oil shale processing technology that could lead to a 200 ton/day oil shale plant in Jordan. China will process 1200 tons of Jordanian oil shale at its Fu Shun refinery. If tests are successful, China could build the demonstration plant in Jordan's Lajjun region, where the oil shale resource is estimated at 1.3 billion tons. China plans to send a team to Jordan to conduct a plant design study. A Lajjun oil shale complex could produce as much as 50,000 b/d of shale oil. An earlier 500 ton shipment of shale is said to have yielded promising results.

  18. Study of Aerosol Indirect Effects in China

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Indirect Effects in China In 2008, the U.S. Department of Energy (DOE)'s Atmospheric Radiation Measurement (ARM) Climate Research Facility is providing the ARM Mobile...

  19. U.S.-China vehicle annex

    Broader source: Energy.gov [DOE]

    The United States and China conduct information exchanges, joint studies, technology demonstrations, and training sessions with national laboratories, automotive industry partners, and other private industries involved in energy efficient transportation.

  20. US-China Renewable Energy Forum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    US-China Renewable Energy Forum US-China Renewable Energy Forum US-China Renewable Energy Forum The first-ever U.S.-China Renewable Energy Forum was held on May 26-27, 2010 in Beijing, concurrent with the U.S.-China Strategic and Economic Dialogue and with parallel forums on energy efficiency and biofuels. The Forum was jointly hosted by David Sandalow, U.S. Department of Energy Assistant Secretary for Policy and International Affairs, and Zhang Guobao, Administrator of China's National Energy

  1. U.S.-China Clean Energy Fora | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    China Clean Energy Fora U.S.-China Clean Energy Fora May 26, 2010 - 3:02pm Addthis On May 26-27, 2010, U.S. Department of Energy Assistant Secretary David Sandalow co-hosted the U.S.-China Energy Efficiency Forum, the U.S.-China Renewable Energy Forum and the U.S.-China Advanced Biofuels Forum in Beijing with China's National Energy Administration Director General Zhang Guobao and National Development and Reform Commission Vice Chairman Zhang Xiaoqiang. These three fora were established under

  2. China National Nuclear Corp CNNC | Open Energy Information

    Open Energy Info (EERE)

    Nuclear Corp CNNC Jump to: navigation, search Name: China National Nuclear Corp (CNNC) Place: Beijing, China Zip: 100822 Product: The goal of CNNC is to achieve self-reliance in...

  3. Category:Solar Power in China | Open Energy Information

    Open Energy Info (EERE)

    3 pages are in this category, out of 3 total. A All Solar PV C China Guangdong Nuclear Power Company China Guodian Corporation Retrieved from "http:en.openei.orgw...

  4. Readout on Secretary Chu's China Meetings on Clean Energy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    15, 2009 - 12:00am Addthis BEIJING, CHINA - Secretary Chu is meeting with a series of Chinese officials during this week's trip to China. We will be providing readouts on these...

  5. India's Energy [In]Security and Growing Competition from China...

    Office of Scientific and Technical Information (OSTI)

    India's Energy InSecurity and Growing Competition from China Citation Details In-Document Search Title: India's Energy InSecurity and Growing Competition from China You are...

  6. United States and China Continue Partnership for the Peaceful...

    National Nuclear Security Administration (NNSA)

    The U.S. delegation capped off the PUNT events with a tour of the Nuclear Power Institute of China (NPIC) in Chengdu. NPIC led the design and construction of China's first ...

  7. D1 Oils China Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Jump to: navigation, search Name: D1 Oils China Ltd Place: Chengdu, Sichuan Province, China Product: Chengdu-based joint venture between D1 Oils and Sichuan Yangtze River...

  8. Xi'an, China: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Xi'an, China: Energy Resources Jump to: navigation, search Name Xi'an, China Equivalent URI DBpedia GeoNames ID 1790630 Coordinates 34.258333, 108.928611 Show Map Loading...

  9. Clean coal. U.S.-China cooperation in energy security

    SciTech Connect (OSTI)

    Wendt, D.

    2008-05-15

    This work discusses how coal fits into the strategies of the USA and China to attain energy security while avoiding adverse environmental impacts. It begins by describing China's policy choices for clean coal, before discussing the implications of a clean coal strategy for China. The U.S. choices in a coal-based strategy of energy security is then covered. Finally, a joint US-China clean coal strategy, including the technology sharing option, is discussed.

  10. Progress and Effect of Energy-Saving Standards in China

    Broader source: Energy.gov [DOE]

    Information about the development of energy-saving standards in China, results of standards, and work highlights.

  11. NREL Signs Agreement With China's National Utility - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Signs Agreement With China's National Utility Scope of MOU Covers Coordination on Research Projects September 11, 2015 Representatives of the Energy Department's National Renewable Energy Laboratory (NREL) and China's State Grid Energy Research Institute today signed a first-ever memorandum of understanding between the two organizations. The State Grid Energy Research Institute (SGERI), located in Beijing, is a subsidiary of China's national utility, State Grid Corporation of China (SGCC).

  12. Bejing Shanghai Xianghe Taihu Shouxian CHINA Lanzhou Zhangye

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DESERT * LOW HILLS * PLATEAU *MTNS Bejing Shanghai Xianghe Taihu Shouxian CHINA Lanzhou Zhangye Primary Site Supplemental Site Ancillary Sites...

  13. Building Clean Energy Partnerships With China and Japan | Department of

    Energy Savers [EERE]

    Energy Clean Energy Partnerships With China and Japan Building Clean Energy Partnerships With China and Japan November 15, 2010 - 12:54pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy This week (November 14th-19th), I will be traveling to China and Japan to meet with government officials, business leaders and others to discuss the opportunities for partnership in clean energy - partnerships that are important to America's economic competitiveness. China and Japan have made

  14. Energy Efficiency Labeling System & its Development in China | Department

    Office of Environmental Management (EM)

    of Energy Efficiency Labeling System & its Development in China Energy Efficiency Labeling System & its Development in China Information about the regulations, formats, objectives, and implementation of energy efficiency labeling in China. PDF icon session_1_buildings_track_cheng_jianhong_en.pdf PDF icon session_1_buildings_track_cheng_jianhong_cn.pdf More Documents & Publications Status Prospects of Green Data Center 4th U.S.-China Energy Efficiency Forum Documents Non-ferrous

  15. An Anatomy of China's Energy Insecurity and Its Strategies

    SciTech Connect (OSTI)

    Kong, Bo

    2005-12-06

    Chinas energy insecurity largely originates from its constrained availability, questionable reliability, and uncertain affordability of its oil supplies. The countrys fast industrialization and urbanization, together with demand for infrastructure and increasing popularity of automobiles, requires a lot of energy, but it consumes energy both intensively and inefficiently, threatening the environmental well-being of China and its neighbors. Chinas risk aversion and poor energy policy making system further magnifies its perceptions of the low availability, reliability and affordability of oil imports, which further compounds its sense of energy insecurity. Distrustful of the market, and suspicious of other major energy players in the international market, the Chinese leadership relies on the state-centered approach, or economic nationalism, rather than a market approach to enhance its energy security. However, the country lacks not only an energy policy making system that can make and implement sound energy policies but also an energy market that relies on market prices to allocate energy resources efficiently. As a result of this domestic failure, China has pushed its national flagship companies to undertake a global scavenger hunt for energy while muddling along a messy road of energy reform at home. Setbacks in acquiring new sources of oil have validated the Chinese leaderships belief that the international oil market is not free and Chinas access to international oil is not guaranteed through the market. Chinas problems in the international energy market are also perceived as evidence of attempts to prevent China from exerting international influence. Chinas leadership is convinced that China should focus on areas where western capital is not heavily concentrated or where western influences are weak. With the recent revaluation of Chinese currency and growing economy, China has both the wherewithal and appetite to acquire more oil assets abroad. Both China and the United States stand at a critical juncture of history where Chinas rise depends on reliable energy supplies which it increasingly imports from abroad and where the growing wealth of the United States is increasingly dependent upon Chinas success. If China does not have energy security its 1.3 billion fuel-starved people will prevent the rest of the world from achieving energy security.

  16. China energy databook. Revision 2, 1992 edition

    SciTech Connect (OSTI)

    Sinton, J.E.; Levine, M.D.; Liu, Feng; Davis, W.B.; Jiang Zhenping; Zhuang Xing; Jiang Kejun; Zhou Dadi

    1993-06-01

    The Energy Analysis Program at the Lawrence Berkeley Laboratory (LBL) first became involved in Chinese energy issues through a joint China-US symposium on markets and demand for energy held in Nanjing in November of 1988. Discovering common interests, EAP began to collaborate on projects with the Energy Research Institute of China`s State Planning Commission. In the course of this work it became clear that a major issue in the furtherance of our research was the acquisition of reliable data. In addition to other, more focused activities-evaluating programs of energy conservation undertaken in China and the prospects for making Chinese industries more energy-efficient, preparing historical reviews of energy supply and demand in the People`s Republic of China, sponsoring researchers from China to work with experts at LBL on such topics as energy efficiency standards for buildings, adaptation of US energy analysis software to Chinese conditions, and transportation issues, we decided to compile, assess, and organize Chinese energy data. We are hopeful that this volume will not only help us in our work, but help build a broader community of Chinese energy policy studies within the US. In order to select appropriate data from what was available we established several criteria. Our primary interest was to use the data to help understand the historical evolution and likely future of the Chinese energy system. A primary criterion was thus that the data relate to the structure of energy supply and demand in the past and indicate probable developments (e.g., as indicated by patterns of investment). Other standards were accuracy, consistency with other information, and completeness of coverage. This is not to say that all the data presented herein are accurate, consistent, and complete, but where discrepancies and omissions do occur we have tried to note them.

  17. U.S. and China Increase Biofuels Cooperation Ahead of the Third U.S. -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    China Strategic Economic Dialogue | Department of Energy Increase Biofuels Cooperation Ahead of the Third U.S. - China Strategic Economic Dialogue U.S. and China Increase Biofuels Cooperation Ahead of the Third U.S. - China Strategic Economic Dialogue December 12, 2007 - 4:44pm Addthis Marks Third U.S. -China Agreement to Advance Energy Security Reached This Year BEIJING, CHINA - The U.S. Departments of Energy (DOE) and Agriculture (USDA) and China's National Development and Reform

  18. FACT SHEET: U.S.-China Clean Energy Cooperation Announcements | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy FACT SHEET: U.S.-China Clean Energy Cooperation Announcements FACT SHEET: U.S.-China Clean Energy Cooperation Announcements This fact sheet provides new announcements on U.S.-China on clean energy cooperation. PDF icon FACT_SHEET_-__U_S_-China_Clean_Energy_Cooperation__1-21-11[1].pdf More Documents & Publications US-China Clean Energy Cooperation US-China_Fact_Sheet_Coal.pdf Progress Report on U.S.-China Energy Cooperation

  19. China's Coal: Demand, Constraints, and Externalities

    SciTech Connect (OSTI)

    Aden, Nathaniel; Fridley, David; Zheng, Nina

    2009-07-01

    This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

  20. Energy use and CO2 emissions of Chinas industrial sector from a global perspective

    SciTech Connect (OSTI)

    Zhou, Sheng; Kyle, G. Page; Yu, Sha; Clarke, Leon E.; Eom, Jiyong; Luckow, Patrick W.; Chaturvedi, Vaibhav; Zhang, Xiliang; Edmonds, James A.

    2013-07-10

    The industrial sector has accounted for more than 50% of Chinas final energy consumption in the past 30 years. Understanding the future emissions and emissions mitigation opportunities depends on proper characterization of the present-day industrial energy use, as well as industrial demand drivers and technological opportunities in the future. Traditionally, however, integrated assessment research has handled the industrial sector of China in a highly aggregate form. In this study, we develop a technologically detailed, service-oriented representation of 11 industrial subsectors in China, and analyze a suite of scenarios of future industrial demand growth. We find that, due to anticipated saturation of Chinas per-capita demands of basic industrial goods, industrial energy demand and CO2 emissions approach a plateau between 2030 and 2040, then decrease gradually. Still, without emissions mitigation policies, the industrial sector remains heavily reliant on coal, and therefore emissions-intensive. With carbon prices, we observe some degree of industrial sector electrification, deployment of CCS at large industrial point sources of CO2 emissions at low carbon prices, an increase in the share of CHP systems at industrial facilities. These technological responses amount to reductions of industrial emissions (including indirect emission from electricity) are of 24% in 2050 and 66% in 2095.

  1. Property:OpenEI/Tool/Keyword | Open Energy Information

    Open Energy Info (EERE)

    +, Green Button Apps + Badema + Cleanweb Hackathon +, Boston +, Community Generated + Bioenergy KDF + Energy Efficiency and Renewable Energy (EERE) Tools + Biofuels Techno-Economic...

  2. National Library of Energy : Main View : Search Results for Keyword...

    Office of Scientific and Technical Information (OSTI)

    site. Website Policies and Important Links Search capabilities provided by DOEOSTI Deep Web Technologies Source Status Additional Results Available There are more results...

  3. Recent progress of spray drying in China

    SciTech Connect (OSTI)

    Jinxin, T.; Zonglian, W.; Lixin, H.

    1999-10-01

    The development of spray drying technique during past 10 years of China is reviewed. Main achievements in research, development and utilization of three types of atomization are described and summarized. General trend of spray drying research and development in 21st century is forecasted.

  4. US-China_Fact_Sheet_Efficiency_Action_Plan.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency_Action_Plan.pdf US-China_Fact_Sheet_Efficiency_Action_Plan.pdf PDF icon US-China_Fact_Sheet_Efficiency_Action_Plan.pdf More Documents & Publications FACT SHEET: U.S.-China Energy Efficiency Action Plan US-China_Fact_Sheet_Renewable_Energy.pdf US-China_Fact_Sheet_Electric_Vehicles.pdf

  5. U.S. and China Increase Biofuels Cooperation Ahead of the Third...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Third U.S. - China Strategic Economic Dialogue U.S. and China Increase Biofuels Cooperation Ahead of the Third U.S. - China Strategic Economic Dialogue December 12, 2007 - ...

  6. US-China_Fact_Sheet_Electric_Vehicles.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ElectricVehicles.pdf US-ChinaFactSheetElectricVehicles.pdf US-ChinaFactSheetElectricVehicles.pdf More Documents & Publications THE WHITE HOUSE FACT SHEET: U.S.-China Clean...

  7. RFI - US-China Clean Energy Research Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RFI - US-China Clean Energy Research Center PDF icon RFI - US-China Clean Energy Research Center More Documents & Publications China CERC, U.S. India and Other international ...

  8. China WindPower Jilin Power Share JV | Open Energy Information

    Open Energy Info (EERE)

    WindPower Jilin Power Share JV Jump to: navigation, search Name: China WindPower & Jilin Power Share JV Place: Jilin Province, China Sector: Wind energy Product: China-based...

  9. Overview of Research on Thermoelectric Materials and Devices in China |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Research on Thermoelectric Materials and Devices in China Overview of Research on Thermoelectric Materials and Devices in China An overview presentation of R&D projects on thermoelectric power generation technology in China. PDF icon zhang.pdf More Documents & Publications Recent Progress in the Development of N-type Skutterudites Vehicular Thermoelectric Applications Session DEER 2009 The Bottom-Up Approach forThermoelectric Nanocomposites, plusƒ

  10. Partnering with China to Promote Renewable Energy Deployment | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Partnering with China to Promote Renewable Energy Deployment Partnering with China to Promote Renewable Energy Deployment June 4, 2015 - 10:15am Addthis David Danielson, Assistant Secretary for Energy Efficiency and Renewable Energy, delivers keynote remarks at the fourth U.S.-China Renewable Energy Industries Forum in Washington, D.C. | <em>Photo by Josh Harmon</em> David Danielson, Assistant Secretary for Energy Efficiency and Renewable Energy, delivers keynote

  11. Passive solar in China: traditional and new

    SciTech Connect (OSTI)

    Balcomb, J.D.; Balcomb, S.A.

    1986-04-01

    The authors' observations of a tradition of passive solar architecture in northern China are described. Tendencies for modern buildings to depart from this tradition are noted. Major passive solar research programs are discussed and experimental buildings are illustrated. It is concluded that the Chinese could realize a major advantage by combining their strong tradition of passive solar architecture with modern insulation methods and improved glazing systems.

  12. Economic Rebalancing and Electricity Demand in China

    SciTech Connect (OSTI)

    He, Gang; Lin, Jiang; Yuan, Alexandria

    2015-11-01

    Understanding the relationship between economic growth and electricity use is essential for power systems planning. This need is particularly acute now in China, as the Chinese economy is going through a transition to a more consumption and service oriented economy. This study uses 20 years of provincial data on gross domestic product (GDP) and electricity consumption to examine the relationship between these two factors. We observe a plateauing effect of electricity consumption in the richest provinces, as the electricity demand saturates and the economy develops and moves to a more service-based economy. There is a wide range of forecasts for electricity use in 2030, ranging from 5,308 to 8,292 kWh per capita, using different estimating functions, as well as in existing studies. It is therefore critical to examine more carefully the relationship between electricity use and economic development, as China transitions to a new growth phase that is likely to be less energy and resource intensive. The results of this study suggest that policymakers and power system planners in China should seriously re-evaluate power demand projections and the need for new generation capacity to avoid over-investment that could lead to stranded generation assets.

  13. Geothermal Resources Development in Tibet, China | Open Energy...

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Geothermal Resources Development in Tibet, China Abstract Tibet is located in the eastern...

  14. China-Sub National Planning for Climate Change (cities, states...

    Open Energy Info (EERE)

    for Climate Change (cities, states, districts) Jump to: navigation, search Name China-Sub National Planning for Climate Change (cities, states, districts) AgencyCompany...

  15. Assessment of allowance mechanism China's carbon trading pilots

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiong, Ling; Shen, Bo; Qi, Shaozhou; Price, Lynn

    2015-08-28

    The allowance mechanism is one of the core and sensitive aspects in design of a carbon trading scheme and affects the compliance cost for each company covered under the scheme. By examining China's allowance mechanism from two aspects including allowance allocation and allowance distribution, this paper compares China's carbon trading pilots with the EU Emissions Trading System and California Cap-and-Trade Program, and through the comparison identify issues that affect the efficiency of the pilots. The paper also recommends course of actions to strengthen China's existing pilots and build valuable experiences for the establishment of the national cap-and-trade system in China.

  16. China Solar Clean Energy Solutions Inc formerly Deli Solar USA...

    Open Energy Info (EERE)

    Inc formerly Deli Solar USA Inc Jump to: navigation, search Name: China Solar & Clean Energy Solutions Inc ( formerly Deli Solar (USA) Inc) Place: Connecticut Zip: 6039 Sector:...

  17. China Glass Solar aka CG Solar formerly Weihai Bluestar Terra...

    Open Energy Info (EERE)

    Glass Solar aka CG Solar formerly Weihai Bluestar Terra Photovoltaic Co Ltd Jump to: navigation, search Name: China Glass Solar (aka CG Solar, formerly Weihai Bluestar Terra...

  18. The Development of Methanol Industry and Methanol Fuel in China

    SciTech Connect (OSTI)

    Li, W.Y.; Li, Z.; Xie, K.C.

    2009-07-01

    In 2007, China firmly established itself as the driver of the global methanol industry. The country became the world's largest methanol producer and consumer. The development of the methanol industry and methanol fuel in China is reviewed in this article. China is rich in coal but is short on oil and natural gas; unfortunately, transportation development will need more and more oil to provide the fuel. Methanol is becoming a dominant alternative fuel. China is showing the rest of the world how cleaner transportation fuels can be made from coal.

  19. Physicists in China Nail a Key Neutrino Measurement (Science) | Jefferson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab news.sciencemag.org/sciencenow/2012/03/physicists-in-china-nail-a-key.html Submitted: Thursday, March 8, 2012 - 1

  20. China-2050 Wind Technology Roadmap | Open Energy Information

    Open Energy Info (EERE)

    Pathways analysis, Technology characterizations Country China Eastern Asia References IEA Energy Technology Roadmaps1 This article is a stub. You can help OpenEI by expanding...

  1. Heat flow studies, Coso Geothermal Area, China Lake, California...

    Open Energy Info (EERE)

    Heat flow studies in the Coso Geothermal Area were conducted at China Lake, California. Temperature measurements were completed in nine of the heat flow boreholes. Temperatures...

  2. HCNG Engine Testing and HCNG Vehicle Marketing in China

    Broader source: Energy.gov [DOE]

    These slides were presented at the International Hydrogen Fuel and Pressure Vessel Forum on September 27 – 29, 2010, in Beijing, China.

  3. Progress Report on U.S.-China Clean Energy Cooperation

    Broader source: Energy.gov [DOE]

    The Department of Energy report demonstrates the substantial progress made to date on a number of clean energy initiatives between China and the United States

  4. China-Low Carbon Development Zones | Open Energy Information

    Open Energy Info (EERE)

    development planning, Market analysis, Policiesdeployment programs Resource Type Lessons learnedbest practices Website http:www.chathamhouse.org.uk Country China UN...

  5. China-CCAP Developing Country Project | Open Energy Information

    Open Energy Info (EERE)

    China, India and Mexico. Indonesia was recently added to this project." Brazil Outcomes, Lessons Learned and Good Practices Phase 1 Country Report Synthesis Report Phase 2 Key...

  6. U. S.-CHINA CLEAN ENERGY RESEARCH CENTER (CERC)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Request for lnformation (RFI) U. S.-CHINA CLEAN ENERGY RESEARCH CENTER (CERC) DATE: November 17,2009 SUEUECT: Request for lnformation (RFI) DESCRIPTION: The Department of Energy...

  7. Climate Change and China's Agricultural Sector: An Overview of...

    Open Energy Info (EERE)

    An Overview of Impacts, Adaptation and Mitigation Jump to: navigation, search Name Climate Change and China's Agricultural Sector: An Overview of Impacts, Adaptation and...

  8. UNDP/EC-China-Climate Change Capacity Building Program | Open...

    Open Energy Info (EERE)

    UNDPEC-China-Climate Change Capacity Building Program Redirect page Jump to: navigation, search REDIRECT EU-UNDP Low Emission Capacity Building Programme (LECBP) Retrieved from...

  9. China-Energy and Climate Change Research Program | Open Energy...

    Open Energy Info (EERE)

    and Climate Change Research Program Jump to: navigation, search Name China-Energy and Climate Change Research Program AgencyCompany Organization France Agency of Development...

  10. China Brazil Center on Climate Change and Energy Technology Innovation...

    Open Energy Info (EERE)

    Center on Climate Change and Energy Technology Innovation Jump to: navigation, search Name: China-Brazil Center on Climate Change and Energy Technology Innovation Place: Beijing...

  11. China and Russia to Join the Generation IV International Forum...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    As a result of today's vote, China and Russia will join the United States, Argentina, Brazil, Canada, France, Japan, Republic of Korea, Republic of South Africa, Switzerland, the ...

  12. U.S. - China Energy Cooperation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... France, Japan, South Africa, South Korea, Switzerland, United Kingdom, and United ... an offer of membership to China and Russia, with formal entry expected in November ...

  13. Progress Report on U.S.-China Energy Cooperation

    Broader source: Energy.gov [DOE]

    This report provides an overview of progress related to a number of U.S.-China clean energy initiatives.

  14. Energy efficiency opportunities in China. Industrial equipment and small cogeneration

    SciTech Connect (OSTI)

    1995-02-01

    A quick glance at comparative statistics on energy consumption per unit of industrial output reveals that China is one of the least energy efficient countries in the world. Energy waste not only impedes economic growth, but also creates pollution that threatens human health, regional ecosystems, and the global climate. China`s decision to pursue economic reform and encourage technology transfer from developed countries has created a window of opportunity for significant advances in energy efficiency. Policy changes, technical training, public education, and financing can help China realize its energy conservation potential.

  15. Assessment of Allowance Mechanismin China's Carbon Trading Pilots

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiong, Ling; Shen, Bo; Qi, Shaozhou; Price, Lynn

    2015-08-01

    The allowance mechanism is one of the core and sensitive aspects in design of a carbon trading scheme and affects the compliance cost for each company covered under the scheme. By examining China's allowance mechanism from two aspects including allowance allocation and allowance distribution, this paper compares China's carbon trading pilots with the EU Emissions Trading System and California Cap-and-Trade Program, and through the comparison identify issues that affect the efficiency of the pilots. The paper also recommends course of actions to strengthen China's existing pilots and build valuable experiences for the establishment of the national cap-and-trade system in China.

  16. China Recycling Energy Corp CREG | Open Energy Information

    Open Energy Info (EERE)

    Recycling Energy Corp CREG Jump to: navigation, search Name: China Recycling Energy Corp (CREG) Place: Reno, Nevada Zip: 89511 Product: A US-incorporated company that develops...

  17. China-Partnership for Climate Action | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Partnership for Climate Action - China AgencyCompany Organization Institute for Sustainable Communities (ISC) Partner World Resources Institute...

  18. China-Quantifying Emission Reduction Opportunities in Emerging...

    Open Energy Info (EERE)

    Emission Reduction Opportunities in Emerging Economies Jump to: navigation, search Name China-Quantifying Emission Reduction Opportunities in Emerging Economies AgencyCompany...

  19. China and a Sustainable Future: Towards a Low Carbon Economy...

    Open Energy Info (EERE)

    Carbon Economy and Society Jump to: navigation, search Tool Summary LAUNCH TOOL Name: China and a Sustainable Future: Towards a Low Carbon Economy and Society AgencyCompany...

  20. China-DLR Resource Assessments | Open Energy Information

    Open Energy Info (EERE)

    DLR Resource Assessments Jump to: navigation, search Name China-DLR Resource Assessments AgencyCompany Organization German Aerospace Center (DLR) Sector Energy Focus Area...

  1. China-ClimateWorks Low Carbon Growth Planning Support | Open...

    Open Energy Info (EERE)

    ClimateWorks Low Carbon Growth Planning Support Jump to: navigation, search Name China-Low Carbon Growth Planning Support AgencyCompany Organization ClimateWorks, Project...

  2. China Lake South Range Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: China Lake South Range Geothermal Project Project Location Information Coordinates 35.65,...

  3. China-Energy Intensity Reduction Strategy | Open Energy Information

    Open Energy Info (EERE)

    Intensity Reduction Strategy Jump to: navigation, search Name China-ESMAP Low Carbon Growth Country Studies Program AgencyCompany Organization Energy Sector Management Assistance...

  4. China Solar Energy Holdings Ltd | Open Energy Information

    Open Energy Info (EERE)

    Holdings Ltd Jump to: navigation, search Name: China Solar Energy Holdings Ltd Place: Wan Chai, Hong Kong Sector: Solar Product: Supplies turnkey manufacturing lines for the...

  5. China Singyes Solar Technologies Holdings Ltd formerly known...

    Open Energy Info (EERE)

    formerly known as Singyes Curtain Wall Engineering Jump to: navigation, search Name: China Singyes Solar Technologies Holdings Ltd (formerly known as Singyes Curtain Wall...

  6. China Solar Energy Ltd Tianpu Xianxing Group aka Beijing Universal...

    Open Energy Info (EERE)

    Xianxing Group aka Beijing Universal Antecedence Jump to: navigation, search Name: China Solar Energy Ltd (Tianpu Xianxing Group, aka Beijing Universal Antecedence) Place:...

  7. A Lidar View of Clouds in Southeastern China

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lidar View of Clouds in Southeastern China For original submission and image(s), see ARM Research Highlights http:www.arm.govsciencehighlights Research Highlight From May 2008...

  8. China-Danish Government Baseline Workstream | Open Energy Information

    Open Energy Info (EERE)

    Danish Government Baseline Workstream Jump to: navigation, search Name China-Danish Government Baseline Workstream AgencyCompany Organization Danish Government Partner Danish...

  9. BEST-Cement for China | Open Energy Information

    Open Energy Info (EERE)

    BEST-Cement for China Jump to: navigation, search Tool Summary LAUNCH TOOL Name: BEST-Cement AgencyCompany Organization: Lawrence Berkeley National Laboratory Partner: Energy...

  10. China-International Industrial Energy Efficiency Deployment Project...

    Open Energy Info (EERE)

    Industrial Energy Efficiency Deployment Project Jump to: navigation, search Name China-International Industrial Energy Efficiency Deployment Project AgencyCompany...

  11. Overview of China's Vehicle Emission Control Program: Past Successes...

    Open Energy Info (EERE)

    China's Vehicle Emission Control Program: Past Successes and Future Prospects Focus Area: Propane Topics: Socio-Economic Website: theicct.orgsitesdefaultfilespublications...

  12. Evolution of the Smart Grid in China | Open Energy Information

    Open Energy Info (EERE)

    Latest Equivalent URI: cleanenergysolutions.orgcontentevolution-smart-grid-china Language: English Policies: "Deployment Programs,Financial Incentives,Regulations" is not in...

  13. Quality assurance in China: a sleeping tiger awakens

    SciTech Connect (OSTI)

    Baehr, R.M.

    1996-12-31

    The People`s Republic of China has undergone major economic reform in the past decade producing a new free-market system that is distinctly Chinese. The Chinese realize that to be successful in world trade, quality management and export trading must be given the highest priority in China`s strategic economic plans. Many manufacturing companies are now implementing Total Quality Management (TQM) and the ISO 9000 i quality management standards. A first hand survey of the quality movement in China today is the objective of this paper.

  14. China Sungroup High Tech Co Ltd Dalian Xinyang High Tech | Open...

    Open Energy Info (EERE)

    Dalian, Liaoning Province, China Product: Maker of cobalt-based anode materials for lithium-ion batteries. References: China Sungroup High-Tech Co Ltd (Dalian Xinyang...

  15. HydroChina ZhongNan Engineering Corp | Open Energy Information

    Open Energy Info (EERE)

    ZhongNan Engineering Corp Jump to: navigation, search Name: HydroChina ZhongNan Engineering Corp Place: Hunan Province, China Sector: Hydro, Wind energy Product: Hunan...

  16. China-Medium and Long Term Energy Conservation Plan | Open Energy...

    Open Energy Info (EERE)

    Medium and Long Term Energy Conservation Plan Jump to: navigation, search Name China-Medium and Long Term Energy Conservation Plan AgencyCompany Organization Government of China...

  17. China Tong Liao Baolong New Energy Ltd CTB | Open Energy Information

    Open Energy Info (EERE)

    Tong Liao Baolong New Energy Ltd CTB Jump to: navigation, search Name: China Tong Liao Baolong New Energy Ltd (CTB) Place: Tongliao, Inner Mongolia Autonomous Region, China Sector:...

  18. China Renewable Energy Scale up Program CRESP GOC WB GEF | Open...

    Open Energy Info (EERE)

    up Program CRESP GOC WB GEF Jump to: navigation, search Name: China Renewable Energy Scale-up Program (CRESP) GOCWBGEF Place: Beijing, Beijing Municipality, China Zip: 100038...

  19. China Energy Group - Sustainable Growth Through EnergyEfficiency

    SciTech Connect (OSTI)

    Levine, Mark; Fridley, David; Lin, Jiang; Sinton, Jonathan; Zhou,Nan; Aden, Nathaniel; Huang, Joe; Price, Lynn; McKane, Aimee T.

    2006-03-20

    China is fueling its phenomenal economic growth with huge quantities of coal. The environmental consequences reach far beyond its borders--China is second only to the United States in greenhouse gas emissions. Expanding its supply of other energy sources, like nuclear power and imported oil, raises trade and security issues. Soaring electricity demand necessitates the construction of 40-70 GW of new capacity per year, creating sustained financing challenges. While daunting, the challenge of meeting China's energy needs presents a wealth of opportunities, particularly in meeting demand through improved energy efficiency and other clean energy technologies. The China Energy Group at the Lawrence Berkeley National Laboratory (LBNL) is committed to understanding these opportunities, and to exploring their implications for policy and business. We work collaboratively with energy researchers, suppliers, regulators, and consumers in China and elsewhere to: better understand the dynamics of energy use in China. Our Research Focus Encompasses Three Major Areas: Buildings, Industry, and Cross-Cutting Activities. Buildings--working to promote energy-efficient buildings and energy-efficient equipment used in buildings. Current work includes promoting the design and use of minimum energy efficiency standards and energy labeling for appliances, and assisting in the development and implementation of building codes for energy-efficient residential and commercial/public buildings. Past work has included a China Residential Energy Consumption Survey and a study of the health impacts of rural household energy use. Industry--understanding China's industrial sector, responsible for the majority of energy consumption in China. Current work includes benchmarking China's major energy-consuming industries to world best practice, examining energy efficiency trends in China's steel and cement industries, implementing voluntary energy efficiency agreements in various industries, and developing a multi-year program for standards and for optimizing the industrial motor systems in China. Past work has included a comprehensive study of China's oil refining sector. Cross-Cutting--analysis and research focused on multisector, policy, and long-term development issues. Current cross-cutting policy and analysis research includes work on government procurement programs; energy service companies; a national energy policy assessment including the National Energy Strategy released by the government in early 2005; energy efficiency policy; an analysis of past trends in energy consumption in China as well as of future scenarios; and our China Energy Databook accompanied by chapter summaries and analysis of recent trends.

  20. Development and application of centrifugal contactors in China

    SciTech Connect (OSTI)

    Cao, Pijia; Duan, Wuhua

    2008-07-01

    Compared with mixer-settlers and extraction columns, centrifugal contactors have some advantages. Since the late 1970's, a series of centrifugal contactors with rotor diameters of 10 to 550 mm have been developed and applied in some industrial fields in China. In this paper, both new improvements and applications of centrifugal contactors in China are reviewed. (authors)

  1. Transforming Markets for Energy Efficiency Buildings in China

    SciTech Connect (OSTI)

    Robert K. Watson; Barbara A. Finamore

    2002-09-30

    Program involved active support and participation in the development and implementation of a residential building energy consumption standards for the ''Transition Zone'' and ''Cooling Zone'' of China, with an implementation emphasis on Chongqing Municipality in southwestern China and, later, Shanghai Municipality. Beyond-code policies and programs, such as green building standards were also promoted.

  2. CONTENTS Preliminary Results of China's Third Gas Hydrate Drilling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preliminary Results of China's Third Gas Hydrate Drilling Expedition: A Critical Step From Discovery to Development in the South China Sea ............................1 Gas Hydrate Occurrences in the Black Sea - New Observations from the German SUGAR Project ...............................................6 Methane Hydrate Dynamics on the Northern US Atlantic Margin ............................................ 10 Gas Hydrate, Carbonate Crusts, and Chemosynthetic Organisms on A Vestnesa Ridge

  3. Alternative Energy Development and China's Energy Future

    SciTech Connect (OSTI)

    Zheng, Nina; Fridley, David

    2011-06-15

    In addition to promoting energy efficiency, China has actively pursued alternative energy development as a strategy to reduce its energy demand and carbon emissions. One area of particular focus has been to raise the share of alternative energy in China’s rapidly growing electricity generation with a 2020 target of 15% share of total primary energy. Over the last ten years, China has established several major renewable energy regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar, wind, nuclear, hydro, geothermal and biomass power as well as biofuels and coal alternatives. This study thus seeks to examine China’s alternative energy in terms of what has and will continue to drive alternative energy development in China as well as analyze in depth the growth potential and challenges facing each specific technology. This study found that despite recent policies enabling extraordinary capacity and investment growth, alternative energy technologies face constraints and barriers to growth. For relatively new technologies that have not achieved commercialization such as concentrated solar thermal, geothermal and biomass power, China faces technological limitations to expanding the scale of installed capacity. While some alternative technologies such as hydropower and coal alternatives have been slowed by uneven and often changing market and policy support, others such as wind and solar PV have encountered physical and institutional barriers to grid integration. Lastly, all alternative energy technologies face constraints in human resources and raw material resources including land and water, with some facing supply limitations in critical elements such as uranium for nuclear, neodymium for wind and rare earth metals for advanced solar PV. In light of China’s potential for and barriers to growth, the resource and energy requirement for alternative energy technologies were modeled and scenario analysis used to evaluate the energy and emission impact of two pathways of alternative energy development. The results show that China can only meets its 2015 and 2020 targets for non-fossil penetration if it successfully achieves all of its capacity targets for 2020 with continued expansion through 2030. To achieve this level of alternative generation, significant amounts of raw materials including 235 Mt of concrete, 54 Mt of steel, 5 Mt of copper along with 3 billion tons of water and 64 thousand square kilometers of land are needed. China’s alternative energy supply will likely have relatively high average energy output to fossil fuel input ratio of 42 declining to 26 over time, but this ratio is largely skewed by nuclear and hydropower capacity. With successful alternative energy development, 32% of China’s electricity and 21% of its total primary energy will be supplied by alternative energy by 2030. Compared to the counterfactual baseline in which alternative energy development stumbles and China does not meet its capacity targets until 2030, alternative energy development can displace 175 Mtce of coal inputs per year and 2080 Mtce cumulatively from power generation by 2030. In carbon terms, this translates into 5520 Mt of displaced CO{sub 2} emissions over the twenty year period, with more than half coming from expanded nuclear and wind power generation. These results illustrate the critical role that alternative energy development can play alongside energy efficiency in reducing China’s energy-related carbon emissions.

  4. An overview of municipal solid waste management in China

    SciTech Connect (OSTI)

    Chen Xudong; Geng Yong; Fujita, Tsuyoshi

    2010-04-15

    Municipal solid waste management (MSWM) in China warrants particular attention as China has become the largest MSW generator in the world and the total amount of MSW it produces continues to increase. In recent years, central and local governments have made great efforts to improve MSWM in China. New regulations and policies have been issued, urban infrastructure has been improved, and commercialization and international cooperation have been encouraged. Considering these developments, an overview is necessary to analyze the current state as well as new opportunities and challenges regarding MSWM in China. This paper shows that since the late 1990s, the amount of MSW collected has been largely decoupled from economic growth and incineration has become an increasingly widespread treatment method for MSW. We identify and discuss four major challenges and barriers related to China's MSWM, and propose an integrated management framework to improve the overall eco-efficiency of MSWM.

  5. Team China Transforms Shipping Containers into a Solar-Powered House

    Broader source: Energy.gov [DOE]

    Team China is turning shipping containers into their 2011 Solar Deacthlon home design. Check it out!

  6. Biomass Support for the China Renewable Energy Law: Final Report, December 2005

    SciTech Connect (OSTI)

    Not Available

    2006-10-01

    Final subcontractor report giving an overview of the biomass power generation technologies used in China. Report covers resources, technologies, foreign technologies and resources for comparison purposes, biomass potential in China, and finally government policies in China that support/hinder development of the using biomass in China for power generation.

  7. US-China_Fact_Sheet_Renewable_Energy.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable_Energy.pdf US-China_Fact_Sheet_Renewable_Energy.pdf PDF icon US-China_Fact_Sheet_Renewable_Energy.pdf More Documents & Publications FACT SHEET: U.S.-China Clean Energy Cooperation Announcements US-China Clean Energy Cooperation

  8. US-China_Fact_Sheet_Shale_Gas.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shale_Gas.pdf US-China_Fact_Sheet_Shale_Gas.pdf PDF icon US-China_Fact_Sheet_Shale_Gas.pdf More Documents & Publications US-China_Fact_Sheet_Electric_Vehicles.pdf FACT SHEET: U.S.-China Clean Energy Cooperation Announcements

  9. Regional Analysis of Building Distributed Energy Costs and CO2 Abatement: A U.S. - China Comparison

    SciTech Connect (OSTI)

    Mendes, Goncalo; Feng, Wei; Stadler, Michael; Steinbach, Jan; Lai, Judy; Zhou, Nan; Marnay, Chris; Ding, Yan; Zhao, Jing; Tian, Zhe; Zhu, Neng

    2014-04-09

    The following paper conducts a regional analysis of the U.S. and Chinese buildings? potential for adopting Distributed Energy Resources (DER). The expected economics of DER in 2020-2025 is modeled for a commercial and a multi-family residential building in different climate zones. The optimal building energy economic performance is calculated using the Distributed Energy Resources Customer Adoption Model (DER CAM) which minimizes building energy costs for a typical reference year of operation. Several DER such as combined heat and power (CHP) units, photovoltaics, and battery storage are considered. The results indicate DER have economic and environmental competitiveness potential, especially for commercial buildings in hot and cold climates of both countries. In the U.S., the average expected energy cost savings in commercial buildings from DER CAM?s suggested investments is 17percent, while in Chinese buildings is 12percent. The electricity tariffs structure and prices along with the cost of natural gas, represent important factors in determining adoption of DER, more so than climate. High energy pricing spark spreads lead to increased economic attractiveness of DER. The average emissions reduction in commercial buildings is 19percent in the U.S. as a result of significant investments in PV, whereas in China, it is 20percent and driven by investments in CHP. Keywords: Building Modeling and Simulation, Distributed Energy Resources (DER), Energy Efficiency, Combined Heat and Power (CHP), CO2 emissions 1. Introduction The transition from a centralized and fossil-based energy paradigm towards the decentralization of energy supply and distribution has been a major subject of research over the past two decades. Various concerns have brought the traditional model into question; namely its environmental footprint, its structural inflexibility and inefficiency, and more recently, its inability to maintain acceptable reliability of supply. Under such a troubled setting, distributed energy resources (DER) comprising of small, modular, electrical renewable or fossil-based electricity generation units placed at or near the point of energy consumption, has gained much attention as a viable alternative or addition to the current energy system. In 2010, China consumed about 30percent of its primary energy in the buildings sector, leading the country to pay great attention to DER development and its applications in buildings. During the 11th Five Year Plan (FYP), China has implemented 371 renewable energy building demonstration projects, and 210 photovoltaics (PV) building integration projects. At the end of the 12th FYP, China is targeting renewable energy to provide 10percent of total building energy, and to save 30 metric tons of CO2 equivalents (mtce) of energy with building integrated renewables. China is also planning to implement one thousand natural gas-based distributed cogeneration demonstration projects with energy utilization rates over 70percent in the 12th FYP. All these policy targets require significant DER systems development for building applications. China?s fast urbanization makes building energy efficiency a crucial economic issue; however, only limited studies have been done that examine how to design and select suitable building energy technologies in its different regions. In the U.S., buildings consumed 40percent of the total primary energy in 2010 [1] and it is estimated that about 14 billion m2 of floor space of the existing building stock will be remodeled over the next 30 years. Most building?s renovation work has been on building envelope, lighting and HVAC systems. Although interest has emerged, less attention is being paid to DER for buildings. This context has created opportunities for research, development and progressive deployment of DER, due to its potential to combine the production of power and heat (CHP) near the point of consumption and delivering multiple benefits to customers, such as cost

  10. U.S. and China Announce Cooperation on FutureGen and Sign Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Protocol at U.S.-China Strategic Economic Dialogue | Department of Energy Announce Cooperation on FutureGen and Sign Energy Efficiency Protocol at U.S.-China Strategic Economic Dialogue U.S. and China Announce Cooperation on FutureGen and Sign Energy Efficiency Protocol at U.S.-China Strategic Economic Dialogue December 15, 2006 - 9:46am Addthis BEIJING, CHINA - The United States and China today announced that China will join the Government Steering Committee of the FutureGen project making

  11. China Energy and Emissions Paths to 2030

    SciTech Connect (OSTI)

    Fridley, David; Zheng, Nina; Zhou, Nan; Ke, Jing; Hasanbeigi, Ali; Morrow, Bill; Price, Lynn

    2011-01-14

    After over two decades of staggering economic growth and soaring energy demand, China has started taking serious actions to reduce its economic energy and carbon intensity by setting short and medium-term intensity reduction targets, renewable generation targets and various supporting policies and programs. In better understanding how further policies and actions can be taken to shape China's future energy and emissions trajectory, it is important to first identify where the largest opportunities for efficiency gains and emission reduction lie from sectoral and end-use perspectives. Besides contextualizing China's progress towards reaching the highest possible efficiency levels through the adoption of the most advanced technologies from a bottom-up perspective, the actual economic costs and benefits of adopting efficiency measures are also assessed in this study. This study presents two modeling methodologies that evaluate both the technical and economic potential of raising China's efficiency levels to the technical maximum across sectors and the subsequent carbon and energy emission implications through 2030. The technical savings potential by efficiency measure and remaining gap for improvements are identified by comparing a reference scenario in which China continues the current pace of with a Max Tech scenario in which the highest technically feasible efficiencies and advanced technologies are adopted irrespective of costs. In addition, from an economic perspective, a cost analysis of selected measures in the key industries of cement and iron and steel help quantify the actual costs and benefits of achieving the highest efficiency levels through the development of cost of conserved energy curves for the sectors. The results of this study show that total annual energy savings potential of over one billion tonne of coal equivalent exists beyond the expected reference pathway under Max Tech pathway in 2030. CO2 emissions will also peak earlier under Max Tech, though the 2020s is a likely turning point for both emission trajectories. Both emission pathways must meet all announced and planned policies, targets and non-fossil generation targets, or an even wider efficiency gap will exist. The savings potential under Max Tech varies by sector, but the industrial sector appears to hold the largest energy savings and emission reduction potential. The primary source of savings is from electricity rather than fuel, and electricity savings are magnified by power sector decarbonization through increasing renewable generation and coal generation efficiency improvement. In order to achieve the maximum energy savings and emission reduction potential, efficiency improvements and technology switching must be undertaken across demand sectors as well as in the growing power sector. From an economic perspective, the cost of conserved energy analysis indicates that nearly all measures for the iron and steel and cement industry are cost-effective. All 23 efficiency measures analyzed for the cement industry are cost-effective, with combined CO2 emission reduction potential of 448 Mt CO2. All of the electricity savings measures in the iron and steel industry are cost-effective, but the cost-effective savings potential for fuel savings measures is slightly lower than total technical savings potential. The total potential savings from these measures confirm the magnitude of savings in the scenario models, and illustrate the remaining efficiency gap in the cement and iron and steel industries.

  12. Prospects for the medium- and long-term development of China`s electric power industry and analysis of the potential market for superconductivity technology

    SciTech Connect (OSTI)

    Li, Z.

    1998-05-01

    First of all, overall economic growth objectives in China are concisely and succinctly specified in this report. Secondly, this report presents a forecast of energy supply and demand for China`s economic growth for 2000--2050. In comparison with the capability of energy construction in China in the future, a gap between supply and demand is one of the important factors hindering the sustainable development of Chain`s economy. The electric power industry is one of China`s most important industries. To adopt energy efficiency through high technology and utilizing energy adequately is an important technological policy for the development of China`s electric power industry in the future. After briefly describing the achievements of China`s electric power industry, this report defines the target areas and policies for the development of hydroelectricity and nuclear electricity in the 2000s in China, presents the strategic position of China`s electric power industry as well as objectives and relevant plans of development for 2000--2050. This report finds that with the discovery of superconducting electricity, the discovery of new high-temperature superconducting (HTS) materials, and progress in materials techniques, the 21st century will be an era of superconductivity. Applications of superconductivity in the energy field, such as superconducting storage, superconducting transmission, superconducting transformers, superconducting motors, its application in Magneto-Hydro-Dynamics (MHD), as well as in nuclear fusion, has unique advantages. Its market prospects are quite promising. 12 figs.

  13. U.S.-China Clean Energy Research Center (CERC) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    China Clean Energy Research Center (CERC) U.S.-China Clean Energy Research Center (CERC) In November 2009, President Barack Obama and President Hu Jintao announced the establishment of the U.S.-China Clean Energy Research Center (CERC). In November 2009, President Barack Obama and President Hu Jintao announced the establishment of the U.S.-China Clean Energy Research Center (CERC). About CERC The U.S.-China Clean Energy Research Center (CERC) operates under a bilateral diplomatic initiative to

  14. An overview of energy supply and demand in China

    SciTech Connect (OSTI)

    Liu, F.; Davis, W.B.; Levine, M.D.

    1992-05-01

    Although China is a poor country, with much of its population still farming for basic subsistence in rural villages, China is rich in energy resources. With the world`s largest hydropower potential, and ranking third behind the US and USSR in coal reserves, China is in a better position than many other developing countries when planning for its future energy development and self-sufficiency. China is now the third largest producer and consumer of commercial energy, but its huge populace dilutes this impressive aggregate performance into a per capita figure which is an order of magnitude below the rich industrialized nations. Despite this fact, it is still important to recognize that China`s energy system is still one of the largest in the world. A system this size allows risk taking and can capture economies of scale. The Chinese have maintained rapid growth in energy production for several decades. In order to continue and fully utilize its abundant resources however, China must successfully confront development challenges in many areas. For example, the geographic distribution of consumption centers poorly matches the distribution of resources, which makes transportation a vital but often weak link in the energy system. Another example -- capital -- is scarce relative to labor, causing obsolete and inefficiently installed technology to be operated well beyond what would be considered its useful life in the West. Major improvements in industrial processes, buildings, and other energy-using equipment and practices are necessary if China`s energy efficiency is to continue to improve. Chinese energy planners have been reluctant to invest in environmental quality at the expense of more tangible production quotas.

  15. China energy, environment, and climate study: Background issues paper

    SciTech Connect (OSTI)

    Sinton, Jonathan E.; Fridley, David G.; Logan, Jeffrey; Guo, Yuan; Wang, Bangcheng; Xu, Qing

    2000-10-10

    The total costs and impacts of expanding energy use in China will depend, in part, on a number of important factors, an understanding of which is vital for China's policy-makers. These issues include the additional environmental and public health impacts associated with energy use, the economic costs of infrastructure expansion to meet growing energy needs, and the potential role that renewable energy technologies could play if pushed hard in China's energy future. This short report summarizes major trends and issues in each of these three areas.

  16. China's sustainable energy future: Scenarios of energy and carbonemissions (Summary)

    SciTech Connect (OSTI)

    Zhou, Dadi; Levine, Mark; Dai, Yande; Yu, Cong; Guo, Yuan; Sinton, Jonathan E.; Lewis, Joanna I.; Zhu, Yuezhong

    2004-03-10

    China has ambitious goals for economic development, and mustfind ways to power the achievement of those goals that are bothenvironmentally and socially sustainable. Integration into the globaleconomy presents opportunities for technological improvement and accessto energy resources. China also has options for innovative policies andmeasures that could significantly alter the way energy is acquired andused. These opportunities andoptions, along with long-term social,demographic, and economic trends, will shape China s future energysystem, and consequently its contribution to emissions of greenhousegases, particularly carbon dioxide (CO2). In this study, entitled China sSustainable Energy Future: Scenarios of Energy and Carbon Emissions, theEnergy Research Institute (ERI), an independent analytic organizationunder China's Na tional Development and Reform Commission (NDRC), soughtto explore in detail how China could achieve the goals of the TenthFive-Year Plan and its longer term aims through a sustainable developmentstrategy. China's ability to forge a sustainable energy path has globalconsequences. China's annual emissions of greenhouse gases comprisenearly half of those from developing countries, and 12 percent of globalemissions. Most of China's greenhouse gas emissions are in the form ofCO2, 87 percent of which came from energy use in 2000. In that year,China's carbon emissions from energy use and cement production were 760million metric tons (Mt-C), second only to the 1,500 Mt-C emitted by theUS (CDIAC, 2003). As China's energy consumption continues to increase,greenhouse gas emissions are expected to inevitably increase into thefuture. However, the rate at which energy consumption and emissions willincrease can vary significantly depending on whether sustainabledevelopment is recognized as an important policy goal. If the ChineseGovernment chooses to adopt measures to enhance energy efficiency andimprove the overall structure of energy supply, it is possible thatfuture economic growth may be supported by a relatively lower increase inenergy consumption. Over the past 20 years, energy intensity in China hasbeen reduced partly through technological and structural changes; currentannual emissions may be as much as 600 Mt-C lower than they would havebeen without intensity improvements. China must take into account itsunique circumstances in considering how to achieve a sustainabledevelopment path. This study considers the feasibility of such anachievement, while remaining open to exploring avenues of sustainabledevelopment that may be very different from existing models. Threescenarios were prepared to assist the Chinese Government to explore theissues, options and uncertainties that it confronts in shaping asustainable development path compatible with China's uniquecircumstances. The Promoting Sustainability scenario offers a systematicand complete interpretation of the social and economic goals proposed inthe Tenth Five-Year Plan. The possibility that environmentalsustainability would receive low priority is covered in the OrdinaryEffort scenario. Aggressive pursuit of sustainable development measuresalong with rapid economic expansion is featured in the Green Growthscenario. The scenarios differ in the degree to which a common set ofenergy supply and efficiency policies are implemented. In cons ultationwith technology and policy experts domestically and abroad, ERI developedstrategic scenarios and quantified them using an energy accounting model.The scenarios consider, in unprecedented detail, changes in energy demandstructure and technology, as well as energy supply, from 1998 to 2020.The scenarios in this study are an important step in estimating realistictargets for energy efficiency and energy supply development that are inline with a sustainable development strategy. The scenarios also helpanalyze and explore ways in which China might slow growth in greenhousegas emissions. The key results have important policy implications:Depending on how demand for energy services is met, China could quadrupleits gross domesti

  17. GE Develops High Water Recovery Technology in China | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Develops High Water Recovery Technology in China Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window)...

  18. China Nuvo Solar Energy Inc formerly Nuvo Solar Energy Inc |...

    Open Energy Info (EERE)

    Nuvo Solar Energy Inc formerly Nuvo Solar Energy Inc Jump to: navigation, search Name: China Nuvo Solar Energy Inc (formerly Nuvo Solar Energy Inc) Place: West Palm Beach, Florida...

  19. Category:Wind Power in China | Open Energy Information

    Open Energy Info (EERE)

    "Wind Power in China" The following 2 pages are in this category, out of 2 total. G Guangdong Baolihua New Energy Corporation S Sinovel Wind Group Co. Retrieved from...

  20. Office of China Renewable Energy Development Project REDP | Open...

    Open Energy Info (EERE)

    China Zip: 100044 Sector: Wind energy Product: The project aims to use state-of-the-art and cost-effective wind and PV technologies to supply electricity in an...

  1. Ars Technica Visits GE's China Technology Center | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technica visits GE's China Technology Center Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window)...

  2. GE China Technology Center Wins Top 12 Most Innovative Practices...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    China Technology Center Wins Top 12 Most Innovative Practices Award of "Multinational Companies in Shanghai" Click to email this to a friend (Opens in new window) Share on Facebook...

  3. China Lake Acres, California: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. China Lake Acres is a census-designated place in Kern County, California.1 References ...

  4. What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions

    SciTech Connect (OSTI)

    G. Fridley, David; Zheng, Nina; T. Aden, Nathaniel

    2010-07-01

    After rapid growth in economic development and energy demand over the last three decades, China has undertaken energy efficiency improvement efforts to reduce its energy intensity under the 11th Five Year Plan (FYP). Since becoming the world's largest annual CO{sub 2} emitter in 2007, China has set reduction targets for energy and carbon intensities and committed to meeting 15% of its total 2020 energy demand with non-fossil fuel. Despite having achieved important savings in 11th FYP efficiency programs, rising per capita income and the continued economic importance of trade will drive demand for transport activity and fuel use. At the same time, an increasingly 'electrified' economy will drive rapid power demand growth. Greater analysis is therefore needed to understand the underlying drivers, possible trajectories and mitigation potential in the growing industrial, transport and power sectors. This study uses scenario analysis to understand the likely trajectory of China's energy and carbon emissions to 2030 in light of the current and planned portfolio of programs, policies and technology development and ongoing urbanization and demographic trends. It evaluates the potential impacts of alternative transportation and power sector development using two key scenarios, Continued Improvement Scenario (CIS) and Accelerated Improvement Scenario (AIS). CIS represents the most likely path of growth based on continuation of current policies and meeting announced targets and goals, including meeting planned appliance efficiency standard revisions, fuel economy standards, and industrial targets and moderate phase-out of subcritical coal-fired generation with additional non-fossil generation. AIS represents a more aggressive trajectory of accelerated improvement in energy intensity and decarbonized power and transport sectors. A range of sensitivity analysis and power technology scenarios are tested to evaluate the impact of additional actions such as carbon capture and sequestration (CCS) and integrated mine-mouth generation. The CIS and AIS results are also contextualized and compared to model scenarios in other published studies. The results of this study show that China's energy and CO{sub 2} emissions will not likely peak before 2030, although growth is expected to slow after 2020. Moreover, China will be able to meet its 2020 carbon intensity reduction target of 40 to 45% under both CIS and AIS, but only meet its 15% non-fossil fuel target by 2020 under AIS. Under both scenarios, efficiency remains a key resource and has the same, if not greater, mitigation potential as new technologies in transport and power sectors. In the transport sector, electrification will be closely linked the degree of decarbonization in the power sector and EV deployment has little or no impact on China's crude oil import demand. Rather, power generation improvements have the largest sector potential for overall emission mitigation while mine-mouth power generation and CCS have limited mitigation potential compared to fuel switching and efficiency improvements. Comparisons of this study's results with other published studies reveal that CIS and AIS are within the range of other national energy projections but alternative studies rely much more heavily on CCS for carbon reduction. The McKinsey study, in particular, has more optimistic assumptions for reductions in crude oil imports and coal demand in its abatement scenario and has much higher gasoline reduction potential for the same level of EV deployment. Despite these differences, this study's scenario analysis of both transport and power sectors illustrate the necessity for continued efficiency improvements and aggressive power sector decarbonization in flattening China's CO{sub 2} emissions.

  5. China's Energy and Carbon Emissions Outlook to 2050

    SciTech Connect (OSTI)

    Zhou, Nan; Fridley, David; McNeil, Michael; Zheng, Nina; Ke, Jing; Levine, Mark

    2011-02-15

    As a result of soaring energy demand from a staggering pace of economic expansion and the related growth of energy-intensive industry, China overtook the United States to become the world's largest contributor to CO{sub 2} emissions in 2007. At the same time, China has taken serious actions to reduce its energy and carbon intensity by setting both a short-term energy intensity reduction goal for 2006 to 2010 as well as a long-term carbon intensity reduction goal for 2020. This study presents a China Energy Outlook through 2050 that assesses the role of energy efficiency policies in transitioning China to a lower emission trajectory and meeting its intensity reduction goals. Over the past few years, LBNL has established and significantly enhanced its China End-Use Energy Model which is based on the diffusion of end-use technologies and other physical drivers of energy demand. This model presents an important new approach for helping understand China's complex and dynamic drivers of energy consumption and implications of energy efficiency policies through scenario analysis. A baseline ('Continued Improvement Scenario') and an alternative energy efficiency scenario ('Accelerated Improvement Scenario') have been developed to assess the impact of actions already taken by the Chinese government as well as planned and potential actions, and to evaluate the potential for China to control energy demand growth and mitigate emissions. In addition, this analysis also evaluated China's long-term domestic energy supply in order to gauge the potential challenge China may face in meeting long-term demand for energy. It is a common belief that China's CO{sub 2} emissions will continue to grow throughout this century and will dominate global emissions. The findings from this research suggest that this will not necessarily be the case because saturation in ownership of appliances, construction of residential and commercial floor area, roadways, railways, fertilizer use, and urbanization will peak around 2030 with slowing population growth. The baseline and alternative scenarios also demonstrate that China's 2020 goals can be met and underscore the significant role that policy-driven energy efficiency improvements will play in carbon mitigation along with a decarbonized power supply through greater renewable and non-fossil fuel generation.

  6. 4th U.S.-China Energy Efficiency Forum

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy and China's National Development and Reform Commission held the annual U.S.-China Energy Efficiency Forum (EEF) this past September in Arlington, VA. The day-long event featured keynotes from DOE Office of Energy Efficiency and Renewable Energy Assistant Secretary Dr. David Danielson, U.S. Special Envoy for Climate Change Todd Stern, and NDRC Vice Chairman Xie Zhenhua.

  7. US China CERC Energy and Water - Funding Opportunity Announcement |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy US China CERC Energy and Water - Funding Opportunity Announcement US China CERC Energy and Water - Funding Opportunity Announcement The United States Department of Energy (DOE) is soliciting applications for the formation of a Consortium to pursue five identified R&D topics at the nexus of energy and water (see Funding Opportunity Announcement PDF at the bottom of the page). These topics are: Water use reduction at thermoelectric plants; Treatment and management of

  8. Joint Trade Mission to China | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Joint Trade Mission to China Joint Trade Mission to China Trade Mission Begins Trade Mission Begins The joint trade mission began in Beijing, and will also make stops in Shanghai and Guangzhou. Read more Green Buildings Green Buildings How American Businesses are leading the way in green building technology in Shanghai and around the world. Read more Top 3 Things Top 3 Things Deputy Secretary Sherwood-Randall spoke at Microsoft's Beijing Campus. These were the top 3 things from her speech. Read

  9. Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?

    SciTech Connect (OSTI)

    Letschert, Virginie; McNeil, Michael A.; Zhou, Nan

    2009-05-18

    The time when energy-related carbon emissions come overwhelmingly from developed countries is coming to a close. China has already overtaken the United States as the world's leading emitter of greenhouse gas emissions. The economic growth that China has experienced is not expected to slow down significantly in the long term, which implies continued massive growth in energy demand. This paper draws on the extensive expertise from the China Energy Group at LBNL on forecasting energy consumption in China, but adds to it by exploring the dynamics of demand growth for electricity in the residential sector -- and the realistic potential for coping with it through efficiency. This paper forecasts ownership growth of each product using econometric modeling, in combination with historical trends in China. The products considered (refrigerators, air conditioners, fans, washing machines, lighting, standby power, space heaters, and water heating) account for 90percent of household electricity consumption in China. Using this method, we determine the trend and dynamics of demandgrowth and its dependence on macroeconomic drivers at a level of detail not accessible by models of a more aggregate nature. In addition, we present scenarios for reducing residential consumption through efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, thus allowing for a technologically realistic assessment of efficiency opportunities specifically in the Chinese context.

  10. Fact #754: November 19, 2012 Vehicle Sales in the U.S. and China, 2002-2011

    Broader source: Energy.gov [DOE]

    In 2002, vehicle sales were about five times higher in the U.S. than in China. Due to a combination of declining sales in the U.S. and rising sales in China, vehicle sales in China exceeded vehicle...

  11. An overview of energy supply and demand in China

    SciTech Connect (OSTI)

    Liu, F.; Davis, W.B.; Levine, M.D.

    1992-05-01

    Although China is a poor country, with much of its population still farming for basic subsistence in rural villages, China is rich in energy resources. With the world's largest hydropower potential, and ranking third behind the US and USSR in coal reserves, China is in a better position than many other developing countries when planning for its future energy development and self-sufficiency. China is now the third largest producer and consumer of commercial energy, but its huge populace dilutes this impressive aggregate performance into a per capita figure which is an order of magnitude below the rich industrialized nations. Despite this fact, it is still important to recognize that China's energy system is still one of the largest in the world. A system this size allows risk taking and can capture economies of scale. The Chinese have maintained rapid growth in energy production for several decades. In order to continue and fully utilize its abundant resources however, China must successfully confront development challenges in many areas. For example, the geographic distribution of consumption centers poorly matches the distribution of resources, which makes transportation a vital but often weak link in the energy system. Another example -- capital -- is scarce relative to labor, causing obsolete and inefficiently installed technology to be operated well beyond what would be considered its useful life in the West. Major improvements in industrial processes, buildings, and other energy-using equipment and practices are necessary if China's energy efficiency is to continue to improve. Chinese energy planners have been reluctant to invest in environmental quality at the expense of more tangible production quotas.

  12. Acting Deputy Secretary Kupfer Participates in U.S.-China Strategic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kupfer Participates in U.S.-China Strategic Economic Dialogue Acting Deputy Secretary Kupfer Participates in U.S.-China Strategic Economic Dialogue June 18, 2008 - 1:29pm Addthis ...

  13. China Solar Power CSP aka General Solar Power Yantai Co Ltd ...

    Open Energy Info (EERE)

    Power CSP aka General Solar Power Yantai Co Ltd Jump to: navigation, search Name: China Solar Power (CSP) (aka General Solar Power Yantai Co Ltd) Place: China Sector: Solar...

  14. U.S. China Carbon Capture and Storage Development Project at...

    Office of Scientific and Technical Information (OSTI)

    U.S. China Carbon Capture and Storage Development Project at West Virginia University Citation Details In-Document Search Title: U.S. China Carbon Capture and Storage Development ...

  15. Fact Sheet: U.S. and China Actions Matter for Global Energy Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in oil, gas, coal, and renewables. The U.S. and China's Strategic Economic Dialogue (SED) Action Plans: The U.S. and China's five Action Plans - developed under the SED Ten...

  16. Secretary Chu Postpones China Trip to Continue Work on BP Oil...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Postpones China Trip to Continue Work on BP Oil Spill Response Efforts Secretary Chu Postpones China Trip to Continue Work on BP Oil Spill Response Efforts May 21, 2010 - 12:00am...

  17. Department of Energy Announces Third Grant for U.S.-China Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grant for U.S.-China Clean Energy Research Center Department of Energy Announces Third Grant for U.S.-China Clean Energy Research Center October 7, 2010 - 12:00am Addthis...

  18. US-China_Fact_Sheet_Electric_Vehicles.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ElectricVehicles.pdf US-ChinaFactSheetElectricVehicles.pdf PDF icon US-ChinaFactSheetElectricVehicles.pdf More Documents & Publications THE WHITE HOUSE FACT SHEET:...

  19. China Sunergy Co Ltd CEEG Nanjing PV Tech Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Sunergy Co Ltd CEEG Nanjing PV Tech Co Ltd Jump to: navigation, search Name: China Sunergy Co Ltd (CEEG Nanjing PV-Tech Co Ltd) Place: Nanjing, Jiangsu Province, China Zip: 211100...

  20. Secretary Chu Letter to 2nd US-China EE Forum

    Broader source: Energy.gov [DOE]

    English and Chinese translation of Secretary Chu's letter to participants in the 2nd US-China EE Forum.

  1. Readout on Secretary Chu's China Meetings on Clean Energy | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy on Secretary Chu's China Meetings on Clean Energy Readout on Secretary Chu's China Meetings on Clean Energy July 15, 2009 - 12:00am Addthis BEIJING, CHINA - Secretary Chu is meeting with a series of Chinese officials during this week's trip to China. We will be providing readouts on these meetings whenever possible. The first update appears below from Dan Leistikow, Director of Public Affairs, U.S. Department of Energy. Secretary Chu, joined by Assistant Secretary for Policy and

  2. Biomass Support for the China Renewable Energy Law: International Biomass Energy Technology Review Report, January 2006

    SciTech Connect (OSTI)

    Not Available

    2006-10-01

    Subcontractor report giving an overview of the biomass power generation technologies used in China, the U.S., and Europe.

  3. Before the U.S.-China Economic and Security Review Commission | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Before the U.S.-China Economic and Security Review Commission Before the U.S.-China Economic and Security Review Commission Before the U.S.-China Economic and Security Review Commission By: David Sandalow, Assistant Secretary Office of Policy and International Affairs Subject: China's Green Energy Policies PDF icon 4-8-2010-PI-Final_Testimony_DavidSandalow.pdf More Documents & Publications Statement of David Sandalow Assistant Secretary of Energy for Policy and International

  4. China CERC, U.S. India and Other international Agreements | Department of

    Office of Environmental Management (EM)

    Energy China CERC, U.S. India and Other international Agreements China CERC, U.S. India and Other international Agreements PDF icon International Agreements.pdf PDF icon Trip to China.pdf More Documents & Publications RFI - US-China Clean Energy Research Center U.S.-India Joint Clean Energy Research and Development Center Credit: Massachusetts Institute of Technology Hybrid Ventilation Optimization and Control Research and Development

  5. Peak CO2? China's Emissions Trajectories to 2050

    SciTech Connect (OSTI)

    Zhou, Nan; Fridley, David G.; McNeil, Michael; Zheng, Nina; Ke, Jing; Levine, Mark

    2011-05-01

    As a result of soaring energy demand from a staggering pace of economic growth and the related growth of energy-intensive industry, China overtook the United States to become the world's largest contributor to CO{sub 2} emissions in 2007. At the same time, China has taken serious actions to reduce its energy and carbon intensity by setting both short-term energy intensity reduction goal for 2006 to 2010 as well as long-term carbon intensity reduction goal for 2020. This study focuses on a China Energy Outlook through 2050 that assesses the role of energy efficiency policies in transitioning China to a lower emission trajectory and meeting its intensity reduction goals. In the past years, LBNL has established and significantly enhanced the China End-Use Energy Model based on the diffusion of end-use technologies and other physical drivers of energy demand. This model presents an important new approach for helping understand China's complex and dynamic drivers of energy consumption and implications of energy efficiency policies through scenario analysis. A baseline ('Continued Improvement Scenario') and an alternative energy efficiency scenario ('Accelerated Improvement Scenario') have been developed to assess the impact of actions already taken by the Chinese government as well as planned and potential actions, and to evaluate the potential for China to control energy demand growth and mitigate emissions. It is a common belief that China's CO{sub 2} emissions will continue to grow throughout this century and will dominate global emissions. The findings from this research suggest that this will not likely be the case because of saturation effects in appliances, residential and commercial floor area, roadways, railways, fertilizer use, and urbanization will peak around 2030 with slowing population growth. The baseline and alternative scenarios also demonstrate that the 2020 goals can be met and underscore the significant role that policy-driven energy efficiency improvements will play in carbon mitigation along with a decarbonized power supply through greater renewable and non-fossil fuel generation.

  6. Chu in China: Clean Energy Collaboration | Department of Energy

    Energy Savers [EERE]

    in China: Clean Energy Collaboration Chu in China: Clean Energy Collaboration November 16, 2010 - 6:43pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs On Sunday afternoon, the Secretary traveled to the largest power plant in Shanghai. Before taking a tour of the facilities, the Secretary met with managers and engineers at the plant to discuss the work they're doing and the investments that the Department has made in carbon capture and storage in the

  7. Biomass Support for the China Renewable Energy Law: Feasibility Report -- Agricultural and Forestry Solid Wastes Power Generation Demonstration, December 2005

    SciTech Connect (OSTI)

    Not Available

    2006-10-01

    Subcontractor report on feasibility of using agricultural and forestry wastes for power generation in China

  8. Development and utilization of new and renewable energy with Stirling engine system for electricity in China

    SciTech Connect (OSTI)

    Dong, W.; Abenavoli, R.I.; Carlini, M.

    1996-12-31

    China is the largest developing country in the world. Self-supporting and self-sustaining energy supply is the only solution for development. Recently, fast economic development exposed gradually increasing pressure of energy demand and environment concern. In order to increase the production of electricity of China, the Stirling engine system should be developed. This paper provides an investigation of energy production and consumption in China. The main features of the energy consumption and the development objectives of China`s electric power industry are also described. The necessity and possibility of development of Stirling engine system is discussed.

  9. FACT SHEET: U.S.-China Energy Efficiency Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FACT SHEET: U.S.-China Energy Efficiency Action Plan FACT SHEET: U.S.-China Energy Efficiency Action Plan Today, President Barack Obama and President Hu Jintao announced the launch of a new U.S.-China Energy Efficiency Action Plan to strengthen the economy, improve energy security and combat climate change by reducing energy waste in both countries. PDF icon US-China_Fact_Sheet_Efficiency_Action_Plan.pdf More Documents & Publications US-China_Fact_Sheet_Efficiency_Action_Plan.pdf THE WHITE

  10. Fact #600: December 7, 2009 China Produced More Vehicles than the U.S. in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2008 | Department of Energy 0: December 7, 2009 China Produced More Vehicles than the U.S. in 2008 Fact #600: December 7, 2009 China Produced More Vehicles than the U.S. in 2008 In 1980, the U.S. produced 56 times more vehicles than China. China's vehicle production has been growing since then, while U.S. vehicle production was hit hard in the recent economic downturn. In the year 2008, China produced 9.5 million vehicles, while the U.S. produced 8.7 million vehicles. Vehicles Produced in

  11. U.S.-China Electric Vehicle and Battery Technology Workshop

    Broader source: Energy.gov [DOE]

    DOE's Office of Policy and International Affairs and China's Ministry of Science and Technology convened a 3-day workshop at Argonne National Laboratory that brought together more than 100 U.S. and Chinese experts from government, industry, and academia to discuss progress made in the electric vehicle industry to date and opportunities for increased collaboration.

  12. Forum Highlights U.S., China Commitment to CCUS

    Broader source: Energy.gov [DOE]

    On August 25, senior U.S. government officials including Fossil Energy's Assistant Secretary Christopher Smith joined with Vice Administrator Shi Yubo of China’s National Energy Administration to kick off the U.S. – China Clean Coal Industry Forum in Billings, MT.

  13. NNSA Transfers Responsibility for Radiation Detection System to China

    National Nuclear Security Administration (NNSA)

    Customs | National Nuclear Security Administration Transfers Responsibility for Radiation Detection System to China Customs | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional

  14. Estimating coal production peak and trends of coal imports in China

    SciTech Connect (OSTI)

    Bo-qiang Lin; Jiang-hua Liu

    2010-01-15

    More than 20 countries in the world have already reached a maximum capacity in their coal production (peak coal production) such as Japan, the United Kingdom and Germany. China, home to the third largest coal reserves in the world, is the world's largest coal producer and consumer, making it part of the Big Six. At present, however, China's coal production has not yet reached its peak. In this article, logistic curves and Gaussian curves are used to predict China's coal peak and the results show that it will be between the late 2020s and the early 2030s. Based on the predictions of coal production and consumption, China's net coal import could be estimated for coming years. This article also analyzes the impact of China's net coal import on the international coal market, especially the Asian market, and on China's economic development and energy security. 16 refs., 5 figs., 6 tabs.

  15. Delays in Reducing Waterborne and Water-related Infectious Diseases in China under Climate Change

    SciTech Connect (OSTI)

    Hodges, Maggie; Belle, Jessica; Carlton, Elizabeth; Liang, Song; Li, Huazhong; Luo, Wei; Freeman, Matthew C.; Liu, Yang; Gao, Yang; Hess, Jeremy; Remais, Justin V.

    2014-12-01

    Despite Chinas rapid progress improving water, sanitation and hygiene (WSH) infrastructure and access, in 2011, 471 million people lacked access to improved sanitation, and 401 million people lacked access to household piped water. Infectious diseases are sensitive to changes in climate, particularly temperature, and WSH conditions. To explore possible impacts of climate change on these diseases in China in 2020 and 2030, we coupled estimates of the temperature sensitivity of diarrheal disease and three vector-borne diseases, temperature projections from global climate models using four emissions pathways, WSH-infrastructure development scenarios and projected demographic changes. By 2030, the projected impacts would delay Chinas historically rapid progress toward reducing the burden of WSH-attributable infectious disease by 8-85 months. This developmental delay provides a key summary measure of the impact of climate change in China, and in other societies undergoing rapid social, economic, and environmental change.

  16. A light diet for a giant appetite: An assessment of China's proposed fluorescent lamp standard

    SciTech Connect (OSTI)

    Lin, Jiang

    2002-04-11

    Lighting has been one of the fastest growing electric end-uses in China over the last twenty years, with an average annual growth rate of 14%. Fluorescent lighting provides a significant portion of China's lighting need. In 1998, China produced 680 million fluorescent lamps, of which 420 million were linear fluorescent lamps of various diameters (T8 to T12). There are substantial variations both in energy efficiency and lighting performance among locally produced fluorescent lamps. Such variations present a perfect opportunity for policy intervention through efficiency standards to promote the adoption of more efficient fluorescent lamps in China. This paper analyzes China's proposed minimum efficiency standard for fluorescent lamps and presents an assessment of its likely impacts on China's lighting energy consumption and GHG emissions.

  17. Secretary Chu to Travel to India and China to Promote Clean Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnerships | Department of Energy India and China to Promote Clean Energy Partnerships Secretary Chu to Travel to India and China to Promote Clean Energy Partnerships November 10, 2009 - 12:00am Addthis Washington, DC - The Department of Energy announced today that Energy Secretary Steven Chu will travel to India and China from Thursday, November 12 to Wednesday, November 18 as part of the Department's efforts to advance opportunities for international clean energy cooperation. During the

  18. U.S., China Partner to Counter Nuclear Smuggling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partner to Counter Nuclear Smuggling U.S., China Partner to Counter Nuclear Smuggling January 19, 2011 - 12:00am Addthis WASHINGTON D.C. - The Department of Energy's National Nuclear Security Administration (NNSA) today announced the signing of a memorandum of understanding (MOU) with China that paves the way for the establishment of a radiation detection training center in Qinhuangdao, China. Deputy Secretary of Energy Daniel Poneman and Vice Minister SUN Yibiao of the General Administration of

  19. Chu in China: The Shared Necessity of Innovation | Department of Energy

    Office of Environmental Management (EM)

    China: The Shared Necessity of Innovation Chu in China: The Shared Necessity of Innovation November 22, 2010 - 4:59pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Ed. Note: Last week, Secretary Chu traveled to China and Japan to meet with government officials, business leaders and others to discuss the opportunities for partnership in clean energy. The Secretary outlined his objectives for the trip in a post just prior to his departure and this is the

  20. International Transportation Energy Demand Determinants (ITEDD): Prototype Results for China

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jim Turnure, Director Office of Energy Consumption & Efficiency Analysis, EIA EIA Conference: Asian Energy Demand July 14, 2014 | Washington, DC International Transportation Energy Demand Determinants (ITEDD): Prototype Results for China Dawn of new global oil market paradigm? 2 Jim Turnure, EIA Conference July 14, 2014 * Conventional wisdom has centered around $100-120/barrel oil and 110-115 million b/d global liquid fuel demand in the long term (2030-2040) * Demand in non-OECD may push

  1. Global Carbon Emissions in the Coming Decades: The Case of China

    SciTech Connect (OSTI)

    Levine, Mark; Levine, Mark D.; Aden, Nathaniel T.

    2008-05-01

    China's annual energy-related carbon emissions surpassed those of the United States in In order to build a more robust understanding of China's energy-related carbon emissions, emissions after 2001? The divergence between actual and forecasted carbon emissions international trade, and central government policies in driving emissions growth. so greatly in error and what drove the rapid growth of China's energy-related carbon this article reviews the role of economic restructuring, urbanization, coal dependence, underscores the rapid changes that have taken place in China's energy system since 2001.

  2. 4th U.S.-China Energy Efficiency Forum Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4th U.S.-China Energy Efficiency Forum Documents 4th U.S.-China Energy Efficiency Forum Documents The U.S. Department of Energy and China's National Development and Reform Commission held the annual U.S.-China Energy Efficiency Forum (EEF) this past September in Arlington, VA. The day-long event featured keynotes from DOE Office of Energy Efficiency and Renewable Energy Assistant Secretary Dr. David Danielson, U.S. Special Envoy for Climate Change Todd Stern, and NDRC Vice Chairman Xie Zhenhua.

  3. Secretary Chu To Travel to China and Japan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    To Travel to China and Japan Secretary Chu To Travel to China and Japan November 5, 2010 - 12:00am Addthis Washington, D.C. -U.S. Energy Secretary Steven Chu will travel to China and Japan November 14 - 19 to meet with government officials, business leaders and others to discuss the Department's ongoing clean energy and scientific collaboration with both countries. More information about the trip is as follows: Shanghai, China On Sunday, November 14, Secretary Chu will tour clean energy

  4. Secretary Chu will Travel to China to Highlight Clean Energy Partnerships |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy will Travel to China to Highlight Clean Energy Partnerships Secretary Chu will Travel to China to Highlight Clean Energy Partnerships April 28, 2010 - 12:00am Addthis WASHINGTON - U.S. Energy Secretary Steven Chu will travel to China from May 24th to 28th to highlight the benefit of U.S.-China partnerships and cooperation in the clean energy sector. He will visit with government officials, academia and members of the private sector in both Beijing and Shanghai to learn

  5. U.S., China Reach Agreement on Intellectual Property Protections for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S.-China Clean Energy Research Center | Department of Energy Reach Agreement on Intellectual Property Protections for U.S.-China Clean Energy Research Center U.S., China Reach Agreement on Intellectual Property Protections for U.S.-China Clean Energy Research Center September 23, 2011 - 10:46am Addthis WASHINGTON, D.C. - U.S. Energy Secretary Steven Chu and Minister Wan Gang, of the Chinese Ministry of Science and Technology, today witnessed the signing by U.S. and Chinese government

  6. Energy, Climate Change, and China: Is there Hope for Averting Environmental Crises?

    ScienceCinema (OSTI)

    Mark Levine

    2010-01-08

    Energy, Climate Change, and China: Is there Hope for Averting Environmental Crises? Berkeley Lab's Mark Levine discusses this topic in a January 10, 2009 Nano*High talk

  7. The 2nd US-China Energy Efficiency Forum Agenda- Friday

    Broader source: Energy.gov [DOE]

    Complete agenda for the 2nd US-China Energy Efficiency Forum on Friday, May 6, 2011, including speaker names and topics.

  8. Energy, Climate Change, and China: Is there Hope for Averting Environmental Crises?

    SciTech Connect (OSTI)

    Mark Levine

    2009-02-24

    Energy, Climate Change, and China: Is there Hope for Averting Environmental Crises? Berkeley Lab's Mark Levine discusses this topic in a January 10, 2009 Nano*High talk

  9. The 2nd US-China Energy Efficiency Forum Agenda- Thursday

    Broader source: Energy.gov [DOE]

    Complete agenda for the 2nd US-China Energy Efficiency Forum on Thursday, May 5, 2011, including speaker names and topics.

  10. U.S. China Carbon Capture and Storage Development Project at...

    Office of Scientific and Technical Information (OSTI)

    and planning for CCS projects and to describe and quantify the geologic, environmental, and economic challenges to successful development of large-scale CCS in China's coal sector. ...

  11. China-IEA Network of Expertise in Energy Technology | Open Energy...

    Open Energy Info (EERE)

    IEA Network of Expertise in Energy Technology Jump to: navigation, search Name China-IEA Cooperation AgencyCompany Organization International Energy Agency Sector Energy Focus...

  12. China-Assessing Policy Options for Increasing the Use of Renewable...

    Open Energy Info (EERE)

    Use of Renewable Energy for Sustainable Development Jump to: navigation, search Name China-Assessing Policy Options for Increasing the Use of Renewable Energy for Sustainable...

  13. China-NIES Low-Carbon Society Scenarios 2050 | Open Energy Information

    Open Energy Info (EERE)

    NIES Low-Carbon Society Scenarios 2050 Jump to: navigation, search Name China-NIES Low-Carbon Society Scenarios 2050 AgencyCompany Organization National Institute for...

  14. China-NAMA Programme for the Construction Sector in Asia | Open...

    Open Energy Info (EERE)

    NAMA Programme for the Construction Sector in Asia Jump to: navigation, search Name China-NAMA Programme for the Construction Sector in Asia AgencyCompany Organization United...

  15. China-Enhancing Low-carbon Development by Greening the Economy...

    Open Energy Info (EERE)

    Policy Dialogue, Advisory Services, Benchmarking Jump to: navigation, search Name China-Enhancing Low-carbon Development by Greening the Economy: Policy Dialogue, Advisory...

  16. U.S., China Sign Agreement to Establish Center of Excellence on Nuclear

    Energy Savers [EERE]

    Security | Department of Energy , China Sign Agreement to Establish Center of Excellence on Nuclear Security U.S., China Sign Agreement to Establish Center of Excellence on Nuclear Security January 19, 2011 - 12:00am Addthis WASHINGTON, D.C. - The Department of Energy (DOE) today announced the signing of a government-to-government agreement with the People's Republic of China to establish a Center of Excellence in China to promote effective nuclear security and safeguards. U.S. Secretary of

  17. Win-Win Opportunities at the Sixth Annual U.S.-China Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forum | Department of Energy Win-Win Opportunities at the Sixth Annual U.S.-China Energy Efficiency Forum Win-Win Opportunities at the Sixth Annual U.S.-China Energy Efficiency Forum October 30, 2015 - 4:40pm Addthis EERE International Director Rob Sandoli opens the sixth annual U.S.-China Energy Efficiency Forum. | Photo by Josh Harmon EERE International Director Rob Sandoli opens the sixth annual U.S.-China Energy Efficiency Forum. | Photo by Josh Harmon EERE Assistant Secretary Dave

  18. Atmospheric Radiation Measurement (ARM) Data from Shouxian, China for the Study of Aerosol Indirect Effects in China

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    In a complex ARM Mobile Facility (AMF) deployment, monitoring data was collected at four locations in China during 2008. The various sites are located in regions with different climate regimes and with high aerosol loadings of different optical, physical, and chemical properties. Measurements obtained at all the AMF sites during the 8-month deployment in China will help scientists to validate satellite-based findings, understand the mechanisms of the aerosol indirect effects in the region, and examine the roles of aerosols in affecting regional climate and atmospheric circulation, with a special focus on the impact of the East Asian monsoon system. As with other collections from the ARM Mobile Facility, the datasets are available from the ARM Archive. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  19. China power - thermal coal and clean coal technology export. Topical report

    SciTech Connect (OSTI)

    Binsheng Li

    1996-12-31

    China is the world`s fourth largest electric power producer, and is expected to surpass Japan within the next two years to become the third largest power producer. During the past 15 years, China`s total electricity generation more than tripled, increasing from about 300 TWh to about 1,000 TWh. Total installed generating capacity grew at an average of 8.2 percent per year, increasing from 66 to 214 GW. The share of China`s installed capacity in Asia increased from 21 to 31 percent. The Chinese government plans to continue China`s rapid growth rate in the power sector. Total installed capacity is planned to reach 300 GW by 2000, which will generate 1,400 TWh of electricity per year. China`s long-term power sector development is subject to great uncertainty. Under the middle scenario, total capacity is expected to reach 700 GW by 2015, with annual generation of 3,330 TWh. Under the low and high scenarios, total capacity will reach 527-1,005 GW by 2015. The high scenario representing possible demand. To achieve this ambitious scenario, dramatic policy changes in favor of power development are required; however, there is no evidence that such policy changes will occur at this stage. Even under the high scenario, China`s per capita annual electricity consumption would be only 3,000 kWh by 2015, less than half of the present per capita consumption for OECD countries. Under the low scenario, electricity shortages will seriously curb economic growth.

  20. Renewables-Friendly Grid Development Strategies. Experience in the United States, Potential Lessons for China

    SciTech Connect (OSTI)

    Hurlbut, David; Zhou, Ella; Porter, Kevin; Arent, Douglas J.

    2015-10-01

    This report aims to help China's reform effort by providing a concise summary of experience in the United States with "renewables-friendly"" grid management, focusing on experiences that might be applicable to China. It focuses on utility-scale renewables and sets aside issues related to distributed generation.

  1. Liquefied U.S. Natural Gas Re-Exports to China (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    China (Million Cubic Feet) Liquefied U.S. Natural Gas Re-Exports to China (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 0 0 0 0 0 0 0 0 3,354 2,848

  2. Understanding the China energy market: trends and opportunities 2006

    SciTech Connect (OSTI)

    Barbara Drazga

    2005-05-15

    The report is broken up into 4 Sections: Section I - Overview of China Energy Market (historical background, market value, consumption, production, reserves, export and import, market segmentation, market forecast); Section II - Market Analysis (PEST analysis, Porter's five forces analysis, socio-economic trends, consumption trends); Section III - Market Segments (electricity, oil, natural gas, liquefied natural gas, liquid petroleum gas, nuclear power, coal, renewables, photovoltaics, wind power, hydroelectric power. Each market segment details current and planned projects, and lists participants in that sector); and Section IV - Breaking Into the Market (regulatory framework, methods of market entry, foreign investment, challenges, government agencies).

  3. Energy Audit Practices in China: National and Local Experiences and Issues

    SciTech Connect (OSTI)

    Shen, Bo; Price, Lynn; Lu, Hongyou

    2010-12-21

    China has set an ambitious goal of reducing its energy use per unit of GDP by 20% between 2006 and 2010. Since the industrial sector consumes about two-thirds of China's primary energy, many of the country's efforts are focused on improving the energy efficiency of this sector. Industrial energy audits have become an important part of China's efforts to improve its energy intensity. In China, industrial energy audits have been employed to help enterprises indentify energy-efficiency improvement opportunities for achieving the energy-saving targets. These audits also serve as a mean to collect critical energy-consuming information necessary for governments at different levels to supervise enterprises energy use and evaluate their energy performance. To better understand how energy audits are carried out in China as well as their impacts on achieving China's energy-saving target, researchers at the Lawrence Berkeley National Laboratory (LBNL) conducted an in-depth study that combines a review of China's national policies and guidelines on energy auditing and a series of discussions with a variety of Chinese institutions involved in energy audits. This report consists of four parts. First, it provides a historical overview of energy auditing in China over the past decades, describing how and why energy audits have been conducted during various periods. Next, the report reviews current energy auditing practices at both the national and regional levels. It then discusses some of the key issues related to energy audits conducted in China, which underscore the need for improvement. The report concludes with policy recommendations for China that draw upon international best practices and aim to remove barriers to maximizing the potential of energy audits.

  4. Fact #669: April 4, 2011 GM Sells More Vehicles in China than in the U.S. |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 9: April 4, 2011 GM Sells More Vehicles in China than in the U.S. Fact #669: April 4, 2011 GM Sells More Vehicles in China than in the U.S. For the first time ever, General Motors (GM) sold more cars and trucks in China than in the United States. The demand in China grew by 29% from 2009 to 2010, while demand in the U.S. grew 6%. These data include cars, light trucks, and heavy trucks. General Motors Vehicle Deliveries to China and the U.S., 2009-10 Bar graph showing the

  5. Comparative Analysis of Modeling Studies on China's Future Energy and Emissions Outlook

    SciTech Connect (OSTI)

    Zheng, Nina; Zhou, Nan; Fridley, David

    2010-09-01

    The past decade has seen the development of various scenarios describing long-term patterns of future Greenhouse Gas (GHG) emissions, with each new approach adding insights to our understanding of the changing dynamics of energy consumption and aggregate future energy trends. With the recent growing focus on China's energy use and emission mitigation potential, a range of Chinese outlook models have been developed across different institutions including in China's Energy Research Institute's 2050 China Energy and CO2 Emissions Report, McKinsey & Co's China's Green Revolution report, the UK Sussex Energy Group and Tyndall Centre's China's Energy Transition report, and the China-specific section of the IEA World Energy Outlook 2009. At the same time, the China Energy Group at Lawrence Berkeley National Laboratory (LBNL) has developed a bottom-up, end-use energy model for China with scenario analysis of energy and emission pathways out to 2050. A robust and credible energy and emission model will play a key role in informing policymakers by assessing efficiency policy impacts and understanding the dynamics of future energy consumption and energy saving and emission reduction potential. This is especially true for developing countries such as China, where uncertainties are greater while the economy continues to undergo rapid growth and industrialization. A slightly different assumption or storyline could result in significant discrepancies among different model results. Therefore, it is necessary to understand the key models in terms of their scope, methodologies, key driver assumptions and the associated findings. A comparative analysis of LBNL's energy end-use model scenarios with the five above studies was thus conducted to examine similarities and divergences in methodologies, scenario storylines, macroeconomic drivers and assumptions as well as aggregate energy and emission scenario results. Besides directly tracing different energy and CO{sub 2} savings potential back to the underlying strategies and combination of efficiency and abatement policy instruments represented by each scenario, this analysis also had other important but often overlooked findings.

  6. Energy-efficient appliance labeling in China: Lessons for successful labeling programs in varied markets

    SciTech Connect (OSTI)

    Lin, Jiang; Townend, Jeanne; Fridley, David; McNeil, Gary; Silva, Tony; Clark, Robin

    2002-08-20

    Appliance ownership and production has increased dramatically in China in the past two decades. From extremely low levels in 1980, China's appliance industry has become one of the largest in the world, with sales topping U.S. $14.4 billion in 2000. In 1981, less than 1 percent of urban Chinese households owned a refrigerator; by 1998, that number had increased to over 75 percent. This dramatic increase in sales and ownership leads to an excellent opportunity to impact energy consumption in China by affecting the energy efficiency of appliances being bought and sold. In general, Chinese consumers value energy efficiency and are knowledgeable about the operating costs of major appliances. However, the Chinese marketplace does not provide information that consumers trust about the energy consumption of specific products. Thus, several interdependent organizations have emerged in China to provide information and market supports for energy efficiency. This paper describes the appliance market in China and the evolution of its standards and labeling programs and the agencies that implement them. It discusses the authors' work with these organizations in developing energy efficiency criteria and supporting an energy efficiency endorsement labeling program in China. It describes how the authors have used their experience with ENERGY STAR{reg_sign} and other programs in the U.S. to work with China to develop a successful program specific to Chinese conditions, with a particular emphasis on refrigerators. It then gives the author's market assessment of the Chinese refrigerator market and recommendations for a successful labeling program and transferable lessons for developing energy efficiency labeling programs in varied markets. This paper is based on the authors' market research, their support in setting energy efficiency criteria in China, interviews with Chinese manufacturers, retailers, and sales staff, and the development and implementation of labeling strategies and promotion in China.

  7. Secretaries Chu and Locke to Travel to China Next Week | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Locke to Travel to China Next Week Secretaries Chu and Locke to Travel to China Next Week July 6, 2009 - 12:00am Addthis WASHINGTON -- Energy Secretary Steven Chu and Commerce Secretary Gary Locke will travel to China from July 14 to 17. The two secretaries will highlight the tremendous potential for mutually beneficial relationships in the clean energy sector. "Clean energy will drive the economy of the future, both in the United States and around the world," Chu said.

  8. Secretary Chu Announces U.S. Centers for U.S.-China Clean Energy Research |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy U.S. Centers for U.S.-China Clean Energy Research Secretary Chu Announces U.S. Centers for U.S.-China Clean Energy Research September 2, 2010 - 12:00am Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu announced today that two consortia - one led by the University of Michigan and one led by the West Virginia University - will receive a total of $25 million over the next five years under the U.S.-China Clean Energy Research Center (CERC). The funding will be

  9. Secretary Chu Postpones China Trip to Continue Work on BP Oil Spill

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Response Efforts | Department of Energy Postpones China Trip to Continue Work on BP Oil Spill Response Efforts Secretary Chu Postpones China Trip to Continue Work on BP Oil Spill Response Efforts May 21, 2010 - 12:00am Addthis Washington DC -- Energy Secretary Steven Chu will postpone a trip to China, scheduled for next week, at the request of President Obama and stay in the country to continue his work on response efforts to the BP oil spill. "Finding a solution to this crisis is a

  10. Secretary Chu: China's Clean Energy Successes Represent a New "Sputnik

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moment" for America | Department of Energy Chu: China's Clean Energy Successes Represent a New "Sputnik Moment" for America Secretary Chu: China's Clean Energy Successes Represent a New "Sputnik Moment" for America November 29, 2010 - 12:00am Addthis Washington, D.C. - In a speech at the National Press Club, U.S Energy Secretary Steven Chu said that the success of China and other countries in clean energy industries represents a new "Sputnik Moment" for the

  11. Fact Sheet: U.S. and China Actions Matter for Global Energy Demand, for

    Energy Savers [EERE]

    Global Environmental Quality, and for the Challenge of Global Climate Change | Department of Energy S. and China Actions Matter for Global Energy Demand, for Global Environmental Quality, and for the Challenge of Global Climate Change Fact Sheet: U.S. and China Actions Matter for Global Energy Demand, for Global Environmental Quality, and for the Challenge of Global Climate Change December 5, 2008 - 4:58pm Addthis The U.S. is committed to working together with China to tackle current energy

  12. Chu Announces Joint U.S.-China Building Efficiency MOU | Department of

    Energy Savers [EERE]

    Energy Announces Joint U.S.-China Building Efficiency MOU Chu Announces Joint U.S.-China Building Efficiency MOU July 16, 2009 - 12:00am Addthis BEIJING, CHINA - After touring the "America House," a U.S. designed demonstration of cutting edge "zero energy" building technology, U.S. Energy Secretary Steven Chu today announced a new agreement between the U.S. Department of Energy (DOE) and the Chinese Ministry of Urban-Rural Development (MOHURD) to foster collaboration and

  13. US-China Clean Energy Cooperation: From Laboratory to Livable Cities |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Cooperation: From Laboratory to Livable Cities US-China Clean Energy Cooperation: From Laboratory to Livable Cities January 18, 2011 - 4:04pm Addthis The official logo of the U.S.-China Clean Energy Research Center | Energy Department Illustration | The official logo of the U.S.-China Clean Energy Research Center | Energy Department Illustration | Julian Wong This week, Chinese President Hu Jintao is in the United States for a state visit. This visit is an opportunity to

  14. GE Develops High Water Recovery Technology in China | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Develops High Water Recovery Technology in China Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE Develops High Water Recovery Technology in China Technology aims to boost development of China's household water purification industry SHANGHAI, September. 17, 2015 - A team of scientists led by the Coating and Membrane

  15. Sabine Pass, LA Liquefied Natural Gas Exports to China (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    China (Million Cubic Feet) Sabine Pass, LA Liquefied Natural Gas Exports to China (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 3,354 2,848 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 02/29/2016 Next Release Date: 03/31/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Sabine Pass, LA Liquefied Natural Gas Exports to China

  16. The second-phase development of the China JinPing underground laboratory

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: The second-phase development of the China JinPing underground laboratory Citation Details In-Document Search Title: The second-phase development of the China JinPing underground laboratory During 2013-2015 an expansion of the China JinPing underground Laboratory (CJPL) will be undertaken along a main branch of a bypass tunnel in the JinPing tunnel complex. This second phase of CJPL will increase laboratory space to approximately 96,000

  17. Clean Energy Projects Kick Off U.S.-China Collaborative R&D Initiative |

    Office of Environmental Management (EM)

    Department of Energy Clean Energy Projects Kick Off U.S.-China Collaborative R&D Initiative Clean Energy Projects Kick Off U.S.-China Collaborative R&D Initiative July 9, 2010 - 1:00pm Addthis Washington, DC - Three clean energy technology projects resulting from a 2009 agreement between the United States and China are kicking off a new collaborative research effort that will focus on managing carbon dioxide emissions and reducing the environmental impact of energy production. The

  18. In-use vehicle emissions in China: Beijing study

    SciTech Connect (OSTI)

    Oliver, Hongyan H.; Gallagher, Kelly Sims ); Li, Mengliang; Qin, Kongjian; Zhang, Jianwei ); Liu, Huan; He, Kebin )

    2009-05-01

    China's economic boom in the last three decades has spurred increasing demand for transportation services and personal mobility. Consequently, vehicle population has grown rapidly since the early 1990s, especially in megacities such as Beijing, Guangzhou, and Tianjin. As a result, mobile sources have become more conspicuous contributors to urban air pollution in Chinese cities. Tianjin was our first focus city, and the study there took us about two years to complete. Building upon the experience and partnership generated through the Tianjin study, the research team carried out the Beijing study from fall 2007fall 2008. Beijing was chosen to be our second focus city for several reasons: it has the largest local fleet and the highest percentage of the population owning vehicles among all Chinese cities, and it has suffered from severe air pollution, partially due to the ever-growing population of on-road vehicles.

  19. Fact Sheet: U.S. and China Actions Matter for Global Energy Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    oil consumers in the world for the foreseeable future. China is likely to experience very large growth rates for both its economy and energy consumption over the next two decades. ...

  20. Department of Energy Announces Third Grant for U.S.-China Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by the consortium partners to provide at least 25 million in total U.S. funding. Chinese counterparts will contribute an additional 25 million. "The U.S.-China Clean Energy...

  1. File:East China Map Reference.pdf | Open Energy Information

    Open Energy Info (EERE)

    pixels, file size: 640 KB, MIME type: applicationpdf) Reference map for wind power density maps at 50 m above ground and 1km resolution for eastern China from NREL Description...

  2. Liquefied U.S. Natural Gas Exports by Vessel to China (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Exports by Vessel to China (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's

  3. Deputy Secretary Daniel Poneman's Remarks at the 2011 U.S.-China...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The United States and China have cooperated in a broad range of science and technology arenas for more than 30 years, providing an important foundation for our latest joint...

  4. U.S.-China Clean Energy Research Center Issues Solicitation to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Research Center Issues Solicitation to Address the Energy-Water Nexus U.S.-China Clean Energy Research Center Issues Solicitation to Address the Energy-Water Nexus ...

  5. Secretary of Energy Samuel Bodman Announces New Department of Energy Office in Beijing, China

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC -- Secretary of Energy Samuel Bodman today announced the establishment of a Department of Energy (DOE) office in Beijing, China. The new office will support DOE’s cooperative efforts...

  6. FE-Funded Study Released on Key Factors Affecting China Shale...

    Energy Savers [EERE]

    The Chinese government gives priority to the development of China's shale gas sector to help fight air pollution and reduce reliance on natural gas imports; and The U.S. government ...

  7. File:China Yinchuan 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    Yinchuan 50m Wind Power.pdf Jump to: navigation, search File File history File usage China Yinchuan 50m Wind Power Size of this preview: 463 599 pixels. Other resolution: 464 ...

  8. File:China Qingdao 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    Qingdao 50m Wind Power.pdf Jump to: navigation, search File File history File usage China Qingdao 50m Wind Power Size of this preview: 463 599 pixels. Other resolution: 464 ...

  9. File:China Hangzhou 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    50m Wind Power.pdf Jump to: navigation, search File File history File usage China Hangzhou 50m Wind Power Size of this preview: 463 599 pixels. Other resolution: 464 600...

  10. File:China Haikou 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    Haikou 50m Wind Power.pdf Jump to: navigation, search File File history File usage China Haikou 50m Wind Power Size of this preview: 463 599 pixels. Other resolution: 464 600...

  11. File:China Chifeng 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    Chifeng 50m Wind Power.pdf Jump to: navigation, search File File history File usage China Chifeng 50m Wind Power Size of this preview: 463 599 pixels. Other resolution: 464 ...

  12. File:China Tianjin 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    Tianjin 50m Wind Power.pdf Jump to: navigation, search File File history File usage China Tianjin 50m Wind Power Size of this preview: 463 599 pixels. Other resolution: 464 ...

  13. File:China Qiqihar 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    Qiqihar 50m Wind Power.pdf Jump to: navigation, search File File history File usage China Qiqihar 50m Wind Power Size of this preview: 463 599 pixels. Other resolution: 464 ...

  14. File:China Nanchang 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    Nanchang 50m Wind Power.pdf Jump to: navigation, search File File history File usage China Nanchang 50m Wind Power Size of this preview: 463 599 pixels. Other resolution: 464 ...

  15. File:China Shenyang 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    Shenyang 50m Wind Power.pdf Jump to: navigation, search File File history File usage China Shenyang 50m Wind Power Size of this preview: 463 599 pixels. Other resolution: 464 ...

  16. File:China Manzhouli 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    Manzhouli 50m Wind Power.pdf Jump to: navigation, search File File history File usage China Manzhouli 50m Wind Power Size of this preview: 463 599 pixels. Other resolution: 464...

  17. File:China Hohhot 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    Hohhot 50m Wind Power.pdf Jump to: navigation, search File File history File usage China Hohhot 50m Wind Power Size of this preview: 463 599 pixels. Other resolution: 464 600...

  18. File:China Guangzhou 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    Guangzhou 50m Wind Power.pdf Jump to: navigation, search File File history File usage China Guangzhou 50m Wind Power Size of this preview: 463 599 pixels. Other resolution: 464...

  19. File:China Fuzhou 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    Fuzhou 50m Wind Power.pdf Jump to: navigation, search File File history File usage China Fuzhou 50m Wind Power Size of this preview: 463 599 pixels. Other resolution: 464 600...

  20. File:China Enshi 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    Enshi 50m Wind Power.pdf Jump to: navigation, search File File history File usage China Enshi 50m Wind Power Size of this preview: 463 599 pixels. Other resolution: 464 600...

  1. File:China Jiamusi 50m Wind Power.pdf | Open Energy Information

    Open Energy Info (EERE)

    Jiamusi 50m Wind Power.pdf Jump to: navigation, search File File history File usage China Jiamusi 50m Wind Power Size of this preview: 463 599 pixels. Other resolution: 464 ...

  2. PPPL partners with China in an ambitious new center for fusion research |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab PPPL partners with China in an ambitious new center for fusion research By John Greenwald April 30, 2013 Tweet Widget Google Plus One Share on Facebook The U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) has joined with five leading Chinese research institutions to form an international center to advance the development of fusion energy. Creators of the center organized its framework in March at a two-day session in Hefei, China, that

  3. Long Term Environment and Economic Impacts of Coal Liquefaction in China

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Long Term Environment and Economic Impacts of Coal Liquefaction in China Citation Details In-Document Search Title: Long Term Environment and Economic Impacts of Coal Liquefaction in China The project currently is composed of six specific tasks - three research tasks, two outreach and training tasks, and one project management and communications task. Task 1 addresses project management and communication. Research activities focused on Task 2 (Describe

  4. Impact of East Asian Summer Monsoon on the Air Quality over China: View from space

    SciTech Connect (OSTI)

    Zhao, Chun; Wang, Yuhang; Yang, Qing; Fu, Rong; Cunnold, Derek; Choi, Yunsoo

    2010-05-04

    Tropospheric O3 columns retrieved from OMI and MLS measurements, CO columns from MOPITT, and tropospheric O3 and CO concentrations from TES from May to August in 2006 are analyzed using the Regional chEmical and trAnsport Model (REAM) to investigate the impact of the East Asian summer monsoon on the air quality over China. The observed and simulated migrations of O3 and CO are in good agreement, demonstrating that the summer monsoon significantly affects the air quality over southeastern China and this influence extends to central East China from June to July. Enhancements of CO and O3 over southeastern China disappear after the onset of the summer monsoon and re-emerge in August after the monsoon wanes. The pre-monsoon high O3 concentrations over southern China are due to photochemical production from pollutant emissions and the O3 transport from the stratosphere. In the summer monsoon season, the O3 concentrations are relatively low over monsoon-affected regions because of the transport of marine air masses and weak photochemical activity. We find that the monsoon system strongly modulates the pollution problem over a large portion of East China in summer, depending on its strength and tempo-spatial extension. Model results also suggest that transport from the stratosphere and long-range transport from East China and South/Central Asia all make significant contributions to O3 enhancements over West China. Satellite observations provide valuable information for investigating the monsoon impact on air quality, particularly for the regions with limited in situ measurements.

  5. Kenai, AK Liquefied Natural Gas Exports to China (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    to China (Million Cubic Feet) Kenai, AK Liquefied Natural Gas Exports to China (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 1,127 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 02/29/2016 Next Release Date: 03/31/2016 Referring Pages: U.S.

  6. Liquefied U.S. Natural Gas Exports by Vessel to China (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    China (Million Cubic Feet) Liquefied U.S. Natural Gas Exports by Vessel to China (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 0 0 0 0 1,127 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2015 0 0 0 0 0 0 0 0 0 0

  7. Long Term Environment and Economic Impacts of Coal Liquefaction in China

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Technical Report) | SciTech Connect Long Term Environment and Economic Impacts of Coal Liquefaction in China Citation Details In-Document Search Title: Long Term Environment and Economic Impacts of Coal Liquefaction in China The project currently is composed of six specific tasks - three research tasks, two outreach and training tasks, and one project management and communications task. Task 1 addresses project management and communication. Research activities focused on Task 2 (Describe

  8. Goal, Practice & Experience : Status Quo and Future for Industrial Scale Biomass Energy Development in China

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Practice & Experience : Status Quo and Future for Industrial Scale Biomass Energy Development in China National Energy Research Center of Liquid Bio-fuel National Energy R&D Center for Biomass Huiyong Zhuang Research Professor National Energy Research Center of Liquid Biofuel National Energy R&D Center for Biomass Energy Research Center of the Investment Association of China National Bio Energy Group 2014.7.29-30 Washington Content 1.Background and goal 2.Exploration and experience

  9. The emerging multi-polar world and China's grand game (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Journal Article: The emerging multi-polar world and China's grand game Citation Details In-Document Search Title: The emerging multi-polar world and China's grand game This talk outlines a scenario describing an emerging multipolar world that is aligned with geographical regions. The stability and security of this multipolar world is examined with respect to demographics, trade (economics), resource constraints, and development. In particular I focus on Asia which has two

  10. MOU signed between CIAE and Jefferson National Lab, USA. (China Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry News, General News) | Jefferson Lab https://www.jlab.org/news/articles/mou-signed-between-ciae-and-jefferson-national-lab-usa-china-nuclear-industry-news-ge... MOU signed between CIAE and Jefferson National Lab, USA. (News) Recently, the deputy director of Jefferson National Lab, USA visited the China Institute of Atomic Energy (CIAE). An MOU on the collaboration between the two institutions were signed during the visit. The medium-and-high energy physics group at CIAE has been

  11. U.S. China Carbon Capture and Storage Development Project at West Virginia

    Office of Scientific and Technical Information (OSTI)

    University (Technical Report) | SciTech Connect U.S. China Carbon Capture and Storage Development Project at West Virginia University Citation Details In-Document Search Title: U.S. China Carbon Capture and Storage Development Project at West Virginia University The original overall objective of this activity was to undertake resource evaluation and planning for CCS projects and to describe and quantify the geologic, environmental, and economic challenges to successful development of

  12. The U.S. and China - Advancing Clean Energy Research Through Cooperation |

    Energy Savers [EERE]

    Department of Energy The U.S. and China - Advancing Clean Energy Research Through Cooperation The U.S. and China - Advancing Clean Energy Research Through Cooperation September 3, 2010 - 9:45am Addthis David Sandalow David Sandalow Former Under Secretary of Energy (Acting) and Assistant Secretary for Policy & International Affairs What does this project do? Advances in clean vehicles. Advances in clean coal, including carbon capture and storage. What two countries lead the world in

  13. The Second US-China Energy Efficiency Forum: Energy Management Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Implementation | Department of Energy The Second US-China Energy Efficiency Forum: Energy Management Standards and Implementation The Second US-China Energy Efficiency Forum: Energy Management Standards and Implementation Presentation from James Quinn outlining Energy Efficiency standards and certifications, and their implementation. PDF icon session_2_industry_track_quinn_en.pdf PDF icon session_2_industry_track_quinn_cn.pdf More Documents & Publications International Cooperation on

  14. Acting Deputy Secretary Kupfer Participates in U.S.-China Strategic

    Energy Savers [EERE]

    Economic Dialogue | Department of Energy Kupfer Participates in U.S.-China Strategic Economic Dialogue Acting Deputy Secretary Kupfer Participates in U.S.-China Strategic Economic Dialogue June 18, 2008 - 1:29pm Addthis WASHINGTON, DC - Acting Deputy Secretary of Energy Jeffrey Kupfer today concluded participation in two days of productive meetings between senior U.S. and Chinese government officials as part of the fourth annual Strategic Economic Dialogue (SED IV) held in Annapolis, MD on

  15. FE-Funded Study Released on Key Factors Affecting China Shale Gas

    Office of Environmental Management (EM)

    Development | Department of Energy FE-Funded Study Released on Key Factors Affecting China Shale Gas Development FE-Funded Study Released on Key Factors Affecting China Shale Gas Development September 12, 2014 - 7:14am Addthis As many people know, over the past decade the United States has experienced a shale gas revolution that has beneficially transformed its energy landscape. In witnessing this transformation, other nations with significant shale resources are understandably interested in

  16. Meeting Offers Opportunity to Discuss EM Cleanup with China | Department of

    Office of Environmental Management (EM)

    Energy Meeting Offers Opportunity to Discuss EM Cleanup with China Meeting Offers Opportunity to Discuss EM Cleanup with China April 29, 2013 - 12:00pm Addthis Members of the Environment and Waste Management Working Group of the Peaceful Uses of Nuclear Technology Joint Coordinated Committee from DOE include, front row, EM Technical Advisor for Foreign Affairs Rosa Elmetti (center) and EM Office of Tank Waste Management Director Steve Schneider (right); middle row, Lawrence Livermore

  17. Analyzing and Comparing Biomass Feedstock Supply Systems in China: Corn Stover and Sweet Sorghum Case Studies

    SciTech Connect (OSTI)

    Mohammad S. Roni; Kara G. Cafferty; Christopher T Wright; Lantian Ren

    2015-06-01

    China has abundant biomass resources, which can be used as a potential source of bioenergy. However, China faces challenges implementing biomass as an energy source, because China has not developed the highly networked, high-volume biomass logistics systems and infrastructure. This paper analyzes the rural Chinese biomass supply system and models supply chain operations according to the U.S. concepts of logistical unit operations: harvest and collection, storage, transportation, preprocessing, and handling and queuing. In this paper, we quantify the logistics cost of corn stover and sweet sorghum under different scenarios in China. We analyze three scenarios of corn stover logistics from northeast China and three scenarios of sweet sorghum stalks logistics from Inner Mongolia in China. The case study shows that the logistics cost of corn stover and sweet sorghum stalk will be $52.95/dry metric ton and $52.64/ dry metric ton, respectively, for the current labor-based biomass logistics system. However, if the feedstock logistics operation is mechanized, the cost of corn stover and sweet sorghum stalk will be down to $36.01/ dry metric ton and $35.76/dry metric ton, respectively. The study also performed a sensitivity analysis to find the cost factors that cause logistics cost variation. A sensitivity analysis shows that labor price has the most influence on the logistics cost of corn stover and sweet sorghum stalk, causing a variation of $6 to $12/metric ton.

  18. Regional Opportunities for Carbon Dioxide Capture and Storage in China: A Comprehensive CO2 Storage Cost Curve and Analysis of the Potential for Large Scale Carbon Dioxide Capture and Storage in the Peoples Republic of China

    SciTech Connect (OSTI)

    Dahowski, Robert T.; Li, Xiaochun; Davidson, Casie L.; Wei, Ning; Dooley, James J.

    2009-12-01

    This study presents data and analysis on the potential for carbon dioxide capture and storage (CCS) technologies to deploy within China, including a survey of the CO2 source fleet and potential geologic storage capacity. The results presented here indicate that there is significant potential for CCS technologies to deploy in China at a level sufficient to deliver deep, sustained and cost-effective emissions reductions for China over the course of this century.

  19. The Greening of the Middle Kingdom: The Story of Energy Efficiency in China

    SciTech Connect (OSTI)

    Levine, Mark D.; Zhou, Nan; Price, Lynn

    2009-05-01

    The dominant image of China's energy system is of billowing smokestacks from the combustion of coal. More heavily dependent on coal than any other major country, China uses it for about 70 percent of its energy (NBS, 2008). Furthermore, until recently, China had very few environmental controls on emissions from coal combustion; recent efforts to control sulfur dioxide (SO{sub 2}) emissions appear to be meeting with some success (Economy, 2007, 2009). Figure 1 shows the dominant use of coal in China's energy system from 1950 to 1980 (NBS, various years). However, this is just one side of China's energy story. Figure 2 illustrates the second part, and what may be the most important part of the story - China's energy system since 1980, shortly after Deng Xiaoping assumed full leadership. This figure compares the trends in energy consumption and gross domestic product (GDP) by indexing both values to 100 in 1980. The upper line shows what energy consumption in China would have been if it had grown at the same rate as GDP, since energy consumption usually increases in lockstep with GDP in an industrializing, developing country, at least until it reaches a high economic level. The lower line in Figure 2 shows China's actual energy consumption, also indexed to 1980. The striking difference between the lines shows that GDP in China grew much faster than energy demand from 1980 to 2002. As a result, by 2002 energy and energy-related carbon dioxide (CO{sub 2}) emissions were more than 40% percent of what they would have been if energy and GDP had grown in tandem. In the next chapter of China's energy history, from 2002 to 2005, the increase in energy demand outstripped a very rapidly growing economy, and because of the large size of the Chinese economy, the increase had substantial impacts. The construction of power plants increased to 100 gigawatts per year; over the three-year period newly constructed plants had a capacity of more than 30 percent of total electricity-generation capacity in the United States. At the same time, energy-related CO{sub 2} emissions in China increased dramatically. In the latest stage, another abrupt change, this time for the better in terms of energy efficiency, began late in 2005. As senior officials in the government turned their attention to the problem of growing energy demand, the government set a mandatory goal for 2010 of a 20 percent reduction in energy intensity (defined as energy use per unit of GDP) from 2005 levels. To meet this goal, China undertook significant legislative, regulatory, and organizational reforms at the national, provincial, and municipal levels to ensure that measures to reduce energy intensity would be implemented in all sectors and activities in China. At the time of this writing, it appears that China is on its way to meeting the 20 percent goal, thus reducing CO{sub 2} emissions by 1.5 billion tones, as compared with consumption at 2005 energy-intensity levels. In this paper, we describe and assess these three significant periods in China's energy story and provide a context by briefly reviewing the three decades prior to 1980.

  20. Inventory of China's Energy-Related CO2 Emissions in 2008

    SciTech Connect (OSTI)

    Fridley, David; Zheng, Nina; Qin, Yining

    2011-03-31

    Although China became the world's largest emitter of energy-related CO{sub 2} emissions in 2007, China does not publish annual estimates of CO{sub 2} emissions and most published estimates of China's emissions have been done by other international organizations. Undertaken at the request of the Energy Information Administration (EIA) of the US Department of Energy, this study examines the feasibility of applying the EIA emissions inventory methodology to estimate China's emissions from published Chinese data. Besides serving as a proof of concept, this study also helps develop a consistent and transparent method for estimating China's CO{sub 2} emissions using an Excel model and identified China-specific data issues and areas for improvement. This study takes a core set of data from the energy balances published in the China Energy Statistical Yearbook 2009 and China Petrochemical Corporation Yearbook 2009 and applies the EIA's eight-step methodology to estimate China's 2008 CO{sub 2} emissions. First, China's primary and secondary fuel types and consumption by end use are determined with slight discrepancies identified between the two data sources and inconsistencies in product categorization with the EIA. Second, energy consumption data are adjusted to eliminate double counting in the four potential areas identified by EIA; consumption data from China's Special Administrative Regions are not included. Physical fuel units are then converted to energy equivalents using China's standard energy measure of coal equivalent (1 kilogram = 29.27 MJ) and IPCC carbon emissions coefficients are used to calculate each fuel's carbon content. Next, carbon sequestration is estimated following EIA conventions for other petroleum products and non-energy use of secondary fuels. Emissions from international bunker fuels are also subtracted under the 'reference' calculation of estimating apparent energy consumption by fuel type and the 'sectoral' calculation of summing emissions across end-use sectors. Adjustments for the China-specific conventions of reporting foreign bunkers and domestic bunkers fueling abroad are made following IPCC definitions of international bunkers and EIA reporting conventions, while the sequestration of carbon in carbon steel is included as an additional adjustment. Under the sectoral approach, fuel consumption of bunkers and other transformation losses as well as gasoline consumption are reallocated to conform to EIA sectoral reporting conventions. To the extent possible, this study relies on official energy data from primary sources. A limited number of secondary sources were consulted to provide insight into the nature of consumption of some products and to guide the analysis of carbon sequestered in steel. Beyond these, however, the study avoided trying to estimate figures where directly unavailable, such as natural gas flaring. As a result, the basic calculations should be repeatable for other years with the core set of data from National Bureau of Statistics and Sinopec (or a similarly authoritative source of oil product data). This study estimates China's total energy-related CO{sub 2} emissions in 2008 to be 6666 Mt CO{sub 2}, including 234.6 Mt of non-fuel CO{sub 2} emissions and 154 Mt of sequestered CO{sub 2}. Bunker fuel emissions in 2008 totaled 15.9 Mt CO{sub 2}, but this figure is underestimated because fuel use by Chinese ship and planes for international transportation and military bunkers are not included. Of emissions related to energy consumption, 82% is from coal consumption, 15% from petroleum and 3% from natural gas. From the sectoral approach, industry had the largest share of China's energy-related CO{sub 2} emissions with 72%, followed by residential at 11%, transport and telecommunications at 8%, and the other four (commerce, agriculture, construction and other public) sectors having a combined share of 9%. Thermal electricity and (purchased) heat (to a lesser degree) are major sources of fuel consumption behind sectoral emissions, responsible for 2533 Mt CO2 and 321 Mt CO{sub 2}, respec

  1. Clothes washer standards in China -- The problem of water andenergy trade-offs in establishing efficiency standards

    SciTech Connect (OSTI)

    Biermayer, Peter J.; Lin, Jiang

    2004-05-19

    Currently the sales of clothes washers in China consist ofseveral general varieties. Some use more energy (with or withoutincluding hot water energy use) and some use more water. Both energy andwater are in short supply in China. This poses the question - how do youtrade off water versus energy in establishing efficiency standards? Thispaper discusses how China dealt with this situation and how itestablished minimum efficiency standards for clothes washers.

  2. Remarks by Secretary Ernest Moniz at a U.S.-China Business Council Issues Luncheon-- As Delivered

    Broader source: Energy.gov [DOE]

    Remarks, as delivered, by Secretary Moniz at a U.S.-China Business Council Issues Luncheon on April 7, 2015 in Washington, D.C.

  3. Status and Progress in Research, Development and Demonstration of Hydrogen-Compressed Natural Gas Vehicles in China

    Broader source: Energy.gov [DOE]

    These slides were presented at the International Hydrogen Fuel and Pressure Vessel Forum on September 27 – 29, 2010, in Beijing, China.

  4. China Energy Databook -- User Guide and Documentation, Version 7.0

    SciTech Connect (OSTI)

    Fridley, Ed., David; Aden, Ed., Nathaniel; Lu, Ed., Hongyou; Zheng, Ed., Nina

    2008-10-01

    Since 2001, China's energy consumption has grown more quickly than expected by Chinese or international observers. This edition of the China Energy Databook traces the growth of the energy system through 2006. As with version six, the Databook covers a wide range of energy-related information, including resources and reserves, production, consumption, investment, equipment, prices, trade, environment, economy, and demographic data. These data provide an extensive quantitative foundation for understanding China's growing energy system. In addition to providing updated data through 2006, version seven includes revised energy and GDP data back to the 1990s. In the 2005 China Energy Statistical Yearbook, China's National Bureau of Statistics (NBS) published revised energy production, consumption, and usage data covering the years 1998 to 2003. Most of these revisions related to coal production and consumption, though natural gas data were also adjusted. In order to accommodate underestimated service sector growth, the NBS also released revised GDP data in 2005. Beyond the inclusion of historical revisions in the seventh edition, no attempt has been made to rectify known or suspected issues in the official data. The purpose of this volume is to provide a common basis for understanding China's energy system. In order to broaden understanding of China's energy system, the Databook includes information from industry yearbooks, periodicals, and government websites in addition to data published by NBS. Rather than discarding discontinued data series, information that is no longer possible to update has been placed in C section tables and figures in each chapter. As with previous versions, the data are presented in digital database and tabular formats. The compilation of updated data is the result of tireless work by Lu Hongyou and Nina Zheng.

  5. Direct health effects of global warming in Japan and China

    SciTech Connect (OSTI)

    Ando, M.; Yamamoto, S.; Tamura, K.

    1997-12-31

    Combustion of fossil fuels and industrial and agricultural activities are resulting in greater emissions of some greenhouse gases such as carbon dioxide and methane into the atmosphere, therefore contributing to global warming. Using general circulation models, it is estimated that surface temperatures in temperate regions will rise 1 to 3 degrees C during the next 100 years. Because global warming may increase the frequency and length of high temperatures during hot summer months, various health risks caused by heat stress have been studied. According to our epidemiological survey, the incidence of heat-related illness was significantly correlated to hot environments in Tokyo, Japan and in Nanjing and Wuhan, China. The epidemiological results also showed that the incidence of heat-related morbidity and mortality in the elderly increased very rapidly in summer. The regression analysis on these data showed that the number of heat stroke patients increased exponentially when the mean daily temperature and maximum daily temperature exceeded 27C and 32C in Tokyo and 31C and 36C in Wuhan and Nanjing, respectively. Since the incidence of heat-related morbidity and mortality has been shown to increase as a result of exposure to long periods of hot summer temperatures, it is important to determine to what extent the incidence of heat stress-related morbidity and mortality will be affected as a result of global warming.

  6. Agriculture intensifies soil moisture decline in Northern China

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Yaling; Pan, Zhihua; Zhuang, Qianlai; Miralles, Diego; Teuling, Adriann; Zhang, Tonglin; An, Pingli; Dong, Zhiqiang; Zhang, Jingting; He, Di; et al

    2015-07-09

    Northern China is one of the most densely populated regions in the world. Agricultural activities have intensified since the 1980s to provide food security to the country. However, this intensification has likely contributed to an increasing scarcity in water resources, which may in turn be endangering food security. Based on in-situ measurements of soil moisture collected in agricultural plots during 1983–2012, we find that topsoil (0–50 cm) volumetric water content during the growing season has declined significantly (p<0.01), with a trend of -0.011 to -0.015 m3 m-3 per decade. Observed discharge declines for the three large river basins are consistentmore » with the effects of agricultural intensification, although other factors (e.g. dam constructions) likely have contributed to these trends. Practices like fertilizer application have favoured biomass growth and increased transpiration rates, thus reducing available soil water. In addition, the rapid proliferation of water-expensive crops (e.g., maize) and the expansion of the area dedicated to food production have also contributed to soil drying. Adoption of alternative agricultural practices that can meet the immediate food demand without compromising future water resources seem critical for the sustainability of the food production system.« less

  7. Agriculture intensifies soil moisture decline in Northern China

    SciTech Connect (OSTI)

    Liu, Yaling; Pan, Zhihua; Zhuang, Qianlai; Miralles, Diego; Teuling, Adriann; Zhang, Tonglin; An, Pingli; Dong, Zhiqiang; Zhang, Jingting; He, Di; Wang, Liwei; Pan, Xuebiao; Bai, Wei; Niyogi, Dev

    2015-07-09

    Northern China is one of the most densely populated regions in the world. Agricultural activities have intensified since the 1980s to provide food security to the country. However, this intensification has likely contributed to an increasing scarcity in water resources, which may in turn be endangering food security. Based on in-situ measurements of soil moisture collected in agricultural plots during 1983–2012, we find that topsoil (0–50 cm) volumetric water content during the growing season has declined significantly (p<0.01), with a trend of -0.011 to -0.015 m3 m-3 per decade. Observed discharge declines for the three large river basins are consistent with the effects of agricultural intensification, although other factors (e.g. dam constructions) likely have contributed to these trends. Practices like fertilizer application have favoured biomass growth and increased transpiration rates, thus reducing available soil water. In addition, the rapid proliferation of water-expensive crops (e.g., maize) and the expansion of the area dedicated to food production have also contributed to soil drying. Adoption of alternative agricultural practices that can meet the immediate food demand without compromising future water resources seem critical for the sustainability of the food production system.

  8. Energy development and CO{sub 2} emissions in China

    SciTech Connect (OSTI)

    Xiaolin Xi

    1993-03-01

    The objective of this research is to provide a better understanding of future Chinese energy development and CO{sub 2} emissions from burning fossil fuels. This study examines the current Chinese energy system, estimates CO{sub 2} emissions from burning fossil fuels and projects future energy use and resulting CO{sub 2} emissions up to the year of 2050. Based on the results of the study, development strategies are proposed and policy implications are explored. This study first develops a Base scenario projection of the Chinese energy development based upon a sectoral analysis. The Base scenario represents a likely situation of future development, but many alternatives are possible. To explore this range of alternatives, a systematic uncertainty analysis is performed. The Base scenario also represents an extrapolation of current policies and social and economic trends. As such, it is not necessarily the economically optimal future course for Chinese energy development. To explore this issue, an optimization analysis is performed. For further understanding of developing Chinese energy system and reducing CO{sub 2} emissions, a Chinese energy system model with 84 supply and demand technologies has been constructed in MARKAL, a computer LP optimization program for energy systems. Using this model, various technological options and economic aspects of energy development and CO{sub 2} emissions reduction in China during the 1985-2020 period are examined.

  9. China's growing CO{sub 2} emissions - a race between increasing consumption and efficiency gains

    SciTech Connect (OSTI)

    Glen P. Peters; Christopher L. Weber; Dabo Guan; Klaus Hubacek

    2007-09-15

    China's rapidly growing economy and energy consumption are creating serious environmental problems on both local and global scales. Understanding the key drivers behind China's growing energy consumption and the associated CO{sub 2} emissions is critical for the development of global climate policies and provides insight into how other emerging economies may develop a low emissions future. Using recently released Chinese economic input-output data and structural decomposition analysis we analyze how changes in China's technology, economic structure, urbanization, and lifestyles affect CO{sub 2} emissions. We find that infrastructure construction and urban household consumption, both in turn driven by urbanization and lifestyle changes, have outpaced efficiency improvements in the growth of CO{sub 2} emissions. Net trade had a small effect on total emissions due to equal, but significant, growth in emissions from the production of exports and emissions avoided by imports. Technology and efficiency improvements have only partially offset consumption growth, but there remains considerable untapped potential to reduce emissions by improving both production and consumption systems. As China continues to rapidly develop there is an opportunity to further implement and extend policies, such as the Circular Economy, that will help China avoid the high emissions path taken by today's developed countries. 65 refs., 3 figs., 1 tab.

  10. Institutional Design for Strategic Environmental Assessment on Urban Economic and Social Development Planning in China

    SciTech Connect (OSTI)

    Song Guojun Zhou Li; Zhang Lei

    2011-11-15

    The National Economic and Social Development Plans (NESDPs) of cities in China, given their comprehensive, integrated and strategic nature, have significant and profound impacts on the development of cities and their embedded ecological environments. Strategic Environmental Assessments (SEAs) on city NESDPs have the potential to improve environmental policy integration at strategic level and to safeguard the sustainable development of cities. However, these plans are normally exempted from the current SEA requirement in China. We argue that it is more feasible to apply SEAs on city NESDPs before SEAs are expanded to higher level NESDPs in China. This article attempts to propose a China-specific institutional design for SEAs on city NESDPs based on experiments in selected cities and within the current legal framework. To obtain a holistic view about the long-term development of cities, more qualitative and descriptive analysis-based assessment methods should be adopted to broaden participation, to encourage the exchange of information and to reach consensus. - Highlights: > National Economic and Social Development Plans for Cities (NESDPs) in China is a very popular and significant decision made by municipal government. > We propose a institutional framework to conduct strategic environmental assessment to NESDPs. > The key features of the institutional framework are the independent SEA approval committee and a professional consulting agency.

  11. Advanced battery technology for electric two-wheelers in the people's Republic of China.

    SciTech Connect (OSTI)

    Patil, P. G.; Energy Systems

    2009-07-22

    This report focuses on lithium-ion (Li-ion) battery technology applications for two- and possibly three-wheeled vehicles. The author of this report visited the People's Republic of China (PRC or China) to assess the status of Li-ion battery technology there and to analyze Chinese policies, regulations, and incentives for using this technology and for using two- and three-wheeled vehicles. Another objective was to determine if the Li-ion batteries produced in China were available for benchmarking in the United States. The United States continues to lead the world in Li-ion technology research and development (R&D). Its strong R&D program is funded by the U.S. Department of Energy and other federal agencies, such as the National Institute of Standards and Technology and the U.S. Department of Defense. In Asia, too, developed countries like China, Korea, and Japan are commercializing and producing this technology. In China, more than 120 companies are involved in producing Li-ion batteries. There are more than 139 manufacturers of electric bicycles (also referred to as E-bicycles, electric bikes or E-bikes, and electric two-wheelers or ETWs in this report) and several hundred suppliers. Most E-bikes use lead acid batteries, but there is a push toward using Li-ion battery technology for two- and three-wheeled applications. Highlights and conclusions from this visit are provided in this report and summarized.

  12. Comparison of Triton SODAR Data to Meteorological Tower Wind Measurement Data in Hebei Province, China

    SciTech Connect (OSTI)

    Yuechun, Y.; Jixue, W.; Hongfang, W.; Guimin, L.; Bolin, Y.; Scott, G.; Elliott, D.; Kline, D.

    2012-01-01

    With the increased interest in remote sensing of wind information in recent years, it is important to determine the reliability and accuracy of new wind measurement technologies if they are to replace or supplement conventional tower-based measurements. In view of this, HydroChina Corporation and the United States National Renewable Energy Laboratory (NREL) conducted a comparative test near a wind farm in Hebei Province, China. We present the results of an analysis characterizing the measurement performance of a state-of-the-art Sound Detection and Ranging (sodar) device when compared to a traditional tower measurement program. NREL performed the initial analysis of a three-month period and sent the results to HydroChina. When another month of data became available, HydroChina and their consultant Beijing Millenium Engineering Software (MLN) repeated NREL's analysis on the complete data set, also adding sensitivity analysis for temperature, humidity, and wind speed (Section 6). This report presents the results of HydroChina's final analysis of the four-month period.

  13. The Reality and Future Scenarios of Commercial Building Energy Consumption in China

    SciTech Connect (OSTI)

    Zhou, Nan; Lin, Jiang

    2007-08-01

    While China's 11th Five Year Plan called for a reduction of energy intensity by 2010, whether and how the energy consumption trend can be changed in a short time has been hotly debated. This research intends to evaluate the impact of a variety of scenarios of GDP growth, energy elasticity and energy efficiency improvement on energy consumption in commercial buildings in China using a detailed China End-use Energy Model. China's official energy statistics have limited information on energy demand by end use. This is a particularly pertinent issue for building energy consumption. The authors have applied reasoned judgments, based on experience of working on Chinese efficiency standards and energy related programs, to present a realistic interpretation of the current energy data. The bottom-up approach allows detailed consideration of end use intensity, equipment efficiency, etc., thus facilitating assessment of potential impacts of specific policy and technology changes on building energy use. The results suggest that: (1) commercial energy consumption in China's current statistics is underestimated by about 44%, and the fuel mix is misleading; (2) energy efficiency improvements will not be sufficient to offset the strong increase in end-use penetration and intensity in commercial buildings; (3) energy intensity (particularly electricity) in commercial buildings will increase; (4) different GDP growth and elasticity scenarios could lead to a wide range of floor area growth trajectories , and therefore, significantly impact energy consumption in commercial buildings.

  14. China's transportation energy consumption and CO2 emissions from a global perspective

    SciTech Connect (OSTI)

    Yin, Xiang; Chen, Wenying; Eom, Jiyong; Clarke, Leon E.; Kim, Son H.; Patel, Pralit L.; Yu, Sha; Kyle, G. Page

    2015-07-01

    ABSTRACT Rapidly growing energy demand from China's transportation sector in the last two decades have raised concerns over national energy security, local air pollution, and carbon dioxide (CO2) emissions, and there is broad consensus that China's transportation sector will continue to grow in the coming decades. This paper explores the future development of China's transportation sector in terms of service demands, final energy consumption, and CO2 emissions, and their interactions with global climate policy. This study develops a detailed China transportation energy model that is nested in an integrated assessment modelGlobal Change Assessment Model (GCAM)to evaluate the long-term energy consumption and CO2 emissions of China's transportation sector from a global perspective. The analysis suggests that, without major policy intervention, future transportation energy consumption and CO2 emissions will continue to rapidly increase and the transportation sector will remain heavily reliant on fossil fuels. Although carbon price policies may significantly reduce the sector's energy consumption and CO2 emissions, the associated changes in service demands and modal split will be modest, particularly in the passenger transport sector. The analysis also suggests that it is more difficult to decarbonize the transportation sector than other sectors of the economy, primarily owing to its heavy reliance on petroleum products.

  15. China's Top-1000 Energy-Consuming Enterprises Program:Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China

    SciTech Connect (OSTI)

    Price, Lynn; Price, Lynn; Wang, Xuejun; Yun, Jiang

    2008-06-02

    In 2005, the Chinese government announced an ambitious goal of reducing energy consumption per unit of GDP by 20% between 2005 and 2010. One of the key initiatives for realizing this goal is the Top-1000 Energy-Consuming Enterprises program. The energy consumption of these 1000 enterprises accounted for 33% of national and 47% of industrial energy usage in 2004. Under the Top-1000 program, 2010 energy consumption targets were determined for each enterprise. The objective of this paper is to evaluate the program design and initial results, given limited information and data, in order to understand the possible implications of its success in terms of energy and carbon dioxide emissions reductions and to recommend future program modifications based on international experience with similar target-setting agreement programs. Even though the Top-1000 Program was designed and implemented rapidly, it appears that--depending upon the GDP growth rate--it could contribute to somewhere between approximately 10% and 25% of the savings required to support China's efforts to meet a 20% reduction in energy use per unit of GDP by 2010.

  16. The status of nuclear power plants in the People's Republic of China

    SciTech Connect (OSTI)

    Puckett, J.

    1991-05-01

    China's main energy source is coal, but transportation and environmental problems make that fuel less than desirable. Therefore, the Chinese, as part of an effort toward alternative energy sources, are developing nuclear power plants. In addition to providing a cleaner power source, development of nuclear energy would improve the Chinese economic condition and give the nation greater world status. China's first plants, at Qinshan and Daya Bay, are still incomplete. However, China is working toward completion of those reactors and planning the training and operating procedures needed to operate them. At the same time, it is improving its nuclear fuel exports. As they develop the capability for generating nuclear power, the Chinese seem to be aware of the accompanying quality and safety considerations, which they have declared to be first priorities. 50 refs., 7 figs.

  17. China Energy Efficiency Round Robin Testing Results for Room Air Conditioners

    SciTech Connect (OSTI)

    Zhou, Nan; Fridley, David; Zheng, Nina; Pierrot, Andre

    2010-06-07

    In recent years China's energy consumption has increased rapidly. The problem of high energy consumption intensity and low energy utilization efficiency is serious, and the contradiction between economic development and energy and environmental resources has become increasingly acute, making energy conservation and consumption reduction an important society-wide concern. At the same time, global climate change has and will continue to have profound impacts on human survival and development, and is another major challenge to all countries. In order to accelerate China's energy conservation and emission reduction work, the National Leading Group to Address Climate Change, Energy Conservation and Emission Reduction was founded with Premier Wen Jiabao as the head, and the 'Comprehensive Work Program of Energy Conservation and Emission Reduction' and 'China's National Program of Addressing Climate Change' were issued, under which China's energy conservation and emission reduction work has been fully deployed. Efforts to promote energy efficiency have been further strengthened in all levels of government, and various policies and measures have progressively been issued and implemented. In addition, based on China's experience with implementing energy-saving priority strategies over the past 20+ years, our government established a goal of a 20% decrease in energy consumption per unit GDP in the 'Eleventh Five-year Development Plan'. Furthermore, in November 2009, in order to support global greenhouse gas emission reduction activities and promote China's low carbon economic development, the government established a further 40-50% reduction in energy consumption per unit GDP by 2020 compared to the year 2005. Improving energy utilization efficiency by scientific and technological progress will undoubtedly play an important role in achieving the above stated objectives. The improvement of energy efficiency of energy consuming products has always been an important component of all countries energy strategies. As we all know, a very large amount of total energy consumption is due to energy consuming products and equipment, which account for about 50% of China's total energy consumption. However, the current average energy utilization efficiency of this sector is only about 60%, 10 percent lower than the international advanced level. Therefore, China's energy consuming products and equipment sector holds great energy-saving potential. On the other hand, the energy supplied to these products is mainly from fossil fuel combustion, a major source of greenhouse gas (GHG) emissions. Therefore, improving the energy efficiency and augmenting the market share of market-dominant energy consuming products is of significant importance to achieving China's energy saving and emission reduction target and is an effective means to deal with energy and environmental constraints and climate change issues. Main energy consuming products generally include widely-used home appliances, industrial equipment, office equipment, transportation vehicles, etc. China is one of the major manufacturers and exporters of energy end-using products such as air-conditioners, refrigerators, televisions, etc. Their overall energy efficiency is comparatively low and the products are poorly designed, leading to great energy-saving potential. For example, electricity consumption of air conditioners accounts for about 20% of China's total electricity consumption and 40% of the summer electricity peak load in large and medium cities. However, less than 5% of units sold in the domestic market in 2009 reached the standard's highly efficient level of grade 2 above. The electricity consumption of electric motors and their related drive systems accounts for about 60% of China's total electricity consumption; however, less than 2% of the domestic market share consists of energy-efficient electric motor products. Promoting the energy efficiency and market shares of main energy-consuming products has become an important determinant of achieving energy conservation and emission reduc

  18. Energy Use in China: Sectoral Trends and Future Outlook

    SciTech Connect (OSTI)

    Zhou, Nan; McNeil, Michael A.; Fridley, David; Lin, Jiang; Price,Lynn; de la Rue du Can, Stephane; Sathaye, Jayant; Levine, Mark

    2007-10-04

    This report provides a detailed, bottom-up analysis ofenergy consumption in China. It recalibrates official Chinese governmentstatistics by reallocating primary energy into categories more commonlyused in international comparisons. It also provides an analysis of trendsin sectoral energy consumption over the past decades. Finally, itassesses the future outlook for the critical period extending to 2020,based on assumptions of likely patterns of economic activity,availability of energy services, and energy intensities. The followingare some highlights of the study's findings: * A reallocation of sectorenergy consumption from the 2000 official Chinese government statisticsfinds that: * Buildings account for 25 percent of primary energy, insteadof 19 percent * Industry accounts for 61 percent of energy instead of 69percent * Industrial energy made a large and unexpected leap between2000-2005, growing by an astonishing 50 percent in the 3 years between2002 and 2005. * Energy consumption in the iron and steel industry was 40percent higher than predicted * Energy consumption in the cement industrywas 54 percent higher than predicted * Overall energy intensity in theindustrial sector grew between 2000 and 2003. This is largely due tointernal shifts towards the most energy-intensive sub-sectors, an effectwhich more than counterbalances the impact of efficiency increases. *Industry accounted for 63 percent of total primary energy consumption in2005 - it is expected to continue to dominate energy consumption through2020, dropping only to 60 percent by that year. * Even assuming thatgrowth rates in 2005-2020 will return to the levels of 2000-2003,industrial energy will grow from 42 EJ in 2005 to 72 EJ in 2020. * Thepercentage of transport energy used to carry passengers (instead offreight) will double from 37 percent to 52 percent between 2000 to 2020,.Much of this increase is due to private car ownership, which willincrease by a factor of 15 from 5.1 million in 2000 to 77 million in2020. * Residential appliance ownership will show signs of saturation inurban households. The increase in residential energy consumption will belargely driven by urbanization, since rural homes will continue to havelow consumption levels. In urban households, the size of appliances willincrease, but its effect will be moderated by efficiency improvements,partially driven by government standards. * Commercial energy increaseswill be driven both by increases in floor space and by increases inpenetration of major end uses such as heating and cooling. Theseincreases will be moderated somewhat, however, by technology changes,such as increased use of heat pumps. * China's Medium- and Long-TermDevelopment plan drafted by the central government and published in 2004calls for a quadrupling of GDP in the period from 2000-2020 with only adoubling in energy consumption during the same period. A bottom-upanalysis with likely efficiency improvements finds that energyconsumption will likely exceed the goal by 26.12 EJ, or 28 percent.Achievements of these goals will there fore require a more aggressivepolicy of encouraging energy efficiency.

  19. Projected Changes in Mean and Interannual Variability of Surface Water over Continental China

    SciTech Connect (OSTI)

    Leng, Guoyong; Tang, Qiuhong; Huang, Maoyi; Hong, Yang; Leung, Lai-Yung R.

    2015-05-01

    Five General Circulation Model (GCM) climate projections under the RCP8.5 emission scenario were used to drive the Variable Infiltration Capacity (VIC) hydrologic model to investigate the impacts of climate change on hydrologic cycle over continental China in the 21st century. The bias-corrected climatic variables were generated for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5) by the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP). Results showed much larger fractional changes of annual mean Evaportranspiration (ET) per unit warming than the corresponding fractional changes of Precipitation (P) per unit warming across the country especially for South China, which led to notable decrease of surface water variability (P-E). Specifically, negative trends for annual mean runoff up to -0.33%/decade and soil moisture trends varying between -0.02 to -0.13%/decade were found for most river basins across China. Coincidentally, interannual variability for both runoff and soil moisture exhibited significant positive trends for almost all river basins across China, implying an increase in extremes relative to the mean conditions. Noticeably, the largest positive trends for runoff variability and soil moisture variability, which were up to 38 0.41%/decade and 0.90%/decade, both occurred in Southwest China. In addition to the regional contrast, intra-seasonal variation was also large for the runoff mean and runoff variability changes, but small for the soil moisture mean and variability changes. Our results suggest that future climate change could further exacerbate existing water-related risks (e.g. floods and droughts) across China as indicated by the marked decrease of surface water amounts combined with steady increase of interannual variability throughout the 21st century. This study highlights the regional contrast and intra-seasonal variations for the projected hydrologic changes and could provide muti-scale guidance for assessing effective adaptation strategies for the country on a river basin, regional, or as whole.

  20. The need for health impact assessment in China: Potential benefits for public health and steps forward

    SciTech Connect (OSTI)

    Wu Liming; Rutherford, Shannon; Chu, Cordia

    2011-07-15

    Health impact assessment (HIA) is a useful tool to predict and estimate the potential health impact associated with programs, projects, and policies by comprehensively identifying relevant health determinants and their consequences. China is undergoing massive and rapid socio-economic changes leading to environment and population health challenges such as a large increase in non-communicable diseases, the emergence and re-emergence of infectious diseases, new health risks associated with environmental pollutants and escalating health inequality. These health issues are affected by multiple determinants which can be influenced by planned policies, programs, and projects. This paper discusses the needs for health impact assessment in China in order to minimize the negative health consequences from projects, programs and policies associated with rapid social and economic development. It first describes the scope of China's current impact assessment system and points out its inadequacy in meeting the requirements of population health protection and promotion. It then analyses the potential use of HIA and why China needs to develop and apply HIA as a tool to identify potential health impacts of proposed programs, projects and policies so as to influence decision-making early in the planning process. Thus, the paper recommends the development of HIA as a useful tool in China to enhance decision-making for the protection and promotion of population health. For this to happen, the paper outlines steps necessary for the establishment and successful implementation of HIA in China: beginning with the establishment of a HIA framework, followed by workforce capacity building, methodology design, and intersectoral collaboration and stakeholder engagement.

  1. Satellite observations of recent power plant construction in Inner Mongolia, China - article no. L15809

    SciTech Connect (OSTI)

    Zhang, Q.; Streets, D.G.; He, K.B.

    2009-08-15

    About 50% of the increase in China's NOx emissions since 2000 can be attributed to the construction of new power plants. We show that the newly added NOx emissions from new power plants in Inner Mongolia, China, were detected by the Ozone Monitoring Instrument (OMI) aboard NASA's Aura satellite. Increase rates of NO{sub 2} columns from OMI and NOx emissions from inventories are even in quantitative agreement in cases where new facilities are added to already-developed regions. This study confirms that the OMI products are quite capable of identifying the construction of large new emitting facilities through detection of their NOx emissions.

  2. Department of Energy Announces Third Grant for U.S.-China Clean Energy

    Energy Savers [EERE]

    Research Center | Department of Energy Grant for U.S.-China Clean Energy Research Center Department of Energy Announces Third Grant for U.S.-China Clean Energy Research Center October 7, 2010 - 12:00am Addthis Washington, D.C. - U.S. Assistant Secretary of Energy for Policy & International Affairs David Sandalow announced today that Lawrence Berkeley National Laboratory will receive $12.5 million over the next five years to lead a consortium on energy-efficient building technologies

  3. U.S. and China Continue to Increase Cooperation on Vehicle Efficiency |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Continue to Increase Cooperation on Vehicle Efficiency U.S. and China Continue to Increase Cooperation on Vehicle Efficiency September 20, 2007 - 2:41pm Addthis WASHINGTON, DC - Representing the two largest automotive markets in the world, the U.S. Department of Energy (DOE) and the China's Ministry of Science and Technology (MOST) this week signed a five-year agreement to promote large-scale deployment of next-generation efficiency vehicle technologies in the U.S. and

  4. GE China Technology Center Wins Top 12 Most Innovative Practices Award of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Multinational Companies in Shanghai" | GE Global Research China Technology Center Wins Top 12 Most Innovative Practices Award of "Multinational Companies in Shanghai" Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE China Technology Center Wins Top 12 Most Innovative Practices Award of

  5. The second-phase development of the China JinPing underground laboratory

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: The second-phase development of the China JinPing underground laboratory Citation Details In-Document Search Title: The second-phase development of the China JinPing underground laboratory × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information

  6. Long Term Environment and Economic Impacts of Coal Liquefaction in China

    SciTech Connect (OSTI)

    Fletcher, Jerald

    2014-03-31

    The project currently is composed of six specific tasks – three research tasks, two outreach and training tasks, and one project management and communications task. Task 1 addresses project management and communication. Research activities focused on Task 2 (Describe and Quantify the Economic Impacts and Implications of the Development and Deployment of Coal-to-Liquid Facilities in China), Task 3 (Development of Alternative Coal Gasification Database), and Task 4 (Geologic Carbon Management Options). There also were significant activities related to Task 5 (US-China Communication, Collaboration, and Training on Clean Coal Technologies) as well as planning activity performed in support of Task 6 (Training Programs).

  7. The unusual construction aspects of China`s Yacheng 13-1 gas pipeline -- The world`s second longest subsea pipeline

    SciTech Connect (OSTI)

    Woolgar, A.F.; Wilburn, J.S.; Zhao, X.

    1996-12-31

    There are many unusual construction aspects relating to China`s Yacheng 13-1 Pipeline. Initially planned as an onshore pipeline it was later to become Asia`s longest subsea pipeline. The route chosen resulted in an offshore pipeline requiring many unique and innovative construction techniques as well as unusual pipeline installation constraints. The pipeline was installed in two phases. The first phase of 707 km was to be the longest pipeline ever constructed within one lay season and with one lay vessel in a continuous program. Upon completion of the second phase of pipelay works, the world`s longest ever subsea pipeline flooding in one run of 778 kms was to follow. The Yacheng 13-1 construction requirements for pipelay and post installation works, including testing and commissioning were extremely demanding. This paper details how these requirements were met. It covers route selection constraints, construction techniques utilized and the demanding pigging and pre-commissioning operations performed.

  8. Modelling estimation on the impacts of global warming on rice production in China

    SciTech Connect (OSTI)

    Wang Futang

    1997-12-31

    In this paper, based on the validation and sensitivity analyses of two rice growth models (ORYZA1 and DRISIC--Double Rice Cropping Simulation Model for China), and their joining with global warming scenarios projected by GCMs (GFDL, UKMO-H, MPI and DKRZ OPYC, DKRZ LSG, respectively), the modelling experiments were carried out on the potential impacts of global warming on rice production in China. The results show that although there are the some features for each rice cropping patterns because of different models and estimated methods, the rice production for all cropping patterns in China will trend to decrease with different degrees. In average, early, middle and later rice production, as well as, double-early and double-later rice production in different areas of China will decrease 3.7%, 10.5% and 10.4%, as well as, 15.9% and 14.4%, respectively. It do illustrates that the advantage effects induced by elevated CO{sub 2} concentration on photosynthesis does not compensate the adverse effects of temperature increase. Thus, it is necessary to adjusting rice cropping patterns, cultivars and farming techniques to the global warming timely.

  9. Goal Practice & Experience: Status Quo and Future for Industrial Scale Biomass Energy Development in China

    Broader source: Energy.gov [DOE]

    Breakout Session 3D—Fostering Technology Adoption III: International Market Opportunities in Bioenergy Goal Practice & Experience : Status Quo and Future for Industrial Scale Biomass Energy Development in China Huiyong Zhuang, Research Professor, National Energy Research Center of Liquid Biofuel, National Bio Energy Co., Ltd.

  10. Developments in lithium-ion battery technology in the Peoples Republic of China.

    SciTech Connect (OSTI)

    Patil, P. G.; Energy Systems

    2008-02-28

    Argonne National Laboratory prepared this report, under the sponsorship of the Office of Vehicle Technologies (OVT) of the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy, for the Vehicles Technologies Team. The information in the report is based on the author's visit to Beijing; Tianjin; and Shanghai, China, to meet with representatives from several organizations (listed in Appendix A) developing and manufacturing lithium-ion battery technology for cell phones and electronics, electric bikes, and electric and hybrid vehicle applications. The purpose of the visit was to assess the status of lithium-ion battery technology in China and to determine if lithium-ion batteries produced in China are available for benchmarking in the United States. With benchmarking, DOE and the U.S. battery development industry would be able to understand the status of the battery technology, which would enable the industry to formulate a long-term research and development program. This report also describes the state of lithium-ion battery technology in the United States, provides information on joint ventures, and includes information on government incentives and policies in the Peoples Republic of China (PRC).

  11. China's Building Energy Use: A Long-Term Perspective based on a Detailed Assessment

    SciTech Connect (OSTI)

    Eom, Jiyong; Clarke, Leon E.; Kim, Son H.; Kyle, G. Page; Patel, Pralit L.

    2012-01-13

    We present here a detailed, service-based model of China's building energy use, nested in the GCAM (Global Change Assessment Model) integrated assessment framework. Using the model, we explore long-term pathways of China's building energy use and identify opportunities of reducing greenhouse gas emissions. The inclusion of a structural model of building energy demands within an integrated assessment framework represents a major methodological advance. It allows for a structural understanding of the drivers of building energy consumption while simultaneously considering the other human and natural system interactions that influence changes in the global energy system and climate. We also explore a range of different scenarios to gain insights into how China's building sector might evolve and what the implications might be for improved building energy technology and carbon policies. The analysis suggests that China's building energy growth will not wane anytime soon, although technology improvement will put downward pressure on this growth. Also, regardless of the scenarios represented, the growth will involve the continued, rapid electrification of the buildings sector throughout the century, and this transition will be accelerated by the implementation of carbon policy.

  12. Current Status and Future Scenarios of Residential Building Energy Consumption in China

    SciTech Connect (OSTI)

    Zhou, Nan; Nishida, Masaru; Gao, Weijun

    2008-12-01

    China's rapid economic expansion has propelled it into the ranks of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. Even though the rapid growth is largely attributable to heavy industry, this in turn is driven by rapid urbanization process, by construction materials and equipment produced for use in buildings. Residential energy is mostly used in urban areas, where rising incomes have allowed acquisition of home appliances, as well as increased use of heating in southern China. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modeling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities.

  13. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    SciTech Connect (OSTI)

    Aden, Nathaniel T.; Zheng, Nina; Fridley, David G.

    2009-07-01

    Urbanization has re-shaped China's economy, society, and energy system. Between 1990 and 2007 China added 290 million new urban residents, bringing the total urbanization rate to 45%. This population adjustment spurred energy demand for construction of new buildings and infrastructure, as well as additional residential use as rural biomass was replaced with urban commercial energy services. Primary energy demand grew at an average annual rate of 10% between 2000 and 2007. Urbanization's effect on energy demand was compounded by the boom in domestic infrastructure investment, and in the export trade following World Trade Organization (WTO) accession in 2001. Industry energy consumption was most directly affected by this acceleration. Whereas industry comprised 32% of 2007 U.S. energy use, it accounted for 75% of China's 2007 energy consumption. Five sub-sectors accounted for 78% of China's industry energy use in 2007: iron and steel, energy extraction and processing, chemicals, cement, and non-ferrous metals. Ferrous metals alone accounted for 25% of industry and 18% of total primary energy use. The rapid growth of heavy industry has led China to become by far the world's largest producer of steel, cement, aluminum, and other energy-intensive commodities. However, the energy efficiency of heavy industrial production continues to lag world best practice levels. This study uses scenario analysis to quantify the impact of urbanization and trade on industrial and residential energy consumption from 2000 to 2025. The BAU scenario assumed 67% urbanization, frozen export amounts of heavy industrial products, and achievement of world best practices by 2025. The China Lightens Up (CLU) scenario assumed 55% urbanization, zero net exports of heavy industrial products, and more aggressive efficiency improvements by 2025. The five dominant industry sub-sectors were modeled in both scenarios using a LEAP energy end-use accounting model. The results of this study show that a CLU-style development path would avoid 430 million tonnes coal-equivalent energy use by 2025. More than 60% of these energy savings would come from reduced activity and production levels. In carbon terms, this would amount to more than a billion-tonne reduction of energy-related carbon emissions compared with the BAU scenario in 2025, though the absolute level of emissions rises in both scenarios. Aside from the energy and carbon savings related to CLU scenario development, this study showed impending saturation effects in commercial construction, urban appliance ownership, and fertilizer application. The implication of these findings is that urbanization will have a direct impact on future energy use and emissions - policies to guide urban growth can play a central role in China's efforts to mitigate emissions growth.

  14. Collaboration on Renewable Energy Standards, Testing, and Certification under the U.S. China Renewable Energy Partnership: Preprint

    SciTech Connect (OSTI)

    Wallace, W.; Kurtz, S.; Lin, W.

    2012-06-01

    During November 2009, the U.S. China Renewable Energy Partnership agreement was authorized in Beijing by Presidents Obama and Hu from the U.S. and China. One of the principle tasks under this new program is the collaboration of the U.S. and China on the topic of renewable energy standards, testing, and certification with an initial focus on solar PV and wind topics. This paper will describe and discuss the activities which have taken place under the bilateral collaboration to date.

  15. Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?

    SciTech Connect (OSTI)

    Zhou, Nan; Lin, Jiang; Zhou, Nan; Levine, Mark; Fridley, David

    2007-07-01

    China's 11th Five-Year Plan (FYP) sets an ambitious target for energy-efficiency improvement: energy intensity of the country's gross domestic product (GDP) should be reduced by 20% from 2005 to 2010 (NDRC, 2006). This is the first time that a quantitative and binding target has been set for energy efficiency, and signals a major shift in China's strategic thinking about its long-term economic and energy development. The 20% energy intensity target also translates into an annual reduction of over 1.5 billion tons of CO2 by 2010, making the Chinese effort one of most significant carbon mitigation effort in the world today. While it is still too early to tell whether China will achieve this target, this paper attempts to understand the trend in energy intensity in China and to explore a variety of options toward meeting the 20% target using a detailed end-use energy model.

  16. The {open_quotes}Command and Control{close_quotes} philosophy of the Communist party of China

    SciTech Connect (OSTI)

    Kominiak, G.J.; Eisenberger, J.C.; Menaul, K.L.

    1996-01-01

    China`s central political authorities have constructed a system which is designed to enable them to exert their personal influence and control over each level of every organization in the country -- both civil and military. The Communist Party of China (CPC) is represented at all levels of each and every organization, including the People`s Liberation Army (PLA). These Party entities are intended to both provide oversight and to ensure that Party policies, directives and orders are obeyed. This penchant for political control, which may have its roots in China`s imperial past, appears to have been reinforced by the early developmental path chosen by the Party`s leadership. Current attempts aimed at maintaining political control of its resources, especially the military, are embodied in the formal system of {open_quotes}Political Work.{close_quotes} In the PLA, this system of political control results in the involvement of political organs in day-to-day military matters to an extent unheard of in the West. Further work is needed in order to understand, more fully, both the system of {open_quotes}Political Work{close_quotes} and its contributions to the overall military (and civil) command and control philosophic of the Communist Party of China.

  17. China: Emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production

    SciTech Connect (OSTI)

    Gregg, J; Andres, Robert Joseph; Marland, Gregg

    2008-01-01

    Release of carbon dioxide (CO2) from fossil fuel combustion and cement manufacture is the primary anthropogenic driver of climate change. Our best estimate is that China became the largest national source of CO2 emissions during 2006. Previously, the United States (US) had occupied that position. However, the annual emission rate in the US has remained relatively stable between 2001-2006 while the emission rate in China has more than doubled, apparently eclipsing that of the US in late 2006. Here we present the seasonal and spatial pattern of CO2 emissions in China, as well as the sectoral breakdown of emissions. Though our best point estimate places China in the lead position in terms of CO2 emissions, we qualify this statement in a discussion of the uncertainty in the underlying data (3-5% for the US; 15-20% for China). Finally, we comment briefly on the implications of China's new position with respect to international agreements to mitigate climate change.

  18. Quantifying Reliability - The Next Step for a Rapidly Maturing PV Industry and China's Role

    SciTech Connect (OSTI)

    Kurtz, Sarah

    2015-10-14

    PV customers wish to know how long their PV modules will last, but quantitatively predicting service life is difficult because of the large number of ways that a module can fail, the variability of the use environment, the cost of the testing, and the short product development time, especially when compared with the long desired lifetime. China should play a key role in developing international standards because China manufactures most of the world's PV modules. The presentation will describe the steps that need to be taken to create a service life prediction within the context of a defined bill of materials, process window and use environment. Worldwide standards for cost-effective approaches to service-life predictions will be beneficial to both PV customers and manufacturers since the consequences of premature module failure can be disastrous for both.

  19. Geothermal Potential for China, Poland and Turkey with/Financing Workbook

    SciTech Connect (OSTI)

    J. G. Keller

    2000-02-01

    This collection of documents presents the results of assessments of the geothermal power potential in three countries: China, Poland, and Turkey. Also included is a Geothermal Financing Workbook, which is intended to provide a comprehensive package of information on financing, financing plans, financial analysis, and financial sources for smaller geothermal resource developers. All three countries are facing ever increasing demands for power in the coming decades, but each has some barriers to fully developing existing resources. For Poland and Turkey, it is important that legislation specific to geothermal resource development be enacted. For China, a crucial step is to develop more detailed and accurate estimates of resource potential. All three countries could benefit from the expertise of U.S. geothermal companies, and this collection of material provides crucial information for those interested companies.

  20. White Paper on Energy Efficiency Status of Energy-Using Products in China (2012)

    SciTech Connect (OSTI)

    Zhou, Nan; Romankiewicz, John; Fridley, David

    2012-06-01

    2011 is the first year of the 12th Five-Year Plan and, as such, it is a crucial year to push forward the work of energy conservation and emissions reduction. Important large-scale energy conservation policies issued in 2011 include Outline of the 12th Five-year Plan for National Economic and Social Development of The Peoples Republic of China (the Plan) and Notice of the State Council on Issuing the Comprehensive Work Proposal for Energy Conservation and Emission Reduction during the 12th Five-Year Plan Period (GF (2011) No. 26) (the Proposal). These two policies have established strategic objectives for energy conservation during the 12th Five-Year Plan in China, and they have also identified the key tasks and direction of energy efficiency programs for energy-using products.

  1. The importance of China's household sector for black carbon emissions - article no. L12708

    SciTech Connect (OSTI)

    Streets, D.G.; Aunan, K.

    2005-06-30

    The combustion of coal and biofuels in Chinese households is a large source of black carbon (BC), representing about 10-15% of total global emissions during the past two decades, depending on the year. How the Chinese household sector develops during the next 50 years will have an important bearing on future aerosol concentrations, because the range of possible outcomes (about 550 Gg yr{sup -1}) is greater than total BC emissions in either the United States or Europe (each about 400-500 Gg yr{sup -1}). In some Intergovernmental Panel on Climate Change scenarios biofuels persist in rural China for at least the next 50 years, whereas in other scenarios a transition to cleaner fuels and technologies effectively mitigates BC emissions. This paper discusses measures and policies that would help this transition and also raises the possibility of including BC emission reductions as a post-Kyoto option for China and other developing countries.

  2. Impacts of urban transportation mode split on CO{sub 2} emissions in Jinan, China.

    SciTech Connect (OSTI)

    He, D.; Meng, F.; Wang, M.; He, K.

    2011-04-01

    As the world's largest developing country, China currently is undergoing rapid urbanization and motorization, which will result in far-reaching impacts on energy and the environment. According to estimates, energy use and carbon emissions in the transportation sector will comprise roughly 30% of total emissions by 2030. Since the late 1990s, transportation-related issues such as energy, consumption, and carbon emissions have become a policy focus in China. To date, most research and policies have centered on vehicle technologies that promote vehicle efficiency and reduced emissions. Limited research exists on the control of greenhouse gases through mode shifts in urban transportation - in particular, through the promotion of public transit. The purpose of this study is to establish a methodology to analyze carbon emissions from the urban transportation sector at the Chinese city level. By using Jinan, the capital of China's Shandong Province, as an example, we have developed an analytical model to simulate energy consumption and carbon emissions based on the number of trips, the transportation mode split, and the trip distance. This model has enabled us to assess the impacts of the transportation mode split on energy consumption and carbon emissions. Furthermore, this paper reviews a set of methods for data collection, estimation, and processing for situations where statistical data are scarce in China. This paper also describes the simulation of three transportation system development scenarios. The results of this study illustrate that if no policy intervention is implemented for the transportation mode split (the business-as-usual (BAU) case), then emissions from Chinese urban transportation systems will quadruple by 2030. However, a dense, mixed land-use pattern, as well as transportation policies that encourage public transportation, would result in the elimination of 1.93 million tons of carbon emissions - approximately 50% of the BAU scenario emissions.

  3. U.S. and China Sign Agreement to Increase Industrial Energy Efficiency |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Sign Agreement to Increase Industrial Energy Efficiency U.S. and China Sign Agreement to Increase Industrial Energy Efficiency September 14, 2007 - 2:33pm Addthis DOE to Conduct Energy Efficiency Audits on up to 12 Facilities SAN FRANCISCO, CA - U.S. Department of Energy (DOE) Assistant Secretary for Policy and International Affairs Karen Harbert and Vice Chairman of the National Development and Reform Committee (NDRC) Chen Deming, this week signed a Memorandum of

  4. Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China

    SciTech Connect (OSTI)

    Zhou, Nan; McNeil, Michael A.; Levine, Mark

    2009-06-01

    China's rapid economic expansion has propelled it to the rank of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modelling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities. From this analysis, we can conclude that Chinese residential energy consumption will more than double by 2020, from 6.6 EJ in 2000 to 15.9 EJ in 2020. This increase will be driven primarily by urbanization, in combination with increases in living standards. In the urban and higher income Chinese households of the future, most major appliances will be common, and heated and cooled areas will grow on average. These shifts will offset the relatively modest efficiency gains expected according to current government plans and policies already in place. Therefore, levelling and reduction of growth in residential energy demand in China will require a new set of more aggressive efficiency policies.

  5. Analyzing and Comparing Biomass Feedstock Supply Systems in China: Corn Stover and Sweet Sorghum Case Studies

    SciTech Connect (OSTI)

    Ren, Lantian; Cafferty, Kara; Roni, Mohammad; Jacobson, Jacob; Xie, Guanghui; Ovard, Leslie; Wright, Christopher

    2015-06-11

    This paper analyzes the rural Chinese biomass supply system and models supply chain operations according to U.S. concepts of logistical unit operations: harvest and collection, storage, transportation, preprocessing, and handling and queuing. In this paper, we quantify the logistics cost of corn stover and sweet sorghum in China under different scenarios. We analyze three scenarios of corn stover logistics from northeast China and three scenarios of sweet sorghum stalks logistics from Inner Mongolia in China. The case study estimates that the logistics cost of corn stover and sweet sorghum stalk to be $52.95/dry metric ton and $52.64/dry metric ton, respectively, for the current labor-based biomass logistics system. However, if the feedstock logistics operation is mechanized, the cost of corn stover and sweet sorghum stalk decreases to $36.01/dry metric ton and $35.76/dry metric ton, respectively. The study also includes a sensitivity analysis to identify the cost factors that cause logistics cost variation. Results of the sensitivity analysis show that labor price has the most influence on the logistics cost of corn stover and sweet sorghum stalk, with a variation of $6 to $12/dry metric ton.

  6. Analyzing and Comparing Biomass Feedstock Supply Systems in China: Corn Stover and Sweet Sorghum Case Studies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ren, Lantian; Cafferty, Kara; Roni, Mohammad; Jacobson, Jacob; Xie, Guanghui; Ovard, Leslie; Wright, Christopher

    2015-06-11

    This paper analyzes the rural Chinese biomass supply system and models supply chain operations according to U.S. concepts of logistical unit operations: harvest and collection, storage, transportation, preprocessing, and handling and queuing. In this paper, we quantify the logistics cost of corn stover and sweet sorghum in China under different scenarios. We analyze three scenarios of corn stover logistics from northeast China and three scenarios of sweet sorghum stalks logistics from Inner Mongolia in China. The case study estimates that the logistics cost of corn stover and sweet sorghum stalk to be $52.95/dry metric ton and $52.64/dry metric ton, respectively,more » for the current labor-based biomass logistics system. However, if the feedstock logistics operation is mechanized, the cost of corn stover and sweet sorghum stalk decreases to $36.01/dry metric ton and $35.76/dry metric ton, respectively. The study also includes a sensitivity analysis to identify the cost factors that cause logistics cost variation. Results of the sensitivity analysis show that labor price has the most influence on the logistics cost of corn stover and sweet sorghum stalk, with a variation of $6 to $12/dry metric ton.« less

  7. Energy use and carbon dioxide emissions from steel production in China

    SciTech Connect (OSTI)

    Price, Lynn; Sinton, Jonathan; Worrell, Ernst; Phylipsen, Dian; Xiulian, Hu; Ji, Li

    2004-01-01

    In 1996, China manufactured just over 100 Mt of steel and became the world s largest steel producer. Official Chinese energy consumption statistics for the steel industry include activities not directly associated with the production of steel, double-count some coal-based energy consumption, and do not cover the entire Chinese steelmaking industry. In this paper, we make adjustments to the reported statistical data in order to provide energy use values for steel production in China that are comparable to statistics used internationally. We find that for 1996, official statistics need to be reduced by 1365 PJ to account for non-steel production activities and double-counting. Official statistics also need to be increased by 415 PJ in order to include steelmaking energy use of small plants not included in official statistics. This leads to an overall reduction of 950 PJ for steelmaking in China in 1996. Thus, the official final energy use value of 4018 PJ drops to 3067 PJ. In primary energy terms, the official primary energy use value of 4555 PJ is reduced to 3582 PJ when these adjustments are made.

  8. Early opportunities of CO₂ geological storage deployment in coal chemical industry in China

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wei, Ning; Li, Xiaochun; Liu, Shengnan; Dahowski, R. T.; Davidson, C. L.

    2014-12-31

    Carbon dioxide capture and geological storage (CCS) is regarded as a promising option for climate change mitigation; however, the high capture cost is the major barrier to large-scale deployment of CCS technologies. High-purity CO₂ emission sources can reduce or even avoid the capture requirements and costs. Among these high-purity CO₂ sources, certain coal chemical industry processes are very important, especially in China. In this paper, the basic characteristics of coal chemical industries in China is investigated and analyzed. As of 2013 there were more than 100 coal chemical plants in operation. These emission sources together emit 430 million tons CO₂more » per year, of which about 30% are emit high-purity and pure CO₂ (CO₂ concentration >80% and >98.5% respectively). Four typical source-sink pairs are chosen for techno-economic evaluation, including site screening and selection, source-sink matching, concept design, and economic evaluation. The technical-economic evaluation shows that the levelized cost of a CO₂ capture and aquifer storage project in the coal chemistry industry ranges from 14 USD/t to 17 USD/t CO₂. When a 15USD/t CO₂ tax and 20USD/t for CO₂ sold to EOR are considered, the levelized cost of CCS project are negative, which suggests a benefit from some of these CCS projects. This might provide China early opportunities to deploy and scale-up CCS projects in the near future.« less

  9. Early opportunities of CO₂ geological storage deployment in coal chemical industry in China

    SciTech Connect (OSTI)

    Wei, Ning; Li, Xiaochun; Liu, Shengnan; Dahowski, R. T.; Davidson, C. L.

    2014-12-31

    Carbon dioxide capture and geological storage (CCS) is regarded as a promising option for climate change mitigation; however, the high capture cost is the major barrier to large-scale deployment of CCS technologies. High-purity CO₂ emission sources can reduce or even avoid the capture requirements and costs. Among these high-purity CO₂ sources, certain coal chemical industry processes are very important, especially in China. In this paper, the basic characteristics of coal chemical industries in China is investigated and analyzed. As of 2013 there were more than 100 coal chemical plants in operation. These emission sources together emit 430 million tons CO₂ per year, of which about 30% are emit high-purity and pure CO₂ (CO₂ concentration >80% and >98.5% respectively). Four typical source-sink pairs are chosen for techno-economic evaluation, including site screening and selection, source-sink matching, concept design, and economic evaluation. The technical-economic evaluation shows that the levelized cost of a CO₂ capture and aquifer storage project in the coal chemistry industry ranges from 14 USD/t to 17 USD/t CO₂. When a 15USD/t CO₂ tax and 20USD/t for CO₂ sold to EOR are considered, the levelized cost of CCS project are negative, which suggests a benefit from some of these CCS projects. This might provide China early opportunities to deploy and scale-up CCS projects in the near future.

  10. Curbing Air Pollution and Greenhouse Gas Emissions from Industrial Boilers in China

    SciTech Connect (OSTI)

    Shen, Bo; Price, Lynn K; Lu, Hongyou; Liu, Xu; Tsen, Katherine; Xiangyang, Wei; Yunpeng, Zhang; Jian, Guan; Rui, Hou; Junfeng, Zhang; Yuqun, Zhuo; Shumao, Xia; Yafeng, Han; Manzhi, Liu

    2015-10-28

    China’s industrial boiler systems consume 700 million tons of coal annually, accounting for 18% of the nation’s total coal consumption. Together these boiler systems are one of the major sources of China’s greenhouse gas (GHG) emissions, producing approximately 1.3 gigatons (Gt) of carbon dioxide (CO2) annually. These boiler systems are also responsible for 33% and 27% of total soot and sulfur dioxide (SO2) emissions in China, respectively, making a substantial contribution to China’s local environmental degradation. The Chinese government - at both the national and local level - is taking actions to mitigate the significant greenhouse gas (GHG) emissions and air pollution related to the country’s extensive use of coal-fired industrial boilers. The United States and China are pursuing a collaborative effort under the U.S.-China Climate Change Working Group to conduct a comprehensive assessment of China’s coal-fired industrial boilers and to develop an implementation roadmap that will improve industrial boiler efficiency and maximize fuel-switching opportunities. Two Chinese cities – Ningbo and Xi’an – have been selected for the assessment. These cities represent coastal areas with access to liquefied natural gas (LNG) imports and inland regions with access to interprovincial natural gas pipelines, respectively.

  11. Analysis of the environmental impact of China based on STIRPAT model

    SciTech Connect (OSTI)

    Lin Shoufu; Zhao Dingtao; Marinova, Dora

    2009-11-15

    Assuming that energy consumption is the main source of GHG emissions in China, this paper analyses the effect of population, urbanisation level, GDP per capita, industrialisation level and energy intensity on the country's environmental impact using the STIRPAT model with data for 1978-2006. The analysis shows that population has the largest potential effect on environmental impact, followed by urbanisation level, industrialisation level, GDP per capita and energy intensity. Hence, China's One Child Policy, which restrains rapid population growth, has been an effective way of reducing the country's environmental impact. However, due to the difference in growth rates, GDP per capita had a higher effect on the environmental impact, contributing to 38% of its increase (while population's contribution was at 32%). The rapid decrease in energy intensity was the main factor restraining the increase in China's environmental impact but recently it has also been rising. Against this background, the future of the country looks bleak unless a change in human behaviour towards more ecologically sensitive economic choices occurs.

  12. Scenarios of Building Energy Demand for China with a Detailed Regional Representation

    SciTech Connect (OSTI)

    Yu, Sha; Eom, Jiyong; Zhou, Yuyu; Evans, Meredydd; Clarke, Leon E.

    2014-02-07

    Building energy consumption currently accounts for 28% of Chinas total energy use and is expected to continue to grow induced by floorspace expansion, income growth, and population change. Fuel sources and building services are also evolving over time as well as across regions and building types. To understand sectoral and regional difference in building energy use and how socioeconomic, physical, and technological development influence the evolution of the Chinese building sector, this study developed a building energy use model for China downscaled into four climate regions under an integrated assessment framework. Three building types (rural residential, urban residential, and commercial) were modeled specifically in each climate region. Our study finds that the Cold and Hot Summer Cold Winter regions lead in total building energy use. The impact of climate change on heating energy use is more significant than that of cooling energy use in most climate regions. Both rural and urban households will experience fuel switch from fossil fuel to cleaner fuels. Commercial buildings will experience rapid growth in electrification and energy intensity. Improved understanding of Chinese buildings with climate change highlighted in this study will help policy makers develop targeted policies and prioritize building energy efficiency measures.

  13. A Low Carbon Development Guide for Local Government Actions in China

    SciTech Connect (OSTI)

    Zheng, Nina; Zhou, Nan; Price, Lynn; Ohshita, Stephanie

    2011-05-01

    Local level actions are crucial for achieving energy-saving and greenhouse gas emission reduction targets. Yet it is challenging to implement new policies and actions due to a lack of information, funding, and capacity. This is particularly the case in developing countries such as China. Even though national energy intensity and carbon intensity targets have been set, most local governments do not have the knowledge regarding actions to achieve the targets, the cost-effectiveness of policies, the possible impact of policies, or how to design and implement a climate action plan. This paper describes a guidebook that was developed to motivate and provide local governments in China with information to create an action plan to tackle climate change and increase energy efficiency. It provides a simple step-by-step description of how action plans can be established and essential elements to be included - from preparing a GHG emission inventory to implementation of the plan. The guidebook also provides a comprehensive list of successful policies and best practices found internationally and in China to encourage low carbon development in industry, buildings, transportation, electric power generation, agriculture and forestry. This paper also presents indicators that can be used to define low-carbon development, as well as to evaluate the effectiveness of actions taken at an aggregated (city) level, and at a sectoral or end use level. The guidebook can also be used for low carbon development by local governments in other developing countries.

  14. Projections of motor vehicle growth, fuel consumption and CO{sub 2} emissions for the next thirty years in China.

    SciTech Connect (OSTI)

    He, D.; Wang, M.

    2000-12-12

    Since the early 1990s, China's motor vehicles have entered a period of fast growth resultant from the rapid economic expansion. As the largest developing country, the fast growth of China's motor vehicles will have tremendous effects on the world's automotive and fuel market and on global CO{sub 2} emissions. In this study, we projected Chinese vehicle stocks for different vehicle types on the provincial level. First, we reviewed the historical data of China's vehicle growth in the past 10 years and the correlations between vehicle growth and economic growth in China. Second, we investigated historical vehicle growth trends in selected developed countries over the past 50 or so years. Third, we established a vehicle growth scenario based on the historical trends in several developed nations. Fourth, we estimated fuel economy, annual mileage and other vehicle usage parameters for Chinese vehicles. Finally, we projected vehicle stocks and estimated motor fuel use and CO{sub 2} emissions in each Chinese province from 2000 to 2030. Our results show that China will continue the rapid vehicle growth, increase gasoline and diesel consumption and increased CO{sub 2} emissions in the next 30 years. We estimated that by year 2030, Chinese motor vehicle fuel consumption and CO{sub 2} emissions could reach the current US levels.

  15. A Sensitivity Study on Modeling Black Carbon in Snow and its Radiative Forcing over the Arctic and Northern China

    SciTech Connect (OSTI)

    Qian, Yun; Wang, Hailong; Zhang, Rudong; Flanner, M. G.; Rasch, Philip J.

    2014-06-02

    Black carbon in snow (BCS) simulated in the Community Atmosphere Model (CAM5) is evaluated against measurements over Northern China and the Arctic, and its sensitivity to atmospheric deposition and two parameters that affect post-depositional enrichment is explored. The BCS concentration is overestimated (underestimated) by a factor of two in Northern China (Arctic) in the default model, but agreement with observations is good over both regions in the simulation with improvements in BC transport and deposition. Sensitivity studies indicate that uncertainty in the melt-water scavenging efficiency (MSE) parameter substantially affects BCS and its radiative forcing (by a factor of 2-7) in the Arctic through post-depositional enrichment. The MSE parameter has a relatively small effect on the magnitude of BCS seasonal cycle but can alter its phase in Northern China. The impact of the snow aging scaling factor (SAF) on BCS, partly through the post-depositional enrichment effect, shows more complex latitudinal and seasonal dependence. Similar to MSE, SAF affects more significantly the magnitude (phase) of BCS season cycle over the Arctic (Northern China). While uncertainty associated with the representation of BC transport and deposition processes in CAM5 is more important than that associated with the two snow model parameters in Northern China, the two uncertainties have comparable effect in the Arctic.

  16. The United States of America and the People`s Republic of China experts report on integrated gasification combined-cycle technology (IGCC)

    SciTech Connect (OSTI)

    1996-12-01

    A report written by the leading US and Chinese experts in Integrated Gasification Combined Cycle (IGCC) power plants, intended for high level decision makers, may greatly accelerate the development of an IGCC demonstration project in the People`s Republic of China (PRC). The potential market for IGCC systems in China and the competitiveness of IGCC technology with other clean coal options for China have been analyzed in the report. Such information will be useful not only to the Chinese government but also to US vendors and companies. The goal of this report is to analyze the energy supply structure of China, China`s energy and environmental protection demand, and the potential market in China in order to make a justified and reasonable assessment on feasibility of the transfer of US Clean Coal Technologies to China. The Expert Report was developed and written by the joint US/PRC IGCC experts and will be presented to the State Planning Commission (SPC) by the President of the CAS to ensure consideration of the importance of IGCC for future PRC power production.

  17. Technical cooperation on nuclear security between the United States and China : review of the past and opportunities for the future.

    SciTech Connect (OSTI)

    Pregenzer, Arian Leigh

    2011-12-01

    The United States and China are committed to cooperation to address the challenges of the next century. Technical cooperation, building on a long tradition of technical exchange between the two countries, can play an important role. This paper focuses on technical cooperation between the United States and China in the areas of nonproliferation, arms control and other nuclear security topics. It reviews cooperation during the 1990s on nonproliferation and arms control under the U.S.-China Arms Control Exchange, discusses examples of ongoing activities under the Peaceful Uses of Technology Agreement to enhance security of nuclear and radiological material, and suggests opportunities for expanding technical cooperation between the defense nuclear laboratories of both countries to address a broader range of nuclear security topics.

  18. Early opportunities of CO2 geological storage deployment in coal chemical industry in China

    SciTech Connect (OSTI)

    Wei, Ning; Li, Xiaochun; Liu, Shengnan; Dahowski, Robert T.; Davidson, Casie L.

    2014-11-12

    Abstract: Carbon dioxide capture and geological storage (CCS) is regarded as a promising option for climate change mitigation; however, the high capture cost is the major barrier to large-scale deployment of CCS technologies. High-purity CO2 emission sources can reduce or even avoid the capture requirements and costs. Among these high-purity CO2 sources, certain coal chemical industry processes are very important, especially in China. In this paper, the basic characteristics of coal chemical industries in China is investigated and analyzed. As of 2013 there were more than 100 coal chemical plants in operation or in late planning stages. These emission sources together emit 430 million tons CO2 per year, of which about 30% are emit high-purity and pure CO2 (CO2 concentration >80% and >99% respectively).Four typical source-sink pairs are studied by a techno-economic evaluation, including site screening and selection, source-sink matching, concept design, and experienced economic evaluation. The technical-economic evaluation shows that the levelized cost of a CO2 capture and aquifer storage project in the coal chemistry industry ranges from 14 USD/t to 17 USD/t CO2. When a 15USD/t CO2 tax and 15USD/t for CO2 sold to EOR are considered, the levelized cost of CCS project are negative, which suggests a net economic benefit from some of these CCS projects. This might provide China early opportunities to deploy and scale-up CCS projects in the near future.

  19. Target Allocation Methodology for China's Provinces: Energy Intensity in the 12th FIve-Year Plan

    SciTech Connect (OSTI)

    Ohshita, Stephanie; Price, Lynn

    2011-03-21

    Experience with China's 20% energy intensity improvement target during the 11th Five-Year Plan (FYP) (2006-2010) has shown the challenges of rapidly setting targets and implementing measures to meet them. For the 12th FYP (2011-2015), there is an urgent need for a more scientific methodology to allocate targets among the provinces and to track physical and economic indicators of energy and carbon saving progress. This report provides a sectoral methodology for allocating a national energy intensity target - expressed as percent change in energy per unit gross domestic product (GDP) - among China's provinces in the 12th FYP. Drawing on international experience - especially the European Union (EU) Triptych approach for allocating Kyoto carbon targets among EU member states - the methodology here makes important modifications to the EU approach to address an energy intensity rather than a CO{sub 2} emissions target, and for the wider variation in provincial energy and economic structure in China. The methodology combines top-down national target projections and bottom-up provincial and sectoral projections of energy and GDP to determine target allocation of energy intensity targets. Total primary energy consumption is separated into three end-use sectors - industrial, residential, and other energy. Sectoral indicators are used to differentiate the potential for energy saving among the provinces. This sectoral methodology is utilized to allocate provincial-level targets for a national target of 20% energy intensity improvement during the 12th FYP; the official target is determined by the National Development and Reform Commission. Energy and GDP projections used in the allocations were compared with other models, and several allocation scenarios were run to test sensitivity. The resulting allocations for the 12th FYP offer insight on past performance and offer somewhat different distributions of provincial targets compared to the 11th FYP. Recommendations for reporting and monitoring progress on the targets, and methodology improvements, are included.

  20. Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China

    SciTech Connect (OSTI)

    Price, Lynn; Hasanbeigi, Ali; Lu, Hongyou; Wang, Lan

    2009-10-01

    China's cement industry, which produced 1,388 million metric tons (Mt) of cement in 2008, accounts for almost half of the world's total cement production. Nearly 40% of China's cement production is from relatively obsolete vertical shaft kiln (VSK) cement plants, with the remainder from more modern rotary kiln cement plants, including plants equipped with new suspension pre-heater and pre-calciner (NSP) kilns. Shandong Province is the largest cement-producing Province in China, producing 10% of China's total cement output in 2008. This report documents an analysis of the potential to improve the energy efficiency of NSP kiln cement plants in Shandong Province. Sixteen NSP kiln cement plants were surveyed regarding their cement production, energy consumption, and current adoption of 34 energy-efficient technologies and measures. Plant energy use was compared to both domestic (Chinese) and international best practice using the Benchmarking and Energy Saving Tool for Cement (BEST-Cement). This benchmarking exercise indicated an average technical potential primary energy savings of 12% would be possible if the surveyed plants operated at domestic best practice levels in terms of energy use per ton of cement produced. Average technical potential primary energy savings of 23% would be realized if the plants operated at international best practice levels. Energy conservation supply curves for both fuel and electricity savings were then constructed for the 16 surveyed plants. Using the bottom-up electricity conservation supply curve model, the cost-effective electricity efficiency potential for the studied cement plants in 2008 is estimated to be 373 gigawatt hours (GWh), which accounts for 16% of total electricity use in the 16 surveyed cement plants in 2008. Total technical electricity-saving potential is 915 GWh, which accounts for 40% of total electricity use in the studied plants in 2008. The fuel conservation supply curve model shows the total technical fuel efficiency potential equal to 7,949 terajoules (TJ), accounting for 8% of total fuel used in the studied cement plants in 2008. All the fuel efficiency potential is shown to be cost effective. Carbon dioxide (CO{sub 2}) emission reduction potential associated with cost-effective electricity saving is 383 kiloton (kt) CO{sub 2}, while total technical potential for CO{sub 2} emission reduction from electricity-saving is 940 ktCO{sub 2}. The CO{sub 2} emission reduction potentials associated with fuel-saving potentials is 950 ktCO{sub 2}.

  1. White Paper on Energy Efficiency Status of Energy-Using Products in China (2011)

    SciTech Connect (OSTI)

    Zhou, Nan; Romankiewicz, John; Fridley, David

    2012-06-01

    This White Paper focuses on the areas and products involved in the above tasks, based on the White Paper - Energy Efficiency Status of Energy-Using Products in China (2010), here referred to as White Paper 2010, which analyzed the energy efficiency status of 21 typical energy-using products in five sectors: household appliances, office equipment, commercial equipment, industrial equipment, and lighting equipment. Table 1 illustrates the detailed product coverage for this years paper, noting the addition of three household appliance items (automatic electric rice cooker, AC electric fan, and household induction cooktop) and one industrial sector item (three-phase distribution transformer).

  2. Offsite Source Recovery Program (OSRP) Workshop Module: Tianjin, China, July 16-July 17, 2012

    SciTech Connect (OSTI)

    Houlton, Robert J.

    2012-07-11

    Recovering and disposal of radioactive sources that are no longer in service in their intended capacity is an area of high concern Globally. A joint effort to recover and dispose of such sources was formed between the US Department of Energy and the Chinese Ministry of Environmental Protection (MEP), in preparation for the 2008 Beijing Olympics. LANL involvement in this agreement continues today under the DOE-Global Threat Reduction Initiative (GTRI) program. LANL will be presenting overview information on their Offsite Source Recovery (OSRP) and Source Disposal programs, in a workshop for the Ministry of Environmental Protection (MEP) at Tianjin, China, on July 16 and 17, 2012.

  3. Assessment of China's Energy-Saving and Emission-Reduction Accomplishments and Opportunities During the 11th Five Year Plan

    SciTech Connect (OSTI)

    Levine, Mark D.; Price, Lynn; Zhou, Nan; Fridley, David; Aden, Nathaniel; Lu, Hongyou; McNeil, Michael; Zheng, Nina; Yining, Qin; Yowargana, Ping

    2010-04-28

    During the period 1980 to 2002, China experienced a 5% average annual reduction in energy consumption per unit of gross domestic product (GDP). The period 2002-2005 saw a dramatic reversal of the historic relationship between energy use and GDP growth: energy use per unit of GDP increased an average of 3.8% per year during this period (NBS, various years). China's 11th Five Year Plan (FYP), which covers the period 2006-2010, required all government divisions at different levels to reduce energy intensity by 20% in five years in order to regain the relationship between energy and GDP growth experienced during the 1980s and 1990s. This report provides an assessment of selected policies and programs that China has instituted in its quest to fulfill the national goal of a 20% reduction in energy intensity by 2010. The report finds that China has made substantial progress toward its goal of achieving 20% energy intensity reduction from 2006 to 2010 and that many of the energy-efficiency programs implemented during the 11th FYP in support of China's 20% energy/GDP reduction goal appear to be on track to meet - or in some cases even exceed - their energy-saving targets. It appears that most of the Ten Key Projects, the Top-1000 Program, and the Small Plant Closure Program are on track to meet or surpass the 11th FYP savings goals. China's appliance standards and labeling program, which was established prior to the 11th FYP, has become very robust during the 11th FYP period. China has greatly enhanced its enforcement of new building energy standards but energy-efficiency programs for buildings retrofits, as well as the goal of adjusting China's economic structure to reduce the share of energy consumed by industry, do not appear to be on track to meet the stated goals. With the implementation of the 11th FYP now bearing fruit, it is important to maintain and strengthen the existing energy-saving policies and programs that are successful while revising programs or adding new policy mechanisms to improve the programs that are not on track to achieve the stated goals.

  4. The political economy of noncompliance in China: The case of industrial energy policy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Van Aken, Tucker; Lewis, Orion A.

    2015-03-18

    One of the greatest challenges facing China today is the central government's ability to ensure that policies are implemented effectively at the local level, particularly policies that seek to make China's economic growth model more sustainable. These policies face resistance from local authorities and enterprises that benefit from the status quo. This raises a key research question: why do some provinces more fully implement these central policies? We argue the extent of local implementation is best conceptualized as a rational balance between economic and political incentives: localities with regulatory autonomy, low regulatory capacity and alternative interests will not fully implementmore » policies that are at odds with local economic imperatives. By examining a critical case of central policy implementation—industrial energy intensity reduction in the eleventh five-year plan—this article demonstrates that, regardless of industrial makeup or economic development, provinces that have greater regulatory autonomy for noncompliance coupled with alternative economic interests do not, on average, perform as well. As a result, using a nested analysis approach this study illustrates this argument with both quantitative analysis and original case study evidence from fieldwork interviews.« less

  5. Comparison of building energy use data between the United States and China

    SciTech Connect (OSTI)

    Xia , Jianjun; Hong , Tianzhen; Shen, Qi; Feng , Wei; Yang, Le; Im , Piljae; Lu, Alison; Bhandari , Mahabir

    2013-10-30

    Buildings in the United States and China consumed 41percent and 28percent of the total primary energy in 2011, respectively. Good energy data are the cornerstone to understanding building energy performance and supporting research, design, operation, and policy making for low energy buildings. This paper presents initial outcomes from a joint research project under the U.S.-China Clean Energy Research Center for Building Energy Efficiency. The goal is to decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders. This paper first reviews and compares several popular existing building energy monitoring systems in both countries. Next a standard energy data model is presented. A detailed, measured building energy data comparison was conducted for a few office buildings in both countries. Finally issues of data collection, quality, sharing, and analysis methods are discussed. It was found that buildings in both countries performed very differently, had potential for deep energy retrofit, but that different efficiency measures should apply.

  6. Role of non-fossil energy in meeting China's energy and climate target for 2020

    SciTech Connect (OSTI)

    Zhou, Sheng; Tong, Qing; Yu, Sha; Wang, Yu; Chai, Qimin; Zhang, Xiliang

    2012-12-01

    China is the largest energy consumer and CO2 emitter in the world. The Chinese government faces growing challenges of ensuring energy security and reducing greenhouse gas emissions. To address these two issues, the Chinese government has announced two ambitious domestic indicative autonomous mitigation targets for 2020: increasing the ratio of non-fossil energy to 15% and reducing carbon dioxide emissions per unit of GDP by 40-45% from 2005 levels. To explore the role of non-fossil energy in achieving these two targets, this paper first provides an overview of current status of non-fossil energy development in China; then gives a brief review of GDP and primary energy consumption; next assesses in detail the role of the non fossil energy in 2020, including the installed capacity and electricity generation of non-fossil energy sources, the share and role of non-fossil energy in the electricity structure, emissions reduction resulting from the shift to non-fossil energy, and challenges for accomplishing the mitigation targets in 2020 ; finally, conclusions and policy measures for non-fossil energy development are proposed.

  7. The political economy of noncompliance in China: The case of industrial energy policy

    SciTech Connect (OSTI)

    Van Aken, Tucker; Lewis, Orion A.

    2015-03-18

    One of the greatest challenges facing China today is the central government's ability to ensure that policies are implemented effectively at the local level, particularly policies that seek to make China's economic growth model more sustainable. These policies face resistance from local authorities and enterprises that benefit from the status quo. This raises a key research question: why do some provinces more fully implement these central policies? We argue the extent of local implementation is best conceptualized as a rational balance between economic and political incentives: localities with regulatory autonomy, low regulatory capacity and alternative interests will not fully implement policies that are at odds with local economic imperatives. By examining a critical case of central policy implementationindustrial energy intensity reduction in the eleventh five-year planthis article demonstrates that, regardless of industrial makeup or economic development, provinces that have greater regulatory autonomy for noncompliance coupled with alternative economic interests do not, on average, perform as well. As a result, using a nested analysis approach this study illustrates this argument with both quantitative analysis and original case study evidence from fieldwork interviews.

  8. Liquefied U.S. Natural Gas Exports to China (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    China (Million Cubic Feet) Liquefied U.S. Natural Gas Exports to China (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 0 0 0 0 0 0 0 0 0 0 0 0 1974 0 0 0 0 0 0 0 0 0 0 0 0 1975 0 0 0 0 0 0 0 0 0 0 0 0 1976 0 0 0 0 0 0 0 0 0 0 0 0 1977 0 0 0 0 0 0 0 0 0 0 0 0 1978 0 0 0 0 0 0 0 0 0 0 0 0 1979 0 0 0 0 0 0 0 0 0 0 0 0 1980 0 0 0 0 0 0 0 0 0 0 0 0 1981 0 0 0 0 0 0 0 0 0 0 0 0 1982 0 0 0 0 0 0 0 0 0 0 0 0 1983 0 0 0 0 0 0 0 0 0 0 0 0 1984 0 0 0 0 0 0 0 0 0 0 0 0 1985 0

  9. Cost-effectiveness Analysis on Measures to Improve China's Coal-fired Industrial Boiler

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Manzhi; Shen, Bo; Han, Yafeng; Price, Lynn; Xu, Mingchao

    2015-08-01

    Tackling coal-burning industrial boiler is becoming one of the key programs to solve the environmental problem in China. Assessing the economics of various options to address coal-fired boiler is essential to identify cost-effective solutions. This paper discusses our work in conducting a cost-effectiveness analysis on various types of improvement measures ranging from energy efficiency retrofits to switch from coal to other fuels in China. Sensitivity analysis was also performed in order to understand the impacts of some economic factors such as discount rate and energy price on the economics of boiler improvement options. The results show that nine out ofmore » 14 solutions are cost-effective, and a lower discount rate and higher energy price will result in more energy efficiency measures being cost-effective. Both monetary and non-monetary barriers to energy-efficiency improvement are discussed and policies to tackle these barriers are recommended. Our research aims at providing a methodology to assess cost-effective solutions to boiler problems.« less

  10. A long-term, integrated impact assessment of alternative building energy code scenarios in China

    SciTech Connect (OSTI)

    Yu, Sha; Eom, Jiyong; Evans, Meredydd; Clarke, Leon E.

    2014-04-01

    China is the second largest building energy user in the world, ranking first and third in residential and commercial energy consumption. Beginning in the early 1980s, the Chinese government has developed a variety of building energy codes to improve building energy efficiency and reduce total energy demand. This paper studies the impact of building energy codes on energy use and CO2 emissions by using a detailed building energy model that represents four distinct climate zones each with three building types, nested in a long-term integrated assessment framework GCAM. An advanced building stock module, coupled with the building energy model, is developed to reflect the characteristics of future building stock and its interaction with the development of building energy codes in China. This paper also evaluates the impacts of building codes on building energy demand in the presence of economy-wide carbon policy. We find that building energy codes would reduce Chinese building energy use by 13% - 22% depending on building code scenarios, with a similar effect preserved even under the carbon policy. The impact of building energy codes shows regional and sectoral variation due to regionally differentiated responses of heating and cooling services to shell efficiency improvement.

  11. US/China Energy and Environmental Technology Center (EETC) international business development and technology transfer

    SciTech Connect (OSTI)

    Hsieh, S.T.; Qiu Daxiong; Zhang Guocheng

    1997-12-31

    Since January 1997, the US/China Energy and Environmental Technology Center (EETC) in Beijing has been jointly operated by Tulane University and Tsinghua University. EETC is established to encourage the adoption of technologies for energy production with improved environmental performance which are essential for supporting economic growth and managing the Global Warming and Climate Change issues. International cooperation is critical to insure the environmental and energy security on a global basis. For example, the US has acquired a great deal of useful experience in clean coal technology which has been demonstrated with major utilities in commercial operations. The adaption of, and the installation of, clean coal technology should be given high priority. Worldwide, the continuous exchange of information and technology between developed and developing nations relating to the current and future clean coal technologies is of great importance. Developed nations which possess environmental responsive technologies and financial resources should work closely with developing nations to facilitate technology transfer and trade of technologies. International cooperation will lower the cost of deploying clean coal technologies directed toward the clean production of energy. This paper presents the updated activities of EETC on facilitating technology transfer and promoting the clean use of coal to satisfy growing energy demand in China.

  12. Cost-effectiveness Analysis on Measures to Improve China's Coal-fired Industrial Boiler

    SciTech Connect (OSTI)

    Liu, Manzhi; Shen, Bo; Han, Yafeng; Price, Lynn; Xu, Mingchao

    2015-08-01

    Tackling coal-burning industrial boiler is becoming one of the key programs to solve the environmental problem in China. Assessing the economics of various options to address coal-fired boiler is essential to identify cost-effective solutions. This paper discusses our work in conducting a cost-effectiveness analysis on various types of improvement measures ranging from energy efficiency retrofits to switch from coal to other fuels in China. Sensitivity analysis was also performed in order to understand the impacts of some economic factors such as discount rate and energy price on the economics of boiler improvement options. The results show that nine out of 14 solutions are cost-effective, and a lower discount rate and higher energy price will result in more energy efficiency measures being cost-effective. Both monetary and non-monetary barriers to energy-efficiency improvement are discussed and policies to tackle these barriers are recommended. Our research aims at providing a methodology to assess cost-effective solutions to boiler problems.

  13. Municipal solid waste source-separated collection in China: A comparative analysis

    SciTech Connect (OSTI)

    Tai Jun; Zhang Weiqian; Che Yue; Feng Di

    2011-08-15

    A pilot program focusing on municipal solid waste (MSW) source-separated collection was launched in eight major cities throughout China in 2000. Detailed investigations were carried out and a comprehensive system was constructed to evaluate the effects of the eight-year implementation in those cities. This paper provides an overview of different methods of collection, transportation, and treatment of MSW in the eight cities; as well as making a comparative analysis of MSW source-separated collection in China. Information about the quantity and composition of MSW shows that the characteristics of MSW are similar, which are low calorific value, high moisture content and high proportion of organisms. Differences which exist among the eight cities in municipal solid waste management (MSWM) are presented in this paper. Only Beijing and Shanghai demonstrated a relatively effective result in the implementation of MSW source-separated collection. While the six remaining cities result in poor performance. Considering the current status of MSWM, source-separated collection should be a key priority. Thus, a wider range of cities should participate in this program instead of merely the eight pilot cities. It is evident that an integrated MSWM system is urgently needed. Kitchen waste and recyclables are encouraged to be separated at the source. Stakeholders involved play an important role in MSWM, thus their responsibilities should be clearly identified. Improvement in legislation, coordination mechanisms and public education are problematic issues that need to be addressed.

  14. Electricity Capacity Expansion Modeling, Analysis, and Visualization. A Summary of High-Renewable Modeling Experience for China

    SciTech Connect (OSTI)

    Blair, Nate; Zhou, Ella; Getman, Dan; Arent, Douglas J.

    2015-10-01

    Mathematical and computational models are widely used for the analysis and design of both physical and financial systems. Modeling the electric grid is of particular importance to China for three reasons. First, power-sector assets are expensive and long-lived, and they are critical to any country's development. China's electric load, transmission, and other energy-related infrastructure are expected to continue to grow rapidly; therefore it is crucial to understand and help plan for the future in which those assets will operate (NDRC ERI 2015). Second, China has dramatically increased its deployment of renewable energy (RE), and is likely to continue further accelerating such deployment over the coming decades. Careful planning and assessment of the various aspects (technical, economic, social, and political) of integrating a large amount of renewables on the grid is required. Third, companies need the tools to develop a strategy for their own involvement in the power market China is now developing, and to enable a possible transition to an efficient and high RE future.

  15. Constraining Energy Consumption of China's Largest IndustrialEnterprises Through the Top-1000 Energy-Consuming EnterpriseProgram

    SciTech Connect (OSTI)

    Price, Lynn; Wang, Xuejun

    2007-06-01

    Between 1980 and 2000, China's energy efficiency policiesresulted in a decoupling of the traditionally linked relationship betweenenergy use and gross domestic product (GDP) growth, realizing a four-foldincrease in GDP with only a doubling of energy use. However, during Chinas transition to a market-based economy in the 1990s, many of thecountry's energy efficiency programs were dismantled and between 2001 and2005 China's energy use increased significantly, growing at about thesame rate as GDP. Continuation of this one-to-one ratio of energyconsumption to GDP given China's stated goal of again quadrupling GDPbetween 2000 and 2020 will lead to significant demand for energy, most ofwhich is coal-based. The resulting local, national, and globalenvironmental impacts could be substantial.In 2005, realizing thesignificance of this situation, the Chinese government announced anambitious goal of reducing energy consumption per unit of GDP by 20percent between 2005 and 2010. One of the key initiatives for realizingthis goal is the Top-1000 Energy-Consuming Enterprises program. Thecomprehensive energy consumption of these 1000 enterprises accounted for33 percent of national and 47 percent of industrial energy usage in 2004.Under the Top-1000 program, 2010 energy consumption targets wereannounced for each enterprise. Activities to be undertaken includebenchmarking, energy audits, development of energy saving action plans,information and training workshops, and annual reporting of energyconsumption. This paper will describe the program in detail, includingthe types of enterprises included and the program activities, and willprovide an analysis of the progress and lessons learned todate.

  16. CFL Labeling Harmonization in the United States, China, Brazil andELI Member Countries: Specifications, Testing, and MutualRecognition

    SciTech Connect (OSTI)

    Fridley, David; Lin, Jiang; Denver, Andrea; Biermayer, Peter; Dillavou, Tyler

    2005-07-20

    This report examines critical differences among energy-efficient labeling programs for CFLs in Brazil, China, the United States, and the seven members of the international Efficient Lighting Initiative (ELI) in terms of technical specifications and test procedures, and review issues related to international harmonization of these standards.

  17. A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.

    SciTech Connect (OSTI)

    Hasanbeigi, Ali; Price, Lynn; Aden, Nathaniel; Chunxia, Zhang; Xiuping, Li; Fangqin, Shangguan

    2011-06-15

    Production of iron and steel is an energy-intensive manufacturing process. In 2006, the iron and steel industry accounted for 13.6% and 1.4% of primary energy consumption in China and the U.S., respectively (U.S. DOE/EIA, 2010a; Zhang et al., 2010). The energy efficiency of steel production has a direct impact on overall energy consumption and related carbon dioxide (CO2) emissions. The goal of this study is to develop a methodology for making an accurate comparison of the energy intensity (energy use per unit of steel produced) of steel production. The methodology is applied to the steel industry in China and the U.S. The methodology addresses issues related to boundary definitions, conversion factors, and indicators in order to develop a common framework for comparing steel industry energy use. This study uses a bottom-up, physical-based method to compare the energy intensity of China and U.S. crude steel production in 2006. This year was chosen in order to maximize the availability of comparable steel-sector data. However, data published in China and the U.S. are not always consistent in terms of analytical scope, conversion factors, and information on adoption of energy-saving technologies. This study is primarily based on published annual data from the China Iron & Steel Association and National Bureau of Statistics in China and the Energy Information Agency in the U.S. This report found that the energy intensity of steel production is lower in the United States than China primarily due to structural differences in the steel industry in these two countries. In order to understand the differences in energy intensity of steel production in both countries, this report identified key determinants of sector energy use in both countries. Five determinants analyzed in this report include: share of electric arc furnaces in total steel production, sector penetration of energy-efficiency technologies, scale of production equipment, fuel shares in the iron and steel industry, and final steel product mix in both countries. The share of lower energy intensity electric arc furnace production in each country was a key determinant of total steel sector energy efficiency. Overall steel sector structure, in terms of average plant vintage and production capacity, is also an important variable though data were not available to quantify this in a scenario. The methodology developed in this report, along with the accompanying quantitative and qualitative analyses, provides a foundation for comparative international assessment of steel sector energy intensity.

  18. Is the “ecological and economic approach for the restoration of collapsed gullies” in Southern China really economic?

    SciTech Connect (OSTI)

    Wang, Chengchao; Zhang, Yaoqi; Xu, Yecheng; Yang, Qichun

    2015-07-31

    Collapsed gully erosion constantly plagues the sustainability of rural areas in China. To control collapsed gully erosion, an ecological and economic approach, which uses tree plantation to gain economic benefits and control soil erosion, has been widely applied by local governments in Southern China. However, little is known about the economic feasibility of this new method. The objective of this study was to determine the effectiveness and economic benefits of the new method. Based on a case study in Changting County, Southeast China, two farms were selected to represent a timber tree plantation and a fruit tree plantation, respectively. The Annual Capital Capitalization Method and Return on Investment (ROI) were selected to conduct cost-benefit analysis. In contrast to previous studies, we found that the new approach was far from economic. The value of the newly-built forestland in Sanzhou Village and Tufang Village is 2738 RMB ha-1 and 5477 RMB ha-1, respectively, which are extremely lower than the costs of ecological restoration. Meanwhile, the annual ROI is –3.60% and –8.90%, respectively, which is negative and also far poorer than the average value of forestry in China. The costs of conservation were substantially over the related economic benefits, and the investors would suffer from greater loss if they invested more in the conservation. Low-cost terraces with timber trees had less economic loss compared with the costly terraces with fruit tree plantation. Moreover, the cost efficiency of the new approaches in soil conservation was also greatly poorer than the conventional method. The costs of conserving one ton soil per year for conventional method, new method for planting timber trees, and planting fruit trees were 164 RMB, 696 RMB, and 11,664 RMB, respectively. Therefore, the new collapsed gully erosion control methods are uneconomic and unsuitable to be widely carried out in China in the near future.

  19. Is the “ecological and economic approach for the restoration of collapsed gullies” in Southern China really economic?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Chengchao; Zhang, Yaoqi; Xu, Yecheng; Yang, Qichun

    2015-07-31

    Collapsed gully erosion constantly plagues the sustainability of rural areas in China. To control collapsed gully erosion, an ecological and economic approach, which uses tree plantation to gain economic benefits and control soil erosion, has been widely applied by local governments in Southern China. However, little is known about the economic feasibility of this new method. The objective of this study was to determine the effectiveness and economic benefits of the new method. Based on a case study in Changting County, Southeast China, two farms were selected to represent a timber tree plantation and a fruit tree plantation, respectively. Themore » Annual Capital Capitalization Method and Return on Investment (ROI) were selected to conduct cost-benefit analysis. In contrast to previous studies, we found that the new approach was far from economic. The value of the newly-built forestland in Sanzhou Village and Tufang Village is 2738 RMB ha-1 and 5477 RMB ha-1, respectively, which are extremely lower than the costs of ecological restoration. Meanwhile, the annual ROI is –3.60% and –8.90%, respectively, which is negative and also far poorer than the average value of forestry in China. The costs of conservation were substantially over the related economic benefits, and the investors would suffer from greater loss if they invested more in the conservation. Low-cost terraces with timber trees had less economic loss compared with the costly terraces with fruit tree plantation. Moreover, the cost efficiency of the new approaches in soil conservation was also greatly poorer than the conventional method. The costs of conserving one ton soil per year for conventional method, new method for planting timber trees, and planting fruit trees were 164 RMB, 696 RMB, and 11,664 RMB, respectively. Therefore, the new collapsed gully erosion control methods are uneconomic and unsuitable to be widely carried out in China in the near future.« less

  20. Waste disposal technology transfer matching requirement clusters for waste disposal facilities in China

    SciTech Connect (OSTI)

    Dorn, Thomas; Nelles, Michael; Flamme, Sabine; Jinming, Cai

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer We outline the differences of Chinese MSW characteristics from Western MSW. Black-Right-Pointing-Pointer We model the requirements of four clusters of plant owner/operators in China. Black-Right-Pointing-Pointer We examine the best technology fit for these requirements via a matrix. Black-Right-Pointing-Pointer Variance in waste input affects result more than training and costs. Black-Right-Pointing-Pointer For China technology adaptation and localisation could become push, not pull factors. - Abstract: Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don't sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no 'best' plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is suggested and a technology matrix is set out to ease the choice of technology to transfer and avoid past errors. The four steps are (1) Identification of plant owner/operator requirement clusters; (2) Determination of different municipal solid waste (MSW) treatment plant attributes; (3) Development of a matrix matching requirement clusters to plant attributes; (4) Application of Quality Function Deployment Method to aid in technology localisation. The technology transfer matrices thus derived show significant performance differences between the various technologies available. It is hoped that the resulting research can build a bridge between technology transfer research and waste disposal research in order to enhance the exchange of more sustainable solutions in future.

  1. Feedbacks from Focus Group Meeting on Training and Implementation of Building Energy Codes in China

    SciTech Connect (OSTI)

    Shui, Bin; Lin , Haiyan; Song, Bo; Halverson, Mark A.; Evans, Meredydd; Zhu, Xiaojiao

    2011-01-01

    A focus group meeting is a very effective quality research approach to collect information on a specific project. Through focus group meetings at both Changchun and Ningbo in August 2010, the project team gained a more complete understandings of key stakeholders (such as their education level), their training needs and expectations, key factors influencing their decision making, and incurred implementation difficulties. In addition, the meeting helped the project team (especially PNNL) improve its understanding of the implementation status of building energy codes in other regions (such as small cities and counties neighboring to urban areas, small townships and rural areas distant from urban areas). The collected feedbacks will serve as important input not only for better design of training materials and the development of an on-line training website, but also for development of follow-up projects to promote building energy codes in China.

  2. Comparative Policy Study for Green Buildings in U.S. and China

    SciTech Connect (OSTI)

    Khanna, Nina; Romankiewicz, John; Feng, Wei; Zhou, Nan; Ye, Qing

    2014-04-01

    Prominent barriers facing the U.S. green building industry include the fact that government bodies that supervise health, fire safety, land, and other public operations are slow to revise codes to accommodate green building (regulatory barrier). In China, the lack of a green building professional accreditation process similar to the Leadership in Energy and Environmental Design (LEED) AP process limits the green building workforce capacity development (informational barrier). The main policies highlighted in this report to tackle these barriers are 1) comprehensive codes and labeling plan (informational, institutional), 2) government-led targets and demonstrations (risk), 3) education and awareness programs (informational), 4) fiscal policy that supports green building investment (financial), and 5) integrated design promotion (institutional, financial).

  3. Counterterrorism and Potential Constructive Cooperation Between China and the United States

    SciTech Connect (OSTI)

    LE,RONGRONG

    2003-02-01

    Terrorism is a scourge common to the international community and its threat to world peace and stability is severe and imminent. This paper evaluates the campaign against terrorism and the possible modalities of constructive cooperation between China and the United States in this fight. Technical cooperation can enhance Sino-U.S. security capabilities for dealing with the terrorist threat. This paper identifies specific bilateral cooperative activities that may benefit common interests. Focusing on protecting people, facilities, and infrastructure, Sino-U.S. cooperation may introduce protective technologies and training, including means of boosting port and border security, and detecting explosives or nuclear materials. Cooperation will not only enhance the global counterterrorism campaign, but also form a sound foundation for constructive and cooperative relations between the two countries.

  4. Passive cigarette smoke, coal heating, and respiratory symptoms of nonsmoking women in China

    SciTech Connect (OSTI)

    Pope, C.A. III Brigham Young Univ., Provo, UT ); Xu, X. )

    1993-09-01

    In this study the authors evaluated data from a sample of 973 never-smoking women, ages 20-40, who worked in three similar textile mills in Anhui Province, China. They compared prevalence rates of respiratory symptoms across homes with and without coal heating and homes with different numbers of smokers. Multiple logistic regression models that controlled for age, job title, and mill of employment were also estimated. Respiratory symptoms were associated with combined exposure to passive cigarette smoke and coal heating. Effects of passive cigarette smoke and coal heating on respiratory symptoms appeared to be nearly additive, suggesting a dose-response relationship between respiratory symptoms and home indoor air pollution from these two sources. The prevalence of chest illness, cough, phlegm, and shortness of breath (but not wheeze) was significantly elevated for women living in homes with both smokers and coal heating.

  5. Inorganic aerosols responses to emission changes in Yangtze River Delta, China

    SciTech Connect (OSTI)

    Dong, Xinyi; Li, Juan; Fu, Joshua S.; Gao, Yang; Huang, Kan; Zhuang, Guoshun

    2014-05-15

    China announced the Chinese National Ambient Air Quality standards (CH-NAAQS) on Feb. 29th, 2012, and PM2.5 is for the very first time included in the standards as a criteria pollutant. In order to probe into PM2.5 pollution over Yangtze River Delta, which is one of the major urban clusters hosting more than 80 million people in China, the integrated MM5/CMAQ modeling system is applied for a full year simulation to examine the PM2.5 concentration and seasonality, and also the inorganic aerosols responses to precursor emission changes. Both simulation and observation demonstrated that, inorganic aerosols have substantial contributions to PM2.5 over YRD, ranging from 37.1% in November to 52.8% in May. Nocturnal production of nitrate (NO3-) through heterogeneous hydrolysis of N2O5 was found significantly contribute to high NO3-concentration throughout the year. We also found that in winter NO3- was even increased under nitrogen oxides (NOx) emission reduction due to higher production of N2O5 from the excessive ozone (O3) introduced by attenuated titration, which further lead to increase of ammonium (NH4+) and sulfate (SO42-), while other seasons showed decrease response of NO3-. Sensitivity responses of NO3- under anthropogenic VOC emission reduction was examined and demonstrated that in urban areas over YRD, NO3- formation was actually VOC sensitive due to the O3-involved nighttime chemistry of N2O5, while a reduction of NOx emission may have counter-intuitive effect by increasing concentrations of inorganic aerosols.

  6. Landsat and SPOT data for oil exploration in North-Western China

    SciTech Connect (OSTI)

    Nishidai, Takashi

    1996-07-01

    Satellite remote sensing technology has been employed by Japex to provide information related to oil exploration programs for many years. Since the beginning of the 1980`s, regional geological interpretation through to advanced studies using satellite imagery with high spectral and spatial resolutions (such as Landsat TM and SPOT HRV), have been carried out, for both exploration programs and for scientific research. Advanced techniques (including analysis of airborne hyper-multispectral imaging sensor data) as well as conventional photogeological techniques were used throughout these programs. The first program using remote sensing technology in China focused on the Tarim Basin, Xinjiang Uygur Autonomous Region, and was carried out using Landsat MSS data. Landsat MSS imagery allows us to gain useful preliminary geological information about an area of interest, prior to field studies. About 90 Landsat scenes cover the entire Xinjiang Uygru Autonomous Region, this allowed us to give comprehensive overviews of 3 hydrocarbon-bearing basins (Tarim, Junggar, and Turpan-Hami) in NW China. The overviews were based on the interpretations and assessments of the satellite imagery and on a synthesis of the most up-to-date accessible geological and geophysical data as well as some field works. Pairs of stereoscopic SPOT HRV images were used to generate digital elevation data with a 40 in grid cover for part of the Tarim Basin. Topographic contour maps, created from this digital elevation data, at scales of 1:250,000 and 1:100,000 with contour intervals of 100 m and 50 m, allowed us to make precise geological interpretation, and to carry out swift and efficient geological field work. Satellite imagery was also utilized to make medium scale to large scale image maps, not only to interpret geological features but also to support field workers and seismic survey field operations.

  7. Carbon emissions and sequestration in forests: Case studies from seven developing countries. Volume 3, India and China

    SciTech Connect (OSTI)

    Makundi, W.; Sathaye, J.; Ravindranath, N.H.; Somashekhar, B.S.; Gadgil, M.; Deying, Xu

    1992-08-01

    As part of the effort to understand the sources of carbon dioxide and other major greenhouse gases, the Tropical Forestry and Global Climate Change Research Network (F-7) was established. The countries taking part in the F-7 Network -- Brazil, China, India, Indonesia, Malaysia, Mexico, Nigeria and Thailand -- possess large tracts of tropical forests and together experience the bulk of large scale tropical deforestation. Integreation of work of indigenous researchers and institutions from the participating countries should allow for the gathering of on-site information into the more general and universally available base of knowledge. The information contained in this report represents the results of the first phase of the F-7 project, which had the explicit aim of providing quantitative data on forestry-related carbon emissions from India and China.

  8. The estimation of the number of underground coal miners and the annual dose to coal miners in China

    SciTech Connect (OSTI)

    Liu, F.D.; Pan, Z.Q.; Liu, S.L.; Chen, L.; Ma, J.Z.; Yang, M.L.; Wang, N.P.

    2007-08-15

    This paper introduces an estimation method for the number of underground coal miners and the annual dose to coal miners in China. It shows that there are about 6 million underground miners at present and the proportion is about 1, 1 and 4 million for national key coal mines, state-owned local coal mines, and township and private-ownership coal mines, respectively. The collective dose is about 1.65 X 10{sup 4} person-Sv y{sup -1}, of which township and private-ownership coal mines contribute about 91%. This paper also points out that the 2000 UNSCEAR report gives the number of miners of coal production and their collective dose, which are underestimated greatly because the report only includes the number of underground miners in national key coal mines, which only accounts for 1/6 of the workers all working under the best ventilation conditions in China.

  9. China’s R&D for Energy Efficient Buildings: Insights for U.S. Cooperation with China

    SciTech Connect (OSTI)

    Yu, Sha; Evans, Meredydd

    2010-04-01

    This report includes an evaluation of China’s current activities and future direction in building energy efficiency R&D and its relevance to DOE’s R&D activities under the Building Technologies Program in the Office of Energy Efficiency and Renewable Energy. The researchers reviewed the major R&D programs in China including the so-called 973 Program, the 863 Program, and the Key Technology R&D Program1 as well as the research activities of major research institutes. The report also reviewed several relevant documents of the Chinese government, websites (including the International Energy Agency and national and local governments in China), newsletters, and financial information listed in the program documents and websites.

  10. Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan

    SciTech Connect (OSTI)

    Zhou, Nan; Mcneil, Michael; Levine, Mark

    2011-03-01

    China's 11th Five-Year Plan (FYP) sets an ambitious target to reduce the energy intensity per unit of gross domestic product (GDP) by 20% from 2005 to 2010 (NDRC, 2006). In the building sector, the primary energy-saving target allocated during the 11 FYP period is 100 Mtce. Savings are expected to be achieved through the strengthening of enforcement of building energy efficiency codes, existing building retrofits and heat supply system reform, followed by energy management of government office buildings and large scale public buildings, adoption of renewable energy sources. To date, China has reported that it achieved the half of the 20% intensity reduction target by the end of 2008, however, little has been made clear on the status and the impact of the building programs. There has also been lack of description on methodology for calculating the savings and baseline definition, and no total savings that have been officially reported to date. This paper intends to provide both quantitative and qualitative assessment of the key policies and programs in building sector that China has instituted in its quest to fulfill the national goal. Overall, this paper concludes that the largest improvement for building energy efficiency were achieved in new buildings; the program to improve the energy management in government and large scale public buildings are in line with the target; however the progress in the area of existing building retrofits, particularly heating supply system reform lags behind the stated goal by a large amount.

  11. Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan

    SciTech Connect (OSTI)

    Zhou, Nan; McNeil, Michael; Levine, Mark

    2010-06-07

    China's 11th Five-Year Plan (FYP) sets an ambitious target to reduce the energy intensity per unit of gross domestic product (GDP) by 20% from 2005 to 2010 (NDRC, 2006). In the building sector, the primary energy-saving target allocated during the 11 FYP period is 100 Mtce. Savings are expected to be achieved through the strengthening of enforcement of building energy efficiency codes, existing building retrofits and heat supply system reform, followed by energy management of government office buildings and large scale public buildings, adoption of renewable energy sources. To date, China has reported that it achieved the half of the 20% intensity reduction target by the end of 2008, however, little has been made clear on the status and the impact of the building programs. There has also been lack of description on methodology for calculating the savings and baseline definition, and no total savings that have been officially reported to date. This paper intend to provide both quantitative and qualitative assessment of the key policies and programs in building sector that China has instituted in its quest to fulfill the national goal. Overall, this paper concludes that the largest improvement for building energy efficiency were achieved in new buildings; the program to improve the energy management in government and large scale public buildings are in line with the target; however the progress in the area of existing building retrofit particularly heat supply system reform lags the stated goal by a large amount.

  12. Greenhouse gases emissions accounting for typical sewage sludge digestion with energy utilization and residue land application in China

    SciTech Connect (OSTI)

    Niu Dongjie; Huang Hui; Dai Xiaohu; Zhao Youcai

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer GHGs emissions from sludge digestion + residue land use in China were calculated. Black-Right-Pointing-Pointer The AD unit contributes more than 97% of total biogenic GHGs emissions. Black-Right-Pointing-Pointer AD with methane recovery is attractive for sludge GHGs emissions reduction. - Abstract: About 20 million tonnes of sludge (with 80% moisture content) is discharged by the sewage treatment plants per year in China, which, if not treated properly, can be a significant source of greenhouse gases (GHGs) emissions. Anaerobic digestion is a conventional sewage sludge treatment method and will continue to be one of the main technologies in the following years. This research has taken into consideration GHGs emissions from typical processes of sludge thickening + anaerobic digestion + dewatering + residue land application in China. Fossil CO{sub 2}, biogenic CO{sub 2}, CH{sub 4,} and avoided CO{sub 2} as the main objects is discussed respectively. The results show that the total CO{sub 2}-eq is about 1133 kg/t DM (including the biogenic CO{sub 2}), while the net CO{sub 2}-eq is about 372 kg/t DM (excluding the biogenic CO{sub 2}). An anaerobic digestion unit as the main GHGs emission source occupies more than 91% CO{sub 2}-eq of the whole process. The use of biogas is important for achieving carbon dioxide emission reductions, which could reach about 24% of the total CO{sub 2}-eq reduction.

  13. An Overview of the Cooperative Effort between the United States Department of Energy and the China Atomic Energy Authority to Enhance MPC&A Inspections for Civil Nuclear Facilities in China

    SciTech Connect (OSTI)

    Ahern, Keith; Daming, Liu; Hanley, Tim; Livingston, Linwood; McAninch, Connie; McGinnis, Brent R; Ning, Shen; Qun, Yang; Roback, Jason William; Tuttle, Glenn; Xuemei, Gao; Galer, Regina; Peterson, Nancy; Jia, Jinlie

    2011-01-01

    The United States Department of Energy, National Nuclear Security Administration (DOE/NNSA) and the China Atomic Energy Authority (CAEA) are cooperating to enhance the domestic regulatory inspections capacity for special nuclear material protection, control and accounting (MPC&A) requirements for civil nuclear facilities in China. This cooperation is conducted under the auspices of the Agreement between the Department of Energy of the United States of America and the State Development and Planning Commission of the People s Republic of China on Cooperation Concerning Peaceful Uses of Nuclear Technology. This initial successful effort was conducted in three phases. Phase I focused on introducing CAEA personnel to DOE and U. S. Nuclear Regulatory Commission inspection methods for U. S. facilities. This phase was completed in January 2008 during meetings in Beijing. Phase II focused on developing physical protection and material control and accounting inspection exercises that enforced U. S. inspection methods identified during Phase 1. Hands on inspection activities were conducted in the United States over a two week period in July 2009. Simulated deficiencies were integrated into the inspection exercises. The U. S. and Chinese participants actively identified and discussed deficiencies noted during the two week training course. The material control and accounting inspection exercises were conducted at the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, KY. The physical protection inspection exercises were conducted at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN. Phase III leveraged information provided under Phase I and experience gained under Phase II to develop a formal inspection guide that incorporates a systematic approach to training for Chinese MPC&A field inspectors. Additional hands on exercises that are applicable to Chinese regulations were incorporated into the Phase III training material. Phase III was completed in May 2010 at the China Institute of Atomic Energy (CIAE) in Beijing. This paper provides details of the successful cooperation between DOE/NNSA and CAEA for all phases of the cooperative effort to enhance civil domestic MPC&A inspections in China.

  14. Eco-Design of River Fishways for Upstream Passage: Application for Hanfeng Dam, Pengxi River, China

    SciTech Connect (OSTI)

    Johnson, Gary E.; Rainey, William S.

    2012-05-20

    This paper provides a scientific approach to eco-design of river fishways to allow upstream movement of fish past new and existing dams in China. This eco-design approach integrates principles of fish ecology/behavior and engineering, a scientific field also known as bio-engineering or eco-hydraulics. We define a fishway as a structure or mechanism to convey fish upstream past a dam. Man-made or natural stream beds can be part of the fishway mechanism. Fish include bony and non-bony fishes, and upstream passage is the concern here, not downstream passage. The problem is dams block access to upstream habitat used for spawning, rearing, and refuge, i.e., dams decrease habitat connectivity. A solution to alleviate this problem is to design fishways, preferably while the dam is being designed, but if necessary, as retrofits afterward to provide a route that fish can and will use to pass safely upstream without undue delay. Our eco-design approach for fishways involves eight steps: 1) identify the primary species of importance; 2) understand basic ecology and behavior of these fish; 3) characterize the environmental conditions where passage is or will be blocked; 4 identify fishway alternatives and select a preferred alternative; 5) establish eco-design criteria for the fishway, either from management agencies or, if necessary, developed specifically for the given site; 6) where needed, identify and perform research required to resolve critical uncertainties and finalize the eco-design criteria; 7) apply the eco-design criteria and site-specific considerations to design the fishway, involving peer-review by local stakeholders in the process; 8) build the fishway, monitor its effectiveness, and apply the lessons learned. Example fishways are described showing a range of eco-designs depending on the dam site and fish species of concern. We apply the eco-design principles to recommend an approach and next steps for a fishway to pass fish upstream at Hanfeng Dam, an existing regulating dam forming Hanfeng Lake on the Pengxi River near Kaixian, China.

  15. The second-phase development of the China JinPing underground laboratory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Jianmin; Ji, Xiangdong; Haxton, Wick; Wang, Joseph S.Y.

    2015-03-24

    During 2013-2015 an expansion of the China JinPing underground Laboratory (CJPL) will be undertaken along a main branch of a bypass tunnel in the JinPing tunnel complex. This second phase of CJPL will increase laboratory space to approximately 96,000 m³, which can be compared to the existing CJPL-I volume of ~ 4,000 m³. One design configuration has eight additional hall spaces, each over 60 m long and approximately 12 m in width, with overburdens of about 2.4 km of rock, oriented parallel to and away from the main water transport and auto traffic tunnels. There are additional possibilities for furthermore » expansions at a nearby second bypass tunnel and along the entrance and exit branches of both bypass tunnels, potentially leading to an expanded CJPL comparable in size to Gran Sasso. Concurrent with the excavation activities, planning is underway for dark matter and other rare-event detectors, as well as for geophysics/engineering and other coupled multi-disciplinary sensors. In the town meeting on 8 September, 2013 at Asilomar, CA, associated with the 13th International Conference on Topics in Astroparticle and Underground Physics (TAUP), presentations and panel discussions addressed plans for one-ton expansions of the current CJPL germanium detector array of the China Darkmatter EXperiment (CDEX) collaboration and of the duel-phase xenon detector of the Panda-X collaboration, as well as possible new detector initiatives for dark matter studies, low-energy solar neutrino detection, neutrinoless double beta searches, and geoneutrinos. JinPing was also discussed as a site for a low-energy nuclear astrophysics accelerator. Geophysics/engineering opportunities include acoustic and micro-seismic monitoring of rock bursts during and after excavation, coupled-process in situ measurements, local, regional, and global monitoring of seismically induced radon emission, and electromagnetic signals. Additional ideas and projects will likely be developed in the next few years, driven by China’s domestic needs and by international experiments requiring access to very great depths.« less

  16. Energy Assessments under the Top 10,000 Program - A Case Study for a Steel Mill in China

    SciTech Connect (OSTI)

    Lu, Hongyou; Price, Lynn; Nimbalkar, Sachin U; Thekdi, Arvind; Degroot, Matthew; Shi, Jun

    2014-01-01

    One of the largest energy-savings programs for the Chinese industrial sector was the Top-1,000 Program, which targeted the 1,000 largest industrial enterprises in China. This program was launched in 2006, implemented through 2010, and covered 33% of national energy usage. Because of the success of the Top-1000 initiative, the program has now been expanded to the Top-10,000 program in the 12th Five-Year Plan period (2011-2015). The Top-10,000 program covers roughly 15,000 industrial enterprises, or about two-thirds of China s total energy consumption. Implementing energy audit systems and conducting industrial energy efficiency assessments are key requirements of the Top-10,000 program. Previous research done by Lawrence Berkeley National Laboratory (LBNL) has shown that there is a significant potential for improvement in energy assessment practices and applications in China. Issues such as lack of long term policy mechanisms, insufficient motivation for industrial enterprises, limited technical scope of energy assessments, and lack of systematic standardization have been identified. Through the support of the U.S. Department of Energy (DOE) and the U.S. State Department (with additional co-funding from the Energy Foundation China), LBNL, Oak Ridge National Laboratory, the Institute for Sustainable Communities (ISC), and DOE Energy Experts worked collaboratively with Chinese local organizations and conducted a series of industrial energy efficiency assessment demonstrations in selected Chinese industrial plants. The project aimed to not only introduce standardized methodologies and tools for energy assessments, but also to bring the systems approach for energy system analysis to the Top 10,000 enterprises. Through the project, five energy system assessments were conducted, and more than 300 Chinese experts from local energy conservation centers, universities, research organizations, energy service companies, and plant engineers were trained. This paper begins by introducing China s national energy intensity and carbon intensity reduction targets. Then, this paper explains the development of Top 10,000 program, including program requirements, the method for target allocation, key supporting policies, as well as challenges in implementing the program. By focusing on a process heating energy system assessment conducted in a Chinese steel mill, this paper presents an example of an energy system assessment conducted on steel reheating furnaces, including overall energy efficiency levels, areas of heat loss, and the potential for energy savings. In addition, the paper provides energy-savings recommendations that were identified during the assessment, as well as potential energy and energy costs savings. To conclude, this paper presents key findings that could further improve the Top 10,000 program by implementing a systems approach for energy assessments.

  17. Compliance and Verification of Standards and Labeling Programs in China: Lessons Learned

    SciTech Connect (OSTI)

    Saheb, Yamina; Zhou, Nan; Fridley, David; Pierrot, Andre

    2010-08-01

    After implementing several energy efficiency standards and labels (30 products covered by MEPS, 50 products covered by voluntary labels and 19 products by mandatory labels), the China National Institute of Standardization (CNIS) is now implementing verification and compliance mechanism to ensure that the energy information of labeled products comply with the requirements of their labels. CNIS is doing so by organizing check testing on a random basis for room air-conditioners, refrigerators, motors, heaters, computer displays, ovens, and self -ballasted lamps. The purpose of the check testing is to understand the implementation of the Chinese labeling scheme and help local authorities establishing effective compliance mechanisms. In addition, to ensure robustness and consistency of testing results, CNIS has coordinated a round robin testing for room air conditioners. Eight laboratories (Chinese (6), Australian (1) and Japanese (1)) have been involved in the round robin testing and tests were performed on four sets of samples selected from manufacturer's production line. This paper describes the methodology used in undertaking both check and round robin testing, provides analysis of testing results and reports on the findings. The analysis of both check and round robin testing demonstrated the benefits of a regularized verification and monitoring system for both laboratories and products such as (i) identifying the possible deviations between laboratories to correct them, (ii) improving the quality of testing facilities, (iii) ensuring the accuracy and reliability of energy label information in order to strength the social credibility of the labeling program and the enforcement mechanism in place.

  18. Compliance and Verification of Standards and Labelling Programs in China: Lessons Learned

    SciTech Connect (OSTI)

    Saheb, Yamina; Zhou, Nan; Fridley, David; Pierrot, Andr

    2010-06-11

    After implementing several energy efficiency standards and labels (30 products covered by MEPS, 50 products covered by voluntary labels and 19 products by mandatory labels), the China National Institute of Standardization (CNIS) is now implementing verification and compliance mechanism to ensure that the energy information of labeled products comply with the requirements of their labels. CNIS is doing so by organizing check testing on a random basis for room air-conditioners, refrigerators, motors, heaters, computer displays, ovens, and self -ballasted lamps. The purpose of the check testing is to understand the implementation of the Chinese labeling scheme and help local authorities establishing effective compliance mechanisms. In addition, to ensure robustness and consistency of testing results, CNIS has coordinated a round robin testing for room air conditioners. Eight laboratories (Chinese (6), Australian (1) and Japanese (1)) have been involved in the round robin testing and tests were performed on four sets of samples selected from manufacturer?s production line. This paper describes the methodology used in undertaking both check and round robin testing, provides analysis of testing results and reports on the findings. The analysis of both check and round robin testing demonstrated the benefits of a regularized verification and monitoring system for both laboratories and products such as (i) identifying the possible deviations between laboratories to correct them, (ii) improving the quality of testing facilities, (iii) ensuring the accuracy and reliability of energy label information in order to strength the social credibility of the labeling program and the enforcement mechanism in place.

  19. Effects of Aerosols on Autumn Precipitation over Mid-Eastern China

    SciTech Connect (OSTI)

    Chen, Siyu; Huang, J.; Qian, Yun; Ge, Jinming; Su, Jing

    2014-09-20

    Long-term observational data indicated a decreasing trend for the amount of autumn precipitation (i.e. 54.3 mm per decade) over Mid-Eastern China, especially after 1980s (~ 5.6% per decade). To examine the cause of the decreasing trend, the mechanisms associated with the change of autumn precipitation were investigated from the perspective of water vapor transportation, atmospheric stability and cloud microphysics. Results show that the decrease of convective available potential energy (i.e. 12.81 J kg-1/ decade) and change of cloud microphysics, which were closely related to the increase of aerosol loading during the past twenty years, were the two primary factors responsible for the decrease of autumn precipitation. Ours results showed that increased aerosol could enhance the atmospheric stability thus weaken the convection. Meanwhile, more aerosols also led to a significant decline of raindrop concentration and to a delay of raindrop formation because of smaller size of cloud droplets. Thus, increased aerosols produced by air pollution could be one of the major reasons for the decrease of autumn precipitation. Furthermore, we found that the aerosol effects on precipitation in autumn was more significant than in other seasons, partly due to the relatively more stable synoptic system in autumn. The impact of large-scale circulation dominated in autumn and the dynamic influence on precipitation was more important than the thermodynamic activity.

  20. Life cycle assessment of four municipal solid waste management scenarios in China

    SciTech Connect (OSTI)

    Hong Jinglan; Li Xiangzhi; Zhaojie Cui

    2010-11-15

    A life cycle assessment was carried out to estimate the environmental impact of municipal solid waste. Four scenarios mostly used in China were compared to assess the influence of various technologies on environment: (1) landfill, (2) incineration, (3) composting plus landfill, and (4) composting plus incineration. In all scenarios, the technologies significantly contribute to global warming and increase the adverse impact of non-carcinogens on the environment. The technologies played only a small role in the impact of carcinogens, respiratory inorganics, terrestrial ecotoxicity, and non-renewable energy. Similarly, the influence of the technologies on the way other elements affect the environment was ignorable. Specifically, the direct emissions from the operation processes involved played an important role in most scenarios except for incineration, while potential impact generated from transport, infrastructure and energy consumption were quite small. In addition, in the global warming category, highest potential impact was observed in landfill because of the direct methane gas emissions. Electricity recovery from methane gas was the key factor for reducing the potential impact of global warming. Therefore, increasing the use of methane gas to recover electricity is highly recommended to reduce the adverse impact of landfills on the environment.