National Library of Energy BETA

Sample records for key resource-rich regions

  1. KEY PERSONNEL

    National Nuclear Security Administration (NNSA)

    by Mods 002, 006, 020, 029, 0049, 0065, 0084, 0091, 0106) DE-NA0000622 Section J, Appendix J, Page 1 SECTION J APPENDIX J KEY PERSONNEL 7/06/2015 TITLE NAME President Christopher C. Gentile Vice President, Engineering Robin Stubenhofer Vice President, Integrated Supply Chain Rick Lavelock Director, Sr. Program Management Org. Vacant Director, Integrated Supply Chain Kurt Lorenzen Director, Engineering Bob Chaney Director, Quality David Schoenherr Director, Information Technology Matt Decker

  2. Key Outcomes:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Key Points & Action Items Inaugural Meeting Thursday, August 25, 2011 Renaissance Denver Hotel Denver, Colorado Participants Tracey LeBeau, Director, Pilar Thomas, Deputy Director, and Brandt Petrasek, Special Assistant, Department of Energy, Office of Indian Energy Policy and Programs; Vice Chairman Ronald Suppah and Jim Manion, Confederated Tribes of the Warm Springs Reservation of Oregon; William Micklin, Ewiiaapaayp Band of Kumeyaay Indians; Councilman Barney Enos, Jr., Jason Hauter,

  3. Key Activities

    Broader source: Energy.gov [DOE]

    We partner with industry, small business, universities, regional entities, and other stakeholders to identify and invest in emerging clean energy technologies. We establish collaborative communities focused on developing and commercializing targeted technologies; play a leadership role in the national interagency Advanced Manufacturing Partnership; and encourage a culture of continuous improvement in corporate energy management. Our investments have high impact, use project diversity to spread risk, target nationally important innovation at critical decision points, and contribute to quantifiable energy savings. By reducing the life-cycle energy consumption of manufactured goods by 50 percent over 10 years, we will support the creation of high-quality domestic manufacturing jobs and enhance the competitiveness of the United States. EERE's Clean Energy Manufacturing Initiative (CEMI) connects AMO's investments in the development of innovative process and materials technologies over 3 decades with R&D in other EERE offices and focuses on the urgent economic opportunities in U.S. clean energy manufacturing to strengthen U.S. competitiveness across multiple manufacturing industries through increased energy productivity.

  4. NSR Key Number Retrieval

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NSR Key Number Retrieval Pease enter key in the box Submit

  5. Public Key Cryptography and Key Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-02-15

    The use and management of certificate-based public key cryptography for the Department of Energy (DOE) requires the establishment of a public key infrastructure (PKI). This chapter defines the policy related to roles, requirements, and responsibilities for establishing and maintaining a DOE PKI and the documentation necessary to ensure that all certificates are managed in a manner that maintains the overall trust required to support a viable PKI. Canceled by DOE N 251.112.

  6. Group key management

    SciTech Connect (OSTI)

    Dunigan, T.; Cao, C.

    1997-08-01

    This report describes an architecture and implementation for doing group key management over a data communications network. The architecture describes a protocol for establishing a shared encryption key among an authenticated and authorized collection of network entities. Group access requires one or more authorization certificates. The implementation includes a simple public key and certificate infrastructure. Multicast is used for some of the key management messages. An application programming interface multiplexes key management and user application messages. An implementation using the new IP security protocols is postulated. The architecture is compared with other group key management proposals, and the performance and the limitations of the implementation are described.

  7. Key Milestones/Outlook

    Office of Energy Efficiency and Renewable Energy (EERE)

    Key Milestones/Outlook per the Department of Energy 2015 Congressional Budget Request, Environmental Management, March 2014

  8. Quantum dense key distribution

    SciTech Connect (OSTI)

    Degiovanni, I.P.; Ruo Berchera, I.; Castelletto, S.; Rastello, M.L.; Bovino, F.A.; Colla, A.M.; Castagnoli, G.

    2004-03-01

    This paper proposes a protocol for quantum dense key distribution. This protocol embeds the benefits of a quantum dense coding and a quantum key distribution and is able to generate shared secret keys four times more efficiently than the Bennet-Brassard 1984 protocol. We hereinafter prove the security of this scheme against individual eavesdropping attacks, and we present preliminary experimental results, showing its feasibility.

  9. Key Events Timeline

    Broader source: Energy.gov [DOE]

    This document lists key events beginning with the April 20 fire on the Deepwater Horizon through July 28th. Updated July 28, 2010.

  10. SSH Key Fingerprints

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SSH Key Fingerprints SSH Key Fingerprints Occasionally maintenance on NERSC systems results in the SSH host key changing. On the first time you attempt to log in after this, ssh will stop with a warning like: "WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!" (Linux/Mac) or "WARNING - POTENTIAL SECURITY BREACH!" (Windows) Do not ignore these warnings! The correct host key fingerprint for Cori is: 2048 SHA256:mR3sHwHorgjqRlUbggtfOCa768/uKdbNb2TOH8xDMn8 You can replace entries

  11. Optical key system

    SciTech Connect (OSTI)

    Hagans, Karla G.; Clough, Robert E.

    2000-01-01

    An optical key system comprises a battery-operated optical key and an isolated lock that derives both its operating power and unlock signals from the correct optical key. A light emitting diode or laser diode is included within the optical key and is connected to transmit a bit-serial password. The key user physically enters either the code-to-transmit directly, or an index to a pseudorandom number code, in the key. Such person identification numbers can be retained permanently, or ephemeral. When a send button is pressed, the key transmits a beam of light modulated with the password information. The modulated beam of light is received by a corresponding optical lock with a photovoltaic cell that produces enough power from the beam of light to operate a password-screen digital logic. In one application, an acceptable password allows a two watt power laser diode to pump ignition and timing information over a fiberoptic cable into a sealed engine compartment. The receipt of a good password allows the fuel pump, spark, and starter systems to each operate. Therefore, bypassing the lock mechanism as is now routine with automobile thieves is pointless because the engine is so thoroughly disabled.

  12. Optical key system

    SciTech Connect (OSTI)

    Hagans, K.G.; Clough, R.E.

    2000-04-25

    An optical key system comprises a battery-operated optical key and an isolated lock that derives both its operating power and unlock signals from the correct optical key. A light emitting diode or laser diode is included within the optical key and is connected to transmit a bit-serial password. The key user physically enters either the code-to-transmit directly, or an index to a pseudorandom number code, in the key. Such person identification numbers can be retained permanently, or ephemeral. When a send button is pressed, the key transmits a beam of light modulated with the password information. The modulated beam of light is received by a corresponding optical lock with a photovoltaic cell that produces enough power from the beam of light to operate a password-screen digital logic. In one application, an acceptable password allows a two watt power laser diode to pump ignition and timing information over a fiberoptic cable into a sealed engine compartment. The receipt of a good password allows the fuel pump, spark, and starter systems to each operate. Therefore, bypassing the lock mechanism as is now routine with automobile thieves is pointless because the engine is so thoroughly disabled.

  13. Public Key FPGA Software

    Energy Science and Technology Software Center (OSTI)

    2013-07-25

    The Public Key (PK) FPGA software performs asymmetric authentication using the 163-bit Elliptic Curve Digital Signature Algorithm (ECDSA) on an embedded FPGA platform. A digital signature is created on user-supplied data, and communication with a host system is performed via a Serial Peripheral Interface (SPI) bus. Software includes all components necessary for signing, including custom random number generator for key creation and SHA-256 for data hashing.

  14. Key Activities | Department of Energy

    Energy Savers [EERE]

    About the Fuel Cell Technologies Office Key Activities Key Activities The Fuel Cell Technologies Office conducts work in several key areas to advance the development and ...

  15. ARM - Key Science Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial Ecosystem Science Performance Metrics User Meetings Past ARM Science Team ...

  16. Cryptographic Key Management System

    SciTech Connect (OSTI)

    No, author

    2014-02-21

    This report summarizes the outcome of U.S. Department of Energy (DOE) contract DE-OE0000543, requesting the design of a Cryptographic Key Management System (CKMS) for the secure management of cryptographic keys for the energy sector infrastructure. Prime contractor Sypris Electronics, in collaboration with Oak Ridge National Laboratories (ORNL), Electric Power Research Institute (EPRI), Valicore Technologies, and Purdue University's Center for Education and Research in Information Assurance and Security (CERIAS) and Smart Meter Integration Laboratory (SMIL), has designed, developed and evaluated the CKMS solution. We provide an overview of the project in Section 3, review the core contributions of all contractors in Section 4, and discuss bene ts to the DOE in Section 5. In Section 6 we describe the technical construction of the CKMS solution, and review its key contributions in Section 6.9. Section 7 describes the evaluation and demonstration of the CKMS solution in different environments. We summarize the key project objectives in Section 8, list publications resulting from the project in Section 9, and conclude with a discussion on commercialization in Section 10 and future work in Section 11.

  17. NREL Makes Key Appointments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Makes Key Appointments Staffing for Distributed Energy and Tech Management Announced For more information contact: Gary Schmitz, 303-275-4050 email: Gary Schmitz Golden, Colo., Feb. 28, 2001 - Two veterans of energy research have been named to newly created positions at the U.S. Department of Energy's National Renewable Energy Laboratory. Jack Darnell was named Deputy Associate Director for NREL's recently reorganized Planning and Technology Management Division. Anthony Schaffhauser has been

  18. Key Terms | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Key Terms Key Terms Three Door Keys data-key-571156_960_720.png Key Terms Low Vision: non-correctable reduced vision Blindness: lack of visual perception Hearing Impairment: full or partial decrease in the ability to detect or understand sounds Physical Impairment: a physical condition that permanently prevents normal body movement or control Cognitive Disabilities: difficulty with one or more types of mental tasks

  19. Secure key storage and distribution

    SciTech Connect (OSTI)

    Agrawal, Punit

    2015-06-02

    This disclosure describes a distributed, fault-tolerant security system that enables the secure storage and distribution of private keys. In one implementation, the security system includes a plurality of computing resources that independently store private keys provided by publishers and encrypted using a single security system public key. To protect against malicious activity, the security system private key necessary to decrypt the publication private keys is not stored at any of the computing resources. Rather portions, or shares of the security system private key are stored at each of the computing resources within the security system and multiple security systems must communicate and share partial decryptions in order to decrypt the stored private key.

  20. Key Issues Regarding Electrolytes at Interfacial Regions (subtask...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2009 Energy Storage R&D Annual Progress Report Development of Electrolytes for Lithium-ion Batteries Novel Compounds for Enhancing Electrolyte ...

  1. Key Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About the Bioenergy Technologies Office » Key Activities Key Activities The Bioenergy Technologies Office's key activities are aimed at producing a viable, sustainable domestic biomass industry that produces renewable biofuels, bioproducts and biopower; enhances U.S. energy security; reduces U.S. oil dependence; provides environmental benefits (e.g., reduced greenhouse gas emissions); and creates nationwide economic opportunities. Meeting these goals requires significant and rapid advances in

  2. Diversity & Flexibility Key to Sustainability

    Broader source: Energy.gov [DOE]

    Plenary V: Biofuels and Sustainability: Acknowledging Challenges and Confronting MisconceptionsDiversity & Flexibility Key to SustainabilityDavid Babson, Senior Fuels Engineer, Union of...

  3. Key Issues | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Key Issues Key Issues The following presentations offer information about other key topics related to high performance homes. wall_system_innovations_kochkin.pdf (1.48 MB) removing_codes_barriers_cole.pdf (479.86 KB) testing_residential_ariconditioners_booten_winkler.pdf (5.21 MB) code_gaps_combustion_safety.pdf (1.34 MB) automated_utility_bill_calibration_polly.pdf (1.64 MB) predicting_envelope_leakage_griffiths.pdf (1.63 MB) More Documents & Publications Code Gaps and Future Research Needs

  4. Securing non-volatile memory regions

    DOE Patents [OSTI]

    Faraboschi, Paolo; Ranganathan, Parthasarathy; Muralimanohar, Naveen

    2013-08-20

    Methods, apparatus and articles of manufacture to secure non-volatile memory regions are disclosed. An example method disclosed herein comprises associating a first key pair and a second key pair different than the first key pair with a process, using the first key pair to secure a first region of a non-volatile memory for the process, and using the second key pair to secure a second region of the non-volatile memory for the same process, the second region being different than the first region.

  5. Key China Energy Statistics 2011

    SciTech Connect (OSTI)

    Levine, Mark; Fridley, David; Lu, Hongyou; Fino-Chen, Cecilia

    2012-01-15

    The China Energy Group at Lawrence Berkeley National Laboratory (LBNL) was established in 1988. Over the years the Group has gained recognition as an authoritative source of China energy statistics through the publication of its China Energy Databook (CED). In 2008 the Group published the Seventh Edition of the CED (http://china.lbl.gov/research/chinaenergy-databook). This handbook summarizes key statistics from the CED and is expressly modeled on the International Energy Agency’s “Key World Energy Statistics” series of publications. The handbook contains timely, clearly-presented data on the supply, transformation, and consumption of all major energy sources.

  6. Key China Energy Statistics 2012

    SciTech Connect (OSTI)

    Levine, Mark; Fridley, David; Lu, Hongyou; Fino-Chen, Cecilia

    2012-05-01

    The China Energy Group at Lawrence Berkeley National Laboratory (LBNL) was established in 1988. Over the years the Group has gained recognition as an authoritative source of China energy statistics through the publication of its China Energy Databook (CED). The Group has published seven editions to date of the CED (http://china.lbl.gov/research/chinaenergy-databook). This handbook summarizes key statistics from the CED and is expressly modeled on the International Energy Agency’s “Key World Energy Statistics” series of publications. The handbook contains timely, clearly-presented data on the supply, transformation, and consumption of all major energy sources.

  7. NREL: Energy Analysis - Key Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Key Activities NREL conducts a broad range of energy analysis in support of the laboratory's programs and initiatives, DOE's Office of Energy Efficiency and Renewable Energy (EERE), technology transfer, and the greater energy analysis community. NREL's recent analysis activities include: Analysis of Project Finance Electric Sector Integration Energy-Water Nexus Life Cycle Assessment Harmonization Manufacturing Analysis Resource Assessment Printable Version Energy Analysis Home Capabilities &

  8. Key Steps | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Key Steps The Postdoctoral Program Office welcomes you to Argonne National Laboratory. Your academic achievements and demonstrated research capabilities will undoubtedly contribute to the continuing scientific and technological success of the Laboratory. It is our intention that your tenure at Argonne be as productive and rewarding as possible. Your goals and needs may evolve as you progress through your appointment. We take the approach of providing guidance, resources and programs targeted to

  9. Keys to improving environmental performance

    SciTech Connect (OSTI)

    Moreau, R.L.; Raught, D.L.

    1996-11-01

    Environmental protection is a mainstream issue in today`s society. Both internal and external drivers motivate the oil and ms industry to continuously improve environmental performance. Companies are integrating environmental considerations into their business plans to a greater extent, and are directing proportionally more resources toward managing these issues. This paper addresses several environmental management focus areas in Exxon`s domestic E&P sector to: (1) manage risks, (2) ensure compliance, (3) improve performance, and (4) assist in the development of balanced legislation and regulations. Specific examples of Production Department programs are discussed, along with keys to success for continued progress in improving performance.

  10. Public/private key certification authority and key distribution. Draft

    SciTech Connect (OSTI)

    Long, J.P.; Christensen, M.J.; Sturtevant, A.P.; Johnston, W.E.

    1995-09-25

    Traditional encryption, which protects messages from prying eyes, has been used for many decades. The present concepts of encryption are built from that heritage. Utilization of modern software-based encryption techniques implies much more than simply converting files to an unreadable form. Ubiquitous use of computers and advances in encryption technology coupled with the use of wide-area networking completely changed the reasons for utilizing encryption technology. The technology demands a new and extensive infrastructure to support these functions. Full understanding of these functions, their utility and value, and the need for an infrastructure, takes extensive exposure to the new paradigm. This paper addresses issues surrounding the establishment and operation of a key management system (i.e., certification authority) that is essential to the successful implementation and wide-spread use of encryption.

  11. Brain Receptor Structures Key to Future Therapeutics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brain Receptor Structures Key to Future Therapeutics Brain Receptor Structures Key to Future Therapeutics Print Wednesday, 28 January 2015 00:00 With an aging population in ...

  12. Key Opportunities and Challenges for Program Sustainability ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Key Opportunities and Challenges for Program Sustainability Key Opportunities and Challenges for Program Sustainability Better Buildings Neighborhood Program, Peer Exchange Call: ...

  13. 'Thirsty' Metals Key to Longer Battery Lifetimes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    'Thirsty' Metals Key to Longer Battery Lifetimes 'Thirsty' Metals Key to Longer Battery Lifetimes Computations at NERSC show how multiply charged metal ions impact battery capacity ...

  14. REGIONAL PARTNERSHIPSThe Pioneer Regional Partnerships are early-stage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    REGIONAL PARTNERSHIPSThe Pioneer Regional Partnerships are early-stage public/private collaborative projects that address specific near-term grid modernization issues important to the identified region and its stakeholders. The Grid Modernization Laboratory Consortium (GMLC) has initiated 11 proposed partnerships to accomplish the following:Address a key state/regional grid modernization challenge that is visible and important to local industry and government stakeholders.Engage collaboration

  15. Bioenergy Key Publications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Key Publications Bioenergy Key Publications This overview highlights key publications issued by the U.S. Department of Energy's Bioenergy Technologies Office. bioenergy_key_publications.pdf (333.56 KB) More Documents & Publications 2013 Peer Review Presnentations-Plenaries Technology Pathway Selection Effort 2015 Peer Review Presentations-Plenaries

  16. Regional Workforce Study - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Workforce Study Regional employers will need to fill more than 30,000 job openings over the next five years in the five-county region of South Carolina and Georgia represented by the SRS Community Reuse Organization (SRSCRO). That is a key finding of a new study released on April 22, 2015. TIP Strategies, an Austin, Texas-based economic consulting firm, performed the study for the SRSCRO by examining workforce trends in the five counties the SRSCRO represents - Aiken, Allendale and

  17. Answering Key Fuel Cycle Questions

    SciTech Connect (OSTI)

    Steven J. Piet; Brent W. Dixon; J. Stephen Herring; David E. Shropshire; Mary Lou Dunzik-Gougar

    2003-10-01

    The Advanced Fuel Cycle Initiative (AFCI) program has both “outcome” and “process” goals because it must address both waste already accumulating as well as completing the fuel cycle in connection with advanced nuclear power plant concepts. The outcome objectives are waste geological repository capacity and cost, energy security and sustainability, proliferation resistance, fuel cycle economics, and safety. The process objectives are readiness to proceed and adaptability and robustness in the face of uncertainties. A classic decision-making approach to such a multi-attribute problem would be to weight individual quantified criteria and calculate an overall figure of merit. This is inappropriate for several reasons. First, the goals are not independent. Second, the importance of different goals varies among stakeholders. Third, the importance of different goals is likely to vary with time, especially the “energy future.” Fourth, some key considerations are not easily or meaningfully quantifiable at present. Instead, at this point, we have developed 16 questions the AFCI program should answer and suggest an approach of determining for each whether relevant options improve meeting each of the program goals. We find that it is not always clear which option is best for a specific question and specific goal; this helps identify key issues for future work. In general, we suggest attempting to create as many win-win decisions (options that are attractive or neutral to most goals) as possible. Thus, to help clarify why the program is exploring the options it is, and to set the stage for future narrowing of options, we have developed 16 questions, as follows: · What are the AFCI program goals? · Which potential waste disposition approaches do we plan for? · What are the major separations, transmutation, and fuel options? · How do we address proliferation resistance? · Which potential energy futures do we plan for? · What potential external triggers do we

  18. Regional Purchasing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Partnerships Regional Partnerships DOE's Regional Carbon Sequestration Partnerships Program DOE has created a network of seven Regional Carbon Sequestration Partnerships (RCSPs) to help develop the technology, infrastructure, and regulations to implement large-scale CO2 storage (also called carbon sequestration) in different regions and geologic formations within the Nation. Collectively, the seven RCSPs represent regions encompassing: 97 percent of coal-fired CO2 emissions; 97 percent

  19. The Brain: Key To a Better Computer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brain: Key To a Better Computer - Sandia Energy Energy Search Icon Sandia Home Locations ... Twitter Google + Vimeo Newsletter Signup SlideShare The Brain: Key To a Better Computer ...

  20. PPPL physicists win supercomputing time to simulate key energy and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    astrophysical phenomena | Princeton Plasma Physics Lab PPPL physicists win supercomputing time to simulate key energy and astrophysical phenomena By John Greenwald January 8, 2013 Tweet Widget Google Plus One Share on Facebook A donut-shaped plasma simulation that C.S. Chang's center produced on a supercomputer. The orange and blue colors show regions of turbulence. (Photo by Visualization by Prof. Kwan-Liu's group, University of California-Davis) A donut-shaped plasma simulation that C.S.

  1. APPENDIX E KEY INDIVIDUALS U.S. Environmental Protection Agency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APPENDIX E KEY INDIVIDUALS U.S. Environmental Protection Agency Region 10 Washington State Department of Ecology U.S. Department of Energy, RL and ORP Executive Managers Program Manager for the Hanford Project Office (509) 376-8631 Program Manager for the Nuclear Waste Program (509) 372-7950 Assistant Manager for the Central Plateau (509) 373-9971 Assistant Manager for the Office of River Protection, Waste Treatment and Immobilization Plant (509) 376-4941 Assistant Manager for the Office of

  2. Key Actions for Optimizing for KNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Key Actions for Optimizing for KNL Key Actions for Optimizing for KNL This webinar consisted of a presentation by Nathan Wichmann of Cray entitled, "Key Actions When Optimizing for KNL." Nathan is a Principal Performance Engineer responsible for tackling performance problems at Cray for many years and he is our contact for the NERSC/Cray Cori Applications Center of Excellence. Nathan's presentation results, in part, from his participation in several "brainstorming" telecons

  3. Brain Receptor Structures Key to Future Therapeutics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brain Receptor Structures Key to Future Therapeutics Print With an aging population in ... diseases affecting the brain and its ability to make new connections and recall memories. ...

  4. Schedules of Key Environmental Impact Statements

    Broader source: Energy.gov [DOE]

    This document graphically displays the milestone dates and projected schedules of key Environmental Impact Statements (updated monthly). This chart represents anticipated activity and is not a...

  5. Florida Keys Electric Cooperative- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Note: The Florida Keys Electric Cooperative rebates were depleted in June of 2015. According to the website, rebates will be offered again dependent upon future funding.

  6. Carotenoid Pigment is the Key to Photoprotection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS researchers have recently discovered a surprising key event in this energy-quenching process. Photoprotection Through Shifting Pigments Through photosynthesis, plants are able...

  7. Brain Receptor Structures Key to Future Therapeutics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brain Receptor Structures Key to Future Therapeutics Print With an aging population in America, it is more important than ever to discover ways to treat or prevent diseases...

  8. Big Sky Regional Middle School Regional Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Big Sky Regional Middle School Regional Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Big Sky

  9. Captured key electrical safety lockout system

    DOE Patents [OSTI]

    Darimont, Daniel E. (Aurora, IL)

    1995-01-01

    A safety lockout apparatus for an electrical circuit includes an electrical switch, a key, a lock and a blocking mechanism. The electrical switch is movable between an ON position at which the electrical circuit is energized and an OFF position at which the electrical circuit is deactivated. The lock is adapted to receive the key and is rotatable among a plurality of positions by the key. The key is only insertable and removable when the lock is at a preselected position. The lock is maintained in the preselected position when the key is removed from the lock. The blocking mechanism physically maintains the switch in its OFF position when the key is removed from the lock. The blocking mechanism preferably includes a member driven by the lock between a first position at which the electrical switch is movable between its ON and OFF positions and a second position at which the member physically maintains the electrical switch in its OFF position. Advantageously, the driven member's second position corresponds to the preselected position at which the key can be removed from and inserted into the lock.

  10. Captured key electrical safety lockout system

    DOE Patents [OSTI]

    Darimont, D.E.

    1995-10-31

    A safety lockout apparatus for an electrical circuit includes an electrical switch, a key, a lock and a blocking mechanism. The electrical switch is movable between an ON position at which the electrical circuit is energized and an OFF position at which the electrical circuit is deactivated. The lock is adapted to receive the key and is rotatable among a plurality of positions by the key. The key is only insertable and removable when the lock is at a preselected position. The lock is maintained in the preselected position when the key is removed from the lock. The blocking mechanism physically maintains the switch in its OFF position when the key is removed from the lock. The blocking mechanism preferably includes a member driven by the lock between a first position at which the electrical switch is movable between its ON and OFF positions and a second position at which the member physically maintains the electrical switch in its OFF position. Advantageously, the driven member`s second position corresponds to the preselected position at which the key can be removed from and inserted into the lock. 7 figs.

  11. Regional Partnerships

    Broader source: Energy.gov [DOE]

    DOE has created a network of seven Regional Carbon Sequestration Partnerships (RCSPs) to help develop the technology, infrastructure, and regulations to implement large-scale CO2 storage (also...

  12. Region Overview

    Energy Savers [EERE]

    ... Power Plants: 1,858 (30% total U.S.) Coal-fired: 167 (30% total U.S.) Petroleum-fired: ... leading cause of natural gas processing plant disruptions in the East Coast Region from ...

  13. Region Overview

    Energy Savers [EERE]

    Power Plants: 666 (11% total U.S.) Coal-fired: 46 (8% total U.S.) Petroleum-fired: 39 ... leading cause of natural gas processing plant disruptions in the Gulf Coast Region from ...

  14. Region Overview

    Energy Savers [EERE]

    Power Plants: 429 (8% total U.S.) Coal-fired: 46 (8% total U.S.) Petroleum-fired: 26 ... leading cause of natural gas processing plant disruptions in the Rocky Mountain Region ...

  15. Region Overview

    Energy Savers [EERE]

    ... Power Plants: 2,006 (30% total U.S.) Coal-fired: 274 (49% total U.S.) Petroleum-fired: ... leading cause of natural gas processing plant disruptions in the Midwest region from ...

  16. Region Overview

    Energy Savers [EERE]

    Power Plants: 1,407 (24% total U.S.) Coal-fired: 24 (4% total U.S.) Petroleum-fired: 131 ... leading cause of natural gas processing plant disruptions in the West Coast Region's ...

  17. PARKING KEY: State Handicap Medically Permitted

    National Nuclear Security Administration (NNSA)

    PARKING KEY: State Handicap Medically Permitted Preferred (LEED) Visitor Motorcycle New Parking Spots / Parallel Parking NATIONAL SECURITY CAMPUS The DOE's National Security Campus is managed and operated by Honeywell. REVISED: August 2014

  18. Explosives performance key to stockpile stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explosives performance key to stockpile stewardship Explosives performance key to stockpile stewardship A new video shows how researchers use scientific guns to induce shock waves into explosive materials to study their performance and properties. November 3, 2014 Adam Pacheco of shock and detonation physics presses the "fire" button during an experiment at the two-stage gas gun facility. Adam Pacheco of shock and detonation physics presses the "fire" button during an

  19. Understanding the Key to Henipavirus Infection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Understanding the Key to Henipavirus Infection Understanding the Key to Henipavirus Infection Print Wednesday, 15 June 2016 00:00 In 1994, a virus emerged in Hendra, Australia, causing respiratory and neurological diseases. It was transmissible from horses to humans, with a mortality rate of 57% in humans and 89% in horses. In 1999, a similar virus, transmitted through domesticated pigs, caused over 100 human deaths in Sungai Nipah, a Malaysian village. The Hendra and Nipah viruses are

  20. Explosives performance key to stockpile stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explosives performance key to stockpile stewardship Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Explosives performance key to stockpile stewardship A new video shows how researchers use scientific guns to induce shock waves into explosive materials to study their performance and properties January 1, 2015 Adam Pacheco of shock and detonation physics presses the "fire" button during an experiment at the

  1. Brain Receptor Structures Key to Future Therapeutics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brain Receptor Structures Key to Future Therapeutics Brain Receptor Structures Key to Future Therapeutics Print Wednesday, 28 January 2015 00:00 With an aging population in America, it is more important than ever to discover ways to treat or prevent diseases affecting the brain and its ability to make new connections and recall memories. Some of the most important players in the brain's normal function are the glutamate receptors, which are involved in nervous-system development and function.

  2. Carotenoid Pigment is the Key to Photoprotection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carotenoid Pigment is the Key to Photoprotection Print Overexposure to sunlight, which is damaging to natural photosynthetic systems of green plants and cyanobacteria, is also expected to be damaging to artificial photosynthetic systems. Nature has solved the problem through a photoprotective mechanism called "nonphotochemical quenching," in which excess solar energy is safely dissipated as heat. ALS researchers have recently discovered a surprising key event in this energy-quenching

  3. Carotenoid Pigment is the Key to Photoprotection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carotenoid Pigment is the Key to Photoprotection Print Overexposure to sunlight, which is damaging to natural photosynthetic systems of green plants and cyanobacteria, is also expected to be damaging to artificial photosynthetic systems. Nature has solved the problem through a photoprotective mechanism called "nonphotochemical quenching," in which excess solar energy is safely dissipated as heat. ALS researchers have recently discovered a surprising key event in this energy-quenching

  4. Carotenoid Pigment is the Key to Photoprotection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carotenoid Pigment is the Key to Photoprotection Print Overexposure to sunlight, which is damaging to natural photosynthetic systems of green plants and cyanobacteria, is also expected to be damaging to artificial photosynthetic systems. Nature has solved the problem through a photoprotective mechanism called "nonphotochemical quenching," in which excess solar energy is safely dissipated as heat. ALS researchers have recently discovered a surprising key event in this energy-quenching

  5. Carotenoid Pigment is the Key to Photoprotection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carotenoid Pigment is the Key to Photoprotection Carotenoid Pigment is the Key to Photoprotection Print Wednesday, 30 September 2015 00:00 Overexposure to sunlight, which is damaging to natural photosynthetic systems of green plants and cyanobacteria, is also expected to be damaging to artificial photosynthetic systems. Nature has solved the problem through a photoprotective mechanism called "nonphotochemical quenching," in which excess solar energy is safely dissipated as heat. ALS

  6. 'Thirsty' Metals Key to Longer Battery Lifetimes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    'Thirsty' Metals Key to Longer Battery Lifetimes 'Thirsty' Metals Key to Longer Battery Lifetimes Computations at NERSC show how multiply charged metal ions impact battery capacity June 30, 2014 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov PCCPxantheascover Imagine a cell phone battery that lasted a whole week on a single charge. A car battery that worked for months between charges. A massive battery that stores the intermittent electricity from wind turbines and releases it when

  7. Carotenoid Pigment is the Key to Photoprotection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carotenoid Pigment is the Key to Photoprotection Print Overexposure to sunlight, which is damaging to natural photosynthetic systems of green plants and cyanobacteria, is also expected to be damaging to artificial photosynthetic systems. Nature has solved the problem through a photoprotective mechanism called "nonphotochemical quenching," in which excess solar energy is safely dissipated as heat. ALS researchers have recently discovered a surprising key event in this energy-quenching

  8. TEC Working Group Topic Groups Rail Key Documents | Department...

    Office of Environmental Management (EM)

    Rail Key Documents TEC Working Group Topic Groups Rail Key Documents KEY DOCUMENTS Radiation Monitoring Subgroup Intermodal Subgroup Planning Subgroup Current FRA State Rail Safety ...

  9. TEC Working Group Topic Groups Section 180(c) Key Documents ...

    Office of Environmental Management (EM)

    Key Documents TEC Working Group Topic Groups Section 180(c) Key Documents Key Documents Briefing Package for Section 180(c) Implementation - July 2005 PDF icon Executive Summary...

  10. Key Activities in Energy Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About Key Activities in Energy Efficiency Key Activities in Energy Efficiency The Building Technologies Office conducts work in three key areas in order to continually develop ...

  11. 2015 Key Water Power Program and National Laboratory Accomplishments...

    Energy Savers [EERE]

    2015 Key Water Power Program and National Laboratory Accomplishments Slideshow 2015 Key Water Power Program and National Laboratory Accomplishments Slideshow 2015 Key Water Power ...

  12. Regional Networks for Energy Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Buildings Neighborhood Program Sustainability Peer Exchange Call: Regional Networks ... What Do I Need to Know? Key Opportunities and Challenges for Program Sustainability

  13. Public key infrastructure for DOE security research

    SciTech Connect (OSTI)

    Aiken, R.; Foster, I.; Johnston, W.E.

    1997-06-01

    This document summarizes the Department of Energy`s Second Joint Energy Research/Defence Programs Security Research Workshop. The workshop, built on the results of the first Joint Workshop which reviewed security requirements represented in a range of mission-critical ER and DP applications, discussed commonalties and differences in ER/DP requirements and approaches, and identified an integrated common set of security research priorities. One significant conclusion of the first workshop was that progress in a broad spectrum of DOE-relevant security problems and applications could best be addressed through public-key cryptography based systems, and therefore depended upon the existence of a robust, broadly deployed public-key infrastructure. Hence, public-key infrastructure ({open_quotes}PKI{close_quotes}) was adopted as a primary focus for the second workshop. The Second Joint Workshop covered a range of DOE security research and deployment efforts, as well as summaries of the state of the art in various areas relating to public-key technologies. Key findings were that a broad range of DOE applications can benefit from security architectures and technologies built on a robust, flexible, widely deployed public-key infrastructure; that there exists a collection of specific requirements for missing or undeveloped PKI functionality, together with a preliminary assessment of how these requirements can be met; that, while commercial developments can be expected to provide many relevant security technologies, there are important capabilities that commercial developments will not address, due to the unique scale, performance, diversity, distributed nature, and sensitivity of DOE applications; that DOE should encourage and support research activities intended to increase understanding of security technology requirements, and to develop critical components not forthcoming from other sources in a timely manner.

  14. Key Management Challenges in Smart Grid

    SciTech Connect (OSTI)

    Sheldon, Frederick T; Duren, Mike

    2012-01-01

    Agenda Awarded in February 2011 Team of industry and research organizations Project Objectives Address difficult issues Complexity Diversity of systems Scale Longevity of solution Participate in standards efforts and working groups Develop innovative key management solutions Modeling and simulation ORNL Cyber Security Econometric Enterprise System Demonstrate effectiveness of solution Demonstrate scalability

  15. Regional Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Information There is plenty to do and see in the cities of Golden and Denver, Colorado. Here you'll find links to general information about these areas, plus hospitals, local universities and colleges, entertainment, sports, amusement parks, and more. Golden City of Golden Golden's 2-Hour Vacation Denver www.denver.com www.denver.org Denver Public Library Colorado State of Colorado Colorado tourism Transportation (Bus and Light Rail) RTD Hospitals Largest Hospitals in Metro Denver

  16. Regional Short-Term Energy Model (RSTEM) Overview

    Reports and Publications (EIA)

    2009-01-01

    The Regional Short-Term Energy Model (RSTEM) utilizes estimated econometric relationships for demand, inventories and prices to forecast energy market outcomes across key sectors and selected regions throughout the United States.

  17. Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issues | Department of Energy Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues The United States has 11 distinct natural gas pipeline corridors: five originate in the Southwest, four deliver natural gas from Canada, and two extend from the Rocky Mountain region. This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and

  18. Diversity and Flexibility: Key to Sustainability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Babson, Ph.D. Senior Engineer Union of Concerned Scientists Diversity & Flexibility Key to Sustainability Biofuels Pathways are Diverse * General perception of biofuels are limited to corn ethanol and soybean biodiesel Biofuels Pathways are Diverse * General perception of biofuels are limited to corn ethanol and soybean biodiesel * Biofuels are important and they are so much more than corn ethanol and soybean biodiesel Biofuels Pathways are Diverse * General perception of biofuels are

  19. Milling of key slots on long shafts

    SciTech Connect (OSTI)

    Agadzhanyan, R.A.; Bogdanenko, Yu.G.

    1987-03-01

    The authors look for and test methods and tool materials for milling key slots into rod pump shafts made of steel-03KH14N7V and K Monel alloy which not only increase the precision of the milling process but also extend the life of the milling tool. Their test parameters include various methods for introduction of the cutting fluid into the milling process, the effect of carbonitridation of the tool material, and the productivity of the machine itself.

  20. Brain Receptor Structures Key to Future Therapeutics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brain Receptor Structures Key to Future Therapeutics Print With an aging population in America, it is more important than ever to discover ways to treat or prevent diseases affecting the brain and its ability to make new connections and recall memories. Some of the most important players in the brain's normal function are the glutamate receptors, which are involved in nervous-system development and function. These molecules transmit signals between nerve cells and are critical to learning and

  1. Brain Receptor Structures Key to Future Therapeutics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brain Receptor Structures Key to Future Therapeutics Print With an aging population in America, it is more important than ever to discover ways to treat or prevent diseases affecting the brain and its ability to make new connections and recall memories. Some of the most important players in the brain's normal function are the glutamate receptors, which are involved in nervous-system development and function. These molecules transmit signals between nerve cells and are critical to learning and

  2. Brain Receptor Structures Key to Future Therapeutics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brain Receptor Structures Key to Future Therapeutics Print With an aging population in America, it is more important than ever to discover ways to treat or prevent diseases affecting the brain and its ability to make new connections and recall memories. Some of the most important players in the brain's normal function are the glutamate receptors, which are involved in nervous-system development and function. These molecules transmit signals between nerve cells and are critical to learning and

  3. Key Physical Mechanisms in Nanostructured Solar Cells

    SciTech Connect (OSTI)

    Dr Stephan Bremner

    2010-07-21

    The objective of the project was to study both theoretically and experimentally the excitation, recombination and transport properties required for nanostructured solar cells to deliver energy conversion efficiencies well in excess of conventional limits. These objectives were met by concentrating on three key areas, namely, investigation of physical mechanisms present in nanostructured solar cells, characterization of loss mechanisms in nanostructured solar cells and determining the properties required of nanostructured solar cells in order to achieve high efficiency and the design implications.

  4. Identification of Key Barriers in Workforce Development

    SciTech Connect (OSTI)

    2008-03-31

    This report documents the identification of key barriers in the development of an adequate national security workforce as part of the National Security Preparedness Project, being performed under a Department of Energy/National Nuclear Security Administration grant. Many barriers exist that prevent the development of an adequate number of propertly trained national security personnel. Some barriers can be eliminated in a short-term manner, whereas others will involve a long-term strategy that takes into account public policy.

  5. Key Issues in Tribal Energy Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Key Issues in Tribal Energy Development Common Issues, Causes and Solutions Douglas C. MacCourt, Ater Wynne LLP Chair Chair, Executive Committee Indian Law Practice Group Indian Law Section Ater Wynne LLP Oregon State Bar Association dcm@aterwynne.com www.aterwynne.com US DOE Tribal Energy Program/NREL Denver, Colorado October 25-28, 2010 Overview of Presentation * Overview of Handbook * A note on Alaska * Common development issues and solutions 1. Finding Early Stage Risk Capital * Necessary

  6. Key Renewable Energy Opportunities for Oklahoma Tribes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    KEY RENEWABLE ENERGY OPPORTUNITIES FOR OKLAHOMA TRIBES August 13, 2012 COX CONVENTION CENTER 100 West Sheridan Avenue, Oklahoma City, OK 73102 (405) 602-8500 The fifth in a series of planned U.S. DOE Office of Indian Energy-sponsored strategic energy development & investment forums, this forum is designed to give Oklahoma tribal leaders the opportunity to receive the latest updates on DOE's energy development efforts in Indian Country. The Forum will provide a venue for tribal leaders to

  7. Brain Receptor Structures Key to Future Therapeutics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brain Receptor Structures Key to Future Therapeutics Print With an aging population in America, it is more important than ever to discover ways to treat or prevent diseases affecting the brain and its ability to make new connections and recall memories. Some of the most important players in the brain's normal function are the glutamate receptors, which are involved in nervous-system development and function. These molecules transmit signals between nerve cells and are critical to learning and

  8. New Security Results on Encrypted Key Exchange

    SciTech Connect (OSTI)

    Bresson, Emmanuel; Chevassut, Olivier; Pointcheval, David

    2003-12-15

    Schemes for encrypted key exchange are designed to provide two entities communicating over a public network, and sharing a (short) password only, with a session key to be used to achieve data integrity and/or message confidentiality. An example of a very efficient and ''elegant'' scheme for encrypted key exchange considered for standardization by the IEEE P1363 Standard working group is AuthA. This scheme was conjectured secure when the symmetric-encryption primitive is instantiated via either a cipher that closely behaves like an ''ideal cipher,'' or a mask generation function that is the product of the message with a hash of the password. While the security of this scheme in the former case has been recently proven, the latter case was still an open problem. For the first time we prove in this paper that this scheme is secure under the assumptions that the hash function closely behaves like a random oracle and that the computational Diffie-Hellman problem is difficult. Furthermore, since Denial-of-Service (DoS) attacks have become a common threat we enhance AuthA with a mechanism to protect against them.

  9. Regional Shelter Analysis Methodology

    SciTech Connect (OSTI)

    Dillon, Michael B.; Dennison, Deborah; Kane, Jave; Walker, Hoyt; Miller, Paul

    2015-08-01

    The fallout from a nuclear explosion has the potential to injure or kill 100,000 or more people through exposure to external gamma (fallout) radiation. Existing buildings can reduce radiation exposure by placing material between fallout particles and exposed people. Lawrence Livermore National Laboratory was tasked with developing an operationally feasible methodology that could improve fallout casualty estimates. The methodology, called a Regional Shelter Analysis, combines the fallout protection that existing buildings provide civilian populations with the distribution of people in various locations. The Regional Shelter Analysis method allows the consideration of (a) multiple building types and locations within buildings, (b) country specific estimates, (c) population posture (e.g., unwarned vs. minimally warned), and (d) the time of day (e.g., night vs. day). The protection estimates can be combined with fallout predictions (or measurements) to (a) provide a more accurate assessment of exposure and injury and (b) evaluate the effectiveness of various casualty mitigation strategies. This report describes the Regional Shelter Analysis methodology, highlights key operational aspects (including demonstrating that the methodology is compatible with current tools), illustrates how to implement the methodology, and provides suggestions for future work.

  10. Key Response Planning Factors for the Aftermath of Nuclear Terrorism

    SciTech Connect (OSTI)

    Buddemeier, B R; Dillon, M B

    2009-01-21

    Despite hundreds of above-ground nuclear tests and data gathered from Hiroshima and Nagasaki, the effects of a ground-level, low-yield nuclear detonation in a modern urban environment are still the subject of considerable scientific debate. Extensive review of nuclear weapon effects studies and discussions with nuclear weapon effects experts from various federal agencies, national laboratories, and technical organizations have identified key issues and bounded some of the unknowns required to support response planning for a low-yield, ground-level nuclear detonation in a modern U.S. city. This study, which is focused primarily upon the hazards posed by radioactive fallout, used detailed fallout predictions from the advanced suite of three-dimensional (3-D) meteorology and plume/fallout models developed at Lawrence Livermore National Laboratory (LLNL), including extensive global Key Response Planning Factors for the Aftermath of Nuclear Terrorism geographical and real-time meteorological databases to support model calculations. This 3-D modeling system provides detailed simulations that account for complex meteorology and terrain effects. The results of initial modeling and analysis were presented to federal, state, and local working groups to obtain critical, broad-based review and feedback on strategy and messaging. This effort involved a diverse set of communities, including New York City, National Capitol Regions, Charlotte, Houston, Portland, and Los Angeles. The largest potential for reducing casualties during the post-detonation response phase comes from reducing exposure to fallout radiation. This can be accomplished through early, adequate sheltering followed by informed, delayed evacuation.B The response challenges to a nuclear detonation must be solved through multiple approaches of public education, planning, and rapid response actions. Because the successful response will require extensive coordination of a large number of organizations, supplemented by

  11. CONSTRUCTION OF KEY CLEANUP PROJECT GAINS GOOD GROUND AT SRS...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CONSTRUCTION OF KEY CLEANUP PROJECT GAINS GOOD GROUND AT SRS CONSTRUCTION OF KEY CLEANUP PROJECT GAINS GOOD GROUND AT SRS June 1, 2010 - 12:00pm Addthis CONSTRUCTION OF KEY CLEANUP ...

  12. Method for encryption and transmission of digital keying data

    DOE Patents [OSTI]

    Mniszewski, Susan M.; Springer, Edward A.; Brenner, David P.

    1988-01-01

    A method for the encryption, transmission, and subsequent decryption of digital keying data. The method utilizes the Data Encryption Standard and is implemented by means of a pair of apparatus, each of which is selectable to operate as either a master unit or remote unit. Each unit contains a set of key encryption keys which are indexed by a common indexing system. The master unit operates upon command from the remote unit to generate a data encryption key and encrypt the data encryption key using a preselected key encryption key. The encrypted data encryption key and an index designator are then downloaded to the remote unit, where the data encryption key is decrypted for subsequent use in the encryption and transmission data. Downloading of the encrypted data encryption key enables frequent change of keys without requiring manual entry or storage of keys at the remote unit.

  13. Fermilab | Science | Particle Physics | Key Discoveries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Key Discoveries Fermilab produced its first high-energy particle beam on March 1, 1972. Since then hundreds of experiments have used Fermilab's accelerators to study matter at ever smaller scales and its detectors to study the universe at great distances. Here an overview of the top achievements so far. Discovery of the Higgs boson Discovery of the top quark Discovery of the bottom quark Observation of tau neutrino Discovery of a quasar at a distance of 27 billion light-years Observation of

  14. Cryptographic Key Management and Critical Risk Assessment

    SciTech Connect (OSTI)

    Abercrombie, Robert K

    2014-05-01

    The Department of Energy Office of Electricity Delivery and Energy Reliability (DOE-OE) CyberSecurity for Energy Delivery Systems (CSEDS) industry led program (DE-FOA-0000359) entitled "Innovation for Increasing CyberSecurity for Energy Delivery Systems (12CSEDS)," awarded a contract to Sypris Electronics LLC to develop a Cryptographic Key Management System for the smart grid (Scalable Key Management Solutions for Critical Infrastructure Protection). Oak Ridge National Laboratory (ORNL) and Sypris Electronics, LLC as a result of that award entered into a CRADA (NFE-11-03562) between ORNL and Sypris Electronics, LLC. ORNL provided its Cyber Security Econometrics System (CSES) as a tool to be modified and used as a metric to address risks and vulnerabilities in the management of cryptographic keys within the Advanced Metering Infrastructure (AMI) domain of the electric sector. ORNL concentrated our analysis on the AMI domain of which the National Electric Sector Cyber security Organization Resource (NESCOR) Working Group 1 (WG1) has documented 29 failure scenarios. The computational infrastructure of this metric involves system stakeholders, security requirements, system components and security threats. To compute this metric, we estimated the stakes that each stakeholder associates with each security requirement, as well as stochastic matrices that represent the probability of a threat to cause a component failure and the probability of a component failure to cause a security requirement violation. We applied this model to estimate the security of the AMI, by leveraging the recently established National Institute of Standards and Technology Interagency Report (NISTIR) 7628 guidelines for smart grid security and the International Electrotechnical Commission (IEC) 63351, Part 9 to identify the life cycle for cryptographic key management, resulting in a vector that assigned to each stakeholder an estimate of their average loss in terms of dollars per day of system

  15. Key Issues Regarding Electrolytes at Interfacial Regions (subtask low temperature performanceŽ)

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  16. Cooling Towers: Understanding Key Components of Cooling Towers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cooling Towers: Understanding Key Components of Cooling Towers and How to Improve Water Efficiency Cooling Towers: Understanding Key Components of Cooling Towers and How to Improve ...

  17. Keys to Successful Quality Assurance and Quality Control Programs...

    Office of Environmental Management (EM)

    Keys to Successful Quality Assurance and Quality Control Programs (101) Keys to Successful Quality Assurance and Quality Control Programs (101) January 28...

  18. Focus Series: Program Finds Community "Readiness" Is the Key...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Finds Community "Readiness" Is the Key to More Retrofits Focus Series: Program Finds Community "Readiness" Is the Key to More Retrofits Focus Series: Program Finds ...

  19. Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. ...

  20. Physicists in China Nail a Key Neutrino Measurement (Science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in China Nail a Key Neutrino Measurement (Science) External Link: http:news.sciencemag.orgsciencenow201203physicists-in-china-nail-a-key.htm... By jlabadmin on Thu, ...

  1. Building America Expert Meeting: Key Innovations for Adding Energy...

    Energy Savers [EERE]

    Key Innovations for Adding Energy Efficiency to Maintenance Projects Building America Expert Meeting: Key Innovations for Adding Energy Efficiency to Maintenance Projects This ...

  2. Self-Referenced Continuous-Variable Quantum Key Distribution...

    Office of Scientific and Technical Information (OSTI)

    Self-Referenced Continuous-Variable Quantum Key Distribution Protocol Citation Details In-Document Search Title: Self-Referenced Continuous-Variable Quantum Key Distribution ...

  3. Keys to Successful Quality Assurance and Quality Control Programs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Keys to Successful Quality Assurance and Quality Control Programs (101) Keys to Successful Quality Assurance and Quality Control Programs (101) Better Buildings Residential Network ...

  4. Spotlight on Key Program Strategies from the Better Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Spotlight on Key Program Strategies from the Better Buildings Neighborhood Program, Final Evaluation Volume 6 Spotlight on Key Program Strategies from the Better Buildings Neighborhood ...

  5. Key Renewable Energy Opportunities for Oklahoma Tribes | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Key Renewable Energy Opportunities for Oklahoma Tribes Key Renewable Energy Opportunities for Oklahoma Tribes August 13, 2012 Oklahoma City, Oklahoma Cox Convention Center The...

  6. Turbulence may be key to "fast magnetic reconnection" mystery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbulence may be key to "fast magnetic reconnection" mystery Turbulence may be key to "fast magnetic reconnection" mystery The new research could lead to better understanding of ...

  7. Energy: Critical Infrastructure and Key Resources Sector-Specific...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy: Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) Energy: Critical Infrastructure and Key ...

  8. Energy Critical Infrastructure and Key Resources Sector-Specific...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) Energy Critical Infrastructure and Key ...

  9. 2015 Key Water Power Program and National Laboratory Accomplishments...

    Broader source: Energy.gov (indexed) [DOE]

    Water Power Program and National Laboratory Accomplishments 2015 Key Water Power Program and National Laboratory Accomplishments | 1 | 2015 Key Water Power Program and National ...

  10. PEM Fuel Cell Technology, Key Research Needs and Approaches ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology, Key Research Needs and Approaches (Presentation) PEM Fuel Cell Technology, Key Research Needs and Approaches (Presentation) Presented at the DOE Fuel Cell ...

  11. Together with Key Allies, DOE Launches New Data Collaborative...

    Energy Savers [EERE]

    Together with Key Allies, DOE Launches New Data Collaborative to Help Cities and States Advance Building Efficiency Together with Key Allies, DOE Launches New Data Collaborative to ...

  12. Low-Power Public Key Cryptography

    SciTech Connect (OSTI)

    BEAVER,CHERYL L.; DRAELOS,TIMOTHY J.; HAMILTON,VICTORIA A.; SCHROEPPEL,RICHARD C.; GONZALES,RITA A.; MILLER,RUSSELL D.; THOMAS,EDWARD V.

    2000-11-01

    This report presents research on public key, digital signature algorithms for cryptographic authentication in low-powered, low-computation environments. We assessed algorithms for suitability based on their signature size, and computation and storage requirements. We evaluated a variety of general purpose and special purpose computing platforms to address issues such as memory, voltage requirements, and special functionality for low-powered applications. In addition, we examined custom design platforms. We found that a custom design offers the most flexibility and can be optimized for specific algorithms. Furthermore, the entire platform can exist on a single Application Specific Integrated Circuit (ASIC) or can be integrated with commercially available components to produce the desired computing platform.

  13. STGWG Key Outcomes for October 21, 2009

    Office of Environmental Management (EM)

    48 Contiguous United States START 48 Contiguous United States The U.S. Department of Energy (DOE) Office of Indian Energy Strategic Technical Assistance Response Team (START) Program helps competitively selected tribes in the 48 contiguous states, as well as Alaska Native regional corporations, further the development of renewable energy projects. START-supported projects are selected through a competitive application process. Learn more about START projects. The START team is comprised of DOE

  14. SECTION L -ATTACHMENT B - LISTING OF KEY PERSONNEL

    National Nuclear Security Administration (NNSA)

    H SECTION J APPENDIX H KEY PERSONNEL [Note: To be inserted by the Contracting Officer after

  15. Key management for large scale end-to-end encryption

    SciTech Connect (OSTI)

    Witzke, E.L.

    1994-07-01

    Symmetric end-to-end encryption requires separate keys for each pair of communicating confidants. This is a problem of Order N{sup 2}. Other factors, such as multiple sessions per pair of confidants and multiple encryption points in the ISO Reference Model complicate key management by linear factors. Public-key encryption can reduce the number of keys managed to a linear problem which is good for scaleability of key management, but comes with complicating issues and performance penalties. Authenticity is the primary ingredient of key management. If each potential pair of communicating confidants can authenticate data from each other, then any number of public encryption keys of any type can be communicated with requisite integrity. These public encryption keys can be used with the corresponding private keys to exchange symmetric cryptovariables for high data rate privacy protection. The Digital Signature Standard (DSS), which has been adopted by the United States Government, has both public and private components, similar to a public-key cryptosystem. The Digital Signature Algorithm of the DSS is intended for authenticity but not for secrecy. In this paper, the authors will show how the use of the Digital Signature Algorithm combined with both symmetric and asymmetric (public-key) encryption techniques can provide a practical solution to key management scaleability problems, by reducing the key management complexity to a problem of order N, without sacrificing the encryption speed necessary to operate in high performance networks.

  16. Florida Keys El Coop Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    Keys El Coop Assn, Inc Jump to: navigation, search Name: Florida Keys El Coop Assn, Inc Place: Florida Phone Number: 305-852-2431 Website: www.fkec.com Twitter: @FLKeysElectric...

  17. Solid Electrolyte: the Key for High-Voltage Lithium Batteries...

    Office of Scientific and Technical Information (OSTI)

    Solid Electrolyte: the Key for High-Voltage Lithium Batteries Citation Details In-Document Search Title: Solid Electrolyte: the Key for High-Voltage Lithium Batteries Authors: Li, ...

  18. Residential market transformation: National and regional indicators

    SciTech Connect (OSTI)

    Van Wie McGrory, Laura L.; McNamara, Maureen; Suozzo, Margaret

    2000-06-01

    A variety of programs are underway to address market barriers to the adoption of energy-efficient residential technologies and practices. Most are administered by utilities, states, or regions that rely on the Energy Star as a consistent platform for program marketing and messaging. This paper reviews regional and national market transformation activities for three key residential end-uses -- air conditioning, clothes washing, and lighting -- characterizing current and ongoing programs; reporting on progress; identifying market indicators; and discussing implications.

  19. Key Dates | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Key Dates DOE Office of Science Graduate Student Research (SCGSR) Program SCGSR Home Eligibility Benefits Participant Obligations How to Apply Information for Laboratory Scientists and Thesis Advisors Key Dates Frequently Asked Questions Contact WDTS Home Key Dates Print Text Size: A A A FeedbackShare Page The SCGSR Program Key Dates are noted below. At the submission deadline (shown in red), the online application system will close after which no additional materials will be accepted. The

  20. June2010KeyEISChart.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June2010KeyEISChart.pdf June2010KeyEISChart.pdf June2010KeyEISChart.pdf (59.25 KB) More Documents & Publications Schedules of Key Environmental Impact Statements Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchhill Co., NV

  1. Residential Energy Efficiency Financing: Key Elements of Program Design

    Broader source: Energy.gov [DOE]

    Presents key programmatic elements and context of financing initiatives, including contractor support, rebates, quality assurance, and more.

  2. SECTION L -ATTACHMENT B - LISTING OF KEY PERSONNEL

    National Nuclear Security Administration (NNSA)

    B, Page 1 SECTION L ATTACHMENT B LISTING OF KEY PERSONNEL TITLE NAME Note: Addremove extra rows if needed...

  3. 2015 Key Water Power Program and National Laboratory Accomplishments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Slideshow | Department of Energy 2015 Key Water Power Program and National Laboratory Accomplishments Slideshow 2015 Key Water Power Program and National Laboratory Accomplishments Slideshow 2015 Key Water Power Program and National Laboratory Accomplishments Report 1 of 28 2015 Key Water Power Program and National Laboratory Accomplishments Report By accelerating the development of markets for hydropower and marine and hydrokinetic (MHK) projects, the Water Power Program is striving to

  4. 2015 Key Wind Program and National Laboratory Accomplishments | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 2015 Key Wind Program and National Laboratory Accomplishments 2015 Key Wind Program and National Laboratory Accomplishments 2015 Key Wind Program and National Laboratory Accomplishments 1 of 32 2015 Key Wind Program and National Laboratory Accomplishments The U.S. Department of Energy (DOE) Wind Program is committed to helping the nation secure cost-competitive sources of renewable energy through the development and deployment of innovative wind power technologies. By investing in

  5. Key Dates | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Key Dates Albert Einstein Distinguished Educator Fellowship (AEF) Program Einstein Fellowship Home Eligibility Benefits Obligations How to Apply Key Dates Frequently Asked Questions Fellows Central Contact WDTS Home Key Dates Print Text Size: A A A FeedbackShare Page Key Dates for the 2017-2018 AEF Program Application process. On-line Application Opens August 17, 2016 Application Deadline 8:00pm EST November 17, 2016 Application Review 8 - 9 weeks Notification to Semi-Finalists [Travel

  6. Key Dates | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Key Dates DOE Office of Science Graduate Student Research (SCGSR) Program SCGSR Home Eligibility Benefits Participant Obligations How to Apply Information for Laboratory Scientists and Thesis Advisors Key Dates Frequently Asked Questions Contact WDTS Home Key Dates Print Text Size: A A A FeedbackShare Page The SCGSR Program Key Dates are noted below. At the submission deadline (shown in red), the online application system will close after which no additional materials will be accepted. The

  7. 2015 Key Water Power Program and National Laboratory Accomplishments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Slideshow | Department of Energy 2015 Key Water Power Program and National Laboratory Accomplishments Slideshow 2015 Key Water Power Program and National Laboratory Accomplishments Slideshow Addthis 2015 Key Water Power Program and National Laboratory Accomplishments Report 1 of 28 2015 Key Water Power Program and National Laboratory Accomplishments Report By accelerating the development of markets for hydropower and marine and hydrokinetic (MHK) projects, the Water Power Program is striving

  8. 2015 Key Wind Program and National Laboratory Accomplishments Slideshow |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2015 Key Wind Program and National Laboratory Accomplishments Slideshow 2015 Key Wind Program and National Laboratory Accomplishments Slideshow Addthis 2015 Key Wind Program and National Laboratory Accomplishments 1 of 32 2015 Key Wind Program and National Laboratory Accomplishments The U.S. Department of Energy (DOE) Wind Program is committed to helping the nation secure cost-competitive sources of renewable energy through the development and deployment of innovative

  9. Fuel Cell Technologies Office Key Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About the Fuel Cell Technologies Office » Fuel Cell Technologies Office Key Activities Fuel Cell Technologies Office Key Activities The Fuel Cell Technologies Office conducts work in several key areas to advance the development and commercialization of hydrogen and fuel cell technologies. Research, Development, and Demonstration Key areas of research, development, and demonstration (RD&D) include the following: Fuel Cell R&D, which seeks to improve the durability, reduce the cost, and

  10. Key Activities of the Geothermal Technologies Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About the Geothermal Technologies Office » Key Activities of the Geothermal Technologies Office Key Activities of the Geothermal Technologies Office Key activities for the Geothermal Technologies Office (GTO) include research, development and demonstration; system validation; technology validation; strategic planning, analysis, and R&D integration. Specific activities are summarized below. Program Area Activities Enhanced Geothermal Systems (EGS) GTO conducts research, development and

  11. Assessing Impact of Biofuel Production on Regional Water Resource...

    Broader source: Energy.gov (indexed) [DOE]

    Impact of Biofuel Production on Regional Water Resource Use and Availability May Wu Ph.D. ... 15, 2012 Biofuel Is a Key Component in Water-Energy Nexus 1 2 Potential Cellulosic ...

  12. Grid Parity for Residential Photovoltaics in the United States: Key Drivers and Sensitivities; Preprint

    SciTech Connect (OSTI)

    Ong, S.; Denholm, P.; Clark, N.

    2012-08-01

    In this report, we analyze PV break-even costs for U.S. residential customers. We evaluate some key drivers of grid parity both regionally and over time. We also examine the impact of moving from flat to time-of-use (TOU) rates, and we evaluate individual components of the break-even cost, including effect of rate structure and various incentives. Finally, we examine how PV markets might evolve on a regional basis considering the sensitivity of the break-even cost to four major drivers: technical performance, financing parameters, electricity prices and rates, and policies. We find that electricity price rather than technical parameters are in general the key drivers of the break-even cost of PV. Additionally, this analysis provides insight about the potential viability of PV markets.

  13. Advanced Supply System Design Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    weather conditions; if drought, floods, wind, hail etc. damage the crops in a resource rich region, then there is even greater importance placed on stranded resource areas. ...

  14. A key management concept for the CTBT International Monitoring System

    SciTech Connect (OSTI)

    Herrington, P.; Draelos, T.; Craft, R.; Brickell, E.; Frankel, Y.; Silvestri, M.

    1997-08-01

    Cryptographic authentication (commonly referred to as ``technical authentication`` in Working Group B) is an enabling technology which ensures the integrity of sensor data and security of digital networks under various data security compromise scenarios. The use of cryptographic authentication,however, implies the development of a key management infrastructure for establishing trust in the generation and distribution of cryptographic keys. This paper proposes security and operational requirements for a CTBT (Comprehensive Test Ban Treaty) key management system and, furthermore, presents a public key based solution satisfying the requirements. The key management system is instantiated with trust distribution technologies similar to those currently implemented in industrial public key infrastructures. A complete system solution is developed.

  15. Regional Education Partners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Education Partners Regional Education Partners One of the Laboratory's STEM education objectives is centered on strengthening the future workforce of Northern New Mexico...

  16. Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Across U.S. Industry | Department of Energy Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry eip_report_pg9.pdf (2.52 MB) More Documents & Publications ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Energy Technology Solutions Energy Technology Solutions: Public-Private

  17. Key Renewable Energy Opportunities for Oklahoma Tribes | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Key Renewable Energy Opportunities for Oklahoma Tribes Key Renewable Energy Opportunities for Oklahoma Tribes August 13, 2012 Oklahoma City, Oklahoma Cox Convention Center The Office of Indian Energy Tribal Leader Energy Forum on Key Renewable Energy Opportunities for Oklahoma Tribes was held August 13, 2012, in Oklahoma City, Oklahoma. The forum gave Oklahoma tribal leaders the opportunity to receive the latest updates on DOE's energy development efforts in Indian Country and

  18. Keys to Successful Quality Assurance and Quality Control Programs (101) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Keys to Successful Quality Assurance and Quality Control Programs (101) Keys to Successful Quality Assurance and Quality Control Programs (101) Better Buildings Residential Network Peer Exchange Call Series: Keys to Successful Quality Assurance and Quality Control Programs (101), call slides and discussion summary. Call Slides and Discussion Summary (1.79 MB) More Documents & Publications Quality Control, Standardization of Upgrades, and Workforce Expectations Home

  19. DOE Announces More Key Administration Posts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Key Administration Posts DOE Announces More Key Administration Posts March 20, 2009 - 12:00am Addthis WASHINGTON, DC - Today, President Barack Obama announced his intent to nominate the following individuals to key administration posts: Dr. Steven E. Koonin, Under Secretary for Science, Department of Energy; David Sandalow, Assistant Secretary for Policy and International Affairs, Department of Energy; Ambassador Johnnie Carson, Assistant Secretary for African Affairs, State Department; Kathy

  20. Key Board Products and Special Reports - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Key Board Products and Special Reports Hanford Advisory Board Convening Report SSAB Guidance Memorandum of Understanding Membership Nomination and Appointment Process Operating Ground Rules Calendars Advice and Responses Full Board Meeting Information Committee Meeting Information Outgoing Board Correspondence Key Board Products and Special Reports HAB Annual Report HAB and Committee Lists Points of Contact Related Links Key Board Products and Special Reports Email Email Page | Print Print Page

  1. Vehicle Technologies Office: Key Activities in Vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy About the Vehicle Technologies Office » Vehicle Technologies Office: Key Activities in Vehicles Vehicle Technologies Office: Key Activities in Vehicles We conduct work in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or improving performance, power, and comfort. Research and development (R&D); testing and analysis; government and community stakeholder support; and education help people access and use efficient, clean

  2. Hydrodynamic experiment provides key data for Stockpile Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrodynamic experiment provides Stockpile Stewardship key data Los Alamos hydrodynamic experiment provides key data for Stockpile Stewardship Hydrodynamic experiments such as Leda involve non-nuclear surrogate materials that mimic many of the properties of nuclear materials. December 22, 2014 Los Alamos hydrodynamic experiment provides key data for Stockpile Stewardship "Leda," experimental vessel in the "Zero Room" at the underground U1a facility, at the Nevada National

  3. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron is the Key to Preserving Dinosaur Soft Tissue Iron is the Key to Preserving Dinosaur Soft Tissue Print Thursday, 21 August 2014 10:43 Researchers studying organic material from dinosaur bones have been able to show that the organic material in the samples contained original soft tissue material from Mesozoic dinosaurs. The x-ray techniques at the ALS were key to showing a possible mechanism for this unexpected preservation-iron nanoparticles associated with dinosaur blood vessels were

  4. TEC Working Group Topic Groups Security Key Documents | Department of

    Office of Environmental Management (EM)

    Energy Key Documents TEC Working Group Topic Groups Security Key Documents Key Documents Security TG Work Plan August 7, 2006 (24.31 KB) Security Lessons Learned Document August 2, 2006 (40.77 KB) Security Module (635.1 KB) STG Terms and Definitions from DOE 470.4 (18.54 KB) More Documents & Publications TEC Working Group Topic Groups Security Meeting Summaries TEC Meeting Summaries - April 2005 Presentations TEC Working Group Topic Groups Security Conference Call Summaries

  5. Key Dates | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Key Activities Key Activities Key Activities Bringing Innovative Manufacturing Technologies and Materials to Full "To Scale" Industrial Use Innovation is inherent in all of AMO's investment activities helping small, medium, and large manufacturers develop cutting-edge clean energy products and technology that reduce energy consumption in every stage or place it is used in industry. Built upon a foundation of strong public-private partnerships, our support of advanced manufacturing

  6. Key Dates | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Key Dates Visiting Faculty Program (VFP) VFP Home Eligibility Benefits Participant Obligations How to Apply Key Dates Frequently Asked Questions Contact WDTS Home Key Dates Print Text Size: A A A FeedbackShare Page At the submission deadline (shown in red) the application system will close, and no materials will be accepted after the submission deadline has passed. The Application System closes at 5:00 PM Eastern Time. VFP Term: Summer 2015 On-line Application Opens October 15, 2015 Applications

  7. 2015 Key Wind Program and National Laboratory Accomplishments | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 5 Key Wind Program and National Laboratory Accomplishments 2015 Key Wind Program and National Laboratory Accomplishments 2015 Key Wind Program and National Laboratory Accomplishments The U.S. Department of Energy (DOE) Wind Program is committed to helping the nation secure cost-competitive sources of renewable energy through the development and deployment of innovative wind power technologies. By investing in improvements to wind plant design, technology development, and operation

  8. DOE Announces More Key Administration Posts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Key Administration Posts DOE Announces More Key Administration Posts March 27, 2009 - 12:00am Addthis WASHINGTON, DC - Today, President Barack Obama announced his intent to nominate the following individuals to key administration posts: Ray Mabus, Secretary of the Navy, Department of Defense; Donald Remy, General Counsel of the Army, Department of Defense; J. Randolph Babbitt, Administrator, Federal Aviation Administration; Jose D. Riojas, Assistant Secretary for Operations, Security and

  9. SECTION L -ATTACHMENT B - LISTING OF KEY PERSONNEL

    National Nuclear Security Administration (NNSA)

    B, Page 1 SECTION L ATTACHMENT B LISTING OF KEY PERSONNEL TITLE NAME [Note: Add/remove extra rows if needed]

  10. Two Key NNSA Site Offices Registerd Under International Quality Standard |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) Two Key NNSA Site Offices Registerd Under International Quality Standard June 24, 2005 PDF icon NR06-05.pdf

  11. Geothermal regulations in Colorado---land ownership is the key...

    Open Energy Info (EERE)

    ownership is the key Author P. Morgan Published Journal Geothermal Resources Council- Transactions, 2012 DOI Not Provided Check for DOI availability: http:crossref.org...

  12. TEC Working Group Topic Groups Rail Key Documents Radiation Monitoring...

    Office of Environmental Management (EM)

    Radiation Monitoring Subgroup TEC Working Group Topic Groups Rail Key Documents Radiation Monitoring Subgroup Radiation Monitoring Subgroup PDF icon Draft Work Plan - February 4,...

  13. Binding Behavior of Dopamine Transporter Key to Understanding...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Understanding Chemical Reactions in the Brain Binding Behavior of Dopamine Transporter Key to Understanding Chemical Reactions in the Brain Print Wednesday, 09 December 2015 00:00 ...

  14. Key Parameters Affecting DPF Performance Degradation and Impact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Parameters Affecting DPF Performance Degradation and Impact on Lifetime Fuel Economy Key Parameters Affecting DPF Performance Degradation and Impact on Lifetime Fuel Economy ...

  15. Key Energy-Saving Projects for Smaller Facilities | Department...

    Broader source: Energy.gov (indexed) [DOE]

    save energy and how the Industrial Assessment Centers can help. Briggs & Stratton provides examples of projects and implementation plans which worked for them. Key Energy-Saving ...

  16. President Obama Announces More Key Administration Posts | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addthis THE WHITE HOUSE Office of the Press Secretary WASHINGTON - Today, President Barack Obama announced his intent to nominate the following individuals to key Administration ...

  17. California Energy Incentive Programs: An Annual Update on Key...

    Office of Environmental Management (EM)

    Energy Incentive Programs: An Annual Update on Key Energy Issues and Financial Opportunities for Federal Sites in California California Energy Incentive Programs: An Annual Update ...

  18. Key Practical Issues in Strengthening Safety Culture, INSAG-15

    Office of Energy Efficiency and Renewable Energy (EERE)

    Key Pratical Issues in Strengthening Safety Culture, INSAG-15. A report by the International Nuclear Safety Advisory Gorup, International Atomic Energy Agency, Vienna, 2002.

  19. Key Parameters Governing the Energy Density of Rechargeable Li...

    Office of Scientific and Technical Information (OSTI)

    of Rechargeable LiS Batteries Citation Details In-Document Search Title: Key Parameters Governing the Energy Density of Rechargeable LiS Batteries Authors: Gao, Jie ; ...

  20. LANL breaks ground on key sediment control project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sediment control project LANL breaks ground on key sediment control project Called "grade-control" structures, the approximately 2 million features are up to eight feet high and...

  1. Pantex Plant Achieves Key Safety Milestone Ahead of Schedule...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Achieves Key Safety Milestone Ahead of Schedule | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  2. Water dynamics clue to key residues in protein folding

    SciTech Connect (OSTI)

    Gao, Meng [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China)] [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China); Zhu, Huaiqiu, E-mail: hqzhu@pku.edu.cn [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China)] [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China); Yao, Xin-Qiu [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China) [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China); Department of Biophysics, Kyoto University, Sakyo Kyoto 606-8502 (Japan); She, Zhen-Su, E-mail: she@pku.edu.cn [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China)] [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China)

    2010-01-29

    A computational method independent of experimental protein structure information is proposed to recognize key residues in protein folding, from the study of hydration water dynamics. Based on all-atom molecular dynamics simulation, two key residues are recognized with distinct water dynamical behavior in a folding process of the Trp-cage protein. The identified key residues are shown to play an essential role in both 3D structure and hydrophobic-induced collapse. With observations on hydration water dynamics around key residues, a dynamical pathway of folding can be interpreted.

  3. NREL Fills Key Leadership Role for Energy Systems Security and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fills Key Leadership Role for Energy Systems Security and Resilience April 6, 2015 Dr. ... a smart home, electricity storage, an electric vehicle charging station and solar panels. ...

  4. Rapid Compression Machine … A Key Experimental Device to Effectively...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Effectively Collaborate with Basic Energy Sciences Rapid Compression Machine A Key Experimental Device to Effectively Collaborate with Basic Energy Sciences 2011 DOE ...

  5. 2015 Key Water Power Program and National Laboratory Accomplishments...

    Broader source: Energy.gov (indexed) [DOE]

    2015 Key Water Power Program and National Laboratory Accomplishments Report The U.S. Department of Energy (DOE) Water Power Program is committed to developing and deploying a ...

  6. PEM Fuel Cell Technology, Key Research Needs and Approaches ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PEM FUEL CELL TECHNOLOGY Key Research Needs and Approaches Tom Jarvi UTC Power South ... Stationary CHP 40-80,000 hr components - seals, membranes Water management Robust systems ...

  7. Energy Critical Infrastructure and Key Resources Sector-Specific

    Broader source: Energy.gov (indexed) [DOE]

    Energy Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) May 2007 Department of Energy Energy Sector ...

  8. Hydrodynamic experiment provides key data for Stockpile Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    weapon performance in the absence of full-scale underground nuclear testing," said Webster. Los Alamos hydrodynamic experiment provides key data for Stockpile Stewardship In...

  9. Geothermal Regulations in Colorado - Land Ownership is the Key...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Regulations in Colorado - Land Ownership is the Key Abstract Geothermal resources in...

  10. Liquid Water the Key to Arctic Cloud Radiative Closure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water the Key to Arctic Cloud Radiative Closure For original submission and image(s), see ARM Research Highlights http:www.arm.govsciencehighlights Research Highlight...

  11. Wintertime meteorology of the Grand Canyon region

    SciTech Connect (OSTI)

    Whiteman, C.D.

    1992-09-01

    The Grand Canyon region of the American Southwest is an interesting region meteorologically, but because of its isolated location, the lack of major population centers in the region, and the high cost of meteorological field experiments, it has historically received little observational attention. In recent years, however, attention has been directed to episodes of visibility degradation in many of the US National parks, and two recent field studies focused on this visibility problem have greatly increased the meteorological data available for the Grand Canyon region. The most recent and comprehensive of these studies is the Navajo Generating Station Winter Visibility Study of 1989--90. This study investigated the sources of visibility degradation in Grand Canyon National Park and the meteorological mechanisms leading to low visibility episodes. In this paper we present analyses of this rich data set to gain a better understanding of the key wintertime meteorological features of the Grand Canyon region.

  12. Regional Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    This presentation covers regional industrial energy efficiency programs in the Midwest, Southeast, and Southwest.

  13. TEC Working Group Topic Groups Rail Key Documents Intermodal Subgroup |

    Office of Environmental Management (EM)

    Department of Energy Intermodal Subgroup TEC Working Group Topic Groups Rail Key Documents Intermodal Subgroup Intermodal Subgroup Draft Work Plan (206.83 KB) More Documents & Publications TEC Working Group Topic Groups Rail Key Documents Radiation Monitoring Subgroup TEC Working Group Topic Groups Rail Conference Call Summaries Intermodal Subgroup TEC Working Group Topic Groups Rail Conference Call Summaries Rail Topic Group

  14. Apparatus, system, and method for synchronizing a timer key

    DOE Patents [OSTI]

    Condit, Reston A; Daniels, Michael A; Clemens, Gregory P; Tomberlin, Eric S; Johnson, Joel A

    2014-04-22

    A timer key relating to monitoring a countdown time of a countdown routine of an electronic device is disclosed. The timer key comprises a processor configured to respond to a countdown time associated with operation of the electronic device, a display operably coupled with the processor, and a housing configured to house at least the processor. The housing has an associated structure configured to engage with the electronic device to share the countdown time between the electronic device and the timer key. The processor is configured to begin a countdown routine based at least in part on the countdown time, wherein the countdown routine is at least substantially synchronized with a countdown routine of the electronic device when the timer key is removed from the electronic device. A system and method for synchronizing countdown routines of a timer key and an electronic device are also disclosed.

  15. Practical issues in quantum-key-distribution postprocessing

    SciTech Connect (OSTI)

    Fung, C.-H. Fred; Chau, H. F. [Department of Physics and Center of Theoretical and Computational Physics, University of Hong Kong, Pokfulam Road (Hong Kong); Ma Xiongfeng [Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, 200 University Ave W., Waterloo, Ontario, Canada N2L 3G1 (Canada)

    2010-01-15

    Quantum key distribution (QKD) is a secure key generation method between two distant parties by wisely exploiting properties of quantum mechanics. In QKD, experimental measurement outcomes on quantum states are transformed by the two parties to a secret key. This transformation is composed of many logical steps (as guided by security proofs), which together will ultimately determine the length of the final secret key and its security. We detail the procedure for performing such classical postprocessing taking into account practical concerns (including the finite-size effect and authentication and encryption for classical communications). This procedure is directly applicable to realistic QKD experiments and thus serves as a recipe that specifies what postprocessing operations are needed and what the security level is for certain lengths of the keys. Our result is applicable to the BB84 protocol with a single or entangled photon source.

  16. Developing a Regional Recovery Framework

    SciTech Connect (OSTI)

    Lesperance, Ann M.; Olson, Jarrod; Stein, Steven L.; Clark, Rebecca; Kelly, Heather; Sheline, Jim; Tietje, Grant; Williamson, Mark; Woodcock, Jody

    2011-09-01

    Abstract A biological attack would present an unprecedented challenge for local, state, and federal agencies; the military; the private sector; and individuals on many fronts ranging from vaccination and treatment to prioritization of cleanup actions to waste disposal. To prepare the Seattle region to recover from a biological attack, the Seattle Urban Area Security Initiative (UASI) partners collaborated with military and federal agencies to develop a Regional Recovery Framework for a Biological Attack in the Seattle Urban Area. The goal was to reduce the time and resources required to recover and restore wide urban areas, military installations, and other critical infrastructure following a biological incident by providing a coordinated systems approach. Based on discussions in small workshops, tabletop exercises, and interviews with emergency response agency staff, the partners identified concepts of operation for various areas to address critical issues the region will face as recovery progresses. Key to this recovery is the recovery of the economy. Although the Framework is specific to a catastrophic, wide-area biological attack using anthrax, it was designed to be flexible and scalable so it could also serve as the recovery framework for an all-hazards approach. The Framework also served to coalesce policy questions that must be addressed for long-term recovery. These questions cover such areas as safety and health, security, financial management, waste management, legal issues, and economic development.

  17. Authenticated group Diffie-Hellman key exchange: theory and practice

    SciTech Connect (OSTI)

    Chevassut, Olivier

    2002-10-03

    Authenticated two-party Diffie-Hellman key exchange allows two principals A and B, communicating over a public network, and each holding a pair of matching public/private keys to agree on a session key. Protocols designed to deal with this problem ensure A (B resp.)that no other principals aside from B (A resp.) can learn any information about this value. These protocols additionally often ensure A and B that their respective partner has actually computed the shared secret value. A natural extension to the above cryptographic protocol problem is to consider a pool of principals agreeing on a session key. Over the years several papers have extended the two-party Diffie-Hellman key exchange to the multi-party setting but no formal treatments were carried out till recently. In light of recent developments in the formalization of the authenticated two-party Diffie-Hellman key exchange we have in this thesis laid out the authenticated group Diffie-Hellman key exchange on firmer foundations.

  18. Development of a public key infrastructure across multiple enterprises

    SciTech Connect (OSTI)

    Sharick, T.M.; Long, J.P.; Desind, B.J.

    1997-05-01

    Main-stream applications are beginning to incorporate public key cryptography. It can be difficult to deploy this technology without a robust infrastructure to support it. It can also be difficult to deploy a public key infrastructure among multiple enterprises when different applications and standards must be supported. This discussion chronicles the efforts by a team within the US Department of Energy`s Nuclear Weapons Complex to build a public key infrastructure and deploy applications that use it. The emphasis of this talk will be on the lessons learned during this effort and an assessment of the overall impact of this technology.

  19. High School Regionals | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    High School Regionals National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Regional Competitions High School Regionals Print Text Size: A A A FeedbackShare Page

  20. Middle School Regionals | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Middle School Regionals National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Regional Competitions Middle School Regionals Print Text Size: A A A FeedbackShare

  1. Alabama High School Regional Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Alabama High School Regional Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Alabama High School Regional Science Bowl

  2. Alabama Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Alabama Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Alabama Regional Middle School

  3. Alaska High School Regional Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Alaska High School Regional Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Alaska High School Regional Science Bowl

  4. Argonne Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Argonne Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Argonne Regional Middle School

  5. Arizona Middle School Regional Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Arizona Middle School Regional Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Arizona Middle School Regional

  6. Arizona Regional High Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Arizona Regional High Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Arizona Regional High Science Bowl Print Text

  7. Arkansas Regional High Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Arkansas Regional High Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Arkansas Regional High Science Bowl Print Text

  8. Arkansas Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Arkansas Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Arkansas Regional Middle

  9. BPA Regional High School Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    BPA Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals BPA Regional High School Science Bowl Print

  10. BPA Regional Middle School Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    BPA Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals BPA Regional Middle School Science Bowl

  11. Booz Allen Regional High School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Booz Allen Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Booz Allen Regional High School

  12. Central Valley Regional Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Central Valley Regional Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Central Valley Regional Science Bowl Print Text

  13. Chicago High School Regional Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Chicago High School Regional Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Chicago High School Regional Science Bowl

  14. Chicago Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Chicago Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Chicago Regional Middle School

  15. Colorado Regional High School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Colorado Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Colorado Regional High School

  16. Colorado Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Colorado Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Colorado Regional Middle

  17. Connecticut Regional High School Science Bowl| U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Connecticut Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Connecticut Regional High

  18. Eastern Idaho Regional Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Eastern Idaho Regional Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Eastern Idaho Regional Science Bowl Print Text

  19. El Paso Regional High School Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    El Paso Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals El Paso Regional High School Science Bowl

  20. Georgia Regional High School Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Georgia Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Georgia Regional High School Science Bowl

  1. Georgia Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Georgia Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Georgia Regional Middle School

  2. Hawaii Regional High School Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Hawaii Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Hawaii Regional High School Science Bowl

  3. Illinois Regional High School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Illinois Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Illinois Regional High School

  4. Indiana Regional High School Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Indiana Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Indiana Regional High School Science Bowl

  5. Indiana Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Indiana Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Indiana Regional Middle School

  6. Iowa Regional High School Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Iowa Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Iowa Regional High School Science Bowl Print

  7. Iowa Regional Middle School Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Iowa Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Iowa Regional Middle School Science Bowl

  8. Kansas Regional High School Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Kansas Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Kansas Regional High School Science Bowl

  9. Kern County Regional High School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Kern County Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Kern County Regional High

  10. LADWP Regional High School Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    LADWP Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals LADWP Regional High School Science Bowl Print

  11. Long Island Regional High School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Long Island Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Long Island Regional High

  12. Louisiana Regional Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Louisiana Regional Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Louisiana Regional Science Bowl Print Text Size: A A

  13. Maine Regional High School Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Maine Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Maine Regional High School Science Bowl Print

  14. Maryland Regional High School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Maryland Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Maryland Regional High School

  15. Maryland Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Maryland Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Maryland Regional Middle

  16. Michigan Regional High School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Michigan Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Michigan Regional High School

  17. Minnesota Regional High School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Minnesota Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Minnesota Regional High School

  18. Mississippi Regional High School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Mississippi Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Mississippi Regional High

  19. Missouri Regional High School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Missouri Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Missouri Regional High School

  20. Missouri Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Missouri Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Missouri Regional Middle

  1. Montana Regional High School Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Montana Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Montana Regional High School Science Bowl

  2. NYC Regional SHPE High School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) NYC Regional SHPE High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals NYC Regional SHPE High School

  3. NYC Regional SHPE Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) NYC Regional SHPE Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals NYC Regional SHPE Middle

  4. Nebraska Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Nebraska Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Nebraska Regional Middle

  5. Nevada Regional High School Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Nevada Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Nevada Regional High School Science Bowl

  6. Nevada Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Nevada Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Nevada Regional Middle School

  7. New Jersey Regional High School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) New Jersey Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals New Jersey Regional High School

  8. New Jersey Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) New Jersey Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals New Jersey Regional Middle

  9. New Mexico Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) New Mexico Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals New Mexico Regional Middle

  10. New Mexico Regional Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    New Mexico Regional Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals New Mexico Regional Science Bowl Print Text Size: A

  11. North Carolina Regional High School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Carolina Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals North Carolina Regional

  12. North Central Florida Regional Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) North Central Florida Regional Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals North Central Florida Regional

  13. North Dakota Regional High School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) North Dakota Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals North Dakota Regional High

  14. Northeast Regional High School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Northeast Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Northeast Regional High School

  15. Northeast Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Northeast Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Northeast Regional Middle

  16. Oklahoma Regional High School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Oklahoma Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Oklahoma Regional High School

  17. Oklahoma Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Oklahoma Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Oklahoma Regional Middle

  18. Pantex Regional High School Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Pantex Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Pantex Regional High School Science Bowl

  19. Pantex Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Pantex Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Pantex Regional Middle School

  20. Puerto Rico Regional High School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Puerto Rico Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Puerto Rico Regional High

  1. Redding Regional High School Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Redding Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Redding Regional High School Science Bowl

  2. Redding Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Redding Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Redding Regional Middle School

  3. SLAC Regional High School Science Bowl| U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    SLAC Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals SLAC Regional High School Science Bowl Print

  4. SWPA Regional High School Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    SWPA Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals SWPA Regional High School Science Bowl Print

  5. SWPA Regional Middle School Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    SWPA Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals SWPA Regional Middle School Science Bowl

  6. Sacramento Regional High School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Sacramento Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Sacramento Regional High School

  7. South Dakota Regional High School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) South Dakota Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals South Dakota Regional High

  8. Tennessee Regional High School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Tennessee Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Tennessee Regional High School

  9. Virginia Regional High School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Virginia Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Virginia Regional High School

  10. Virginia Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Virginia Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Virginia Regional Middle

  11. Western Idaho Regional Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Western Idaho Regional Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Western Idaho Regional Science Bowl Print Text

  12. Wyoming Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Wyoming Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Wyoming Regional Middle School

  13. Wyoming Regional Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Wyoming Regional Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Wyoming Regional Science Bowl Print Text Size: A A A

  14. Regional Education Partners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Education Partners Regional Education Partners One of the Laboratory's STEM education objectives is centered on strengthening the future workforce of Northern New Mexico and the Laboratory through effective partnerships with regional secondary and higher education organizations, businesses and industry. Contact Executive Office Director Kathy Keith Community Partnerships Office (505) 665-4400 Email Regional Partners Charlie McMillan talking with Rick Ulibarri and Dr. Fries, President of

  15. NASEO Midwest Regional Meeting

    Broader source: Energy.gov [DOE]

    The National Association of State Energy Officials (NASEO) is hosting its Midwest Regional Meeting in Des Moines, Iowa.

  16. Clean Energy Manufacturing Initiative Southeast Regional Summit

    Office of Energy Efficiency and Renewable Energy (EERE)

    Registration is now open for the Clean Energy Manufacturing Initiative’s (CEMI) Southeast Regional Summit! The all-day conference, hosted by the U.S. Department of Energy (DOE), will take place on July 9 in Atlanta, Georgia, at the Renaissance Atlanta Midtown Hotel. The Southeast Regional Summit will bring together leaders from industry, academia, and government to focus on competitiveness and innovation in clean energy manufacturing throughout the southeastern United States. The Summit is the third in a series organized around the country, and will convene key stakeholders to:

  17. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the samples contained original soft tissue material from Mesozoic dinosaurs. The x-ray techniques at the ALS were key to showing a possible mechanism for this unexpected...

  18. Reply to 'Comment on 'Quantum dense key distribution''

    SciTech Connect (OSTI)

    Degiovanni, I.P.; Berchera, I. Ruo; Castelletto, S.; Rastello, M.L.; Bovino, F.A.; Colla, A.M.; Castagnoli, G.

    2005-01-01

    In this Reply we propose a modified security proof of the quantum dense key distribution protocol, detecting also the eavesdropping attack proposed by Wojcik in his Comment [Wojcik, Phys. Rev. A 71, 016301 (2005)].

  19. Key Mobility Challenges in Indian Cities | Open Energy Information

    Open Energy Info (EERE)

    from the LEDS Global Partnership. When to Use This Tool While building a low emission strategy for your country's transportation system, this tool is most useful during these key...

  20. Copper is Key in Burning Fat, New Study Finds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Copper is Key in Burning Fat, New Study Finds A new study led by a Berkeley Lab scientist ... Researchers want to explore if a copper deficiency is linked to obesity and obesity ...

  1. Worldwide Trends in Energy Use and Efficiency: Key Insights from...

    Open Energy Info (EERE)

    Trends in Energy Use and Efficiency: Key Insights from International Energy Agency (IEA) Indicator Analysis in Support of the Group of Eight (G8) Plan of Action Jump to:...

  2. Key energy efficiency measures signed into law by President Obama...

    Open Energy Info (EERE)

    Key energy efficiency measures signed into law by President Obama Home > Groups > OpenEI Community Central Graham7781's picture Submitted by Graham7781(2017) Super contributor 2...

  3. Quantum key distribution using card, base station and trusted authority

    DOE Patents [OSTI]

    Nordholt, Jane Elizabeth; Hughes, Richard John; Newell, Raymond Thorson; Peterson, Charles Glen; Rosenberg, Danna; McCabe, Kevin Peter; Tyagi, Kush T; Dallman, Nicholas

    2015-04-07

    Techniques and tools for quantum key distribution ("QKD") between a quantum communication ("QC") card, base station and trusted authority are described herein. In example implementations, a QC card contains a miniaturized QC transmitter and couples with a base station. The base station provides a network connection with the trusted authority and can also provide electric power to the QC card. When coupled to the base station, after authentication by the trusted authority, the QC card acquires keys through QKD with a trusted authority. The keys can be used to set up secure communication, for authentication, for access control, or for other purposes. The QC card can be implemented as part of a smart phone or other mobile computing device, or the QC card can be used as a fillgun for distribution of the keys.

  4. Catalysis Center for Energy Innovation KEY ACCOMPLISHMENTS AND CORE CAPABILITIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    KEY ACCOMPLISHMENTS AND CORE CAPABILITIES CCEI 1 TABLE OF CONTENTS Introduction and Overview of Discoveries and Breakthroughs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Core Capabilities: Multiscale Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Solution-phase Chemistry with Accelerated Molecular Dynamics Methods . . . . . . . . . . . . . . . . . .

  5. NREL: Wind Research - NREL and Partners Review Key Issues, Lessons...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL and Partners Review Key Issues, Lessons Learned from U.S. Wind Integration Studies and Operating Practices April 17, 2015 As a complement to DOE's recently released Wind...

  6. Potential for Hydrogen Production from Key Renewable Resources...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potential for Hydrogen Production from Key Renewable Resources in the United States A. Milbrandt and M. Mann Technical Report NRELTP-640-41134 February 2007 NREL is operated by...

  7. EnergySmart Schools National Financing Roundtable - Key Outcomes

    SciTech Connect (OSTI)

    2009-04-01

    This document presents key outcomes from the EnergySmart Schools National Financing Roundtable as a follow-up to the release of its Guide to FInancing EnergySmart Schools

  8. AWEA Regional Wind Energy Conference—Northeast

    Broader source: Energy.gov [DOE]

    The American Wind Energy Association (AWEA) will be hosting a conference that focuses on the key issues in the northeast region. The event will provide attendees with a comprehensive view of the critical issues for wind power’s growth in this part of the country and cover both land-based wind power development, as well as the nascent efforts to develop off-shore wind power off the New England coast.

  9. Key Publications - Natural Gas Regulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Natural Gas Regulation » Key Publications - Natural Gas Regulation Key Publications - Natural Gas Regulation Natural Gas Imports and Exports - Quarterly Reports May 11, 2016 Natural Gas Imports and Exports Fourth Quarter Report 2015 February 3, 2016 Natural Gas Imports and Exports Third Quarter Report 2015 October 30, 2015 Natural Gas Imports and Exports Second Quarter Report 2015 August 13, 2015 Natural Gas Imports and Exports First Quarter Report 2015 More Quarterly Reports LNG

  10. Key-and-keyway coupling for transmitting torque

    DOE Patents [OSTI]

    Blue, S.C.; Curtis, M.T.; Orthwein, W.C.; Stitt, D.H.

    1975-11-18

    The design of an improved key-and-keyway coupling for the transmission of torque is given. The coupling provides significant reductions in stress concentrations in the vicinity of the key and keyway. The keyway is designed with a flat-bottomed u-shaped portion whose inboard end terminates in a ramp which is dished transversely, so that the surface of the ramp as viewed in transverse section defines an outwardly concave arc.

  11. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print Friday, 19 February 2016 13:11 The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric

  12. Binding Behavior of Dopamine Transporter Key to Understanding Chemical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactions in the Brain Binding Behavior of Dopamine Transporter Key to Understanding Chemical Reactions in the Brain Binding Behavior of Dopamine Transporter Key to Understanding Chemical Reactions in the Brain Print Wednesday, 09 December 2015 00:00 Most people have heard of adrenaline, the chemical that causes the "fight or flight" reaction in humans. Most people have also heard of the chemical substances cocaine and methamphetamine, which also elicit a particular (perhaps

  13. Single, Key Gene Discovery Could Streamline Production of Biofuels |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Single, Key Gene Discovery Could Streamline Production of Biofuels Single, Key Gene Discovery Could Streamline Production of Biofuels August 11, 2011 - 3:51pm Addthis WASHINGTON, DC -- A team of researchers at the Department of Energy's BioEnergy Science Center (BESC) have pinpointed the exact, single gene that controls ethanol production capacity in a microorganism. This discovery could be the missing link in developing biomass crops that produce higher concentrations

  14. What Are the Computational Keys to Future Scientific Discoveries?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What are the Computational Keys to Future Scientific Discoveries? What Are the Computational Keys to Future Scientific Discoveries? NERSC Develops a Data Intensive Pilot Program to Help Scientists Find Out August 23, 2012 Linda Vu,lvu@lbl.gov, +1 510 495 2402 ALS.jpg Advanced Light Source at the Lawrence Berkeley National Laboratory. (Photo by: Roy Kaltschmidt, Berkeley Lab) A new camera at the hard x-ray tomography beamline of Lawrence Berkeley National Laboratory's (Berkeley Lab's) Advanced

  15. Energy Storage: The Key to a Reliable, Clean Electricity Supply |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Storage: The Key to a Reliable, Clean Electricity Supply Energy Storage: The Key to a Reliable, Clean Electricity Supply February 22, 2012 - 4:52pm Addthis Improved energy storage technology offers a number of economic and environmental benefits. Improved energy storage technology offers a number of economic and environmental benefits. Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What does this project do? ARPA-E's GRIDS program

  16. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron is the Key to Preserving Dinosaur Soft Tissue Print Researchers studying organic material from dinosaur bones have been able to show that the organic material in the samples contained original soft tissue material from Mesozoic dinosaurs. The x-ray techniques at the ALS were key to showing a possible mechanism for this unexpected preservation-iron nanoparticles associated with dinosaur blood vessels were identified at the ALS. Researchers hypothesized that the iron had come from dinosaurs'

  17. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron is the Key to Preserving Dinosaur Soft Tissue Print Researchers studying organic material from dinosaur bones have been able to show that the organic material in the samples contained original soft tissue material from Mesozoic dinosaurs. The x-ray techniques at the ALS were key to showing a possible mechanism for this unexpected preservation-iron nanoparticles associated with dinosaur blood vessels were identified at the ALS. Researchers hypothesized that the iron had come from dinosaurs'

  18. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron is the Key to Preserving Dinosaur Soft Tissue Print Researchers studying organic material from dinosaur bones have been able to show that the organic material in the samples contained original soft tissue material from Mesozoic dinosaurs. The x-ray techniques at the ALS were key to showing a possible mechanism for this unexpected preservation-iron nanoparticles associated with dinosaur blood vessels were identified at the ALS. Researchers hypothesized that the iron had come from dinosaurs'

  19. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron is the Key to Preserving Dinosaur Soft Tissue Print Researchers studying organic material from dinosaur bones have been able to show that the organic material in the samples contained original soft tissue material from Mesozoic dinosaurs. The x-ray techniques at the ALS were key to showing a possible mechanism for this unexpected preservation-iron nanoparticles associated with dinosaur blood vessels were identified at the ALS. Researchers hypothesized that the iron had come from dinosaurs'

  20. 2015 Key Water Power Program and National Laboratory Accomplishments Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power Program and National Laboratory Accomplishments 2015 Key Water Power Program and National Laboratory Accomplishments | 1 | 2015 Key Water Power Program and National Laboratory Accomplishments The U.S. Department of Energy (DOE) Water Power Program is committed to developing and deploying a portfolio of innovative technologies and market solutions for clean, domestic power generation from water resources across the United States. By accelerating the development of markets for

  1. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron is the Key to Preserving Dinosaur Soft Tissue Print Researchers studying organic material from dinosaur bones have been able to show that the organic material in the samples contained original soft tissue material from Mesozoic dinosaurs. The x-ray techniques at the ALS were key to showing a possible mechanism for this unexpected preservation-iron nanoparticles associated with dinosaur blood vessels were identified at the ALS. Researchers hypothesized that the iron had come from dinosaurs'

  2. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron is the Key to Preserving Dinosaur Soft Tissue Print Researchers studying organic material from dinosaur bones have been able to show that the organic material in the samples contained original soft tissue material from Mesozoic dinosaurs. The x-ray techniques at the ALS were key to showing a possible mechanism for this unexpected preservation-iron nanoparticles associated with dinosaur blood vessels were identified at the ALS. Researchers hypothesized that the iron had come from dinosaurs'

  3. Iron is the Key to Preserving Dinosaur Soft Tissue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron is the Key to Preserving Dinosaur Soft Tissue Print Researchers studying organic material from dinosaur bones have been able to show that the organic material in the samples contained original soft tissue material from Mesozoic dinosaurs. The x-ray techniques at the ALS were key to showing a possible mechanism for this unexpected preservation-iron nanoparticles associated with dinosaur blood vessels were identified at the ALS. Researchers hypothesized that the iron had come from dinosaurs'

  4. TEC Working Group Topic Groups Rail Key Documents Radiation Monitoring

    Office of Environmental Management (EM)

    Subgroup | Department of Energy Radiation Monitoring Subgroup TEC Working Group Topic Groups Rail Key Documents Radiation Monitoring Subgroup Radiation Monitoring Subgroup Draft Work Plan - February 4, 2008 (114.02 KB) More Documents & Publications TEC Working Group Topic Groups Rail Meeting Summaries TEC Working Group Topic Groups Rail Conference Call Summaries Radiation Monitoring Subgroup TEC Working Group Topic Groups Rail Key Documents Intermodal Subgroup

  5. Missing Oxygen Atoms Are Key to Robust Spintronic Material

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Missing Oxygen Atoms Are Key to Robust Spintronic Material Missing Oxygen Atoms Are Key to Robust Spintronic Material Print Friday, 01 April 2016 11:44 The endless pursuit of faster, more energy-efficient computers has led to the emergence of the field of spintronics, where the manipulation and detection of electron spins are utilized in electronic circuits. A particular class of materials called dilute magnetic oxides are promising candidates for spintronics applications because they exhibit

  6. NERSC Played Key Role in Nobel Laureate's Discovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Played Key Role in Nobel Laureate's Discovery NERSC Played Key Role in Nobel Laureate's Discovery NERSC, Berkeley Lab Now Centers for Computational Cosmology Community October 4, 2011 Contact: Jon Bashor, jbashor@lbl.gov, +1 510 486 5849 In the 1990s, Saul Perlmutter discovered that the universe is expanding at an accelerating rate. He confirmed his observational conclusions by running thousands of simulations at the National Energy Research Scientific Computing Center (NERSC) at Lawrence

  7. Midstream Infrastructure Improvements Key to Realizing Full Potential of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Domestic Natural Gas | Department of Energy Midstream Infrastructure Improvements Key to Realizing Full Potential of Domestic Natural Gas Midstream Infrastructure Improvements Key to Realizing Full Potential of Domestic Natural Gas October 30, 2014 - 9:20am Addthis Natural gas provides numerous benefits to millions of Americans daily, whether it's being used to heat or air condition homes and businesses, cook meals, or power vehicles. But most people who take advantage of this versatile and

  8. Office Civilian Waste Management Transportation Institutional Program Update on Collaborative Efforts with Key Stakeholders

    SciTech Connect (OSTI)

    E. Saris; P. Austin; J.J. Offner

    2004-12-29

    The Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) created the Office of National Transportation in 2003 recognizing the need to revitalize and accelerate development of the transportation system. The Department has made a commitment to work through a collaborative planning process before developing specific policies and procedures and making transportation decisions. OCRWM has begun to build the institutional framework to support development of this transportation system. Interactions with stakeholders have been initiated. The authors describe the key stakeholders, identified issues, regional and national planning activities, and mechanisms for interaction.

  9. Regional Economic Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Economic Development Regional Economic Development Supporting companies in every stage of development through access to technology, technical assistance or investment Questions Richard P. Feynman Center for Innovation Regional Programs (505) 665-9090 New Mexico Small Business Assistance Email Venture Acceleration Fund Email DisrupTECH Email SBIR/STTR Email FCI facilitates commercialization in New Mexico to accelerate and enhance our efforts to convert federal and state research

  10. Regional Energy Planning

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydroelectric Reciprocating Internal Combustion Engine Fossil Fuel Turbines Alaska Energy Statistics, 2011 4 Energy Costs Vary 5 Regional Energy Planning * Energy Pathways led to ...

  11. CEMI Western Regional Summit

    Broader source: Energy.gov [DOE]

    Please Join Assistant Secretary of Energy Dr. David Danielson for the Clean Energy Manufacturing Initiative's Western Regional Summit. Register now for this free event.

  12. ERHIC INTERACTION REGION DESIGN.

    SciTech Connect (OSTI)

    MONTAG,C.PARKER,B.PTITSYN,V.TEPIKIAN,S.WANG,D.WANG,F.

    2003-10-13

    This paper presents the current interaction region design status of the ring-ring version of the electron-ion collider eRHIC (release 2.0).

  13. Secret Key Generation via a Modified Quantum Secret Sharing Protocol

    SciTech Connect (OSTI)

    Smith IV, Amos M; Evans, Philip G; Lawrie, Benjamin J; Legre, Matthieu; Lougovski, Pavel; Ray, William R; Williams, Brian P; Qi, Bing; Grice, Warren P

    2015-01-01

    We present and experimentally show a novel protocol for distributing secret information between two and only two parties in a N-party single-qubit Quantum Secret Sharing (QSS) system. We demonstrate this new algorithm with N = 3 active parties over 6km of telecom. ber. Our experimental device is based on the Clavis2 Quantum Key Distribution (QKD) system built by ID Quantique but is generalizable to any implementation. We show that any two out of the N parties can build secret keys based on partial information from each other and with collaboration from the remaining N > 2 parties. This algorithm allows for the creation of two-party secret keys were standard QSS does not and signicantly reduces the number of resources needed to implement QKD on a highly connected network such as the electrical grid.

  14. Thailand-Key Results and Policy Recommendations for Future Bioenergy...

    Open Energy Info (EERE)

    assessment, Policiesdeployment programs, Background analysis Resource Type Lessons learnedbest practices Website http:www.fao.orgdocrep013 Country Thailand UN Region...

  15. GE Key Partner in Innovation Institutes | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Is Key Partner in Manufacturing Innovation Institutes Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE Is Key Partner in Manufacturing Innovation Institutes GE Global Research 2014.02.25 President Obama today announced two new manufacturing innovation institutes. One is focused on digital manufacturing and design

  16. Energy Secretary Bodman Commends Key Milestone In MOX Program | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Commends Key Milestone In MOX Program Energy Secretary Bodman Commends Key Milestone In MOX Program April 1, 2005 - 11:28am Addthis WASHINGTON, DC - In response to the Nuclear Regulatory Commission's (NRC) authorization of the construction of a U.S. Mixed-Oxide (MOX) Fuel Fabrication Facility at the Department of Energy's Savannah River Site in South Carolina, Secretary of Energy Samuel W. Bodman today released the following statement: "Issuing the permit for construction of a

  17. A Key Enzyme to the Potency of an Anticancer Agent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Key Enzyme to the Potency of an Anticancer Agent A Key Enzyme to the Potency of an Anticancer Agent Print Wednesday, 28 May 2008 00:00 Incorporation of halogen atoms into drug molecules often increases biological activity. This is the case with salinosporamide A (sal A), a natural product from the marine bacterium Salinispora tropica that is 500 times more active than sal B, its nonchlorinated analog. Sal A is in phase I human clinical trials for the treatment of multiple myeloma and solid

  18. SimTable key tool for preparing, responding to wildfire

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SimTable key tool for preparing, responding to wildfire SimTable key tool for preparing, responding to wildfire Camera tracks movement and objects and project them onto a sand table. May 30, 2012 SimTable: Stephen Guerin (L) and Chip Garner (R) with SimTable, a Santa Fe company helping firefighters model and predict where a fire is most likely to spread, received support for their business through Lab economic development programs: VAF, NMSBA, Springboard. SimTable: Stephen Guerin (L) and Chip

  19. Regional Analysis Briefs

    Reports and Publications (EIA)

    2028-01-01

    Regional Analysis Briefs (RABs) provide an overview of specific regions that play an important role in world energy markets, either directly or indirectly. These briefs cover areas that are currently major producers (Caspian Sea), have geopolitical importance (South China Sea), or may have future potential as producers or transit areas (East Africa, Eastern Mediterranean).

  20. Cal State LA Regional Middle School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Cal State LA Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Cal State LA

  1. California South/West Bay Area Regional Middle School Science Bowl

    Office of Science (SC) Website

    California South/West Bay Area Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals California

  2. Central Coast Regional Middle School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Central Coast Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Central Coast

  3. Connecticut Regional Middle School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Connecticut Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Connecticut

  4. Eastern Idaho Regional Middle School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Eastern Idaho Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Eastern Idaho

  5. Greater Cincinnati Regional High School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Greater Cincinnati Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Greater

  6. Inland Northwest Regional High School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Inland Northwest Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Inland Northwest

  7. Long Island Regional Middle School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Long Island Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Long Island

  8. Los Angeles JPL Regional High School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Los Angeles JPL Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Los Angeles JPL

  9. Milwaukee School of Engineering Regional Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Milwaukee School of Engineering Regional Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Milwaukee

  10. Mississippi Regional Middle School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Mississippi Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Mississippi

  11. Pacific Northwest Regional High School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Pacific Northwest Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Pacific

  12. Puerto Rico Middle School Regional Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Puerto Rico Middle School Regional Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Puerto Rico Middle

  13. SHPE-Fresno Regional Middle School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) SHPE-Fresno Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals SHPE-Fresno

  14. San Antonio Area Middle School Regional Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) San Antonio Area Middle School Regional Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals San Antonio

  15. Sandia/Las Positas Regional High School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Sandia/Las Positas Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Sandia/Las

  16. Sandia/Las Positas Regional Middle School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Sandia/Las Positas Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Sandia/Las

  17. Savannah River Regional High School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Savannah River Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Savannah River

  18. South Central Ohio Regional High School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) South Central Ohio Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals South Central

  19. South Florida Regional High School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) South Florida Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals South Florida

  20. U.S. Virgin Islands Regional High School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) U.S. Virgin Islands High School Regional Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals U.S. Virgin

  1. Washington, DC Regional High School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Washington, DC Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Washington, DC

  2. Washington, DC Regional Middle School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Washington, DC Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Washington, DC

  3. West Kentucky Regional High School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) West Kentucky Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals West Kentucky

  4. West Kentucky Regional Middle School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) West Kentucky Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals West Kentucky

  5. West Virginia Regional High School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) West Virginia Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals West Virginia

  6. West Virginia Regional Middle School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) West Virginia Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals West Virginia

  7. Western Idaho Regional Middle School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Western Idaho Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Western Idaho

  8. Western Nebraska Regional High School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Western Nebraska Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Western Nebraska

  9. Western New York Regional Middle School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Western New York Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Western New

  10. Wisconsin Middle School Regional Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Wisconsin Middle School Regional Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Wisconsin Middle School

  11. Break-Even Cost for Residential Photovoltaics in the United States: Key Drivers and Sensitivities

    SciTech Connect (OSTI)

    Denholm, P.; Margolis, R. M.; Ong, S.; Roberts, B.

    2009-12-01

    Grid parity--or break-even cost--for photovoltaic (PV) technology is defined as the point where the cost of PV-generated electricity equals the cost of electricity purchased from the grid. Break-even cost is expressed in $/W of an installed system. Achieving break-even cost is a function of many variables. Consequently, break-even costs vary by location and time for a country, such as the United States, with a diverse set of resources, electricity prices, and other variables. In this report, we analyze PV break-even costs for U.S. residential customers. We evaluate some key drivers of grid parity both regionally and over time. We also examine the impact of moving from flat to time-of-use (TOU) rates, and we evaluate individual components of the break-even cost, including effect of rate structure and various incentives. Finally, we examine how PV markets might evolve on a regional basis considering the sensitivity of the break-even cost to four major drivers: technical performance, financing parameters, electricity prices and rates, and policies. We find that local incentives rather than ?technical? parameters are in general the key drivers of the break-even cost of PV. Additionally, this analysis provides insight about the potential viability of PV markets.

  12. Self-referenced continuous-variable quantum key distribution protocol

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Soh, Daniel B. S.; Brif, Constantin; Coles, Patrick J.; Lutkenhaus, Norbert; Camacho, Ryan M.; Urayama, Junji; Sarovar, Mohan

    2015-10-21

    Here, we introduce a new continuous-variable quantum key distribution (CV-QKD) protocol, self-referenced CV-QKD, that eliminates the need for transmission of a high-power local oscillator between the communicating parties. In this protocol, each signal pulse is accompanied by a reference pulse (or a pair of twin reference pulses), used to align Alice’s and Bob’s measurement bases. The method of phase estimation and compensation based on the reference pulse measurement can be viewed as a quantum analog of intradyne detection used in classical coherent communication, which extracts the phase information from the modulated signal. We present a proof-of-principle, fiber-based experimental demonstration ofmore » the protocol and quantify the expected secret key rates by expressing them in terms of experimental parameters. Our analysis of the secret key rate fully takes into account the inherent uncertainty associated with the quantum nature of the reference pulse(s) and quantifies the limit at which the theoretical key rate approaches that of the respective conventional protocol that requires local oscillator transmission. The self-referenced protocol greatly simplifies the hardware required for CV-QKD, especially for potential integrated photonics implementations of transmitters and receivers, with minimum sacrifice of performance. As such, it provides a pathway towards scalable integrated CV-QKD transceivers, a vital step towards large-scale QKD networks.« less

  13. Self-referenced continuous-variable quantum key distribution protocol

    SciTech Connect (OSTI)

    Soh, Daniel B. S.; Brif, Constantin; Coles, Patrick J.; Lutkenhaus, Norbert; Camacho, Ryan M.; Urayama, Junji; Sarovar, Mohan

    2015-10-21

    Here, we introduce a new continuous-variable quantum key distribution (CV-QKD) protocol, self-referenced CV-QKD, that eliminates the need for transmission of a high-power local oscillator between the communicating parties. In this protocol, each signal pulse is accompanied by a reference pulse (or a pair of twin reference pulses), used to align Alice’s and Bob’s measurement bases. The method of phase estimation and compensation based on the reference pulse measurement can be viewed as a quantum analog of intradyne detection used in classical coherent communication, which extracts the phase information from the modulated signal. We present a proof-of-principle, fiber-based experimental demonstration of the protocol and quantify the expected secret key rates by expressing them in terms of experimental parameters. Our analysis of the secret key rate fully takes into account the inherent uncertainty associated with the quantum nature of the reference pulse(s) and quantifies the limit at which the theoretical key rate approaches that of the respective conventional protocol that requires local oscillator transmission. The self-referenced protocol greatly simplifies the hardware required for CV-QKD, especially for potential integrated photonics implementations of transmitters and receivers, with minimum sacrifice of performance. As such, it provides a pathway towards scalable integrated CV-QKD transceivers, a vital step towards large-scale QKD networks.

  14. An investigation of DUA caching strategies for public key certificates

    SciTech Connect (OSTI)

    Cheung, T.C.

    1993-11-01

    Internet Privacy Enhanced Mail (PEM) provides security services to users of Internet electronic mail. PEM is designed with the intention that it will eventually obtain public key certificates from the X.500 directory service. However, such a capability is not present in most PEM implementations today. While the prevalent PEM implementation uses a public key certificate-based strategy, certificates are mostly distributed via e-mail exchanges, which raises several security and performance issues. In this thesis research, we changed the reference PEM implementation to make use of the X.500 directory service instead of local databases for public key certificate management. The thesis discusses some problems with using the X.500 directory service, explores the relevant issues, and develops an approach to address them. The approach makes use of a memory cache to store public key certificates. We implemented a centralized cache server and addressed the denial-of-service security problem that is present in the server. In designing the cache, we investigated several cache management strategies. One result of our study is that the use of a cache significantly improves performance. Our research also indicates that security incurs extra performance cost. Different cache replacement algorithms do not seem to yield significant performance differences, while delaying dirty-writes to the backing store does improve performance over immediate writes.

  15. Small Modular Reactors - Key to Future Nuclear Power

    Broader source: Energy.gov (indexed) [DOE]

    Small Modular Reactors - Key to Future Nuclear Power Generation in the U.S. 1,2 Robert Rosner ... b,c Wind (On-shore) 90 9 Solar PV 180 18 Solar Thermal 250 25 Biomass 90-180 9-18 a. ...

  16. [CII] dynamics in the S140 region

    SciTech Connect (OSTI)

    Dedes, C.; Rllig, M.; Okada, Y.; Ossenkopf, V.; Mookerjea, B.; Collaboration: WADI Team

    2015-01-22

    We report the observation of [C II] emission in a cut through the S140 region together with single pointing observations of several molecular tracers, including hydrides, in key regions of the photon-dominated region (PDR) and molecular cloud [1]. At a distance of 910 pc, a BOV star ionizes the edge of the molecular cloud L1204, creating S140. In addition, the dense molecular cloud hosts a cluster of embedded massive young stellar objects only 75' from the H II region [e.g. 2, 3]. We used HIFI on Herschel to observe [CII] in a strip following the direction of the impinging radiation across the ionisation front and through the cluster of embedded YSOs. With [C II], we can trace the ionising radiation and, together with the molecular tracers such as CO isotopologues and HCO{sup +}, study the dynamical processes in the region. Combining HIFIs high spectral resolution data with ground based molecular data allows us to study the dynamics and excitation conditions both in the ionization front and the dense molecular star forming region and model their physical conditions [4].

  17. Energy Efficiency as a Resource Regional Report: Midwest Region

    SciTech Connect (OSTI)

    Glatt, Sandy; Harry, Ryan; Shields, Garrett

    2010-06-25

    This Industrial Technologies Program report identifies the amount of energy efficiency potential within key manufacturing industries in the Midwest

  18. Energy Efficiency as a Resource Regional Report: South Region

    SciTech Connect (OSTI)

    Glatt, Sandy; Harry, Ryan; Shields, Garrett

    2010-06-25

    This Industrial Technologies Program report identifies the amount of energy efficiency potential within key manufacturing industries in the South.

  19. Regional Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January » Regional Science Bowl Regional Science Bowl WHEN: Jan 23, 2016 8:00 AM - 5:00 PM WHERE: Highland High School 4700 Coal SE, Albuquerque, NM CONTACT: Janelle Vigil-Maestas (505) 665-4329 CATEGORY: Community INTERNAL: Calendar Login Event Description Five teams from Northern New Mexico area schools are among 16 participating in the middle school Regional Science Bowl competition. Northern area teams participating are from Los Alamos, Española, Cuba and Santa Fe. The winning team at this

  20. Evolution of Florida Bay islands from a supratidal precursor: evidence from westernmost Bob Allen Key and Sid Key

    SciTech Connect (OSTI)

    Quinn, T.M.; Merriam, D.F.

    1988-05-01

    Cores from the interior portions of westernmost Bob Allen Key and Sid Key document island nucleation from a supratidal precursor developed on a paralic peat deposit; whereas cores from exterior portions of these islands document development of marine mudbanks, progradation or colonization by mangroves, and supratidal sedimentation. The supratidal precursor beneath these islands consists of eroded remnants of coastal tidal flats or local topographic highs that remained supratidal throughout the Holocene sea-level rise. Sedimentologic and biostratigraphic evidence suggest erosion of mangroves by storms or inundation of mangroves by storm deposits is a common precursor to subsequent sediment aggradation on both islands. If other Florida Bay islands develop from mangrove colonization of marine mudbanks, then data from westernmost Bob Allen Key and Sid Key indicate that nucleation from a supratidal precursor and mangrove colonization of marine mudbanks are both viable mechanisms for island initiation. The absence of evidence of a supratidal nucleus beneath an island can result from (a) island migration and subsequent erosion or (b) insufficient sampling density. Stratigraphic data from Florida Bay are insufficient to discriminate between the relative importance of these two models of island evolution; the authors contend that any model of the evolution of Florida Bay islands must incorporate island nucleation from a supratidal precursor as a viable mechanism for island evolution.

  1. Regional Carbon Sequestration Partnerships

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE has created a network of seven Regional Carbon Sequestration Partnerships (RCSPs) to help develop the technology, infrastructure, and regulations to implement large-scale CO2 storage (also...

  2. Delineating coal market regions

    SciTech Connect (OSTI)

    Solomon, B.D.; Pyrdol, J.J.

    1986-04-01

    This study addresses the delineation of US coal market regions and their evolution since the 1973 Arab oil embargo. Dichotomizing into compliance (low sulfur) and high sulfur coal deliveries, market regions are generated for 1973, 1977, and 1983. Focus is restricted to steam coal shipments to electric utilities, which currently account for over 80% of the total domestic market. A two-stage method is used. First, cluster analyses are performed on the origin-destination shipments data to generate baseline regions. This is followed by multiple regression analyses on CIF delivered price data for 1983. Sensitivity analysis on the configuration of the regions is also conducted, and some thoughts on the behavior of coal markets conclude the paper. 37 references, 6 figures, 2 tables.

  3. CEMI Southeast Regional Summit

    Broader source: Energy.gov [DOE]

    As part of the Clean Energy Manufacturing Initiative (CEMI), the U.S. Department of Energy (DOE) organizes regional summits around the country to expand its partnerships, share resources and...

  4. Regional Standards Enforcement

    Broader source: Energy.gov [DOE]

    Central air conditioners are now subject to a base national standard in the North and different, regional standards in the Southeast and Southwest. This page provides information about those standards and how DOE enforces them.

  5. Public-key data authentication for treaty verification

    SciTech Connect (OSTI)

    Draelos, T.J.; Goldsmith, S.Y.

    1992-08-01

    A public-key Treaty Data Authentication Module (TDAM) based on the National Institute of Standards and Technology (NIST) Digital Signature Standard (DSS) has been developed to support treaty verification systems. The TDAM utilizes the Motorola DSP56001 Digital Signal Processor as a coprocessor and supports both the STD Bus and PC-AT Bus platforms. The TDAM is embedded within an Authenticated Data Communication Subsystem (ADCS) which provides transparent data authentication and communications, thereby concealing the details of securely authenticating and communicating compliance data and commands. The TDAM has been designed according to the NIST security guidelines for cryptographic modules. Public-key data authentication is important for support of both bilateral and multi-lateral treaties. 8 refs.

  6. Public-key data authentication for treaty verification

    SciTech Connect (OSTI)

    Draelos, T.J.; Goldsmith, S.Y.

    1992-01-01

    A public-key Treaty Data Authentication Module (TDAM) based on the National Institute of Standards and Technology (NIST) Digital Signature Standard (DSS) has been developed to support treaty verification systems. The TDAM utilizes the Motorola DSP56001 Digital Signal Processor as a coprocessor and supports both the STD Bus and PC-AT Bus platforms. The TDAM is embedded within an Authenticated Data Communication Subsystem (ADCS) which provides transparent data authentication and communications, thereby concealing the details of securely authenticating and communicating compliance data and commands. The TDAM has been designed according to the NIST security guidelines for cryptographic modules. Public-key data authentication is important for support of both bilateral and multi-lateral treaties. 8 refs.

  7. Method for adding nodes to a quantum key distribution system

    DOE Patents [OSTI]

    Grice, Warren P

    2015-02-24

    An improved quantum key distribution (QKD) system and method are provided. The system and method introduce new clients at intermediate points along a quantum channel, where any two clients can establish a secret key without the need for a secret meeting between the clients. The new clients perform operations on photons as they pass through nodes in the quantum channel, and participate in a non-secret protocol that is amended to include the new clients. The system and method significantly increase the number of clients that can be supported by a conventional QKD system, with only a modest increase in cost. The system and method are compatible with a variety of QKD schemes, including polarization, time-bin, continuous variable and entanglement QKD.

  8. Secure password-based authenticated key exchange for web services

    SciTech Connect (OSTI)

    Liang, Fang; Meder, Samuel; Chevassut, Olivier; Siebenlist, Frank

    2004-11-22

    This paper discusses an implementation of an authenticated key-exchange method rendered on message primitives defined in the WS-Trust and WS-SecureConversation specifications. This IEEE-specified cryptographic method (AuthA) is proven-secure for password-based authentication and key exchange, while the WS-Trust and WS-Secure Conversation are emerging Web Services Security specifications that extend the WS-Security specification. A prototype of the presented protocol is integrated in the WSRF-compliant Globus Toolkit V4. Further hardening of the implementation is expected to result in a version that will be shipped with future Globus Toolkit releases. This could help to address the current unavailability of decent shared-secret-based authentication options in the Web Services and Grid world. Future work will be to integrate One-Time-Password (OTP) features in the authentication protocol.

  9. CEMI Southeast Regional Summit Breakout Sessions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakout Sessions CEMI Southeast Regional Summit Breakout Sessions The following breakout sessions will take place at the CEMI Southeast Regional Summit at 3:00 P.M. on July 9, 2015 at the Renaissance Atlanta Midtown Hotel in Atlanta, Georgia. At these breakout sessions, senior U.S. Department of Energy officials will lead discussions focused on key clean energy and advanced manufacturing topic areas. The breakout sessions will offer an opportunity for attendees to actively engage in the

  10. NREL Scientists Find Key Function for Ferredoxins in Algae Hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Production - News Releases | NREL Scientists Find Key Function for Ferredoxins in Algae Hydrogen Production Two of six iron-rich proteins shown to have role in algae metabolism; discovery could lead to enhanced hydrogen production February 10, 2014 Scientists at the Energy Department's National Renewable Energy Laboratory have demonstrated that just two of six iron-sulfur-containing ferredoxins in a representative species of algae promote electron transfers to and from hydrogenases. The

  11. Researchers find potential key for unlocking biomass energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unlocking biomass energy Researchers find potential key for unlocking biomass energy Potential pretreatment method that can make plant cellulose five times more digestible by enzymes that convert it into ethanol, a useful biofuel. July 20, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new

  12. Sandia completes major overhaul of key nuclear weapons test facilities |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) completes major overhaul of key nuclear weapons test facilities Tuesday, May 13, 2014 - 2:46pm Sandia National Laboratories recently completed the renovation of five large-scale test facilities that are crucial to ensuring the safety and reliability of the nation's nuclear weapons systems. The work supports Sandia's ongoing nuclear stockpile modernization work on the B61-12 and W88 Alt, assessments of current stockpile systems, and test and

  13. PPPL physicists win supercomputing time to simulate key energy and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    astrophysical phenomena | Princeton Plasma Physics Lab physicists win supercomputing time to simulate key energy and astrophysical phenomena By John Greenwald January 8, 2013 Tweet Widget Google Plus One Share on Facebook Gallery: Three teams led by scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have won major blocks of time on two of the world's most powerful supercomputers. Two of the projects seek to advance the development of nuclear fusion

  14. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric CO2 and decrease fossil fuel consumption. The principal difficulty in this process is that

  15. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric CO2 and decrease fossil fuel consumption. The principal difficulty in this process is that

  16. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric CO2 and decrease fossil fuel consumption. The principal difficulty in this process is that

  17. High Pressure PEM Electrolysis: Status, Key Issues, and Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Pressure PEM Electrolysis Status, Key Issues, and Challenges Electrolytic Hydrogen Production Workshop NREL, Golden, Colorado Monjid Hamdan Director of Engineering Giner, Inc. 89 Rumford Ave, Newton, Ma. 02466 February 27-28 th , 2014 Advantages of High Pressure PEM Electrolysis  Eliminates one or more stages of mechanical compression  Reduces system complexity  Lower drying requirements  Low maintenance  No moving parts  No contaminants  Permits hydrogen generation at

  18. President Obama Announces More Key Administration Posts | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy December 10, 2010 - 12:00am Addthis WASHINGTON - Today, President Barack Obama announced his intent to nominate the following individuals to key Administration posts: Peter B. Lyons, Assistant Secretary for Nuclear Energy, Department of Energy Denise E. O'Donnell, Director of the Bureau of Justice Assistance, Department of Justice Stephanie O'Sullivan, Principal Deputy Director of National Intelligence, Directorate of National Intelligence David Shear, Ambassador to the Socialist

  19. A Key Enzyme to the Potency of an Anticancer Agent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Key Enzyme to the Potency of an Anticancer Agent Print Incorporation of halogen atoms into drug molecules often increases biological activity. This is the case with salinosporamide A (sal A), a natural product from the marine bacterium Salinispora tropica that is 500 times more active than sal B, its nonchlorinated analog. Sal A is in phase I human clinical trials for the treatment of multiple myeloma and solid tumors. A group of researchers, using diffraction data collected at ALS Beamline

  20. Binding Behavior of Dopamine Transporter Key to Understanding Chemical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactions in the Brain Binding Behavior of Dopamine Transporter Key to Understanding Chemical Reactions in the Brain Print Most people have heard of adrenaline, the chemical that causes the "fight or flight" reaction in humans. Most people have also heard of the chemical substances cocaine and methamphetamine, which also elicit a particular (perhaps desired) human response. What most people do not know is that the same receptors in the human brain recognize the natural, or

  1. Binding Behavior of Dopamine Transporter Key to Understanding Chemical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactions in the Brain Binding Behavior of Dopamine Transporter Key to Understanding Chemical Reactions in the Brain Print Most people have heard of adrenaline, the chemical that causes the "fight or flight" reaction in humans. Most people have also heard of the chemical substances cocaine and methamphetamine, which also elicit a particular (perhaps desired) human response. What most people do not know is that the same receptors in the human brain recognize the natural, or

  2. Binding Behavior of Dopamine Transporter Key to Understanding Chemical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactions in the Brain Binding Behavior of Dopamine Transporter Key to Understanding Chemical Reactions in the Brain Print Most people have heard of adrenaline, the chemical that causes the "fight or flight" reaction in humans. Most people have also heard of the chemical substances cocaine and methamphetamine, which also elicit a particular (perhaps desired) human response. What most people do not know is that the same receptors in the human brain recognize the natural, or

  3. A Key Enzyme to the Potency of an Anticancer Agent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Key Enzyme to the Potency of an Anticancer Agent Print Incorporation of halogen atoms into drug molecules often increases biological activity. This is the case with salinosporamide A (sal A), a natural product from the marine bacterium Salinispora tropica that is 500 times more active than sal B, its nonchlorinated analog. Sal A is in phase I human clinical trials for the treatment of multiple myeloma and solid tumors. A group of researchers, using diffraction data collected at ALS Beamline

  4. A Key Enzyme to the Potency of an Anticancer Agent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Key Enzyme to the Potency of an Anticancer Agent Print Incorporation of halogen atoms into drug molecules often increases biological activity. This is the case with salinosporamide A (sal A), a natural product from the marine bacterium Salinispora tropica that is 500 times more active than sal B, its nonchlorinated analog. Sal A is in phase I human clinical trials for the treatment of multiple myeloma and solid tumors. A group of researchers, using diffraction data collected at ALS Beamline

  5. A Key Enzyme to the Potency of an Anticancer Agent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Key Enzyme to the Potency of an Anticancer Agent Print Incorporation of halogen atoms into drug molecules often increases biological activity. This is the case with salinosporamide A (sal A), a natural product from the marine bacterium Salinispora tropica that is 500 times more active than sal B, its nonchlorinated analog. Sal A is in phase I human clinical trials for the treatment of multiple myeloma and solid tumors. A group of researchers, using diffraction data collected at ALS Beamline

  6. President Obama Announces More Key Administration Posts | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy April 17, 2009 - 12:00am Addthis WASHINGTON, DC - Today, President Barack Obama announced his intent to nominate the following individuals for key administration posts: Christine M. Griffin, Deputy Director of Office of Personnel Management; Kevin Concannon, Under Secretary for Food, Nutrition and Consumer Services, United States Department of Agriculture; Rajiv Shah, Under Secretary for Research, Education, and Economics, United States Department of Agriculture; Michael Nacht,

  7. President Obama Announces More Key Administration Posts | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy December 9, 2009 - 12:00am Addthis WASHINGTON - Today, President Barack Obama announced his intent to nominate the following individuals to key administration posts: Patricia A. Hoffman, Assistant Secretary for Electricity Delivery and Energy Reliability, Department of Energy Mari Del Carmen Aponte, Ambassador to the Republic of El Salvador, Department of State Donald E. Booth, Ambassador to the Federal Democratic Republic of Ethiopia, Department of State Larry Persily, Federal

  8. President Obama Announces More Key Administration Posts | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy January 29, 2010 - 12:00am Addthis THE WHITE HOUSE Office of the Press Secretary WASHINGTON - Today, President Barack Obama announced his intent to nominate the following individuals to key administration posts: Jeffrey A. Lane, Assistant Secretary for Congressional and Intergovernmental Affairs, Department of Energy Larry Robinson, Assistant Secretary of Commerce (Conservation and Management), NOAA, Department of Commerce Paul Steven Miller, Governor, Board of Governors of the United

  9. President Obama Announces More Key Administration Posts | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy August 2, 2011 - 9:20pm Addthis WASHINGTON - Today, President Barack Obama announced his intent to nominate the following individuals to key Administration posts: Ashton B. Carter - Nominee for Deputy Secretary of Defense, Department of Defense I. Charles McCullough III - Inspector General of the Intelligence Community, Office of the Director of National Intelligence Ernest Mitchell, Jr. - Administrator, United States Fire Administration, Federal Emergency Management Agency,

  10. LANL breaks ground on key sediment control project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sediment control project LANL breaks ground on key sediment control project Called "grade-control" structures, the approximately $2 million features are up to eight feet high and made of rocks packed tightly into wire enclosures. November 5, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics

  11. 2015 Key Wind Program and National Laboratory Accomplishments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Program and National Laboratory Accomplishments 2015 Key Wind Program and National Laboratory Accomplishments | 1 | Powering the Energy Revolution through Wind Evolution The U.S. Department of Energy (DOE) Wind Program is committed to helping the nation secure cost-competitive sources of renewable energy through the development and deployment of innovative wind power technologies. By investing in improvements to wind plant design, technology development, and operation as well as developing

  12. TEC Working Group Topic Groups Rail Key Documents Planning Subgroup |

    Office of Environmental Management (EM)

    Department of Energy Planning Subgroup TEC Working Group Topic Groups Rail Key Documents Planning Subgroup Planning Subgroup Rail Planning Timeline (135.57 KB) Benchmarking Project: AREVA Trip Report (651.92 KB) More Documents & Publications TEC Meeting Summaries - July 2007 Evaluation of Shortline Railroads & SNF/HLW Rail Shipment Inspections Tasked for the Transportation of Spent Nuclear Fuel Federal Railroad Administration

  13. Transformational Energy Action Management (TEAM) Wireless Energy Efficiency Keys Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by Transformational Energy Action Management (TEAM) Wireless Energy Efficiency Keys Initiative *Ways of Using Wireless Technology to Help You Reduce Energy Usage at your Facility Together with our industry partners, we strive to: * Accelerate adoption of the many energy-efficient technologies and practices available today * Conduct vigorous technology innovation to radically improve future energy diversity, resource efficiency, and carbon mitigation * Promote a corporate culture of energy

  14. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric CO2 and decrease fossil fuel consumption. The principal difficulty in this process is that

  15. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric CO2 and decrease fossil fuel consumption. The principal difficulty in this process is that

  16. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric CO2 and decrease fossil fuel consumption. The principal difficulty in this process is that

  17. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric CO2 and decrease fossil fuel consumption. The principal difficulty in this process is that

  18. Small Electric Voltage Alters Conductivity in Key Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Voltage Alters Conductivity in Key Materials - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste

  19. SEC L_Attach G_Key Personnel Cost Sheet

    National Nuclear Security Administration (NNSA)

    L, Attachment G - Management Team Cost Sheet Definitions of items to be included in the worksheet Name Title Key Personnel (Y/N) Reimbursable Annual Base Salary Reimbursable Incentive Pay and bonuses Reimbursable Deferred compensation Reimbursable Employer contributions to Employee Stock Ownership Plans (ESOPs) Reimbursable Employer Contributions to Defined Contribution Pension Plans Current Annual Base Salary Current Total Annual Compensation An ESOP is a stock bonus plan designed to invest

  20. NNSA Administrator, Three Lab Directors Tour Key Weapons Facility |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) Administrator, Three Lab Directors Tour Key Weapons Facility May 08, 2014 ALBUQUERQUE, N.M. - The Administrator of the National Nuclear Security Administration (NNSA), Gen. Frank G. Klotz, and the directors of Sandia, Los Alamos, and Lawrence Livermore national laboratories met today in Albuquerque, N.M., and toured a recently-completed facility at Sandia designed to ensure the continued stewardship of the U.S. nuclear deterrent without

  1. Key Parameters Affecting DPF Performance Degradation and Impact on Lifetime

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy | Department of Energy Parameters Affecting DPF Performance Degradation and Impact on Lifetime Fuel Economy Key Parameters Affecting DPF Performance Degradation and Impact on Lifetime Fuel Economy Summarizes latest findings on impact of specific parameters affecting ash-related diesel particulate filter performance degradation and information useful to enhance performance and extend service life deer11_sappok.pdf (3.32 MB) More Documents & Publications Characteristics and

  2. Binding Behavior of Dopamine Transporter Key to Understanding Chemical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactions in the Brain Binding Behavior of Dopamine Transporter Key to Understanding Chemical Reactions in the Brain Print Most people have heard of adrenaline, the chemical that causes the "fight or flight" reaction in humans. Most people have also heard of the chemical substances cocaine and methamphetamine, which also elicit a particular (perhaps desired) human response. What most people do not know is that the same receptors in the human brain recognize the natural, or

  3. Key management and encryption under the bounded storage model.

    SciTech Connect (OSTI)

    Draelos, Timothy John; Neumann, William Douglas; Lanzone, Andrew J.; Anderson, William Erik

    2005-11-01

    There are several engineering obstacles that need to be solved before key management and encryption under the bounded storage model can be realized. One of the critical obstacles hindering its adoption is the construction of a scheme that achieves reliable communication in the event that timing synchronization errors occur. One of the main accomplishments of this project was the development of a new scheme that solves this problem. We show in general that there exist message encoding techniques under the bounded storage model that provide an arbitrarily small probability of transmission error. We compute the maximum capacity of this channel using the unsynchronized key-expansion as side-channel information at the decoder and provide tight lower bounds for a particular class of key-expansion functions that are pseudo-invariant to timing errors. Using our results in combination with Dziembowski et al. [11] encryption scheme we can construct a scheme that solves the timing synchronization error problem. In addition to this work we conducted a detailed case study of current and future storage technologies. We analyzed the cost, capacity, and storage data rate of various technologies, so that precise security parameters can be developed for bounded storage encryption schemes. This will provide an invaluable tool for developing these schemes in practice.

  4. TEC Working Group Topic Groups Manual Review Key Documents | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Manual Review Key Documents TEC Working Group Topic Groups Manual Review Key Documents Key Documents Transportation Practices Manual (DOE M 460) - March 8, 2006 (438.51 KB) More Documents & Publications DOE Shipment Activities: What We Accomplished and a Look Forward TEC Working Group Topic Groups Section 180(c) Key Documents TEC Working Group Topic Groups Rail Key Documents

  5. Projected refined product balances in key Latin American countries: A preliminary examination

    SciTech Connect (OSTI)

    1996-06-01

    Over the years, the East-West Center (EWC) has developed considerable expertise in refinery modeling, especially in the area of forecasting product balances for countries, given planned capacity changes, changes in product demand, changes in crude slates, and changes in product specifications. This expertise has been applied on an ongoing basis to the major refiners in the Middle East and the Asia-Pacific region, along with the US West Coast as region in its own right. Refinery modeling in these three areas has been ongoing for nearly 15 years at the Center, and the tools and information sources are now well developed. To date, the EWC has not applied these tools to Latin America. Although research on Latin America has been an ongoing area of concern at the Center in recent years, the information gathered to date is still not of the level of detail nor quality available for other areas. The modeling efforts undertaken in this report are of a ``baseline`` nature, designed to outline the major issues, attempt a first cut at emerging product balances, and, above all, to elicit commentary from those directly involved in the oil industry in the key countries modeled. Our experience in other regions has shown that it takes a few years dialogue with refiners and government planner in individual countries to develop a reliable database, as well as the insights into operational constraints and practices that make accurate modeling possible. This report is no more than a first step down the road.

  6. Northeast Regional Biomass Program

    SciTech Connect (OSTI)

    Lusk, P.D.

    1992-12-01

    The Northeast Regional Biomass Program has been in operation for a period of nine years. During this time, state managed programs and technical programs have been conducted covering a wide range of activities primarily aim at the use and applications of wood as a fuel. These activities include: assessments of available biomass resources; surveys to determine what industries, businesses, institutions, and utility companies use wood and wood waste for fuel; and workshops, seminars, and demonstrations to provide technical assistance. In the Northeast, an estimated 6.2 million tons of wood are used in the commercial and industrial sector, where 12.5 million cords are used for residential heating annually. Of this useage, 1504.7 mw of power has been generated from biomass. The use of wood energy products has had substantial employment and income benefits in the region. Although wood and woodwaste have received primary emphasis in the regional program, the use of municipal solid waste has received increased emphasis as an energy source. The energy contribution of biomass will increase as potentia users become more familiar with existing feedstocks, technologies, and applications. The Northeast Regional Biomass Program is designed to support region-specific to overcome near-term barriers to biomass energy use.

  7. How Do I Use Renewable Energy in My Region?

    SciTech Connect (OSTI)

    Not Available

    2005-11-01

    NREL can asses renewable energy resource information and integrate it with data using geographic information systems (GIS) and interface the data with key analytical models. Planners and energy developers use these integrated resource assessments to make decisions about the feasibility, cost-effectiveness, and risks of developing projects in specific locations and for regional planning.

  8. NV PFA Regional Data

    SciTech Connect (OSTI)

    James Faulds

    2015-10-28

    This project focused on defining geothermal play fairways and development of a detailed geothermal potential map of a large transect across the Great Basin region (96,000 km2), with the primary objective of facilitating discovery of commercial-grade, blind geothermal fields (i.e. systems with no surface hot springs or fumaroles) and thereby accelerating geothermal development in this promising region. Data included in this submission consists of: structural settings (target areas, recency of faulting, slip and dilation potential, slip rates, quality), regional-scale strain rates, earthquake density and magnitude, gravity data, temperature at 3 km depth, permeability models, favorability models, degree of exploration and exploration opportunities, data from springs and wells, transmission lines and wilderness areas, and published maps and theses for the Nevada Play Fairway area.

  9. THEORY INTO PRACTICE PAG REGIONAL WORKFORCE STUDY PREPARED FOR THE SRS COMMUNITY REUSE ORGANIZATION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    THEORY INTO PRACTICE PAG REGIONAL WORKFORCE STUDY PREPARED FOR THE SRS COMMUNITY REUSE ORGANIZATION APRIL 2015 AIKEN ● ALLENDALE ● BARNWELL ● COLUMBIA ● RICHMOND CONTENTS Introduction ................................................................................................................................................. 1 Approach ................................................................................................................................................ 1 Key

  10. The makings of a regional transmission group

    SciTech Connect (OSTI)

    Peterson, H.

    1994-04-15

    The Southwest Regional Transmission Association (SWRTA) plans to file this month at the Federal Energy Regulatory Commission (FERC) for recognition as a regional transmission group (RTG), pursuant to the FERC's July 1993 policy statement on RTGs. As the provision of electricity becomes less regulated and more competitive, many industry observers expect RTGs to play a key role in increasing the efficiency of our nation's electricity supply system. What exactly is an RTG There are as many definitions as there are interested parties. SWRTA's working group has spent over two years turning an idea into an RTG. Along the way they have learned a few important things about the FERC, congressional intent, the amended Federal Power Act, the dynamics of large groups, and fairness. This article describes the creation of the SWRTA RTG.

  11. Decoy-state quantum key distribution using homodyne detection

    SciTech Connect (OSTI)

    Shams Mousavi, S. H.; Gallion, P.

    2009-07-15

    In this paper, we propose to use the decoy-state technique to improve the security of the quantum key distribution (QKD) systems based on homodyne detection against the photon number splitting attack. The decoy-state technique is a powerful tool that can significantly boost the secure transmission range of the QKD systems. However, it has not yet been applied to the systems that use homodyne detection. After adapting this theory to the systems based on homodyne detection, we quantify the secure performance and transmission range of the resulting system.

  12. Investing in Oil and Natural Gas A Few Key Issues

    U.S. Energy Information Administration (EIA) Indexed Site

    Strategic Advisors in Global Energy Strategic Advisors in Global Energy Strategic Advisors in Global Energy Investing in Oil and Natural Gas: A Few Key Issues Prepared for EIA Conference Susan Farrell, Senior Director PFC Energy April 8, 2009 Investing in Oil and Gas| PFC Energy| Page 2 The Top 20 IOCs and Top 20 NOCs Account for Over Half of E&P Spend Source: PFC Energy, Global E&P Surveys Investing in Oil and Gas| PFC Energy| Page 3 Oil Prices Rose, But So Did Costs + 52% $0 $20 $40

  13. Membranes Key to Biorefinery Success | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Miming living organisms processes for biorefineries Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Miming living organisms processes for biorefineries Jimmy Lopez 2015.09.10 Membranes play a key role in the human body, filtering out bacteria and viruses and also ensuring cells absorb essential nutrients. They are

  14. Renewable: A key component of our global energy future

    SciTech Connect (OSTI)

    Hartley, D.

    1995-12-31

    Inclusion of renewable energy sources in national and international energy strategies is a key component of a viable global energy future. The global energy balance is going to shift radically in the near future brought about by significant increases in population in China and India, and increases in the energy intensity of developing countries. To better understand the consequences of such global shifts in energy requirements and to develop appropriate energy strategies to respond to these shifts, we need to look at the factors driving choices among supply options by geopolitical consumers and the impact these factors can have on the future energy mix.

  15. Microsoft Word - fact sheet alternatives and key findings 090214.docx

    National Nuclear Security Administration (NNSA)

    Alternatives and Key Findings of the Draft SEIS ALTERNATIVES The Draft SEIS evaluates a range of reactor site and tritium production capacity alternatives. Seven alternatives are analyzed in the Draft SEIS:  Alternative 1 Watts Bar site only (2,500 TPBARs maximum). This is the preferred alternative.  Alternative 2 Sequoyah site only (2,500 TPBARs maximum).  Alternative 3 Both Watts Bar and Sequoyah sites (2,500 TPBARs maximum).  Alternative 4 Watts Bar site only (5,000 TPBARs

  16. Numerical analysis of decoy state quantum key distribution protocols

    SciTech Connect (OSTI)

    Harrington, Jim W; Rice, Patrick R

    2008-01-01

    Decoy state protocols are a useful tool for many quantum key distribution systems implemented with weak coherent pulses, allowing significantly better secret bit rates and longer maximum distances. In this paper we present a method to numerically find optimal three-level protocols, and we examine how the secret bit rate and the optimized parameters are dependent on various system properties, such as session length, transmission loss, and visibility. Additionally, we show how to modify the decoy state analysis to handle partially distinguishable decoy states as well as uncertainty in the prepared intensities.

  17. Pennsylvania Regional Infrastructure Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CTC Team 1 Pennsylvania Regional Infrastructure Project Presentation by: The Concurrent Technologies Corporation (CTC) Team January 6, 2004 The CTC Team 2 Presentation Outline Introduction of CTC Team CTC Background Technical Approach - CTC Team Member Presentations Conclusions The CTC Team 3 The CTC Project Team Concurrent Technologies Corporation Program Management and Coordination Hydrogen Delivery and Storage Material Development Hydrogen Sensors Concurrent Technologies Corporation Program

  18. Regional Science Bowl Coordinators | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Regional Science Bowl Coordinators National Science Bowl® (NSB) NSB Home About Regional Science Bowl Coordinators Alumni Historical Information - National Finals National Science Bowl Logos Regional Competitions National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us About Regional Science Bowl

  19. Minnesota Regional Science Bowl for Middle School Students | U.S. DOE

    Office of Science (SC) Website

    Office of Science (SC) Minnesota Regional Science Bowl for Middle School Students National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School

  20. New York Capital District High School Regional Science Bowl | U.S. DOE

    Office of Science (SC) Website

    Office of Science (SC) New York Capital District High School Regional Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School

  1. New York State Capital District Regional Middle School Science Bowl | U.S.

    Office of Science (SC) Website

    DOE Office of Science (SC) New York State Capital District Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle

  2. University of Texas Rio Grande Valley Regional High School Science Bowl |

    Office of Science (SC) Website

    U.S. DOE Office of Science (SC) University of Texas Rio Grande Valley Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us

  3. University of Texas Rio Grande Valley Regional Middle School Science Bowl |

    Office of Science (SC) Website

    U.S. DOE Office of Science (SC) University of Texas Rio Grande Valley Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email

  4. Breakeven Cost for Residential Photovoltaics in the United States: Key Drivers and Sensitivities (Report Summary) (Presentation)

    SciTech Connect (OSTI)

    Denholm, P.; Margolis, R. M.; Ong, S.; Roberts, B.

    2009-12-01

    "Break-even cost" for photovoltaic (PV) technology is defined as the point where the cost of PV-generated electricity equals the cost of electricity purchased from the grid. Break-even cost is expressed in $/W of an installed system. Achieving break-even cost is a function of many variables. Consequently, break-even costs vary by location and time for a country, such as the United States, with a diverse set of resources, electricity prices, and other variables. In this presentation, we introduce an analysis of PV break-even costs for residential customers in the United States, including an evaluation of some of the key drivers of PV breakeven both regionally and over time. This presentation includes our methodology and presents results for both near-term residential breakeven costs(2009) and future market sensitivities of break-even costs (2015). See also the the report "Break-Even Cost for Residential Photovoltaics in the United States: Key Drivers and Sensitivities". Presentation for NREL/TP-6A2-45991.

  5. Sandia Energy - Key Hydrogen Report Now Available on OpenEnergyInfo...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Key Hydrogen Report Now Available on OpenEnergyInfo Wiki Site Home Energy CRF Facilities News Energy Efficiency News & Events Systems Analysis Systems Engineering Key Hydrogen...

  6. U-027: RSA Key Manager Appliance Session Logout Bug Fails to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROBLEM: RSA Key Manager Appliance Session Logout Bug Fails to Terminate Sessions. PLATFORM: RSA Key Manager Appliance 2.7 Service Pack 1 ABSTRACT: A remote authenticated...

  7. Automated Proactive Fault Isolation: A Key to Automated Commissioning

    SciTech Connect (OSTI)

    Katipamula, Srinivas; Brambley, Michael R.

    2007-07-31

    In this paper, we present a generic model for automated continuous commissioing and then delve in detail into one of the processes, proactive testing for fault isolation, which is key to automating commissioning. The automated commissioining process uses passive observation-based fault detction and diagnostic techniques, followed by automated proactive testing for fault isolation, automated fault evaluation, and automated reconfiguration of controls together to continuously keep equipment controlled and running as intended. Only when hard failures occur or a physical replacement is required does the process require human intervention, and then sufficient information is provided by the automated commissioning system to target manual maintenance where it is needed. We then focus on fault isolation by presenting detailed logic that can be used to automatically isolate faults in valves, a common component in HVAC systems, as an example of how automated proactive fault isolation can be accomplished. We conclude the paper with a discussion of how this approach to isolating faults can be applied to other common HVAC components and their automated commmissioning and a summary of key conclusions of the paper.

  8. Regions for Select Spot Prices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are used to represent the following regions: Region Gas Point Used Power Point Used New England Algonquin Citygate Massachusetts Hub (ISONE) New York City Transco Zone 6-NY...

  9. Introduction: Regional Dialogue Contract Templates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Introduction: Regional Dialogue Contract Templates October 17, 2007 1. Summary * BPA invites comments on the first draft of the Regional Dialogue Master Template by Friday,...

  10. Groundwater in the Regional Aquifer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Groundwater in the Regional Aquifer Groundwater in the Regional Aquifer LANL maintains an ... August 1, 2013 Conceptual model of water movement and geology at Los Alamos National ...

  11. Free-space quantum key distribution at night

    SciTech Connect (OSTI)

    Buttler, W.T.; Hughes, R.J.; Kwiat, P.G.; Lamoreaux, S.K.; Luther, G.G.; Morgan, G.L.; Nordholt, J.E.; Peterson, C.G.; Simmons, C.M.

    1998-09-01

    An experimental free-space quantum key distribution (QKD) system has been tested over an outdoor optical path of {approximately} 1 km under nighttime conditions at Los Alamos National Laboratory. This system employs the Bennett 92 protocol; in this paper, the authors give a brief overview of this protocol, and describe the experimental implementation of it. An analysis of the system efficiency is presented, as well as a description of the error detection protocol which employs a two-dimensional parity check scheme. Finally, the susceptibility of this system to eavesdropping by various techniques is determined, and the effectiveness of privacy amplification procedures is discussed. The conclusions are that free-space QKD is both effective and secure; possible applications include the rekeying of satellites in low earth orbit.

  12. TEC Working Group Topic Groups Routing Key Documents | Department of Energy

    Office of Environmental Management (EM)

    Key Documents TEC Working Group Topic Groups Routing Key Documents KEY DOCUMENTS Proposed Task Plan - Routing Topic Group (53.69 KB) More Documents & Publications TEC Working Group Topic Groups Routing Conference Call Summaries TEC Working Group Topic Groups Rail Key Documents TEC Meeting Summaries - September 2006

  13. Keys to Access: Argonne-INCREASE partnership opens doors to collaboration |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Key Terms Key Terms Three Door Keys data-key-571156_960_720.png Key Terms Low Vision: non-correctable reduced vision Blindness: lack of visual perception Hearing Impairment: full or partial decrease in the ability to detect or understand sounds Physical Impairment: a physical condition that permanently prevents normal body movement or control Cognitive Disabilities: difficulty with one or more types of mental tasks Argonne National Laboratory

    The INCREASE workshop gave visitors one-on-one

  14. Analysis of key safety metrics of thorium utilization in LWRs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ade, Brian J.; Bowman, Stephen M.; Worrall, Andrew; Powers, Jeffrey

    2016-04-08

    Here, thorium has great potential to stretch nuclear fuel reserves because of its natural abundance and because it is possible to breed the 232Th isotope into a fissile fuel (233U). Various scenarios exist for utilization of thorium in the nuclear fuel cycle, including use in different nuclear reactor types (e.g., light water, high-temperature gas-cooled, fast spectrum sodium, and molten salt reactors), along with use in advanced accelerator-driven systems and even in fission-fusion hybrid systems. The most likely near-term application of thorium in the United States is in currently operating light water reactors (LWRs). This use is primarily based on conceptsmore » that mix thorium with uranium (UO2 + ThO2) or that add fertile thorium (ThO2) fuel pins to typical LWR fuel assemblies. Utilization of mixed fuel assemblies (PuO2 + ThO2) is also possible. The addition of thorium to currently operating LWRs would result in a number of different phenomenological impacts to the nuclear fuel. Thorium and its irradiation products have different nuclear characteristics from those of uranium and its irradiation products. ThO2, alone or mixed with UO2 fuel, leads to different chemical and physical properties of the fuel. These key reactor safety–related issues have been studied at Oak Ridge National Laboratory and documented in “Safety and Regulatory Issues of the Thorium Fuel Cycle” (NUREG/CR-7176, U.S. Nuclear Regulatory Commission, 2014). Various reactor analyses were performed using the SCALE code system for comparison of key performance parameters of both ThO2 + UO2 and ThO2 + PuO2 against those of UO2 and typical UO2 + PuO2 mixed oxide fuels, including reactivity coefficients and power sharing between surrounding UO2 assemblies and the assembly of interest. The decay heat and radiological source terms for spent fuel after its discharge from the reactor are also presented. Based on this evaluation, potential impacts on safety requirements and identification of

  15. Colorado Regional Faults

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: Colorado Geological Survey (CGS) Publication Date: 2012 Title: Regional Faults Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the regional faults of Colorado Spatial Domain: Extent: Top: 4543192.100000 m Left: 144385.020000 m Right: 754585.020000 m Bottom: 4094592.100000 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  16. Key Geomechanics Issues at the Waste Isolation Pilot Plant Geomechanics

    SciTech Connect (OSTI)

    HANSEN,FRANCIS D.

    1999-09-01

    Mechanical and hydrological properties of rock salt provide excellent bases for geological isolation of hazardous materials. Regulatory compliance determinations for the Waste Isolation Pilot Plant (WIPP) stand as testament to the widely held conclusion that salt provides excellent isolation properties. The WIPP saga began in the 1950s when the U.S. National Academy of Sciences (NAS) recommended a salt vault as a promising solution to the national problem of nuclear waste disposal. For over 20 years, the Scientific basis for the NAS recommendation has been fortified by Sandia National Laboratories through a series of large scale field tests and laboratory investigations of salt properties. These scientific investigations helped develop a comprehensive understanding of salt's 4 reformational behavior over an applicable range of stresses and temperatures. Sophisticated constitutive modeling, validated through underground testing, provides the computational ability to model long-term behavior of repository configurations. In concert with advancement of the mechanical models, fluid flow measurements showed not only that the evaporite lithology was essentially impermeable but that the WIPP setting was hydrologically inactive. Favorable mechanical properties ensure isolation of materials placed in a salt geological setting. Key areas of the geomechanics investigations leading to the certification of WIPP are in situ experiments, laboratory tests, and shaft seal design.

  17. Key issues of ultraviolet radiation of OH at high altitudes

    SciTech Connect (OSTI)

    Zhang, Yuhuai; Wan, Tian; Jiang, Jianzheng; Fan, Jing

    2014-12-09

    Ultraviolet (UV) emissions radiated by hydroxyl (OH) is one of the fundamental elements in the prediction of radiation signature of high-altitude and high-speed vehicle. In this work, the OH A{sup 2}?{sup +}?X{sup 2}? ultraviolet emission band behind the bow shock is computed under the experimental condition of the second bow-shock ultraviolet flight (BSUV-2). Four related key issues are discussed, namely, the source of hydrogen element in the high-altitude atmosphere, the formation mechanism of OH species, efficient computational algorithm of trace species in rarefied flows, and accurate calculation of OH emission spectra. Firstly, by analyzing the typical atmospheric model, the vertical distributions of the number densities of different species containing hydrogen element are given. According to the different dominating species containing hydrogen element, the atmosphere is divided into three zones, and the formation mechanism of OH species is analyzed in the different zones. The direct simulation Monte Carlo (DSMC) method and the Navier-Stokes equations are employed to compute the number densities of the different OH electronically and vibrationally excited states. Different to the previous work, the trace species separation (TSS) algorithm is applied twice in order to accurately calculate the densities of OH species and its excited states. Using a non-equilibrium radiation model, the OH ultraviolet emission spectra and intensity at different altitudes are computed, and good agreement is obtained with the flight measured data.

  18. Do myoepithelial cells hold the key for breast tumorprogression?

    SciTech Connect (OSTI)

    Polyak, Kornelia; Hu, Min

    2005-11-18

    Mammary myoepithelial cells have been the foster child of breast cancer biology and have been largely ignored since they were considered to be less important for tumorigenesis than luminal epithelial cells from which most of breast carcinomas are thought to arise. In recent years as our knowledge in stem cell biology and the cellular microenvironment has been increasing myoepithelial cells are slowly starting to gain more attention. Emerging data raise the hypothesis if myoepithelial cells play a key role in breast tumor progression by regulating the in situ to invasive carcinoma transition and if myoepithelial cells are part of the mammary stem cell niche. Paracrine interactions between myoepithelial and luminal epithelial cells are known to be important for cell cycle arrest, establishing epithelial cell polarity, and inhibiting migration and invasion. Based on these functions normal mammary myoepithelial cells have been called ''natural tumor suppressors''. However, during tumor progression myoepithelial cells seem to loose these properties and eventually they themselves diminish as tumors become invasive. Better understanding of myoepithelial cell function and their role in tumor progression may lead to their exploitation for cancer therapeutic and preventative measures.

  19. Coal-Producing Region

    U.S. Energy Information Administration (EIA) Indexed Site

    . Coal Production by State (thousand short tons) Year to Date Coal-Producing Region and State January - March 2016 October - December 2015 January - March 2015 2016 2015 Percent Change Alabama 2,446 2,298 4,022 2,446 4,022 -39.2 Alaska 310 328 265 310 265 16.7 Arizona 1,335 1,376 1,755 1,335 1,755 -23.9 Arkansas 11 18 21 11 21 -48.0 Colorado 2,482 3,258 5,263 2,482 5,263 -52.8 Illinois 11,312 11,886 16,779 11,312 16,779 -32.6 Indiana 7,224 7,264 9,463 7,224 9,463 -23.7 Kansas 27 55 53 27 53

  20. Strengthening regional safeguards

    SciTech Connect (OSTI)

    Palhares, L.; Almeida, G.; Mafra, O.

    1996-08-01

    Nuclear cooperation between Argentina and Brazil has been growing since the early 1980`s and as it grew, so did cooperation with the US Department of Energy (DOE). The Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) was formed in December 1991 to operate the Common System of Accounting and Control of Nuclear Materials (SCCC). In April 1994, ABACC and the DOE signed an Agreement of Cooperation in nuclear material safeguards. This cooperation has included training safeguards inspectors, exchanging nuclear material measurement and containment and surveillance technology, characterizing reference materials, and studying enrichment plant safeguards. The goal of the collaboration is to exchange technology, evaluate new technology in Latin American nuclear facilities, and strengthen regional safeguards. This paper describes the history of the cooperation, its recent activities, and future projects. The cooperation is strongly supported by all three governments: the Republics of Argentina and Brazil and the United States.

  1. Mr. W. Librirzi Regional Superfund Office EPA Region II

    Office of Legacy Management (LM)

    W. Librirzi Regional Superfund Office EPA Region II 4th Floor 26 Federal Plaza New York, ... S. Lichtman, EPA R. Guimond, EPA C. Goddard, NYS bee: wo encls. V. De Carlo, PE-243 C. ...

  2. EIA cites importance of key world shipping routes

    SciTech Connect (OSTI)

    Not Available

    1994-03-07

    A disruption of crude oil or products shipments through any of six world chokepoints would cause a spike in oil prices, the US Energy Information Administration (EIA) warns. The strategic importance of each major shipping lane varies because of differing oil volumes and access to other transportation routes. But nearly half of the 66 million b/d of oil consumed worldwide flows through one or more of these key tanker routes, involving: 14 million b/d through the Strait of Hormuz from the Persian Gulf to the Gulf of Oman and Arabian Sea; 7 million b/d through the Strait of Malacca from the northern Indian Ocean into the South China Sea and Pacific Ocean; 1.6 million b/d through the Bosporus from the Black Sea to the Mediterranean Sea; 900,000 b/d through the Suez Canal from the Red Sea to the Mediterranean Sea; 600,000 b/d through Rotterdam Harbor from the North Sea to Dutch and German refineries on or near the Rhine River; and 500,000 b/d through the Panama Canal from the Pacific Ocean to the Caribbean Sea. In today's highly interdependent oil markets, the mere perception of less secure oil supplies is enough to boost oil prices, EIA said. Growing oil and product tanker traffic is increasing the likelihood of supply disruptions through oil arteries because of bad weather, tanker collisions, or acts of piracy, terrorism, or war. What's more, the increasing age of the world tanker fleet and dependability of navigational equipment could increase chances of accidents and, therefore, oil supply disruptions.

  3. Wireless power transmission: The key to solar power satellites

    SciTech Connect (OSTI)

    Nansen, R.H.

    1995-12-31

    In the years following the OPEC oil embargo of 1973--74, the US aggressively researched alternative energy options. Among those studied was the concept of Solar Power Satellites -- generating electricity in space from solar energy on giant satellites and sending the energy to the earth with wireless power transmission. Much has happened in the fifteen years since the studies were terminated. Maturing of the enabling technologies has provided much of the infrastructure to support the development of a commercial Solar Power Satellite program. All of this will reduce the cost by one to two orders of magnitude so development can now be undertaken by industry instead of relying on a massive government program. Solar Space Industries was formed to accomplish this goal. The basis of their development plan for Solar Power Satellites is to build a Ground Test Installation that will duplicate, in small scale on the earth, all aspects of the power generating and power transmission systems for the Solar Power Satellite concept except for the space environment and the range and size of the energy beam. Space operations issues will be separated from the power generation function and verified by testing using the NASA Space Station and Space Shuttle. Solar Space Industries` concept is to built a Ground Test Installation that couples an existing 100 kW terrestrial solar cell array, furnished by an interested utility, to a phased-array wireless power transmitter based on the subarray developed by William Brown and The Center for Space Power. Power will be transmitted over a 1 1/4 mile range to a receiving antenna (rectenna) and then fed into a commercial utility power grid. The objective is to demonstrate the complete function of the Solar Power Satellites, with the primary issue being the validation of practical wireless power transmission. The key features to demonstrate are; beam control, stability, steering, efficiency, reliability, cost, and safety.

  4. Southeast Regional Carbon Sequestration Partnership (SECARB)

    SciTech Connect (OSTI)

    Kenneth J. Nemeth

    2005-09-30

    The Southeast Regional Carbon Sequestration Partnership (SECARB) is a diverse partnership covering eleven states involving the Southern States Energy Board (SSEB) an interstate compact; regulatory agencies and/or geological surveys from member states; the Electric Power Research Institute (EPRI); academic institutions; a Native American enterprise; and multiple entities from the private sector. Figure 1 shows the team structure for the partnership. In addition to the Technical Team, the Technology Coalition, an alliance of auxiliary participants, in the project lends yet more strength and support to the project. The Technology Coalition, with its diverse representation of various sectors, is integral to the technical information transfer, outreach, and public perception activities of the partnership. The Technology Coalition members, shown in Figure 2, also provide a breadth of knowledge and capabilities in the multiplicity of technologies needed to assure a successful outcome to the project and serve as an extremely important asset to the partnership. The eleven states comprising the multi-state region are: Alabama; Arkansas; Florida; Georgia; Louisiana; Mississippi; North Carolina; South Carolina; Tennessee; Texas; and Virginia. The states making up the SECARB area are illustrated in Figure 3. The primary objectives of the SECARB project include: (1) Supporting the U.S. Department of Energy (DOE) Carbon Sequestration Program by promoting the development of a framework and infrastructure necessary for the validation and deployment of carbon sequestration technologies. This requires the development of relevant data to reduce the uncertainties and risks that are barriers to sequestration, especially for geologic storage in the SECARB region. Information and knowledge are the keys to establishing a regional carbon dioxide (CO{sub 2}) storage industry with public acceptance. (2) Supporting the President's Global Climate Change Initiative with the goal of reducing

  5. WEST COAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Larry Myer; Terry Surles; Kelly Birkinshaw

    2004-01-01

    The West Coast Regional Carbon Sequestration Partnership is one of seven partnerships which have been established by the US Department of Energy (DOE) to evaluate carbon dioxide capture, transport and sequestration (CT&S) technologies best suited for different regions of the country. The West Coast Region comprises Arizona, California, Nevada, Oregon, Washington, and the North Slope of Alaska. Led by the California Energy Commission, the West Coast Partnership is a consortium of over thirty five organizations, including state natural resource and environmental protection agencies; national labs and universities; private companies working on CO{sub 2} capture, transportation, and storage technologies; utilities; oil and gas companies; nonprofit organizations; and policy/governance coordinating organizations. In an eighteen month Phase I project, the Partnership will evaluate both terrestrial and geologic sequestration options. Work will focus on five major objectives: (1) Collect data to characterize major CO{sub 2} point sources, the transportation options, and the terrestrial and geologic sinks in the region, and compile and organize this data via a geographic information system (GIS) database; (2) Address key issues affecting deployment of CT&S technologies, including storage site permitting and monitoring, injection regulations, and health and environmental risks (3) Conduct public outreach and maintain an open dialogue with stakeholders in CT&S technologies through public meetings, joint research, and education work (4) Integrate and analyze data and information from the above tasks in order to develop supply curves and cost effective, environmentally acceptable sequestration options, both near- and long-term (5) Identify appropriate terrestrial and geologic demonstration projects consistent with the options defined above, and create action plans for their safe and effective implementation A kickoff meeting for the West Coast Partnership was held on Sept 30-Oct

  6. Lowest Engine-Out Emissions as the Key to the Future of the Heavy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lowest Engine-Out Emissions as the Key to the Future of the Heavy-Duty Diesel Engine: New Development Rersults Lowest Engine-Out Emissions as the Key to the Future of the ...

  7. Structures of Clamp-Loader Complexes Are Key to DNA Replication

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structures of Clamp-Loader Complexes Are Key to DNA Replication Structures of Clamp-Loader Complexes Are Key to DNA Replication Print Wednesday, 30 May 2012 00:00 DNA Replication:...

  8. Key wintertime meteorological features of the Grand Canyon and the Colorado Plateaus Basin

    SciTech Connect (OSTI)

    Whiteman, C.D.; Allwine, K.J.

    1992-06-01

    In the winter of 1989--1990 a major meteorological and air pollution experiment was conducted in the Colorado Plateaus Basin (Richards et al., 1991). The focus of the experiment, conducted by Arizona's Soft River Project, was to investigate the influence of three 750-MW coal-fired power plant units at the Navajo Generating Station near Page, Arizona, on visibility at Grand Canyon National Park. As part of the meteorological experiment, surface and upper air data were collected from multiple sites within the basin. This data set is the most comprehensive meteorological data set ever collected within the region, and the purpose of this paper is to briefly summarize the key wintertime meteorological features of the Colorado Plateaus Basin and the Grand Canyon, through which the basin drains, using analyses of the Winter Visibility Study data. Our analyses focused primarily on thermally driven circulations within the basin and the Grand Canyon, but we also investigated the surface energy budget that drives these circulations and the interactions between the thermal circulations and the overlying synoptic-scale flows.

  9. Key wintertime meteorological features of the Grand Canyon and the Colorado Plateaus Basin

    SciTech Connect (OSTI)

    Whiteman, C.D.; Allwine, K.J.

    1992-06-01

    In the winter of 1989--1990 a major meteorological and air pollution experiment was conducted in the Colorado Plateaus Basin (Richards et al., 1991). The focus of the experiment, conducted by Arizona`s Soft River Project, was to investigate the influence of three 750-MW coal-fired power plant units at the Navajo Generating Station near Page, Arizona, on visibility at Grand Canyon National Park. As part of the meteorological experiment, surface and upper air data were collected from multiple sites within the basin. This data set is the most comprehensive meteorological data set ever collected within the region, and the purpose of this paper is to briefly summarize the key wintertime meteorological features of the Colorado Plateaus Basin and the Grand Canyon, through which the basin drains, using analyses of the Winter Visibility Study data. Our analyses focused primarily on thermally driven circulations within the basin and the Grand Canyon, but we also investigated the surface energy budget that drives these circulations and the interactions between the thermal circulations and the overlying synoptic-scale flows.

  10. The generation of shared cryptographic keys through channel impulse response estimation at 60 GHz.

    SciTech Connect (OSTI)

    Young, Derek P.; Forman, Michael A.; Dowdle, Donald Ryan

    2010-09-01

    Methods to generate private keys based on wireless channel characteristics have been proposed as an alternative to standard key-management schemes. In this work, we discuss past work in the field and offer a generalized scheme for the generation of private keys using uncorrelated channels in multiple domains. Proposed cognitive enhancements measure channel characteristics, to dynamically change transmission and reception parameters as well as estimate private key randomness and expiration times. Finally, results are presented on the implementation of a system for the generation of private keys for cryptographic communications using channel impulse-response estimation at 60 GHz. The testbed is composed of commercial millimeter-wave VubIQ transceivers, laboratory equipment, and software implemented in MATLAB. Novel cognitive enhancements are demonstrated, using channel estimation to dynamically change system parameters and estimate cryptographic key strength. We show for a complex channel that secret key generation can be accomplished on the order of 100 kb/s.

  11. Secure Cryptographic Key Management System (CKMS) Considerations for Smart Grid Devices

    SciTech Connect (OSTI)

    Abercrombie, Robert K; Sheldon, Frederick T; Aldridge, Hal; Duren, Mike; Ricci, Tracy; Bertino, Elisa; Kulatunga, Athula; Navaratne, Uditha Sudheera

    2011-01-01

    In this paper, we examine some unique challenges associated with key management in the Smart Grid and concomitant research initiatives: 1) effectively model security requirements and their implementations, and 2) manage keys and key distribution for very large scale deployments such as Smart Meters over a long period of performance. This will set the stage to: 3) develop innovative, low cost methods to protect keying material, and 4) provide high assurance authentication services. We will present our perspective on key management and will discuss some key issues within the life cycle of a cryptographic key designed to achieve the following: 1) control systems designed, installed, operated, and maintained to survive an intentional cyber assault with no loss of critical function, and 2) widespread implementation of methods for secure communication between remote access devices and control centers that are scalable and cost-effective to deploy.

  12. Regional Networks for Energy Efficiency

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Sustainability Peer Exchange Call: Regional Networks for Energy Efficiency, call slides and discussion summary, December 6, 2012.

  13. Regional-Scale Climate Change: Observations and Model Simulations

    SciTech Connect (OSTI)

    Raymond S. Bradley; Henry F. Diaz

    2010-12-14

    This collaborative proposal addressed key issues in understanding the Earth??s climate system, as highlighted by the U.S. Climate Science Program. The research focused on documenting past climatic changes and on assessing future climatic changes based on suites of global and regional climate models. Geographically, our emphasis was on the mountainous regions of the world, with a particular focus on the Neotropics of Central America and the Hawaiian Islands. Mountain regions are zones where large variations in ecosystems occur due to the strong climate zonation forced by the topography. These areas are particularly susceptible to changes in critical ecological thresholds, and we conducted studies of changes in phonological indicators based on various climatic thresholds.

  14. Texas A&M Regional High School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Texas A&M Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Texas A&M Regional High

  15. EWONAP Training and Regional Meeting

    Broader source: Energy.gov [DOE]

    The Native Learning Center is pleased to announce the 2016 Eastern Woodlands ONAP Training and Regional Meeting taking place in our newly renovated training facility in Hollywood, FL. This three-day interactive training is designed to address Tribal Housing needs identified throughout the Eastern Woodlands region.

  16. USDA Regional Conservation Partnership Program

    Broader source: Energy.gov [DOE]

    The U.S. Department of Agriculture is accepting applications for the Regional Conservation Partnership Program to identify and address natural resource objectives in balance with operational goals in order to benefit soil, water, wildlife, and related natural resources locally, regionally, and nationally.

  17. Secure multi-party communication with quantum key distribution managed by trusted authority

    DOE Patents [OSTI]

    Nordholt, Jane Elizabeth; Hughes, Richard John; Peterson, Charles Glen

    2013-07-09

    Techniques and tools for implementing protocols for secure multi-party communication after quantum key distribution ("QKD") are described herein. In example implementations, a trusted authority facilitates secure communication between multiple user devices. The trusted authority distributes different quantum keys by QKD under trust relationships with different users. The trusted authority determines combination keys using the quantum keys and makes the combination keys available for distribution (e.g., for non-secret distribution over a public channel). The combination keys facilitate secure communication between two user devices even in the absence of QKD between the two user devices. With the protocols, benefits of QKD are extended to multi-party communication scenarios. In addition, the protocols can retain benefit of QKD even when a trusted authority is offline or a large group seeks to establish secure communication within the group.

  18. Secure multi-party communication with quantum key distribution managed by trusted authority

    DOE Patents [OSTI]

    Hughes, Richard John; Nordholt, Jane Elizabeth; Peterson, Charles Glen

    2015-01-06

    Techniques and tools for implementing protocols for secure multi-party communication after quantum key distribution ("QKD") are described herein. In example implementations, a trusted authority facilitates secure communication between multiple user devices. The trusted authority distributes different quantum keys by QKD under trust relationships with different users. The trusted authority determines combination keys using the quantum keys and makes the combination keys available for distribution (e.g., for non-secret distribution over a public channel). The combination keys facilitate secure communication between two user devices even in the absence of QKD between the two user devices. With the protocols, benefits of QKD are extended to multi-party communication scenarios. In addition, the protocols can retain benefit of QKD even when a trusted authority is offline or a large group seeks to establish secure communication within the group.

  19. Focus Series: Program Finds Community "Readiness" Is the Key to More

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofits | Department of Energy Program Finds Community "Readiness" Is the Key to More Retrofits Focus Series: Program Finds Community "Readiness" Is the Key to More Retrofits Focus Series: Program Finds Community "Readiness" Is the Key to More Retrofits, a document posted by the U.S. Department of Energy's (DOE'S) Better Buildings Neighborhood Program. Focus Series: Michigan (284.83 KB) More Documents & Publications Better Buildings Network View | June

  20. Cooling Towers: Understanding Key Components of Cooling Towers and How to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improve Water Efficiency | Department of Energy Cooling Towers: Understanding Key Components of Cooling Towers and How to Improve Water Efficiency Cooling Towers: Understanding Key Components of Cooling Towers and How to Improve Water Efficiency Fact sheet covers the key components of cooling towers and how to improve water efficiency. waterfs_coolingtowers.pdf (3.16 MB) More Documents & Publications Guidelines for Estimating Unmetered Industrial Water Use Side Stream Filtration for

  1. California Energy Incentive Programs: An Annual Update on Key Energy Issues

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Financial Opportunities for Federal Sites in California | Department of Energy Energy Incentive Programs: An Annual Update on Key Energy Issues and Financial Opportunities for Federal Sites in California California Energy Incentive Programs: An Annual Update on Key Energy Issues and Financial Opportunities for Federal Sites in California Report from the Federal Energy Management Program discusses an annual update on key energy issues and financial opportunities for federal sites in

  2. Regional Climate Change Webinar Presentation | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Change Webinar Presentation Regional Climate Change Webinar Presentation Regional Climate Change Webinar presentation dated August 6, 2015. Regional Climate Change Webinar ...

  3. Regional Climate Change Webinar Presentation | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Regional Climate Change Webinar presentation dated August 6, 2015. Regional Climate Change Webinar Presentation More Documents & Publications Regional Climate Change Webinar...

  4. Yellowstone Caldera Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Region (Finn & Morgan, 2002) Compound and Elemental Analysis At Yellowstone Region (Goff & Janik, 2002) Compound and Elemental Analysis At Yellowstone Region (Hurwitz, Et Al.,...

  5. Spotlight on Key Program Strategies from the Better Buildings Neighborhood Program, Final Evaluation Volume 6

    Broader source: Energy.gov [DOE]

    Final Report: Spotlight on Key Program Strategies from the Better Buildings Neighborhood Program, Final Evaluation Volume 6, American Recovery and Reinvestment Act of 2009, June 2015.

  6. PPPL to launch major upgrade of key fusion energy test facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to launch major upgrade of key fusion energy test facility NSTX project will produce most ... of nuclear fusion as a clean, safe and abundant fuel for generating electricity. ...

  7. Small Modular Reactors- Key to Future Nuclear Power Generation in the U.S.

    Office of Energy Efficiency and Renewable Energy (EERE)

    Small Modular Reactors - Key to Future Nuclear Power Generation in the U.S. University of Chicago, Energy Policy Institute at Chicago

  8. LEDSGP/Transportation Toolkit/Key Actions/Create a Baseline ...

    Open Energy Info (EERE)

    a Baseline) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Request Assistance Key Actions for Low-Emission Development in Transportation...

  9. Figure 1. Census Regions and Divisions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    US Federal Regions> Region 1 Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont Region 2 New Jersey, New York Region 3 ...

  10. More Regional Science Bowl Winners

    Broader source: Energy.gov [DOE]

    By March 25, 2011, thousands of students will have competed in more than 100 regional science bowl contests throughout the country, and then the winning schools will compete in DC this spring for the national championship.

  11. Geothermal Regions | Open Energy Information

    Open Energy Info (EERE)

    groundwater flow), and other relevant factors. The 21 regions can be seen outlined in red and overlain on the 2008 USGS Geothermal Favorability Map in Figure 1.1 Add a new...

  12. 2015 NHA Alaska Regional Meeting

    Broader source: Energy.gov [DOE]

    Register today and join industry professionals for interactive discussions covering a variety of regional topics and a tour of the Eklutna lake Project.

  13. RAFT Regional Algal Feedstock Testbed

    Broader source: Energy.gov [DOE]

    Breakout Session 3B—Integration of Supply Chains III: Algal Biofuels Strategy RAFT Regional Algal Feedstock Testbed Kimberly Ogden, Professor, University of Arizona, Engineering Technical Lead, National Alliance for Advanced Biofuels and Bioproducts

  14. Regional

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 AÇORIANO ORIENTAL SEGUNDA-FEIRA, 5 DE MARÇO DE 2012 PUB Da Graciosa para a Índia graças à estação atmosférica Carlos está atualmente a trabalhar na estação atmosférica móvel instalada na Índia, a dois mil metros de altitude Estar no lugar certo na hora cer- ta pode mudar radicalmente a vida de uma pessoa. Foi isso que aconteceu ao graciosense Carlos Sousa, de 41 anos, que começou por ser trabalhador daconstrução civil antes de emigrar para os Es- tados Unidos da América. No

  15. WINDExchange: About Regional Resource Centers

    Wind Powering America (EERE)

    Deployment Activities Printable Version Bookmark and Share Regional Resource Centers About Economic Development Siting About Regional Resource Centers Significant expansion of wind energy deployment will be required to achieve the President's goal of doubling renewable energy production in the United States by 2020. Wind energy currently provides more than 4% of the nation's electricity but has the potential to provide much more. Increasing the country's percentage from wind power will mean

  16. Wide Area Security Region Final Report

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Lu, Shuai; Guo, Xinxin; Gronquist, James; Du, Pengwei; Nguyen, Tony B.; Burns, J. W.

    2010-03-31

    This report develops innovative and efficient methodologies and practical procedures to determine the wide-area security region of a power system, which take into consideration all types of system constraints including thermal, voltage, voltage stability, transient and potentially oscillatory stability limits in the system. The approach expands the idea of transmission system nomograms to a multidimensional case, involving multiple system limits and parameters such as transmission path constraints, zonal generation or load, etc., considered concurrently. The security region boundary is represented using its piecewise approximation with the help of linear inequalities (so called hyperplanes) in a multi-dimensional space, consisting of system parameters that are critical for security analyses. The goal of this approximation is to find a minimum set of hyperplanes that describe the boundary with a given accuracy. Methodologies are also developed to use the security hyperplanes, pre-calculated offline, to determine system security margins in real-time system operations, to identify weak elements in the system, and to calculate key contributing factors and sensitivities to determine the best system controls in real time and to assist in developing remedial actions and transmission system enhancements offline . A prototype program that automates the simulation procedures used to build the set of security hyperplanes has also been developed. The program makes it convenient to update the set of security hyperplanes necessitated by changes in system configurations. A prototype operational tool that uses the security hyperplanes to assess security margins and to calculate optimal control directions in real time has been built to demonstrate the project success. Numerical simulations have been conducted using the full-size Western Electricity Coordinating Council (WECC) system model, and they clearly demonstrated the feasibility and the effectiveness of the developed

  17. Key Neutrino behavior observed at Daya Bay (The College of William and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mary) | Jefferson Lab Key Neutrino behavior observed at Daya Bay (The College of William and Mary) External Link: http://www.wm.edu/news/stories/2012/key-neutrino-behavior-observed-at-daya-bay-1... By jlab_admin on Thu, 2012-03-08

  18. KEY PERSONNEL

    National Nuclear Security Administration (NNSA)

    PERSONNEL 7062015 TITLE NAME President Christopher C. Gentile Vice President, Engineering Robin Stubenhofer Vice President, Integrated Supply Chain Rick Lavelock Director, Sr. ...

  19. Methods for synchronizing a countdown routine of a timer key and electronic device

    SciTech Connect (OSTI)

    Condit, Reston A.; Daniels, Michael A.; Clemens, Gregory P.; Tomberlin, Eric S.; Johnson, Joel A.

    2015-06-02

    A timer key relating to monitoring a countdown time of a countdown routine of an electronic device is disclosed. The timer key comprises a processor configured to respond to a countdown time associated with operation of the electronic device, a display operably coupled with the processor, and a housing configured to house at least the processor. The housing has an associated structure configured to engage with the electronic device to share the countdown time between the electronic device and the timer key. The processor is configured to begin a countdown routine based at least in part on the countdown time, wherein the countdown routine is at least substantially synchronized with a countdown routine of the electronic device when the timer key is removed from the electronic device. A system and method for synchronizing countdown routines of a timer key and an electronic device are also disclosed.

  20. Regional Transmission Projects: Finding Solutions

    SciTech Connect (OSTI)

    The Keystone Center

    2005-06-15

    The Keystone Center convened and facilitated a year-long Dialogue on "Regional Transmission Projects: Finding Solutions" to develop recommendations that will help address the difficult and contentious issues related to expansions of regional electric transmission systems that are needed for reliable and economic transmission of power within and across regions. This effort brought together a cross-section of affected stakeholders and thought leaders to address the problem with the collective wisdom of their experience and interests. Transmission owners sat at the table with consumer advocates and environmental organizations. Representatives from regional transmission organizations exchanged ideas with state and federal regulators. Generation developers explored common interests with public power suppliers. Together, the Dialogue participants developed consensus solutions about how to begin unraveling some of the more intractable issues surrounding identification of need, allocation of costs, and reaching consensus on siting issues that can frustrate the development of regional transmission infrastructure. The recommendations fall into three broad categories: 1. Recommendations on appropriate institutional arrangements and processes for achieving regional consensus on the need for new or expanded transmission infrastructure 2. Recommendations on the process for siting of transmission lines 3. Recommendations on the tools needed to support regional planning, cost allocation, and siting efforts. List of Dialogue participants: List of Dialogue Participants: American Electric Power American Transmission Company American Wind Energy Association California ISO Calpine Corporation Cinergy Edison Electric Institute Environmental Defense Federal Energy Regulatory Commission Great River Energy International Transmission Company ISO-New England Iowa Public Utility Board Kanner & Associates Midwest ISO National Association of Regulatory Utility Commissioners National Association

  1. Hierarchical probabilistic regionalization of volcanism for Sengan region, Japan.

    SciTech Connect (OSTI)

    Balasingam, Pirahas; Park, Jinyong; McKenna, Sean Andrew; Kulatilake, Pinnaduwa H. S. W.

    2005-03-01

    A 1 km square regular grid system created on the Universal Transverse Mercator zone 54 projected coordinate system is used to work with volcanism related data for Sengan region. The following geologic variables were determined as the most important for identifying volcanism: geothermal gradient, groundwater temperature, heat discharge, groundwater pH value, presence of volcanic rocks and presence of hydrothermal alteration. Data available for each of these important geologic variables were used to perform directional variogram modeling and kriging to estimate geologic variable vectors at each of the 23949 centers of the chosen 1 km cell grid system. Cluster analysis was performed on the 23949 complete variable vectors to classify each center of 1 km cell into one of five different statistically homogeneous groups with respect to potential volcanism spanning from lowest possible volcanism to highest possible volcanism with increasing group number. A discriminant analysis incorporating Bayes theorem was performed to construct maps showing the probability of group membership for each of the volcanism groups. The said maps showed good comparisons with the recorded locations of volcanism within the Sengan region. No volcanic data were found to exist in the group 1 region. The high probability areas within group 1 have the chance of being the no volcanism region. Entropy of classification is calculated to assess the uncertainty of the allocation process of each 1 km cell center location based on the calculated probabilities. The recorded volcanism data are also plotted on the entropy map to examine the uncertainty level of the estimations at the locations where volcanism exists. The volcanic data cell locations that are in the high volcanism regions (groups 4 and 5) showed relatively low mapping estimation uncertainty. On the other hand, the volcanic data cell locations that are in the low volcanism region (group 2) showed relatively high mapping estimation uncertainty

  2. Unveiling Microbial Carbon Cycling Processes in Key U.S. Soils using ''Omics''

    SciTech Connect (OSTI)

    Myrold, David D.; Bottomely, Peter J.; Jumpponen, Ari; Rice, Charles W.; Zeglin, Lydia H.; David, Maude M.; Jansson, Janet K.; Prestat, Emmanuel; Hettich, Robert L.

    2014-09-17

    Soils process and store large amounts of C; however, considerable uncertainty still exists about the details of that influence microbial partitioning of C into soil C pools, and what are the main influential forces that control the fraction of the C input that is stabilized. The soil microbial community is genotypically and phenotypically diverse. Despite our ability to predict the kinds of regional environmental changes that will accompany global climate change, it is not clear how the microbial community will respond to climate-induced modification of precipitation and inter-precipitation intervals, and if this response will affect the fate of C deposited into soil by the local plant community. Part of this uncertainty lies with our ignorance of how the microbial community adapts genotypically and physiologically to changes in soil moisture brought about by shifts in precipitation. Our overarching goal is to harness the power of multiple meta-omics tools to gain greater understanding of the functioning of whole-soil microbial communities and their role in C cycling. We will do this by meeting the following three objectives: 1. Further develop and optimize a combination of meta-omics approaches to study how environmental factors affect microbially-mediated C cycling processes. 2. Determine the impacts of long-term changes in precipitation timing on microbial C cycling using an existing long-term field manipulation of a tallgrass prairie soil. 3. Conduct laboratory experiments that vary moisture and C inputs to confirm field observations of the linkages between microbial communities and C cycling processes. We took advantage of our state-of-the-art expertise in community “omics” to better understand the functioning soil C cycling within the Great Prairie ecosystem, including our ongoing Konza Prairie soil metagenome flagship project at JGI and the unique rainfall manipulation plots (RaMPs) established at this site more than a decade ago. We employed a systems

  3. Gulf of Mexico Regional Collaborative Final Report

    SciTech Connect (OSTI)

    Judd, Kathleen S.; Judd, Chaeli; Engel-Cox, Jill A.; Gulbransen, Thomas; Anderson, Michael G.; Woodruff, Dana L.; Thom, Ronald M.; Guzy, Michael; Hardin, Danny; Estes, Maury

    2007-12-01

    This report presents the results of the Gulf of Mexico Regional Collaborative (GoMRC), a year-long project funded by NASA. The GoMRC project was organized around end user outreach activities, a science applications team, and a team for information technology (IT) development. Key outcomes are summarized below for each of these areas. End User Outreach; Successfully engaged federal and state end users in project planning and feedback; With end user input, defined needs and system functional requirements; Conducted demonstration to End User Advisory Committee on July 9, 2007 and presented at Gulf of Mexico Alliance (GOMA) meeting of Habitat Identification committee; Conducted significant engagement of other end user groups, such as the National Estuary Programs (NEP), in the Fall of 2007; Established partnership with SERVIR and Harmful Algal Blooms Observing System (HABSOS) programs and initiated plan to extend HABs monitoring and prediction capabilities to the southern Gulf; Established a science and technology working group with Mexican institutions centered in the State of Veracruz. Key team members include the Federal Commission for the Protection Against Sanitary Risks (COFEPRIS), the Ecological Institute (INECOL) a unit of the National Council for science and technology (CONACYT), the Veracruz Aquarium (NOAA’s first international Coastal Ecology Learning Center) and the State of Veracruz. The Mexican Navy (critical to coastal studies in the Southern Gulf) and other national and regional entities have also been engaged; and Training on use of SERVIR portal planned for Fall 2007 in Veracruz, Mexico Science Applications; Worked with regional scientists to produce conceptual models of submerged aquatic vegetation (SAV) ecosystems; Built a logical framework and tool for ontological modeling of SAV and HABs; Created online guidance for SAV restoration planning; Created model runs which link potential future land use trends, runoff and SAV viability; Analyzed SAV

  4. EIA - Natural Gas Pipeline Network - Regional Definitions

    U.S. Energy Information Administration (EIA) Indexed Site

    Definitions Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Regional Definitions The regions defined in the above map are based upon the 10 Federal Regions of the U.S. Bureau of Labor Statistics. The State groupings are as follows: Northeast Region - Federal Region 1: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont. Federal Region 2: New Jersey, and New York. Federal Region 3:Delaware, District of

  5. Groundwater in the Regional Aquifer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Groundwater in the Regional Aquifer Groundwater in the Regional Aquifer LANL maintains an extensive groundwater monitoring and surveillance program through sampling. August 1, 2013 Conceptual model of water movement and geology at Los Alamos National Laboratory Conceptual model of water movement and geology at Los Alamos National Laboratory RELATED IMAGES http://farm4.staticflickr.com/3749/9827580556_473a91fd78_t.jpg Enlarge http://farm3.staticflickr.com/2856/9804364405_b25f74cbb2_t.jpg En

  6. TEC Working Group Topic Groups Tribal Key Documents | Department of Energy

    Office of Environmental Management (EM)

    Key Documents TEC Working Group Topic Groups Tribal Key Documents Key Documents Tribal Discussions on Grant Program (56.04 KB) Native American Map (731.69 KB) Task Plan 1 - Tribal Topic Group (Rev. 07-12-00) (12.26 KB) May 1, 2000 Department of Transportation, Federal Railroad Administration Memorandum (2.01 MB) NRC Advanced Notice of Proposed Rulemaking (25.63 KB) DOE Final Indian Policy (1.22 MB) Department of Transportation (DOT) Tribal Policy Order (32.94 KB) More Documents &

  7. Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks

    SciTech Connect (OSTI)

    Patel, K. A.; Dynes, J. F.; Lucamarini, M.; Choi, I.; Sharpe, A. W.; Yuan, Z. L. Shields, A. J.; Penty, R. V.

    2014-02-03

    We demonstrate quantum key distribution (QKD) with bidirectional 10 Gb/s classical data channels in a single fiber using dense wavelength division multiplexing. Record secure key rates of 2.38 Mbps and fiber distances up to 70?km are achieved. Data channels are simultaneously monitored for error-free operation. The robustness of QKD is further demonstrated with a secure key rate of 445 kbps over 25?km, obtained in the presence of data lasers launching conventional 0 dBm power. We discuss the fundamental limit for the QKD performance in the multiplexing environment.

  8. Soft Costs 101: The Key to Achieving Cheaper Solar Energy | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Soft Costs 101: The Key to Achieving Cheaper Solar Energy Soft Costs 101: The Key to Achieving Cheaper Solar Energy February 25, 2016 - 10:00am Addthis Soft Costs 101: The Key to Achieving Cheaper Solar Energy Dr. Elaine Ulrich Dr. Elaine Ulrich Balance of Systems/Soft Costs Program Manager What are "soft costs"? Soft costs are those not related to hardware, including installation, buying permits and financing. By lowering these costs, solar power becomes more affordable.

  9. Microsoft PowerPoint - DOE O 413 3B Brief v9 with key points...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Example BCP Template Microsoft PowerPoint - DOE O 413 3B Brief v9 with key points in notes Read-Only CD-2, Approve Performance Baseline External Independent Review (EIR) Standard ...

  10. A Key Role for Dimension in the Neutrino Mechanism of Core-Collapse...

    Office of Scientific and Technical Information (OSTI)

    Neutrino Mechanism of Core-Collapse Supernova Explosions Citation Details In-Document Search Title: A Key Role for Dimension in the Neutrino Mechanism of Core-Collapse Supernova ...

  11. GREET Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks

    Office of Energy Efficiency and Renewable Energy (EERE)

    Breakout Session 2D—Building Market Confidence and Understanding II: Carbon Accounting and Woody Biofuels GREET Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks Michael Wang, Senior Scientist, Energy Systems, Argonne National Laboratory

  12. Matched 'hybrid' systems may hold key to wider use of renewable...

    Open Energy Info (EERE)

    > OpenEI Community Central Dc's picture Submitted by Dc(266) Contributor 17 February, 2015 - 16:11 Read the article from phys.org here: http:phys.orgnews2014-11-hybrid-key-wid...

  13. Structures of Clamp-Loader Complexes Are Key to DNA Replication

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structures of Clamp-Loader Complexes Are Key to DNA Replication Print DNA Replication: An Open-and-Shut Case Every time a cell divides, whether in humans or in other organisms, its...

  14. Vit Plant receives and sets key air filtration equipment for Low Activity Waste Facility

    Broader source: Energy.gov [DOE]

    WTP lifted a nearly 100-ton carbon bed absorber into the Low-Activity Waste Facility. This key piece of air-filtration equipment will remove mercury and acidic gases before air is channeled through...

  15. May 19, 2011, HSS/Union Focus Group Meeting - Key Milestone Status...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HSS Directives Reform - Key Milestone Status Chart (June 15, 2011) 100 60 80 Directives 40 HSS D 0 20 1- Mar -10 1- Apr- 10 1- May -10 1- Jun -10 1- Jul- 10 1- Aug -10 1- Sep -10 ...

  16. Completing Salt Waste Processing Facility is an EM Priority and Key to SRS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cleanup Progress | Department of Energy Completing Salt Waste Processing Facility is an EM Priority and Key to SRS Cleanup Progress Completing Salt Waste Processing Facility is an EM Priority and Key to SRS Cleanup Progress January 14, 2016 - 12:40pm Addthis SRS employees and contractors gather to celebrate SWPF contractor Parsons' Star status, the highest recognition in the Voluntary Protection Program (VPP). DOE launched VPP in 1994 to encourage and recognize excellence in occupational

  17. Road Blocks Yield Key Information about a Catalyst | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Road Blocks Yield Key Information about a Catalyst Researchers systematically blocked key chemical reaction pathways to get unambiguous information about how carbon-nitrogen bonds are formed in a catalytic reaction known as hydroamination. Understanding a multi-step catalytic mechanism is like a solving a puzzle where you can't see the pieces. However, you can add your own "pieces" with known shapes to figure out what other pieces of the puzzle then will (or will not) fit.

  18. Together with Key Allies, DOE Launches New Data Collaborative to Help

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cities and States Advance Building Efficiency | Department of Energy Together with Key Allies, DOE Launches New Data Collaborative to Help Cities and States Advance Building Efficiency Together with Key Allies, DOE Launches New Data Collaborative to Help Cities and States Advance Building Efficiency November 9, 2015 - 5:11pm Addthis The U.S. Department of Energy (DOE) - together with the Natural Resources Defense Council (NRDC), the Institute for Market Transformation (IMT), the National

  19. U.S. Department of Energy and NTI Announce Key Nonproliferation Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Kazakhstan | Department of Energy NTI Announce Key Nonproliferation Project with Kazakhstan U.S. Department of Energy and NTI Announce Key Nonproliferation Project with Kazakhstan September 29, 2006 - 9:01am Addthis Agreement Reached To Downblend HEU and Convert Reactor WASHINGTON, D.C. - The U.S. Department of Energy and the Nuclear Threat Initiative (NTI) today announced that they have reached an important agreement-in-principle with the Government of Kazakhstan to move forward with

  20. Energy: Critical Infrastructure and Key Resources Sector-Specific Plan as

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    input to the National Infrastructure Protection Plan (Redacted) | Department of Energy Energy: Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) Energy: Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) In June 2006, the U.S. Department of Homeland Security (DHS) announced completion of the National Infrastructure Protection Plan

  1. A Comparison of Key PV Backsheet and Module Properties from Fielded Module

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exposures and Accelerated Test Conditions | Department of Energy A Comparison of Key PV Backsheet and Module Properties from Fielded Module Exposures and Accelerated Test Conditions A Comparison of Key PV Backsheet and Module Properties from Fielded Module Exposures and Accelerated Test Conditions Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps5_dupont_gambogi.pdf (781.38 KB) More Documents & Publications Agenda for the PV Module

  2. Overview of Indian Hydrogen Program and Key Safety Issues of Hydrogen Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Indian Hydrogen Program and Key Safety Issues of Hydrogen Fuel Overview of Indian Hydrogen Program and Key Safety Issues of Hydrogen Fuel Presentation given by Dilip Chenoy of the Society of Indian Automobile Manufacturers at the CNG and Hydrogen Lessons Learned Workshop on December 10, 2009 cng_h2_workshop_9_chenoy.pdf (400.16 KB) More Documents & Publications Successful Adoption of CNG and Energing CNG-Hydrogen Program in India Workshop Notes from

  3. FreedomCAR Technical Teams: 2002 Key Accomplishments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Teams: 2002 Key Accomplishments FreedomCAR Technical Teams: 2002 Key Accomplishments Report highlighting specific accomplishments that the FreedomCAR Partners recognize as significant milestones or breakthroughs achieved in 2002. 2002_fcfp_accomplishments_rpt.pdf (1.99 MB) More Documents & Publications 21st Century Truck Partnership - Roadmap and Technical White Papers Appendix of Supporting Information - 21CTP-0003, December 2006 Fuel Cell Systems Annual Progress Report FreedomCAR

  4. Energy Critical Infrastructure and Key Resources Sector-Specific Plan as

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    input to the National Infrastructure Protection Plan (Redacted) | Department of Energy Energy Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) Energy Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) The Energy Sector has developed a vision statement and six sector security goals that will be used as the framework for developing and

  5. Keys to Enabling H2 and Fuel Cells Collaboration & Scale

    Broader source: Energy.gov (indexed) [DOE]

    KEYS TO ENABLING H 2 & FUEL CELLS COLLABORATION & SCALE H 2 USA Charlie Freese Sustainable Transportation Summit July 12, 2016 1. CHANGE REQUIRES CONSTANCY OF PURPOSE 2. PRIORITIZE VALUE EQUATION 3. COOPERATE KEY POINTS ACHIEVING SUSTAINABLE H 2 FUEL CELL TRANSPORTATION HOW DOES CHANGE ARRIVE IN TRANSPORTATION INDUSTRY? PERSPECTIVE AUTOMOBILES ARE - PERSONAL MOBILITY SOLUTIONS PERSONAL MOBILITY SOLUTIONS HAVE ALWAYS BEEN SUBJECT TO CHANGE 1917 Last Horse Drawn Street Car AUTOMOBILES ARE

  6. Deputy Secretary Sherwood-Randall Meets Key Government Officials in Beijing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Deputy Secretary Sherwood-Randall Meets Key Government Officials in Beijing Deputy Secretary Sherwood-Randall Meets Key Government Officials in Beijing April 15, 2015 - 2:01pm Addthis Deputy Secretary Sherwood-Randall and Secretary Pritzker pose with the trade mission delegation in Beijing. Deputy Secretary Sherwood-Randall and Secretary Pritzker pose with the trade mission delegation in Beijing. Maisah Khan Maisah Khan Special Advisor, Office of International Affairs

  7. Metabolic characteristics of dominant microbes and key rare species from an

    Office of Scientific and Technical Information (OSTI)

    acidic hot spring in Taiwan revealed by metagenomics (Journal Article) | SciTech Connect Metabolic characteristics of dominant microbes and key rare species from an acidic hot spring in Taiwan revealed by metagenomics Citation Details In-Document Search Title: Metabolic characteristics of dominant microbes and key rare species from an acidic hot spring in Taiwan revealed by metagenomics Microbial diversity and community structures in acidic hot springs have been characterized by 16S rRNA

  8. The Five-Step Process Framework for Project Development and Key Concepts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Framework for Project Development and Key Concepts Project Development Process: What Is It? * Framework based on experience * Focuses on key decision points * Shows that project development is iterative * Emphasizes that delaying or deciding against a project that does not meet current goals is a viable outcome and option 2 Project Uncertainty/Capitol at Risk 3 Unknowns Investment Revenue pays off invested $ Project Operation Financial Close Step 1, Step 2, Step 3 Step 4 Step 5

  9. SECTION L … ATTACHMENT xx … KEY PERSONNEL AND CRITICAL WORK AREA PERSONNEL RESUME ELEMENTS

    National Nuclear Security Administration (NNSA)

    2] Attachment L-3a KEY PERSONNEL RESUME ELEMENTS 1. Name of Offeror: 2. Name of Key Person: 3. Proposed Position: 4. Duties and Responsibilities in Proposed Position including elements of SOW assigned: 5. Chronological Work History: Start with current position and work backwards. A. Name and Address of Firm: B. Position(s) Held: C. Dates of Employment: D. General Summary of Responsibilities: Provide a concise description of major duties and responsibilities for each job relevant to the proposed

  10. Regional Slip Tendency Analysis of the Great Basin Region

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    - The resulting along?fault and fault?to?fault variation in slip or dilation potential is a proxy for along fault and fault?to?fault variation in fluid flow conduit potential. Stress Magnitudes and directions were calculated across the entire Great Basin. Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson?Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005). The minimum horizontal stress direction (Shmin) was contoured, and spatial bins with common Shmin directions were calculated. Based on this technique, we subdivided the Great Basin into nine regions (Shmin <070, 070140). Slip and dilation tendency were calculated using 3DStress for the faults within each region using the mean Shmin for the region. Shmin variation throughout Great Basin are shown on Figure 3. For faults within the Great Basin proper, we applied a normal faulting stress regime, where the vertical stress (sv) is larger than the maximum horizontal stress (shmax), which is larger than the minimum horizontal stress (sv>shmax>shmin). Based on visual inspection of the limited stress magnitude data in the Great Basin, we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46. These values are consistent with stress magnitude data at both Dixie Valley (Hickman et al., 2000) and Yucca Mountain (Stock et al., 1985). For faults within the Walker Lane/Eastern California Shear Zone, we applied a strike?slip faulting stress, where shmax > sv > shmin. Upon visual inspection of limited stress magnitude data from the Walker Lane and Eastern California Shear zone, we chose values such that SHmin/SHmax = .46 and Shmin/Sv= .527

  11. Regional Slip Tendency Analysis of the Great Basin Region

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-09-30

    - The resulting along?fault and fault?to?fault variation in slip or dilation potential is a proxy for along fault and fault?to?fault variation in fluid flow conduit potential. Stress Magnitudes and directions were calculated across the entire Great Basin. Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson?Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005). The minimum horizontal stress direction (Shmin) was contoured, and spatial bins with common Shmin directions were calculated. Based on this technique, we subdivided the Great Basin into nine regions (Shmin <070, 070140). Slip and dilation tendency were calculated using 3DStress for the faults within each region using the mean Shmin for the region. Shmin variation throughout Great Basin are shown on Figure 3. For faults within the Great Basin proper, we applied a normal faulting stress regime, where the vertical stress (sv) is larger than the maximum horizontal stress (shmax), which is larger than the minimum horizontal stress (sv>shmax>shmin). Based on visual inspection of the limited stress magnitude data in the Great Basin, we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46. These values are consistent with stress magnitude data at both Dixie Valley (Hickman et al., 2000) and Yucca Mountain (Stock et al., 1985). For faults within the Walker Lane/Eastern California Shear Zone, we applied a strike?slip faulting stress, where shmax > sv > shmin. Upon visual inspection of limited stress magnitude data from the Walker Lane and Eastern California Shear zone, we chose values such that SHmin/SHmax = .46 and Shmin/Sv= .527

  12. Form:GeothermalRegion | Open Energy Information

    Open Energy Info (EERE)

    of a Geothermal Region below. If the region already exists, you will be able to edit its information. AddEdit a Geothermal Region Retrieved from "http:en.openei.orgw...

  13. Regional Feedstock Partnership Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regional Feedstock Partnership Report Regional Feedstock Partnership Report Regional Feedstock Partnership Report regional_feedstock_partnership_summary_report.pdf (17.45 MB) regional_feedstocks_partnership_report_appendix_a_draft.pdf (2.11 MB) regional_feedstocks_partnership_report_appendix_b_draft.pdf (625.38 KB) More Documents & Publications Biomass Econ 101: Measuring the Technological Improvements on Feedstocks Costs A Summary of the Results of the 2016 Billion-Ton Report: Advancing

  14. Transition Zone Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Unknown Planned Capacity 1 Geothermal Areas within the Transition Zone Geothermal Region Energy Generation Facilities within the Transition Zone Geothermal Region Geothermal Power...

  15. Lake Region State College | Open Energy Information

    Open Energy Info (EERE)

    College Jump to: navigation, search Name Lake Region State College Facility Lake Region State College Sector Wind energy Facility Type Community Wind Facility Status In Service...

  16. Regional Climate Vulnerabilities and Resilience Solutions | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regional Climate Vulnerabilities and Resilience Solutions Regional Climate Vulnerabilities and Resilience Solutions This interactive map is not viewable in your browser. Please ...

  17. Austria Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Austria Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References Geothermal Region Data Area USGS Resource...

  18. Australia Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Australia Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References Geothermal Region Data Area USGS Resource...

  19. New Zealand Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home New Zealand Geothermal Region Details Areas (2) Power Plants (2) Projects (0) Techniques (0) References Geothermal Region Data Area USGS Resource...

  20. Russia Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Russia Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References Geothermal Region Data Area USGS Resource...