Powered by Deep Web Technologies
Note: This page contains sample records for the topic "keystone heights lake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Keystone/Mesquite Lake Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Keystone/Mesquite Lake Geothermal Project Keystone/Mesquite Lake Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Keystone/Mesquite Lake Geothermal Project Project Location Information Coordinates 35.978611111111°, -115.53027777778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.978611111111,"lon":-115.53027777778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

2

Maple Heights-Lake Desire, Washington: Energy Resources | Open Energy  

Open Energy Info (EERE)

Heights-Lake Desire, Washington: Energy Resources Heights-Lake Desire, Washington: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.4521975°, -122.0984885° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.4521975,"lon":-122.0984885,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

3

Keystone Biofuels | Open Energy Information  

Open Energy Info (EERE)

Keystone Biofuels Keystone Biofuels Jump to: navigation, search Name Keystone Biofuels Place Shiremanstown, Pennsylvania Product Biodiesel producer that runs a 3.7m liter plant in Pennsylvania. Coordinates 40.222825°, -76.956154° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.222825,"lon":-76.956154,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

4

Wind Shear and Turbulence Profiles at Elevated Heights: Great Lakes and Midwest Sites (Poster)  

DOE Green Energy (OSTI)

Analyzed wind resource characteristics at elevated heights (50 m-200+m) incuding shear and turbulence profiles for some areas of the Great Lakes and M idwest sites.

Elliott, D.; Schwartz, M.; Scott, G.

2009-05-01T23:59:59.000Z

5

Keystone XL pipeline update  

Energy.gov (U.S. Department of Energy (DOE))

Questions have been raised recently about the Keystone XL pipeline project, so we wanted to make some points clear.

6

Keystone Opportunity Zones (Pennsylvania)  

Energy.gov (U.S. Department of Energy (DOE))

Keystone Opportunity Zones allows businesses located within designated areas to qualify for a tax exemption, deduction, credit, or abatement of state and local taxes such as sales and use tax,...

7

Keystone: Order (2013-CE-2601)  

Energy.gov (U.S. Department of Energy (DOE))

DOE ordered Keystone Technologies, LLC to pay a $8,000 civil penalty after finding Keystone had failed to certify that certain models of fluorescent lamp ballasts comply with the applicable energy conservation standards.

8

NREL GIS Data: U.S. Great Lakes Offshore Windspeed 90m Height High  

Open Energy Info (EERE)

Great Lakes Offshore Windspeed 90m Height High Great Lakes Offshore Windspeed 90m Height High Resolution Dataset Summary Description This dataset is a geographic shapefile generated from the original raster data. The original raster data resolution is a 200-meter cell size. The data provide an estimate of annual average wind speed at 90 meter height above surface for specific offshore regions of the United States. To learn more, please see the Assessment of Offshore Wind Energy Resources for the United States. These data were produced in cooperation with U.S. Department of Energy, and have been validated by NREL. To download state wind resource maps, visit Wind Powering America. In order to ensure the downloadable shapefile is current, please compare the date updated on this page to the last updated date on the NREL GIS Wind Data webpage.

9

Keystone, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Keystone, Florida: Energy Resources Keystone, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.1558467°, -82.6212093° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.1558467,"lon":-82.6212093,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

10

File:Keystone.pdf | Open Energy Information  

Open Energy Info (EERE)

File Edit History Facebook icon Twitter icon File:Keystone.pdf Jump to: navigation, search File File history File usage File:Keystone.pdf Size of this preview: 463 599...

11

Keystone Clean Air | Open Energy Information  

Open Energy Info (EERE)

Clean Air Clean Air Jump to: navigation, search Logo: Keystone Clean Air Name Keystone Clean Air Address 123 Pembroke Ct. Place Exton, Pennsylvania Zip 19341 Sector Efficiency Product KVAR Energy Controller - capacitors Year founded 1996 Number of employees 1-10 Phone number 610-363-7649 Website http://www.slideshare.net/toml Coordinates 40.0571015°, -75.6367661° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.0571015,"lon":-75.6367661,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

12

Supporting Water, Ecological, and Transportation Systems in the Great Lakes Basin Ecosystem  

E-Print Network (OSTI)

8-9, 2004. Ann Arbor, Michigan. Great Lakes InformationKeystone, Colorado. Lake Michigan (MI) Lakewide ManagementOffice (GLNPO) Lake Michigan Lakewide Management Plan (LaMP)

Beck, Judy; Kamke, Sherry; Majerus, Kimberly

2007-01-01T23:59:59.000Z

13

EIS-0433: Keystone XL Pipeline | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Keystone XL Pipeline 3: Keystone XL Pipeline EIS-0433: Keystone XL Pipeline SUMMARY The Department of State, with DOE as a cooperating agency, is preparing a Supplemental EIS (SEIS) to evaluate the potential environmental impacts of a revised proposal for the Keystone XL pipeline and related facilities. More information on the SEIS is available here. The proposed Keystone XL project consists of a 1,700-mile crude oil pipeline and related facilities that would primarily be used to transport Western Canadian Sedimentary Basin crude oil from an oil supply hub in Alberta, Canada to delivery points in Oklahoma and Texas. This EIS, prepared by the Department of State, evaluates the environmental impacts of the proposed Keystone XL project. DOE's Western Area Power Administration, a cooperating agency, has jurisdiction over certain

14

Keystone: Proposed Penalty (2013-CE-2601) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Keystone: Proposed Penalty (2013-CE-2601) Keystone: Proposed Penalty (2013-CE-2601) Keystone: Proposed Penalty (2013-CE-2601) February 7, 2013 DOE alleged in a Notice of Proposed Civil Penalty that Keystone Technologies, LLC failed to certify a variety of fluorescent lamp ballasts as compliant with the applicable energy conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable energy conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. Keystone: Proposed Penalty (2013-CE-2601) More Documents & Publications Keystone: Order (2013-CE-2601) Basement Systems: Proposed Penalty (2010-CE-2110)

15

Keystone HELP- EnergyWorks Efficiency Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

The Keystone HELP Program is designed to help homeowners improve energy efficiency with special financing for high-efficiency heating, air conditioning, insulation, windows, doors, and whole house...

16

Keystone HELP - EnergyWorks Efficiency Loan Program (Pennsylvania...  

Open Energy Info (EERE)

12122012 References DSIRE1 Summary The Keystone HELP Program is designed to help homeowners improve energy efficiency with special financing for high-efficiency heating, air...

17

EnSys Energy Report on Keystone XL Pipeline | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home EnSys Energy Report on Keystone XL Pipeline EnSys Energy Report on Keystone XL Pipeline December 23, 2010 - 2:20pm Addthis As...

18

Keystone Innovation Zone Tax Credit Program (Pennsylvania) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovation Zone Tax Credit Program (Pennsylvania) Innovation Zone Tax Credit Program (Pennsylvania) Keystone Innovation Zone Tax Credit Program (Pennsylvania) < Back Eligibility Commercial Industrial Institutional Schools Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Pennsylvania Program Type Corporate Tax Incentive Enterprise Zone Provider Department of Community and Economic Development The Keystone Innovation Zone Tax Credit Program provides tax credits to companies less than eight years old who operate within designated innovation zones. A total pool of $25 million in tax credits is available each year to businesses within these zones. A business can claim a tax credit up to 50% of the increase in gross revenues attributable to

19

EnSys Energy Report on Keystone XL Pipeline | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EnSys Energy Report on Keystone XL Pipeline EnSys Energy Report on Keystone XL Pipeline EnSys Energy Report on Keystone XL Pipeline December 23, 2010 - 2:20pm Addthis As part of ongoing analysis, the Department of Energy's Office of Policy and International Affairs commissioned a report on the proposed Keystone XL pipeline project. The report will be taken into consideration in an Environmental Impact Statement being prepared by the Department of State. The full report is available for download here. The report's appendix is available here. Addthis Related Articles Secretary Chu's Remarks at the City Club of Cleveland -- As Prepared for Delivery Energy Department Report Finds Major Potential to Increase Clean Hydroelectric Power Agriculture and Energy Departments Announce New Investments to Drive Innovations in Biofuels and Biobased Products

20

EIS-0433-S1: Keystone XL Pipeline SEIS (Montana, South Dakota, and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

33-S1: Keystone XL Pipeline SEIS (Montana, South Dakota, and 33-S1: Keystone XL Pipeline SEIS (Montana, South Dakota, and Nebraska) EIS-0433-S1: Keystone XL Pipeline SEIS (Montana, South Dakota, and Nebraska) SUMMARY This EIS analyzes the potential environmental impacts of a revised proposal for the Keystone XL pipeline and related facilities. The proposed facilities would transport crude oil from the Western Canadian Sedimentary Basin and the Williston Basin to existing pipeline facilities near Steele City, Nebraska, for onward transport to markets in the Texas Gulf Coast area. DOE is a cooperating agency. DOE's Western Area Power Administration has jurisdiction over certain proposed transmission facilities relating to the proposal, including construction and operation of a portion of a 230-kilovolt transmission line and construction and operation of two new

Note: This page contains sample records for the topic "keystone heights lake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Clay Electric Cooperative, Inc- Solar Thermal Loans  

Energy.gov (U.S. Department of Energy (DOE))

Clay Electric Cooperative (CEC), a Touchstone Energy Cooperative, covers 14 counties in northern Florida, including Gainesville, Keystone Heights, Lake City, Orange Park, Palatka, and Salt Springs....

22

Positive Community Relations: The Keystone to the CEMP  

SciTech Connect

The Community Environmental Monitoring Program (CEMP), currently conducted by the Desert Research Institute (DRI) of the Nevada System of Higher Education for the U.S. Department of Energy's (DOE) National Nuclear Security Administration, is designed to monitor airborne radiological releases to the offsite environment from activities on the Nevada Test Site (NTS) and to disseminate information. A key aspect of this program is the involvement of residents from local communities around the NTS in the management and operation of the program. After the March, 1979 accident at Three Mile Island (TMI), the DOE initiated the Citizens' Radiation Monitoring Program (CRMP) in order to provide the local residents with accurate information on the radiation health risks, and to rebuild trust and credibility. As a result, citizens around TMI had more confidence in the data because it was collected by community residents. Because of the positive results of the CRMP, a similar program was instituted in the communities around the NTS, where the U.S. was conducting its Nuclear Weapons Testing Program. Although a well-established monitoring program was in place, it was argued that the implementation of a similar community monitoring program would create monitoring stations located in highly visible locations where residents would be aware of their presence, and have access to the radiological data and the station managers. As a result, in 1981, the Community Monitoring Program, a cooperative project of the DOE, DRI, and EPA, consisting of 15 monitoring stations located in California, Nevada, and Utah was initiated. In 1999, technical administration of the CEMP was transitioned from EPA to DRI and the stations were upgraded to include a full suite of meteorological instrumentation in addition to radiation monitoring sensors, state-of-the-art electronic data collectors, and communications hardware enabling updates several times daily to a publicly-accessible web page. The CEMP has evolved into a program that currently includes 28 environmental and radiation monitoring stations located in communities around the NTS. Although the capabilities of the off-site monitoring program at NTS have and will continue to evolve, the fundamental keystone of the program continues to be positive community relations, expressed through operation of stations by local residents, dissemination of near-real time monitoring data through on-site displays and a CEMP web site, annual training of station operators, public outreach programs and, most importantly, the maintenance of personal relationships. (authors)

Hartwell, W.T. [Desert Research Institute, Division of Earth and Ecosystem Sciences, 755 E. Flamingo Road, Las Vegas, NV 89119 (United States); Tappen, J.; Karr, L. [Desert Research Institute, Division of Hydrological Sciences, 755 E. Flamingo Road, Las Vegas, NV 89119 (United States)

2006-07-01T23:59:59.000Z

23

North Bar Lake South Bar Lake  

E-Print Network (OSTI)

Traverse Lake Lime Lake Crystal River Sh alda Cr GOOD HARBOR BAY SLEEPING BEAR BAY PLATTE BA Y LAKE South Bar Lake Otter Lake Loon Lake Long Lake Rush Lake Platte Lake Little Platte Lake CRYSTAL LAKE MICHIGAN LAKE MICHIGAN Lake Elevation 580ft (177m) MANITOU PAS S A G E Ott er C reek Pl atte River Platt e

24

EIS-0433-S1: Keystone XL Pipeline SEIS (Montana, South Dakota, and Nebraska)  

Energy.gov (U.S. Department of Energy (DOE))

This EIS analyzes the potential environmental impacts of a revised proposal for the Keystone XL pipeline and related facilities. The proposed facilities would transport crude oil from the Western Canadian Sedimentary Basin and the Williston Basin to existing pipeline facilities near Steele City, Nebraska, for onward transport to markets in the Texas Gulf Coast area. DOE is a cooperating agency. DOE's Western Area Power Administration has jurisdiction over certain proposed transmission facilities relating to the proposal, including construction and operation of a portion of a 230-kilovolt transmission line and construction and operation of two new substations and the expansion of six existing substations.

25

DIFFERENTIAL PULSE HEIGHT DISCRIMINATOR  

DOE Patents (OSTI)

Pulse-height discriminators are described, specifically a differential pulse-height discriminator which is adapted to respond to pulses of a band of amplitudes, but to reject pulses of amplitudes greater or less than tbe preselected band. In general, the discriminator includes a vacuum tube having a plurality of grids adapted to cut off plate current in the tube upon the application of sufficient negative voltage. One grid is held below cutoff, while a positive pulse proportional to the amplltude of each pulse is applled to this grid. Another grid has a negative pulse proportional to the amplitude of each pulse simultaneously applied to it. With this arrangement the tube will only pass pulses which are of sufficlent amplitude to counter the cutoff bias but not of sufficlent amplitude to cutoff the tube.

Test, L.D.

1958-11-11T23:59:59.000Z

26

Froth height level sensor  

DOE Patents (OSTI)

A single sensor, comprised of a tube located near the foaming liquid, and another well away from the first, are used to determine the existence of foam in the vicinity of the probe. Two sensors a known distance apart can be used to locate the froth assuming a uniform froth density. The present invention utilizes the pressure differential existing between process chamber ambient pressure and the froth pressure to determine the existence of a froth and its location. Where froth density is not constant, multiple sensors at differing heights with respect to each other, or a single movable sensor, are used. Information derived using the multiple or movable sensor yields unambiguous froth density and height data.

Glaser, J.W.; Holmes, L.; Upadhye, R.S.; Wilder, J.G.

1994-12-31T23:59:59.000Z

27

We would like to thank you for joining Keystone Health Plan's (KHPE) East Point of Service program. Carrying a Keystone Point of Service ID card entitles you to access a large network of providers, our  

E-Print Network (OSTI)

/08) Flex Copay POS FI FLEXPOSFIPROGRAMV004 #12;3 Referred Benefits #12;#12;KHPE FS 624 HDBK HPBB#F68 Aug-13. ATTEST: Brian Lobley Senior Vice President Marketing & Consumer Business #12;#12;KHPE FS 624 HDBK HPBB........................................................................................................................3-123 #12;3-1 KHPE FS 624 HDBK HPBB#F68 Aug-13 INTRODUCTION Thank you for joining the Keystone

Boufadel, Michel

28

PULSE HEIGHT ANALYZER  

DOE Patents (OSTI)

An anticoincidence device is described for a pair of adjacent channels of a multi-channel pulse height analyzer for preventing the lower channel from generating a count pulse in response to an input pulse when the input pulse has sufficient magnitude to reach the upper level channel. The anticoincidence circuit comprises a window amplifier, upper and lower level discriminators, and a biased-off amplifier. The output of the window amplifier is coupled to the inputs of the discriminators, the output of the upper level discriminator is connected to the resistance end of a series R-C network, the output of the lower level discriminator is coupled to the capacitance end of the R-C network, and the grid of the biased-off amplifier is coupled to the junction of the R-C network. In operation each discriminator produces a negative pulse output when the input pulse traverses its voltage setting. As a result of the connections to the R-C network, a trigger pulse will be sent to the biased-off amplifier when the incoming pulse level is sufficient to trigger only the lower level discriminator.

Johnstone, C.W.

1958-01-21T23:59:59.000Z

29

Spirit Lake Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Spirit Lake Wind Farm Spirit Lake Wind Farm Jump to: navigation, search Name Spirit Lake Wind Farm Facility Spirit Lake Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Spirit Lake School Developer Minnesota Windpower Energy Purchaser Alliant/IES Utilities Location Spirit Lake IA Coordinates 43.411381°, -95.10075° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.411381,"lon":-95.10075,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

30

Lake Region State College | Open Energy Information  

Open Energy Info (EERE)

College College Jump to: navigation, search Name Lake Region State College Facility Lake Region State College Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Lake Region State College Developer Lake Region State College Energy Purchaser Lake Region State College Location Devils Lake ND Coordinates 48.166071°, -98.864529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.166071,"lon":-98.864529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

31

Sandia Lake Facility | Open Energy Information  

Open Energy Info (EERE)

Sandia Lake Facility Sandia Lake Facility Jump to: navigation, search Basic Specifications Facility Name Sandia Lake Facility Overseeing Organization Sandia National Laboratories Hydrodynamics Hydrodynamic Testing Facility Type Wave Basin Length(m) 57.3 Beam(m) 36.6 Depth(m) 15.2 Water Type Freshwater Cost(per day) $5000-15000 Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 15.2 Length of Effective Tow(m) 45.7 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.9 Maximum Wave Height(m) at Wave Period(s) 3.0 Maximum Wave Length(m) 4.57 Wave Period Range(s) 3.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Values listed are for a conceptual design yet to be implemented for the Sandia Lake facility.

32

Bingham Lake Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Lake Wind Farm Lake Wind Farm Jump to: navigation, search Name Bingham Lake Wind Farm Facility Bingham Lake Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission Group owns majority Developer Edison Mission Group Energy Purchaser Alliant Energy Location Bingham Lake MN Coordinates 43.909°, -95.0464° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.909,"lon":-95.0464,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

33

ARM - Measurement - Cloud base height  

NLE Websites -- All DOE Office Websites (Extended Search)

base height base height ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud base height For a given cloud or cloud layer, the lowest level of the atmosphere where cloud properties are detectable. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments BLC : Belfort Laser Ceilometer MPL : Micropulse Lidar MWRP : Microwave Radiometer Profiler RL : Raman Lidar VCEIL : Vaisala Ceilometer External Instruments NOAASURF : NOAA Surface Meteorology Data, collected by NWS and NCDC

34

2/10/13 5:55 PMEnvironmental Outlook: The Keystone XL Pipeline | The Diane Rehm Show from WAMU and NPR Page 1 of 14http://thedianerehmshow.org/shows/2013-02-05/environmental-outlook-keystone-xl-pipeline/transcript  

E-Print Network (OSTI)

, approval from the State Department. The proposed 1,700-mile project would bring crude oil from Canada of the nation's economic health to import this oil, to bring this oil into the U.S., to have access) Thanks for joining us. I'm Diane Rehm. There's one more hurdle for proponents of the Keystone XL Pipeline

Russo, Bernard

35

Meadow Lake III | Open Energy Information  

Open Energy Info (EERE)

Lake III Lake III Jump to: navigation, search Name Meadow Lake III Facility Meadow Lake III Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon Wind Energy Developer EDP Renewables Location Brookston IN Coordinates 40.601111°, -86.864167° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.601111,"lon":-86.864167,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

36

Lake View Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Lake View Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Lake View Geothermal Facility General Information Name Lake View Geothermal Facility Facility Lake View Sector Geothermal energy Location Information Location The Geysers, California Coordinates 38.823527148671°, -122.78173327446° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.823527148671,"lon":-122.78173327446,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

37

Lake Erie Alternative Power | Open Energy Information  

Open Energy Info (EERE)

Erie Alternative Power Erie Alternative Power Jump to: navigation, search Name Lake Erie Alternative Power Facility Lake Erie Alternative Power Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Developer Lake Erie Alternative Power LLC Location Lake Erie PA Coordinates 42.265°, -80.642° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.265,"lon":-80.642,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

38

Lost Lakes Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Lakes Wind Farm Lakes Wind Farm Jump to: navigation, search Name Lost Lakes Wind Farm Facility Lost Lakes Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon-EDPR Developer Horizon-EDPR Energy Purchaser Market Location Dickinson County IA Coordinates 43.32401°, -95.264354° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.32401,"lon":-95.264354,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

39

Lake Ecology  

NLE Websites -- All DOE Office Websites (Extended Search)

Lake Ecology Lake Ecology Name: Jody Location: N/A Country: N/A Date: N/A Question: We have a partically natural/ partially man-dug lake in our back yard. It is approximately 3 acres in size. The fish in this tiny like are plentiful and HUGE :) Bass up to 20" s (so far) and blue gill up to 10"s (so far). My question is this... we appear to have a heavy goose population and I was wondering if they are the cause of the green slimmy stuff that is all over the top of the water as well as the lighter green slime on the plants growing under the water? Are the fish being harmed by waste from the geese and if so, what can I put in the water to ensure their health? Additionally, I noticed hundreds of frogs during the mating period yet I've yet to see even one tad pole and I am at the lake atleast 5 out of the 7 days in a week. Is there a reason for this. The frogs are two toned.. light green with patches of darker shades of green on the head and body. I've never seen frogs like these before but then again, I've never lived in wet lands prior. The frogs are also very agressive... tend to attack fishing line and even leap up to 4' in the air to attack a fishing rod. Thank heavens they don't have teeth! . We do not keep the fish we catch, we always release.

40

The Lake Trout  

NLE Websites -- All DOE Office Websites (Extended Search)

Conservation THE LAKE TROUT Until thirty years ago, the Lake Trout was the choice food fish as well as the most highly prized game fish in the Great Lakes. Before that time,...

Note: This page contains sample records for the topic "keystone heights lake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

MULTICHANNEL PULSE-HEIGHT ANALYZER  

DOE Patents (OSTI)

This patent deals with electronic computing circuits and more particularly to pulse-height analyzers used for classifying variable amplitude pulses into groups of different amplitudes. The device accomplishes this pulse allocation by by converting the pulses into frequencies corresponding to the amplitudes of the pulses, which frequencies are filtered in channels individually pretuned to a particular frequency and then detected and recorded in the responsive channel. This circuit substantially overcomes the disadvantages of prior annlyzers incorporating discriminators pre-set to respond to certain voltage levels, since small variation in component values is not as critical to satisfactory circuit operation.

Russell, J.T.; Lefevre, H.W.

1958-01-21T23:59:59.000Z

42

South Dakota School of Mines, Keystone, South Dakota solar-energy-system performanceevaluation, June 1980-April 1981  

DOE Green Energy (OSTI)

The South Dakota School of Mines site is the Mount Rushmore National Memorial Visitor's Center in Keystone, South Dakota. The active solar energy system is a retrofit designed to supply 45% of the heating load and 53% of the observation room cooling load. The system is equipped with 2000 square feet of flat-plate collector panels double-glazed with a black chrome absorber surface; 3000 gallons of water in an insulated tank for sensible heat storage; a two-stage fuel oil furnace for auxiliary heating; and direct expansion electric air conditioning units for auxiliary cooling. The actual heating and cooling provided are 42% and 12% respectively. The solar fraction, solar savings ratio, conventional fueld savings, electrical energy expense, system performance factor, and solar system coefficient of performance are among the performance data listed. A control problem is reported that kept the collector pump running 24 hours a day for 18 days. Performance data are given for each subsystem as well as for the overall system. Typical system operation and the system operating sequence for a day are given. The system's use of solar energy and the percentage of losses are given. Also included are a system description, performance evaluation techniques and equations, long-term weather data, chemical analysis of the antifreeze solutions, sensor technology, and typical weather and performance data for a month. (LEW)

Eck, T.F.

1981-01-01T23:59:59.000Z

43

Spirit Lake II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

II Wind Farm II Wind Farm Jump to: navigation, search Name Spirit Lake II Wind Farm Facility Spirit Lake II Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Spirit Lake School Dist Developer Spirit Lake School District Energy Purchaser Spirit Lake School District Location Spirit Lake IA Coordinates 43.411412°, -95.09914° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.411412,"lon":-95.09914,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

44

Iowa Lakes Superior Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Lakes Superior Wind Farm Lakes Superior Wind Farm Jump to: navigation, search Name Iowa Lakes Superior Wind Farm Facility Iowa Lakes Superior Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iowa Lakes Electric Cooperative Developer Iowa Lakes Electric Cooperative Location West of Superior IA Coordinates 43.447756°, -94.980719° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.447756,"lon":-94.980719,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

45

Lake Winds | Open Energy Information  

Open Energy Info (EERE)

Winds Winds Jump to: navigation, search Name Lake Winds Facility Lake Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Consumers Energy Developer Consumers Energy Energy Purchaser Consumers Energy Location Ludington MI Coordinates 43.83972728°, -86.38154984° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.83972728,"lon":-86.38154984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

46

Variance of the Hydrostatically Integrated Height  

Science Conference Proceedings (OSTI)

In radiosonde applications the sonde height is required for assignment of winds and meteorological parameters. Usually, this height is obtained using the classical hydrostatic integration involving measurements of pressure (P) and virtual ...

Ranjit M. Passi; Vincent E. Lally

1988-11-01T23:59:59.000Z

47

Estimating vehicle height using homographic projections  

DOE Patents (OSTI)

Multiple homography transformations corresponding to different heights are generated in the field of view. A group of salient points within a common estimated height range is identified in a time series of video images of a moving object. Inter-salient point distances are measured for the group of salient points under the multiple homography transformations corresponding to the different heights. Variations in the inter-salient point distances under the multiple homography transformations are compared. The height of the group of salient points is estimated to be the height corresponding to the homography transformation that minimizes the variations.

Cunningham, Mark F; Fabris, Lorenzo; Gee, Timothy F; Ghebretati, Jr., Frezghi H; Goddard, James S; Karnowski, Thomas P; Ziock, Klaus-peter

2013-07-16T23:59:59.000Z

48

Comparison of a Two-Dimensional Wave Prediction Model with Synoptic Measurements in Lake Michigan  

Science Conference Proceedings (OSTI)

We compare results from a simple parametric, dynamical, deep-water wave prediction model with two sets of measured wave height maps of Lake Michigan. The measurements were made with an airborne laser altimeter under two distinctly different wind ...

Paul C. Liu; David J. Schwab; John R. Bennett

1984-09-01T23:59:59.000Z

49

Medicine Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Medicine Lake Geothermal Area Medicine Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Medicine Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (9) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.57,"lon":-121.57,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

50

Harney Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lake Geothermal Area Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Harney Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.18166667,"lon":-119.0533333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

51

Lake Palmdale Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Lake Palmdale Wind Farm Lake Palmdale Wind Farm Facility Lake Palmdale Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Palmdale Water District Developer Palmdale Water District Energy Purchaser Palmdale Water District Location Palmdale CA Coordinates 34.555932°, -118.118307° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.555932,"lon":-118.118307,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

52

Meadow Lake IV | Open Energy Information  

Open Energy Info (EERE)

Meadow Lake IV Meadow Lake IV Facility Meadow Lake IV Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon Wind Energy Developer EDP Renewables Location Brookston IN Coordinates 40.601111°, -86.864167° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.601111,"lon":-86.864167,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

53

Emmons Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lake Geothermal Area Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Emmons Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.3333,"lon":-162.14,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

54

Meadow Lake II | Open Energy Information  

Open Energy Info (EERE)

Meadow Lake II Meadow Lake II Facility Meadow Lake II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon Wind Energy Developer EDP Renewables Location Brookston IN Coordinates 40.601111°, -86.864167° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.601111,"lon":-86.864167,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

55

Lakes_Elec_You  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lakes, Lakes, Electricity & You Why It's So Important That Lakes Are Used To Generate Electricity Why We Can Thank Our Lakes For Electricity Because lakes were made to generate electricity. Back in the mid-1940s, Congress recognized the need for better flood control and navigation. To pay for these services, Congress passed laws that started the building of federal hydroelectric dams, and sold the power from the dams under long-term contracts. Today these dams provide efficient, environmentally safe electricity for our cities and rural areas. And now these beautiful lakes are ours to enjoy. There are now 22 major man-made lakes all across the Southeast built under these federal programs and managed by the U.S. Army Corps of Engineers - lakes that help prevent flooding and harness the renewable power of water to generate electricity. Power produced at these lakes is marketed by the Elberton,

56

Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility Facility Summer Lake Hot Springs Sector Geothermal energy Type Space Heating Location Summer Lake, Oregon Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

57

Soda Lake I Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Soda Lake I Geothermal Facility Soda Lake I Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Soda Lake I Geothermal Facility General Information Name Soda Lake I Geothermal Facility Facility Soda Lake I Sector Geothermal energy Location Information Location Fallon, Nevada Coordinates 39.4727622°, -118.778963° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.4727622,"lon":-118.778963,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

58

Iowa Lakes Lakota Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Iowa Lakes Lakota Wind Farm Iowa Lakes Lakota Wind Farm Facility Iowa Lakes Lakota Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iowa Lakes Electric Cooperative Developer Iowa Lakes Electric Cooperative Location West of Lakota IA Coordinates 43.377021°, -94.139493° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.377021,"lon":-94.139493,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

59

Soda Lake II Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Soda Lake II Geothermal Facility Soda Lake II Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Soda Lake II Geothermal Facility General Information Name Soda Lake II Geothermal Facility Facility Soda Lake II Sector Geothermal energy Location Information Location Fallon, Nevada Coordinates 39.4727622°, -118.778963° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.4727622,"lon":-118.778963,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

60

Blue Lake Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Blue Lake Plant Biomass Facility Blue Lake Plant Biomass Facility Jump to: navigation, search Name Blue Lake Plant Biomass Facility Facility Blue Lake Plant Sector Biomass Location Blue Lake, California Coordinates 40.8829072°, -123.9839488° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.8829072,"lon":-123.9839488,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "keystone heights lake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Heights.html - CECM - Simon Fraser University  

E-Print Network (OSTI)

denote the cyclotomic polynomial of order k. ... denote the height of the kth cyclotomic polynomial, that is, the magnitude of the largest coefficient of Phi[k](x) .

62

Heights.mws - CECM - Simon Fraser University  

E-Print Network (OSTI)

}}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 55 "Some other value s of high order that .... denote the height of the kth cyclotomic polynomial, that is, \\+ the magnitude of...

63

VERTEBRATES OF FISH LAKE  

E-Print Network (OSTI)

VERTEBRATES OF FISH LAKE CAUTION! FISH LAKE SCAVANGER HUNT RED HEADED in large dead trees. Males and females both have the majestic red head the mound. Damselflies sit with their wings folded down, which differs them

Minnesota, University of

64

Crow Lake Wind | Open Energy Information  

Open Energy Info (EERE)

Crow Lake Wind Crow Lake Wind Jump to: navigation, search Name Crow Lake Wind Facility Crow Lake Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Prairie Winds SD 1 Inc. (100) Mitchell Technical Institute (1) South Dakota Wind Partners (7) Developer Prairie Winds SD 1 Inc. Energy Purchaser Basin Electric Power Cooperative Location White Lake SD Coordinates 43.920959°, -98.7282157° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.920959,"lon":-98.7282157,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

65

Lake-Effect Snowfall over Lake Michigan  

Science Conference Proceedings (OSTI)

Aircraft measurements of snow particle size spectra from 36 flights on 26 snowy days are used to estimate snow precipitation rates over Lake Michigan. Results show that average rates during 14 wind-parallel-type lake-effect storms increased from ...

Roscoe R. Braham Jr.; Maureen J. Dungey

1995-05-01T23:59:59.000Z

66

Lakes, Electricity and You | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lakes, Electricity and You Lakes, Electricity and You Why It's So Important That Lakes Are Used To Generate Electricity Lakes, Electricity and You More Documents & Publications A...

67

Wall Lake Municipal Utilities Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wall Lake Municipal Utilities Wind Farm Wall Lake Municipal Utilities Wind Farm Jump to: navigation, search Name Wall Lake Municipal Utilities Wind Farm Facility Wall Lake Municipal Utilities Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wall Lake Municipal Utilities Developer Wall Lake Municipal Utilities Energy Purchaser Wall Lake Municipal Utilities Location Wall Lake IA Coordinates 42.281965°, -95.094098° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.281965,"lon":-95.094098,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

68

Property:Height (m) | Open Energy Information  

Open Energy Info (EERE)

Height (m) Height (m) Jump to: navigation, search Property Name Height (m) Property Type Number Pages using the property "Height (m)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/Aegir Dynamo + 12 + MHK Technologies/AirWEC + 8 + MHK Technologies/Deep Green + 2.5 + MHK Technologies/Deep water capable hydrokinetic turbine + 5 + MHK Technologies/European Pico Pilot Plant + 22 + MHK Technologies/Evopod E35 + 4.25 + MHK Technologies/Float Wave Electric Power Station + 12 + MHK Technologies/Floating anchored OTEC plant + 540 + MHK Technologies/GyroWaveGen + 4.5 + MHK Technologies/HyPEG + 20 + MHK Technologies/HydroGen 10 + 3.5 + MHK Technologies/Hydroflo + 5 + MHK Technologies/ITRI WEC + 17.9 + MHK Technologies/IVEC Floating Wave Power Plant + 5 +

69

Stochastic Dynamics of Sea Surface Height Variability  

Science Conference Proceedings (OSTI)

Sea surface height anomalies measured by the Ocean Topography Experiment (TOPEX)/Poseidon satellite altimeter indicate high values of skewness and kurtosis. Except in a few regions, including the Gulf Stream, the Kuroshio Extension, and the ...

Philip Sura; Sarah T. Gille

2010-07-01T23:59:59.000Z

70

Stack Height Requirements (Ohio) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stack Height Requirements (Ohio) Stack Height Requirements (Ohio) Stack Height Requirements (Ohio) < Back Eligibility Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Ohio Program Type Environmental Regulations Provider Ohio Environmental Protection Agency This chapter of the law establishes that the Ohio Environmental Protection Agency provides regulations for stacks for industrial facilities. "Stack" means any chimney, flue, conduit or duct arranged to conduct any emissions to the ambient air, excluding flares. "Stack height" means the distance from the ground-level elevation at the base of the stack to the crown of the stack. If a stack arises from a building or other structure, the ground-level elevation of that building or structure will be

71

Asymmetric Geopotential Height Fluctuations from Symmetric Winds  

Science Conference Proceedings (OSTI)

As a characterization of the variability of observed geopotential height fluctuations, their probability density function (PDF) and its skewness are studied in the global domain for winter and summer. The PDF of the geopotential, ?, is skewed ...

Mark Holzer

1996-05-01T23:59:59.000Z

72

ARM - Measurement - Planetary boundary layer height  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsPlanetary boundary layer height govMeasurementsPlanetary boundary layer height ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Planetary boundary layer height Top of the planetary boundary layer; also known as depth or height of the mixing layer. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments VCEIL : Vaisala Ceilometer External Instruments NCEPGFS : National Centers for Environment Prediction Global Forecast System Field Campaign Instruments

73

Evaluating Formulations of Stable Boundary Layer Height  

Science Conference Proceedings (OSTI)

Stable boundary layer height h is determined from eddy correlation measurements of the vertical profiles of the buoyancy flux and turbulence energy from a tower over grassland in autumn, a tower over rangeland with variable snow cover during ...

D. Vickers; L. Mahrt

2004-11-01T23:59:59.000Z

74

Dry Lake II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Dry Lake II Wind Farm Dry Lake II Wind Farm Jump to: navigation, search Name Dry Lake II Wind Farm Facility Dry Lake II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Energy Purchaser Salt River Project Location Northwest of Snowflake AZ Coordinates 34.635651°, -110.357351° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.635651,"lon":-110.357351,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

75

Mallard Lake Electric Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Mallard Lake Electric Biomass Facility Mallard Lake Electric Biomass Facility Jump to: navigation, search Name Mallard Lake Electric Biomass Facility Facility Mallard Lake Electric Sector Biomass Facility Type Landfill Gas Location Du Page County, Illinois Coordinates 41.8243831°, -88.0900762° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8243831,"lon":-88.0900762,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

76

Crystal Lake - Clipper (09) Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Lake - Clipper (09) Wind Farm Lake - Clipper (09) Wind Farm Jump to: navigation, search Name Crystal Lake - Clipper (09) Wind Farm Facility Crystal Lake - Clipper (09) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Location IA Coordinates 41.8780025°, -93.097702° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8780025,"lon":-93.097702,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

77

Climatology of Lake-Effect Precipitation Events over Lake Champlain  

Science Conference Proceedings (OSTI)

This study provides the first long-term climatological analysis of lake-effect precipitation events that developed in relation to a small lake (having a surface area of ?1500 km2). The frequency and environmental conditions favorable for Lake ...

Neil F. Laird; Jared Desrochers; Melissa Payer

2009-02-01T23:59:59.000Z

78

Geological History of Lake Lahontan, a Quaternary Lake of Northwestern...  

Open Energy Info (EERE)

Monograph M11 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Geological History of Lake Lahontan, a Quaternary Lake of Northwestern...

79

Lake-Effect Rain Events  

Science Conference Proceedings (OSTI)

Seven years of autumnal (SeptemberNovember) precipitation data are examined to determine the characteristics of lake-effect precipitation downwind of Lake Erie. Atmospheric conditions for each lake-effect event are compiled and the mean ...

Todd J. Miner; J. M. Fritsch

1997-12-01T23:59:59.000Z

80

Medicine Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Medicine Lake Geothermal Area Medicine Lake Geothermal Area (Redirected from Medicine Lake Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Medicine Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (9) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.57,"lon":-121.57,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "keystone heights lake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Iowa Lakes Electric Cooperative | Open Energy Information  

Open Energy Info (EERE)

Iowa Lakes Electric Cooperative Iowa Lakes Electric Cooperative Place Estherville, Iowa Zip 51334 Sector Wind energy Product Iowa-based consumer-owned electric cooperative. The entity is a project developer for two wind farms. Coordinates 43.401935°, -94.838594° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.401935,"lon":-94.838594,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

82

Carson Lake Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Carson Lake Geothermal Project Carson Lake Geothermal Project Project Location Information Coordinates 39.321111111111°, -118.70388888889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.321111111111,"lon":-118.70388888889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

83

Great Lakes Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

Great Lakes Biofuels LLC Great Lakes Biofuels LLC Place Madison, Wisconsin Zip 53704 Sector Services Product Biodiesel research, consulting, management distribution and services company. Coordinates 43.07295°, -89.386694° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.07295,"lon":-89.386694,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

84

Dry Lake Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Dry Lake Wind Farm Facility Dry Lake Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Energy Purchaser Iberdrola Renewables Location Navajo County AZ Coordinates 34.635651°, -110.357351° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.635651,"lon":-110.357351,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

85

Providence Heights Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Providence Heights Wind Farm Facility Providence Heights Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Midwest Wind Energy Location Bureau County IL Coordinates 41.264075°, -89.580853° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.264075,"lon":-89.580853,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

86

The Behavior of Lakes  

NLE Websites -- All DOE Office Websites (Extended Search)

Behavior of Lakes Behavior of Lakes Nature Bulletin No, 320-A November 9, 1968 Forest Preserve District of Cook County Richard B. Ogilvie, President Roland F. Eisenbeis, Supt. of Conservation THE BEHAVIOR OF LAKES In many ways lakes are like living things -- especially a tree. A lake breathes and has a circulation; it is warmed and fed; it harbors many other living things; and in cold weather it goes into a winter sleep. If it were not for the special character of a body of standing water which we call a lake, the things that live in it would be radically different or, perhaps, not exist at all. Water is a very strange substance in many ways. For example, it is remarkable because it expands, becomes lighter and floats when it freezes into ice. If, like most substances, water shrank when it changed from a liquid to a solid, it would sink. Then, ponds and lakes would freeze from the bottom up and become solid blocks of ice. This would make life impossible for most kinds of aquatic plants and animals and indirectly affect all living things. Further, water is a poor conductor of heat -- otherwise lakes would freeze much deeper and, again most living things in it would perish.

87

Skewness, Kurtosis and Extreme Values of Northern Hemisphere Geopotential Heights  

Science Conference Proceedings (OSTI)

Twelve summers and 11 winters of Northern Hemisphere 500 and 1000 mb geopotential height are used to calculate the third and fourth moments of height in the nondimensional form of skewness and kurtosis. Geopotential height exhibits small but ...

Glenn H. White

1980-09-01T23:59:59.000Z

88

Geological History of Lake Lahontan, a Quaternary Lake of Northwestern  

Open Energy Info (EERE)

History of Lake Lahontan, a Quaternary Lake of Northwestern History of Lake Lahontan, a Quaternary Lake of Northwestern Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geological History of Lake Lahontan, a Quaternary Lake of Northwestern Nevada Abstract Abstract unavailable. Author Israel C. Russell Organization U.S. Geological Survey Published U.S. Government Printing Office, 1885 Report Number Monograph M11 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Geological History of Lake Lahontan, a Quaternary Lake of Northwestern Nevada Citation Israel C. Russell (U.S. Geological Survey). 1885. Geological History of Lake Lahontan, a Quaternary Lake of Northwestern Nevada. Washington, District of Columbia: U.S. Government Printing Office. Report No.:

89

NREL GIS Data: U.S. Great Lakes Offshore Windspeed 90m Height...  

Open Energy Info (EERE)

ative%28%27pubyear%2FDescend%27%29" target"new" title"NREL Publication"> Assessment of Offshore Wind Energy Resources for the United States.

These data were produced...

90

Clear Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Clear Lake Geothermal Area (Redirected from Clear Lake Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Clear Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.01666667,"lon":-122.65,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

91

Soda Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Soda Lake Geothermal Area Soda Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Soda Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (3) 9 Exploration Activities (9) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.56666667,"lon":-118.85,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

92

Clear Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Clear Lake Geothermal Area Clear Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Clear Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.01666667,"lon":-122.65,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

93

Soda Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Soda Lake Geothermal Area (Redirected from Soda Lake Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Soda Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (3) 9 Exploration Activities (9) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.56666667,"lon":-118.85,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

94

Hot Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hot Lake Geothermal Area Hot Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hot Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.33333333,"lon":-118.6,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

95

Summer Lake Aquaculture Aquaculture Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Aquaculture Aquaculture Low Temperature Geothermal Facility Aquaculture Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Summer Lake Aquaculture Aquaculture Low Temperature Geothermal Facility Facility Summer Lake Aquaculture Sector Geothermal energy Type Aquaculture Location Summer Lake, Oregon Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

96

China Lake South Range Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

China Lake South Range Geothermal Project China Lake South Range Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: China Lake South Range Geothermal Project Project Location Information Coordinates 35.65°, -117.66166666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.65,"lon":-117.66166666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

97

JW Great Lakes Wind LLC | Open Energy Information  

Open Energy Info (EERE)

JW Great Lakes Wind LLC JW Great Lakes Wind LLC Jump to: navigation, search Name JW Great Lakes Wind LLC Place Cleveland, Ohio Zip 44114-4420 Sector Wind energy Product Ohio based subsidiary of Juwi International that develops wind projects. Coordinates 41.504365°, -81.690459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.504365,"lon":-81.690459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

98

Lake Benton I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Benton I Wind Farm Benton I Wind Farm Jump to: navigation, search Name Lake Benton I Wind Farm Facility Lake Benton I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner AES Corp. Developer GE Energy Energy Purchaser Xcel Energy Location Lake Benton MN Coordinates 44.230507°, -96.248327° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.230507,"lon":-96.248327,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

99

Lake Benton II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Lake Benton II Wind Farm Lake Benton II Wind Farm Facility Lake Benton II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Xcel Energy Location Pipestone County MN Coordinates 44.226606°, -96.225049° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.226606,"lon":-96.225049,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

100

East Soda Lake Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Soda Lake Geothermal Project Soda Lake Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: East Soda Lake Geothermal Project Project Location Information Coordinates 39.53°, -118.87° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.53,"lon":-118.87,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "keystone heights lake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Lake-Effect Thunderstorms in the Lower Great Lakes  

Science Conference Proceedings (OSTI)

Cloud-to-ground (CG) lightning, radar, and radiosonde data were examined to determine how frequently lake-effect storms (rain/snow) with lightning occurred over and near the lower Great Lakes region (Lakes Erie and Ontario) from September 1995 ...

Scott M. Steiger; Robert Hamilton; Jason Keeler; Richard E. Orville

2009-05-01T23:59:59.000Z

102

Black Hawk Lake Fresno River  

E-Print Network (OSTI)

Black Hawk Lake Fresno River R D 4 0 0 RD 415 HWY41 RD 207 REVISRD YO SEM ITE SP RINGS P KY LILLEY County Rosedale Ranch Revis Mountain Daulton Spring Red Top Lookout Buford Mountain Black Hawk Lake

Wang, Zhi

103

Iowa Lakes Community College Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Community College Wind Farm Community College Wind Farm Jump to: navigation, search Name Iowa Lakes Community College Wind Farm Facility Iowa Lakes Community College Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Iowa Lakes Community College Developer Iowa Lakes Community College Energy Purchaser Iowa Lakes Community College Location Esterville IA Coordinates 43.397912°, -94.81768° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.397912,"lon":-94.81768,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

104

Great Lakes Science Center Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Science Center Wind Farm Science Center Wind Farm Jump to: navigation, search Name Great Lakes Science Center Wind Farm Facility Great Lakes Science Center Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Great Lakes Science Center Developer Great Lakes Science Center Energy Purchaser Great Lakes Science Center Location Cleveland OH Coordinates 41.506659°, -81.696816° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.506659,"lon":-81.696816,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

105

On the Interpretation of Geopotential Height Tendency Equations  

Science Conference Proceedings (OSTI)

The conceptual model for height tendency presented by Hirschberg and Fritsch directly links upper-level virtual temperature tendency with low-level height tendency, overlooking the essential dynamics of mass divergence. An analysis of the ...

W. James Steenburgh; James R. Holton

1993-09-01T23:59:59.000Z

106

Wind Turbine Towers Establish New Height Standards and Reduce...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Turbine Towers Establish New Height Standards and Reduce Cost of Wind Energy Wind Turbine Towers Establish New Height Standards and Reduce Cost of Wind Energy Case study that...

107

GCM Tests of Theories for the Height of the Tropopause  

Science Conference Proceedings (OSTI)

The sensitivity of the tropopause height to various external parameters has been investigated using a global circulation model (GCM). The tropopause height was found to be strongly sensitive to the temperature at the earths surface, less ...

John Thuburn; George C. Craig

1997-04-01T23:59:59.000Z

108

Effects of Tides on Maximum Tsunami Wave Heights: Probability Distributions  

Science Conference Proceedings (OSTI)

A theoretical study was carried out to understand how the probability distribution for maximum wave heights (?m) during tsunamis depends on the initial tsunami amplitude (A) and the tides. It was assumed that the total wave height is the linear ...

Harold O. Mofjeld; Frank I. Gonzlez; Vasily V. Titov; Angie J. Venturato; Jean C. Newman

2007-01-01T23:59:59.000Z

109

Obama Administration Hosts Great Lakes Offshore Wind Workshop...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes Wind Collaborative Obama Administration Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes...

110

Lake Improvement District Law and County Lake Improvement Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake Improvement District Law and County Lake Improvement Program Lake Improvement District Law and County Lake Improvement Program (Minnesota) Lake Improvement District Law and County Lake Improvement Program (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Siting and Permitting Lake Improvement Districts may be established by county boards in order to

111

Crystal Lake II | Open Energy Information  

Open Energy Info (EERE)

II II Facility Crystal Lake II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Location Hancock/Winnebago Counties IA Coordinates 43.16151°, -93.855786° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.16151,"lon":-93.855786,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

112

Lake Effect Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Effect Energy LLC Effect Energy LLC Jump to: navigation, search Name Lake Effect Energy LLC Place Buffalo, New York Sector Wind energy Product Wind Project Developer in New York State. Coordinates 42.88544°, -78.878464° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.88544,"lon":-78.878464,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

113

Crystal Lake III | Open Energy Information  

Open Energy Info (EERE)

III III Facility Crystal Lake III Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Location Hancock/Winnebago Counties IA Coordinates 43.304401°, -93.824029° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.304401,"lon":-93.824029,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

114

Meadow Lake Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Facility Meadow Lake Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon Wind Energy Developer EDP Renewables Location Brookston IN Coordinates 40.601111°, -86.864167° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.601111,"lon":-86.864167,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

115

Summer Lake Hot Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Summer Lake Hot Springs Pool & Spa Low Temperature Geothermal Facility Summer Lake Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Summer Lake Hot Springs Sector Geothermal energy Type Pool and Spa Location Summer Lake, Oregon Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

116

Soap Lake Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Soap Lake Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Soap Lake Pool & Spa Low Temperature Geothermal Facility Facility Soap Lake Sector Geothermal energy Type Pool and Spa Location Soap Lake, Washington Coordinates 47.389307°, -119.490591° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

117

salt lake city.cdr  

Office of Legacy Management (LM)

Locations of the Salt Lake City Processing and Disposal Sites Locations of the Salt Lake City Processing and Disposal Sites This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I processing site and disposal site at Salt Lake City, Utah. These sites are managed by the U.S. Department of Energy Office of Legacy Management. Salt Lake City, Utah, Processing and Disposal Sites Site Descriptions and History Regulatory Setting The former Salt Lake City processing site is located about 4 miles south-southwest of the center of Salt Lake City, Utah, at 3300 South and Interstate 15. The Vitro Chemical Company processed uranium and vanadium ore at the site from 1951 until 1968. Milling operations conducted at the processing site created radioactive tailings, a predominantly sandy material.

118

Method for lake restoration  

DOE Patents (OSTI)

A process for removing pollutants or minerals from lake, river or ocean sediments or from mine tailings is disclosed. Magnetically attractable collection units containing an ion exchange or sorbent media with an affinity for a chosen target substance are distributed in the sediments or tailings. After a period of time has passed sufficient for the particles to bind up the target substances, a magnet drawn through the sediments or across the tailings retrieves the units along with the target substance.

Dawson, Gaynor W. (Richland, WA); Mercer, Basil W. (Pasco, WA)

1979-01-01T23:59:59.000Z

119

Why Sequence Lake Vostok accretion ice?  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequence Lake Vostok accretion ice? Lake Vostok is the largest known subglacial lake in central Antarctica, though it's been buried under 4 kilometers (nearly 2.5 miles) of ice for...

120

Storm Lake I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Storm Lake I Wind Farm Storm Lake I Wind Farm Jump to: navigation, search Name Storm Lake I Wind Farm Facility Storm Lake I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission Group Developer GE Energy Energy Purchaser MidAmerican Energy Location Buena Vista and Cherokee Counties IA Coordinates 42.57215°, -95.340693° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.57215,"lon":-95.340693,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "keystone heights lake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Crystal Lake - Clipper (08) Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Crystal Lake - Clipper (08) Wind Farm Crystal Lake - Clipper (08) Wind Farm Jump to: navigation, search Name Crystal Lake - Clipper (08) Wind Farm Facility Crystal Lake - Clipper (08) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Location IA Coordinates 43.221728°, -93.833227° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.221728,"lon":-93.833227,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

122

Lake City Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lake City Hot Springs Geothermal Area Lake City Hot Springs Geothermal Area (Redirected from Lake City Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lake City Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (12) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.66842001,"lon":-120.2068527,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

123

A Rate Equation for the Nocturnal Boundary-Layer Height  

Science Conference Proceedings (OSTI)

A rate equation is derived which describes the development of the boundary-layer height under stable conditions as a function of time.

F. T. M. Nieuwstadt; H. Tennekes

1981-07-01T23:59:59.000Z

124

Cuyahoga Heights, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

County, Ohio. It falls under Ohio's 10th congressional district.12 Registered Energy Companies in Cuyahoga Heights, Ohio Stanek Windows References US Census Bureau...

125

S&TR | March 2004: Tropopause Height Becomes Another Climate...  

NLE Websites -- All DOE Office Websites (Extended Search)

by Ronald F. Lehman Rich Legacy from Atoms for Peace Tropopause Height Becomes Another Climate-Change "Fingerprint" A Better Method for Certifying the Nuclear Stockpile...

126

Ashland Heights, South Dakota: Energy Resources | Open Energy...  

Open Energy Info (EERE)

with form History Share this page on Facebook icon Twitter icon Ashland Heights, South Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia...

127

Nett Lake, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Nett Lake, Minnesota: Energy Resources Nett Lake, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.1110349°, -93.0940552° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.1110349,"lon":-93.0940552,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

128

Bear Head Lake, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Head Lake, Minnesota: Energy Resources Head Lake, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.7638457°, -92.1265023° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.7638457,"lon":-92.1265023,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

129

Cedar Glen Lakes, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Glen Lakes, New Jersey: Energy Resources Glen Lakes, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.952339°, -74.3998711° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.952339,"lon":-74.3998711,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

130

Tikander Lake, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Tikander Lake, Minnesota: Energy Resources Tikander Lake, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.4052865°, -92.3562843° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.4052865,"lon":-92.3562843,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

131

Palmer Lake, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Palmer Lake, Colorado: Energy Resources Palmer Lake, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.1222138°, -104.917204° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.1222138,"lon":-104.917204,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

132

MHK Projects/Lake Huron | Open Energy Information  

Open Energy Info (EERE)

Lake Huron Lake Huron < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.2076,"lon":-81.6235,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

133

Wolf Lake, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lake, Michigan: Energy Resources Lake, Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.0066766°, -85.8375635° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.0066766,"lon":-85.8375635,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

134

Budd Lake, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Budd Lake, New Jersey: Energy Resources Budd Lake, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.8712101°, -74.7340523° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.8712101,"lon":-74.7340523,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

135

Red Feather Lakes, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Red Feather Lakes, Colorado: Energy Resources Red Feather Lakes, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.802481°, -105.5916629° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.802481,"lon":-105.5916629,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

136

Acomita Lake, New Mexico: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Acomita Lake, New Mexico: Energy Resources Acomita Lake, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.0703192°, -107.6136628° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.0703192,"lon":-107.6136628,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

137

Fife Lake, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Fife Lake, Michigan: Energy Resources Fife Lake, Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.5769496°, -85.3506136° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.5769496,"lon":-85.3506136,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

138

Woodcliff Lake, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Woodcliff Lake, New Jersey: Energy Resources Woodcliff Lake, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.0234304°, -74.0665297° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0234304,"lon":-74.0665297,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

139

Three Lakes, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lakes, Florida: Energy Resources Lakes, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.642049°, -80.3983876° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.642049,"lon":-80.3983876,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

140

Wolverine Lake, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lake, Michigan: Energy Resources Lake, Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.556717°, -83.484431° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.556717,"lon":-83.484431,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "keystone heights lake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Chippewa Lake, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Chippewa Lake, Ohio: Energy Resources Chippewa Lake, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.0697771°, -81.9009726° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0697771,"lon":-81.9009726,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

142

Linwood Lake, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lake, Minnesota: Energy Resources Lake, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.3120616°, -92.1143214° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.3120616,"lon":-92.1143214,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

143

Lake Gas Recovery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Gas Recovery Biomass Facility Gas Recovery Biomass Facility Jump to: navigation, search Name Lake Gas Recovery Biomass Facility Facility Lake Gas Recovery Sector Biomass Facility Type Landfill Gas Location Cook County, Illinois Coordinates 41.7376587°, -87.697554° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7376587,"lon":-87.697554,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

144

Sky Lake, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lake, Florida: Energy Resources Lake, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.4572272°, -81.3914592° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.4572272,"lon":-81.3914592,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

145

Walled Lake, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Walled Lake, Michigan: Energy Resources Walled Lake, Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.537811°, -83.4810481° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.537811,"lon":-83.4810481,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

146

Storm Lake, Iowa: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Storm Lake, Iowa: Energy Resources Storm Lake, Iowa: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.645021°, -95.199855° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.645021,"lon":-95.199855,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

147

Meyers Lake, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Meyers Lake, Ohio: Energy Resources Meyers Lake, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.812558°, -81.4165041° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.812558,"lon":-81.4165041,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

148

Buckeye Lake, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lake, Ohio: Energy Resources Lake, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.9336753°, -82.4723781° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.9336753,"lon":-82.4723781,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

149

Potshot Lake, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Potshot Lake, Minnesota: Energy Resources Potshot Lake, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.9995454°, -93.0040972° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.9995454,"lon":-93.0040972,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

150

Long Lake, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lake, Minnesota: Energy Resources Lake, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9866298°, -93.5716243° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9866298,"lon":-93.5716243,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

151

Storm Lake II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

II Wind Farm II Wind Farm Jump to: navigation, search Name Storm Lake II Wind Farm Facility Storm Lake II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner AES Corp. Developer GE Energy Energy Purchaser Alliant/IES Utilities Location Buena Vista and Cherokee Counties IA Coordinates 42.655334°, -95.383651° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.655334,"lon":-95.383651,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

152

Salt Lake City, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Salt Lake City, UT) (Redirected from Salt Lake City, UT) Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.7607793°, -111.8910474° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7607793,"lon":-111.8910474,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

153

Janette Lake, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Janette Lake, Minnesota: Energy Resources Janette Lake, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.2340488°, -92.9856539° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.2340488,"lon":-92.9856539,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

154

Hush Lake, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hush Lake, Minnesota: Energy Resources Hush Lake, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.4494204°, -92.1031839° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.4494204,"lon":-92.1031839,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

155

Taylor Lake Village, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Taylor Lake Village, Texas: Energy Resources Taylor Lake Village, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 29.5752298°, -95.0502069° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.5752298,"lon":-95.0502069,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

156

Meadow Lake II (3Q10) | Open Energy Information  

Open Energy Info (EERE)

Q10) Q10) Jump to: navigation, search Name Meadow Lake II (3Q10) Facility Meadow Lake II (3Q10) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon Wind Energy Developer EDP Renewables Location Brookston IN Coordinates 40.601111°, -86.864167° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.601111,"lon":-86.864167,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

157

Sylvan Lake, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sylvan Lake, Michigan: Energy Resources Sylvan Lake, Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.6114217°, -83.3285467° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.6114217,"lon":-83.3285467,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

158

Crystal Lake - GE Energy Wind Farm | Open Energy Information  

Open Energy Info (EERE)

GE Energy Wind Farm GE Energy Wind Farm Jump to: navigation, search Name Crystal Lake - GE Energy Wind Farm Facility Crystal Lake - GE Energy Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Location IA Coordinates 43.194201°, -93.860521° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.194201,"lon":-93.860521,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

159

Lauderdale Lakes, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lauderdale Lakes, Florida: Energy Resources Lauderdale Lakes, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.1664736°, -80.2083806° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.1664736,"lon":-80.2083806,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

160

Cheat Lake, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cheat Lake, West Virginia: Energy Resources Cheat Lake, West Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.6720244°, -79.8533907° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6720244,"lon":-79.8533907,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "keystone heights lake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Lazy Lake, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lazy Lake, Florida: Energy Resources Lazy Lake, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.1561961°, -80.1447675° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.1561961,"lon":-80.1447675,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

162

Lily Lake, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lily Lake, Illinois: Energy Resources Lily Lake, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9489159°, -88.4778586° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9489159,"lon":-88.4778586,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

163

Peach Lake, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Peach Lake, New York: Energy Resources Peach Lake, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.3675945°, -73.5779042° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3675945,"lon":-73.5779042,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

164

Pine Lake, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Pine Lake, Georgia: Energy Resources Pine Lake, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.7937162°, -84.2060309° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7937162,"lon":-84.2060309,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

165

Mud Hen Lake, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hen Lake, Minnesota: Energy Resources Hen Lake, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.3270583°, -92.3498333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.3270583,"lon":-92.3498333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

166

Heikkala Lake, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Heikkala Lake, Minnesota: Energy Resources Heikkala Lake, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.3243663°, -92.477975° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.3243663,"lon":-92.477975,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

167

Hoyt Lakes, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hoyt Lakes, Minnesota: Energy Resources Hoyt Lakes, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.5196465°, -92.1385071° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.5196465,"lon":-92.1385071,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

168

Collings Lakes, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Collings Lakes, New Jersey: Energy Resources Collings Lakes, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.5956716°, -74.8815556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.5956716,"lon":-74.8815556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

169

Okauchee Lake, Wisconsin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Okauchee Lake, Wisconsin: Energy Resources Okauchee Lake, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.1233399°, -88.4406534° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.1233399,"lon":-88.4406534,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

170

Saranac Lake, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Saranac Lake, New York: Energy Resources Saranac Lake, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.329496°, -74.1312662° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.329496,"lon":-74.1312662,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

171

Prior Lake, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Prior Lake, Minnesota: Energy Resources Prior Lake, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.7132969°, -93.4227274° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.7132969,"lon":-93.4227274,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

172

Leander Lake, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Leander Lake, Minnesota: Energy Resources Leander Lake, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.6723149°, -92.7257888° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.6723149,"lon":-92.7257888,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

173

Kendale Lakes, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kendale Lakes, Florida: Energy Resources Kendale Lakes, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.7081577°, -80.4069986° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.7081577,"lon":-80.4069986,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

174

Shaver Lake, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Shaver Lake, California: Energy Resources Shaver Lake, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.104114°, -119.3176258° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.104114,"lon":-119.3176258,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

175

Picket Lake, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Picket Lake, Minnesota: Energy Resources Picket Lake, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.115516°, -92.3718367° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.115516,"lon":-92.3718367,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

176

Hay Lake, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lake, Minnesota: Energy Resources Lake, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.6013703°, -92.372539° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.6013703,"lon":-92.372539,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

177

MHK Projects/Wax Lake Outlet | Open Energy Information  

Open Energy Info (EERE)

Wax Lake Outlet Wax Lake Outlet < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.6455,"lon":-91.394,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

178

Pfeiffer Lake, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Pfeiffer Lake, Minnesota: Energy Resources Pfeiffer Lake, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.7559931°, -92.5157663° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.7559931,"lon":-92.5157663,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

179

Crab Lake, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Crab Lake, Minnesota: Energy Resources Crab Lake, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.9217602°, -92.1383202° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.9217602,"lon":-92.1383202,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

180

Angleworm Lake, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Angleworm Lake, Minnesota: Energy Resources Angleworm Lake, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.1250953°, -91.8488166° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.1250953,"lon":-91.8488166,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "keystone heights lake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Great Lakes Bioenergy Research Center Technologies Available ...  

Great Lakes Bioenergy Research Center Technologies Available for Licensing Established by the Department of Energy (DOE) in 2007, the Great Lakes Bioenergy Research ...

182

Lake Michigan Lake Breezes: Climatology, Local Forcing, and Synoptic Environment  

Science Conference Proceedings (OSTI)

A method was developed to identify the occurrence of lake-breeze events along the eastern, western, and both shores of Lake Michigan during a 15-yr period (198296). Comparison with detailed observations from May through September of 199697 ...

Neil F. Laird; David A. R. Kristovich; Xin-Zhong Liang; Raymond W. Arritt; Kenneth Labas

2001-03-01T23:59:59.000Z

183

DC's Marble ceiling : urban height and its regulation in Washington, DC; Urban height and its regulation in Washington, DC.  

E-Print Network (OSTI)

??Washington, DC has a unique urban form that is the result of a century-old law. Through the narrow lens of DC's height limit, I survey (more)

Trueblood, Andrew Tyson

2009-01-01T23:59:59.000Z

184

Thermal Fly-height Control Slider Dynamics and Slider-Lubricant Interactions in Hard Disk Drives  

E-Print Network (OSTI)

3 Preliminary Experiments with Thermal Fly-height ControlConclusion . . . . . . . . . . . . . . 4 Thermal Fly-height5 Thermal Fly-height Control Slider Instability and Dynamics

Vangipuram Canchi, Sripathi

2011-01-01T23:59:59.000Z

185

Pyramid Lake Renewable Energy Project  

DOE Green Energy (OSTI)

The Pyramid Lake Paiute Tribe is a federally recognized Tribe residing on the Pyramid Lake Reservation in western Nevada. The funding for this project was used to identify blind geothermal systems disconnected from geothermal sacred sites and develop a Tribal energy corporation for evaluating potential economic development for profit.

John Jackson

2008-03-14T23:59:59.000Z

186

PYRAMID LAKE RENEWEABLE ENERGY PLAN  

DOE Green Energy (OSTI)

The Pyramid Lake Renewable Energy Plan covers these areas: energy potential (primarily focusing on geothermal resource potential, but also more generally addressing wind energy potential); renewable energy market potential; transmission system development; geothermal direct use potential; and business structures to accomplish the development objectives of the Pyramid Lake Paiute Tribe.

HIGH DESERT GEOCULTURE, LLC

2009-06-06T23:59:59.000Z

187

Incorporating Rigorous Height Determination into Unified Fracture Design  

E-Print Network (OSTI)

Hydraulic fracturing plays an important role in increasing production rate in tight reservoirs. The performance of the reservoir after fracturing can be observed from the productivity index. This parameter is dependent on the fracture geometry; height, length and width. Unified fracture design (UFD) offers a method to determine the fracture dimensions providing the maximum productivity index for a specific proppant amount. Then, in order to achieve the maximum productivity index, the treatment schedules including the amount of liquid and proppant used for each stage must be determined according to the fracture dimensions obtained from the UFD. The proppant number is necessary for determining the fracture geometry using the UFD. This number is used to find the maximum productivity index for a given proppant amount. Then, the dimensionless fracture conductivity index corresponding to the maximum productivity index can be computed. The penetration ration, the fracture length, and the propped fracture width can be computed from the dimensionless fracture conductivity. However, calculating the proppant number used in UFD requires the fracture height as an input. The most convenient way to estimate fracture height to input to the UFD is to assume that the fracture height is restricted by stress contrast between the pay zone and over and under-lying layers. In other words, the fracture height is assumed to be constant, independent of net pressure and equal to the thickness of the layer which has the least minimum principal stress. However, in reality, the fracture may grow out from the target formation and the height of fracture is dependent on the net pressure during the treatment. Therefore, it is necessary to couple determination of the fracture height with determination of the other fracture parameters. In this research, equilibrium height theory is applied to rigorously determine the height of fracture. Solving the problem iteratively, it is possible to incorporate the rigorous fracture height determination into the unified fracture design.

Pitakbunkate, Termpan

2010-08-01T23:59:59.000Z

188

Why Sequence Great Salt Lake?  

NLE Websites -- All DOE Office Websites (Extended Search)

Great Salt Lake? Great Salt Lake? On average, the Great Salt Lake is four times saltier than the ocean and also has heavy metals, high concentrations of sulfur and petroleum seeps. In spite of all this, the lake is the saltiest body of water to support life. The lake hosts brine shrimp, algae and a diverse array of microbes, not to mention the roughly 5 million birds that migrate there annually. The secret to these microbes' ability to survive under such harsh conditions might be revealed in their genes. Researchers expect the genetic data will provide insight into how the microorganisms tolerate pollutants such as sulfur and detoxify pollutants such as sulfur and heavy metals like mercury. The information could then be used to develop bioremediation techniques. Researchers also expect that sequencing microorganisms sampled

189

The Lake Effect of the Great Salt Lake: Overview and Forecast Problems  

Science Conference Proceedings (OSTI)

A lake-effect snow phenomenon along the shore of the Great Salt Lake (GSL) in Utah is documented and related to a similar, well-documented lake effect along the shores of the Great Lakes. Twenty-eight cases of GSL lake-effect snowfall are ...

David M. Carpenter

1993-06-01T23:59:59.000Z

190

NBP RFI: Communications Requirements- Comments of Lake Region...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake Region Electric Cooperative- Minnesota NBP RFI: Communications Requirements- Comments of Lake Region Electric Cooperative- Minnesota Comments of Lake Region Electric...

191

Evaluation of the CLM4 Lake Model at a Large and Shallow Freshwater Lake  

Science Conference Proceedings (OSTI)

Models of lake physical processes provide the lower flux boundary conditions for numerical predictions of weather and climate in lake basins. So far, there have been few studies on evaluating lake model performance at the diurnal time scale and ...

Bin Deng; Shoudong Liu; Wei Xiao; Wei Wang; Jiming Jin; Xuhui Lee

2013-04-01T23:59:59.000Z

192

Orographic Effects in Simulated Lake-Effect Snowstorms over Lake Michigan  

Science Conference Proceedings (OSTI)

Numerical simulations of lake-effect snowstorms over Lake Michigan show that orography enhances precipitation rates and mesoscale updrafts and strengthens the land breeze. The mild orographic changes east of Lake Michigan as modeled with an 8-km ...

Mark R. Hjelmfelt

1992-02-01T23:59:59.000Z

193

Stratospheric Influence on Tropopause Height: The Radiative Constraint  

Science Conference Proceedings (OSTI)

Earlier theoretical and modeling work introduced the concept of a radiative constraint relating tropopause height to tropospheric lapse rate and other factors such as surface temperature. Here a minimal quantitative model for the radiative ...

John Thuburn; George C. Craig

2000-01-01T23:59:59.000Z

194

Estimation of Mean Dynamic Height from Altimeter Profiles and Hydrography  

Science Conference Proceedings (OSTI)

The mean dynamic height of the ocean surface is estimated along a subsatellite track of TOPEX/Poseidon crossing the East Auckland Current system northeast of New Zealand. Repeated hydrographic surveys along the track, together with surface ...

Andrew K. Laing; Peter G. Challenor

1999-11-01T23:59:59.000Z

195

Economic model for height determination of high-rise buildings  

E-Print Network (OSTI)

At present, no clear concise method of optimal height determination for high-rise buildings is being practiced. The primary scope of this dissertation is to see if a practical model, decision making process and list of ...

Zafiris, Christopher

1984-01-01T23:59:59.000Z

196

National Biorefineries Database

height: 150...  

Open Energy Info (EERE)

positions to the plant locations and transloading terminals in order to generate the shape files.

height: 150%; margin: 0in 0in 0pt;"...

197

Property:Building/InteriorHeight | Open Energy Information  

Open Energy Info (EERE)

Building/InteriorHeight Building/InteriorHeight Jump to: navigation, search This is a property of type Number. Interior height, m Pages using the property "Building/InteriorHeight" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 3.5 + Sweden Building 05K0002 + 3 + Sweden Building 05K0003 + 3 + Sweden Building 05K0004 + 3 + Sweden Building 05K0005 + 2.8 + Sweden Building 05K0006 + 3 + Sweden Building 05K0007 + 3.5 + Sweden Building 05K0008 + 3 + Sweden Building 05K0009 + 3 + Sweden Building 05K0010 + 3 + Sweden Building 05K0011 + 3 + Sweden Building 05K0012 + 3 + Sweden Building 05K0013 + 3 + Sweden Building 05K0014 + 3 + Sweden Building 05K0015 + 3.2 + Sweden Building 05K0016 + 3 + Sweden Building 05K0017 + 3 + Sweden Building 05K0018 + 3 +

198

ARM - Publications: Science Team Meeting Documents: The height distribution  

NLE Websites -- All DOE Office Websites (Extended Search)

The height distribution of tropical convective clouds The height distribution of tropical convective clouds May, Peter Bureau or Meteorology Research Centre The maximum height that towering convection reaches in the tropics has been studied using operational radar data from Northern Australia as well as cloud radar (MMCR) and polarimetric radar operating in a vertical cloud mode. This analysis was partly driven by the suggestion of Johnson et al (1999) and May and Rajopadhyaya (1999) that there were two distinct modes of deep convection, one nearing the tropopause and the other "topping" in the region 5-10 km. Operational radar storm cell tracks have been utilized and the maximum height that these cells reach in each "volume" scan has been recorded. The data has been separated into "break" season

199

City of Seaside Heights, New Jersey (Utility Company) | Open Energy  

Open Energy Info (EERE)

Seaside Heights, New Jersey (Utility Company) Seaside Heights, New Jersey (Utility Company) Jump to: navigation, search Name Seaside Heights City of Place New Jersey Utility Id 16864 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Floodlights 1000 W Lighting Floodlights 150W Lighting Floodlights 250W Lighting Floodlights 400W Lighting Residential Residential Average Rates Residential: $0.2410/kWh Commercial: $0.2060/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Seaside_Heights,_New_Jersey_(Utility_Company)&oldid=410221

200

The Recent Increase in North Atlantic Wave Heights  

Science Conference Proceedings (OSTI)

The nature and causes of the recent increase in North Atlantic wave heights are explored by combining a numerical hindcast with a statistical analysis. The numerical hindcast incorporates a 10-yr history (198089) of North Atlantic, twice daily ...

Y. Kushnir; V. J. Cardone; J. G. Greenwood; M. A. Cane

1997-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "keystone heights lake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The Feasibility of Dynamic Height Determination from Moored Temperature Sensors  

Science Conference Proceedings (OSTI)

The existence of a tight T-S relationship in the southwestern North Atlantic is used to convert temperature measurements from moored sensors to dynamic heights. Seven hydrographic cruises with intensive CTD coverage during 198081 allow us to ...

Rainer J. Zantopp; Kevin D. Leaman

1984-08-01T23:59:59.000Z

202

Observed Diurnal Cycle Climatology of Planetary Boundary Layer Height  

Science Conference Proceedings (OSTI)

An observational climatology of the planetary boundary layer height (PBLH) diurnal cycle, specific to surface characteristics, is derived from 58 286 fine-resolution soundings collected in 14 major field campaigns around the world. An objective ...

Shuyan Liu; Xin-Zhong Liang

2010-11-01T23:59:59.000Z

203

Validation of Jason-1 and Envisat Remotely Sensed Wave Heights  

Science Conference Proceedings (OSTI)

Satellite altimetry provides an immensely valuable source of operational significant wave height (Hs) data. Currently, altimeters on board Jason-1 and Envisat provide global Hs observations, available within 35 h of real time. In this work, Hs ...

Tom H. Durrant; Diana J. M. Greenslade; Ian Simmonds

2009-01-01T23:59:59.000Z

204

Global Estimates of Extreme Wind Speed and Wave Height  

Science Conference Proceedings (OSTI)

A long-term dataset of satellite altimeter measurements of significant wave height and wind speed, spanning 23 years, is analyzed to determine extreme values corresponding to a 100-yr return period. The analysis considers the suitability of both ...

J. Vinoth; I. R. Young

2011-03-01T23:59:59.000Z

205

Analogs in the Wintertime 500 mb Height Field  

Science Conference Proceedings (OSTI)

A 15-winter sample of daily gridded values of Northern Hemisphere 500 mb heights is examined for the existence of recurrent flow patterns (analogs). The analog search is repeated several times after degrees of freedom are successively removed ...

David S. Gutzler; Jagadish Shukla

1984-01-01T23:59:59.000Z

206

Height Correction of Atmospheric Motion Vectors Using Airborne Lidar Observations  

Science Conference Proceedings (OSTI)

Uncertainties in the height assignment of atmospheric motion vectors (AMVs) are the main contributor to the total AMV wind error, and these uncertainties introduce errors that can be horizontally correlated over several hundred kilometers. As a ...

Martin Weissmann; Kathrin Folger; Heiner Lange

2013-08-01T23:59:59.000Z

207

ARM - PI Product - Raman lidar/AERI PBL Height Product  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsRaman lidarAERI PBL Height Product Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Raman lidarAERI PBL...

208

Fish of the Great Lakes  

NLE Websites -- All DOE Office Websites (Extended Search)

of Cook County Richard B. Ogilvie, President Roland F. Eisenbeis, Supt. of Conservation FISH OF THE GREAT LAKES As you stand at the top of one of the tallest buildings in downtown...

209

Recent Great Lakes Ice Trends  

Science Conference Proceedings (OSTI)

Analysis of ice observations made by cooperative observers from shoreline stations reveals significant changes in the ice season on the North American Great Lakes over the past 35years. Although the dataset is highly inhomogeneous and year-to-...

Howard P. Hanson; Claire S. Hanson; Brenda H. Yoo

1992-05-01T23:59:59.000Z

210

Carson Lake Corral Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Carson Lake Corral Geothermal Area Carson Lake Corral Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Carson Lake Corral Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3561,"lon":-118.6642,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

211

Fish Lake Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fish Lake Valley Geothermal Area Fish Lake Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fish Lake Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (22) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.86,"lon":-118.05,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

212

Summer Lake Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Summer Lake Hot Springs Geothermal Area Summer Lake Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Summer Lake Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.725,"lon":-120.645,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

213

North Shore Mono Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Shore Mono Lake Geothermal Area Shore Mono Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: North Shore Mono Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.048205,"lon":-119.080047,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

214

Fish Lake Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Fish Lake Valley Geothermal Area (Redirected from Fish Lake Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fish Lake Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (22) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.86,"lon":-118.05,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

215

Lake Elsinore Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Elsinore Pool & Spa Low Temperature Geothermal Facility Elsinore Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Lake Elsinore Pool & Spa Low Temperature Geothermal Facility Facility Lake Elsinore Sector Geothermal energy Type Pool and Spa Location Lake Elsinore, California Coordinates 33.6680772°, -117.3272615° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

216

Bear Lake Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Bear Lake Hot Springs Pool & Spa Low Temperature Geothermal Facility Bear Lake Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Bear Lake Hot Springs Sector Geothermal energy Type Pool and Spa Location St Charles, Idaho Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

217

Contributions of Lake-Effect Periods to the Cool-Season Hydroclimate of the Great Salt Lake Basin  

Science Conference Proceedings (OSTI)

Although smaller lakes are known to produce lake-effect precipitation, their influence on the precipitation climatology of lake-effect regions remains poorly documented. This study examines the contribution of lake-effect periods (LEPs) to the ...

Kristen N. Yeager; W. James Steenburgh; Trevor I. Alcott

2013-02-01T23:59:59.000Z

218

Great Lakes WIND Network | Open Energy Information  

Open Energy Info (EERE)

WIND Network WIND Network Jump to: navigation, search Name Great Lakes WIND Network Address 4855 W 130th Place Cleveland, Ohio Zip 44135 Sector Wind energy Product Business and legal services;Consulting; Energy provider: energy transmission and distribution; Investment/finances;Maintenance and repair;Manufacturing; Research and development; Trainining and education Phone number 215-588-1440 Website http://www.glwn.org Coordinates 41.4228056°, -81.7801592° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4228056,"lon":-81.7801592,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

219

Lake and reservoir restoration guidance manual: first edition  

SciTech Connect

This manual provides guidance to lake managers, homeowners, lake associations, and laypersons on lake and reservoir restoration, management and protection. It also provides information on how to identify lake problems, evaluate practices for restoring and protection lakes, watershed management, and creating a lake-management plan.

Moore, L.; Thornton, K.

1988-02-01T23:59:59.000Z

220

Vadnais Heights, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Vadnais Heights, Minnesota: Energy Resources Vadnais Heights, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.0574658°, -93.0738305° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.0574658,"lon":-93.0738305,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "keystone heights lake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Madison Heights, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Heights, Michigan: Energy Resources Heights, Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.4858692°, -83.1052028° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4858692,"lon":-83.1052028,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

222

Airway Heights, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Airway Heights, Washington: Energy Resources Airway Heights, Washington: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.644611°, -117.5932728° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.644611,"lon":-117.5932728,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

223

Grandview Heights, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Grandview Heights, Ohio: Energy Resources Grandview Heights, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.9797863°, -83.0407403° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.9797863,"lon":-83.0407403,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

224

South Miami Heights, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Heights, Florida: Energy Resources Heights, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.597606°, -80.3806096° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.597606,"lon":-80.3806096,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

225

South Chicago Heights, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Heights, Illinois: Energy Resources Heights, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.4808681°, -87.6378211° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4808681,"lon":-87.6378211,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

226

Palos Heights, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Palos Heights, Illinois: Energy Resources Palos Heights, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6680885°, -87.7964416° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6680885,"lon":-87.7964416,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

227

CHIP House Takes Design to Different Heights (Literally) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CHIP House Takes Design to Different Heights (Literally) CHIP House Takes Design to Different Heights (Literally) CHIP House Takes Design to Different Heights (Literally) May 12, 2011 - 5:49pm Addthis A model of the SCI-Arc/Caltech Solar Deacthlon team's CHIP house. | Photo Courtesy of the Solar Decathlon's Flickr photostream A model of the SCI-Arc/Caltech Solar Deacthlon team's CHIP house. | Photo Courtesy of the Solar Decathlon's Flickr photostream April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs How can I participate? The next Solar Decathlon will be held Sept. 23-Oct. 2, 2011, at the National Mall's West Potomac Park in Washington, D.C. In honor of the U.S Department of Energy's Solar Decathlon -- which challenges 20 collegiate teams to design, build, and operate solar-powered

228

Rowland Heights, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Heights, California: Energy Resources Heights, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.9761238°, -117.9053395° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9761238,"lon":-117.9053395,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

229

Day Heights, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Heights, Ohio: Energy Resources Heights, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.1739494°, -84.226325° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.1739494,"lon":-84.226325,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

230

Middleburg Heights, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Middleburg Heights, Ohio: Energy Resources Middleburg Heights, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.3614401°, -81.812912° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3614401,"lon":-81.812912,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

231

Hacienda Heights, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hacienda Heights, California: Energy Resources Hacienda Heights, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.9930677°, -117.9686755° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9930677,"lon":-117.9686755,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

232

Harwood Heights, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Harwood Heights, Illinois: Energy Resources Harwood Heights, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9672532°, -87.8075612° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9672532,"lon":-87.8075612,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

233

Barker Heights, North Carolina: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Barker Heights, North Carolina: Energy Resources Barker Heights, North Carolina: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.3112279°, -82.444008° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.3112279,"lon":-82.444008,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

234

Holden Heights, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Holden Heights, Florida: Energy Resources Holden Heights, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.4966702°, -81.3878481° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.4966702,"lon":-81.3878481,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

235

Wofford Heights, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wofford Heights, California: Energy Resources Wofford Heights, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.7068961°, -118.4561967° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.7068961,"lon":-118.4561967,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

236

Yorktown Heights, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Yorktown Heights, New York: Energy Resources Yorktown Heights, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.2709274°, -73.7776336° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.2709274,"lon":-73.7776336,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

237

Holiday Heights, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Holiday Heights, New Jersey: Energy Resources Holiday Heights, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.9459512°, -74.2540324° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.9459512,"lon":-74.2540324,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

238

Mount Healthy Heights, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Heights, Ohio: Energy Resources Heights, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.2703349°, -84.568001° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.2703349,"lon":-84.568001,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

239

Town of Kingsford Heights, Indiana (Utility Company) | Open Energy  

Open Energy Info (EERE)

Kingsford Heights, Indiana (Utility Company) Kingsford Heights, Indiana (Utility Company) Jump to: navigation, search Name Town of Kingsford Heights Place Indiana Utility Id 10330 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Churches, Schools, Commercial and Small Power Service Commercial General Power Service Rate C- Demand Metered Commercial General Power Service Rate C- Non Demand Metered Commercial General Service Rate M- Demand Metered Commercial General Service Rate M- Non Demand Metered Commercial

240

Wheatley Heights, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wheatley Heights, New York: Energy Resources Wheatley Heights, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.76371°, -73.3698426° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.76371,"lon":-73.3698426,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "keystone heights lake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Ladera Heights, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ladera Heights, California: Energy Resources Ladera Heights, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.9941792°, -118.3753543° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9941792,"lon":-118.3753543,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

242

Shelter Island Heights, New York: Energy Resources | Open Energy  

Open Energy Info (EERE)

Heights, New York: Energy Resources Heights, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.0839883°, -72.3559166° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0839883,"lon":-72.3559166,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

243

Newburgh Heights, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Newburgh Heights, Ohio: Energy Resources Newburgh Heights, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.450052°, -81.6634617° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.450052,"lon":-81.6634617,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

244

Olympia Heights, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Heights, Florida: Energy Resources Heights, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.726768°, -80.3553306° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.726768,"lon":-80.3553306,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

245

Glenvar Heights, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Glenvar Heights, Florida: Energy Resources Glenvar Heights, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.7076018°, -80.3256076° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.7076018,"lon":-80.3256076,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

246

Wind Industry Soars to New Heights | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Industry Soars to New Heights Wind Industry Soars to New Heights Wind Industry Soars to New Heights August 5, 2013 - 8:13am Addthis Watch the video to learn more about the new records reached by the U.S. industry as found in the 2012 Wind Technologies Market Report. | Video by Matty Greene, Energy Department. Matty Greene Matty Greene Videographer Wind capacity additions in the United States reached record levels in 2012, as detailed in the 2012 Wind Technologies Market Report. In a video narrated by Jose Zayas, Director of the Energy Department's Wind and Water Power Technologies Office, he highlights the wind energy accomplishments in 2012. This includes adding 13 gigawatts in new installations -- enough to surpass any other country -- as well as employing 80,000 American workers. After watching the video, make sure to checkout the report in its entirety

247

Wind Industry Soars to New Heights | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Soars to New Heights Industry Soars to New Heights Wind Industry Soars to New Heights August 5, 2013 - 8:13am Addthis Watch the video to learn more about the new records reached by the U.S. industry as found in the 2012 Wind Technologies Market Report. | Video by Matty Greene, Energy Department. Matty Greene Matty Greene Videographer Wind capacity additions in the United States reached record levels in 2012, as detailed in the 2012 Wind Technologies Market Report. In a video narrated by Jose Zayas, Director of the Energy Department's Wind and Water Power Technologies Office, he highlights the wind energy accomplishments in 2012. This includes adding 13 gigawatts in new installations -- enough to surpass any other country -- as well as employing 80,000 American workers. After watching the video, make sure to checkout the report in its entirety

248

Preston Heights, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Preston Heights, Illinois: Energy Resources Preston Heights, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.343056°, -88.719722° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.343056,"lon":-88.719722,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

249

Arlington Heights, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Arlington Heights, Illinois: Energy Resources Arlington Heights, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.0883603°, -87.9806265° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.0883603,"lon":-87.9806265,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

250

La Habra Heights, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Habra Heights, California: Energy Resources Habra Heights, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.9608461°, -117.9506186° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9608461,"lon":-117.9506186,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

251

Hasbrouck Heights, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hasbrouck Heights, New Jersey: Energy Resources Hasbrouck Heights, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.8581553°, -74.0806971° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.8581553,"lon":-74.0806971,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

252

Huber Heights, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Huber Heights, Ohio: Energy Resources Huber Heights, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.843947°, -84.1246608° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.843947,"lon":-84.1246608,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

253

Warrensville Heights, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Warrensville Heights, Ohio: Energy Resources Warrensville Heights, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.4386°, -81.523419° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4386,"lon":-81.523419,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

254

Billington Heights, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Billington Heights, New York: Energy Resources Billington Heights, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.7842264°, -78.6264151° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.7842264,"lon":-78.6264151,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

255

Property:Maximum Wave Height(m) | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Maximum Wave Height(m) Jump to: navigation, search Property Name Maximum Wave Height(m) Property Type String Pages using the property "Maximum Wave Height(m)" Showing 25 pages using this property. (previous 25) (next 25) 1 1.5-ft Wave Flume Facility + 0.2 + 10-ft Wave Flume Facility + 0.5 + 11-ft Wave Flume Facility + 0.4 + 2 2-ft Flume Facility + 0.6 + 3 3-ft Wave Flume Facility + 0.2 + 5 5-ft Wave Flume Facility + 0.5 + 6 6-ft Wave Flume Facility + 0.4 + A Alden Large Flume + 0.0 + Alden Small Flume + 0.2 + Alden Wave Basin + 0.3 + B Breakwater Research Facility + 0.0 + C Carderock Maneuvering & Seakeeping Basin + 0.6 + Carderock Tow Tank 2 + 0.6 + Carderock Tow Tank 3 + 0.6 +

256

San Antonio Heights, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Antonio Heights, California: Energy Resources Antonio Heights, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.1555638°, -117.6564437° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.1555638,"lon":-117.6564437,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

257

Avocado Heights, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Avocado Heights, California: Energy Resources Avocado Heights, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.0361217°, -117.9911765° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.0361217,"lon":-117.9911765,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

258

Shaker Heights, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Shaker Heights, Ohio: Energy Resources Shaker Heights, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.4739419°, -81.5370671° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4739419,"lon":-81.5370671,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

259

Parma Heights, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Parma Heights, Ohio: Energy Resources Parma Heights, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.3900518°, -81.7595769° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3900518,"lon":-81.7595769,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

260

Colonial Heights County, Virginia: Energy Resources | Open Energy  

Open Energy Info (EERE)

Heights County, Virginia: Energy Resources Heights County, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.2656873°, -77.3956004° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.2656873,"lon":-77.3956004,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "keystone heights lake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Category:Salt Lake City, UT | Open Energy Information  

Open Energy Info (EERE)

UT UT Jump to: navigation, search Go Back to PV Economics By Location Media in category "Salt Lake City, UT" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Salt Lake City UT Moon Lake Electric Assn Inc (Utah).png SVFullServiceRestauran... 57 KB SVHospital Salt Lake City UT Moon Lake Electric Assn Inc (Utah).png SVHospital Salt Lake C... 57 KB SVLargeHotel Salt Lake City UT Moon Lake Electric Assn Inc (Utah).png SVLargeHotel Salt Lake... 55 KB SVLargeOffice Salt Lake City UT Moon Lake Electric Assn Inc (Utah).png SVLargeOffice Salt Lak... 57 KB SVMediumOffice Salt Lake City UT Moon Lake Electric Assn Inc (Utah).png SVMediumOffice Salt La... 62 KB SVMidriseApartment Salt Lake City UT Moon Lake Electric Assn Inc (Utah).png

262

Man-Made Lakes and Ponds  

NLE Websites -- All DOE Office Websites (Extended Search)

MAN-MADE LAKES AND PONDS Conservation is on the march. Slowly, we are stopping the pollution of our streams by sewage and industrial wastes; we are restoring many lakes and...

263

Lake Region Electric Cooperative - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Region Electric Cooperative - Residential Energy Efficiency Rebate Program Lake Region Electric Cooperative - Residential Energy Efficiency Rebate Program Eligibility Residential...

264

Fast soft self-shadowing on dynamic height fields  

Science Conference Proceedings (OSTI)

We present a new, real-time method for rendering soft shadows from large light sources or lighting environments on dynamic height fields. The method first computes a horizon map for a set of azimuthal directions. To reduce sampling, we compute a multi-resolution ...

John Snyder; Derek Nowrouzezahrai

2008-06-01T23:59:59.000Z

265

The Increasing Wave Height in the North Atlantic Ocean  

Science Conference Proceedings (OSTI)

There are indications that the mean significant wave height at Seven Stones Light Vessel has increased in the period 196085. This is of considerable interest for the design of offshore structures and for coastal defense. In this note, the ...

E. Bouws; D. Jannink; G. J. Komen

1996-10-01T23:59:59.000Z

266

Diurnal Variation of Pressure-Heights: A Vertical Phase Shift  

Science Conference Proceedings (OSTI)

A vertical phase shift of the diurnal harmonic of geopotential height S1(Z) in the lower troposphere of low latitudes is shown by a comparison of diurnal harmonic of surface pressure at two surface stations that have an elevation difference close ...

Tsing-Chang Chen; Ming-Cheng Yen; Siegfried Schubert

2001-09-01T23:59:59.000Z

267

Temperature analysis for lake Yojoa, Honduras  

E-Print Network (OSTI)

Lake Yojoa is the largest freshwater lake in Honduras, located in the central west region of the country (1405' N, 88 W). The lake has a surface area of 82 km2, a maximum depth of 26 m. and an average depth of 16 m. The ...

Chokshi, Mira (Mira K.)

2006-01-01T23:59:59.000Z

268

RECIPIENT:Lake County, FL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake County, FL Lake County, FL u.s. DEPARTIIIEN T OF ENERGY EERE PROJECT MANAGEMENT CEN T ER NEPA DETERlIJJNATION PROJECf TITLE: Lake County, FL EECBG SOW (S) Page lof2 STATE: FL Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Numbcr CID Numbtr OE·FOA-OOOOO13 DE·EE00Q0786.001 0 Based on my review of the information concerning the proposed adion, as NEPA Compliance Officer (authorized undtr DOE Order 451.IA), I have made the following determination: ex. EA, EIS APPENDIX AND NUMBER: Description: 65.1 Actions to conserve energy, demonstrate potential energy conserva tion, and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful substances. These actions may involve financial and technical

269

Salt Lake Community College | .EDUconnections  

NLE Websites -- All DOE Office Websites (Extended Search)

SLCC Partners with DOE's Rocky Mountain Solar Training Program This program is a joint partnership between DOE's Solar Energy Technogies Program, Salt Lake Community College, Solar Energy International, and the Utah Solar Energy Association that works to accelerate use of solar electric technologies, training and facilities at community and technical college solar training programs within a 15 western United States region. DOE Solar Instructor Training Network Salt Lake City, Utah DOE Applauds SLCC's Science and Technical Programs Architectural Technology Biology Biotechnology Biomanufacturing Chemistry Computer Science Electric Sector Training Energy Management Engineering Geographic Information Sciences Geosciences InnovaBio Manufacturing & Mechanical Engineering Technology

270

Lake-Breeze Fronts in the Salt Lake Valley  

Science Conference Proceedings (OSTI)

Winds at the Salt Lake City International Airport (SLC) during the AprilOctober period from 1948 to 2003 have been observed to shift to the north (up-valley direction) between late morning and afternoon on over 70% of the days without ...

Daniel E. Zumpfe; John D. Horel

2007-02-01T23:59:59.000Z

271

The Lake Thunderbird Micronet Project  

Science Conference Proceedings (OSTI)

The Lake Thunderbird Micronet is a dense network of environmental sensors and a meteorological tower situated on 10 acres of rural land in central Oklahoma. The Micronet was established in the spring of 2002 as part of a grassroots effort by a ...

Alan Shapiro; Petra M. Klein; Sean C. Arms; David Bodine; Matthew Carney

2009-06-01T23:59:59.000Z

272

Practical Estimates of Lake Evaporation  

Science Conference Proceedings (OSTI)

Practical estimates of lake evaporation must rely on data that can be observed in the land environment. This requires the ability to take into account the changes in the temperature and humidity that occur when the air passes from the land to the ...

F. I. Morton

1986-03-01T23:59:59.000Z

273

Zoning for Small Wind: The Importance of Tower Height  

Wind Powering America (EERE)

1 1 Zoning for Small Wind: The Importance of Tower Height An ASES Small Wind Webinar Mick Sagrillo-Wisconsin's Focus on Energy © 2008 by Mick Sagrillo 2 Definitions: rotor L&S Tech. Assoc., Inc. Rotor = "collector" for a wind system 3 Definitions: wind * Wind = the 'fuel' * Wind has two 'components' - Quantity = wind speed (velocity or V) - Quality = 'clean' flowing wind 4 Quantity * = average annual wind speed * Climate, not weather * Akin to annual average sun hours for PV or head and flow for hydro * Wind speed increases with height above ground... * ...Due to diminished ground drag (friction) 5 Power in the wind V³ * Wind speed = V * Power available is proportional to wind speed x wind speed x wind speed - or P ~ V x V x V - or P ~ V ³ * Therefore, 10% V = 33% P * Lesson !

274

Limiting Factors for Convective Cloud Top Height in the Tropics  

NLE Websites -- All DOE Office Websites (Extended Search)

Limiting Factors for Convective Cloud Top Limiting Factors for Convective Cloud Top Height in the Tropics M. P. Jensen and A. D. Del Genio National Aeronautics and Space Administration Goddard Institute for Space Studies Columbia University New York, New York Introduction Populations of tropical convective clouds are mainly comprised of three types: shallow trade cumulus, mid-level cumulus congestus and deep convective clouds (Johnson et al. 1999). Each of these cloud types has different impacts on the local radiation and water budgets. For climate model applications it is therefore important to understand the factors which determine the type of convective cloud that will occur. In this study, we concentrate on describing the factors that limit the cloud-top heights of mid-

275

Contaminant Monitoring Strategy for Henrys Lake, Idaho  

Science Conference Proceedings (OSTI)

Henrys Lake, located in southeastern Idaho, is a large, shallow lake (6,600 acres, {approx} 17.1 feet maximum depth) located at 6,472 feet elevation in Fremont Co., Idaho at the headwaters of the Henrys Fork of the Snake River. The upper watershed is comprised of high mountains of the Targhee National Forest and the lakeshore is surrounded by extensive flats and wetlands, which are mostly privately owned. The lake has been dammed since 1922, and the upper 12 feet of the lake waters are allocated for downriver use. Henrys Lake is a naturally productive lake supporting a nationally recognized ''Blue Ribbon'' trout fishery. There is concern that increasing housing development and cattle grazing may accelerate eutrophication and result in winter and early spring fish kills. There has not been a recent thorough assessment of lake water quality. However, the Department of Environmental Quality (DEQ) is currently conducting a study of water quality on Henrys Lake and tributary streams. Septic systems and lawn runoff from housing developments on the north, west, and southwest shores could potentially contribute to the nutrient enrichment of the lake. Many houses are on steep hillsides where runoff from lawns, driveways, etc. drain into wetland flats along the lake or directly into the lake. In addition, seepage from septic systems (drainfields) drain directly into the wetlands enter groundwater areas that seep into the lake. Cattle grazing along the lake margin, riparian areas, and uplands is likely accelerating erosion and nutrient enrichment. Also, cattle grazing along riparian areas likely adds to nutrient enrichment of the lake through subsurface flow and direct runoff. Stream bank and lakeshore erosion may also accelerate eutrophication by increasing the sedimentation of the lake. Approximately nine streams feed the lake (see map), but flows are often severely reduced or completely eliminated due to irrigation diversion. In addition, subsurface flows can occur as a result of severe cattle grazing along riparian areas and deltas. Groundwater and springs also feed the lake, and are likely critical for oxygen supply during winter stratification. During the winter of 1991, Henrys Lake experienced low dissolved oxygen levels resulting in large fish kills. It is thought that thick ice cover combined with an increase in nutrient loads created conditions resulting in poor water quality. The Idaho Department of Health and Welfare, DEQ is currently conducting a study to determine the water quality of Henrys Lake, the sources contributing to its deterioration, and potential remedial actions to correct problem areas.

John S. Irving; R. P. Breckenridge

1992-12-01T23:59:59.000Z

276

Process for preparing schottky diode contacts with predetermined barrier heights  

DOE Patents (OSTI)

A process is provided for producing a Schottky diode having a preselected barrier height .phi..sub.Bn. The substrate is preferably n-GaAs, the metallic contact is derived from a starting alloy of the Formula [.SIGMA.M.sub..delta. ](Al.sub.x Ga.sub.1-x) wherein: .SIGMA.M is a moiety which consists of at least one M, and when more than one M is present, each M is different, M is a Group VIII metal selected from the group consisting of nickel, cobalt, ruthenium, rhodium, indium and platinum, .delta. is a stoichiometric coefficient whose total value in any given .SIGMA.M moiety is 1, and x is a positive number between 0 and 1 (that is, x ranges from greater than 0 to less than 1). Also, the starting alloy is capable of forming with the substrate a two phase equilibrium reciprocal system of the binary alloy mixture [.SIGMA.M.sub..delta. ]Ga-[.SIGMA.M.sub..delta. ]Al-AlAs-GaAs. When members of an alloy subclass within this Formula are each preliminarily correlated with the barrier height .phi..sub.Bn of a contact producable therewith, then Schottky diodes of predetermined barrier heights are producable by sputtering and annealing. Further provided are the product Schottky diodes that are produced according to this process.

Chang, Y. Austin (Middleton, WI); Jan, Chia-Hong (Portland, OR); Chen, Chia-Ping (Madison, WI)

1996-01-01T23:59:59.000Z

277

Insights into Cloud-Top Height and Dynamics from the Seasonal Cycle of Cloud-Top Heights Observed by MISR in the West Pacific Region  

Science Conference Proceedings (OSTI)

The connection between environmental stability and the height of tropical deep convective clouds is analyzed using stereo cloud height data from the Multiangle Imaging Spectroradiometer (MISR), focusing on the seasonal cycle of clouds over the ...

Jung Hyo Chae; Steven C. Sherwood

2010-01-01T23:59:59.000Z

278

Lake Ontario Maritime Cultural Landscape  

E-Print Network (OSTI)

The goal of the Lake Ontario Maritime Cultural Landscape project was to investigate the nature and distribution of archaeological sites along the northeast shoreline of Lake Ontario while examining the environmental, political, and cultural factors that influenced the position of these sites. The primary method of investigation was a combined archaeological and historical survey of the shoreline within seven 1-km square areas. The archaeological component of the survey covered both the terrestrial and submerged portions of the shore through marine remote sensing (side-scan sonar and magnetometer), diving surveys, pedestrian surveys, and informant interviews. A total of 39 sites and 51 isolated finds were identified or further analyzed as a result of this project. These sites ranged from the Middle Archaic period (ca. 5500-2500 B.C.) through the 19th century and included habitation, military, transportation, and recreational sites. Analysis of these findings was conducted at two scales: the individual survey area and Lake Ontario as a whole. By treating each survey area as a distinct landscape, it was possible to discuss how various cultures and groups used each space and to identify instances of both dynamism and continuity in the landscapes. Results of these analyses included the continuous occupation of several locations from pre-Contact times to the present, varying uses of the same environment in response to political and economic shifts, the formation of communities around transportation nodes, and recurring settlement patterns. The survey data was also combined to explore regional-scale trends that manifest themselves in the historical Lake Ontario littoral landscape including ephemeral landscapes, permeable boundaries, danger in the lake, and factors of change.

Ford, Benjamin L.

2009-08-01T23:59:59.000Z

279

Soda Lake, Nevada: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Nevada: Energy Resources Nevada: Energy Resources Jump to: navigation, search Name Soda Lake, Nevada GeoNames ID 5512346 Coordinates 39.52519°, -118.87654° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.52519,"lon":-118.87654,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

280

Lake City Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Lake City Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lake City Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (12) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.66842001,"lon":-120.2068527,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "keystone heights lake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Climatic Effects on Lake Basins. Part I: Modeling Tropical Lake Levels  

Science Conference Proceedings (OSTI)

The availability of satellite estimates of rainfall and lake levels offers exciting new opportunities to estimate the hydrologic properties of lake systems. Combined with simple basin models, connections to climatic variations can then be explored ...

Martina Ricko; James A. Carton; Charon Birkett

2011-06-01T23:59:59.000Z

282

Convective Evolution across Lake Michigan during a Widespread Lake-Effect Snow Event  

Science Conference Proceedings (OSTI)

Lake-effect snowstorms generally develop within convective boundary layers, which are induced when cold air flows over relatively warm lakes in fall and winter. Mesoscale circulations within the boundary layers largely control which communities ...

David A. R. Kristovich; Neil F. Laird; Mark R. Hjelmfelt

2003-04-01T23:59:59.000Z

283

Numerical Study of the Influence of Environmental Conditions on Lake-Effect Snowstorms over Lake Michigan  

Science Conference Proceedings (OSTI)

Numerical simulations are used to examine the influence of environmental parameters on the morphology of lake effect snowstorms over Lake Michigan. A series of model sensitivity studies are performed using the Colorado State University mesoscale ...

Mark R. Hjelmfelt

1990-01-01T23:59:59.000Z

284

Real-Time Prediction of the Lake Breeze on the Western Shore of Lake Michigan  

Science Conference Proceedings (OSTI)

A forecast verification study of the occurrence and inland penetration of the lake breeze on the western shore of Lake Michigan was conducted. A real-time version of The Pennsylvania State UniversityNational Center for Atmospheric Research fifth-...

Paul J. Roebber; Mark G. Gehring

2000-06-01T23:59:59.000Z

285

Climatological Conditions of Lake-Effect Precipitation Events Associated with the New York State Finger Lakes  

Science Conference Proceedings (OSTI)

A climatological analysis was conducted of the environmental and atmospheric conditions that occurred during 125 identified lake-effect (LE) precipitation events in the New York State Finger Lakes region for the 11 winters (OctoberMarch) from ...

Neil Laird; Ryan Sobash; Natasha Hodas

2010-05-01T23:59:59.000Z

286

Maple Heights, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

1.565956° 1.565956° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4153313,"lon":-81.565956,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

287

Highland Heights, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

1.4784522° 1.4784522° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5519954,"lon":-81.4784522,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

288

Garfield Heights, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

1.6059581° 1.6059581° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4169974,"lon":-81.6059581,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

289

Cleveland Heights, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

1.556235° 1.556235° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5200518,"lon":-81.556235,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

290

University Heights, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

°, -81.5373456° °, -81.5373456° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4978306,"lon":-81.5373456,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

291

Brooklyn Heights, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

1.665391° 1.665391° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.415601,"lon":-81.665391,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

292

NAWS-China Lake Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

g g y g y S S C C NAWS NAWS - - China Lake China Lake Working with the Local Utility Working with the Local Utility Mark Shvartzman Mark Shvartzman Project Manager, Southern California Edison Project Manager, Southern California Edison Presented at the November FUPWG Meeting Presented at the November FUPWG Meeting November 18, 2009 November 18, 2009 1 1 g E t bli h d i 1998 d Ad i Fili 1358 E History of SCE's UESC Program History of SCE's UESC Program History of SCE s UESC Program History of SCE s UESC Program * Background - Edison developed Energy Related Services (ERS) to assist Federal customers in identifying and implementing energy efficiency and renewable energy projects at government owned and/or managed facilities within Southern California Edison service territory - Established in 1998 under Advice Filing 1358-E

293

NAWS-China Lake Project | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NAWS-China Lake Project NAWS-China Lake Project Presentation covers the NAWS-China Lake Project at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November...

294

Association between Winter Precipitation and Water Level Fluctuations in the Great Lakes and Atmospheric Circulation Patterns  

Science Conference Proceedings (OSTI)

Atmospheric precipitation in the Great Lakes basin, as a major mediating variable between atmospheric circulation and lake levels, is analyzed relative to both. The effect of cumulative winter precipitation on lake levels varies from lake to lake ...

Sergei N. Rodionov

1994-11-01T23:59:59.000Z

295

Why sequence Bacteria from Lake Washington?  

NLE Websites -- All DOE Office Websites (Extended Search)

bacteria from Lake Washington? bacteria from Lake Washington? Previous collaborations between the University of Washington team and the DOE JGI involving both single genome and metagenomic sequencing have greatly enhanced the community's ability to explore the diversity of bacteria functionally active in metabolism of single carbon compounds, known as methylotrophs, isolated from Lake Washington (Seattle, Washington) sediment. Sequencing genomes of 50 methylotroph isolates from the Lake Washington will further enhance the methylotroph community knowledge database providing a much higher level of resolution of global (meta)transcriptomic and (meta)proteomic analyses, as well as species interaction studies, informing a better understanding of biogeochemical cycling of carbon and nitrogen.

296

great_lakes_90mwindspeed_off  

NLE Websites -- All DOE Office Websites (Extended Search)

GISDataTechnologySpecificUnitedStatesWindHighResolutionGreatLakes90mWindspeedOffshoreWindHighResolution.zip> Description: Abstract: Annual average offshore wind...

297

Nacimiento Reservoir San Antonio Reservoir Searles Lake  

E-Print Network (OSTI)

Lake (Dry) TRONA WE ST END MCG EN SE ARLE S 190 395 RANDS BURG BA RREN RIDG E PINE T REE WIND FA RM LO

298

Lake Region Electric Cooperative - Commercial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

details Lake Region Electric Cooperative (LREC) offers grants to commercial customers for electric energy efficiency improvements, audits, and engineering and design assistance for...

299

Clear Lake Cogeneration LP | Open Energy Information  

Open Energy Info (EERE)

Cogeneration LP Jump to: navigation, search Name Clear Lake Cogeneration LP Place Idaho Utility Id 3775 References EIA Form EIA-861 Final Data File for 2010 - File220101...

300

Glacial Lakes Energy | Open Energy Information  

Open Energy Info (EERE)

search Name Glacial Lakes Energy Place Watertown, South Dakota Zip 57201 Product Bioethanol producer using corn as feedstock Coordinates 43.197366, -88.720469 Loading...

Note: This page contains sample records for the topic "keystone heights lake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Lake Region Electric Cooperative | Open Energy Information  

Open Energy Info (EERE)

Cooperative Jump to: navigation, search Name Lake Region Electric Cooperative Place Minnesota Utility Id 10618 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes...

302

Model Simulations Examining the Relationship of Lake-Effect Morphology to Lake Shape, Wind Direction, and Wind Speed  

Science Conference Proceedings (OSTI)

Idealized model simulations with an isolated elliptical lake and prescribed winter lake-effect environmental conditions were used to examine the influences of lake shape, wind speed, and wind direction on the mesoscale morphology. This study ...

Neil F. Laird; John E. Walsh; David A. R. Kristovich

2003-09-01T23:59:59.000Z

303

Mentor-on-the-Lake, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Mentor-on-the-Lake, Ohio: Energy Resources Mentor-on-the-Lake, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7050448°, -81.360386° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7050448,"lon":-81.360386,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

304

Hot Lake RV Park Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Park Space Heating Low Temperature Geothermal Facility Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Lake RV Park Space Heating Low Temperature Geothermal Facility Facility Hot Lake RV Park Sector Geothermal energy Type Space Heating Location Union County, Oregon Coordinates 45.2334122°, -118.0410627° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

305

Angola on the Lake, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Angola on the Lake, New York: Energy Resources Angola on the Lake, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.6547811°, -79.0489273° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.6547811,"lon":-79.0489273,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

306

Leisure Village West-Pine Lake Park, New Jersey: Energy Resources | Open  

Open Energy Info (EERE)

West-Pine Lake Park, New Jersey: Energy Resources West-Pine Lake Park, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.0046518°, -74.2707509° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.0046518,"lon":-74.2707509,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

307

Lake Charles, LA Natural Gas LNG Imports from Equatorial Guinea...  

Annual Energy Outlook 2012 (EIA)

Lake Charles, LA Natural Gas LNG Imports from Equatorial Guinea (Dollars per Thousand Cubic Feet) Lake Charles, LA Natural Gas LNG Imports from Equatorial Guinea (Dollars per...

308

Compound and Elemental Analysis At Fish Lake Valley Area (DOE...  

Open Energy Info (EERE)

ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fish Lake Valley Area (DOE GTP) Exploration Activity Details Location Fish Lake Valley Area...

309

Obama Administration and Great Lakes States Announce Agreement...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Great Lakes States Announce Agreement to Spur Development of Offshore Wind Projects Obama Administration and Great Lakes States Announce Agreement to Spur Development of...

310

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

Gasoline and Diesel Fuel Update (EIA)

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from Trinidad...

311

Division of Water, Part 675: Great Lakes Water Withdrawal Registration...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

75: Great Lakes Water Withdrawal Registration Regulations (New York) Division of Water, Part 675: Great Lakes Water Withdrawal Registration Regulations (New York) Eligibility...

312

HERO BX formerly Lake Erie Biofuels | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon HERO BX formerly Lake Erie Biofuels Jump to: navigation, search Name HERO BX (formerly Lake Erie Biofuels) Place Erie,...

313

VALUE DISTRIBUTION ASSESSMENT OF GEOTHERMAL DEVELOPMENT IN LAKE COUNTY, CA  

E-Print Network (OSTI)

Eleven: Lake County Geothermal Energy Resource. . . .by t h e Report of t h e State Geothermal Task Force WDISTRIBUTION ASSESSMENT OF GEOTHERMAL DEVELOP~NTIN LAKE

Churchman, C.W.

2011-01-01T23:59:59.000Z

314

Geothermometry At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Fish Lake Valley Area (DOE GTP) Exploration...

315

Thermochronometry At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Thermochronometry At Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermochronometry At Fish Lake Valley Area...

316

Champion Heights, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

288128°, -80.848759° 288128°, -80.848759° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.288128,"lon":-80.848759,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

317

Ben Avon Heights, Pennsylvania: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Pennsylvania: Energy Resources Pennsylvania: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.5136795°, -80.0731112° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.5136795,"lon":-80.0731112,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

318

Alamo Heights, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

29.4849531°, -98.4658502° 29.4849531°, -98.4658502° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.4849531,"lon":-98.4658502,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

319

Prospect Heights, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

2.0953049°, -87.9375694° 2.0953049°, -87.9375694° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.0953049,"lon":-87.9375694,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

320

Gordon Heights, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

York: Energy Resources York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.8587097°, -72.9706607° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.8587097,"lon":-72.9706607,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "keystone heights lake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Windsor Heights, Iowa: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Iowa: Energy Resources Iowa: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6048°, -93.711899° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6048,"lon":-93.711899,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

322

Glendale Heights, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

9202°, -88.078849° 9202°, -88.078849° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9202,"lon":-88.078849,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

323

Mayfield Heights, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

189°, -81.457896° 189°, -81.457896° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5192189,"lon":-81.457896,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

324

Taft Heights, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

5.1346895°, -119.4726196° 5.1346895°, -119.4726196° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.1346895,"lon":-119.4726196,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

325

Federal Heights, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Colorado: Energy Resources Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.8513747°, -104.9985922° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.8513747,"lon":-104.9985922,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

326

Paradise Heights, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Florida: Energy Resources Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.6236102°, -81.5439618° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.6236102,"lon":-81.5439618,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

327

Broadview Heights, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

6°, -81.6851271° 6°, -81.6851271° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3139426,"lon":-81.6851271,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

328

East Richmond Heights, California: Energy Resources | Open Energy  

Open Energy Info (EERE)

California: Energy Resources California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.944924°, -122.3135811° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.944924,"lon":-122.3135811,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

329

Arlington Heights, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

150583°, -84.4554978° 150583°, -84.4554978° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.2150583,"lon":-84.4554978,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

330

Bedford Heights, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

4169982°, -81.5273428° 4169982°, -81.5273428° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4169982,"lon":-81.5273428,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

331

Citrus Heights, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

8.7071247°, -121.2810611° 8.7071247°, -121.2810611° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.7071247,"lon":-121.2810611,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

332

Muskegon Heights, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Michigan: Energy Resources Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.2011264°, -86.2389464° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.2011264,"lon":-86.2389464,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

333

Monfort Heights South, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

73251°, -84.606362° 73251°, -84.606362° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.173251,"lon":-84.606362,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

334

Richmond Heights, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Florida: Energy Resources Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.6314936°, -80.3689426° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.6314936,"lon":-80.3689426,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

335

Ford Heights, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

506424°, -87.5917092° 506424°, -87.5917092° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.506424,"lon":-87.5917092,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

336

Boston Heights, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

778°, -81.5131709° 778°, -81.5131709° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.264778,"lon":-81.5131709,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

337

Berlin Heights, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

3253277°, -82.4932261° 3253277°, -82.4932261° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3253277,"lon":-82.4932261,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

338

Seaside Heights, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Jersey: Energy Resources Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.944285°, -74.0729139° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.944285,"lon":-74.0729139,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

339

Lincoln Heights, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

389469°, -84.4554979° 389469°, -84.4554979° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.2389469,"lon":-84.4554979,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

340

Sewickley Heights, Pennsylvania: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

343°, -80.1631139° 343°, -80.1631139° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.5567343,"lon":-80.1631139,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "keystone heights lake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Chicago Heights, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

46°, -87.6355995° 46°, -87.6355995° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.506146,"lon":-87.6355995,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

342

Richmond Heights, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

288°, -81.5101208° 288°, -81.5101208° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5528288,"lon":-81.5101208,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

343

Island Heights, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Jersey: Energy Resources Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.9420626°, -74.1498616° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.9420626,"lon":-74.1498616,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

344

Porter Heights, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

30.151883°, -95.3218803° 30.151883°, -95.3218803° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.151883,"lon":-95.3218803,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

345

Braddock Heights, Maryland: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maryland: Energy Resources Maryland: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.4187127°, -77.503598° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.4187127,"lon":-77.503598,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

346

Perry Heights, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

0.7953357°, -81.4734515° 0.7953357°, -81.4734515° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7953357,"lon":-81.4734515,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

347

Monfort Heights East, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ohio: Energy Resources Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.182151°, -84.583915° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.182151,"lon":-84.583915,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

348

The Lake Charles CCS Project  

SciTech Connect

The Lake Charles CCS Project is a large-scale industrial carbon capture and sequestration (CCS) project which will demonstrate advanced technologies that capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically the Lake Charles CCS Project will accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petroleum coke to chemicals plant (the LCC Gasification Project) and the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Lake Charles CCS Project will promote the expansion of EOR in Texas and Louisiana and supply greater energy security by expanding domestic energy supplies. The capture, compression, pipeline, injection, and monitoring infrastructure will continue to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project are expected to be fulfilled by working through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 includes the studies attached hereto that will establish: the engineering design basis for the capture, compression and transportation of CO{sub 2} from the LCC Gasification Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Hastings oil field in Texas. The overall objective of Phase 2, provided a successful competitive down-selection, is to execute design, construction and operations of three capital projects: (1) the CO{sub 2} capture and compression equipment, (2) a Connector Pipeline from the LLC Gasification Project to the Green Pipeline owned by Denbury and an affiliate of Denbury, and (3) a comprehensive MVA system at the Hastings oil field.

Doug Cathro

2010-06-30T23:59:59.000Z

349

Why sequence novel haloarchaea from Deep Lake?  

NLE Websites -- All DOE Office Websites (Extended Search)

novel haloarchaea from Deep Lake? novel haloarchaea from Deep Lake? Antarctica's Deep Lake was isolated from the ocean by glaciers long ago, creating a salt water lake with a unique ecosystem for studying the evolution of marine microorganisms in harsh extremes. Among these microorganisms are haloarchaea, members of the halophile community which need high salt concentrations in order to grow. Haloarchaea are a distinct evolutionary branch of the Archaea, and are considered extremophiles. The haloarchaea from Deep Lake are naturally adapted to cold, nutrient-limited and high saline level conditions that would kill almost any other life. The enzymes in these naturally adapted microorganisms can provide insight into bioprospecting and bioengineering cold active and salt-adapted enzymes. Understanding how haloarchaea

350

A Direct Link between Feature Tracking and Height Assignment of Operational EUMETSAT Atmospheric Motion Vectors  

Science Conference Proceedings (OSTI)

Height Assignment (HA) is currently the most challenging task in the operational Atmospheric Motion Vectors (AMVs) extraction scheme. Several sources of error are associated with the height assignment step, including the sensitivity of the HA ...

Rgis Borde; Marie Doutriaux-Boucher; Greg Dew; Manuel Carranza

351

A Planetary Boundary Layer Height Climatology Derived from ECMWF Reanalysis Data  

Science Conference Proceedings (OSTI)

A planetary boundary layer (PBL) height climatology from ECMWF reanalysis data is generated and analyzed. Different methods are first compared to derive PBL heights from atmospheric temperature, pressure, and relative humidity (RH), which mostly ...

Axel von Engeln; Joo Teixeira

2013-09-01T23:59:59.000Z

352

View-invariant Estimation of Height and Stride for Gait Recognition  

Science Conference Proceedings (OSTI)

We present a parametric method to automatically identify people in monocular low-resolution video by estimating the height and stride parameters of their walking gait. Stride parameters (stride length and cadence) are functions of body height, weight, ...

Chiraz BenAbdelkader; Ross Cutler; Larry S. Davis

2002-06-01T23:59:59.000Z

353

RASS Developments on the VHF Radar at CNRM/Toulouse Height Coverage Optimization  

Science Conference Proceedings (OSTI)

A method is presented to optimize the height coverage of virtual temperature profiles using the Radio Acoustic Sounding System (RASS) on a 45-MHz monostatic wind profiler. It has already been shown that the main limitation in the maximum height ...

V. Klaus; G. Chrel; P. Goupil; N. Pnetier

2002-06-01T23:59:59.000Z

354

Doppler Lidar Estimation of Mixing Height Using Turbulence, Shear, and Aerosol Profiles  

Science Conference Proceedings (OSTI)

The concept of boundary layer mixing height for meteorology and air quality applications using lidar data is reviewed, and new algorithms for estimation of mixing heights from various types of lower-tropospheric coherent Doppler lidar ...

Sara C. Tucker; Christoph J. Senff; Ann M. Weickmann; W. Alan Brewer; Robert M. Banta; Scott P. Sandberg; Daniel C. Law; R. Michael Hardesty

2009-04-01T23:59:59.000Z

355

onMetaData***duration@:*?`A7*width@*height  

Science Conference Proceedings (OSTI)

FLV** *?*. onMetaData***duration@:*?`A7*width@*height@~. videodatarate@_@ framerate@> videocodecid@*audiosamplerate ...

2012-08-16T23:59:59.000Z

356

Investment in Lake States Timberland June 24, 2008  

E-Print Network (OSTI)

­ Lake States Region Scott Henker, Senior Resource Manager Pete Coutu, Marketing Manager Our foresters

357

Category:Houghton-Lake, MI | Open Energy Information  

Open Energy Info (EERE)

Houghton-Lake, MI Houghton-Lake, MI Jump to: navigation, search Go Back to PV Economics By Location Media in category "Houghton-Lake, MI" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Houghton-Lake MI Detroit Edison Co.png SVFullServiceRestauran... 64 KB SVHospital Houghton-Lake MI Detroit Edison Co.png SVHospital Houghton-La... 64 KB SVLargeHotel Houghton-Lake MI Detroit Edison Co.png SVLargeHotel Houghton-... 61 KB SVLargeOffice Houghton-Lake MI Detroit Edison Co.png SVLargeOffice Houghton... 64 KB SVMediumOffice Houghton-Lake MI Detroit Edison Co.png SVMediumOffice Houghto... 61 KB SVMidriseApartment Houghton-Lake MI Detroit Edison Co.png SVMidriseApartment Hou... 65 KB SVOutPatient Houghton-Lake MI Detroit Edison Co.png SVOutPatient Houghton-...

358

Observations of the Cross-Lake Cloud and Snow Evolution in a Lake-Effect Snow Event  

Science Conference Proceedings (OSTI)

While the total snowfall produced in lake-effect storms can be considerable, little is known about how clouds and snow evolve within lake-effect boundary layers. Data collected over Lake Michigan on 10 January 1998 during the Lake-Induced ...

Faye E. Barthold; David A. R. Kristovich

2011-08-01T23:59:59.000Z

359

Hydrological and solute budgets of Lake Qinghai, the largest lake on the Tibetan Plateau  

Science Conference Proceedings (OSTI)

Water level and chemistry of Lake Qinghai are sensitive to climate changes and are important for paleoclimatic implications. An accurate understanding of hydrological and chemical budgets is crucial for quantifying geochemical proxies and carbon cycle. Published results of water budget are firstly reviewed in this paper. Chemical budget and residence time of major dissolved constituents in the lake are estimated using reliable water budget and newly obtained data for seasonal water chemistry. The results indicate that carbonate weathering is the most important riverine process, resulting in dominance of Ca2+ and DIC for river waters and groundwater. Groundwater contribution to major dissolved constituents is relatively small (4.2 0.5%). Wet atmospheric deposition contributes annually 7.444.0% soluble flux to the lake, resulting from eolian dust throughout the seasons. Estimates of chemical budget further suggest that (1) the Buha-type water dominates the chemical components of the lake water, (2) Na+, Cl?, Mg2+, and K+ in lake water are enriched owing to their conservative behaviors, and (3) precipitation of authigenic carbonates (low-Mg calcite, aragonite, and dolomite) transits quickly dissolved Ca2+ into the bottom sediments of the lake, resulting in very low Ca2+ in the lake water. Therefore, authigenic carbonates in the sediments hold potential information on the relative contribution of different solute inputs to the lake and the lake chemistry in the past.

Jin, Zhangdong; You, Chen-Feng; Wang, Yi; Shi, Yuewei

2010-05-01T23:59:59.000Z

360

Dewatering of Ambrosia Lake Mines  

SciTech Connect

The paper discusses the design of an aquifer depressurisation system using wells at Mt. Taylor Mine, Ambrosia Lake, New Mexico. The concepts discussed should be valid for any shaft of mine in a sandstone aquifer with predominantly matrix permeability. The system uses a number of wells surrounding the mine shaft to reduce the aquifer pressure in the vicinity of the shaft. The effect of various parameters such as number of wells, wellbore diameter, time and well location are considered. It is concluded that, with a properly designed system, the aquifer pressure and water inflow rate to the shaft may be reduced to less than 15% of their potential values in the absence of wells.

Juvkam-Wold, H.C.

1982-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "keystone heights lake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

NV-TRIBE-SUMMIT LAKE PAIUTE TRIBE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NV-TRIBE-SUMMIT LAKE PAIUTE TRIBE NV-TRIBE-SUMMIT LAKE PAIUTE TRIBE Location: Tribe NV-TRIBE-SUMMIT NV LAKE PAIUTE TRIBE American Recovery and Reinvestment Act: Proposed Action or Project Description The Summit Lake Paiute Tribe of Nevada will conduct energy building retrofits on several tribal-owned buildings including: Maintenance Shop (insulate walls and cover insulation to keep in place); Bunkhouse (replace single-pane glass windows, and repair or replace two exit doors); Tribal Administrative Office (replace old electric water heater and three air conditioner/heaters, and replace single-pane glass windows): Community Well Shed (install walls, cover insulation, and replace single-pane glass windows); Cabin #1 and Cabin #2 (insulate and/or replace single-pane windows). Conditions: None

362

Vortex Modes in Southern Lake Michigan  

Science Conference Proceedings (OSTI)

Current velocities and water temperatures were observed in southern Lake Michigan with an array of AMF vector-averaging current meters during late spring, summer and fall 1976. Analyses of the recorded current data have revealed that persistent ...

James H. Saylor; Joseph C. K. Huang; Robert O. Reid

1980-11-01T23:59:59.000Z

363

Control of Mississippi Headwater Lakes (Minnesota)  

Energy.gov (U.S. Department of Energy (DOE))

The lakes at the headwaters of the Mississippi River are subject to joint federal and state control, and the Commissioner of the Department of Natural Resources is responsible for establishing a...

364

CA-TRIBE-BLUE LAKE RANCHERIA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CA-TRIBE-BLUE LAKE RANCHERIA CA-TRIBE-BLUE LAKE RANCHERIA Location: Tribe CA-TRIBE-BLUE CA LAKE RANCHERIA American Recovery and Reinvestment Act: Proposed Action or Project Description The Blue Lake Rancheria Tribe of California proposes to hire a technical consultant to gather additional information and make recommendations as to the best energy efficiency and conservation project or projects to utilize energy efficiency and conservation block grant funds. Following these recommendations, a decision will be made on building retrofits, and the specific retrofits will be identified and submitted for NEPA review. Conditions: None Categorical Exclusion(s) Applied: A9, A11 *-For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, see Subpart D of 10 CFR10 21

365

Salt Lake City- High Performance Buildings Requirement  

Energy.gov (U.S. Department of Energy (DOE))

Salt Lake City's mayor issued an executive order in July 2005 requiring that all public buildings owned and controlled by the city be built or renovated to meet the requirements of LEED "silver"...

366

Geology of the Soda Lake geothermal area  

DOE Green Energy (OSTI)

The Soda Lake geothermal area is located in the Carson Desert, west-central Nevada. Hot springs activity has occurred in the Soda Lake area in the past, resulting in surface deposits which have motivated present geothermal exploration. The geothermal anomaly is in Quaternary clastic sediments which are as much as 4600 feet thick. The sediments consist of interbedded deltaic, lacustrine, and alluvial sediments. Quaternary basaltic igneous activity has produced cinder cones, phreatic explosions that formed the maar occupied by Soda Lake, and possible dikes. Opal deposition and soil alteration are restricted to a small area two miles north of Soda Lake. The location of hot springs activity and the surface thermal anomaly may be partially controlled by north-northeast-trending faults.

Sibbett, B.S.

1979-12-01T23:59:59.000Z

367

Synthetic ecology : revisiting Mexico City's lakes project  

E-Print Network (OSTI)

Mexico City was founded 700 years ago on man made islets in the middle of a lake. Today, it faces a contradictory situation were water is running scarce, but simultaneously the city runs the risk of drowning in its own ...

Daou, Daniel (Daou Ornelas)

2011-01-01T23:59:59.000Z

368

Great Lakes fish and the greenhouse effect  

SciTech Connect

This short article discusses data presented at the Second North American Conference on Preparing for Climate Change, held in Washington, D.C. Magnuson and Regier predicted that Great Lakes fish productivity may increase as a result of the increased water temperatures caused by the greenhouse effect. However, they also predicted that other indirect alterations could do more harm than good; for example, the effects of warming on lake oxygen levels, or wind, which affects the mixing of warm, cool, and cold water.

Mlot, C.

1989-03-01T23:59:59.000Z

369

Lake Granbury and Lake Whitney Assessment Initiative Final Scientific/Technical Report Summary  

SciTech Connect

A team of Texas AgriLife Research, Baylor University and University of Texas at Arlington researchers studied the biology and ecology of Prymnesium parvum (golden algae) in Texas lakes using a three-fold approach that involved system-wide monitoring, experimentation at the microcosm and mesocosm scales, and mathematical modeling. The following are conclusions, to date, regarding this organism??s ecology and potential strategies for mitigation of blooms by this organism. In-lake monitoring revealed that golden algae are present throughout the year, even in lakes where blooms do not occur. Compilation of our field monitoring data with data collected by Texas Parks and Wildlife and Brazos River Authority (a period spanning a decade) revealed that inflow and salinity variables affect bloom formations. Thresholds for algae populations vary per lake, likely due to adaptations to local conditions, and also to variations in lake-basin morphometry, especially the presence of coves that may serve as hydraulic storage zones for P. parvum populations. More specifically, our in-lake monitoring showed that the highly toxic bloom that occurred in Lake Granbury in the winter of 2006/2007 was eliminated by increased river inflow events. The bloom was flushed from the system. The lower salinities that resulted contributed to golden algae not blooming in the following years. However, flushing is not an absolute requirement for bloom termination. Laboratory experiments have shown that growth of golden algae can occur at salinities ~1-2 psu but only when temperatures are also low. This helps to explain why blooms are possible during winter months in Texas lakes. Our in-lake experiments in Lake Whitney and Lake Waco, as well as our laboratory experiments, revealed that cyanobacteria, or some other bacteria capable of producing algicides, were able to prevent golden algae from blooming. Identification of this organism is a high priority as it may be a key to managing golden algae blooms. Our numerical modeling results support the idea that cyanobacteria, through allelopathy, control the timing of golden algae blooms in Lake Granbury. The in-lake experiments in Lake Whitney and Lake Waco also revealed that as golden algae blooms develop, there are natural enemies (a species of rotifer, and a virus) that help slow the population growth. Again, better characterization of these organisms is a high priority as it may be key to managing golden algae blooms. Our laboratory and in-lake experiments and field monitoring have shown that nutrient additions will remove toxicity and prevent golden algae from blooming. In fact, other algae displace the golden algae after nutrient additions. Additions of ammonia are particularly effective, even at low doses (much lower than what is employed in fish hatchery ponds). Application of ammonia in limited areas of lakes, such as in coves, should be explored as a management option. The laboratory experiments and field monitoring also show that the potency of toxins produced by P. parvum is greatly reduced when water pH is lower, closer to neutral levels. Application of mild acid to limited areas of lakes (but not to a level where acidic conditions are created), such as in coves, should be explored as a management option. Finally, our field monitoring and mathematical modeling revealed that flushing/dilution at high enough levels could prevent P. parvum from forming blooms and/or terminate existing blooms. This technique could work using deeper waters within a lake to flush the surface waters of limited areas of the same lakes, such as in coves and should be explored as a management option. In this way, water releases from upstream reservoirs would not be necessary and there would be no addition of nutrients in the lake.

Harris, B.L.; Roelke, Daniel; Brooks, Bryan; Grover, James

2010-10-11T23:59:59.000Z

370

Numerical Simulation of the Airflow over Lake Michigan for a Major Lake-Effect Snow Event  

Science Conference Proceedings (OSTI)

A mesoscale model is used to simulate the airflow over Lake Michigan for the major lake-effect snowstorm of 10 December 1977. This storm was characterized by a land breeze circulation and a narrow shore-parallel radar reflectivity band. The model ...

Mark R. Hjelmfelt; Roscoe R. Braham Jr.

1983-01-01T23:59:59.000Z

371

Parameterization of Lakes and Wetlands for Energy and Water Balance Studies in the Great Lakes Region  

Science Conference Proceedings (OSTI)

Lakes and wetlands are prevalent around the Great Lakes and play an important role in the regional water and energy cycle. However, simulating their impacts on regional-scale hydrology is still a major challenge and not widely attempted. In the ...

Vimal Mishra; Keith A. Cherkauer; Laura C. Bowling

2010-10-01T23:59:59.000Z

372

Mesoscale Lake-effect Snowstorms in the Vicinity of Lake Michigan: Linear Theory and Numerical Simulations  

Science Conference Proceedings (OSTI)

Mesoscale lake-effect snowstorms in the vicinity of Lake Michigan are studied by a linear steady-state analytic model and a nonlinear time-dependent numerical model with parameterized subgrid-scale physics. The solutions of the linear model show ...

Hsiao-ming Hsu

1987-04-01T23:59:59.000Z

373

Numerical Study of the 10 January 1998 Lake-Effect Bands Observed during Lake-ICE  

Science Conference Proceedings (OSTI)

This paper presents the results of a series of idealized cloud resolving simulations of the evolution of moist roll convection observed as part of the Lake-Induced Convection Experiment (Lake-ICE) that took place during the 1997/98 winter over ...

Gregory J. Tripoli

2005-09-01T23:59:59.000Z

374

Lake-atmosphere feedbacks associated with paleolakes Bonneville and Lahontan  

SciTech Connect

A high-resolution, regional climate model nested within a general circulation model was used to study the interactions between the atmosphere and the large Pleistocene lakes in the Great Basin of the United States. Simulations for January and July 18,000 years ago indicate that moisture provided by synoptic-scale atmospheric circulation features was the primary component of the hydrologic budgets of Lakes Lahontan and Bonneville. In addition, lake-generated precipitation was a substantial component of the hydrologic budget of Lake Bonneville at that time. This local lake-atmosphere interaction may help explain differences in the relative size of these lakes 18,000 years ago.

Hostetler, S.W. (Geological Survey, Boulder, CO (United States)); Giorgi, F.; Bates, G.T. (National Center for Atmospheric Research, Boulder, CO (United States)); Bartlein, P.J. (Univ. of Oregon, Eugene, OR (United States))

1994-02-04T23:59:59.000Z

375

Effect of Solder Bump Heights on Cu Dissolution Rate in Pb-Free ...  

Science Conference Proceedings (OSTI)

Presentation Title, Effect of Solder Bump Heights on Cu Dissolution Rate in Pb- Free ... Effect of Zn Content on the Electrification-Fusion and Failure Behaviors of ...

376

Energy and water in the Great Lakes.  

Science Conference Proceedings (OSTI)

The nexus between thermoelectric power production and water use is not uniform across the U.S., but rather differs according to regional physiography, demography, power plant fleet composition, and the transmission network. That is, in some regions water demand for thermoelectric production is relatively small while in other regions it represents the dominate use. The later is the case for the Great Lakes region, which has important implications for the water resources and aquatic ecology of the Great Lakes watershed. This is today, but what about the future? Projected demographic trends, shifting lifestyles, and economic growth coupled with the threat of global climate change and mounting pressure for greater U.S. energy security could have profound effects on the region's energy future. Planning for such an uncertain future is further complicated by the fact that energy and environmental planning and regulatory decisionmaking is largely bifurcated in the region, with environmental and water resource concerns generally taken into account after new energy facilities and technologies have been proposed, or practices are already in place. Based on these confounding needs, the objective of this effort is to develop Great Lakes-specific methods and tools to integrate energy and water resource planning and thereby support the dual goals of smarter energy planning and development, and protection of Great Lakes water resources. Guiding policies for this planning are the Great Lakes and St. Lawrence River Basin Water Resources Compact and the Great Lakes Water Quality Agreement. The desired outcome of integrated energy-water-aquatic resource planning is a more sustainable regional energy mix for the Great Lakes basin ecosystem.

Tidwell, Vincent Carroll

2011-11-01T23:59:59.000Z

377

Energy Budget Processes of a Small Northern Lake  

Science Conference Proceedings (OSTI)

There is a paucity of information on the energy budget of Canada's northern lakes. This research determines processes controlling the magnitude of energy fluxes between a small Canadian Shield lake and the atmosphere. Meteorological instruments ...

Christopher Spence; Wayne R. Rouse; Devon Worth; Claire Oswald

2003-08-01T23:59:59.000Z

378

Obama Administration Hosts Great Lakes Offshore Wind Workshop in Chicago  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hosts Great Lakes Offshore Wind Workshop in Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes Wind Collaborative Obama Administration Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes Wind Collaborative October 28, 2010 - 12:00am Addthis WASHINGTON - The White House Council on Environmental Quality and the U.S. Department of Energy hosted a workshop with the Great Lakes Wind Collaborative in Chicago on October 26 - 27, 2010, focused on the siting of offshore wind power in the Great Lakes. The two day workshop brought together wind developers, Federal and state regulators, environmental advocates, and other regional stakeholders to discuss methods for ensuring greater clarity, certainty and coordination of Federal and state decision-making for offshore wind development in the Great Lakes.

379

Simulations of the Summer Hydrometeorological Processes of Lake Kinneret  

Science Conference Proceedings (OSTI)

Lake Kinneret is a 168-km2 lake located in northern Israel. It provides about 50% of the drinking water consumed in this arid country. To manage correctly this vital water resource, it is essential to understand the various hydrometeorological ...

Roni Avissar; Hai Pan

2000-02-01T23:59:59.000Z

380

The Frequency and Intensity of Great Lake Cyclones  

Science Conference Proceedings (OSTI)

Cyclones are an important feature of the Great Lakes region that can have important impacts on shipping, lake temperature profiles, ice cover, and shoreline property damages. The objective of this research is to analyze the frequency and ...

James R. Angel; Scott A. Isard

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "keystone heights lake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Simulating Upwelling in a Large Lake Using Slippery Sacks  

Science Conference Proceedings (OSTI)

A Lagrangian numerical model is used to simulate upwelling in an idealized large lake. This simulation is carried out to test the model's potential for simulating lake and ocean circulations.

Patrick T. Haertel; David A. Randall; Tommy G. Jensen

2004-01-01T23:59:59.000Z

382

Influence of the Laurentian Great Lakes on Regional Climate  

Science Conference Proceedings (OSTI)

The influence of the Laurentian Great Lakes on climate is assessed by comparing two decade-long simulations, with the lakes either included or excluded, using the Abdus Salam International Centre for Theoretical Physics Regional Climate Model, ...

Michael Notaro; Kathleen Holman; Azar Zarrin; Elody Fluck; Steve Vavrus; Val Bennington

2013-02-01T23:59:59.000Z

383

Relations between Meteorology and Ozone in the Lake Michigan Region  

Science Conference Proceedings (OSTI)

The field program phase of the Lake Michigan Ozone Study (LMOS) took place during the summer of 1991. Observed ozone concentrations and weather variables have been analyzed for the Lake Michigan region and the eastern United States for four 1991 ...

Steven R. Hanna; Joseph C. Chang

1995-03-01T23:59:59.000Z

384

The Role of Northern Lakes in a Regional Energy Balance  

Science Conference Proceedings (OSTI)

There are many lakes of widely varying morphometry in northern latitudes. For this study region, in the central Mackenzie River valley of western Canada, lakes make up 37% of the landscape. The nonlake components of the landscape are divided into ...

Wayne R. Rouse; Claire J. Oswald; Jacqueline Binyamin; Christopher Spence; William M. Schertzer; Peter D. Blanken; Normand Bussires; Claude R. Duguay

2005-06-01T23:59:59.000Z

385

Wind Equipment: Creating Jobs Along the Lake Erie Shore | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Equipment: Creating Jobs Along the Lake Erie Shore Wind Equipment: Creating Jobs Along the Lake Erie Shore August 16, 2012 - 9:36am Addthis 1 of 3 Finished wind tower sections...

386

Pine Lake Corn Processors LLC | Open Energy Information  

Open Energy Info (EERE)

Farmer owned investment and management team which developed and manages the Pine Lake ethanol plant. References Pine Lake Corn Processors LLC1 LinkedIn Connections CrunchBase...

387

Interpreting Annual Rainfall from the Levels of Lake Victoria  

Science Conference Proceedings (OSTI)

This paper presents a water balance model for Lake Victoria that can be inverted to estimate annual rainfall over the lake. The model is calibrated using a fixed value of evaporation and the regression expressions for inflow, discharge, and ...

Xungang Yin; Sharon E. Nicholson

2002-08-01T23:59:59.000Z

388

THERMODYNAMICS OF PARTIALLY FROZEN COOLING LAKES  

SciTech Connect

The Rochester Institute of Technology (RIT) collected visible, SWIR, MWIR and LWIR imagery of the Midland (Michigan) Cogeneration Ventures Plant from aircraft during the winter of 2008-2009. RIT also made ground-based measurements of lake water and ice temperatures, ice thickness and atmospheric variables. The Savannah River National Laboratory (SRNL) used the data collected by RIT and a 3-D hydrodynamic code to simulate the Midland cooling lake. The hydrodynamic code was able to reproduce the time distribution of ice coverage on the lake during the entire winter. The simulations and data show that the amount of ice coverage is almost linearly proportional to the rate at which heat is injected into the lake (Q). Very rapid melting of ice occurs when strong winds accelerate the movement of warm water underneath the ice. A snow layer on top of the ice acts as an insulator and decreases the rate of heat loss from the water below the ice to the atmosphere above. The simulated ice cover on the lake was not highly sensitive to the thickness of the snow layer. The simplicity of the relationship between ice cover and Q and the weak responses of ice cover to snow depth over the ice are probably attributable to the negative feedback loop that exists between ice cover and heat loss to the atmosphere.

Garrett, A.; Casterline, M.; Salvaggio, C.

2010-01-05T23:59:59.000Z

389

Microscopic Description of Nuclear Fission: Fission Barrier Heights of Even-Even Actinides  

E-Print Network (OSTI)

We evaluate the performance of modern nuclear energy density functionals for predicting inner and outer fission barrier heights and energies of fission isomers of even-even actinides. For isomer energies and outer barrier heights, we find that the self-consistent theory at the HFB level is capable of providing quantitative agreement with empirical data.

J. McDonnell; N. Schunck; W. Nazarewicz

2013-01-31T23:59:59.000Z

390

A LIDAR-based crop height measurement system for Miscanthus giganteus  

Science Conference Proceedings (OSTI)

The objective of this research was to develop a stem height measurement system for Miscanthus giganteus (MxG), to be used as a component in a future Look Ahead Yield Monitor (LAYM). For this purpose, a SICK(R) LMS 291 LIght Detection And Ranging (LIDAR) ... Keywords: Crop height, Crop sensor, Energy crop, Laser scanner, Plant phenotype, Yield monitor

Lei Zhang; Tony E. Grift

2012-07-01T23:59:59.000Z

391

Microscopic Description of Nuclear Fission: Fission Barrier Heights of Even-Even Actinides  

E-Print Network (OSTI)

We evaluate the performance of modern nuclear energy density functionals for predicting inner and outer fission barrier heights and energies of fission isomers of even-even actinides. For isomer energies and outer barrier heights, we find that the self-consistent theory at the HFB level is capable of providing quantitative agreement with empirical data.

McDonnell, J; Nazarewicz, W

2013-01-01T23:59:59.000Z

392

Feasibility of Determining Cloud-Top Heights Using the Backscattered Ultraviolet Satellite Observation Technique  

Science Conference Proceedings (OSTI)

A technique for determining cloud-top height by means of backscattered ultraviolet (BUV) solar radiation is presented. Cloud-top heights can be inferred using this technique if both the BUV radiance and its degree of polarization are measured by ...

Tadashi Aruga; Kaichi Maeda; Donald F. Heath

1984-05-01T23:59:59.000Z

393

Impacts of the Lowest Model Level Height on the Performance of Planetary Boundary Layer Parameterizations  

Science Conference Proceedings (OSTI)

The lowest model level height z1 is important in atmospheric numerical models, since surface layer similarity is applied to the height in most of the models. This indicates an implicit assumption that z1 is within the surface layer. In this study, ...

Hyeyum Hailey Shin; Song-You Hong; Jimy Dudhia

2012-02-01T23:59:59.000Z

394

DC's Marble ceiling : urban height and its regulation in Washington, DC  

E-Print Network (OSTI)

Washington, DC has a unique urban form that is the result of a century-old law. Through the narrow lens of DC's height limit, I survey a range of topics related to urban height, starting with a review of its history of ...

Trueblood, Andrew Tyson

2009-01-01T23:59:59.000Z

395

A single-view based framework for robust estimation of height and position of moving people  

Science Conference Proceedings (OSTI)

In recent years, there has been increased interest in characterizing and extracting 3D information from 2D images for human tracking and identification. In this paper, we propose a single view-based framework for robust estimation of height and position. ... Keywords: height estimation, human tracking, position estimation, video surveillance

Seok-Han Lee; Jong-Soo Choi

2007-12-01T23:59:59.000Z

396

Lake Roosevelt Fisheries Evaluation Program; Meadow Creek vs. Lake Whatcom Stock Kokanee Salmon Investigations in Lake Roosevelt, 2001 Annual Report.  

DOE Green Energy (OSTI)

Lake Roosevelt has been stocked with Lake Whatcom stock kokanee since 1989 with the primary objective of creating a self-sustaining recreational fishery. Due to low return numbers, it was hypothesized a stock of kokanee, native to the upper Columbia River, might perform better than the coastal Lake Whatcom strain. Kokanee from Meadow Creek, a tributary of Kootenay Lake, British Columbia were selected as an alternative stock. Matched pair releases of Lake Whatcom and Meadow Creek kokanee were made from Sherman Creek Hatchery in late June 2000 and repeated in 2001. Stock performance between Lake Whatcom and Meadow Creek kokanee was evaluated using three performance measures; (1) the number of returns to Sherman Creek, the primary egg collection facility, (2) the number of returns to other tributaries and (3) the number of returns to the creel. Kokanee were collected during five passes through the reservoir via electrofishing, which included 87 tributary mouths during the fall of 2000 and 2001. Chi-square analysis indicated age two Meadow Creek kokanee returned to Sherman Creek in significantly higher numbers when compared to the Whatcom stock in 2000 ({chi}{sup 2} = 736.6; d.f. = 1; P < 0.01) and 2001 ({chi}{sup 2} = 156.2; d.f. = 1; P < 0.01). Reservoir wide recoveries of age two kokanee had similar results in 2000 ({chi}{sup 2} = 735.3; d.f. = 1; P < 0.01) and 2001 ({chi}{sup 2} = 150.1; d.f. = 1; P < 0.01). Six Lake Whatcom and seven Meadow Creek three year olds were collected in 2001. The sample size of three year olds was too small for statistical analysis. No kokanee were collected during creel surveys in 2000, and two (age three kokanee) were collected in 2001. Neither of the hatchery kokanee collected were coded wire tagged, therefore stock could not be distinguished. After two years of monitoring, neither Meadow Creek or Lake Whatcom kokanee appear to be capable of providing a run of three-year-old spawners to sustain stocking efforts. The small number of hatchery three-year-olds collected indicated that the current stocking methods will continue to produce a limited jacking run largely composed of precocious males and a small number of three-year-olds. However, supplemental creel data indicated anglers harvested two-year-old hatchery kokanee 30-45 days after release. Supplemental creel data should continue to be collected to accurately evaluate hatchery contributions to the creel.

McLellan, Holly; Scholz, Allan

2002-03-01T23:59:59.000Z

397

Lake Roosevelt Fisheries Evaluation Program; Meadow Creek vs. Lake Whatcom Stock Kokanee Salmon Investigations in Lake Roosevelt, Annual Report 2002.  

DOE Green Energy (OSTI)

Lake Whatcom, Washington kokanee have been stocked in Lake Roosevelt since 1987 with the primary objective of creating a self-sustaining fishery. Success has been limited by low recruitment to the fishery, low adult returns to hatcheries, and a skewed sex ratio. It was hypothesized that a stock native to the upper Columbia River might perform better than the coastal Lake Whatcom stock. Kokanee from Meadow Creek, a tributary of Kootenay Lake, British Columbia were selected as an alternative stock. Post smolts from each stock were released from Sherman Creek Hatchery in late June 2000 and repeated in 2001. Stock performance was evaluated using three measures; (1) number of returns to Sherman Creek, the primary egg collection facility, (2) the number of returns to 86 tributaries sampled and, (3) the number of returns to the creel. In two repeated experiments, neither Meadow Creek or Lake Whatcom kokanee appeared to be capable of providing a run of three-year old spawners to sustain stocking efforts. Less than 10 three-years olds from either stock were collected during the study period. Chi-square analysis indicated age two Meadow Creek kokanee returned to Sherman Creek and to other tributaries in significantly higher numbers when compared to the Lake Whatcom stock in both 2000 and 2001. However, preliminary data from the Spokane Tribe of Indians indicated that a large number of both stocks were precocial before they were stocked. The small number of hatchery three-year olds collected indicated that the current hatchery rearing and stocking methods will continue to produce a limited jacking run largely composed of precocious males and a small number of three-year olds. No kokanee from the study were collected during standard lake wide creel surveys. Supplemental creel data, including fishing derbies, test fisheries, and angler diaries, indicated anglers harvested two-year-old hatchery kokanee a month after release. The majority of the two-year old kokanee harvested were from a direct stock at the Fort Spokane boat launch. Only Lake Whatcom kokanee were stocked from the boat launch, therefore stock performance was not evaluated, however the high success of the stocking location will likely increase harvest of hatchery kokanee in the future. Despite low numbers of the targeted three-year olds, Meadow Creek kokanee should be stocked when possible to promote fish native to the upper Columbia River.

McLellan, Holly

2003-03-01T23:59:59.000Z

398

A parameterized model of heat storage by lake sediments  

Science Conference Proceedings (OSTI)

A model of seasonal heat storage by lake sediments is proposed oriented at applications in climate modeling and at lake parameterization in numerical weather prediction. The computational efficiency is achieved by reformulating of the heat transfer problem ... Keywords: Bulk model, Climate modeling, Lake temperature, Sediment processes, Temperature wave, Water-sediment exchange

Sergey Golosov; Georgiy Kirillin

2010-06-01T23:59:59.000Z

399

Why sequence metagenomics in freshwater lakes?  

NLE Websites -- All DOE Office Websites (Extended Search)

metagenomics in freshwater lakes? metagenomics in freshwater lakes? Aquatic microbial communities represent one of the largest reservoirs of genetic and biochemical diversity on the planet, and metagenomic studies have led to the discovery of novel gene families and a deeper understanding of how microbial communities mediate the flow of carbon and energy. However, most of these studies have been based on a static 'snap shot' of genetic diversity found under a particular set of environmental conditions. This study involves a metagenomic time-series to better understand how microbial communities control carbon cycling in freshwater systems. Principal Investigators: Katherine McMahon, University of Wisconsin Program: CSP 2011 Home > Sequencing > Why sequence metagenomics in freshwater lakes

400

Rice Lake Utilities | Open Energy Information  

Open Energy Info (EERE)

Rice Lake Utilities Rice Lake Utilities Jump to: navigation, search Name Rice Lake Utilities Place Wisconsin Utility Id 15938 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service with Parallel Generation(20kW or less) Industrial Cp-1 TOD Small Power Optional Time-of-Day Service Primary Metering Discount Industrial Cp-1 TOD Small Power Optional Time-of-Day Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial

Note: This page contains sample records for the topic "keystone heights lake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Great Lakes | OpenEI  

Open Energy Info (EERE)

Lakes Lakes Dataset Summary Description This dataset is a geographic shapefile generated from the original raster data. The original raster data resolution is a 200-meter cell size. Source National Renewable Energy Laboratory (NREL) Date Released August 19th, 2010 (4 years ago) Date Updated August 23rd, 2010 (4 years ago) Keywords GIS Great Lakes NREL offshore wind shapefile U.S. wind windspeed Data application/zip icon Download Shapefile (zip, 11.8 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment DISCLAIMER NOTICE This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data. Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data. THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA. The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations. DISCLAIMER NOTICE This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data. Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data. THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA. The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.

402

Open Access Development of a Methodology to Estimate Biomass from Tree Height Using Airborne Digital Image  

E-Print Network (OSTI)

Copyright 2012 J. Jenitha Ferdinent and Raj Chandar Padmanaban. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Globally biomass is becoming imperative for function such as climate change, combined heat and power generation. The biomass energy is gaining significance as a source of clean heat for domestic heating and community heating applications. Regarding climatic change and global warming, the biomass is being estimated in various ways. By including three dimensions (i.e.) height of a tree or stand height of trees in forest will greatly help in estimation biomass more accurately. Traditionally close range Photogrammetry is used to determine volume and biomass of the tree. However, this method of volume/height of a tree is not feasible in large scale applications and time consuming. Globally researchers are working to estimate this by using either airborne/space borne data. In this project, a methodology to measure tree height in case of single tree or stand height (mean tree height) of an area is developed using airborne digital camera. The height of the tree was first estimated from the airborne digital camera image data. The image taken from Airborne UltraCamD has been used. This image is 23cm X 15cm image size and 20cm resolution. Aerial

J. Jenitha Ferdinent; Raj Ch; Ar Padmanaban

2013-01-01T23:59:59.000Z

403

Impacts of Climate Variation and Catchment Area on Water Balance and Lake Hydrologic Type in Groundwater-Dominated Systems: A Generic Lake Model  

Science Conference Proceedings (OSTI)

Lakes are a major geologic feature in humid regions, and multiple lake hydrologic types exist with varying physical and chemical characteristics, connections among lakes, and relationships to the landscape. The authors developed a model of water ...

Jeffrey Cardille; Michael T. Coe; Julie A. Vano

2004-12-01T23:59:59.000Z

404

Convective Structures in a Cold Air Outbreak over Lake Michigan during Lake-ICE  

Science Conference Proceedings (OSTI)

The Lake-Induced Convection Experiment provided special field data during a westerly flow cold air outbreak (CAO) on 13 January 1998, which has afforded the opportunity to examine in detail an evolving convective boundary layer. Vertical cross ...

Suzanne M. Zurn-Birkhimer; Ernest M. Agee; Zbigniew Sorbjan

2005-07-01T23:59:59.000Z

405

Patterns of Local Circulation in the Itaipu Lake Area: Numerical Simulations of Lake Breeze  

Science Conference Proceedings (OSTI)

The lake-breeze circulation in the Itaipu region was investigated numerically using a nonhydrostatic version of the Topographic Vorticity Model. The area of study corresponds to a 100 km 180 km rectangle, located on the BrazilParaguay border, ...

Snia M. S. Stivari; Amauri P. de Oliveira; Hugo A. Karam; Jacyra Soares

2003-01-01T23:59:59.000Z

406

Spatiotemporal Trends in Lake Effect and Continental Snowfall in the Laurentian Great Lakes, 19511980  

Science Conference Proceedings (OSTI)

A new raster-based monthly snowfall climatology was derived from 19511980 snowfall station data for the Laurentian Great Lakes. An automated methodology was used to obtain higher spatial resolution than previously obtained. The increase in ...

D. C. Norton; S. J. Bolsenga

1993-10-01T23:59:59.000Z

407

Automatic computation for optimum height planning of apartment buildings to improve solar access  

SciTech Connect

The objective of this study is to suggest a mathematical model and an optimal algorithm for determining the height of apartment buildings to satisfy the solar rights of survey buildings or survey housing units. The objective is also to develop an automatic computation model for the optimum height of apartment buildings and then to clarify the performance and expected effects. To accomplish the objective of this study, the following procedures were followed: (1) The necessity of the height planning of obstruction buildings to satisfy the solar rights of survey buildings or survey housing units is demonstrated by analyzing through a literature review the recent trend of disputes related to solar rights and to examining the social requirements in terms of solar rights. In addition, the necessity of the automatic computation system for height planning of apartment buildings is demonstrated and a suitable analysis method for this system is chosen by investigating the characteristics of analysis methods for solar rights assessment. (2) A case study on the process of height planning of apartment buildings will be briefly described and the problems occurring in this process will then be examined carefully. (3) To develop an automatic computation model for height planning of apartment buildings, geometrical elements forming apartment buildings are defined by analyzing the geometrical characteristics of apartment buildings. In addition, design factors and regulations required in height planning of apartment buildings are investigated. Based on this knowledge, the methodology and mathematical algorithm to adjust the height of apartment buildings by automatic computation are suggested and probable problems and the ways to resolve these problems are discussed. Finally, the methodology and algorithm for the optimization are suggested. (4) Based on the suggested methodology and mathematical algorithm, the automatic computation model for optimum height of apartment buildings is developed and the developed system is verified through the application of some cases. The effects of the suggested model are then demonstrated quantitatively and qualitatively. (author)

Seong, Yoon-Bok [Department of Architecture, Graduate School, College of Engineering, Seoul National University, Seoul (Korea, Republic of); Kim, Yong-Yee [Department of Architecture and Building Engineering, Kunsan National University, Kunsan (Korea, Republic of); Seok, Ho-Tae [ArchiPro Construction, 1520 S. Alameda Street, Compton, CA 90221 (United States); Choi, Jeong-Min [School of Architecture, Changwon National University, Changwon (Korea, Republic of); Yeo, Myoung-Souk; Kim, Kwang-Woo [Department of Architecture and Architectural Engineering, Seoul National University, Seoul (Korea, Republic of)

2011-01-15T23:59:59.000Z

408

Geothermal Exploration Using Aviris Remote Sensing Data Over Fish Lake  

Open Energy Info (EERE)

Using Aviris Remote Sensing Data Over Fish Lake Using Aviris Remote Sensing Data Over Fish Lake Valley, Nv Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Exploration Using Aviris Remote Sensing Data Over Fish Lake Valley, Nv Details Activities (1) Areas (1) Regions (0) Abstract: Fish Lake Valley, in Esmeralda County, Nevada, sits at the southern end of the Mina Deflection where the very active Death Valley-Furnace Creek-Fish Lake Valley fault system makes a right step to transfer slip northward into the Walker Lane. Northern Fish Lake Valley has been pulling part since ca. 6 Ma, primarily along the Emigrant Peak normal fault zone (Stockli et al., 2003). Elevated tectonic activity in Fish Lake Valley suggests there may be increased fracture permeability to facilitate

409

Changes of Extreme Wave Heights in Northern Hemisphere Oceans and Related Atmospheric Circulation Regimes  

Science Conference Proceedings (OSTI)

This study assesses trends in seasonal extremes (90- and 99-percentiles) of Significant Wave Height (SWH) in the North Atlantic and the North Pacific, as simulated in a 40-yr global wave hindcast using the National Centers for Environmental ...

Xiaolan L. Wang; Val R. Swail

2001-05-01T23:59:59.000Z

410

Sea Surface Height Predictions from the Global Navy Coastal Ocean Model during 19982001  

Science Conference Proceedings (OSTI)

A ? global version of the Navy Coastal Ocean Model (NCOM), operational at the Naval Oceanographic Office (NAVOCEANO), is used for prediction of sea surface height (SSH) on daily and monthly time scales during 19982001. Model simulations that ...

Charlie N. Barron; A. Birol Kara; Harley E. Hurlburt; C. Rowley; Lucy F. Smedstad

2004-12-01T23:59:59.000Z

411

Automatic Analysis of Stereoscopic Satellite Image Pairs for Determination of Cloud-Top Height and Structure  

Science Conference Proceedings (OSTI)

A massively parallel processor (MPP) computer has made it practical to do automatic stereo analysis of cloud-top heights from stereoscopic satellite image pairs. The automatic analysis is of equivalent quality to manual analysis while taking ...

A. F. Hasler; J. Strong; R. H. Woodward; H. Pierce

1991-03-01T23:59:59.000Z

412

The Potential for Seasonal Forecasting of Winter Wave Heights in the Northern North Sea  

Science Conference Proceedings (OSTI)

The height of waves at North Sea oil and gas installations is an important factor governing the degree to which operational activities may be undertaken at those facilities. A link between the North Atlantic Oscillation (NAO) and winter (defined ...

Andrew W. Colman; Erika J. Palin; Michael G. Sanderson; Robert T. Harrison; Ian M. Leggett

2011-12-01T23:59:59.000Z

413

Extraction of Geopotential Height and Temperature Structure from Profiler and Rawinsonde Winds  

Science Conference Proceedings (OSTI)

Mesoscale height and temperature fields can be extracted from the observed wind field by making use of the full divergence equation. Mass changes associated with irrotational ageostrophic motions are retained for a nearly complete description of ...

Steven Businger; Michael E. Adams; Steven E. Koch; Michael L. Kaplan

2001-07-01T23:59:59.000Z

414

On the Height of the Tropopause and the Static Stability of the Troposphere  

Science Conference Proceedings (OSTI)

Speculative arguments are, presented that describe how radiative and dynamical constraints conspire to determine the height of the tropopause and the tropospheric static stability in midlatitudes and in the tropics. The arguments suggest an ...

Issac M. Held

1982-02-01T23:59:59.000Z

415

A WRF Ensemble for Improved Wind Speed Forecasts at Turbine Height  

Science Conference Proceedings (OSTI)

The Weather Research and Forecasting Model (WRF) with 10-km horizontal grid spacing was used to explore improvements in wind speed forecasts at a typical wind turbine hub height (80 m). An ensemble consisting of WRF model simulations with ...

Adam J. Deppe; William A. Gallus Jr.; Eugene S. Takle

2013-02-01T23:59:59.000Z

416

Simulation of Significant Wave Height by Neural Networks and Its Application to Extreme Wave Analysis  

Science Conference Proceedings (OSTI)

The derivation of the long-term statistical distribution of significant wave heights (Hss) is discussed in this paper. The distribution parameters are estimated using artificial neural networks (ANNs) trained with the help of a simulated ...

A. Aminzadeh-Gohari; H. Bahai; H. Bazargan

2009-04-01T23:59:59.000Z

417

A Rate Equation for the Inversion Height in a Nocturnal Boundary Layer  

Science Conference Proceedings (OSTI)

The application of a self-similar profile in the integration of the temperature equation across the stable boundary layer leads to a rate equation for the inversion height. An analytic solution of the resulting equation is derived. Its behavior ...

F. T. M. Nieuwstadt

1980-12-01T23:59:59.000Z

418

Effects of Inversion Height and Surface Heat Flux on Downslope Windstorms  

Science Conference Proceedings (OSTI)

Simulations are presented focusing on the role of temperature inversions in controlling the formation and strength of downslope wind storms. Three mechanisms are examined depending on the relative height of the inversion with respect to the ...

Craig M. Smith; Eric D. Skyllingstad

2011-12-01T23:59:59.000Z

419

A Comparison of Two Objective Analysis Techniques for Profiler Time-Height Data  

Science Conference Proceedings (OSTI)

Two methods for objective analysis of wind profiler data in time-height space are proposed and compared. One is a straightforward adaptation of a procedure developed by Doswell for introducing time continuity into a sequence of spatial analyses. ...

Frederick H. Carr; Phillip L. Spencer; Charles A. Doswell III; Jeffrey D. Powell

1995-07-01T23:59:59.000Z

420

Sensitivity of Coastally Trapped Disturbance Dynamics to Barrier Height and Topographic Variability in a Numerical Model  

Science Conference Proceedings (OSTI)

The sensitivity of a coastally trapped disturbance (CTD) to topographic height is examined using simulations of the 1518 May 1985 CTD. These simulations include three with uniform topography, in which the North American west coast mountains are ...

K. J. Tory; P. L. Jackson; C. J. C. Reason

2001-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "keystone heights lake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Variability in Skill in 120 h FNOC 500 mb Height Forecasts  

Science Conference Proceedings (OSTI)

The variability of the 120 h 500 mb height forecasts of the Navy's Operational global model was examined for two winters. The forecasts displayed evidence of marked variability in the quality of forecasts as measured by anomaly correlations ...

J. Curtis; J. S. Boyle; C. H. Wash

1988-06-01T23:59:59.000Z

422

Comparison of Cirrus Height and Optical Depth Derived from Satellite and Aircraft Measurements  

Science Conference Proceedings (OSTI)

During the International Cirrus Experiment (ICE'89) simultaneous measurements of Cirrus cloud-top height and optical depth by satellite and aircraft have been taken. Data from the Advanced Very High Resolution Radiometer (AVHRR) onboard the NOAA ...

M. Kstner; K. T. Kriebel; R. Meerktter; W. Renger; G. H. Ruppersberg; P. Wendling

1993-10-01T23:59:59.000Z

423

Biogeography of Tropical Montane Cloud Forests. Part I: Remote Sensing of Cloud-Base Heights  

Science Conference Proceedings (OSTI)

Cloud-base heights over tropical montane cloud forests are determined using Moderate Resolution Imaging Spectroradiometer (MODIS) cloud products and National Centers for Environmental Prediction global tropospheric final analysis (FNL) fields. ...

Ronald M. Welch; Salvi Asefi; Jian Zeng; Udaysankar S. Nair; Qingyuan Han; Robert O. Lawton; Deepak K. Ray; Vani Starry Manoharan

2008-04-01T23:59:59.000Z

424

Assimilation of ERS-1 Altimeter Wave Heights in an Operational Numerical Wave Model  

Science Conference Proceedings (OSTI)

Observed significant wave heights (SWH) from ERS-1 have been received and evaluated at the Norwegian Meteorological Institute (DNMI) since August 1991. The observations were found to be of high quality. Since January 1992 the data were ...

Lars-Anders Breivik; Magnar Reistad

1994-09-01T23:59:59.000Z

425

Wind-forced Variations in Sea Surface Height in the Northeast Pacific Ocean  

Science Conference Proceedings (OSTI)

Sea surface height (SSH) anomalies from the Geosat altimeter for the northeast Pacific Ocean were analysed to determine their annual and interannual fluctuations over a 2.5-year period. The interannual anomalies suggested large-scale changes in ...

Kathryn A. Kelly; Michael J. Caruso; Jay A. Austin

1993-11-01T23:59:59.000Z

426

The Dependence of Short-Range 500-mb Height Forecasts on the Initial Flow Regime  

Science Conference Proceedings (OSTI)

Forecast errors in the 500-mb geopotential height field over North America and adjacent ocean environs are calculated for the National Meteorological Center's Nested Grid Model (NGM). The eight winters 1985/86-1992/93 are examined. Errors are ...

Laura A. Stoss; Steven L. Mullen

1995-06-01T23:59:59.000Z

427

Specification of Monthly Precipitation over the United States from the Surrounding 700 mb Height Field  

Science Conference Proceedings (OSTI)

The relations between monthly precipitation in each of 60 climate divisions in the contiguous United States and the simultaneous field of monthly mean 700 mb height over North America and vicinity were investigated for both frequency and amount ...

William H. Klein; Hal J. Bloom

1987-09-01T23:59:59.000Z

428

Sea Surface Height Signals as Indicators for Oceanic Meridional Mass Transports  

Science Conference Proceedings (OSTI)

Numerical models are used to test whether the sea surface height (SSH) can be used as an indicator for the variability of Atlantic meridional oceanic mass transports. The results suggest that if the transports over the western boundary current ...

Jol J-M. Hirschi; Peter D. Killworth; Jeffrey R. Blundell; David Cromwell

2009-03-01T23:59:59.000Z

429

Forecasting Northern Hemisphere 700-mb Geopotential Height Anomalies Using Empirical Normal Modes  

Science Conference Proceedings (OSTI)

Multivariate linear prediction based on single-lag inverse modeling is developed further and critically examined. The method is applied to the National Meteorological Center analyses of Northern Hemisphere 700-mb geopotential height anomalies, ...

Ccile Penland; Michael Ghil

1993-08-01T23:59:59.000Z

430

Comparison of Methods for Estimating Mixing Height Used during the 1992 Atlanta Field Intensive  

Science Conference Proceedings (OSTI)

During the summer of 1992, measurements of the boundary layer mixing height were conducted at five locations around the city of Atlanta, Georgia, as part of the 1992 Atlanta Field Intensive of the Southern Oxidants Research Program on Ozone Non-...

Frank J. Marsik; Kenneth W. Fischer; Tracey D. McDonald; Perry J. Samson

1995-08-01T23:59:59.000Z

431

Tropopause Folding and the Variability of the Tropopause Height as Seen by the Flatland VHF Radar  

Science Conference Proceedings (OSTI)

The Flatland radar, a VHF wind profiler located near Urbana, Illinois, has been used to study the variability of the tropopause over the period March 1987April 1988. The vertically directed radar beam provides an indicator of tropopause height ...

G. D. Nastrom; J. L. Green; K. S. Gage; M. R. Peterson

1989-12-01T23:59:59.000Z

432

A perceptual study on haptic rendering of surface topography when both surface height and stiffness vary  

Science Conference Proceedings (OSTI)

This study is concerned with the distorted perception of surface topography when both surface height and surface stiffness vary. Three psychophysical experiments were conducted using virtual surfaces rendered with a force-feedback device. In Exp. I, ...

Laron Walker; Hong Z. Tan

2004-03-01T23:59:59.000Z

433

Wind Speeds at Heights Crucial for Wind Energy: Measurements and Verification of Forecasts  

Science Conference Proceedings (OSTI)

Wind speed measurements from one year from meteorological towers and wind turbines at heights between 20 and 250 m for various European sites are analyzed and are compared with operational short-term forecasts of the global ECMWF model. The ...

Susanne Drechsel; Georg J. Mayr; Jakob W. Messner; Reto Stauffer

2012-09-01T23:59:59.000Z

434

Persistence of the 500 mb Height Field during Northern Hemisphere Winter  

Science Conference Proceedings (OSTI)

The persistence of the planetary-scale circulation during the Northern Hemisphere winters from 1965/66 to 1981/82 is documented. National Meteorological Center analyses of 500 mb geopotential height for the Northern Hemisphere poleward of 20N ...

John D. Horel

1985-11-01T23:59:59.000Z

435

Cluster Analysis: A new approach applied to Lidar measurements for Atmospheric Boundary Layer height estimation  

Science Conference Proceedings (OSTI)

Several procedures are widely applied to estimate the Atmospheric Boundary Layer (ABL) top height by using aerosols as tracers from lidar measurements. These methods represent different mathematical approaches relying on either the abrupt step of ...

Daniel Toledo; Carmen Crdoba-Jabonero; Manuel Gil-Ojeda

436

Cloud-Base Height Estimates Using a Combination of Meteorological Satellite Imagery and Surface Reports  

Science Conference Proceedings (OSTI)

This paper describes how the combination of a satellite-derived cloud classification with surface observations can improve analysis of cloud-base height. A cloud-base retrieval that combines a cloud classification derived from visible and ...

John M. Forsythe; Thomas H. Vonder Haar; Donald L. Reinke

2000-12-01T23:59:59.000Z

437

Determination of Extratropical Tropopause Height in an Idealized Gray Radiation Model  

Science Conference Proceedings (OSTI)

This paper investigates the mechanisms that determine the extratropical tropopause height, extending previous results with a Newtonian cooling model. A primitive equation model forced by a meridional gradient of incoming solar radiation, with the ...

Pablo Zurita-Gotor; Geoffrey K. Vallis

2013-07-01T23:59:59.000Z

438

Classification of 500 mb Height Anomalies Using Obliquely Rotated Principal Components  

Science Conference Proceedings (OSTI)

The objective of this study was to classify 500 mb height anomaly patterns for North America using principal component analysis with oblique rotation. Two versions of the oblique rotation, oblimax and direct oblimin, were applied to two gridded ...

Stewart J. Cohen

1983-12-01T23:59:59.000Z

439

Northern Hemisphere 700 mb Heights and Pacific Ocean Temperatures for Winter Months  

Science Conference Proceedings (OSTI)

Mean monthly 700 mb height data are analyzed in relation to Pacific Ocean sea-surface temperatures (SST). Instead of treating the winter season as a unit, the data are analyzed separately for December, January and February; some results for ...

Sigmund Fritz

1982-01-01T23:59:59.000Z

440

Observations of Height-dependent Pressure-Perturbation Structure of a Strong Mesoscale Gravity Wave  

Science Conference Proceedings (OSTI)

Airborne observations using a downward-looking, dual-frequency, near-infrared, differential absorption lidar (DIAL) system provide the first measurements of the height-dependent pressure-perturbation field associated with a strong mesoscale ...

David O'C. Starr; C. Laurence Korb; Geary K. Schwemmer; Chi Y. Weng

1992-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "keystone heights lake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Tornadoes in Environments with Small Helicity and/or High LCL Heights  

Science Conference Proceedings (OSTI)

Recent studies have suggested that supercell tornado environments are usually associated with large 01-km storm-relative helicity (SRH) and relatively low lifting condensation levels (LCL heights). However, occasional tornadoes of significance ...

Jonathan M. Davies

2006-08-01T23:59:59.000Z

442

Specifying Monthly Mean Surface Temperatures in Canada and Alaska from the 500 mb Height Field  

Science Conference Proceedings (OSTI)

Specification equations for monthly mean air temperature anomalies at 68 surface stations in Canada and Alaska are derived by applying a forward selection screening procedure to simultaneous monthly mean 500 mb height anomalies at 110 grid points ...

William H. Klein; Amir Shabbar; Runhua Yang

1989-06-01T23:59:59.000Z

443

Boundary Layer Height and Entrainment Zone Thickness Measured by Lidars and Wind-Profiling Radars  

Science Conference Proceedings (OSTI)

The authors examine measurements of boundary layer height zi and entrainment zone thickness observed with two lidars and with a radar wind profiler during the Flatland96 Lidars in Flat Terrain experiment. Lidar backscatter is proportional to ...

Stephen A. Cohn; Wayne M. Angevine

2000-08-01T23:59:59.000Z

444

Modulation of shallow water equatorial waves due to a varying equivalent height background  

Science Conference Proceedings (OSTI)

The dynamics of convectively coupled equatorial waves (CCEWs) is analyzed in an idealized model of the large scale atmospheric circulation. The model is composed of a linear rotating shallow water system with a variable equivalent height, or ...

Juliana Dias; Pedro L. Silva Dias; George N. Kiladis; Maria Gehne

445

CRITICAL HEIGHT FOR THE DESTABILIZATION OF SOLAR PROMINENCES: STATISTICAL RESULTS FROM STEREO OBSERVATIONS  

SciTech Connect

At which height is a prominence inclined to be unstable, or where is the most probable critical height for the prominence destabilization? This question was statistically studied based on 362 solar limb prominences well recognized by Solar Limb Prominence Catcher and Tracker from 2007 April to the end of 2009. We found that there are about 71% disrupted prominences (DPs), among which about 42% of them did not erupt successfully and about 89% of them experienced a sudden destabilization process. After a comprehensive analysis of the DPs, we discovered the following: (1) Most DPs become unstable at a height of 0.06-0.14 R{sub Sun} from the solar surface, and there are two most probable critical heights at which a prominence is very likely to become unstable, the first one is 0.13 R{sub Sun} and the second one is 0.19 R{sub Sun }. (2) An upper limit for the erupting velocity of eruptive prominences (EPs) exists, which decreases following a power law with increasing height and mass; accordingly, the kinetic energy of EPs has an upper limit too, which decreases as the critical height increases. (3) Stable prominences are generally longer and heavier than DPs, and not higher than 0.4 R{sub Sun }. (4) About 62% of the EPs were associated with coronal mass ejections (CMEs); but there is no difference in apparent properties between EPs associated with CMEs and those that are not.

Liu Kai; Wang Yuming; Wang Shui; Shen Chenglong, E-mail: ymwang@ustc.edu.cn [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China)

2012-01-10T23:59:59.000Z

446

A Method for Estimating Planetary Boundary Layer Heights and Its Application over the ARM Southern Great Plains Site  

Science Conference Proceedings (OSTI)

A new objective method to determine the height of the planetary boundary layer (PBL) is presented here. PBL heights are computed using the statistical variance and kurtosis of dewpoint and virtual potential temperature differences measured from ...

Paul Schmid; Dev Niyogi

2012-03-01T23:59:59.000Z

447

Detection of Cloud-Top Height from Backscattered Radiances within the Oxygen A Band. Part 2: Measurements  

Science Conference Proceedings (OSTI)

Cloud-top heights were successfully derived from reflected solar radiation measurements within the oxygen A-band absorption. The accuracy of the estimated cloud-top heights was to within 40 meters over stratus clouds when compared with ...

J. Fischer; W. Cordes; A. Schmitz-Peiffer; W. Renger; P. Mrl

1991-09-01T23:59:59.000Z

448

Comparison between Observed Convective Cloud-Base Heights and Lifting Condensation Level for Two Different Lifted Parcels  

Science Conference Proceedings (OSTI)

Approximately 400 Automated Surface Observing System (ASOS) observations of convective cloud-base heights at 2300 UTC were collected from April through August of 2001. These observations were compared with lifting condensation level (LCL) heights ...

Jeffrey P. Craven; Ryan E. Jewell; Harold E. Brooks

2002-08-01T23:59:59.000Z

449

Field Derived Emission Factors For Formaldehyde and other Volatile Organic Compounds in FEMA Temporary Housing Units  

E-Print Network (OSTI)

Cavalier 2 Keystone 1 Keystone 2 Keystone 3 Pilgrim1 Pilgrim 2 Manufacturer Fleetwood Fleetwood FleetwoodKeystone Keystone Keystone Pilgrim Pilgrim a Area (m 2 )

Parthasarathy, Srinandini

2011-01-01T23:59:59.000Z

450

ARM: ARSCL: cloud base height from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR  

DOE Data Explorer (OSTI)

ARSCL: cloud base height from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

Richard Coulter; Kevin Widener; Nitin Bharadwaj; Karen Johnson; Timothy Martin

451

Great Lakes Energy - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Great Lakes Energy - Residential Energy Efficiency Rebate Program Great Lakes Energy - Residential Energy Efficiency Rebate Program Great Lakes Energy - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Air-Source Heat Pumps: $250 Geothermal Heat Pumps: $500 Provider Great Lakes Energy Great Lakes Energy offers rebates to residential customers for the purchase of efficiency air-source heat pumps or geothermal heat pumps. A rebate of $250 is available for air-source heat pumps, and a $500 rebate is available for geothermal heat pumps. View the program website listed above to view program and efficiency specifics. A variety of rebates may also be available to Great Lake Energy residential

452

Mapping Fractures In The Medicine Lake Geothermal System | Open Energy  

Open Energy Info (EERE)

Fractures In The Medicine Lake Geothermal System Fractures In The Medicine Lake Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Mapping Fractures In The Medicine Lake Geothermal System Details Activities (1) Areas (1) Regions (0) Abstract: A major challenge to energy production in the region has been locating high-permability fracture zones in the largely impermeable volcanic host rock. An understanding of the fracture networks will be a key to harnessing geothermal resources in the Cascades Author(s): Steven Clausen, Michal Nemcok, Joseph Moore, Jeffrey Hulen, John Bartley Published: GRC, 2006 Document Number: Unavailable DOI: Unavailable Core Analysis At Medicine Lake Area (Clausen Et Al, 2006) Medicine Lake Geothermal Area Retrieved from "http://en.openei.org/w/index.php?title=Mapping_Fractures_In_The_Medicine_Lake_Geothermal_System&oldid=388927

453

National Park Service - Lake Powell, Utah | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake Powell, Utah Lake Powell, Utah National Park Service - Lake Powell, Utah October 7, 2013 - 9:58am Addthis Photo of the Photovoltaic System at Lake Powell, Utah Lake Powell is part of Utah's Glen Canyon National Recreation Area. The Dangling Rope Marina operates by using diesel generators to supply power. They use 65,000 gallons of diesel fuel per year that has to be barged in over Lake Powell. The potential for environmental damage to the marina in the event of a fuel spill is significant, and the cost to the National Park Service (NPS) for transporting each fuel delivery is considerable. Consequently, the installation of a photovoltaic (PV) system presented many advantages. This is the largest PV system the NPS has installed with 115 kilowatts of energy being produced. A 59% improvement in energy efficiency has been

454

Lake Lahontan: Geology of Southern Carson Desert, Nevada | Open Energy  

Open Energy Info (EERE)

Lake Lahontan: Geology of Southern Carson Desert, Nevada Lake Lahontan: Geology of Southern Carson Desert, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Lake Lahontan: Geology of Southern Carson Desert, Nevada Abstract This report presents a stratigraphic study of an area of about 860 square miles in the southern part of the Carson Desert, near Fallen, Churchill County, Nev. The exposed rocks and surficial sediments range in age from early Tertiary (?) to Recent. The late Quaternary sediments and soils were especially studied: they furnish a detailed history of the fluctuations of Lake Lahontan (a huge but intermittent late Pleistocene lake) and of younger lakes, as well as a history of late Quaternary sedimentation, erosion, soil development, and climatic change that probably is

455

Star Lakes and Rivers (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Star Lakes and Rivers (Minnesota) Star Lakes and Rivers (Minnesota) Star Lakes and Rivers (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Siting and Permitting An association organized for the purpose of addressing issues on a specific lake or river, a lake improvement district, or a lake conservation district

456

Lake Region Electric Cooperative | Open Energy Information  

Open Energy Info (EERE)

Cooperative Cooperative (Redirected from Lake Region Coop Elec Assn) Jump to: navigation, search Name Lake Region Electric Cooperative Place Minnesota Utility Id 10618 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 2013 Residential and Farm Rates Residential Interruptible Heating(Domestic Use) Interruptible Heating(Non-Domestic Use) Residential Irrigation Rate Commercial Large Commercial Commercial Offpeak Storage Residential Simultaneous Purchase and Sale Small Commercial Commercial

457

Mercury in the Lake Powell ecosystem  

SciTech Connect

Flameless atomic absorption analyses of samples from Lake Powell yield the following mercury levels (in mean parts per billion): 0.01 in lake water, 30 in bottom sediments, 10 in shoreline substrates, 34 in plant leaves, 145 in plant debris, 28 in algae, 10 in crayfish, and 232 in fish muscle. Bioamplification and the association of mercury with organic matter are evident in this recently created, relatively unpolluted reservoir. Formulation of an estimated mercury budget suggests that the restriction of outflow in the impounded Colorado River leads to mercury accumulation, and that projected regional coal-fired power generation may produce sufficient amounts of mercury to augment significantly the mercury released by natural weathering.

Standiford, D.R.; Potter, L.D.; Kidd, D.E.

1973-06-01T23:59:59.000Z

458

Kilauea Iki lava lake experiment plans  

DOE Green Energy (OSTI)

Twelve experimental studies are proposed to complete field laboratory work at Kilauea Iki lava lake. Of these twelve experiments, eleven do not require the presence of melt. Some studies are designed to use proven techniques in order to expand our existing knowledge, while others are designed to test new concepts. Experiments are grouped into three main categories: geophysics, energy extraction, and drilling technology. Each experiment is described in terms of its location, purpose, background, configuration, operation, and feasibility.

Dunn, J.C.; Hills, R.G.

1981-01-01T23:59:59.000Z

459

Energy Efficient Buildings, Salt Lake County, Utah  

SciTech Connect

Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars, site tours, presentations, and written correspondence.

Barnett, Kimberly

2012-04-30T23:59:59.000Z

460

The Lake Baikal neutrino experiment: selected results  

E-Print Network (OSTI)

We review the present status of the lake Baikal Neutrino Experiment and present selected physical results gained with the consequetive stages of the stepwise increasing detector: from NT-36 to NT-96. Results cover atmospheric muons, neutrino events, very high energy neutrinos, search for neutrino events from WIMP annihilation, search for magnetic monopoles and environmental studies. We also describe an air Cherenkov array developed for the study of angular resolution of NT-200.

BAIKAL Collaboration; V. Balkanov

2000-01-10T23:59:59.000Z

Note: This page contains sample records for the topic "keystone heights lake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Regional factors governing performance and sustainability of wastewater treatment plants in Honduras : Lake Yojoa Subwatershed  

E-Print Network (OSTI)

Lake Yojoa, the largest natural lake in Honduras, is currently experiencing eutrophication from overloading of nutrients, in part due to inadequate wastewater treatment throughout the Lake Yojoa Subwatershed. Some efforts ...

Walker, Kent B. (Kent Bramwell)

2011-01-01T23:59:59.000Z

462

Mesoscale Boundary Layer and Heat Flux Variations over Pack IceCovered Lake Erie  

Science Conference Proceedings (OSTI)

The development of extensive pack ice fields on the Great Lakes significantly influences lake-effect storms and local airmass modification, as well as the regional hydrologic cycle and lake water levels. The evolution of the ice fields and their ...

Mathieu R. Gerbush; David A. R. Kristovich; Neil F. Laird

2008-02-01T23:59:59.000Z

463

Numerical Simulation of Transitions in Boundary Layer Convective Structures in a Lake-Effect Snow Event  

Science Conference Proceedings (OSTI)

Numerical simulations are used to study transitions between boundary layer rolls and more cellular convective structures observed during a lake-effect snow event over Lake Michigan on 17 December 1983. Weak lake-effect nonroll convection was ...

Kevin A. Cooper; Mark R. Hjelmfelt; Russell G. Derickson; David A. R. Kristovich; Neil F. Laird

2000-09-01T23:59:59.000Z

464

Temporal and Spatial Variability of Great Lakes Ice Cover, 19732010  

Science Conference Proceedings (OSTI)

In this study, temporal and spatial variability of ice cover in the Great Lakes are investigated using historical satellite measurements from 1973 to 2010. The seasonal cycle of ice cover was constructed for all the lakes, including Lake St. ...

Jia Wang; Xuezhi Bai; Haoguo Hu; Anne Clites; Marie Colton; Brent Lofgren

2012-02-01T23:59:59.000Z

465

The Effect of Groundwater Inflow on Evaporation from a Saline Lake  

Science Conference Proceedings (OSTI)

A decade study of the hydrometeorology of Big Quill Lake in Saskatchewan, a saline prairie lake, has effectively used remote sensing to delineate groundwater inflow. The lake covers an area of 250 square kilometers with the groundwater seeping ...

Jeffrey M. Whiting

1984-02-01T23:59:59.000Z

466

Increasing Great LakeEffect Snowfall during the Twentieth Century: A Regional Response to Global Warming?  

Science Conference Proceedings (OSTI)

The influence of the Laurentian Great Lakes on the climate of surrounding regions is significant, especially in leeward settings where lake-effect snowfall occurs. Heavy lake-effect snow represents a potential natural hazard and plays important ...

Adam W. Burnett; Matthew E. Kirby; Henry T. Mullins; William P. Patterson

2003-11-01T23:59:59.000Z

467

Lake Titicaca - Physics of an Inherited Hydropower Macroproject Proposal  

E-Print Network (OSTI)

Shared almost evenly by Peru and Bolivia, Lake Titicaca is situated on an Altiplano endorheic region of the northern Andes Mountains. Rio Desaguadero is the lake only outlet. From 1908, several macro-engineers speculated on the creation of a second, completely artificial, outlet for Lake Titicaca freshwater. Here we reconsider several 20th Century macroproject proposals, with the goal of examining and enhancing this technically interesting South American 21st Century Macro-engineering inheritance.

R. Cathcart; A. Bolonkin

2007-03-19T23:59:59.000Z

468

Circulations, Bounded Weak Echo Regions, and Horizontal Vortices Observed within Long-Lake-Axis-ParallelLake-Effect Storms by the Doppler on Wheels  

Science Conference Proceedings (OSTI)

The eastern Great Lakes (Erie and Ontario) are often affected by intense lake-effect snowfalls. Lake-effect storms that form parallel to the major axes of these lakes can strongly impact communities by depositing more than 100 cm of snowfall in ...

Scott M. Steiger; Robert Schrom; Alfred Stamm; Daniel Ruth; Keith Jaszka; Timothy Kress; Brett Rathbun; Jeffrey Frame; Joshua Wurman; Karen Kosiba

2013-08-01T23:59:59.000Z

469

Lake George Park Commission: Stormwater Management (New York) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake George Park Commission: Stormwater Management (New York) Lake George Park Commission: Stormwater Management (New York) Lake George Park Commission: Stormwater Management (New York) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New York Program Type Environmental Regulations Provider Lake George Park Commission

470

EIS-0491: Lake Charles Liquefaction Project, Calcasieu Parish, Louisiana |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

91: Lake Charles Liquefaction Project, Calcasieu Parish, 91: Lake Charles Liquefaction Project, Calcasieu Parish, Louisiana EIS-0491: Lake Charles Liquefaction Project, Calcasieu Parish, Louisiana SUMMARY The Federal Energy Regulatory Commission (FERC) is preparing, with DOE as a cooperating agency, an EIS to analyze the potential environmental impacts of a proposal to expand an existing liquefied natural gas (LNG) import terminal in Calcasieu Parish, Louisiana, by constructing and operating natural gas liquefaction and exportation capabilities. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD March 28, 2013 EIS-0491: Supplemental Notice of Intent to Prepare an Environmental Impact Statement Lake Charles Liquefaction Project, Calcasieu Parish, Louisiana September 25, 2012

471

Natural Lakes: Drainage: Diversion: Application (Nebraska) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lakes: Drainage: Diversion: Application (Nebraska) Lakes: Drainage: Diversion: Application (Nebraska) Natural Lakes: Drainage: Diversion: Application (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Natural Resources This section provides limitations on water withdrawals and diversions from natural lakes. Any such activity requires a permit from the Department of Natural Resources

472

Data Acquisition-Manipulation At Lake City Hot Springs Area ...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Lake City Hot Springs Area (Warpinski, Et Al., 2004)...

473

Stepout-Deepening Wells At Medicine Lake Area (Warpinski, Et...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Stepout-Deepening Wells At Medicine Lake Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

474

White Bear Lake Conservation District (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

White Bear Lake Conservation District (Minnesota) White Bear Lake Conservation District (Minnesota) White Bear Lake Conservation District (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Siting and Permitting This statute establishes the White Bear Lake Conservation District, which

475

Recreational Lake and Water Quality Districts (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recreational Lake and Water Quality Districts (Iowa) Recreational Lake and Water Quality Districts (Iowa) Recreational Lake and Water Quality Districts (Iowa) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Territory contiguous to a recreational lake may be incorporated into a

476

Exploration And Discovery In Yellowstone Lake- Results From High...  

Open Energy Info (EERE)

volcanic, and sedimentary processes. Detailed bathymetric, seismic reflection, and magnetic evidence reveals that rhyolitic lava flows underlie much of Yellowstone Lake and...

477

Geographic Information System At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Geographic Information System Activity Date Usefulness useful...

478

Geothermal Literature Review At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

Search Page Edit History Facebook icon Twitter icon Geothermal Literature Review At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL...

479

Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish...

480

Hyperspectral Imaging At Fish Lake Valley Area (Littlefield ...  

Open Energy Info (EERE)

Hyperspectral Imaging At Fish Lake Valley Area (Littlefield & Calvin, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging...

Note: This page contains sample records for the topic "keystone heights lake" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Cedar Lake, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Edit with form History Share this page on Facebook icon Twitter icon Cedar Lake, Indiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

482

Shamrock Lakes, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

with form History Share this page on Facebook icon Twitter icon Shamrock Lakes, Indiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...