Powered by Deep Web Technologies
Note: This page contains sample records for the topic "key fusion reactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Hydrogen fusion-energy reactions  

SciTech Connect

At the Los Alamos Ion Beam Facility we have installed a low-energy fusion cross section (LEFCS) apparatus specifically designed to measure cross sections to high accuracy for the various fusion-energy reactions among the hydrogen isotopes in the bombarding-energy range 10 to 120 keV. To date, we have completed and published our study of the D(t,..cap alpha..)n reaction, have finished data-taking for the D(d,p)T and D(d,/sup 3/He)n reactions, and have nearly finished data-taking for the T(t,..cap alpha..)nn reaction. Here we describe the LEFCS facility, present final and preliminary results for these reactions, and compare them with R-matrix calculations. 16 refs., 10 figs.

Brown, R.E.; Jarmie, N.

1985-01-01T23:59:59.000Z

2

Fusion-fission reactions with modified Woods-Saxon potential  

E-Print Network (OSTI)

A modified Woods-Saxon potential model is proposed for a unified description of the entrance channel fusion barrier and the fission barrier of fusion-fission reactions based on the Skyrme energy-density functional approach. The fusion excitation functions of 120 reactions have been systematically studied. The fusion (capture) cross sections are well described with the calculated potential and an empirical barrier distribution. Incorporating a statistical model (HIVAP code) for describing the decay of the compound nucleus, the evaporation residue (and fission) cross sections of 51 fusion-fission reactions have been systematically investigated. Optimal values of some key parameters of the HIVAP code are obtained based on the experimental data of these reactions. The experimental data are reasonably well reproduced by the calculated results. The upper and lower confidence limits of the systematic errors of the calculated results are given.

Ning Wang; Kai Zhao; Werner Scheid; Xizhen Wu

2007-12-15T23:59:59.000Z

3

Method of controlling fusion reaction rates  

DOE Patents (OSTI)

A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.

Kulsrud, Russell M. (Princeton, NJ); Furth, Harold P. (Princeton, NJ); Valeo, Ernest J. (Princeton Junction, NJ); Goldhaber, Maurice (Bayport, NY)

1988-01-01T23:59:59.000Z

4

Method of controlling fusion reaction rates  

DOE Patents (OSTI)

This invention relates to a method of controlling the reaction rates in a nuclear fusion reactor; and more particularly, to the use of polarized nuclear fuel.

Kulsrud, R.M.; Furth, H.P.; Valeo, E.J.; Goldhaber, M.

1983-05-09T23:59:59.000Z

5

Measurement of the Fusion Probability, PCN, for Hot Fusion Reactions  

E-Print Network (OSTI)

Background: The cross section for forming a heavy evaporation residue in fusion reactions depends on the capture cross section, the fusion probability, PCN, i.e., the probability that the projectile-target system will evolve inside the fission saddle point to form a completely fused system rather than re-separating (quasifission), and the survival of the completely fused system against fission. PCN is the least known of these quantities. Purpose: To measure PCN for the reaction of 101.2 MeV 18O, 147.3 MeV 26Mg, 170.9 MeV 30Si and 195.3 MeV 36S with 197Au. Methods: We measured the fission fragment angular distributions for these reactions and used the formalism of Back to deduce the fusion-fission and quasifission cross sections. From these quantities we deduced PCN for each reaction. Results: The values of PCN for the reaction of 101.2 MeV 18O, 147.3 MeV 26Mg, 170.9 MeV 30Si and 195.3 MeV 36S with 197Au are 0.66, 1.00, 0.06, 0.13, respectively. Conclusions: The new measured values of PCN agree roughly with the semi-empirical system- atic dependence of PCN upon fissility for excited nuclei.

R. Yanez; W. Loveland; J. S. Barrett; L. Yao; B. B. Back; S. Zhu; T. L. Khoo

2013-06-17T23:59:59.000Z

6

Influence of projectile neutron number on cross section in cold fusion reactions  

E-Print Network (OSTI)

ON CROSS SECTION IN COLD FUSION REACTIONS I. Dragojevi? ,type of reaction has been referred to as “cold fusion. ”The study of cold fusion reactions is an indispensable

Dragojevic, I.

2008-01-01T23:59:59.000Z

7

Fusion-reaction cross section in (high-temperature). mu. -catalyzed fusion  

DOE Green Energy (OSTI)

The barrier penetration factor for the fusion reaction of ..mu..-mesic hydrogen atoms with hydrogen nuclei is studied. (MOW)

Takahashi, H.; Moats, A.

1982-06-01T23:59:59.000Z

8

Measuring time of flight of fusion products in an inertial electrostatic confinement fusion device for spatial profiling of fusion reactions  

Science Conference Proceedings (OSTI)

A new diagnostic has been developed that uses the time of flight (TOF) of the products from a nuclear fusion reaction to determine the location where the fusion reaction occurred. The TOF diagnostic uses charged particle detectors on opposing sides of the inertial electrostatic confinement (IEC) device that are coupled to high resolution timing electronics to measure the spatial profile of fusion reactions occurring between the two charged particle detectors. This diagnostic was constructed and tested by the University of Wisconsin-Madison Inertial Electrostatic Confinement Fusion Group in the IEC device, HOMER, which accelerates deuterium ions to fusion relevant energies in a high voltage ({approx}100 kV), spherically symmetric, electrostatic potential well [J. F. Santarius, G. L. Kulcinski, R. P. Ashley, D. R. Boris, B. B. Cipiti, S. K. Murali, G. R. Piefer, R. F. Radel, T. E. Radel, and A. L. Wehmeyer, Fusion Sci. Technol. 47, 1238 (2005)]. The TOF diagnostic detects the products of D(d,p)T reactions and determines where along a chord through the device the fusion event occurred. The diagnostic is also capable of using charged particle spectroscopy to determine the Doppler shift imparted to the fusion products by the center of mass energy of the fusion reactants. The TOF diagnostic is thus able to collect spatial profiles of the fusion reaction density along a chord through the device, coupled with the center of mass energy of the reactions occurring at each location. This provides levels of diagnostic detail never before achieved on an IEC device.

Donovan, D. C. [Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550 (United States); Boris, D. R. [Naval Research Laboratory, 4555 Overlook Avenue, South West, Washington, DC 20375 (United States); Kulcinski, G. L.; Santarius, J. F. [Fusion Technology Institute, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, Wisconsin 53706 (United States); Piefer, G. R. [Phoenix Nuclear Labs, 2555 Industrial Drive, Madison, Wisconsin 53713 (United States)

2013-03-15T23:59:59.000Z

9

Applications of Skyrme energy-density functional to fusion reactions spanning the fusion barriers  

E-Print Network (OSTI)

The Skyrme energy density functional has been applied to the study of heavy-ion fusion reactions. The barriers for fusion reactions are calculated by the Skyrme energy density functional with proton and neutron density distributions determined by using restricted density variational (RDV) method within the same energy density functional together with semi-classical approach known as the extended semi-classical Thomas-Fermi method. Based on the fusion barrier obtained, we propose a parametrization of the empirical barrier distribution to take into account the multi-dimensional character of real barrier and then apply it to calculate the fusion excitation functions in terms of barrier penetration concept. A large number of measured fusion excitation functions spanning the fusion barriers can be reproduced well. The competition between suppression and enhancement effects on sub-barrier fusion caused by neutron-shell-closure and excess neutron effects is studied.

Min Liu; Ning Wang; Zhuxia Li; Xizhen Wu; Enguang Zhao

2005-09-26T23:59:59.000Z

10

Experimental study of nuclear fusion reactions in muonic molecular systems  

SciTech Connect

Since the pioneering discovery of the muon catalysis by Alvarez [L. W. Alvarez, K. Brander, F. S. Crawford, et al., Phys. Rev. 105, 1127 (1957)], considerable efforts were aimed at observation of various fusion processes. Results of these studies facilitated understanding the properties of lightest nuclei and dynamics of low-energy fusion reactions. There still remain unsolved theoretical and experimental problems, especially in case of pt fusion.

Bogdanova, L. N., E-mail: ludmila@itep.ru [Institute for Theoretical and Experimental Physics (Russian Federation)

2013-03-15T23:59:59.000Z

11

Reaction Barrier Transparency for Cold Fusion with Deuterium and Hydrogen  

E-Print Network (OSTI)

An improved parametric representation of Coulomb barrier penetration is presented. These detailed calculations are improvements upon the conventionally used Gamow tunneling coefficient. This analysis yields a reaction barrier transparency (RBT) which may have singular ramifications for cold fusion, as well as significant consequences in a wide variety of fusion settings. 1.

Yeong E. Kim; Jin-hee Yoon; Alexander L. Zubarev; Mario Rabinowitz

1994-01-01T23:59:59.000Z

12

Key Issues for the Safety and Licensing of Fusion  

SciTech Connect

Studies of the safety and environmental impacts of fusion, both of future power plants and of ITER, have shown that a good performance can be achieved. Although it is difficult to anticipate the regulatory regime in which future fusion power stations will be licensed, the areas of public and occupational safety and short and long-term environmental impact are likely to remain important. In each of these areas, the outcome of various studies have been reviewed, leading to a list of issues which should be given attention to facilitate eventual licensing of a fusion power plant. Many of these relate to reducing conservatisms and uncertainties in the analyses, but also included are improved understanding of tritium retention and of dust generation, and development of materials to provide long component lifetimes. A full appraisal is also recommended of the viability of recycling of active materials after end of plant life.

Taylor, Neill P. [Culham Science Centre (United Kingdom)

2005-05-15T23:59:59.000Z

13

Formation of superheavy nuclei in cold fusion reactions  

E-Print Network (OSTI)

Within the concept of the dinuclear system (DNS), a dynamical model is proposed for describing the formation of superheavy nuclei in complete fusion reactions by incorporating the coupling of the relative motion to the nucleon transfer process. The capture of two heavy colliding nuclei, the formation of the compound nucleus and the de-excitation process are calculated by using an empirical coupled channel model, solving a master equation numerically and applying statistical theory, respectively. Evaporation residue excitation functions in cold fusion reactions are investigated systematically and compared with available experimental data. Maximal production cross sections of superheavy nuclei in cold fusion reactions with stable neutron-rich projectiles are obtained. Isotopic trends in the production of the superheavy elements Z=110, 112, 114, 116, 118 and 120 are analyzed systematically. Optimal combinations and the corresponding excitation energies are proposed.

Feng, Zhao-Qing; Li, Jun-Qing; Scheid, Werner

2007-01-01T23:59:59.000Z

14

Formation of superheavy nuclei in cold fusion reactions  

E-Print Network (OSTI)

Within the concept of the dinuclear system (DNS), a dynamical model is proposed for describing the formation of superheavy nuclei in complete fusion reactions by incorporating the coupling of the relative motion to the nucleon transfer process. The capture of two heavy colliding nuclei, the formation of the compound nucleus and the de-excitation process are calculated by using an empirical coupled channel model, solving a master equation numerically and applying statistical theory, respectively. Evaporation residue excitation functions in cold fusion reactions are investigated systematically and compared with available experimental data. Maximal production cross sections of superheavy nuclei in cold fusion reactions with stable neutron-rich projectiles are obtained. Isotopic trends in the production of the superheavy elements Z=110, 112, 114, 116, 118 and 120 are analyzed systematically. Optimal combinations and the corresponding excitation energies are proposed.

Zhao-Qing Feng; Gen-Ming Jin; Jun-Qing Li; Werner Scheid

2007-07-17T23:59:59.000Z

15

Using Nuclear Fusion Reactions to Peer Inside the Core of a Dense...  

Office of Science (SC) Website

Using Nuclear Fusion Reactions to Peer Inside the Core of a Dense Hot Plasma Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES...

16

Nucleus-nucleus cold fusion reactions analyzed with the l-dependent 'fusion by diffusion' model  

SciTech Connect

We present a modified version of the Fusion by Diffusion (FBD) model aimed at describing the synthesis of superheavy nuclei in cold fusion reactions, in which a low excited compound nucleus emits only one neutron. The modified FBD model accounts for the angular momentum dependence of three basic factors determining the evaporation residue cross section: the capture cross section {sigma}{sub cap}(l), the fusion probability P{sub fus}(l), and the survival probability P{sub surv}(l). The fusion hindrance factor, the inverse of P{sub fus}(l), is treated in terms of thermal fluctuations in the shape degrees of freedom and is expressed as a solution of the Smoluchowski diffusion equation. The l dependence of P{sub fus}(l) results from the l-dependent potential energy surface of the colliding system. A new parametrization of the distance of starting point of the diffusion process is introduced. An analysis of a complete set of 27 excitation functions for production of superheavy nuclei in cold fusion reactions, studied in experiments at GSI Darmstadt, RIKEN Tokyo, and LBNL Berkeley, is presented. The FBD model satisfactorily reproduces shapes and absolute cross sections of all the cold fusion excitation functions. It is shown that the peak position of the excitation function for a given 1n reaction is determined by the Q value of the reaction and the height of the fission barrier of the final nucleus. This fact could possibly be used in future experiments (with well-defined beam energy) for experimental determination of the fission barrier heights.

Cap, T.; Siwek-Wilczynska, K.; Wilczynski, J. [Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Hoza 69, PL-00-681 Warsaw (Poland); Andrzej Soltan Institute for Nuclear Studies, PL-05-400 Otwock-Swierk (Poland)

2011-05-15T23:59:59.000Z

17

Neutron detectors for fusion reaction-rate measurements  

SciTech Connect

Fusion reactions in an inertial-confinement fusion (ICF) target filled with deuterium or a deuterium/tritium fuel release nearly monoenergetic neutrons. Because most the neutrons leave the compressed target without collision, they preserve reaction-rate information as they travel radially outward from their point of origin. Three fast, neutron detector techniques, each capable of measuring the fusion reaction-rate of ICF targets, have been demonstrated. The most advanced detector is based on the fast rise-time of a commercial plastic scintillator material (BC-422) which acts as a neutron-to-light converter. Signals, which are recorded with a fast optical streak camera, have a resolution of 25 ps. Good signals can be recorded for targets producing only 5 x 10{sup 7} DT neutrons. Two other detectors use knock-on collisions between neutrons and protons in a thin polyethylene (CH{sub 2}) converter. In one, the converter is placed in front of the photocathode of an x-ray streak camera. Recoil protons pass through the photocathode and knock out electrons which are accelerated and deflected to produce a signal. Resolutions < 25 ps are possible. In the other, the converter is placed in front of a microchannel plate (MCP) with a gated microstrip. Recoil protons eject electrons from the gold layer forming the microstrip. If a gate pulse is present, the signal is amplified. Present gate times are about 80 ps.

Lerche, R.A.; Phillion, D.W.; Landen, O.L.; Murphy, T.J. [Lawrence Livermore National Lab., CA (United States); Jaanimagi, P.A. [Univ. of Rochester, NY (United States). Laboratory for Laser Energetics

1994-02-10T23:59:59.000Z

18

Nuclear fusion in dense matter: Reaction rate and carbon burning  

E-Print Network (OSTI)

In this paper we analyze the nuclear fusion rate between equal nuclei for all five different nuclear burning regimes in dense matter (two thermonuclear regimes, two pycnonuclear ones, and the intermediate regime). The rate is determined by Coulomb barrier penetration in dense environments and by the astrophysical S-factor at low energies. We evaluate previous studies of the Coulomb barrier problem and propose a simple phenomenological formula for the reaction rate which covers all cases. The parameters of this formula can be varied, taking into account current theoretical uncertainties in the reaction rate. The results are illustrated for the example of the ^{12}C+^{12}C fusion reaction. This reaction is very important for the understanding of nuclear burning in evolved stars, in exploding white dwarfs producing type Ia supernovae, and in accreting neutron stars. The S-factor at stellar energies depends on a reliable fit and extrapolation of the experimental data. We calculate the energy dependence of the S-factor using a recently developed parameter-free model for the nuclear interaction, taking into account the effects of the Pauli nonlocality. For illustration, we analyze the efficiency of carbon burning in a wide range of densities and temperatures of stellar matter with the emphasis on carbon ignition at densities rho > 10^9 g/cc.

L. R. Gasques; A. V. Afanasjev; E. F. Aguilera; M. Beard; L. C. Chamon; P. Ring; M. Wiescher; D. G. Yakovlev

2005-06-16T23:59:59.000Z

19

Unified description of fission in fusion and spallation reactions  

E-Print Network (OSTI)

We present a statistical-model description of fission, in the framework of compound-nucleus decay, which is found to simultaneously reproduce data from both heavy-ion-induced fusion reactions and proton-induced spallation reactions at around 1 GeV. For the spallation reactions, the initial compound-nucleus population is predicted by the Li\\`{e}ge Intranuclear Cascade Model. We are able to reproduce experimental fission probabilities and fission-fragment mass distributions in both reactions types with the same parameter sets. However, no unique parameter set was obtained for the fission probability. The introduction of fission transients can be offset by an increase of the ratio of level-density parameters for the saddle-point and ground-state configurations. Changes to the finite-range fission barriers could be offset by a scaling of the Bohr-Wheeler decay width as predicted by Kramers. The parameter sets presented allow accurate prediction of fission probabilities for excitation energies up to 300 MeV and spins up to 60 \\hbar.

Davide Mancusi; Robert J. Charity; Joseph Cugnon

2010-07-06T23:59:59.000Z

20

Fusion and breakup in the reactions of 6,7Li and 9Be  

E-Print Network (OSTI)

We develop a three body classical trajectory Monte Carlo (CTMC) method to dicsuss the effect of the breakup process on heavy-ion fusion reactions induced by weakly bound nuclei. This method follows the classical trajectories of breakup fragments after the breakup takes place, and thus provides an unambiguous separation between complete and incomplete fusion cross sections. Applying this method to the fusion reaction $^{6}$Li + $^{209}$Bi, we find that there is a significant contribution to the total complete fusion cross sections from the process where all the breakup fragments are captured by the target nucleus (i.e., the breakup followed by complete fusion).

K. Hagino; M. Dasgupta; D. J. Hinde

2004-01-13T23:59:59.000Z

Note: This page contains sample records for the topic "key fusion reactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Statistical Model of Heavy-Ion Fusion-Fission Reactions  

E-Print Network (OSTI)

Cross-section and neutron-emission data from heavy-ion fusion-fission reactions are consistent with the fission of fully equilibrated systems with fission lifetime estimates obtained via a Kramers-modified statistical model which takes into account the collective motion of the system about the ground state, the temperature dependence of the location and height of fission transition points, and the orientation degree of freedom. If the standard techniques for calculating fission lifetimes are used, then the calculated excitation-energy dependence of fission lifetimes is incorrect. We see no evidence to suggest that the nuclear viscosity has a temperature dependence. The strong increase in the nuclear viscosity above a temperature of approximately 1.3 MeV deduced by others is an artifact generated by an inadequate fission model.

J. P. Lestone; S. G. McCalla

2008-07-21T23:59:59.000Z

22

On the nuclear interaction. Potential, binding energy and fusion reaction  

E-Print Network (OSTI)

The nuclear interaction is responsible for keeping neutrons and protons joined in an atomic nucleus. Phenomenological nuclear potentials, fitted to experimental data, allow one to know about the nuclear behaviour with more or less success where quantum mechanics is hard to be used. A nuclear potential is suggested and an expression for the potential energy of two nuclear entities, either nuclei or nucleons, is developed. In order to estimate parameters in this expression, some nucleon additions to nuclei are considered and a model is suggested as a guide of the addition process. Coulomb barrier and energy for the addition of a proton to each one of several nuclei are estimated by taking into account both the nuclear and electrostatic components of energy. Studies on the binding energies of several nuclei and on the fusion reaction of two nuclei are carried out.

I. Casinos

2008-05-22T23:59:59.000Z

23

On the nuclear interaction. Potential, binding energy and fusion reaction  

E-Print Network (OSTI)

The nuclear interaction is responsible for keeping neutrons and protons joined in an atomic nucleus. Phenomenological nuclear potentials, fitted to experimental data, allow one to know about the nuclear behaviour with more or less success where quantum mechanics is hard to be used. A nuclear potential is suggested and an expression for the potential energy of two nuclear entities, either nuclei or nucleons, is developed. In order to estimate parameters in this expression, some nucleon additions to nuclei are considered and a model is suggested as a guide of the addition process. Coulomb barrier and energy for the addition of a proton to each one of several nuclei are estimated by taking into account both the nuclear and electrostatic components of energy. Studies on the binding energies of several nuclei and on the fusion reaction of two nuclei are carried out.

Casinos, I

2008-01-01T23:59:59.000Z

24

Transfer/Breakup Channel Couplings in Sub-barrier Fusion Reactions  

E-Print Network (OSTI)

With the recent availability of state-of-the-art radioactive ion beams, there has been a renew interest in the investigation of nuclear reactions with heavy ions near the Coulomb barrier. The role of inelastic and transfer channel couplings in fusion reactions induced by stable heavy ions can be revisited. Detailed Analysis of recent experimental fusion cross sections by using standard coupled-channel calculations is first discussed. Multi-neutron transfer effects are introduced in the fusion process below the Coulomb barrier by analyzing 32S+90,96Zr as benchmark reactions. The enhancement of fusion cross sections for 32S+96Zr is well reproduced at sub-barrier energies by NTFus code calculations including the coupling of the neutron-transfer channels following the Zagrebaev semi-classical model. Similar effects for 40Ca+90Zr and 40Ca+96Zr fusion excitation functions are found. The breakup coupling in both the elastic scattering and in the fusion process induced by weakly bound stable projectiles is also shown to be crucial. In the second part of this work, full coupled-channel calculations of the fusion excitation functions are performed by using the breakup coupling for the more neutron-rich reaction and for the more weakly bound projectiles. we clearly demonstrate that Continuum-Discretized Coupled-Channel calculations are capable to reproduce the fusion enhancement from the breakup coupling in 6Li+59Co.

C. Beck

2012-08-31T23:59:59.000Z

25

Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma  

E-Print Network (OSTI)

The advent of high-intensity pulsed laser technology enables the generation of extreme states of matter under conditions that are far from thermal equilibrium. This in turn could enable different approaches to generating energy from nuclear fusion. Relaxing the equilibrium requirement could widen the range of isotopes used in fusion fuels permitting cleaner and less hazardous reactions that do not produce high energy neutrons. Here we propose and implement a means to drive fusion reactions between protons and boron-11 nuclei, by colliding a laser-accelerated proton beam with a laser-generated boron plasma. We report proton-boron reaction rates that are orders of magnitude higher than those reported previously. Beyond fusion, our approach demonstrates a new means for exploring low-energy nuclear reactions such as those that occur in astrophysical plasmas and related environments.

C. Labaune; C. Baccou; S. Depierreux; C. Goyon; G. Loisel; V. Yahia; J. Rafelski

2013-10-08T23:59:59.000Z

26

Fusion and Direct Reactions of Halo Nuclei at Energies around the Coulomb Barrier  

E-Print Network (OSTI)

The present understanding of reaction processes involving light unstable nuclei at energies around the Coulomb barrier is reviewed. The effect of coupling to direct reaction channels on elastic scattering and fusion is investigated, with the focus on halo nuclei. A list of definitions of processes is given, followed by a review of the experimental and theoretical tools and information presently available. The effect of couplings on elastic scattering and fusion is studied with a series of model calculations within the coupled-channels framework. The experimental data on fusion are compared to "bare" no-coupling one-dimensional barrier penetration model calculations. On the basis of these calculations and comparisons with experimental data, conclusions are drawn from the observation of recurring features. The total fusion cross sections for halo nuclei show a suppression with respect to the "bare" calculations at energies just above the barrier that is probably due to single neutron transfer reactions. The data for total fusion are also consistent with a possible sub-barrier enhancement; however, this observation is not conclusive and other couplings besides the single-neutron channels would be needed in order to explain any actual enhancement. We find that a characteristic feature of halo nuclei is the dominance of direct reactions over fusion at near and sub-barrier energies; the main part of the cross section is related to neutron transfers, while calculations indicate only a modest contribution from the breakup process.

N. Keeley; R. Raabe; N. Alamanos; J. L. Sida

2007-02-16T23:59:59.000Z

27

Synthesis of transactinide nuclei in cold fusion reactions using radioative beams  

E-Print Network (OSTI)

Chances of synthesis of transactinide nuclei in cold fusion reactions (one-neutron-out) reactions using radioactive beams are evaluated. Because intensities of radioactive beams are in most of the cases significantly lower than the ones of the stable beams, reactions with the highest radioactive beam intensities for the particular elements are considered. The results are compared with the recent ones obtained by Loveland who investigated the same nuclei.

Smolanczuk, Robert

2009-01-01T23:59:59.000Z

28

Synthesis of transactinide nuclei in cold fusion reactions using radioative beams  

E-Print Network (OSTI)

Chances of synthesis of transactinide nuclei in cold fusion reactions (one-neutron-out) reactions using radioactive beams are evaluated. Because intensities of radioactive beams are in most of the cases significantly lower than the ones of the stable beams, reactions with the highest radioactive beam intensities for the particular elements are considered. The results are compared with the recent ones obtained by Loveland who investigated the same nuclei.

Robert Smolanczuk

2009-12-04T23:59:59.000Z

29

Synthesis of transactinide nuclei in cold fusion reactions using radioactive beams  

SciTech Connect

Chances of synthesis of transactinide nuclei in cold fusion reactions (one-neutron-out reactions) using radioactive beams are evaluated. Because in most of the cases intensities of radioactive beams are significantly less than those of the stable beams, reactions with the greatest radioactive-beam intensities for the particular elements are considered. The results are compared with the recent ones obtained by Loveland [Phys. Rev. C 76, 014612 (2007)], who investigated the same nuclei.

Smolanczuk, Robert [Theoretical Physics Department, Soltan Institute for Nuclear Studies, Hoza 69, PL-00-681 Warszawa (Poland)

2010-06-15T23:59:59.000Z

30

Transfer/Breakup Channel Couplings in Sub-barrier Fusion Reactions  

E-Print Network (OSTI)

With the recent availability of state-of-the-art radioactive ion beams, there has been a renew interest in the investigation of nuclear reactions with heavy ions near the Coulomb barrier. The role of inelastic and transfer channel couplings in fusion reactions induced by stable heavy ions can be revisited. Detailed Analysis of recent experimental fusion cross sections by using standard coupled-channel calculations is first discussed. Multi-neutron transfer effects are introduced in the fusion process below the Coulomb barrier by analyzing 32S+90,96Zr as benchmark reactions. The enhancement of fusion cross sections for 32S+96Zr is well reproduced at sub-barrier energies by NTFus code calculations including the coupling of the neutron-transfer channels following the Zagrebaev semi-classical model. Similar effects for 40Ca+90Zr and 40Ca+96Zr fusion excitation functions are found. The breakup coupling in both the elastic scattering and in the fusion process induced by weakly bound stable projectiles is also shown...

Beck, C

2012-01-01T23:59:59.000Z

31

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Achieving Fusion Conditions Achieving Fusion Conditions CPEP: Online Fusion Course Main Topics Energy Sources and Conversions Two Key Fusion Reactions How Fusion Reactions Work Creating the Conditions for Fusion Plasmas - the 4th State of Matter Achieving Fusion Conditions More Info About CPEP Fusion Chart Images: English + 6 More Languages Main CPEP Web Site Printed Charts in 3 Sizes Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Overview | The Guided Tour Achieving Fusion Conditions EXPERIMENTAL RESULTS IN FUSION RESEARCH Both inertial and magnetic confinement fusion research have focused on understanding plasma confinement and heating. This research has led to increases in plasma temperature, T, density, n, and energy confinement

32

On the true nature of transfer reactions leading to the complete fusion of projectile and target  

E-Print Network (OSTI)

The transfer of nucleons in hot-fusion reactions occurs within 0.17 yoctosecond, in a new state of nuclear matter. We suggest that the same state should show itself in an early stage of the phenomena occurring in nucleus-nucleus collisions realized at relativistic energies.

G. Mouze; C. Ythier

2012-11-15T23:59:59.000Z

33

VII. Nuclear Chemistry (Chapter 17) A. Modes of radioactive decay, nuclear reactions, fission, fusion  

E-Print Network (OSTI)

40 VII. Nuclear Chemistry (Chapter 17) A. Modes of radioactive decay, nuclear reactions, fission #12;41 These masses are not exactly integer multiples due to nuclear interactions between the protons differences via the famous formula E = mc2 . Nuclear Fusion! For example, if you combine 2 protons and two

34

Developing a commercial production process for 500,000 targets per day: A key challenge for inertial fusion energy  

Science Conference Proceedings (OSTI)

As is true for current-day commercial power plants, a reliable and economic fuel supply is essential for the viability of future Inertial Fusion Energy (IFE) [Energy From Inertial Fusion, edited by W. J. Hogan (International Atomic Energy Agency, Vienna, 1995)] power plants. While IFE power plants will utilize deuterium-tritium (DT) bred in-house as the fusion fuel, the 'target' is the vehicle by which the fuel is delivered to the reaction chamber. Thus the cost of the target becomes a critical issue in regard to fuel cost. Typically six targets per second, or about 500 000/day are required for a nominal 1000 MW(e) power plant. The electricity value within a typical target is about $3, allocating 10% for fuel cost gives only 30 cents per target as-delivered to the chamber center. Complicating this economic goal, the target supply has many significant technical challenge - fabricating the precision fuel-containing capsule, filling it with DT, cooling it to cryogenic temperatures, layering the DT into a uniform layer, characterizing the finished product, accelerating it to high velocity for injection into the chamber, and tracking the target to steer the driver beams to meet it with micron-precision at the chamber center.

Goodin, D.T.; Alexander, N.B.; Besenbruch, G.E.; Bozek, A.S.; Brown, L.C.; Flint, G.W.; Kilkenny, J.D.; McQuillan, B.W.; Nikroo, A.; Paguio, R.R.; Petzoldt, R.W.; Schroen, D.G.; Sheliak, J.D.; Vermillion, B.A. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Carlson, L.C.; Goodman, P.; Maksaereekul, W.; Raffray, R.; Spalding, J.; Tillack, M.S. [University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92023 (United States)] (and others)

2006-05-15T23:59:59.000Z

35

Fusion cross sections for 6,7Li + 24Mg reactions at energies below and above the barrier  

E-Print Network (OSTI)

Measurement of fusion cross sections for the 6,7Li + 24Mg reactions by the characteristic gamma-ray method has been done at energies from below to well above the respective Coulomb barriers. The fusion cross sections obtained from these gamma-ray cross sections for the two systems are found to agree well with the total reaction cross sections at low energies. The decrease of fusion cross sections with increase of energy is consistent with the fact that other channels, in particular breakup open up with increase of bombarding energy. This shows that there is neither inhibition nor enhancement of fusion cross sections for these systems at above or below the barrier. The critical angular momenta (lcr) deduced from the fusion cross sections are found to have an energy dependence similar to other Li - induced reactions.

M. Ray; A. Mukherjee; M. K. Pradhan; Ritesh Kshetri; M. Saha Sarkar; R. Palit; I. Majumdar; P. K. Joshi; H. C. Jain; B. Dasmahapatra

2008-05-07T23:59:59.000Z

36

Competition of fusion and quasi-fission in the reactions leading to production of the superheavy elements  

E-Print Network (OSTI)

The mechanism of fusion hindrance, an effect observed in the reactions of cold, warm and hot fusion leading to production of the superheavy elements, is investigated. A systematics of transfermium production cross sections is used to determine fusion probabilities. Mechanism of fusion hindrance is described as a competition of fusion and quasi-fission. Available evaporation residue cross sections in the superheavy region are reproduced satisfactorily. Analysis of the measured capture cross sections is performed and a sudden disappearance of the capture cross sections is observed at low fusion probabilities. A dependence of the fusion hindrance on the asymmetry of the projectile-target system is investigated using the available data. The most promising pathways for further experiments are suggested.

M. Veselsky

2003-02-11T23:59:59.000Z

37

$^{64}$Ni+$^{64}$Ni fusion reaction calculated with the density-constrained time-dependent Hartree-Fock formalism  

E-Print Network (OSTI)

We study fusion reactions of the $^{64}$Ni+$^{64}$Ni system using the density-constrained time-dependent Hartree-Fock (TDHF) formalism. In this formalism the fusion barriers are directly obtained from TDHF dynamics. In addition, we incorporate the entrance channel alignments of the slightly deformed (oblate) $^{64}$Ni nuclei due to dynamical Coulomb excitation. We show that alignment leads to a fusion barrier distribution and alters the naive picture for defining which energies are actually sub-barrier. We also show that core polarization effects could play a significant role in fusion cross section calculations.

A. S. Umar; V. E. Oberacker

2007-09-25T23:59:59.000Z

38

Inertial confinement fusion reaction chamber and power conversion system study. Final report  

Science Conference Proceedings (OSTI)

This report summarizes the results of the second year of a two-year study on the design and evaluation of the Cascade concept as a commercial inertial confinement fusion (ICF) reactor. We developed a reactor design based on the Cascade reaction chamber concept that would be competitive in terms of both capital and operating costs, safe and environmentally acceptable in terms of hazard to the public, occupational exposure and radioactive waste production, and highly efficient. The Cascade reaction chamber is a double-cone-shaped rotating drum. The granulated solid blanket materials inside the rotating chamber are held against the walls by centrifugal force. The fusion energy is captured in a blanket of solid carbon, BeO, and LiAlO/sub 2/ granules. These granules are circulated to the primary side of a ceramic heat exchanger. Primary-side granule temperatures range from 1285 K at the LiAlO/sub 2/ granule heat exchanger outlet to 1600 K at the carbon granule heat exchanger inlet. The secondary side consists of a closed-cycle gas turbine power conversion system with helium working fluid, operating at 1300 K peak outlet temperature and achieving a thermal power conversion efficiency of 55%. The net plant efficiency is 49%. The reference design is a plant producing 1500 MW of D-T fusion power and delivering 815 MW of electrical power for sale to the utility grid. 88 refs., 44 figs., 47 tabs.

Maya, I.; Schultz, K.R.; Bourque, R.F.; Cheng, E.T.; Creedon, R.L.; Norman, J.H.; Price, R.J.; Porter, J.; Schuster, H.L.; Simnad, M.J.

1985-10-01T23:59:59.000Z

39

Study of near-stability nuclei populated as fission fragments in heavy-ion fusion reactions  

SciTech Connect

Examples are presented to illustrate the power of prompt {gamma}-ray spectroscopy of fission fragments from compound nuclei with A{approx}200 formed in fusion-evaporation reactions in experiments using the Gammasphere Ge-detector array. Complementary methods, such as Coulomb excitation and deep-inelastic processes, are also discussed. In other cases (n,xn{gamma}) reactions on stable isotopes have been used to establish neutron excitation functions for {gamma}-rays using a pulsed 'white'-neutron source, coupled to a high-energy-resolution germanium-detector array. The excitation functions can unambiguously assign {gamma}-rays to a specific reaction product. Results from all these methods bridge the gaps in the systematics of high-spin states between the neutron-deficient and neutron-rich nuclei. Results near shell closures should motivate new shell model calculations.

Fotiades, N.; Nelson, R. O.; Devlin, M. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Cizewski, J. A. [Department of Physics and Astronomy, Rutgers University, New Brunswick, New Jersey 08903 (United States); Kruecken, R. [Physik Department E12, Technische Universitaet Muenchen, D-85748 Garching (Germany); Clark, R. M.; Fallon, P.; Lee, I. Y.; Macchiavelli, A. O. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Becker, J. A.; Younes, W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

2011-10-28T23:59:59.000Z

40

Fusion reactions with the one-neutron halo nucleus 15C  

E-Print Network (OSTI)

The structure of 15C, with an s1/2 neutron weakly bound to a closed-neutron shell nucleus 14C, makes it a prime candidate for a one-neutron halo nucleus. We have for the first time studied the cross section for the fusion-fission reaction 15C + 232Th at energies in the vicinity of the Coulomb barrier and compared it to the yield of the neighboring 14C + 232Th system measured in the same experiment. At sub-barrier energies, an enhancement of the fusion yield by factors of 2-5 was observed for 15C, while the cross sections for 14C match the trends measured for 12,13C.

M. Alcorta; K. E. Rehm; B. B. Back; S. Bedoor; P. F. Bertone; C. M. Deibel; B. DiGiovine; H. Esbensen; J. P. Greene; C. R. Hoffmann; C. L. Jiang; J. C. Lighthall; S. T. Marley; R. C. Pardo; M. Paul; A. M. Rogers; C. Ugalde; A. H. Wuosmaa

2011-04-06T23:59:59.000Z

Note: This page contains sample records for the topic "key fusion reactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Fission Decay Widths for Heavy-Ion Fusion-Fission Reactions  

E-Print Network (OSTI)

Cross-section and neutron-emission data from heavy-ion fusion-fission reactions are consistent with a Kramers-modified statistical model which takes into account the collective motion of the system about the ground state; the temperature dependence of the location of fission transition points; and the orientation degree of freedom. We see no evidence to suggest that the nuclear viscosity departs from the surface-plus-window dissipation model. The strong increase in the nuclear viscosity above a temperature of ~1 MeV deduced by others is an artifact generated by an inadequate fission model.

S. G. McCalla; J. P. Lestone

2008-01-30T23:59:59.000Z

42

Evidence of microscopic effects in fragment mass distribution in heavy ion induced fusion-fission reactions  

E-Print Network (OSTI)

Our measurements of variances ($\\sigma_{m}^2$) in mass distributions of fission fragments from fusion-fission reactions of light projectiles (C, O and F) on deformed thorium targets exhibit a sharp anomalous increase with energy near the Coulomb barrier, in contrast to the smooth variation of $\\sigma_{m}^2$ for the spherical bismuth target. This departure from expectation based on a statistical description is explained in terms of microscopic effects arising from the orientational dependence in the case of deformed thorium targets.

T. K. Ghosh; S. Pal; K. S. Gold; P. Bhattacharya

2005-06-27T23:59:59.000Z

43

Fusion Probability in the Reactions {sup 58}Fe+{sup 244}Pu and {sup 64}Ni+{sup 238}U  

Science Conference Proceedings (OSTI)

Mass-energy distributions, as well as capture cross-section of fission-like fragments for the reactions {sup 64}Ni+{sup 238}U and {sup 58}Fe+{sup 244}Pu leading to the formation of superheavy compound system with Z = 120 and N 182 at energies near the Coulomb barrier have been measured. Fusion-fission cross sections were estimated from the analysis of mass and total kinetic energy distributions. It was found that the fusion probability is about one order of magnitude higher for the reaction {sup 58}Fe+{sup 244}Pu than that for the reaction with {sup 64}Ni-ions.

Knyazheva, G. N.; Bogachev, A. A.; Itkis, I. M.; Itkis, M. G.; Kozulin, E. M. [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, RU-141980 Dubna, Moscow region (Russian Federation)

2010-04-30T23:59:59.000Z

44

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Fluorescent Lights and Neon Signs Fluorescent Lights and Neon Signs CPEP: Online Fusion Course Main Topics Energy Sources and Conversions Two Key Fusion Reactions How Fusion Reactions Work Creating the Conditions for Fusion Plasmas - the 4th State of Matter Achieving Fusion Conditions More Info About CPEP Fusion Chart Images: English + 6 More Languages Main CPEP Web Site Printed Charts in 3 Sizes Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Overview | The Guided Tour Fluorescent Lights and Neon Signs Two of the most common plasma devices on the planet are the fluorescent light bulb, and its cousin, the neon sign. Since their development in the 1940's, fluorescent bulbs have become the lighting fixture of choice in

45

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Sun Sun Layers CPEP: Online Fusion Course Main Topics Energy Sources and Conversions Two Key Fusion Reactions How Fusion Reactions Work Creating the Conditions for Fusion Plasmas - the 4th State of Matter Achieving Fusion Conditions More Info About CPEP Fusion Chart Images: English + 6 More Languages Main CPEP Web Site Printed Charts in 3 Sizes Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Overview | The Guided Tour From Core to Corona Layers of the Sun Image Credit: p. 110,125, Kaler The Core The innermost layer of the sun is the core. With a density of 160 g/cm^3, 10 times that of lead, the core might be expected to be solid. However, the core's temperature of 15 million kelvins (27 million degrees Fahrenheit)

46

Fusion-fission and quasifission in the reactions with heavy ions leading to the formation of Hs  

Science Conference Proceedings (OSTI)

Mass and energy distributions of binary reaction products obtained in the reactions {sup 22}Ne+{sup 249}Cf,{sup 26}Mg+{sup 248}Cm,{sup 36}S+{sup 238}U and {sup 58}Fe+{sup 208}Pb leading to Hs isotopes have been measured. At energies below the Coulomb barrier the bimodal fission of Hs*, formed in the reaction {sup 26}Mg+{sup 248}Cm, is observed. In the reaction {sup 36}S+{sup 238}U the considerable part of the symmetric fragments arises from the quasifission process. At energies above the Coulomb barrier the symmetric fragments originate mainly from fusion-fission process for both reactions with Mg and S ions. In the case of the {sup 58}Fe+{sup 208}Pb reaction the quasifission process dominates at all measured energies. The pre- and post-scission neutron multiplicities as a function of the fragment mass have been obtained for the reactions studied.

Itkis, I. M.; Itkis, M. G.; Knyazheva, G. N.; Kozulin, E. M. [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)

2012-10-20T23:59:59.000Z

47

A classical approach in simple nuclear fusion reaction {sub 1}H{sup 2}+{sub 1}H{sup 3} using two-dimension granular molecular dynamics model  

Science Conference Proceedings (OSTI)

Molecular dynamics in 2-D accompanied by granular model provides an opportunity to investigate binding between nuclei particles and its properties that arises during collision in a fusion reaction. A fully classical approach is used to observe the influence of initial angle of nucleus orientation to the product yielded by the reaction. As an example, a simplest fusion reaction between {sub 1}H{sup 2} and {sub 1}H{sup 3} is observed. Several products of the fusion reaction have been obtained, even the unreported ones, including temporary {sub 2}He{sup 4} nucleus.

Viridi, S.; Kurniadi, R.; Waris, A.; Perkasa, Y. S. [Nuclear Physics and Biophysics Research Division, Institut Teknologi Bandung, Bandung 40132 (Indonesia); Doctoral Program in Physics, Institut Teknologi Bandung, Bandung 40132 Physics Department, Universitas Islam Negeri Sunan Gunung Djati, Bandung 40614 (Indonesia)

2012-06-06T23:59:59.000Z

48

Calculation of excitation function of some structural fusion material for (n,p) reactions up to 25 MeV  

E-Print Network (OSTI)

Fusion serves an inexhaustible energy for humankind. Although there have been significant research and development studies on the inertial and magnetic fusion reactor technology, Furthermore, there are not radioactive nuclear waste problems in the fusion reactors. In this study, (n, p) reactions for some structural fusion materials such as 27Al, 51V, 52Cr, 55Mn and 56Fe have been investigated. The new calculations on the excitation functions of 27 Al(n,p) 27 Mg, 51 V(n,p) 51 Ti, 52 Cr(n,p) 52 V, 55 Mn(n,p) 55 Cr and 56 Fe(n,p) 56 Mn reactions have been carried out up to 30 MeV incident neutron energy. Statistical model calculations, based on the Hauser-Feshbach formalism, have been carried out using the TALYS-1.0 and were compared with available experimental data in the literature and with ENDF/B-VII, T=300k; JENDL-3.3, T=300k and JEFF3.1, T=300k evaluated libraries .

Tarik Siddik

2013-03-15T23:59:59.000Z

49

Calculation of excitation function of some structural fusion material for (n,p) reactions up to 25 MeV  

E-Print Network (OSTI)

Fusion serves an inexhaustible energy for humankind. Although there have been significant research and development studies on the inertial and magnetic fusion reactor technology, Furthermore, there are not radioactive nuclear waste problems in the fusion reactors. In this study, (n, p) reactions for some structural fusion materials such as 27Al, 51V, 52Cr, 55Mn and 56Fe have been investigated. The new calculations on the excitation functions of 27 Al(n,p) 27 Mg, 51 V(n,p) 51 Ti, 52 Cr(n,p) 52 V, 55 Mn(n,p) 55 Cr and 56 Fe(n,p) 56 Mn reactions have been carried out up to 30 MeV incident neutron energy. Statistical model calculations, based on the Hauser-Feshbach formalism, have been carried out using the TALYS-1.0 and were compared with available experimental data in the literature and with ENDF/B-VII, T=300k; JENDL-3.3, T=300k and JEFF3.1, T=300k evaluated libraries .

Siddik, Tarik

2013-01-01T23:59:59.000Z

50

Fission-Fusion: A new reaction mechanism for nuclear astrophysics based on laser-ion acceleration  

Science Conference Proceedings (OSTI)

We propose to produce neutron-rich nuclei in the range of the astrophysical r-process around the waiting point N = 126 by fissioning a dense laser-accelerated thorium ion bunch in a thorium target (covered by a CH{sub 2} layer), where the light fission fragments of the beam fuse with the light fission fragments of the target. Via the 'hole-boring' mode of laser Radiation Pressure Acceleration using a high-intensity, short pulse laser, very efficiently bunches of {sup 232}Th with solid-state density can be generated from a Th target and a deuterated CD{sub 2} foil, both forming the production target assembly. Laser-accelerated Th ions with about 7 MeV/u will pass through a thin CH{sub 2} layer placed in front of a thicker second Th foil (both forming the reaction target) closely behind the production target and disintegrate into light and heavy fission fragments. In addition, light ions (d,C) from the CD{sub 2} layer of the production target will be accelerated as well, inducing the fission process of {sup 232}Th also in the second Th layer. The laser-accelerated ion bunches with solid-state density, which are about 10{sup 14} times more dense than classically accelerated ion bunches, allow for a high probability that generated fission products can fuse again. The high ion beam density may lead to a strong collective modification of the stopping power, leading to significant range and thus yield enhancement. Using a high-intensity laser as envisaged for the ELI-Nuclear Physics project in Bucharest (ELI-NP), order-of-magnitude estimates promise a fusion yield of about 10{sup 3} ions per laser pulse in the mass range of A = 180-190, thus enabling to approach the r-process waiting point at N = 126.

Thirolf, P. G.; Gross, M.; Allinger, K.; Bin, J.; Henig, A.; Kiefer, D. [Fakultaet fuer Physik, Ludwig-Maximilians Universitaet Muenchen, D-85748 Garching (Germany); Habs, D. [Fakultaet fuer Physik, Ludwig-Maximilians Universitaet Muenchen, D-85748 Garching (Germany); Max-Planck-Institut fuer Quantenoptik, D-85748 Garching (Germany); Ma, W.; Schreiber, J. [Max-Planck-Institut fuer Quantenoptik, D-85748 Garching (Germany)

2011-10-28T23:59:59.000Z

51

Fusion-evaporation reactions: a tool for gamma-ray spectroscopy on light nuclei  

SciTech Connect

We have studied the weak-decay channels of fusion/evaporation in light projectile/light target systems in order to provide reliable predictions for gamma-spectroscopy experiments.

Gibelin, J.; Phair, L.; Wiedeking, M.; Clark, R. M.; Cromaz, M.; Deleplanque, M.-A.; Fallon, P.; Lee, I.-Y.; Macchiavelli, A. O.; McMahan, M. A. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Bernstein, L. A.; Burke, J. T.; Bleuel, D. L.; Lesher, S. R. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Hatarik, R. [Rutgers University, New Brunswick, NJ 08854 (United States); Lake, P. T.; Rodriguez-Vieitez, E.; Moretto, L. G. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); University of California, Berkeley CA 94720 (United States); Lyles, B. F. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); University of California, Berkeley CA 94720 (United States)

2008-04-17T23:59:59.000Z

52

Photo-fusion reactions in a new compact device for ELI  

Science Conference Proceedings (OSTI)

In the last few years significant progress on technological, experimental and numerical studies on fusion process in high density and high temperature plasmas produced by a high intensity laser pulse interaction with clusters in a high external applied magnetic field, enable us to propose a compact photo-fusion magnetic device for high neutron production. For the purpose of the project a pulsed magnetic field driver with values up to 110 Tesla has been developed which allows increasing the trapping time of the high density plasma in the device and improving the neutron yield. Numerical simulations show that the proposed device is capable of producing up to 10{sup 9}-10{sup 10} neutrons per laser shot with an external magnetic field of 150 Tesla. The proposed device can be used for experiments and numerical code validation concerning different conventional and (or) exotic fusion fuels.

Moustaizis, S. D.; Auvray, P.; Hora, H.; Lalousis, P.; Larour, J.; Mourou, G. [Technical University of Crete, Science Department, 73100 Chania, Crete (Greece); LPP-Laboratoire de Physique des Plasmas, Ecole Polytechnique, Palaiseau (France); Department of Theoret. Physics, Univ. New South Wales, Sydney 2052 (Australia); Institute of Electronic Structure and Laser, FORTH, Heraklion (Greece); LPP-Laboratoire de Physique des Plasmas, Ecole Polytechnique, Palaiseau (France); LOA Laboratoire d'Optique Appliquee, ENSTA, Palaiseau Cedex (France)

2012-07-09T23:59:59.000Z

53

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

- Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Overview | The Guided Tour How Fusion Reactions Work THE NUCLEAR PHYSICS OF FUSION Fusion of light (low-mass)...

54

Odd-Z Transactinide Compound Nucleus Reactions Including the Discovery of 260Bh  

E-Print Network (OSTI)

reactions: hot fusion and cold fusion. The main differencenot yet well understood. Cold fusion reactions are, as theof nuclides. An advantage that cold fusion reactions have is

Nelson, Sarah L

2008-01-01T23:59:59.000Z

55

Isotopic Yield Distributions of Transfer- and Fusion-Induced Fission from 238U+12C Reactions in Inverse Kinematics  

E-Print Network (OSTI)

A novel method to access the complete identification in atomic number Z and mass A of fragments produced in low-energy fission of actinides is presented. This method, based on the use of multi- nucleon transfer and fusion reactions in inverse kinematics, is applied in this work to reactions between a 238U beam and a 12C target to produce and induce fission of moderately excited actinides. The fission fragments are detected and fully identified with the VAMOS spectrometer of GANIL, allowing the measurement of fragment yields of several hundreds of isotopes in a range between A ~ 80 and ~ 160, and from Z ~ 30 to ~ 64. For the first time, complete isotopic yield distributions of fragments from well-defined fissioning systems are available. Together with the precise measurement of the fragment emission angles and velocities, this technique gives further insight into the nuclear-fission process.

M. Caamańo; O. Delaune; F. Farget; X. Derkx; K. -H. Schmidt; L. Audouin; C. -O. Bacri; G. Barreau; J. Benlliure; E. Casarejos; A. Chbihi; B. Fernandez-Dominguez; L. Gaudefroy; C. Golabek; B. Jurado; A. Lemasson; A. Navin; M. Rejmund; T. Roger; A. Shrivastava; C. Schmitt

2013-04-09T23:59:59.000Z

56

Study of some steller iron group fusion materials for (n,p) reactions  

E-Print Network (OSTI)

The excitation functions for (n,p) reactions from reaction threshold to 24 MeV on some important iron (Fe) group target elements for astrophysical (n, p) reactions such as Si, Ca, Sc, Ti, Cr, Fe, Co and Ni were calculated using TALYS-1.0 nuclear model code. The new calculations on the excitation functions Of 28Si(n,p)28Al, 29Si(n, p)29Al, 42Ca(n, p)42K, 45Sc(n, p)45Ca, 46Ti(n,p)46Sc, 52Cr(n, p)52V, 53Cr(n, p)53V, 54Fe(n,p)54Mn, 57Fe(n,p)57Mn, 59Co(n, p)59Fe, 58Ni(n, p)58Co and 60Ni(n, p)60Co reactions have been carried out up to 24 MeV incident neutron energy. In these calculations, the pre-equilibrium and equilibrium effects have been investigated. Statistical model calculations, based on the Hauser-Feshbach formalism, have been carried out using the TALYS-1.0 and were compared with existing experimental data as well as with evaluated data files (Experimental Nuclear Reaction Data (EXFOR).According to these calculations, we assume that these model calculations can be applied to some heavy elements, ejected into interstellar medium by dramatic supernova events.

Tarik Siddik

2013-03-14T23:59:59.000Z

57

Analytic criteria for shock ignition of fusion reactions in a central hot spot  

Science Conference Proceedings (OSTI)

Shock ignition is an inertial confinement fusion scheme where the ignition conditions are achieved in two steps. First, the DT shell is compressed at a low implosion velocity creating a central core at a low temperature and a high density. Then, a strong spherical converging shock is launched before the fuel stagnation time. It increases the central pressure and ignites the core. It is shown in this paper that this latter phase can be described analytically by using a self-similar solution to the equations of ideal hydrodynamics. A high and uniformly distributed pressure in the hot spot can be created thus providing favorable conditions for ignition. Analytic ignition criteria are obtained that relate the areal density of the compressed core with the shock velocity. The conclusions of the analytical model are confirmed in full hydrodynamic simulations.

Ribeyre, X.; Tikhonchuk, V. T.; Breil, J.; Lafon, M.; Le Bel, E. [Centre Lasers Intenses et Applications, Universite Bordeaux 1-CEA-CNRS, Talence 33405 (France)

2011-10-15T23:59:59.000Z

58

Probing the Structure of {sup 74}Ge Nucleus with Coupled-channels Analysis of {sup 74}Ge+{sup 74}Ge Fusion Reaction  

Science Conference Proceedings (OSTI)

We study the fusion reaction of the {sup 74}Ge+{sup 74}Ge system in term of the full order coupled-channels formalism. We especially calculated the fusion cross section as well as the fusion barrier distribution of this reaction using transition matrix suggested by recent Coulomb excitation experiment. We compare the results with the one obtained by coupling matrix based on pure vibrational and rotational models. The present coupled-channels calculations for the barrier distributions obtained using experiment coupling matrix is in good agreement with the one obtained with vibrational model, in contrast to the rotational model. This is indicates that {sup 74}Ge nucleus favor a spherical shape than a deformed shape in its ground state. Our results will resolve the debates concerning the structure of this nucleus.

Zamrun F, Muhammad [Deparment of Physics University of Malaya, Kuala Lumpur, 50603 (Malaysia); Jurusan Fisika FMIPA, Universitas Haluoleo, Kendari, Sulawesi Tenggara, 93232 (Indonesia); Kasim, Hasan Abu [Deparment of Physics University of Malaya, Kuala Lumpur, 50603 (Malaysia)

2010-12-23T23:59:59.000Z

59

Topical Area MFE Title: Burning Plasma Science_____________________________________________ Description Fusion energy is released by burning light elements using nuclear reactions which consume mass and  

E-Print Network (OSTI)

Page 1 Topical Area MFE Title: Burning Plasma Science_____________________________________________ · Description Fusion energy is released by burning light elements using nuclear reactions which consume mass-sustained purely by its alpha particle heating. The science of burning plasmas consists of: (1) the physics

60

Entrance Channel Dynamics of Hot and Cold Fusion Reactions Leading to Superheavy Elements  

E-Print Network (OSTI)

We investigate the entrance channel dynamics for the reactions $\\mathrm{^{70}Zn}+\\mathrm{^{208}Pb}$ and $\\mathrm{^{48}Ca}+\\mathrm{^{238}U}$ using the fully microscopic time-dependent Hartree-Fock (TDHF) theory coupled with a density constraint. We calculate excitation energies and capture cross-sections relevant for the study of superheavy formations. We discuss the deformation dependence of the ion-ion potential for the $\\mathrm{^{48}Ca}+\\mathrm{^{238}U}$ system and perform an alignment angle averaging for the calculation of the capture cross-section. The results show that this parameter-free approach can generate results in good agreement with experiment and other theories.

A. S. Umar; V. E. Oberacker; J. A. Maruhn; P. -G. Reinhard

2010-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "key fusion reactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

- Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Overview | The Guided Tour Two Important Fusion Reactions D + T > He-4 + n D-T reaction graphic For first...

62

Fusion Science at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Rotating Plasma Finding is Key for ITER Heavy-Ion Fusion Science (HIFS) Math & Computer Science Nuclear Science Science Highlights HPC Requirements Reviews NERSC HPC Achievement...

63

Calculations of Branching Ratios for Radiative-Capture, One-Proton, and Two-Neutron Channels in the Fusion Reaction $^{209}$Bi+$^{70}$Zn  

E-Print Network (OSTI)

We discuss the possibility of the non-one-neutron emission channels in the cold fusion reaction $^{70}$Zn + $^{209}$Bi to produce the element Z=113. For this purpose, we calculate the evaporation-residue cross sections of one-proton, radiative-capture, and two-neutron emissions relative to the one-neutron emission in the reaction $^{70}$Zn + $^{209}$Bi. To estimate the upper bounds of those quantities, we vary model parameters in the calculations, such as the level-density parameter and the height of the fission barrier. We conclude that the highest possibility is for the 2n reaction channel, and its upper bounds are 2.4$%$ and at most less than 7.9% with unrealistic parameter values, under the actual experimental conditions of [J. Phys. Soc. Jpn. {\\bf 73} (2004) 2593].

Takatoshi Ichikawa; Akira Iwamoto

2010-12-20T23:59:59.000Z

64

Calculations of Branching Ratios for Radiative-Capture, One-Proton, and Two-Neutron Channels in the Fusion Reaction $^{209}$Bi+$^{70}$Zn  

E-Print Network (OSTI)

We discuss the possibility of the non-one-neutron emission channels in the cold fusion reaction $^{70}$Zn + $^{209}$Bi to produce the element Z=113. For this purpose, we calculate the evaporation-residue cross sections of one-proton, radiative-capture, and two-neutron emissions relative to the one-neutron emission in the reaction $^{70}$Zn + $^{209}$Bi. To estimate the upper bounds of those quantities, we vary model parameters in the calculations, such as the level-density parameter and the height of the fission barrier. We conclude that the highest possibility is for the 2n reaction channel, and its upper bounds are 2.4$%$ and at most less than 7.9% with unrealistic parameter values, under the actual experimental conditions of [J. Phys. Soc. Jpn. {\\bf 73} (2004) 2593].

Ichikawa, Takatoshi; 10.1143/JPSJ.79.074201

2010-01-01T23:59:59.000Z

65

Lightest Isotope of Bh Produced Via the 209Bi(52Cr,n)260Bh Reaction  

E-Print Network (OSTI)

models. For many years, “cold fusionreactions utilizingproduced via the new “cold fusionreaction 209 Bi( 52 Cr,

2007-01-01T23:59:59.000Z

66

Experimental Cross Sections for Reactions of Heavy Ions and 208Pb, 209Bi, 238U, and 248Cm Targets  

E-Print Network (OSTI)

sections of hot and cold fusion reactions. Experimentalreaction products. Cold fusion reactions were examined usingexperimental data. The cold fusion experimental results are

Patin, Joshua B.

2002-01-01T23:59:59.000Z

67

Dynamical Simulation of Gamma-Ray Multiplicity in B10+Np23, B11+ Th232, C12+Th232, O16 +Th232 Heavy Ion Fusion-Fission Reactions  

Science Conference Proceedings (OSTI)

The passive Q-switched performance of the ruby laser with slow-relaxing solid-state saturable absorber calcium fluoride crystals doped with divalent dysprosium Dy2+:CaF2 is numerical simulation, saturable absorber, Q-switch. is numerically investigated ... Keywords: (fusion-fission reactions, Langevin equations, Monte Carlo simulation, ?-ray multiplicity)

M. R. Pahlavani; S. M. Mirfathi; D. Naderi

2010-05-01T23:59:59.000Z

68

FUSION CROSS-SECTIONS AND THE NEW DYNAMICS  

E-Print Network (OSTI)

Olmi, 0. Schwalm and W. Wb'lfli, "Fusion Reaction Studies ofin I n i t i a t i n g Fusion between Very High Ions", GSI-Alexander and G.R. Satchler, "Fusion Barriers, Empirical and

Swiatecki, W.J.

2010-01-01T23:59:59.000Z

69

Homodyne target tracking for direct drive laser inertial fusion  

E-Print Network (OSTI)

direct drive inertial fusion reactor (Sethian). HAPL’sblock from the fusion reactor chamber. 4.3 Demonstration A.fusion reaction for generating electricity (see figure 1.1). In order for such a nuclear reactor

Spalding, Jon David

2009-01-01T23:59:59.000Z

70

KEY PERSONNEL  

National Nuclear Security Administration (NNSA)

APPENDIX J KEY PERSONNEL 07032013 TITLE NAME President Christopher C. Gentile Vice President, Operations Robin Stubenhofer Director, Sr. Program Management Rick Lavelock...

71

Key Outcomes:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INDIAN COUNTRY ENERGY AND INFRASTRUCTURE WORKING GROUP ICEIWG Key Points & Action Items Inaugural Meeting Thursday, August 25, 2011 Renaissance Denver Hotel Denver, Colorado...

72

Cold nuclear fusion  

SciTech Connect

Recent accelerator experiments on fusion of various elements have clearly demonstrated that the effective cross-sections of these reactions depend on what material the target particle is placed in. In these experiments, there was a significant increase in the probability of interaction when target nuclei are imbedded in a conducting crystal or are a part of it. These experiments open a new perspective on the problem of so-called cold nuclear fusion.

Tsyganov, E. N., E-mail: edward.tsyganov@utsouthwestern.edu [University of Texas Southwestern Medical Center at Dallas (United States)

2012-02-15T23:59:59.000Z

73

Cluster-Impact Fusion  

Science Conference Proceedings (OSTI)

This report considers the theoretical interpretation of cluster-impact fusion (CIF). The proton energy spectrum of CIF shows it to be hot fusion on a microscopic atomic scale. The temperature of the reaction can be determined by the Doppler-like broadening of the 3.025 MeV proton line. The spectrum also indicates that the high temperature results from a one-dimensional rather than a three-dimensional velocity distribution.

1992-05-01T23:59:59.000Z

74

Fusion Power Deployment  

DOE Green Energy (OSTI)

Fusion power plants could be part of a future portfolio of non-carbon dioxide producing energy supplies such as wind, solar, biomass, advanced fission power, and fossil energy with carbon dioxide sequestration. In this paper, we discuss key issues that could impact fusion energy deployment during the last half of this century. These include geographic issues such as resource availability, scale issues, energy storage requirements, and waste issues. The resource needs and waste production associated with fusion deployment in the U.S. should not pose serious problems. One important feature of fusion power is the fact that a fusion power plant should be locatable within most local or regional electrical distribution systems. For this reason, fusion power plants should not increase the burden of long distance power transmission to our distribution system. In contrast to fusion power, regional factors could play an important role in the deployment of renewable resources such as wind, solar and biomass or fossil energy with CO2 sequestration. We examine the role of these regional factors and their implications for fusion power deployment.

J.A. Schmidt; J.M. Ogden

2002-02-06T23:59:59.000Z

75

Key Documents  

Science Conference Proceedings (OSTI)

AOCS by-laws, code of ethics and anti trust policy established during our 100+ legacy. Key Documents AOCS History and Governance about us aocs committees contact us division council fats governing board history oils professionals science value cen

76

Atomic data for fusion  

DOE Green Energy (OSTI)

This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research.

Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A. (eds.) [eds.; Barnett, C.F.

1990-07-01T23:59:59.000Z

77

Fusion reactors for synthetic fuels  

DOE Green Energy (OSTI)

Some of the types of processes now being considered for synthetic fuels production from fusion energy, together with an example of each type are listed. The process efficiency is defined as the chemical energy in the generated hydrogen (at the higher heating value (HHV)) divided by the total fusion energy release, including alpha particles and secondary neutron reactions in the blanket. Except where specifically noted, both high and low temperature blanket heats are counted as part of total fusion energy release.

Powell, J.R.

1979-01-01T23:59:59.000Z

78

Key Outcomes:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Key Points & Action Items Key Points & Action Items Inaugural Meeting Thursday, August 25, 2011 Renaissance Denver Hotel Denver, Colorado Participants Tracey LeBeau, Director, Pilar Thomas, Deputy Director, and Brandt Petrasek, Special Assistant, Department of Energy, Office of Indian Energy Policy and Programs; Vice Chairman Ronald Suppah and Jim Manion, Confederated Tribes of the Warm Springs Reservation of Oregon; William Micklin, Ewiiaapaayp Band of Kumeyaay Indians; Councilman Barney Enos, Jr., Jason Hauter, Gila River Indian Community; Mato Standing High, Rosebud Sioux Tribe; R. Allen Urban, Yocha Dehe Wintun Nation; Glen Andersen, Scott Hendrick, Brooke Oleen, Jacquelyn Pless, Jim Reed and Julia Verdi, National Conference of State Legislatures-staff

79

Investigations of nuclear structure and nuclear reactions induced by complex projectiles  

SciTech Connect

This report discusses research in the following areas: nuclear structure; fusion reactions near and below the barrier; incomplete fusion and fragmentation reactions; and instrumentation and analysis. (LSP).

Sarantites, D.G.

1990-01-01T23:59:59.000Z

80

Fusion Nuclear Science and Technology ProgramFusion Nuclear Science and Technology Program Issues and Strategy for Fusion Nuclear Science Facility (FNSF)  

E-Print Network (OSTI)

Need for Fusion Nuclear Science and Technology ProgramFusion Nuclear Science and Technology Program ­Issues and Strategy for Fusion Nuclear Science Facility (FNSF) ­Key R&D Areas to begin NOW (modeling 12, 2010 #12;Fusion Nuclear Science and Technology (FNST) FNST is the science engineering technology

Abdou, Mohamed

Note: This page contains sample records for the topic "key fusion reactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Intitutional constraints to fusion commercialization  

SciTech Connect

The major thrust of this report is that the long time frame associated with the development of commercial fusion systems in the context of the commercialization and institutional history of an allied technology, fission-power, suggests that fusion commercialization will not occur without active and broad-based support on the part of the Nation's political leaders. Its key recommendation is that DOE fusion planners devote considerable resources to analytical efforts aimed at determining the need for fusion and the timing of that need, in order to convince policymakers that they need do more than preserve fusion as an option for application at some indefinite point in the future. It is the thesis of the report that, in fact, an act of political vision on the part of the Nation's leaders will be required to accomplish fusion commercialization.

1979-10-01T23:59:59.000Z

82

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

About Us About Us FusEdWeb: Discover Fusion CPEP's Online Fusion Course Fusion FAQ Fusion and Plasma Glossary Plasma Dictionary Student and Teacher Resources Education and Outreach Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National Ignition Facility Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Our Sun | Other Stars and Galaxies | Inertial Confinement | Magnetic Confinement Webby Honoree graphic graphic Key Resource Snap editors choice new scientist DrMatrix Webby Awards Honoree, April 10, 2007 The Alchemist - WebPick, January 29, 1999 Links2Go - Fusion, November 9, 1998 October 19, 1998 - October 19, 1999 Site of the Day, September 24, 1998. Hot spot. Student Science Resource, April 16, 1997

83

Fusion power production in TFTR  

SciTech Connect

Up to 9.3 MW of fusion power has been produced from deuterium-tritium (DT) fusion reactions in the Tokamak Fusion Test Reactor (TFTR). The total fusion yield from a single plasma pulse has reached 6.5 MJ. The experiments in TFTR with deuterium-tritium plasmas fueled and heated by neutral beam injection span wide ranges in plasma and operating conditions. Through the use of lithium pellet conditioning to control the edge recycling, the plasma confinement in TFTR has been improved to the point where the stability of the plasma to pressure driven modes is limiting the fusion power for plasma currents up to 2.5 MA. The central energy and fusion power densities in these plasmas are comparable to those expected in a thermalized DT reactor, such as ITER.

Bell, M.G.; Budny, R.V. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Barnes, C.W. [Los Alamos National Lab., NM (United States)] [and others

1994-11-01T23:59:59.000Z

84

Road map for a modular magnetic fusion program  

SciTech Connect

During the past several decades magnetic fusion has made outstanding progress in understanding the science of fusion plasmas, the achievement of actual fusion plasmas and the development of key fusion technologies. Magnetic fusion is now technically ready to take the next step: the study of high gain fusion plasmas, the optimization of fusion plasmas and the continued development and integration of fusion technology. However, each of these objectives requires significant resources since the tests are now being done at the energy production scale. This paper describes a modular approach that addresses these objectives in specialized facilities that reduces the technical risk and lowers cost for near term facilities needed to address critical issues.

Dale M. Meade

2000-07-18T23:59:59.000Z

85

Some Calculations for Cold Fusion Superheavy Elements  

E-Print Network (OSTI)

The Q value and optimal exciting energy of the hypothetical superheavy nuclei in cold fusion reaction are calculated with relativistic mean field model and semiemperical shell model mass equation(SSME) and the validity of the two models is tested. The fusion barriers are also calculated with two different models and reasonable results are obtained. The calculations can give useful references for the experiments in the superheavy nuclei synthesized in cold fusion reactions.

X. H. Zhong; L. Li; P. Z. Ning

2004-10-18T23:59:59.000Z

86

Magneized target fusion: An overview of the concept  

SciTech Connect

Magnetized target fusion (MTF) seeks to take advantage of the reduction of thermal conductivity through the application of a strong magneticfield and thereby ease the requirements for reaching fusion conditions in a thermonuclear (TN) fusion fuel. A potentially important benefit of the strong field in the partial trapping of energetic charged particles to enhance energy deposition by the TN fusion reaction products. The essential physics is described. MTF appears to lead to fusion targets that require orders of magnitude less power and intensity for fusion ignition than currently proposed (unmagnetized) inertial confinement fusion (ICF) targets do, making some very energetic pulsed power drivers attractive for realizing controlled fusion.

Kirkpatrick, R.C.

1994-12-31T23:59:59.000Z

87

Development of odd-Z-projectile reactions for transactinide element synthesis  

E-Print Network (OSTI)

of Superheavy Nuclei in Cold Fusion Reactions, Phys. Rev. Cof Super-Heavy Nuclei in Cold Fusion Reactions, Int. J. Mod.barrier, why should cold fusion give excitation energies of

Folden III, Charles Marvin

2004-01-01T23:59:59.000Z

88

Fusion breeder  

SciTech Connect

The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs.

Moir, R.W.

1982-02-22T23:59:59.000Z

89

Fusion Website  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion Basics Fusion Intro Fusion Education Research DIII-D Internal Site Opportunities Virtual DIII-D Collaborators Countries Physics Eng Physics Operations Diagnostics Computing IFT IFT Site ITER ITER Site FDF Theory Collaborators Conferences GA-Hosted Room Reservations Fusion Meetings Plasma Publications Presentations Images Brochures Posters Movies Corporate General Atomics Products Visitor GA Fusion Hotels Internal Users GA Internal Site DIII-D General Experimental Science Experimental Science Home 2013 Experimental Campaign Burning Plasma Physics Dynamics & Control Boundary and Pedestal ELM Control Operations Diagnostics Computing Support Visitors DIII-D Web Access Help IFT ITER-GA Theory Research Highlights Personnel Links Policies Safety Comp Support Trouble Ticket Eng/Design Fusion Webmail Phone Book

90

Fusion breeder  

SciTech Connect

The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs.

Moir, R.W.

1982-04-20T23:59:59.000Z

91

Fusion Implementation  

SciTech Connect

If a fusion DEMO reactor can be brought into operation during the first half of this century, fusion power production can have a significant impact on carbon dioxide production during the latter half of the century. An assessment of fusion implementation scenarios shows that the resource demands and waste production associated with these scenarios are manageable factors. If fusion is implemented during the latter half of this century it will be one element of a portfolio of (hopefully) carbon dioxide limiting sources of electrical power. It is time to assess the regional implications of fusion power implementation. An important attribute of fusion power is the wide range of possible regions of the country, or countries in the world, where power plants can be located. Unlike most renewable energy options, fusion energy will function within a local distribution system and not require costly, and difficult, long distance transmission systems. For example, the East Coast of the United States is a prime candidate for fusion power deployment by virtue of its distance from renewable energy sources. As fossil fuels become less and less available as an energy option, the transmission of energy across bodies of water will become very expensive. On a global scale, fusion power will be particularly attractive for regions separated from sources of renewable energy by oceans.

J.A. Schmidt

2002-02-20T23:59:59.000Z

92

Economic potential of inertial fusion  

SciTech Connect

Beyond the achievement of scientific feasibility, the key question for fusion energy is: does it have the economic potential to be significantly cheaper than fission and coal energy. If fusion has this high economic potential then there are compelling commercial and geopolitical incentives to accelerate the pace of the fusion program in the near term, and to install a global fusion energy system in the long term. Without this high economic potential, fusion's success depends on the failure of all alternatives, and there is no real incentive to accelerate the program. If my conjectures on the economic potential of inertial fusion are approximately correct, then inertial fusion energy's ultimate costs may be only half to two-thirds those of advanced fission and coal energy systems. Relative cost escalation is not assumed and could increase this advantage. Both magnetic and inertial approaches to fusion potentially have a two-fold economic advantage which derives from two fundamental properties: negligible fuel costs and high quality energy which makes possible more efficient generation of electricity. The wining approach to fusion may excel in three areas: electrical generating efficiency, minimum material costs, and adaptability to manufacture in automated factories. The winning approach must also rate highly in environmental potential, safety, availability factor, lifetime, small 0 and M costs, and no possibility of utility-disabling accidents.

Nuckolls, J.H.

1984-04-01T23:59:59.000Z

93

I. Nuclear Production Reaction and Chemical Isolation Procedure for 240Am II. New Superheavy Element Isotopes: 242Pu(48Ca,5n)285-114  

E-Print Network (OSTI)

of superheavy nuclei in cold fusion reactions. Phys. Rev. C,transfermium elements in cold fusion reactions. Phys. Rev.have been deemed “cold fusionreactions because of the low

Ellison, Paul Andrew

2011-01-01T23:59:59.000Z

94

Assisted fusion  

E-Print Network (OSTI)

A model of nuclear fusion consisting of a wave packet impinging into a well located between square one dimensional barriers is treated analytically. The wave function inside the well is calculated exactly for the assisted tunneling induced by a perturbation mimicking a constant electric field with arbitrary time dependence. Conditions are found for the enhancement of fusion.

German Kälbermann

2009-10-19T23:59:59.000Z

95

Fusion devices  

SciTech Connect

Three types of thermonuclear fusion devices currently under development are reviewed for an electric utilities management audience. Overall design features of laser fusion, tokamak, and magnetic mirror type reactors are described and illustrated. Thrusts and trends in current research on these devices that promise to improve performance are briefly reviewed. Twenty photographs and drawings are included. (RME)

Fowler, T.K.

1977-10-11T23:59:59.000Z

96

Crypto Key Management Framework  

Science Conference Proceedings (OSTI)

... A Framework for Designing Cryptographic Key Management Systems ... A Framework for Designing Cryptographic Key Management Systems ...

2013-08-13T23:59:59.000Z

97

Atomistic Simulations of the Fusion-Plasma Material Interface.  

E-Print Network (OSTI)

??A key issue for the successful performance of current and future fusion reactors is understanding chemical and physical processes at the Plasma Material Interface (PMI).… (more)

Dadras, Mostafa Jon

2012-01-01T23:59:59.000Z

98

Ceramic Matrix Composites for Nuclear and Fusion Energy  

Science Conference Proceedings (OSTI)

Abstract Scope, Ceramic matrix composites are considered among the key enabling materials for advanced nuclear reactors and fusion energy systems. Silicon ...

99

Development of an odd-Z-projectile reaction for heavy element synthesis: 208Pb(64Ni, n)271Ds and 208Pb(65Cu, n)272111  

E-Print Network (OSTI)

of heavy elements in cold fusion reactions which have very23.60. +e, 27.90. +b Cold nuclear fusion reactions have been

2004-01-01T23:59:59.000Z

100

Sub-barrier Fusion Cross Sections with Energy Density Formalism  

E-Print Network (OSTI)

We discuss the applicability of the energy density formalism (EDF) for heavy-ion fusion reactions at sub-barrier energies. For this purpose, we calculate the fusion excitation function and the fusion barrier distribution for the reactions of $^{16}$O with $^{154,}$$^{144}$Sm,$^{186}$W and $^{208}$Pb with the coupled-channels method. We also discuss the effect of saturation property on the fusion cross section for the reaction between two $^{64}$Ni nuclei, in connection to the so called steep fall-off phenomenon of fusion cross sections at deep sub-barrier energies.

F. Muhammad Zamrun; K. Hagino; N. Takigawa

2006-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "key fusion reactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Controlled thermonuclear fusion reactors  

SciTech Connect

Controlled production of energy by fusion of light nuclei has been the goal of a large portion of the physics community since the 1950's. In order for a fusion reaction to take place, the fuel must be heated to a temperature of 100 million degrees Celsius. At this temperature, matter can exist only in the form of an almost fully ionized plasma. In order for the reaction to produce net power, the product of the density and energy confinement time must exceed a minimum value of 10/sup 20/ sec m/sup -3/, the so-called Lawson criterion. Basically, two approaches are being taken to meet this criterion: inertial confinement and magnetic confinement. Inertial confinement is the basis of the laser fusion approach; a fuel pellet is imploded by intense laser beams from all sides and ignites. Magnetic confinement devices, which exist in a variety of geometries, rely upon electromagnetic forces on the charged particles of the plasma to keep the hot plasma from expanding. Of these devices, the most encouraging results have been achieved with a class of devices known as tokamaks. Recent successes with these devices have given plasma physicists confidence that scientific feasibility will be demonstrated in the next generation of tokamaks; however, an even larger effort will be required to make fusion power commercially feasible. As a result, emphasis in the controlled thermonuclear research program is beginning to shift from plasma physics to a new branch of nuclear engineering which can be called fusion engineering, in which instrumentation and control engineers will play a major role. Among the new problem areas they will deal with are plasma diagnostics and superconducting coil instrumentation.

Walstrom, P.L.

1976-01-01T23:59:59.000Z

102

Dynamic Instruction Fusion  

E-Print Network (OSTI)

SANTA CRUZ DYNAMIC INSTRUCTION FUSION A thesis submitted in4 2.2 Instruction Fusion & Complex10 3.1 Fusion Selection

Lee, Ian

2012-01-01T23:59:59.000Z

103

Minimal fusion systems.  

E-Print Network (OSTI)

??We define minimal fusion systems in a way that every non-solvable fusion system has a section which is minimal. Minimal fusion systems can also be… (more)

Henke, Ellen

2010-01-01T23:59:59.000Z

104

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network (OSTI)

it is unlikely that nuclear fission power plants willIn the case of nuclear fission reactions, the fundamentalaspects of nuclear fusion and fission. This approach, termed

Kramer, Kevin James

2010-01-01T23:59:59.000Z

105

BURNING PLASMA NEXT STEPS: DISCUSSION OF KEY DEVELOPMENTS  

E-Print Network (OSTI)

BURNING PLASMA NEXT STEPS: DISCUSSION OF KEY DEVELOPMENTS Gerald A. Navratil Columbia University/FESAC Burning Plasma Strategy Dec 2002 NRC/NAS Interim Report on Burning Plasmas Jan 30, 2003 DOE of the physics of burning plasma, advance fusion technology, and contribute to the development of fusion energy

106

Tritium breeding in fusion reactors  

Science Conference Proceedings (OSTI)

Key technological problems that influence tritium breeding in fusion blankets are reviewed. The breeding potential of candidate materials is evaluated and compared to the tritium breeding requirements. The sensitivity of tritium breeding to design and nuclear data parameters is reviewed. A framework for an integrated approach to improve tritium breeding prediction is discussed with emphasis on nuclear data requirements.

Abdou, M.A.

1982-10-01T23:59:59.000Z

107

BUDGET KEY DATES  

Science Conference Proceedings (OSTI)

BUDGET KEY DATES. For Immediate Release: December 15, 2009. Contact: Diane Belford 301-975-8400. Budget Key Dates.

2013-06-16T23:59:59.000Z

108

Accelerators for heavy ion inertial fusion: Progress and plans  

SciTech Connect

The Heavy Ion Inertial Fusion Program is the principal part of the Inertial Fusion Energy Program in the Office of Fusion Energy of the U.S. Department of Energy. The emphasis of the Heavy Ion Program is the development of accelerators for fusion power production. Target physics research and some elements of fusion chamber development are supported in the much larger Inertial Confinement Fusion Program, a dual purpose (defense and energy) program in the Defense Programs part of the Department of Energy. The accelerator research program will establish feasibility through a sequence of scaled experiments that will demonstrate key physics and engineering issues at low cost compared to other fusion programs. This paper discusses progress in the accelerator program and outlines how the planned research will address the key economic issues of inertial fusion energy.

Bangerter, R.O.; Friedman, A.; Herrmannsfeldt, W.B.

1994-08-01T23:59:59.000Z

109

Search for fusion power  

SciTech Connect

A brief review of the basics of fusion power is given. Both inertial confinement and magnetic confinement fusion are discussed.

Post, R.F.

1978-10-12T23:59:59.000Z

110

Inertial fusion energy: A clearer view of the environmental and safety perspectives  

Science Conference Proceedings (OSTI)

If fusion energy is to achieve its full potential for safety and environmental (S&E) advantages, the S&E characteristics of fusion power plant designs must be quantified and understood, and the resulting insights must be embodied in the ongoing process of development of fusion energy. As part of this task, the present work compares S&E characteristics of five inertial and two magnetic fusion power plant designs. For each design, a set of radiological hazard indices has been calculated with a system of computer codes and data libraries assembled for this purpose. These indices quantify the radiological hazards associated with the operation of fusion power plants with respect to three classes of hazard: accidents, occupational exposure, and waste disposal. The three classes of hazard have been qualitatively integrated to rank the best and worst fusion power plant designs with respect to S&E characteristics. From these rankings, the specific designs, and other S&E trends, design features that result in S&E advantages have been identified. Additionally, key areas for future fusion research have been identified. Specific experiments needed include the investigation of elemental release rates (expanded to include many more materials) and the verification of sequential charged-particle reactions. Improvements to the calculational methodology are recommended to enable future comparative analyses to represent more accurately the radiological hazards presented by fusion power plants. Finally, future work must consider economic effects. Trade-offs among design features will be decided not by S&E characteristics alone, but also by cost-benefit analyses. 118 refs., 35 figs., 35 tabs.

Latkowski, J.F.

1996-11-01T23:59:59.000Z

111

Fudge: a high-bandwidth fusion diagnostic of the NIF  

SciTech Connect

Diagnostics for the National Ignition Facility (NIF)/Inertial Confinement Fusion (ICF) program must include good characterization of the fusion source. Ideally, diagnostics would measure the spatially-resolved history of the fusion reaction rate and temperature. Existing diagnostics can satisfy this goal only partially. One class of new techniques that could play a major role in high-yield diagnostics is measurements based on fusion {gamma} rays. The Fusion Diagnostic Gamma Experiment (FUDGE) can be used to perform energy-resolved measurements of (D,T) fusion reaction rates This diagnostic is based on the 16 7-MeV {gamma} rays that are produced by (D,T) fusion. The {gamma} rays are free of spectral dispersion and can be detected with a high bandwidth Cherenkov detector. A simple magnetic monochromator selects signals from the 16 7-MeV {gamma} rays and reduces background signals from non-fusion {gamma} rays.

Moran, M. J., LLNL

1998-06-02T23:59:59.000Z

112

Fusion breeder: its potential role and prospects  

SciTech Connect

The fusion breeder is a concept that utilizes 14 MeV neutrons from D + T ..-->.. n(14.1 MeV) + ..cap alpha..(3.5 MeV) fusion reactions to produce more fuel than the tritium (T) needed to sustain the fusion process. This excess fuel production capacity is used to produce fissile material (Pu-239 or U-233) for subsequent use in fission reactors. We are concentrating on a class of blankets we call fission suppressed. The blanket is the region surrounding the fusion plasma in which fusion neutrons interact to produce fuel and heat. The fission-suppressed blanket uses non-fission reactions (mainly (n,2n) or (n,n't)) to generate excess neutrons for the production of net fuel. This is in contrast to the fast fission class of blankets which use (n,fiss) reactions to generate excess neutrons. Fusion reactors with fast fission blankets are commony known as fusion-fission hybrids because they combine fusion and fission in the same device.

Lee, J.D.

1981-01-01T23:59:59.000Z

113

The influence of projectile neutron number in the 208Pb(48Ti, n)255Rf and 208Pb(50Ti, n)257Rf reactions  

E-Print Network (OSTI)

type of reaction has been referred to as “cold fusion. ”Cold fusion reactions have been used in the discovery ofwe used as a guide in our cold fusion studies was recently

Dragojevic, I.

2008-01-01T23:59:59.000Z

114

Comparison of reactions for the production of 258,257Db: 208Pb(51V,xn) and 209Bi(50Ti,xn)  

E-Print Network (OSTI)

as 10 - 15 MeV, hence ‘cold’ fusion. These low excitationmodel for predicting cold fusion reaction cross sections [7,been produced in ‘cold’ nuclear fusion reactions with Pb and

Gates, Jacklyn M.

2008-01-01T23:59:59.000Z

115

Fusion Induced by Radioactive Ion Beams  

E-Print Network (OSTI)

The use of radioactive beams opens a new frontier for fusion studies. The coupling to the continuum can be explored with very loosely bound nuclei. Experiments were performed with beams of nuclei at or near the proton and neutron drip-lines to measure fusion and associated reactions in the vicinity of the Coulomb barrier. In addition, the fusion yield is predicted to be enhanced in reactions involving very neutron-rich unstable nuclei. Experimental measurements were carried out to investigate if it is feasible to use such beams to produce new heavy elements. The current status of these experimental activities is given in this review.

J. F. Liang; C. Signorini

2005-04-26T23:59:59.000Z

116

TWO IMPORTANT FUSION PROCESSES CREATING THE CONDITIONS FOR FUSION  

NLE Websites -- All DOE Office Websites (Extended Search)

IMPORTANT FUSION PROCESSES CREATING THE CONDITIONS FOR FUSION F u s i o n Physics of a Fundamental Energy Source C o n f i n e m e n t Q u a l i t y , n τ ( m - 3 s ) 1970-75 1990s 1975-80 1980s Ion Temperature (K) 10 21 10 20 10 19 10 18 10 17 10 6 10 7 10 8 10 9 Inertial Magnetic Expected reactor regime Expected reactor regime Useful Nuclear Masses (The electron's mass is 0.000549 u.) Label Species Mass (u*) n ( 1 n) neutron 1.008665 p ( 1 H) proton 1.007276 D ( 2 H) deuteron 2.013553 T ( 3 H) triton 3.015500 3 He helium-3 3.014932 α ( 4 He) helium-4 4.001505 * 1 u = 1.66054 x 10 -27 kg = 931.466 MeV/c 2 Nuclear Mass (u) B i n d i n g E n e r g y P e r N u c l e o n ( M e V ) 1 200 150 100 50 10 0 5 62 Ni Fusion Reactions Release Energy Fission Reactions Release Energy EXPERIMENTAL RESULTS IN FUSION RESEARCH Fusion requires high tempera- ture plasmas confined long enough at high density

117

Cold fusion, Alchemist's dream  

SciTech Connect

In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D{sub 2} molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D{sub 2} fusion at low energies; fusion of deuterons into {sup 4}He; secondary D+T fusion within the hydrogenated metal lattice; {sup 3}He to {sup 4}He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of {sup 3}He/{sup 4}He.

Clayton, E.D.

1989-09-01T23:59:59.000Z

118

Ch. 37, Inertial Fusion Energy Technology  

DOE Green Energy (OSTI)

Nuclear fission, nuclear fusion, and renewable energy (including biofuels) are the only energy sources capable of satisfying the Earth's need for power for the next century and beyond without the negative environmental impacts of fossil fuels. Substantially increasing the use of nuclear fission and renewable energy now could help reduce dependency on fossil fuels, but nuclear fusion has the potential of becoming the ultimate base-load energy source. Fusion is an attractive fuel source because it is virtually inexhaustible, widely available, and lacks proliferation concerns. It also has a greatly reduced waste impact, and no danger of runaway reactions or meltdowns. The substantial environmental, commercial, and security benefits of fusion continue to motivate the research needed to make fusion power a reality. Replicating the fusion reactions that power the sun and stars to meet Earth's energy needs has been a long-sought scientific and engineering challenge. In fact, this technological challenge is arguably the most difficult ever undertaken. Even after roughly 60 years of worldwide research, much more remains to be learned. the magnitude of the task has caused some to declare that fusion is 20 years away, and always will be. This glib criticism ignores the enormous progress that has occurred during those decades, progress inboth scientific understanding and essential technologies that has enabled experiments producing significant amounts of fusion energy. For example, more than 15 megawatts of fusion power was produced in a pulse of about half a second. Practical fusion power plants will need to produce higher powers averaged over much longer periods of time. In addition, the most efficient experiments to date have required using about 50% more energy than the resulting fusion reaction generated. That is, there was no net energy gain, which is essential if fusion energy is to be a viable source of electricity. The simplest fusion fuels, the heavy isotopes of hydrogen (deuterium and tritium), are derived from water and the metal lithium, a relatively abundant resource. The fuels are virtually inexhaustible and they are available worldwide. Deuterium from one gallon of seawater would provide the equivalent energy of 300 gallons of gasoline, or over a half ton of coal. This energy is released when deuterium and tritium nuclei are fused together to form a helium nucleus and a neutron. The neutron is used to breed tritium from lithium. The energy released is carried by the helium nucleus (3.5 MeV) and the neutron (14 MeV). The energetic helium nucleus heats the fuel, helping to sustain the fusion reaction. Once the helium cools, it is collected and becomes a useful byproduct. A fusion power plant would produce no climate-changing gases.

Moses, E

2010-06-09T23:59:59.000Z

119

Cold Fusion Production and Decay of Neutron-Deficient Isotopes of Dubnium and Development of Extraction Systems for Group V Elements  

E-Print Network (OSTI)

separator for the study of fusion reaction products."by heavy-ion induced fusion?" Zeitschrift Fur Physik a-J. Wilczy?ski (2003). "Fusion by Diffusion." Acta Physica

Gates, Jacklyn M.

2008-01-01T23:59:59.000Z

120

Cold Fusion Production and Decay of Neutron-Deficient Isotopes of Dubnium and Development of Extraction Systems for Group V Elements  

E-Print Network (OSTI)

of transfermium elements in cold fusion reactions." Physical1. Introduction Part I: Cold Fusion Production and Decay of1.2. Hot versus Cold Fusion 1.3. Excitation Functions 1.3.1.

Gates, Jacklyn M.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "key fusion reactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Sandia National Laboratories: Z Pulsed Power Facility: Z Research: Fusion  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion Fusion Sun Plasma The ultimate energy source Fusion occurs when two atomic nuclei are joined together. To fuse the atoms, the force that repels them as they come together must be overcome. Accelerators accomplish this by forcing molecules to collide with one another at very high temperatures (high temperatures are simply molecules moving at high speeds). When light nuclei are involved, fusion can produce more energy than was required to start the reaction. This process is the force that powers the Sun, whose source of energy is an ongoing fusion chain reaction. As an unconfined event, fusion was first developed for use in nuclear weapons. Fusion's great potential as a new energy source depends on scientists' ability to harness its power in laboratory events. The Z

122

HEAVY ION INERTIAL FUSION  

E-Print Network (OSTI)

Accelerators as Drivers for Inertially Confined Fusion, W.B.LBL-9332/SLAC-22l (1979) Fusion Driven by Heavy Ion Beams,OF CALIFORNIA f Accelerator & Fusion Research Division

Keefe, D.

2008-01-01T23:59:59.000Z

123

Group key management  

SciTech Connect

This report describes an architecture and implementation for doing group key management over a data communications network. The architecture describes a protocol for establishing a shared encryption key among an authenticated and authorized collection of network entities. Group access requires one or more authorization certificates. The implementation includes a simple public key and certificate infrastructure. Multicast is used for some of the key management messages. An application programming interface multiplexes key management and user application messages. An implementation using the new IP security protocols is postulated. The architecture is compared with other group key management proposals, and the performance and the limitations of the implementation are described.

Dunigan, T.; Cao, C.

1997-08-01T23:59:59.000Z

124

Latent Matcher Fusion  

Science Conference Proceedings (OSTI)

Page 1. Latent Matcher Fusion -- Lessons Learned IAI ... 14 Page 15. The Fusion was in Two Steps • Step 1 – a reduced working candidate list was ...

2012-08-07T23:59:59.000Z

125

HEAVY ION INERTIAL FUSION  

E-Print Network (OSTI)

in the Tokamak Fusion Test Reactor which will be completedDrivers and Reactors for Inertial Confinement Fusion, K.A.

Keefe, D.

2008-01-01T23:59:59.000Z

126

Fusion as a source of synthetic fuels  

DOE Green Energy (OSTI)

In the near-term, coal derived synthetic fuels will be used; but in the long-term, resource depletion and environmental effects will mandate synthetic fuels from inexhaustible sources - fission, fusion, and solar. Of the three sources, fusion appears uniquely suited for the efficient production of hydrogen-based fuels, due to its ability to directly generate very high process temperatures (up to approx. 2000/sup 0/C) for water splitting reactions. Fusion-based water splitting reactions include high temperature electrolysis (HTE) of steam, thermochemical cycles, hybrid electrochemical/thermochemical, and direct thermal decomposition. HTE appears to be the simplest and most efficient process with efficiencies of 50 to 70% (fusion to hydrogen chemical energy), depending on process conditions.

Powell, J.R.; Fillo, J.A.; Steinberg, M.

1981-01-01T23:59:59.000Z

127

Failure rate data for fusion safety and risk assessment  

SciTech Connect

The Fusion Safety Program (FSP) at the Idaho National Engineering Laboratory (INEL) conducts safety research in materials, chemical reactions, safety analysis, risk assessment, and in component research and development to support existing magnetic fusion experiments and also to promote safety in the design of future experiments. One of the areas of safety research is applying probabilistic risk assessment (PRA) methods to fusion experiments. To apply PRA, we need a fusion-relevant radiological dose code and a component failure rate data base. This paper describes the FSP effort to develop a failure rate data base for fusion-specific components.

Cadwallader, L.C.

1993-01-01T23:59:59.000Z

128

Failure rate data for fusion safety and risk assessment  

SciTech Connect

The Fusion Safety Program (FSP) at the Idaho National Engineering Laboratory (INEL) conducts safety research in materials, chemical reactions, safety analysis, risk assessment, and in component research and development to support existing magnetic fusion experiments and also to promote safety in the design of future experiments. One of the areas of safety research is applying probabilistic risk assessment (PRA) methods to fusion experiments. To apply PRA, we need a fusion-relevant radiological dose code and a component failure rate data base. This paper describes the FSP effort to develop a failure rate data base for fusion-specific components.

Cadwallader, L.C.

1993-04-01T23:59:59.000Z

129

Fusion pumped light source  

DOE Patents (OSTI)

Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the lasing medium. 3 figs.

Pappas, D.S.

1988-09-01T23:59:59.000Z

130

Fusion pumped light source  

DOE Patents (OSTI)

Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the laser medium.

Pappas, Daniel S. (Los Alamos, NM)

1989-01-01T23:59:59.000Z

131

Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine  

Science Conference Proceedings (OSTI)

The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. The present work focuses on the pure fusion option. A key component of a LIFE engine is the fusion chamber subsystem. It must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated design that meets all of these requirements is described herein.

Latkowski, J F; Abbott, R P; Aceves, S; Anklam, T; Badders, D; Cook, A W; DeMuth, J; Divol, L; El-Dasher, B; Farmer, J C; Flowers, D; Fratoni, M; ONeil, R G; Heltemes, T; Kane, J; Kramer, K J; Kramer, R; Lafuente, A; Loosmore, G A; Morris, K R; Moses, G A; Olson, B; Pantano, C; Reyes, S; Rhodes, M; Roe, K; Sawicki, R; Scott, H; Spaeth, M; Tabak, M; Wilks, S

2010-11-30T23:59:59.000Z

132

Influence of projectile - breakup threshold on complete fusion  

E-Print Network (OSTI)

Complete fusion excitations for 11,10B+159Tb have been measured at energies around the respective Coulomb barriers, and the existing complete fusion measurements for 7Li+159Tb have been extended to higher energies. The measurements show significant reduction of complete fusion cross sections at above-barrier energies for both the reactions, 10B+159Tb and 7Li+159Tb, when compared to those for 11B+159Tb. The comparison shows that the extent of suppression of complete fusion cross sections is correlated with the -separation energies of the projectiles. Also, the two reactions, 10B+159Tb and 7Li+159Tb were found to produce incomplete fusion products at energies near the respective Coulomb barriers, with the - particle emitting channel being the favoured incomplete fusion process in both the cases.

A. Mukherjee; Subinit Roy; M. K. Pradhan; M. Saha Sarkar; P. Basu; B. Dasmahapatra; T. Bhattacharya; S. Bhattacharya; S. K. Basu; A. Chatterjee; V. Tripathi; S. Kailas

2006-03-24T23:59:59.000Z

133

INSTITUTE OF PHYSICS PUBLISHING PLASMA PHYSICS AND CONTROLLED FUSION Plasma Phys. Control. Fusion 46 (2004) 471487 PII: S0741-3335(04)69034-8  

E-Print Network (OSTI)

INSTITUTE OF PHYSICS PUBLISHING PLASMA PHYSICS AND CONTROLLED FUSION Plasma Phys. Control. Fusion the cold plasma dispersion relation, the ion­ion hybrid cutoff frequency is uniquely determined and tritium density equilibrium (nD nT), maximizing fusion reactions in a burning plasma experiment. A number

Heidbrink, William W.

134

Bold Step by the World to Fusion Energy: ITER  

E-Print Network (OSTI)

HISTORY OF INT'L COLLABORATION · 1958: WORLD-WIDE DECLASSIFICATION OF MAGNETICALLY CONFINED FUSIONV TEMPERATURES [20 MILLION DEGREES F] · 1970'S: OIL CRISIS PROPELS MAJOR INVESTMENT IN FUSION RESEARCH FACILITIES HISTORY AND KEY FUSION SCIENCE ADVANCES 85 90 95 00 05 85 90 95 00 05 CDA EDA EDA -ext US out AT

135

Fusion energy  

Science Conference Proceedings (OSTI)

The main purpose of the International Thermonuclear Experimental Reactor (ITER) is to develop an experimental fusion reactor through the united efforts of many technologically advanced countries. The ITER terms of reference, issued jointly by the European Community, Japan, the USSR, and the United States, call for an integrated international design activity and constitute the basis of current activities. Joint work on ITER is carried out under the auspices of the International Atomic Energy Agency (IAEA), according to the terms of quadripartite agreement reached between the European Community, Japan, the USSR, and the United States. The site for joint technical work sessions is at the MaxPlanck Institute of Plasma Physics. Garching, Federal Republic of Germany. The ITER activities have two phases: a definition phase performed in 1988 and the present design phase (1989--1990). During the definition phase, a set of ITER technical characteristics and supporting research and development (R D) activities were developed and reported. The present conceptual design phase of ITER lasts until the end of 1990. The objectives of this phase are to develop the design of ITER, perform a safety and environmental analysis, develop site requirements, define future R D needs, and estimate cost, manpower, and schedule for construction and operation. A final report will be submitted at the end of 1990. This paper summarizes progress in the ITER program during the 1989 design phase.

Not Available

1990-09-01T23:59:59.000Z

136

The Key Agreement Schemes  

Science Conference Proceedings (OSTI)

... The three key derivation functions include KDF in Counter Mode, KDF in Feedback Mode, and KDF in Double-Pipeline Iteration Mode. ...

2013-04-23T23:59:59.000Z

137

Crypto Key Management Framework  

Science Conference Proceedings (OSTI)

... responsible to executive-level management (eg, the Chief Information Officer) for the ... entity information, keys, and metadata into a database used by ...

2013-08-15T23:59:59.000Z

138

Cryptographic Key Management Workshop 2010  

Science Conference Proceedings (OSTI)

Cryptographic Key Management Workshop 2010. Purpose: ... Related Project(s): Cryptographic Key Management Project. Details: ...

2013-08-01T23:59:59.000Z

139

Heavy-ion accelerator research for inertial fusion  

SciTech Connect

Thermonuclear fusion offers a most attractive long-term solution to the problem of future energy supplies: The fuel is virtually inexhaustible and the fusion reaction is notably free of long-lived radioactive by-products. Also, because the fuel is in the form of a plasma, there is no solid fuel core that could melt down. The DOE supports two major fusion research programs to exploit these virtues, one based on magnetic confinement and a second on inertial confinement. One part of the program aimed at inertial fusion is known as Heavy Ion Fusion Accelerator Research, or HIFAR. In this booklet, the aim is to place this effort in the context of fusion research generally, to review the brief history of heavy-ion fusion, and to describe the current status of the HIFAR program.

1987-08-01T23:59:59.000Z

140

Bemerkungen zur "kalten Fusion"  

E-Print Network (OSTI)

Steven Jones et al. reported to have observed nuclear fusion at room temperature. They observed this "cold fusion" by electrolyzing heavy water. Later experiments confirmed these observations. These experiments confirmed the generation of strong electric fields within the deuterided metals. These electric fields accelerate the deuterons to keV energies and allow the observed nuclear fusion. Roman Sioda and I suggested a theoretical description of this nuclear fusion. Our "extended micro hot fusion" scenario explains how nuclear fusion can be generated over a long time within deuterided metals. Moreover we predicted the explosion of large pieces of deuterided metals. This article reviews the "cold fusion" work of Steven Jones et al. and discusses the fracto-fusion scenario. I show that the extended micro hot fusion scenario can explain the observed neutron emissions, neutron bursts, and heat bursts.

Rainer W. Kuehne

2006-04-14T23:59:59.000Z

Note: This page contains sample records for the topic "key fusion reactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Bemerkungen zur "kalten Fusion"  

E-Print Network (OSTI)

Steven Jones et al. reported to have observed nuclear fusion at room temperature. They observed this "cold fusion" by electrolyzing heavy water. Later experiments confirmed these observations. These experiments confirmed the generation of strong electric fields within the deuterided metals. These electric fields accelerate the deuterons to keV energies and allow the observed nuclear fusion. Roman Sioda and I suggested a theoretical description of this nuclear fusion. Our "extended micro hot fusion" scenario explains how nuclear fusion can be generated over a long time within deuterided metals. Moreover we predicted the explosion of large pieces of deuterided metals. This article reviews the "cold fusion" work of Steven Jones et al. and discusses the fracto-fusion scenario. I show that the extended micro hot fusion scenario can explain the observed neutron emissions, neutron bursts, and heat bursts.

Kuehne, R W

2006-01-01T23:59:59.000Z

142

Fusion: the way ahead Feature: Physics World March 2006 pages 20 -26  

E-Print Network (OSTI)

is due to power up in 2016 and will be the next step towards a demonstration fusion power plant, which power produces long-lived radioactive waste, while renewable energy sources such as wind, wave or solar is playing a key role in ensuring ITER will demonstrate the reality of fusion power At a Glance: Fusion power

143

Review of fusion synfuels  

DOE Green Energy (OSTI)

Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high-temperature electrolysis of approx. 50 to 65% are projected for fusion reactors using high-temperatures blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

Fillo, J.A.

1980-01-01T23:59:59.000Z

144

Fusion for Earth and Space  

Science Conference Proceedings (OSTI)

The compact reactor concept (Williams, 2007) has the potential to provide clean, safe and unlimited supply of energy for Earth and Space applications. The concept is a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for individual home and space power. The concept also would make it possible for each plant or remote location to have it's own power source, on site, without the need for a connection to the power grid. This would minimize, or eliminate, power blackouts. The concept could replace large fission reactors and fossil fuel power plants plus provide energy for ships, locomotives, trucks and autos. It would make an ideal source of energy for space power applications and for space propulsion.

Williams, Pharis E

2009-03-16T23:59:59.000Z

145

Optical key system  

Science Conference Proceedings (OSTI)

An optical key system comprises a battery-operated optical key and an isolated lock that derives both its operating power and unlock signals from the correct optical key. A light emitting diode or laser diode is included within the optical key and is connected to transmit a bit-serial password. The key user physically enters either the code-to-transmit directly, or an index to a pseudorandom number code, in the key. Such person identification numbers can be retained permanently, or ephemeral. When a send button is pressed, the key transmits a beam of light modulated with the password information. The modulated beam of light is received by a corresponding optical lock with a photovoltaic cell that produces enough power from the beam of light to operate a password-screen digital logic. In one application, an acceptable password allows a two watt power laser diode to pump ignition and timing information over a fiberoptic cable into a sealed engine compartment. The receipt of a good password allows the fuel pump, spark, and starter systems to each operate. Therefore, bypassing the lock mechanism as is now routine with automobile thieves is pointless because the engine is so thoroughly disabled.

Hagans, K.G.; Clough, R.E.

2000-04-25T23:59:59.000Z

146

Optical key system  

DOE Patents (OSTI)

An optical key system comprises a battery-operated optical key and an isolated lock that derives both its operating power and unlock signals from the correct optical key. A light emitting diode or laser diode is included within the optical key and is connected to transmit a bit-serial password. The key user physically enters either the code-to-transmit directly, or an index to a pseudorandom number code, in the key. Such person identification numbers can be retained permanently, or ephemeral. When a send button is pressed, the key transmits a beam of light modulated with the password information. The modulated beam of light is received by a corresponding optical lock with a photovoltaic cell that produces enough power from the beam of light to operate a password-screen digital logic. In one application, an acceptable password allows a two watt power laser diode to pump ignition and timing information over a fiberoptic cable into a sealed engine compartment. The receipt of a good password allows the fuel pump, spark, and starter systems to each operate. Therefore, bypassing the lock mechanism as is now routine with automobile thieves is pointless because the engine is so thoroughly disabled.

Hagans, Karla G. (Livermore, CA); Clough, Robert E. (Danville, CA)

2000-01-01T23:59:59.000Z

147

Engineering Challenges in Antiproton Triggered Fusion Propulsion  

SciTech Connect

During the last decade antiproton triggered fusion propulsion has been investigated as a method for achieving high specific impulse, high thrust in a nuclear pulse propulsion system. In general the antiprotons are injected into a pellet containing fusion fuel with a small amount of fissionable material (i.e., an amount less than the critical mass) where the products from the fission are then used to trigger a fusion reaction. Initial calculations and simulations indicate that if magnetically insulated inertial confinement fusion is used that the pellets should result in a specific impulse of between 100,000 and 300,000 seconds at high thrust. The engineering challenges associated with this propulsion system are significant. For example, the antiprotons must be precisely focused. The pellet must be designed to contain the fission and initial fusion products and this will require strong magnetic fields. The fusion fuel must be contained for a sufficiently long time to effectively release the fusion energy, and the payload must be shielded from the radiation, especially the excess neutrons emitted, in addition to many other particles. We will review the recent progress, possible engineering solutions and the potential performance of these systems.

Cassenti, Brice [Department. of Engineering and Science, Rensselaer Polytechnic Institute, 275 Windsor Avenue, Hattford, CT 06120 (United States); Kammash, Terry [Nuclear Engineering Department, University of Michigan, Ann Arbor, MI 48109 (United States)

2008-01-21T23:59:59.000Z

148

Nuclear fusion advances  

Science Conference Proceedings (OSTI)

The last decade has seen advances in the shaping and confinement of plasmas, and in approaches to noninductive current drive. Here, the author presents an overview of nuclear fusion advances between 1983-93 examining: fusion milestones; plasma shaping; ...

W. Sweet

1994-02-01T23:59:59.000Z

149

SR Key Facts  

NLE Websites -- All DOE Office Websites (Extended Search)

Key Facts Savannah River Site Budget FY 2011 Budget Summary FY 2011 SRS EM Program Budget Summary FY 2012 Presidential Budget Request for SRS FY 2014 SRS EM Budget Presentation...

150

Key masking using biometry  

Science Conference Proceedings (OSTI)

We construct an abstract model based on a fundamental similarity property, which takes into account parametric dependencies and reflects a specific collection of requirements. We consider a method for masking a cryptographic key using biometry, which ...

A. L. Chmora

2011-06-01T23:59:59.000Z

151

Key Emergency Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Key Emergency Information What to Do if an Emergency Arises DOE is committed to public safety in the event an emergency arises. You will likely be made aware that an emergency is...

152

Fusion Forum 1981  

SciTech Connect

This review covers the basics of the fusion process. Some research programs and their present status are mentioned. (MOW)

Fowler, T.K.

1981-07-28T23:59:59.000Z

153

Fusion versus Breakup: Observation of Large Fusion Suppression for 9 Be + 208 Pb  

E-Print Network (OSTI)

Complete fusion excitation functions for 9 Be + 208 Pb have been measured to high precision at near barrier energies. The experimental fusion barrier distribution extracted from these data allows reliable prediction of the expected complete fusion cross-sections. However, the measured cross-sections are only 68 % of those predicted. The large cross-sections observed for incomplete fusion products support the interpretation that this suppression of fusion is caused by 9Be breaking up into charged fragments before reaching the fusion 1 barrier. Implications for the fusion of radioactive nuclei are discussed. 2 Typeset using REVTEXThe recent availability of radioactive beams has made possible the study of the interactions and structure of exotic nuclei far from the line of stability. Unstable neutron–rich nuclei having very weakly bound neutrons exhibit characteristic features such as a neutron halo [1] extending to large radii, associated low–lying dipole modes, and a low energy threshold for breakup. These features may dramatically affect fusion and other reaction

M. Dasgupta; D. J. Hinde; R. D. Butt; R. M. Anjos; A. C. Berriman; N. Carlin; P. R. S. Gomes; C. R. Morton; J. O. Newton; A. Szanto De Toledo; K. Hagino

2008-01-01T23:59:59.000Z

154

Fusion Plasmas Martin Greenwald  

E-Print Network (OSTI)

. Despite the cold war, which raged for another 30 years, controlled fusion research became a modelFusion Plasmas Martin Greenwald Encyclopedia of Electrical and Electronic Engineering, John Webster - editor, published by John Wiley & Sons, New York (1999) #12;Controlled Fusion For half a century

Greenwald, Martin

155

Slow liner fusion  

SciTech Connect

{open_quotes}Slow{close_quotes} liner fusion ({approximately}10 ms compression time) implosions are nondestructive and make repetitive ({approximately} 1 Hz) pulsed liner fusion reactors possible. This paper summarizes a General Atomics physics-based fusion reactor study that showed slow liner feasibility, even with conservative open-line axial magnetic field confinement and Bohm radial transport.

Shaffer, M.J.

1997-08-01T23:59:59.000Z

156

Magnetized target fusion and fusion propulsion.  

DOE Green Energy (OSTI)

Magnetized target fusion (MTF) is a thermonuclear fusion concept that is intermediate between the two mainline approaches, magnetic confinement and inertial confinement fusion (MCF and ICF). MTF incorporates some aspects of each and offers advantages over each of the mainline approaches. First, it provides a means of reducing the driver power requirements, thereby admitting a wider range of drivers than ICF. Second, the magnetic field is only used for insulation, not confinement, and the plasma is wall confined, so that plasma instabilities are traded in for hydrodynamic instabilities. However, the degree of compression required to reach fusion conditions is lower than for ICF, so that hydrodynamic instabilities are much less threatening. The standoff driver innovation proposes to dynamically form the target plasma and a gaseous shell that compresses and confines the target plasma. Therefore, fusion target fabrication is traded in for a multiplicity of plasma guns, which must work in synchrony. The standoff driver embodiment of MTF leads to a fusion propulsion system concept that is potentially compact and lightweight. We will discuss the underlying physics of MTF and some of the details of the fusion propulsion concept using the standoff driver approach. We discuss here the optimization of an MTF target design for space propulsion.

Kirkpatrick, R. C. (Ronald C.)

2001-01-01T23:59:59.000Z

157

ARM - Key Science Questions  

NLE Websites -- All DOE Office Websites (Extended Search)

govScienceKey Science Questions govScienceKey Science Questions Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) ARM Science Team Meetings User Meetings Annual Meetings of the Atmospheric System Research (ASR) Science Team and Fall Working Groups Accomplishments Read about the 20 years of accomplishments (PDF, 696KB) from the ARM Program and user facility. Performance Metrics ASR Metrics 2009 2008 2007 2006 Key Science Questions The role of clouds and water vapor in climate change is not well understood; yet water vapor is the largest greenhouse gas and directly affects cloud cover and the propagation of radiant energy. In fact, there may be positive feedback between water vapor and other greenhouse gases. Carbon dioxide and other gases from human activities slightly warm the

158

AFRD - Fusion Energy Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy Ion Fusion Virtual National Laboratory Heavy Ion Fusion Virtual National Laboratory AFRD - Fusion Energy Sciences AFRD - Home Fusion - Home HIF-VNL Website Ion Beam Technology Group website Artist's conception of a heavy ion fusion power plant Artist's conception of an IFE powerplant We further inertial fusion energy as a future power source, primarily through R&D on heavy-ion induction accelerators. Our program is part of a "Virtual National Laboratory," headquartered in AFRD, that joins us with Lawrence Livermore National Laboratory and the Princeton Plasma Physics Laboratory in close collaboration on inertial fusion driven by beams of heavy ions. The related emergent science of high-energy-density physics (HEDP) has become a major focus. For further synergy, we have combined forces with the former Ion Beam

159

Laser fusion pulse shape controller  

DOE Patents (OSTI)

An apparatus for controlling the pulse shape, i.e., the pulse duration and intensity pattern, of a pulsed laser system, and which is particularly well adapted for controlling the pellet ignition pulse in a laser-driven fusion reaction system. The apparatus comprises a laser generator for providing an optical control pulse of the shape desired, a pulsed laser triggered by the control pulse, and a plurality of optical Kerr-effect gates serially disposed at the output of the pulsed laser and selectively triggered by the control pulse to pass only a portion of the pulsed laser output generally corresponding in shape to the control pulse.

Siebert, Larry D. (Ann Arbor, MI)

1977-01-01T23:59:59.000Z

160

Lab Breakthrough: Neutron Science for the Fusion Mission | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Neutron Science for the Fusion Mission Neutron Science for the Fusion Mission Lab Breakthrough: Neutron Science for the Fusion Mission May 16, 2012 - 9:52am Addthis An accelerator team lead by Robert McGreevy at Oak Ridge National Laboratory is testing material - a critical role in building an experimental fusion reactor for commercial use. As part of the international coalition, they expect to have an operational reactor by 2050. View the entire Lab Breakthrough playlist. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs What is the difference between fusion and fission? Fission pulls molecules apart. This type of reactor runs nuclear power plants. Fusion puts molecules together. This type of reaction powers the Sun. Oak Ridge National Laboratory scientist Robert McGreevy explains the

Note: This page contains sample records for the topic "key fusion reactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Key Research Results Achievement  

E-Print Network (OSTI)

daylighting options for specific spaces with sample design layouts · Various HVAC system types that achieve%energysavingsovercode.NREL developedthesimulationtoolsandledthe committeethatproducedtheguides. Key Result TheAdvanced school in Greensburg, Kansas, used many of the energy efficiency measures outlined in the Advanced Energy

162

Security on the US Fusion Grid  

E-Print Network (OSTI)

TEMPLATE for Submission in Fusion Engineering and Design)et al. , “Building the US National Fusion Grid: Resultsfrom the National Fusion Collaboratory Project,” Fusion Eng.

Burruss, Justin R.; Fredian, Tom W.; Thompson, Mary R.

2005-01-01T23:59:59.000Z

163

Data security on the national fusion grid  

E-Print Network (OSTI)

TEMPLATE for Submission in Fusion Engineering and Design)et al. , “Building the US National Fusion Grid: Resultsfrom the National Fusion Collaboratory Project,” Fusion Eng.

Burruss, Justine R.; Fredian, Tom W.; Thompson, Mary R.

2005-01-01T23:59:59.000Z

164

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

- Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Overview | The Guided Tour Creating the Conditions for Fusion PLASMA CONFINEMENT AND HEATING Fusion requires high...

165

Nuclear Reactions  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactions Nuclear reactions and nuclear scattering are used to measure the properties of nuclei. Reactions that exchange energy or nucleons can be used to measure the energies of...

166

AP Key Accomplishments  

NLE Websites -- All DOE Office Websites (Extended Search)

Recent Key Accomplishments Recent Key Accomplishments Reduction of Carbon Dioxide Mechanistic insight into CO2 hydrogenation Rapid Transfer of Hydride Ion from a Ruthenium Complex to C1 Species in Water Reversible Hydrogen Storage using CO2 and a Proton-Switchable Iridium Catalyst in Aqueous Media Nickel(II) Macrocycles: Highly Efficient Electrocatalysts for the Selective Reduction of CO2 to CO Calculation of Thermodynamic Hydricities and the Design of Hydride Donors for CO2 Reduction Mechanisms for CO Production from CO2 Using Re(bpy)(CO)3X Catalysts Hydrogen Production Biomass-derived electrocatalytic composites for hydrogen evolution Hydrogen-Evolution Catalysts Based on NiMo Nitride Nanosheets Water Oxidation Enabling light-driven water oxidation via a low-energy RuIV=O intermediate

167

RESEARCH HIGHLIGHTS State of fusion  

E-Print Network (OSTI)

RESEARCH HIGHLIGHTS State of fusion In the 1950s,the promise of controlled nuclear fusion, although there is still some way to go to realize the dream,the latest status report on fusion research compiled by the International Fusion Research Council (Nucl. Fusion 45,A1­A28; 2005) provides good reason

Loss, Daniel

168

Status of fusion maintenance  

SciTech Connect

Effective maintenance will be an essential ingredient in determining fusion system productivity. This level of productivity will result only after close attention is paid to the entire system as an entity and appropriate integration of the elements is made. The status of fusion maintenance is reviewed in the context of the entire system. While there are many challenging developmental tasks ahead in fusion maintenance, the required technologies are available in several high-technology industries, including nuclear fission.

Fuller, G.M.

1984-01-01T23:59:59.000Z

169

2 nature physics | VOL 2 | JANUARY 2006 | www.nature.com/naturephysics A high-power laser fusion  

E-Print Network (OSTI)

-power laser fusion facility for Europe MIKE DUNNE is at the Central Laser Facility, CCLRC Rutherford Appleton committed to fusion research facilities around the world, yet there is a distinct danger that key application to fusion-energy production. We are entering a period of huge investment in facilities that should

Loss, Daniel

170

Fusion Communication Summit cover  

NLE Websites -- All DOE Office Websites (Extended Search)

COMMUNICATIONS SUMMIT for U.S. Magnetic Fusion September 12-13, 2012 Princeton University - Frist Campus Center Princeton, New Jersey, USA Mission Statement Announcements...

171

Fusion Energy Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Scale Production Computing and Storage Requirements for Fusion Energy Sciences: Target 2017 The NERSC Program Requirements Review "Large Scale Production Computing and...

172

Fusion Energy Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion Energy Division http:www.ornl.govscinseddivisionfed.shtml Please click link above if you were not already redirected to the page....

173

Controlled fusion physics: experimental  

SciTech Connect

A historical review is given of the experimental thermonuclear research program. The role of pinch devices, mirror machines, tokamak devices, and laser fusion is discussed. (MOW)

Post, R.F.

1975-10-23T23:59:59.000Z

174

Nuclear Fusion Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Nuclear fusion reactors, if they can be made to work, promise virtually unlimited power for the indefinite future. This is because the fuel, isotopes of hydrogen, are...

175

Magnetic fusion reactor economics  

SciTech Connect

An almost primordial trend in the conversion and use of energy is an increased complexity and cost of conversion systems designed to utilize cheaper and more-abundant fuels; this trend is exemplified by the progression fossil fission {yields} fusion. The present projections of the latter indicate that capital costs of the fusion ``burner`` far exceed any commensurate savings associated with the cheapest and most-abundant of fuels. These projections suggest competitive fusion power only if internal costs associate with the use of fossil or fission fuels emerge to make them either uneconomic, unacceptable, or both with respect to expensive fusion systems. This ``implementation-by-default`` plan for fusion is re-examined by identifying in general terms fusion power-plant embodiments that might compete favorably under conditions where internal costs (both economic and environmental) of fossil and/or fission are not as great as is needed to justify the contemporary vision for fusion power. Competitive fusion power in this context will require a significant broadening of an overly focused program to explore the physics and simbiotic technologies leading to more compact, simplified, and efficient plasma-confinement configurations that reside at the heart of an attractive fusion power plant.

Krakowski, R.A.

1995-12-01T23:59:59.000Z

176

Path toward fusion energy  

SciTech Connect

A brief history of the fusion research program is given. Some of the problems that plagued the developmental progress are described. (MOW)

Furth, H.P.

1985-08-01T23:59:59.000Z

177

Fusion Energy Division  

NLE Websites -- All DOE Office Websites (Extended Search)

and engineering activities. Our plasma theorists develop the fundamental plasma theory and computational base needed to understand plasma behavior in fusion devices, to...

178

Quantum dynamics of elementary reactions in the gas phase and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantum dynamics of elementary reactions in the gas phase and on surfaces Quantum Dynamics of Elementary Reactions in the Gas Phase and on Surfaces Key Challenges: This research...

179

Cryptographic Key Management Workshop 2012  

Science Conference Proceedings (OSTI)

Cryptographic Key Management Workshop 2012. Purpose: NIST is conducting a two-day Key Management Workshop on September 10-11. ...

2013-08-01T23:59:59.000Z

180

Integrated Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine  

SciTech Connect

The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. A key component of a LIFE engine is the fusion chamber subsystem. The present work details the chamber design for the pure fusion option. The fusion chamber consists of the first wall and blanket. This integrated system must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated LIFE design that meets all of these requirements is described herein.

Latkowski, J F; Kramer, K J; Abbott, R P; Morris, K R; DeMuth, J; Divol, L; El-Dasher, B; Lafuente, A; Loosmore, G; Reyes, S; Moses, G A; Fratoni, M; Flowers, D; Aceves, S; Rhodes, M; Kane, J; Scott, H; Kramer, R; Pantano, C; Scullard, C; Sawicki, R; Wilks, S; Mehl, M

2010-12-07T23:59:59.000Z

Note: This page contains sample records for the topic "key fusion reactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Converting energy from fusion into useful forms  

E-Print Network (OSTI)

If fusion power reactors are to be feasible, it will still be necessary to convert the energy of the nuclear reaction into usable form. The heat produced will be removed from the reactor core by a primary coolant, which might be water, helium, molten lithium-lead, molten lithium-containing salt, or CO2. The heat could then be transferred to a conventional Rankine cycle or Brayton (gas turbine) cycle. Alternatively it could be used for thermochemical processes such as producing hydrogen or other transport fuels. Fusion presents new problems because of the high energy neutrons released. These affect the selection of materials and the operating temperature, ultimately determining the choice of coolant and working cycle. The limited temperature ranges allowed by present day irradiated structural materials, combined with the large internal power demand of the plant, will limit the overall thermal efficiency. The operating conditions of the fusion power source, the materials, coolant, and energy conversion system w...

Kovari, M; Jenkins, I; Kiely, C

2014-01-01T23:59:59.000Z

182

Using MCNP for fusion neutronics.  

E-Print Network (OSTI)

??Any fusion reactor using tritium-deuterium fusion will be a prolific source of 14 MeV neutrons. In fact, 80% of the fusion energy will be carried… (more)

Wasastjerna, Frej

2008-01-01T23:59:59.000Z

183

Mirror fusion--fission hybrids  

SciTech Connect

The fusion-fission concept and the mirror fusion-fission hybrid program are outlined. Magnetic mirror fusion drivers and blankets for hybrid reactors are discussed. Results of system analyses are presented and a reference design is described.

Lee, J.D.

1978-05-01T23:59:59.000Z

184

Realizing Technologies for Magnetized Target Fusion  

SciTech Connect

Researchers are making progress with a range of magneto-inertial fusion (MIF) concepts. All of these approaches use the addition of a magnetic field to a target plasma, and then compress the plasma to fusion conditions. The beauty of MIF is that driver power requirements are reduced, compared to classical inertial fusion approaches, and simultaneously the compression timescales can be longer, and required implosion velocities are slower. The presence of a sufficiently large Bfield expands the accessibility to ignition, even at lower values of the density-radius product, and can confine fusion alphas. A key constraint is that the lifetime of the MIF target plasma has to be matched to the timescale of the driver technology (whether liners, heavy ions, or lasers). To achieve sufficient burn-up fraction, scaling suggests that larger yields are more effective. To handle the larger yields (GJ level), thick liquid wall chambers are certainly desired (no plasma/neutron damage materials problem) and probably required. With larger yields, slower repetition rates ({approx}0.1-1 Hz) for this intrinsically pulsed approach to fusion are possible, which means that chamber clearing between pulses can be accomplished on timescales that are compatible with simple clearing techniques (flowing liquid droplet curtains). However, demonstration of the required reliable delivery of hundreds of MJ of energy, for millions of pulses per year, is an ongoing pulsed power technical challenge.

Wurden, Glen A. [Los Alamos National Laboratory

2012-08-24T23:59:59.000Z

185

HEDP and new directions for fusion energy  

SciTech Connect

The Quest for fusion energy has a long history and the demonstration of thermonuclear energy release in 1951 represented a record achievement for high energy density. While this first demonstration was in response to the extreme fears of mankind, it also marked the beginning of a great hope that it would usher in an era of boundless cheap energy. In fact, fusion still promises to be an enabling technology that can be compared to the prehistoric utilization of fire. Why has the quest for fusion energy been so long on promises and so short in fulfillment? This paper briefly reviews past approaches to fusion energy and suggests new directions. By putting aside the old thinking and vigorously applying our experimental, computational and theoretical tools developed over the past decades we should be able to make rapid progress toward satisfying an urgent need. Fusion not only holds the key to abundant green energy, but also promises to enable deep space missions and the creation of rare elements and isotopes for wide-ranging industrial applications and medical diagnostics.

Kirkpatrick, Ronald C [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

186

Fusion and Plasmas | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion and Fusion and Plasmas Fusion Energy Sciences (FES) FES Home About Staff Organization Chart .pdf file (104KB) FES Budget FES Committees of Visitors Directions Jobs Fusion and Plasmas Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) News & Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: sc.fes@science.doe.gov More Information » About Fusion and Plasmas Print Text Size: A A A RSS Feeds FeedbackShare Page WHAT IS FUSION? a Fusion the process that powers the sun and the stars. In one type of this reaction, two atoms of hydrogen combine together, or , to form an atom of helium. In the process some of the mass of the hydrogen is converted into energy. The easiest fusion reaction to make happen combines (or "heavy hydrogen") with (or "heavy-heavy hydrogen") to make and a . Deuterium is plentifully available in ordinary water. Tritium can be produced by combining the fusion neutron with the abundant light metal . Thus fusion has the potential to be an inexhaustible source of energy.

187

Inertial confinement fusion: present status and future potential  

DOE Green Energy (OSTI)

Power from inertial confinement fusion holds much promise for society. This paper points out many of the benefits relative to combustion of hydrocarbon fuels and fission power. Potential problems are also identified and put in perspective. The progress toward achieving inertial fusion power is described and results of recent work at the Lawrence Livermore National Laboratory are presented. Key phenomenological uncertainties are described and experimental goals for the Nova laser system are given. Several ICF reactor designs are discussed.

Hogan, W.J.

1984-07-16T23:59:59.000Z

188

FUSION ENERGY Position Statement  

E-Print Network (OSTI)

The American Nuclear Society (ANS) supports a vigorous research and development program for fusion energy. Fusion represents a potential energy source that is sustainable and has favorable safety and environmental features. Like fission, fusion offers the opportunity to generate substantial quantities of energy while producing no CO2 or other “greenhouse gases” that may contribute to global warming. Even with substantial conservation efforts and improvements in end-use efficiency, the future world demand for energy is expected to increase as a result of population growth and economic development. The timely advent of fusion as a practical energy source may be crucial. In particular, the ANS believes the following: 1. The long-term benefits of fusion energy warrant a sustained effort aimed at advancing fusion science and technology. International cooperation is a cost-effective complement to strong national programs. 2. Recent scientific progress in fusion research has been encouraging and warrants an enhanced and expanded fusion engineering and technology development program. 3. Based on the continuing success of physics and technology development programs, it appears

unknown authors

2008-01-01T23:59:59.000Z

189

About sponsorship Fusion power  

E-Print Network (OSTI)

project to build a nuclear-fusion reactor came a step closer to reality when politicians agreed it should are needed. Unlike existing nuclear reactors, which produce nasty long-lived radioactive wasteAbout sponsorship Fusion power Nuclear ambitions Jun 30th 2005 From The Economist print edition

190

Antiproton catalyzed fusion  

SciTech Connect

Because of the potential application to power production, it is important to investigate a wide range of possible means to achieve nuclear fusion, even those that may appear initially to be infeasible. In antiproton catalyzed fusion, the negative antiproton shields the repulsion between the positively charged nuclei of hydrogen isotopes, thus allowing a much higher level of penetration through the repulsive Coulomb barrier, and thereby greatly enhancing the fusion cross section. Because of their more compact wave function, the more massive antiprotons offer considerably more shielding than do negative muons. The effects of the shielding on fusion cross sections are most predominate, at low energies. If the antiproton could exist in the ground state with a nucleus for a sufficient time without annihilating, the fusion cross sections are so enhanced that at room temperature energies, values up to about 1,000 barns (that for d+t) would be possible. Unfortunately, the cross section for antiproton annihilation with the incoming nucleus is even higher. A model that provides an upper bound for the fusion to annihilation cross section for all relevant energies indicates that each antiproton will catalyze no more than about one fusion. Because the energy required to make one antiproton greatly exceeds the fusion energy that is released, this level of catalysis is far from adequate for power production.

Morgan, D.L. Jr.; Perkins, L.J.; Haney, S.W.

1995-05-15T23:59:59.000Z

191

Fusion of Giant Unilamellar Liposomes  

Science Conference Proceedings (OSTI)

Fusion of Giant Unilamellar Liposomes. ... Our main aim is to demonstrate whether a stalk forms during the fusion process or not. ...

192

Heavy Ion Fusion development plan  

SciTech Connect

Some general cnsiderations in the fusion development program are given. The various factors are considered that must be determined before heavy ion fusion can be assessed. (MOW)

Maschke, A.W.

1978-01-01T23:59:59.000Z

193

Summary of HEDL Fusion Reactor Safety Support studies  

Science Conference Proceedings (OSTI)

The HEDL Fusion Reactor Safety Support studies are focused on characterizing blanket-coolant-material reactions for deuterium-tritium fusion reactor designs. The objective is to determine and examine potential safety and environmental issues associated with proposed blanket/coolant combinations under postulated accident conditions. The first studies considered liquid lithium as both blanket and coolant, and examined liquid lithium-material reactions. Liquid lithium reactions with oxygen, nitrogen, and various concretes have been characterized. Evaluations of lithium reaction extinguishment methods, lithium aerosol generation and collection, and the volatilization and transport of radioactive materials in connection with lithium-air reactions have been completed. Lithium compound blanket material reactions with water, a prime coolant candidate, have been characterized in terms of energy and gas release rates. Blanket materials considered were lithium aluminate, lithium oxide, lithium zirconate, lithium silicate, and lithium lead alloys (Li/sub 7/Pb/sub 2/ and Li/sub 17/Pb/sub 83/).

Muhlestein, L.D.; Jeppson, D.W.; Barreca, J.R.

1981-01-01T23:59:59.000Z

194

Introducing the Fission-Fusion Reaction Process: Using a Laser-Accelerated Th Beam to produce Neutron-Rich Nuclei towards the N=126 Waiting Point of the r Process  

E-Print Network (OSTI)

We propose to produce neutron-rich nuclei in the range of the astrophysical r-process around the waiting point N=126 by fissioning a dense laser-accelerated thorium ion bunch in a thorium target (covered by a CH2 layer), where the light fission fragments of the beam fuse with the light fission fragments of the target. Via the 'hole-boring' mode of laser Radiation Pressure Acceleration using a high-intensity, short pulse laser, very efficiently bunches of 232Th with solid-state density can be generated from a Th layer, placed beneath a deuterated polyethylene foil, both forming the production target. Th ions laser-accelerated to about 7 MeV/u will pass through a thin CH2 layer placed in front of a thicker second Th foil closely behind the production target and disintegrate into light and heavy fission fragments. In addition, light ions (d,C) from the CD2 production target will be accelerated as well to about 7 MeV/u, inducing the fission process of 232Th also in the second Th layer. The laser-accelerated ion bunches with solid-state density, which are about 10^14 times more dense than classically accelerated ion bunches, allow for a high probability that generated fission products can fuse again. In contrast to classical radioactive beam facilities, where intense but low-density radioactive beams are merged with stable targets, the novel fission-fusion process draws on the fusion between neutron-rich, short-lived, light fission fragments both from beam and target. The high ion beam density may lead to a strong collective modification of the stopping power in the target, leading to significant range enhancement. Using a high-intensity laser as envisaged for the ELI-Nuclear Physics project in Bucharest (ELI-NP), estimates promise a fusion yield of about 10^3 ions per laser pulse in the mass range of A=180-190, thus enabling to approach the r-process waiting point at N=126.

D. Habs; P. G. Thirolf; M. Gross; K. Allinger; J. Bin; A. Henig; D. Kiefer; W. Ma; J. Schreiber

2010-07-07T23:59:59.000Z

195

Fusion dynamics of symmetric systems near barrier energies  

E-Print Network (OSTI)

The enhancement of the sub-barrier fusion cross sections was explained as the lowering of the dynamical fusion barriers within the framework of the improved isospin-dependent quantum molecular dynamics (ImIQMD) model. The numbers of nucleon transfer in the neck region are appreciably dependent on the incident energies, but strongly on the reaction systems. A comparison of the neck dynamics is performed for the symmetric reactions $^{58}$Ni+$^{58}$Ni and $^{64}$Ni+$^{64}$Ni at energies in the vicinity of the Coulomb barrier. An increase of the ratios of neutron to proton in the neck region at initial collision stage is observed and obvious for neutron-rich systems, which can reduce the interaction potential of two colliding nuclei. The distribution of the dynamical fusion barriers and the fusion excitation functions are calculated and compared them with the available experimental data.

Zhao-Qing Feng; Gen-Ming Jin

2009-09-06T23:59:59.000Z

196

Inertial Confinement Fusion and the National Ignition Facility (NIF)  

SciTech Connect

Inertial confinement fusion (ICF) seeks to provide sustainable fusion energy by compressing frozen deuterium and tritium fuel to extremely high densities. The advantages of fusion vs. fission are discussed, including total energy per reaction and energy per nucleon. The Lawson Criterion, defining the requirements for ignition, is derived and explained. Different confinement methods and their implications are discussed. The feasibility of creating a power plant using ICF is analyzed using realistic and feasible numbers. The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is shown as a significant step forward toward making a fusion power plant based on ICF. NIF is the world’s largest laser, delivering 1.8 MJ of energy, with a peak power greater than 500 TW. NIF is actively striving toward the goal of fusion energy. Other uses for NIF are discussed.

Ross, P.

2012-08-29T23:59:59.000Z

197

Effects of Fusion Mass Density and Fusion Location on the Strength of a Lumbar Interbody Fusion.  

E-Print Network (OSTI)

??The location and elastic modulus of a fusion mass are important factors for clinical assessment of the adequacy of interbody fusion. Various finite element models… (more)

Shelly, Cassi Elizabeth

2005-01-01T23:59:59.000Z

198

Design considerations in inertially-confined fusion reactors  

SciTech Connect

This paper discusses the effects of short time pulses of energetic particles and waves typical of inertially-confined thermonuclear reactions on the first wall, blanket and shield of conceptual reactors. Several reactor designs are presented which attempt to cope with the various problems from the microexplosion debris. Fusion-fission hybrid reactors are also discussed. Emphasis is placed on the first-wall problems of laser-initiated, inertially confined fusion reactors using the deuterium-tritium fuel cycle.

Hovingh, J.

1976-08-01T23:59:59.000Z

199

Effects of Minor Alloy Additions on the Interfacial Reactions with Low ...  

Science Conference Proceedings (OSTI)

These alloying elements might substantially change the reaction rate and the ... Effect Of Alloying Elements On Electrification-Fusion Phenomenon Of Sn-based ...

200

Suppressed fusion cross section for neutron halo nuclei  

E-Print Network (OSTI)

Fusion reactions of neutron-halo nuclei are investigated theoretically with a three-body model. The time-dependent wave-packet method is used to solve the three-body Schrodinger equation. The halo neutron behaves as a spectator during the Coulomb dissociation process of the projectile. The fusion cross sections of 11Be-209Bi and 6He-238U are calculated and are compared with measurements. Our calculation indicates that the fusion cross section is slightly hindered by the presence of weakly bound neutrons.

Makoto Ito; Kazuhiro Yabana; Takashi Nakatsukasa; Manabu Ueda

2005-06-23T23:59:59.000Z

Note: This page contains sample records for the topic "key fusion reactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Particle beam fusion  

SciTech Connect

Today, in keeping with Sandia Laboratories` designation by the Department of Energy as the lead laboratory for the pulsed power approach to fusion, its efforts include major research activities and the construction of new facilities at its Albuquerque site. Additionally, in its capacity as lead laboratory, Sandia coordinates DOE-supported pulsed power fusion work at other government operated laboratories, with industrial contractors, and universities. The beginning of Sandia`s involvement in developing fusion power was an outgrowth of its contributions to the nation`s nuclear weapon program. The Laboratories` work in the early 1960`s emphasized the use of pulsed radiation environments to test the resistance of US nuclear weapons to enemy nuclear bursts. A careful study of options for fusion power indicated that Sandia`s expertise in the pulsed power field could provide a powerful match to ignite fusion fuel. Although creating test environments is an achieved goal of Sandia`s overall program, this work and other military tasks protected by appropriate security regulations will continue, making full use of the same pulsed power technology and accelerators as the fusion-for-energy program. Major goals of Sandia`s fusion program including the following: (1) complete a particle accelerator to deliver sufficient beam energy for igniting fusion targets; (2) obtain net energy gain, this goal would provide fusion energy output in excess of energy stored in the accelerator; (3) develop a technology base for the repetitive ignition of pellets in a power reactor. After accomplishing these goals, the technology will be introduced to the nation`s commercial sector.

1980-12-31T23:59:59.000Z

202

Spherical torus fusion reactor  

DOE Patents (OSTI)

The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

Martin Peng, Y.K.M.

1985-10-03T23:59:59.000Z

203

Why and how of fusion  

SciTech Connect

The potential advantages of fusion power are listed. The approaches to plasma containment are mentioned and the status of the fusion program is described. The ERDA and EPRI programs are discussed. The Fusion Energy Foundation's activities are mentioned. Fusion research at the U. of Ill. is described briefly. (MHR)

Miley, G.H.

1977-01-01T23:59:59.000Z

204

Fusion safety program Annual report, Fiscal year 1995  

Science Conference Proceedings (OSTI)

This report summarizes the major activities of the Fusion Safety Program in FY-95. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory, and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions. Among the technical areas covered in this report are tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate database development, and safety code development and application to fusion safety issues. Most of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and the technical support for commercial fusion facility conceptual design studies. A final activity described is work to develop DOE Technical Standards for Safety of Fusion Test Facilities.

Longhurst, G.R.; Cadwallader, L.C.; Carmack, W.J. [and others

1995-12-01T23:59:59.000Z

205

Multishell inertial confinement fusion target  

DOE Patents (OSTI)

A method of fabricating multishell fuel targets for inertial confinement fusion usage. Sacrificial hemispherical molds encapsulate a concentric fuel pellet which is positioned by fiber nets stretched tautly across each hemispherical mold section. The fiber ends of the net protrude outwardly beyond the mold surfaces. The joint between the sacrificial hemispheres is smoothed. A ceramic or glass cover is then deposited about the finished mold surfaces to produce an inner spherical surface having continuously smooth surface configuration. The sacrificial mold is removed by gaseous reactions accomplished through the porous ceramic cover prior to enclosing of the outer sphere by addition of an outer coating. The multishell target comprises the inner fuel pellet concentrically arranged within a surrounding coated cover or shell by fiber nets imbedded within the cover material.

Holland, James R. (Butler, PA); Del Vecchio, Robert M. (Vandergrift, PA)

1987-01-01T23:59:59.000Z

206

Multishell inertial confinement fusion target  

DOE Patents (OSTI)

A method of fabricating multishell fuel targets for inertial confinement fusion usage. Sacrificial hemispherical molds encapsulate a concentric fuel pellet which is positioned by fiber nets stretched tautly across each hemispherical mold section. The fiber ends of the net protrude outwardly beyond the mold surfaces. The joint between the sacrificial hemispheres is smoothed. A ceramic or glass cover is then deposited about the finished mold surfaces to produce an inner spherical surface having continuously smooth surface configuration. The sacrificial mold is removed by gaseous reaction accomplished through the porous ceramic cover prior to enclosing of the outer sphere by addition of an outer coating. The multishell target comprises the inner fuel pellet concentrically arranged within a surrounding coated cover or shell by fiber nets imbedded within the cover material.

Holland, James R. (Butler, PA); Del Vecchio, Robert M. (Vandergrift, PA)

1984-01-01T23:59:59.000Z

207

Fusion Science to Prepare  

NLE Websites -- All DOE Office Websites (Extended Search)

DIII-D Explorations of Fusion Science to Prepare for ITER and FNSF Dr. Richard Buttery General Atomics Tuesday, Dec 10, 2013 - 11:00AM MBG AUDITORIUM Refreshments at 10:45AM The...

208

Fusion-breeder program  

SciTech Connect

The various approaches to a combined fusion-fission reactor for the purpose of breeding /sup 239/Pu and /sup 233/U are described. Design aspects and cost estimates for fuel production and electricity generation are discussed. (MOW)

Moir, R.W.

1982-11-19T23:59:59.000Z

209

Controlled thermonuclear fusion research in Europe -- Competence in advanced physics and technologies  

SciTech Connect

Development of Fusion power is being pursued in all major industrial countries. The European Union, together with countries associated to the EURATOM-Framework Program undertakes an integrated RTD program for the development of magnetic fusion. The Key Action Controlled Thermonuclear Fusion has the objectives to develop the capacity to construct and operated a Next Step device for which the design is being pursued in international collaboration (ITER EDA, International Thermonuclear Experimental Reactor Engineering Design Activities); to undertake structured activities for concept improvements for a fusion power station; to develop technologies needed in the longer term for a prototype fusion reactor. Work on the socio-economic aspects of fusion and a keep in touch activity coordinating national civil research activities in inertial confinement fusion complement the program.

Bruhns, H.

2000-03-01T23:59:59.000Z

210

Radiation effects in materials for fusion reactors  

DOE Green Energy (OSTI)

The 14-MeV neutrons produced in a fusion reactor result in different irradiation damage than the equivalent fluence in a fast breeded reactor, not only because of the higher defect generation rate, but because of the production of significant concentrations of helium and hydrogen. Although no fusion test reactor exists, the effects of combined displacement damage plus helium can be studied in mixed-spectrum fission reactors for alloys containing nickel (e.g., austenitic stainless steels). The presence of helium appears to modify vacancy and interstitial recombination such that microstructural development in alloys differs between the fusion and fission reactor environments. Since mechanical properties of alloys are related to the microstructure, the simultaneous production of helium and displacement damage impacts upon key design properties such as tensile, fatigue, creep, an crack growth. Through an understanding of the basic phenomena occurring during irradiation and the relationships between microstructure and properties, alloys can be tailored to minimize radiation-induced swelling and improve mechanical properties in fusion reactor service.

Scott, J.L.; Grossbeck, M.L.; Maziasz, P.J.

1981-01-01T23:59:59.000Z

211

Study of fusion dynamics using Skyrme energy density formalism with different surface corrections  

E-Print Network (OSTI)

Within the framework of Skyrme energy density formalism, we investigate the role of surface corrections on the fusion of colliding nuclei. For this, the coefficient of surface correction was varied between 1/36 and 4/36, and its impact was studied on about 180 reactions. Our detailed investigations indicate a linear relationship between the fusion barrier heights and strength of the surface corrections. Our analysis of the fusion barriers advocate the strength of surface correction of 1/36.

Ishwar Dutt; Narinder K. Dhiman

2010-11-19T23:59:59.000Z

212

On the Structure of the Fusion Ideal  

E-Print Network (OSTI)

On the Structure of the Fusion Ideal 4. Bouwknegt, P. ,of Wess-Zumino-Witten fusion rings. Rev. Math. Phys.A conjectural presentation of fusion algebras. Preprint,

Douglas, Christopher L.

2009-01-01T23:59:59.000Z

213

Solenoid transport for heavy ion fusion  

E-Print Network (OSTI)

Transport for Heavy Ion Fusion* Edward Lee** LawrenceHm Heavy Ion Inertial Fusion Abstract Solenoid transport ofseveral stages of a heavy ion fusion driver. In general this

Lee, Edward

2004-01-01T23:59:59.000Z

214

1 DEMONSTRATION OF NUCLEAR FUSION IN AN ORDINARY CLAY FLOWER POT  

E-Print Network (OSTI)

This work demonstrates a sustainable nuclear fusion reaction of hydrogen using a clay flower port as a reactor vessel. Our novel approach uses a “charge mirror ” that reduces the electromagnetic repulsion between nuclei enough to allow fusion initiation at room temperature. The device can also be used as a secure error-free transgalactic communications pipe with zero latency and near infinite bandwidth. I.

Albert Einstein; Er Bell; Richard Feynman

2002-01-01T23:59:59.000Z

215

Multi-sensor calibration through iterative registration and fusion  

Science Conference Proceedings (OSTI)

In this paper, a new multi-sensor calibration approach, called iterative registration and fusion (IRF), is presented. The key idea of this approach is to use surfaces reconstructed from multiple point clouds to enhance the registration accuracy and robustness. ... Keywords: B-spline surface reconstruction, Iterative closest point (ICP), Kalman filter, Registration, Sensor calibration

Yunbao Huang; Xiaoping Qian; Shiliang Chen

2009-04-01T23:59:59.000Z

216

Role of Fusion Energy in a Sustainable Global Energy Strategy  

DOE Green Energy (OSTI)

Fusion energy is one of only a few truly long-term energy options. Since its inception in the 1950s, the vision of the fusion energy research program has been to develop a viable means of harnessing the virtually unlimited energy stored in the nuclei of light atoms--the primary fuel deuterium is present as one part in 6,500 of all hydrogen. This vision grew out of the recognition that the immense power radiated by the sun is fueled by nuclear fusion in its hot core. Such high temperatures are a prerequisite for driving significant fusion reactions. The fascinating fourth state of matter at high temperatures is known as plasma. It is only in this fourth state of matter that the nuclei of two light atoms can fuse, releasing the excess energy that was needed to separately bind each of the original two nuclei. Because the nuclei of atoms carry a net positive electric charge, they repel each other. Hydrogenic nuclei, such as deuterium and tritium, must be heated to approximately 100 million degrees Celsius to overcome this electric repulsion and fuse. There have been dramatic recent advances in both the scientific understanding of fusion plasmas and in the generation of fusion power in the laboratory. Today, there is little doubt that fusion energy production is feasible. For this reason, the general thrust of fusion research has focused on configuration improvements leading to an economically competitive product. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are among the reasons to pursue these opportunities [1]. In this paper we review the tremendous scientific progress in fusion during the last 10 years. We utilize the detailed engineering design activities of burning plasma experiments as well as conceptual fusion power plant studies to describe our visions of attractive fusion power plants. We use these studies to compare technical requirements of an attractive fusion system with present achievements to identify remaining technical challenges for fusion. We discuss scenarios for fusion energy deployment in the energy market.

Meier, W; Najmabadi, F; Schmidt, J; Sheffield, J

2001-03-07T23:59:59.000Z

217

Application of deuteron-deuteron (d-d) fusion neutrons to 40 ar/39/ar geochronology  

E-Print Network (OSTI)

development of high-?ux D–D fusion reactors is a worthy goalfusion reaction 2 H(d,n) 3 He. A new generation of D–D reactors

Renne, P.; Knight, K.B.; Nomade, S.; Leung, K.-N.; Lou, T.P.

2005-01-01T23:59:59.000Z

218

Unexpected results in neutron-rich radioactive beams induced fusion  

Science Conference Proceedings (OSTI)

The fission-fragment beams at HRIBF provide a unique opportunity for studying the mechanisms of fusion involving nuclei with large neutron excess. To explore the role of transfer couplings, fusion excitation functions have been measured using neutron-rich radioactive $^{132}$Sn beams incident on $^{40}$Ca and $^{58}$Ni targets. The sub-barrier fusion enhancement for $^{132}$Sn+$^{40}$Ca is larger than that for $^{132}$Sn+$^{58}$Ni although the neutron transfer Q-values are similar for the two reactions. The fusion excitation function for $^{46}$Ti+$^{124}$Sn has been measured in an attempt to resolve the differences observed in $^{132}$Sn+$^{40}$Ca and $^{132}$Sn+$^{58}$Ni.

Liang, J Felix [ORNL] [ORNL

2013-01-01T23:59:59.000Z

219

How much laser power can propagate through fusion plasma?  

E-Print Network (OSTI)

Propagation of intense laser beams is crucial for inertial confinement fusion, which requires precise beam control to achieve the compression and heating necessary to ignite the fusion reaction. The National Ignition Facility (NIF), where fusion will be attempted, is now under construction. Control of intense beam propagation may be ruined by laser beam self-focusing. We have identified the maximum laser beam power that can propagate through fusion plasma without significant self-focusing and have found excellent agreement with recent experimental data, and suggest a way to increase that maximum by appropriate choice of plasma composition with implication for NIF designs. Our theory also leads to the prediction of anti-correlation between beam spray and backscatter and suggests the indirect control of backscatter through manipulation of plasma ionization state or acoustic damping.

Pavel M. Lushnikov; Harvey A. Rose

2005-12-30T23:59:59.000Z

220

Recent results from the carbon fusion project at Notre Dame  

Science Conference Proceedings (OSTI)

The carbon fusion project at Notre Dame is aimed towards measuring the {sup 12}C+{sup 12}C fusion cross section and its decay branches relevant to astrophysics down to the lowest possible energies. To complement this approach, we are also exploring new techniques for providing more reliable extrapolations of the cross sections in the energy ranges where experimental data are unavailable. In this paper, we report two recent results: 1) an upper limit for the {sup 12}C+{sup 12}C fusion cross section, and 2) a new measurement of {sup 12}C({sup 12}C,n) along with an improved extrapolation technique based on the mirror reaction channel, {sup 12}C({sup 12}C,p). The outlook for astrophysical heavy-ion fusion studies at Notre Dame is also discussed.

Bucher, Brian; Notani, Masahiro; Alongi, Adam; Browne, Justin; Cahillane, Craig; Dahlstrom, Erin; Davies, Paul; Fang Xiao; Lamm, Larry; Ma Chi; Moncion, Alexander; Tan Wanpeng; Tang Xiaodong; Thomas, Spencer [Institute for Structure and Nuclear Astrophysics, Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556-5670 (United States)

2012-11-12T23:59:59.000Z

Note: This page contains sample records for the topic "key fusion reactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Sub-barrier fusion enhancement with radioactive 134Te  

E-Print Network (OSTI)

The fusion cross sections of radioactive $^{134}$Te + $^{40}$Ca were measured at energies above and below the Coulomb barrier. The evaporation residues produced in the reaction were detected in a zero-degree ionization chamber providing high efficiency for inverse kinematics. Both coupled-channel calculations and comparison with similar Sn+Ca systems indicate an increased sub-barrier fusion probability that is correlated with the presence of positive Q-value neutron transfer channels. In comparison, the measured fusion excitation functions of $^{130}$Te + $^{58,64}$Ni, which have positive Q-value neutron transfer channels, were accurately reproduced by coupled-channel calculations including only inelastic excitations. The results demonstrate that the coupling of transfer channels can lead to enhanced sub-barrier fusion but this is not directly correlated with positive Q-value neutron transfer channels in all cases.

Z. Kohley; J. F. Liang; D. Shapira; C. J. Gross; R. L. Varner; J. M. Allmond; J. J. Kolata; P. E. Mueller; A. Roberts

2013-06-28T23:59:59.000Z

222

Sub-barrier fusion enhancement with radioactive 134Te  

Science Conference Proceedings (OSTI)

The fusion cross sections of radioactive 134Te + 40Ca were measured at energies above and below the Coulomb barrier. The evaporation residues produced in the reaction were detected in a zero-degree ionization chamber providing high efficiency for inverse kinematics. Both coupled-channel calculations and comparison with similar Sn + Ca systems indicate an increased sub-barrier fusion probability that is correlated with the presence of positive Q-value neutron transfer channels. In comparison, the measured fusion excitation functions of 130Te + 58,64Ni, which have positive Q-value neutron transfer channels, were accurately reproduced by coupled-channel calculations including only inelastic excitations. The results demonstrate that the coupling of transfer channels can lead to enhanced sub-barrier fusion but this is not directly correlated with positive Q-value neutron transfer channels in all cases.

Kohley, Zachary W [ORNL; Liang, J Felix [ORNL; Shapira, Dan [ORNL; Gross, Carl J [ORNL; Varner Jr, Robert L [ORNL; Allmond, James M [ORNL; Kolata, Jim J [University of Notre Dame, IN; Mueller, Paul Edward [ORNL; Roberts, Amy [University of Notre Dame, IN

2013-01-01T23:59:59.000Z

223

Spherical torus fusion reactor  

DOE Patents (OSTI)

A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

Peng, Yueng-Kay M. (Oak Ridge, TN)

1989-01-01T23:59:59.000Z

224

Ceramics for fusion applications  

SciTech Connect

Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle, and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al/sub 2/O/sub 3/, MgAl/sub 2/O/sub 4/, BeO, Si/sub 3/N/sub 4/ and SiC are currently under study for fusion applications, and results to date show widely-varying response to the fusion environment. Materials can be identified today which will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications.

Clinard, F.W. Jr.

1986-01-01T23:59:59.000Z

225

Peaceful uses of fusion  

SciTech Connect

Applications a thermonuclear energy for peaceful and constructive purposes are surveyed. Developments and problems in the release and control of fusion energy are reviewed. It is pointed out that the future of thermonuclear power reactors will depend upon the construction of a machine that produces more electric energy than it consumes. The fuel for thermonuclear reactors is cheap and practically inexhaustible. Thermonuclear reactors produce less dangerous radioactive materials than fission reactors and when once brought under control are not as likely to be subject to dangerous excursions. The interaction of the hot plasma with magnetic fields opens the way for the direct production of electricity. It is possible that explosive fusion energy released underground may be harnessed for the production of electricity before the same feat is accomplished in controlled fusion processes. Applications of underground detonations of fission devices in mining and for the enhancement of oil flow in large low--specific-yield formations are also suggested.

Teller, E.

1958-07-01T23:59:59.000Z

226

Ceramics for fusion devices  

SciTech Connect

Ceramics are required for a number of applications in fusion devices, among the most critical of which are magnetic coil insulators, windows for RF heating systems, and structural uses. Radiation effects dominate consideration of candidate materials, although good pre-irradiation properties are a requisite. Materials and components can be optimized by careful control of chemical and microstructural content, and application of brittle material design and testing techniques. Future directions for research and development should include further extension of the data base in the areas of electrical, structural, and thermal properties; establishment of a fission neutron/fusion neutron correlation including transmutation gas effects; and development of new materials tailored to meet the specific needs of fusion reactors.

Clinard, F.W. Jr.

1984-01-01T23:59:59.000Z

227

Inverse Fusion PCR Cloning  

E-Print Network (OSTI)

Inverse fusion PCR cloning (IFPC) is an easy, PCR based three-step cloning method that allows the seamless and directional insertion of PCR products into virtually all plasmids, this with a free choice of the insertion site. The PCR-derived inserts contain a vector-complementary 59-end that allows a fusion with the vector by an overlap extension PCR, and the resulting amplified insert-vector fusions are then circularized by ligation prior transformation. A minimal amount of starting material is needed and experimental steps are reduced. Untreated circular plasmid, or alternatively bacteria containing the plasmid, can be used as templates for the insertion, and clean-up of the insert fragment is not urgently required. The whole cloning procedure can be performed within a minimal hands-on time and results in the generation of hundreds to ten-thousands of positive colonies, with a minimal background.

Markus Spiliotis

2012-01-01T23:59:59.000Z

228

Background on Quantum Key Distribution  

Science Conference Proceedings (OSTI)

... Background on Quantum Key Distribution. ... If someone, referred to by cryptographers as Eve, tries to eavesdrop on the transmission, she will not ...

2011-08-02T23:59:59.000Z

229

Laser-driven fusion etching process  

SciTech Connect

The surfaces of solid ionic substrates are etched by a radiation-driven chemical reaction. The process involves exposing an ionic substrate coated with a layer of a reactant material on its surface to radiation, e.g. a laser, to induce localized melting of the substrate which results in the occurrance of a fusion reaction between the substrate and coating material. The resultant reaction product and excess reactant salt are then removed from the surface of the substrate with a solvent which is relatively inert towards the substrate. The laser-driven chemical etching process is especially suitable for etching ionic salt substrates, e.g., a solid inorganic salt such as LiNbO.sub.3, such as used in electro-optical/acousto-optic devices. It is also suitable for applications wherein the etching process is required to produce an etched ionic substrate having a smooth surface morphology or when a very rapid etching rate is desired.

Ashby, Carol I. H. (Edgewood, NM); Brannon, Paul J. (Albuquerque, NM); Gerardo, James B. (Albuquerque, NM)

1989-01-01T23:59:59.000Z

230

Fusion welding process  

DOE Patents (OSTI)

A process for the fusion welding of nickel alloy steel members wherein a ferrite containing pellet is inserted into a cavity in one member and melted by a welding torch. The resulting weld nugget, a fusion of the nickel containing alloy from the members to be welded and the pellet, has a composition which is sufficiently low in nickel content such that ferrite phases occur within the weld nugget, resulting in improved weld properties. The steel alloys encompassed also include alloys containing carbon and manganese, considered nickel equivalents.

Thomas, Kenneth C. (Export, PA); Jones, Eric D. (Salem, PA); McBride, Marvin A. (Hempfield Township, Westmoreland County, PA)

1983-01-01T23:59:59.000Z

231

Fusion Categories and Homotopy Theory  

E-Print Network (OSTI)

We apply the yoga of classical homotopy theory to classification problems of G-extensions of fusion and braided fusion categories, where G is a finite group. Namely, we reduce such problems to classification (up to homotopy) ...

Etingof, Pavel I.

232

Fusion Development Facility (A26455)  

E-Print Network (OSTI)

Proc. Of 23rd IEEE/NPSS Symposium On Fusion Engineering, San Diego, California; To Be Published In The Proceedings23rd IEEE/NPSS Symposium on Fusion Engineering San Diego California, US, 2009999616325

Smith, J.P.

2009-06-17T23:59:59.000Z

233

Multisensor data fusion algorithm development  

Science Conference Proceedings (OSTI)

This report presents a two-year LDRD research effort into multisensor data fusion. We approached the problem by addressing the available types of data, preprocessing that data, and developing fusion algorithms using that data. The report reflects these three distinct areas. First, the possible data sets for fusion are identified. Second, automated registration techniques for imagery data are analyzed. Third, two fusion techniques are presented. The first fusion algorithm is based on the two-dimensional discrete wavelet transform. Using test images, the wavelet algorithm is compared against intensity modulation and intensity-hue-saturation image fusion algorithms that are available in commercial software. The wavelet approach outperforms the other two fusion techniques by preserving spectral/spatial information more precisely. The wavelet fusion algorithm was also applied to Landsat Thematic Mapper and SPOT panchromatic imagery data. The second algorithm is based on a linear-regression technique. We analyzed the technique using the same Landsat and SPOT data.

Yocky, D.A.; Chadwick, M.D.; Goudy, S.P.; Johnson, D.K.

1995-12-01T23:59:59.000Z

234

Fusion technology status and requirements  

SciTech Connect

This paper summarizes the status of fusion technology and discusses the requirements to be met in order to build a demonstration fusion plant. Strategies and programmatic considerations in pursuing engineering feasibility are also outlined.

Thomassen, K.I.

1982-01-26T23:59:59.000Z

235

Safety considerations of lithium lead alloy as a fusion reactor breeding material  

Science Conference Proceedings (OSTI)

Test results and conclusions are presented for lithium lead alloy interactions with various gas atmospheres, concrete and potential reactor coolants. The reactions are characterized to evaluate the potential of volatilizing and transporting radioactive species associated with the liquid breeder under postulated fusion reactor accident conditions. The safety concerns identified for lithium lead alloy reactions with the above materials are compared to those previously identified for a reference fusion breeder material, liquid lithium. Conclusions made from this comparison are also included.

Jeppson, D.W.; Muhlestein, L.D.

1985-07-01T23:59:59.000Z

236

Safety considerations of lithium lead alloy as a fusion reactor breeding material  

Science Conference Proceedings (OSTI)

Test results and conclusions are presented for lithium lead alloy interactions with various gas atmospheres, concrete and potential reactor coolants. The reactions are characterized to evaluate the potential of volatilizing and transporting radioactive species associated with the liquid breeder under postulated fusion reactor accident conditions. The safety concerns identified for lithium lead alloy reactions with the above materials are compared to those previously identified for a reference fusion breeder material, liquid lithium. Conclusions made from this comparison are also included.

Jeppson, D.W.; Muhlestein, L.D.

1985-01-01T23:59:59.000Z

237

Neutronic analysis of a fusion hybrid reactor  

SciTech Connect

In a PHYSOR 2010 paper(1) we introduced a fusion hybrid reactor whose fusion component is the gasdynamic mirror (GDM), and whose blanket was made of thorium - 232. The thrust of that study was to demonstrate the performance of such a reactor by establishing the breeding of uranium - 233 in the blanket, and the burning thereof to produce power. In that analysis, we utilized the diffusion equation for one-energy neutron group, namely, those produced by the fusion reactions, to establish the power distribution and density in the system. Those results should be viewed as a first approximation since the high energy neutrons are not effective in inducing fission, but contribute primarily to the production of actinides. In the presence of a coolant, however, such as water, these neutrons tend to thermalize rather quickly, hence a better assessment of the reactor performance would require at least a two group analysis, namely the fast and thermal groups. We follow that approach and write an approximate set of equations for the fluxes of these groups. From these relations we deduce the all-important quantity, k{sub eff}, which we utilize to compute the multiplication factor, and subsequently, the power density in the reactor. We show that k{sub eff} can be made to have a value of 0.99, thus indicating that 100 thermal neutrons are generated per fusion neutron, while allowing the system to function as 'subcritical.' Moreover, we show that such a hybrid reactor can generate hundreds of megawatts of thermal power per cm of length depending on the flux of the fusion neutrons impinging on the blanket. (authors)

Kammash, T. [Univ. of Michigan, NERS, 2355 Bonisteel Blvd., Ann Arbor, MI 48109 (United States)

2012-07-01T23:59:59.000Z

238

Partnership in key exchange protocols  

Science Conference Proceedings (OSTI)

In this paper, we investigate the notion of partnership as found in security models for key exchange protocols. Several different approaches have been pursued to define partnership, with varying degrees of success. We aim to provide an overview and criticism ... Keywords: key exchange, partnership, session identifier

Kazukuni Kobara; Seonghan Shin; Mario Strefler

2009-03-01T23:59:59.000Z

239

REVIEW OF EXPERIMENTAL OBSERVATIONS ABOUT THE COLD FUSION EFFECT  

E-Print Network (OSTI)

The experimental literature describing the cold fusion phenomenon is reviewed. The number and variety of careful experimental measurements of heat, tritium, neutron, and helium production strongly support the occurrence of nuclear reactions in a metal lattice near room temperature as proposed by Pons and Fleischmann and independently by Jones. I.

Cold Fusion

1991-01-01T23:59:59.000Z

240

FUELING OF ITER-SCALE FUSION PLASMAS M. J. Gouge  

E-Print Network (OSTI)

systems to handle the larger DT throughput. Gas and pellet fueling efficiency data from past tokamak Ridge, Tennessee 37831-8071, USA (423) 576-4467 ABSTRACT Fueling system functions for the International in the fusion reaction, to establish a density gradient for plasma particle (especially helium ash) flow

Note: This page contains sample records for the topic "key fusion reactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Nuclear Reactions  

E-Print Network (OSTI)

Nuclear reactions generate energy in nuclear reactors, in stars, and are responsible for the existence of all elements heavier than hydrogen in the universe. Nuclear reactions denote reactions between nuclei, and between nuclei and other fundamental particles, such as electrons and photons. A short description of the conservation laws and the definition of basic physical quantities is presented, followed by a more detailed account of specific cases: (a) formation and decay of compound nuclei; (b)direct reactions; (c) photon and electron scattering; (d) heavy ion collisions; (e) formation of a quark-gluon plasma; (f) thermonuclear reactions; (g) and reactions with radioactive beams. Whenever necessary, basic equations are introduced to help understand general properties of these reactions. Published in Wiley Encyclopedia of Physics, ISBN-13: 978-3-527-40691-3 - Wiley-VCH, Berlin, 2009.

C. A. Bertulani

2009-08-22T23:59:59.000Z

242

Flexible data fusion (& fission)  

Science Conference Proceedings (OSTI)

An approach is described for developing methods for "data fusion": given how events A & B occurring by themselves influence some measure, estimate the influence (on that measure) of A and B occurring together. An example is "combine the effects of evidence ...

Alexander Yeh

1985-08-01T23:59:59.000Z

243

Status of inertial fusion  

SciTech Connect

The technology advancement to high-power beams has also given birth to new technologies. That class of Free Electron Lasers that employs rf linacs, synchrotrons, and storage rings - although the use the tools of High Energy Physics (HEP) - was developed well behind the kinetic energy frontier. The induction linac, however, is something of an exception; it was born directly from the needs of the magnetic fusion program, and was not motivated by a high-energy physics application. The heavy-ion approach to inertial fusion starts with picking from the rich menu of accelerator technologies those that have, ab initio, the essential ingredients needed for a power plant driver: multigap acceleration - which leads to reliability/lifetime; electrical efficiency; repetition rate; and beams that can be reliably focused over a suitably long distance. The report describes the programs underway in Heavy Ion Fusion Accelerator Research as well as listing expected advances in driver, target, and beam quality areas in the inertial fusion power program.

Keefe, D.

1987-04-01T23:59:59.000Z

244

Inertial Fusion Energy Studies on an Earth Simulator-Class Computer  

SciTech Connect

The U.S. is developing fusion energy based on inertial confinement of the burning fusion fuel, as a complement to the magnetic confinement approach. DOE's Inertial Fusion Energy (IFE) program within the Office of Fusion Energy Sciences (OFES) is coordinated with, and gains leverage from, the much larger Inertial Confinement Fusion program of the National Nuclear Security Administration (NNSA). Advanced plasma and particle beam simulations play a major role in the IFE effort, and the program is well poised to benefit from an Earth Simulator-class resource. Progress in all key physics areas of IFE, including heavy-ion ''drivers'' which impart the energy to the fusion fuel, the targets for both ion- and laser-driven approaches, and an advanced concept known as fast ignition, would be dramatically accelerated by an Earth Simulator-class resource.

Friedman, A; Stephens, R

2002-08-13T23:59:59.000Z

245

Alpha-nucleus potential for alpha-decay and sub-barrier fusion  

E-Print Network (OSTI)

The set of parameters for alpha-nucleus potential is derived by using the data for both the alpha-decay half-lives and the fusion cross-sections around the barrier for reactions alpha+40Ca, alpha+59Co, alpha+208Pb. The alpha-decay half-lives are obtained in the framework of a cluster model using the WKB approximation. The evaluated alpha-decay half-lives and the fusion cross-sections agreed well with the data. Fusion reactions between alpha-particle and heavy nuclei can be used for both the formation of very heavy nuclei and spectroscopic studies of the formed compound nuclei.

V. Yu. Denisov; H. Ikezoe

2005-10-27T23:59:59.000Z

246

Directions for improved fusion reactors  

SciTech Connect

Conceptual fusion reactor studies over the past 10 to 15 years have projected systems that may be too large, complex, and costly to be of commercial interest. One main direction for improved fusion reactors points towards smaller, higher-power-density approaches. First-order economic issues (i.e., unit direct cost and cost of electricity) are used to support the need for more compact fusion reactors. A generic fusion physics/engineering/costing model is used to provide a quantiative basis for these arguments for specific fusion concepts.

Krakowski, R.A.; Miller, R.L.; Delene, J.G.

1986-01-01T23:59:59.000Z

247

Commercial application of laser fusion  

SciTech Connect

The fundamentals of laser-induced fusion, some laser-fusion reactor concepts, and attendant means of utilizing the thermonuclear energy for commercial electric power generation are discussed. Theoretical fusion-pellet microexplosion energy release characteristics are described and the effects of pellet design options on pellet-microexplosion characteristics are discussed. The results of analyses to assess the engineering feasibility of reactor cavities for which protection of cavity components is provided either by suitable ablative materials or by diversion of plasmas by magnetic fields are presented. Two conceptual laser-fusion electric generating stations, based on different laser-fusion reactor concepts, are described.

Booth, L.A.

1976-01-01T23:59:59.000Z

248

Accelerators for heavy ion fusion  

SciTech Connect

Large fusion devices will almost certainly produce net energy. However, a successful commercial fusion energy system must also satisfy important engineering and economic constraints. Inertial confinement fusion power plants driven by multi-stage, heavy-ion accelerators appear capable of meeting these constraints. The reasons behind this promising outlook for heavy-ion fusion are given in this report. This report is based on the transcript of a talk presented at the Symposium on Lasers and Particle Beams for Fusion and Strategic Defense at the University of Rochester on April 17-19, 1985.

Bangerter, R.O.

1985-10-01T23:59:59.000Z

249

Research on fusion neutron sources  

SciTech Connect

The use of fusion devices as powerful neutron sources has been discussed for decades. Whereas the successful route to a commercial fusion power reactor demands steady state stable operation combined with the high efficiency required to make electricity production economic, the alternative approach to advancing the use of fusion is free of many of complications connected with the requirements for economic power generation and uses the already achieved knowledge of Fusion physics and developed Fusion technologies. 'Fusion for Neutrons' (F4N), has now been re-visited, inspired by recent progress achieved on comparably compact fusion devices, based on the Spherical Tokamak (ST) concept. Freed from the requirement to produce much more electricity than used to drive it, a fusion neutron source could be efficiently used for many commercial applications, and also to support the goal of producing energy by nuclear power. The possibility to use a small or medium size ST as a powerful or intense steady-state fusion neutron source (FNS) is discussed in this paper in comparison with the use of traditional high aspect ratio tokamaks. An overview of various conceptual designs of compact fusion neutron sources based on the ST concept is given and they are compared with a recently proposed Super Compact Fusion Neutron Source (SCFNS), with major radius as low as 0.5 metres but still able to produce several MW of neutrons in a steady-state regime.

Gryaznevich, M. P. [Tokamak Solutions UK, Culham Science Centre, Abingdon, OXON, OX133DB (United Kingdom)

2012-06-19T23:59:59.000Z

250

Impact of key design parameters on neutron wall load in an ignited tokamak  

SciTech Connect

A study was performed to determine the impact of key design parameters on neutron wall load in an ignited deuterium-tritium (D-T) tokamak. Systems effects of parameter variations were determined using the Fusion Engineering Design Center (FEDC) Systems Code. Poloidal variations in neutron wall load were determined using the Monte Carlo Code for Neutron and Photon Transport (MCNP). The marked impact of key design parameters is quantitatively shown.

Reiersen, W.T.

1983-01-01T23:59:59.000Z

251

Laser Inertial Fusion Energy Control Systems  

Science Conference Proceedings (OSTI)

A Laser Inertial Fusion Energy (LIFE) facility point design is being developed at LLNL to support an Inertial Confinement Fusion (ICF) based energy concept. This will build upon the technical foundation of the National Ignition Facility (NIF), the world's largest and most energetic laser system. NIF is designed to compress fusion targets to conditions required for thermonuclear burn. The LIFE control systems will have an architecture partitioned by sub-systems and distributed among over 1000's of front-end processors, embedded controllers and supervisory servers. LIFE's automated control subsystems will require interoperation between different languages and target architectures. Much of the control system will be embedded into the subsystem with well defined interface and performance requirements to the supervisory control layer. An automation framework will be used to orchestrate and automate start-up and shut-down as well as steady state operation. The LIFE control system will be a high parallel segmented architecture. For example, the laser system consists of 384 identical laser beamlines in a 'box'. The control system will mirror this architectural replication for each beamline with straightforward high-level interface for control and status monitoring. Key technical challenges will be discussed such as the injected target tracking and laser pointing feedback. This talk discusses the the plan for controls and information systems to support LIFE.

Marshall, C; Carey, R; Demaret, R; Edwards, O; Lagin, L; Van Arsdall, P

2011-03-18T23:59:59.000Z

252

Key Activities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Key Activities Key Activities Key Activities The Water Power Program conducts work in four key areas at the forefront of water power research. The Program is structured to help the United States meet its growing energy demands sustainably and cost-effectively by developing innovative renewable water power technologies, breaking down market barriers to deployment, building the infrastructure to test new technologies, and assessing water power resources for integration into our nation's grid. Research and Development Introduce and advance new marine and hydrokinetic technologies to provide sustainable and cost-effective renewable energy from the nation's waves, tides, currents, and ocean thermal gradients. Research and develop innovative hydropower technologies to sustainably tap our country's diverse water resources including rivers,

253

Key China Energy Statistics 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Title Key China Energy Statistics 2011 Publication Type Chart Year of Publication 2012 Authors Levine, Mark D., David Fridley, Hongyou Lu, and Cecilia Fino-Chen Date Published...

254

Key China Energy Statistics 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Title Key China Energy Statistics 2012 Publication Type Chart Year of Publication 2012 Authors Levine, Mark D., David Fridley, Hongyou Lu, and Cecilia Fino-Chen Date Published...

255

Structural Materials for Fission and Fusion Energy  

SciTech Connect

Structural materials represent the key for containment of nuclear fuel and fission products as well as reliable and thermodynamically efficient production of electrical energy from nuclear reactors. Similarly, high-performance structural materials will be critical for the future success of proposed fusion energy reactors, which will subject the structures to unprecedented fluxes of high-energy neutrons along with intense thermomechanical stresses. Advanced materials can enable improved reactor performance via increased safety margins and design flexibility, in particular by providing increased strength, thermal creep resistance and superior corrosion and neutron radiation damage resistance. In many cases, a key strategy for designing highperformance radiation-resistant materials is based on the introduction of a high, uniform density of nanoscale particles that simultaneously provide good high temperature strength and neutron radiation damage resistance.

Zinkle, Steven J [ORNL; Busby, Jeremy T [ORNL

2009-01-01T23:59:59.000Z

256

Cooling Fusion in a Flash | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooling Fusion in a Flash American Fusion News Category: U.S. Universities Link: Cooling Fusion in a Flash...

257

Advanced Fusion Reactors for Space Propulsion and Power Systems  

SciTech Connect

In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles' exhaust momentum can be used directly to produce high Isp thrust and also offer possibility of power conversion into electricity. p-11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

Chapman, John J.

2011-06-15T23:59:59.000Z

258

Experiments in cold fusion  

DOE Green Energy (OSTI)

The work of Steve Jones and others in muon-catalyzed cold fusion of deuterium and hydrogen suggests the possibility of such fusion catalyzed by ions, or combinations of atoms, or more-or-less free electrons in solid and liquid materials. A hint that this might occur naturally comes from the heat generated in volcanic action in subduction zones on the earth. It is questionable whether the potential energy of material raised to the height of a midocean ridge and falling to the depth of an ocean trench can produce the geothermal effects seen in the volcanoes of subduction zones. If the ridge, the trench, the plates, and the asthenosphere are merely visible effects of deeper density-gradient driven circulations, it is still uncertain that observed energy-concentration effects fit the models.

Palmer, E.P.

1986-03-28T23:59:59.000Z

259

Fusion pumped laser  

DOE Patents (OSTI)

The apparatus of this invention may comprise a system for generating laser radiation from a high-energy neutron source. The neutron source is a tokamak fusion reactor generating a long pulse of high-energy neutrons and having a temperature and magnetic field effective to generate a neutron flux of at least 10/sup 15/ neutrons/cm/sup 2//center dot/s. Conversion means are provided adjacent the fusion reactor at a location operable for converting the high-energy neutrons to an energy source with an intensity and energy effective to excite a preselected lasing medium. A lasing medium is spaced about and responsive to the energy source to generate a population inversion effective to support laser oscillations for generating output radiation. 2 figs., 2 tabs.

Pappas, D.S.

1987-07-31T23:59:59.000Z

260

Fast power cycle for fusion reactors  

SciTech Connect

The unique, deep penetration capability of 14 MeV neutrons produced in DT fusion reactions allows the generation of very high temperature working fluid temperatures in a thermal power cycle. In the FAST (Fusion Augmented Steam Turbine) power cycle steam is directly superheated by the high temperature ceramic refractory interior of the blanket, after being generated by heat extracted from the relatively cool blanket structure. The steam is then passed to a high temperature gas turbine for power generation. Cycle studies have been carried out for a range of turbine inlet temperatures (1600/sup 0/F to 3000/sup 0/F (870 to 1650/sup 0/C)), number of reheats, turbine mechanical efficiency, recuperator effectiveness, and system pressure losses. Gross cycle efficiency is projected to be in the range of 55 to 60%, (fusion energy to electric power), depending on parameters selected. Turbine inlet temperatures above 2000/sup 0/F, while they do increase efficiency somewhat, are not necessarily for high cycle efficiency.

Powell, J.; Fillo, J.; Makowitz, H.

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "key fusion reactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Modular Aneutronic Fusion Engine  

SciTech Connect

NASA's JUNO mission will arrive at Jupiter in July 2016, after nearly five years in space. Since operational costs tend to rise with mission time, minimizing such times becomes a top priority. We present the conceptual design for a 10MW aneutronic fusion engine with high exhaust velocities that would reduce transit time for a Jupiter mission to eighteen months and enable more challenging exploration missions in the solar system and beyond. __________________________________________________

Gary Pajer, Yosef Razin, Michael Paluszek, A.H. Glasser and Samuel Cohen

2012-05-11T23:59:59.000Z

262

(Fusion energy research)  

SciTech Connect

This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer.

Phillips, C.A. (ed.)

1988-01-01T23:59:59.000Z

263

and Enable Development of Fusion’s Energy Applications  

E-Print Network (OSTI)

Demonstrate advanced physics operation of a tokamak in steadystate with Burn – Utilize conservative expressions of all elements of Advanced Tokamak physics to produce 100-250 MW fusion power with modest energy gain (Q 2 weeks – Further develop all elements of Advanced Tokamak physics, qualifying them for an advanced performance DEMO Develop fusion’s nuclear technology – Test materials with high neutron fluence (3-6 MW-yr/m 2) with duty factor 0.3 on a year – Demonstrate Tritium self-sufficiency – Develop fusion blankets that make both tritium and electricity at 1-2 MW/m 2 neutron fluxes – Develop fusion blankets that produce hydrogen With ITER and IFMIF, provide the basis for a fusion DEMO Power Plant

R. D. Stambaugh

2007-01-01T23:59:59.000Z

264

Laser fusion overview. [Forecasting of laser fusion feasibility  

SciTech Connect

Because of recent breakthroughs in the target area, and in the glass laser area, the scientific feasibility of laser fusion--and of inertial fusion--may be demonstrated in the early 1980's. Then the development in that time period of a suitable laser (or storage ring or other driving source) would make possible an operational inertial fusion reactor in this century. These are roughly the same time scales as projected by the Tokamak magnetic confinement approach. It thus appears that the 15-20 year earlier start by magnetic confinement fusion may be overcome. Because inertial confinement has been demonstrated, and inertial fusion reactors may operate on smaller scales than Tokamaks, laser fusion may have important technical and economic advantages.

Nuckolls, J.

1976-05-17T23:59:59.000Z

265

COLLABORATIVE: FUSION SIMULATION PROGRAM  

SciTech Connect

New York University, Courant Institute of Mathematical Sciences, participated in the ���¢��������Fusion Simulation Program (FSP) Planning Activities���¢������� [http://www.pppl.gov/fsp], with C.S. Chang as the institutional PI. FSP���¢��������s mission was to enable scientific discovery of important new plasma phenomena with associated understanding that emerges only upon integration. This requires developing a predictive integrated simulation capability for magnetically-confined fusion plasmas that are properly validated against experiments in regimes relevant for producing practical fusion energy. Specific institutional goal of the New York University was to participate in the planning of the edge integrated simulation, with emphasis on the usage of large scale HPCs, in connection with the SciDAC CPES project which the PI was leading. New York University successfully completed its mission by participating in the various planning activities, including the edge physics integration, the edge science drivers, and the mathematical verification. The activity resulted in the combined report that can be found in http://www.pppl.gov/fsp/Overview.html. Participation and presentations as part of this project are listed in a separation file.

Chang, Choong Seock

2012-06-05T23:59:59.000Z

266

Thursday, January 30, 2003 Energy Secretary Abraham Announces U.S. to Join Negotiations on Major International Fusion  

E-Print Network (OSTI)

Thursday, January 30, 2003 Energy Secretary Abraham Announces U.S. to Join Negotiations on Major of a major international magnetic fusion research project, U.S. Secretary of Energy Spencer Abraham announced of the laboratory. The Bush administration believes that fusion is a key element in U.S. long-term energy plans

267

Fusion power: the transition from fundamental science to fusion reactor engineering  

SciTech Connect

The historical development of fusion research is outlined. The basics of fusion power along with fuel cost and advantages of fusion are discussed. Some quantitative requirements for fusion power are described. (MOW)

Post, R.F.

1975-07-25T23:59:59.000Z

268

Key Accomplishments @ Catalysis: Reactivity and Structure Group | Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Recent Key Accomplishments Recent Key Accomplishments WGS: Importance of the Metal-Oxide Interface in Catalysis: In Situ Studies of the Water-Gas Shift Reaction by Ambient-Pressure X-ray Photoelectron Spectroscopy A New Type of Strong Metal-Support Interaction and the Production of H-2 through the Transformation of Water on Pt/CeO2(111) and Pt/CeOx/TiO2(110) Catalysts In situ studies of CeO2-supported Pt, Ru, and Pt-Ru alloy catalysts for the water-gas shift reaction: Active phases and reaction intermediates In situ/operando studies for the production of hydrogen through the water-gas shift on metal oxide catalysts Mechanistic understanding of WGS catalysts from first principles: Au(111) Supported Oxide Nanoparticles Theoretical catalyst optimization of WGS catalysts: Cu(111) supported oxide nanostructures

269

ITER Test Program: Key Technical Aspects  

Science Conference Proceedings (OSTI)

ITER / Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990)

Mohamed A. Abdou

270

Life Pure Fusion Target Designs: Status and Prospects  

Science Conference Proceedings (OSTI)

Analysis and radiation-hydrodynamics simulations for expected high-gain fusion target performance on a demonstration 1-GWe Laser Inertial Fusion Energy (LIFE) power plant are presented. The required laser energy driver is 2.2 MJ at a 0.351-{mu}m wavelength, and a fusion target gain greater than 60 at a repetition rate of 16 Hz is the design goal for economic and commercial attractiveness. A scaling-law analysis is developed to benchmark the design parameter space for hohlraum-driven central hot-spot ignition. A suite of integrated hohlraum simulations is presented to test the modeling assumptions and provide a basis for near-term experimental resolution of the key physics uncertainties on the National Ignition Facility.

Amendt, P; Dunne, M; Ho, D; Lindl, J

2011-10-20T23:59:59.000Z

271

Technological implications of fusion power: requirements and status  

SciTech Connect

The major technological requirements for fusion power, as implied by current conceptual designs of fusion power plants, are identified and assessed relative to the goals of existing technology programs. The focus of the discussion is on the tokamak magnetic confinement concept; however, key technological requirements of mirror magnetic confinement systems and of inertial confinement concepts will also be addressed. The required technology is examined on the basis of three general areas of concern: (a) the power balance, that is, the unique power handling requirements associated with the production of electrical power by fusion; (b) reactor design, focusing primarily on the requirements imposed by a tritium-based fuel cycle, thermal hydraulic considerations, and magnet systems; and (c) materials considerations, including radiation damage effects, neutron-induced activation, and resource limitations.

Steiner, D.

1978-01-01T23:59:59.000Z

272

Fusion Energy Division Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

of Agreement with UT-Battelle to collaborate with Japan's National Institute for Fusion Science. Division Director Stanley L. Milora Oak Ridge National Laboratory P.O. Box...

273

Fusion rings for quantum groups  

E-Print Network (OSTI)

We study the fusion rings of tilting modules for a quantum group at a root of unity modulo the tensor ideal of negligible tilting modules. We identify them in type A with the combinatorial rings from [KS] and give a similar description of the sp(2n)-fusion ring in terms of noncommutative symmetric functions. Moreover we give a presentation of all fusion rings in classical types as quotients of polynomial rings extending known results in special cases. Finally we also compute the fusion rings for type G2.

Henning Haahr Andersen; Catharina Stroppel

2012-12-22T23:59:59.000Z

274

Stockpile tritium production from fusion  

SciTech Connect

A fusion breeder holds the promise of a new capability - ''dialable'' reserve capacity at little additional cost - that offers stockpile planners a new way to deal with today's uncertainties in forecasting long range needs. Though still in the research stage, fusion can be developed in time to meet future military requirements. Much of the necessary technology will be developed by the ongoing magnetic fusion energy program. However, a specific program to develop the nuclear technology required for materials production is needed if fusion is to become a viable option for a new production complex around the turn of the century.

Lokke, W.A.; Fowler, T.K.

1986-03-21T23:59:59.000Z

275

EPAct Transportation Regulatory Activities: Key Terms  

NLE Websites -- All DOE Office Websites (Extended Search)

Key Terms Key Terms to someone by E-mail Share EPAct Transportation Regulatory Activities: Key Terms on Facebook Tweet about EPAct Transportation Regulatory Activities: Key Terms on Twitter Bookmark EPAct Transportation Regulatory Activities: Key Terms on Google Bookmark EPAct Transportation Regulatory Activities: Key Terms on Delicious Rank EPAct Transportation Regulatory Activities: Key Terms on Digg Find More places to share EPAct Transportation Regulatory Activities: Key Terms on AddThis.com... Home About Covered Fleets Compliance Methods Alternative Fuel Petitions Resources Guidance Documents Statutes & Regulations Program Annual Reports Fact Sheets Newsletter Case Studies Workshops Tools Key Terms FAQs Key Terms The Energy Policy Act (EPAct) includes specific terminology related to

276

EPAct Transportation Regulatory Activities: Key Federal Statutes  

NLE Websites -- All DOE Office Websites (Extended Search)

Key Key Federal Statutes to someone by E-mail Share EPAct Transportation Regulatory Activities: Key Federal Statutes on Facebook Tweet about EPAct Transportation Regulatory Activities: Key Federal Statutes on Twitter Bookmark EPAct Transportation Regulatory Activities: Key Federal Statutes on Google Bookmark EPAct Transportation Regulatory Activities: Key Federal Statutes on Delicious Rank EPAct Transportation Regulatory Activities: Key Federal Statutes on Digg Find More places to share EPAct Transportation Regulatory Activities: Key Federal Statutes on AddThis.com... Home About Contacts Covered Fleets Compliance Methods Alternative Fuel Petitions Resources Key Federal Statutes These are excerpts from federal statutes that established key Energy Policy Act (EPAct) transportation regulatory activities.

277

The TITAN Reversed-Field Pinch fusion reactor study  

Science Conference Proceedings (OSTI)

The TITAN Reversed-Field Pinch (RFP) fusion reactor study is a multi-institutional research effort to determine the technical feasibility and key developmental issues of an RFP fusion reactor, especially at high power density, and to determine the potential economics, operations, safety, and environmental features of high-mass-power-density fusion systems. The TITAN conceptual designs are DT burning, 1000 MWe power reactors based on the RFP confinement concept. The designs are compact, have a high neutron wall loading of 18 MW/m{sup 2} and a mass power density of 700 kWe/tonne. The inherent characteristics of the RFP confinement concept make fusion reactors with such a high mass power density possible. Two different detailed designs have emerged: the TITAN-I lithium-vanadium design, incorporating the integrated-blanket-coil concept; and the TITAN-II aqueous loop-in-pool design with ferritic steel structure. This report contains a collection of 16 papers on the results of the TITAN study which were presented at the International Symposium on Fusion Nuclear Technology. This collection describes the TITAN research effort, and specifically the TITAN-I and TITAN-II designs, summarizing the major results, the key technical issues, and the central conclusions and recommendations. Overall, the basic conclusions are that high-mass power-density fusion reactors appear to be technically feasible even with neutron wall loadings up to 20 MW/m{sup 2}; that single-piece maintenance of the FPC is possible and advantageous; that the economics of the reactor is enhanced by its compactness; and the safety and environmental features need not to be sacrificed in high-power-density designs. The fact that two design approaches have emerged, and others may also be possible, in some sense indicates the robustness of the general findings.

Not Available

1988-03-01T23:59:59.000Z

278

Findings of the US research needs workshop on the topic of fusion power  

SciTech Connect

The US Department of Energy, Office of Fusion Energy Sciences (OFES) conducted a Research Needs Workshop, referred to as ReNeW, in June 2009. The information developed at this workshop will help OFES develop a plan for US fusion research during the ITER era, roughly the next two decades. The workshop was organized in five Themes, one of which was Harnessing Fusion Power (or Fusion Power for short). The top level goal of the Fusion Power Theme was to identify the research needed to develop the knowledge to design and build, with high confidence, robust and reliable systems that can convert fusion products to useful forms of energy in a reactor environment, including a self-sufficient supply of tritium fuel. Each Theme was subsequently subdivided into Panels to address specific topics. The Fusion Power Panel topics were: Fusion Fuel Cycle; Power Extraction; Materials Science; Safety and Environment; and Reliability, Availability, Maintainability and Inspectability (RAMI). Here we present the key findings of the Fusion Power Theme.

W. R. Meier; A. R. Raffray; R. J. Kurtz; N. B. Morley; W. T. Reiersen; Phil Sharpe; S. Willms

2010-12-01T23:59:59.000Z

279

Findings of the US Research Needs Workshop on the Topic of Fusion Power  

SciTech Connect

The US Department of Energy, Office of Fusion Energy Sciences (OFES) conducted a Research Needs Workshop, referred to as ReNeW, in June 2009. The information developed at this workshop will help OFES develop a plan for US fusion research during the ITER era, roughly the next two decades. The workshop was organized in five Themes, one of which was Harnessing Fusion Power (or Fusion Power for short). The top level goal of the Fusion Power Theme was to identify the research needed to develop the knowledge to design and build, with high confidence, robust and reliable systems that can convert fusion products to useful forms of energy in a reactor environment, including a self-sufficient supply of tritium fuel. Each Theme was subsequently subdivided into Panels to address specific topics. The Fusion Power Panel topics were: fusion fuel cycle; power extraction; materials science; safety and environment; and reliability, availability, maintainability and inspectability (RAMI). Here we present the key findings of the Fusion Power Theme.

Meier, W R; Raffray, A R; Kurtz, R J; Morley, N B; Reiersen, W T; Sharpe, P; Willms, S

2009-09-16T23:59:59.000Z

280

Findings of the US research needs workshop on the topic of fusion power  

SciTech Connect

The US Department of Energy, Of?ce of Fusion Energy Sciences (OFES) conducted a Research Needs Workshop, referred to as ReNeW, in June 2009. The information developed at this workshop will help OFES develop a plan for US fusion research during the ITER era, roughly the next two decades. The workshop was organized in ?ve Themes, one of which was Harnessing Fusion Power (or Fusion Power for short). The top level goal of the Fusion Power Theme was to identify the research needed to develop the knowledge to design and build, with high con?dence, robust and reliable systems that can convert fusion products to useful forms of energy in a reactor environment, including a self-suf?cient supply of tritium fuel. Each Theme was subsequently subdivided into Panels to address speci?c topics. The Fusion Power Panel topics were: Fusion Fuel Cycle; Power Extraction; Materials Science; Safety and Environment; and Reliability, Availability, Maintainability and Inspectability (RAMI). Here we present the key ?ndings of the Fusion Power Theme.

Meier, Wayne R.; Raffray, R.; Kurtz, Richard J.; Morley, Neil B.; Reiersen, Wayne T.; Sharpe, Phil; Willms, Scott

2010-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "key fusion reactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

KIDS: keyed intrusion detection system  

Science Conference Proceedings (OSTI)

Since most current network attacks happen at the application layer, analysis of packet payload is necessary for their detection. Unfortunately malicious packets may be crafted to mimic normal payload, and so avoid detection if the anomaly detection method ... Keywords: Kerckhoffs' principle, anomaly detection, keyed IDS, network intrusion detection, word model

Sasa Mrdovic; Branislava Drazenovic

2010-07-01T23:59:59.000Z

282

Key Workplace Documents Federal Publications  

E-Print Network (OSTI)

, the Administration in 2007 concluded agreements with China on toys, food and feed, drugs and medical devicesKey Workplace Documents Federal Publications Cornell University ILR School Year 2008 China/498 #12;Order Code RL33536 China-U.S. Trade Issues Updated March 7, 2008 Wayne M. Morrison Specialist

283

Key technology trends - Satellite systems  

Science Conference Proceedings (OSTI)

This paper is based on material extracted from the WTEC Panel Report Global Satellite Communications Technology and Systems, December 1998. It presents an overview of key technology trends in communications satellites in the last few years. After the ... Keywords: Communications satellites, Satellite communications, Satellite technology overview

Charles W. Bostian; William T. Brandon; Alfred U. Mac Rae; Christoph E. Mahle; Stephen A. Townes

2000-08-01T23:59:59.000Z

284

Some safety considerations of liquid lithium as a fusion breeder material  

Science Conference Proceedings (OSTI)

Test results and conclusions are presented for the reaction of steam with a high temperature lithium pool and for the reaction of high temperature lithium spray with a nitrogen atmosphere. The reactions are characterized and evaluated in regard to the potential for mobilization of radioactive species associated with the liquid breeder under postulated fusion reactor accident conditions. These evaluations include measured lithium temperature responses, atmosphere temperature and pressure responses, gas consumption and generation, aerosol quantities and particle size characterization, and potentially radioactive species releases. Conclusions are made as to the consequences of these safety considerations for the use of lithium as a fusion reactor breeder material.

Jeppson, D.W.; Muhlestein, L.D.

1986-11-01T23:59:59.000Z

285

Some safety considerations of liquid lithium as a fusion breeder material  

Science Conference Proceedings (OSTI)

Test results and conclusions are presented for the reaction of steam with a high temperature lithium pool and for the reaction of high temperature lithium spray with a nitrogen atmosphere. The reactions are characterized and evaluated in regard to the potential for mobilization of radioactive species associated with the liquid breeder under postulated fusion reactor accident conditions. These evaluations include measured lithium temperature responses, atmosphere temperature and pressure responses, gas consumption and generation, aerosol quantities and particle size characterization, and potentially radioactive species releases. Conclusions are made as to the consequences of these safety considerations for the use of lithium as a fusion reactor breeder material.

Jeppson, D.W.; Muhlestein, L.D.

1986-01-01T23:59:59.000Z

286

Fusion reactor pumped laser  

DOE Patents (OSTI)

A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.

Jassby, Daniel L. (Princeton, NJ)

1988-01-01T23:59:59.000Z

287

Nuclear fusion in muonic deuterium-helium complex  

E-Print Network (OSTI)

Experimental study of the nuclear fusion reaction in charge-asymmetrical d-mu-3He complex is presented. The 14.6 MeV protons were detected by three pairs of Si(dE-E) telescopes placed around the cryogenic target filled with the deuterium + helium-3 gas at 34 K. The 6.85 keV gamma rays emitted during the de-excitation of d-mu-3He complex were detected by a germanium detector. The measurements were performed at two target densities, 0.0585 and 0.169 (relative to liquid hydrogen density) with an atomic concentration of 3He c=0.0469. The values of the effective rate of nuclear fusion in d-mu-3He was obtained for the first time, and the J=0 nuclear fusion rate in d-mu-3He was derived.

V. M. Bystritsky; M. Filipowicz; V. V. Gerasimov; P. E. Knowles; F. Mulhauser; N. P. Popov; V. A. Stolupin; V. P. Volnykh; J. Wozniak

2005-06-22T23:59:59.000Z

288

Fusion 2.0 the next generation of fusion in California : aligning state and regional fusion centers .  

E-Print Network (OSTI)

??A growing number of states have created multiple fusion centers, including California. In addition to having a state fusion center, California has four regional centers… (more)

MacGregor, David S.

2010-01-01T23:59:59.000Z

289

A 3 MEGAJOULE HEAVY ION FUSION DRIVER  

E-Print Network (OSTI)

Research, Office of Inertia! Fusion, Research Division ofA 3 MEGAJOULE HEAVY ION FUSION DRIVER* A. Faltens, E. Hoyer,Research, Office of Inertial Fusion, Research Division of

Faltens, A.

2010-01-01T23:59:59.000Z

290

NUCLEAR STRUCTURE AND HEAVY-ION FUSION  

E-Print Network (OSTI)

Nuclear Structure and Heavy-Ton Fusion* A series of lecturesthe cross section for fusion in the experiments consideredEffects g in III. Subharrier Fusion Cross Sections for Light

Stokstad, R.G.

2010-01-01T23:59:59.000Z

291

On the infinity Laplacian and Hrushovski's fusion  

E-Print Network (OSTI)

Definable rank and degree 4.1.2 Fusion . . . . . . . . . .s example . . . . . 4.2 A new fusion construction . . . .4.2.1 Free fusion . . . . . . . . . 4.2.2 Codes . . . . . .

Smart, Charles Krug

2010-01-01T23:59:59.000Z

292

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Magnetic Confinement Fusion Magnetic Confinement Fusion FusEdWeb: Discover Fusion CPEP's Online Fusion Course Fusion FAQ Fusion and Plasma Glossary Plasma Dictionary Student and Teacher Resources Education and Outreach Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National Ignition Facility Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Our Sun | Other Stars and Galaxies | Inertial Confinement | Magnetic Confinement Fusion by Magnetic Confinement The image above is an artistic rendering of a tokamak, a donut-shaped magnetic vacuum chamber in which wispy vapors of fusion fuel are

293

RAPPORTEUR TALK FOR IAEA FUSION MEETING, BRUSSELS  

E-Print Network (OSTI)

Ion Fusion Papers: The Argonne Heavy Ion Fusion Program:to the target. 3. The Argonne Heavy Ion Fusion Program:ring system developed at Argonne National Laboratory shows

Watson, J.M.

2010-01-01T23:59:59.000Z

294

LLNL-PRES-463228 FUSION PERSPECTIVES*  

E-Print Network (OSTI)

LLNL-PRES-463228 FUSION PERSPECTIVES* LLNL Fusion Energy Sciences Program D.D. Ryutov Fusion, Novosibirsk, July 1988: working together with the LLNL team #12;Axisymmetric mirrors can serve as a basis

295

Effects of Superconductor Electron Screening on Fusion Reaction Rates  

Science Conference Proceedings (OSTI)

Other Concepts and Assessments / Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems

Kamron Fazel; Qi Li; Kostadin Ivanov

296

Fission-suppressed fusion breeder on the thorium cycle and nonproliferation  

Science Conference Proceedings (OSTI)

Fusion reactors could be designed to breed fissile material while suppressing fissioning thereby enhancing safety. The produced fuel could be used to startup and makeup fuel for fission reactors. Each fusion reaction can produce typically 0.6 fissile atoms and release about 1.6 times the 14 MeV neutron's energy in the blanket in the fission-suppressed design. This production rate is 2660 kg/1000 MW of fusion power for a year. The revenues would be doubled from such a plant by selling fuel at a price of 60/g and electricity at $0.05/kWh for Q=P fusion /Pinput=4. Fusion reactors could be designed to destroy fission wastes by transmutation and fissioning but this is not a natural use of fusion whereas it is a designed use of fission reactors. Fusion could supply makeup fuel to fission reactors that were dedicated to fissioning wastes with some of their neutrons. The design for safety and heat removal and other items is already accomplished with fission reactors. Whereas fusion reactors have geometry that compromises safety with a complex and thin wall separating the fusion zone from the blanket zone where wastes could be destroyed. Nonproliferation can be enhanced by mixing 233U with 238U. Also nonproliferation is enhanced in typical fission-suppressed designs by generating up to 0.05 232U atoms for each 233U atom produced from thorium

R. W. Moir

2012-01-01T23:59:59.000Z

297

Scientists meet to chart roadmap to fusion | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientists meet to chart roadmap to fusion Scientists meet to chart roadmap to fusion By John Greenwald October 12, 2012 Tweet Widget Facebook Like Google Plus One The crucial next steps on the roadmap to developing fusion energy will be the focus of more than 70 top fusion scientists and engineers from around the world who will gather at the University of California-Los Angeles (UCLA) this month. The Oct. 15-18 session will kick off a series of annual workshops under the auspices of the International Atomic Energy Agency (IAEA) that will address key scientific and technological challenges facing countries developing fusion as a source of clean and abundant energy for producing electricity. "There's nothing like face-to-face talk and presentations to help people resolve common challenges," said Hutch Neilson, who directs advanced

298

Groundwater model calibration at Pantex using Data Fusion modeling  

SciTech Connect

The Pantex plant has operated as one of the Federal government`s key conventional and nuclear weapons facilities since the 1940`s. In recent years, the DOE has expended considerable effort to characterize the nature and extent of groundwater contamination associated with the site. That effort is still on-going with the ultimate aim of determining and implementing appropriate remedial measures. The goal of the study described in this report was to use Data Fusion modeling to calibrate a groundwater model near Zone 12 of Pantex, primarily to define the potential pathways to the Ogallala aquifer. Data Fusion is a new approach for combining different but interrelated types of information from multiple sources into a quantitative analysis of system characteristics and dynamic behavior. The Data Fusion Workstation (DFW) is a patented technique for carrying out Data Fusion analyses using specially developed computer based approaches. The technique results in the development of a calibrated model of a site consistent with the data, first principles, and geostatistical spatial continuity. A more explicit description of the Data Fusion concept and approach is presented.

NONE

1996-04-01T23:59:59.000Z

299

Cellulose binding domain fusion proteins  

DOE Patents (OSTI)

A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

Shoseyov, Oded (Karmey Yosef, IL); Shpiegl, Itai (Rehovot, IL); Goldstein, Marc A. (Davis, CA); Doi, Roy H. (Davis, CA)

1998-01-01T23:59:59.000Z

300

Fusion Policy Advisory Committee (FPAC)  

Science Conference Proceedings (OSTI)

This document is the final report of the Fusion Policy Advisory Committee. The report conveys the Committee's views on the matters specified by the Secretary in his charge and subsequent letters to the Committee, and also satisfies the provisions of Section 7 of the Magnetic Fusion Energy Engineering Act of 1980, Public Law 96-386, which require a triennial review of the conduct of the national Magnetic Fusion Energy program. Three sub-Committee's were established to address the large number of topics associated with fusion research and development. One considered magnetic fusion energy, a second considered inertial fusion energy, and the third considered issues common to both. For many reasons, the promise of nuclear fusion as a safe, environmentally benign, and affordable source of energy is bright. At the present state of knowledge, however, it is uncertain that this promise will become reality. Only a vigorous, well planned and well executed program of research and development will yield the needed information. The Committee recommends that the US commit to a plan that will resolve this critically important issue. It also outlines the first steps in a development process that will lead to a fusion Demonstration Power Plant by 2025. The recommended program is aggressive, but we believe the goal is reasonable and attainable. International collaboration at a significant level is an important element in the plan.

Not Available

1990-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "key fusion reactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Civilian applications of laser fusion  

SciTech Connect

The commercial aspects of laser fusion were evaluated in an attempt to relate the end products (neutrons and energy) to significant commercial applications. We have found that by far the largest markets and highest payoffs for laser fusion are associated with electric power production. Hence, much of this report evaluates the prospects of producing commercial electricity with laser fusion. To this end, we have described in detail a new and promising laser fusion concept--the liquid lithium waterfall reactor. In addition, we have taken the most attractive features from our laser fusion studies and used them to compare laser fusion to other long-range sources of energy (breeder reactors and solar energy). It is our contention that all three sources of electrical energy should be developed to the point where the final selections are primarily based on economic competitiveness. The other potential applications of laser fusion (fissile fuel production, synthetic fuel production, actinide burning, and propulsion) are also discussed, and our preliminary plan for the engineering development of laser fusion is presented.

Maniscalco, J.; Blink, J.; Buntzen, R.; Hovingh, J.; Meier, W.; Monsler, M.; Walker, P.

1978-08-14T23:59:59.000Z

302

Cellulose binding domain fusion proteins  

DOE Patents (OSTI)

A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

Shoseyov, O.; Yosef, K.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

1998-02-17T23:59:59.000Z

303

Fusion algebra of critical percolation  

E-Print Network (OSTI)

We present an explicit conjecture for the chiral fusion algebra of critical percolation considering Virasoro representations with no enlarged or extended symmetry algebra. The representations we take to generate fusion are countably infinite in number. The ensuing fusion rules are quasi-rational in the sense that the fusion of a finite number of these representations decomposes into a finite direct sum of these representations. The fusion rules are commutative, associative and exhibit an sl(2) structure. They involve representations which we call Kac representations of which some are reducible yet indecomposable representations of rank 1. In particular, the identity of the fusion algebra is a reducible yet indecomposable Kac representation of rank 1. We make detailed comparisons of our fusion rules with the recent results of Eberle-Flohr and Read-Saleur. Notably, in agreement with Eberle-Flohr, we find the appearance of indecomposable representations of rank 3. Our fusion rules are supported by extensive numerical studies of an integrable lattice model of critical percolation. Details of our lattice findings and numerical results will be presented elsewhere.

Jorgen Rasmussen; Paul A. Pearce

2007-06-19T23:59:59.000Z

304

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

1996-2000 Editions of the CPEP Fusion Chart English plus Dutch (Flemish), French, German, Italian, Portuguese and Spanish (European) Created by the Fusion Group of the Contemporary...

305

Radiation Effects on Structural Ceramics in Fusion  

Science Conference Proceedings (OSTI)

Fusion Materials—Radiation Effects and Activation / Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 15–19, 1986)

G. R. Hopkins; R. J. Price; P. W. Trester

306

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National...

307

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview | The Guided Tour Click anywhere on this picture to go to the relevant fusion topic, or try the Guided Tour. Fusion Chart These introductory educational materials on...

308

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

- Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Overview | The Guided Tour Energy Sources & Conversion An Overview of Energy Conversion Processes One of the...

309

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

- Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Overview | The Guided Tour Plasmas - the Fourth State of Matter CHARACTERISTICS OF TYPICAL PLASMAS Plasmas consist...

310

Role Of Calcium In Membrane Fusion.  

E-Print Network (OSTI)

??This project is focused on understanding the role of calcium in membrane fusion at the atomic level. Membrane fusion is an intense area of experimental… (more)

Issa, Zeena Kas

2010-01-01T23:59:59.000Z

311

Longitudinal Tracking of Direct Drive Inertial Fusion Targets  

Science Conference Proceedings (OSTI)

Technical Paper / The Technology of Fusion Energy - Inertial Fusion Technology: Targets and Chambers

J. D. Spalding; L. C. Carlson; M. S. Tillack; N. B. Alexander; D. T. Goodin; R. W. Petzoldt

312

Is there hope for fusion  

SciTech Connect

From the outset in the 1950's, fusion research has been motivated by environmental concerns as well as long-term fuel supply issues. Compared to fossil fuels both fusion and fission would produce essentially zero emissions to the atmosphere. Compared to fission, fusion reactors should offer high demonstrability of public protection from accidents and a substantial amelioration of the radioactive waste problem. Fusion still requires lengthy development, the earliest commercial deployment being likely to occur around 2025--2050. However, steady scientific progress is being made and there is a wide consensus that it is time to plan large-scale engineering development. A major international effort, called the International Thermonuclear Experimental Reactor (ITER), is being carried out under IAEA auspices to design the world's first fusion engineering test reactor, which could be constructed in the 1990's. 4 figs., 3 tabs.

Fowler, T.K. (California Univ., Berkeley, CA (USA). Dept. of Nuclear Engineering)

1990-04-12T23:59:59.000Z

313

Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields  

E-Print Network (OSTI)

Fusion Science, Magnetic Fusion Energy, and Related FieldsFusion Science, Magnetic Fusion Energy, and Related Fieldscalled, in the magnetic fusion energy community, a tandem

Kwan, J.W.

2008-01-01T23:59:59.000Z

314

Fusion Safety Program annual report, Fiscal Year 1993  

Science Conference Proceedings (OSTI)

This report summarizes the major activities of the Fusion Safety Program in Fiscal Year 1993. The Idaho National Engineering Laboratory (INEL) has been designated by DOE as the lead laboratory for fusion safety, and EG&G Idaho, Inc., is the prime contractor for INEL operations. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL and in participating organizations, including universities and private companies. Technical areas covered in the report include tritium safety, beryllium safety, activation product release, reactions involving potential plasma-facing materials, safety of fusion magnet systems, plasma disruptions and edge physics modeling, risk assessment failure rates, computer codes for reactor transient analysis, and regulatory support. These areas include work completed in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed at the INEL for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor projects at the Princeton Plasma Physics Laboratory and a summary of the technical support for the ARIES/PULSAR commercial reactor design studies.

Longhurst, G.R.; Cadwallader, L.C.; Dolan, T.J.; Herring, J.S.; McCarthy, K.A.; Merrill, B.J.; Motloch, C.G.; Petti, D.A.

1993-12-01T23:59:59.000Z

315

Neutron measurements and radiation damage calculations for fusion materials studies  

SciTech Connect

Fusion reactors will generate intense neutron fields, especially at the inner surfaces of containment vessels. With a typical wall loading of 1 MW/m/sup 2/, the yearly neutron fluence will be about 10/sup 26/ n/m/sup 2/. In a material like stainless steel this irradiation will produce about 10 atomic displacements-per-atom (DPA), 100 appM helium, 500 appM hydrogen, and various other transmutations. The gas-to-DPA ratios are very high compared to fission reactors due to the 14 MeV neutrons from the d-t fusion reaction. No existing neutron source can produce both the high fluence and high gas rates needed to simulate fusion damage. Consequently, fusion material studies are underway in a variety of facilities including fission reactors and accelerator-based neutron sources. A Subtask Group has been created by DOE to characterize these diverse facilities in terms of neutron flux and energy spectrum and to calculate DPA and transmutation for specific irradiations. Material property changes can then be correlated between facilities and extrapolated to fusion reactor conditions.

Greenwood, L.R.

1983-01-01T23:59:59.000Z

316

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

FAQ FAQ FusEdWeb: Discover Fusion CPEP's Online Fusion Course Fusion FAQ Fusion and Plasma Glossary Plasma Dictionary Student and Teacher Resources Education and Outreach Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National Ignition Facility Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Our Sun | Other Stars and Galaxies | Inertial Confinement | Magnetic Confinement Answers to Frequently Asked Questions about Fusion Research An updated, searchable Fusion FAQ is being prepared. In the meantime, the incomplete public-domain Fusion FAQ from 1994-1995 is still available

317

LiWall Fusion - The New Concept of Magnetic Fusion  

Science Conference Proceedings (OSTI)

Utilization of the outstanding abilities of a liquid lithium layer in pumping hydrogen isotopes leads to a new approach to magnetic fusion, called the LiWall Fusion. It relies on innovative plasma regimes with low edge density and high temperature. The approach combines fueling the plasma by neutral injection beams with the best possible elimination of outside neutral gas sources, which cools down the plasma edge. Prevention of cooling the plasma edge suppresses the dominant, temperature gradient related turbulence in the core. Such an approach is much more suitable for controlled fusion than the present practice, relying on high heating power for compensating essentially unlimited turbulent energy losses.

L.E. Zakharov

2011-01-12T23:59:59.000Z

318

Rotating Plasma Finding is Key for ITER  

NLE Websites -- All DOE Office Websites (Extended Search)

Plasma Finding is Key for ITER Rotating Plasma Finding is Key for ITER PlasmaTurbulenceCSChang.png Tokamak turbulence showing inward-propagating streamers from normalized...

319

Fusion pumped laser  

SciTech Connect

Apparatus is provided for generating energy in the form of laser radiation. A tokamak fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The tokamak design provides a temperature and a magnetic field which is effective to generate a neutron flux of at least 10.sup.15 neutrons/cm.sup.2.s. A conversion medium receives neutrons from the tokamak and converts the high-energy neutrons to an energy source with an intensity and an energy effective to excite a preselected lasing medium. The energy source typically comprises fission fragments, alpha particles, and radiation from a fission event. A lasing medium is provided which is responsive to the energy source to generate a population inversion which is effective to support laser oscillations for generating output radiation.

Pappas, Daniel S. (Los Alamos, NM)

1989-01-01T23:59:59.000Z

320

Fusion reactor pumped laser  

DOE Patents (OSTI)

A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam. 10 figs.

Jassby, D.L.

1987-09-04T23:59:59.000Z

Note: This page contains sample records for the topic "key fusion reactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Multiple shell fusion targets  

DOE Patents (OSTI)

Multiple shell fusion targets for use with electron beam and ion beam implosion systems are described. The multiple shell targets are of the low-power type and use a separate relatively low Z, low density ablator at large radius for the outer shell, which reduces the focusing and power requirements of the implosion system while maintaining reasonable aspect ratios. The targets use a high Z, high density pusher shell placed at a much smaller radius in order to obtain an aspect ratio small enough to protect against fluid instability. Velocity multiplication between these shells further lowers the power requirements. Careful tuning of the power profile and intershell density results in a low entropy implosion which allows breakeven at low powers. For example, with ion beams as a power source, breakeven at 10-20 Terrawatts with 10 MeV alpha particles for imploding a multiple shell target can be accomplished.

Lindl, J.D.; Bangerter, R.O.

1975-10-31T23:59:59.000Z

322

Inertial confinement fusion with direct electric generation by magnetic flux comparession  

DOE Green Energy (OSTI)

A high-power-density laser-fusion-reactor concept in investigated in which directed kinetic enery imparted to a large mass of liquid lithium--in which the fusion target is centrally located--is maximized. In turn, this kinetic energy is converted directly to electricity with, potentially, very high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the concept maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall can be many orders of magnitude less than is typical of D-T fusion reactor concepts.

Lasche, G.P.

1983-01-01T23:59:59.000Z

323

Civilian applications of laser fusion  

DOE Green Energy (OSTI)

The commercial aspects of laser fusion were evaluated in an attempt to relate the end products (neutrons and energy) to significant commercial applications. It was found that by far the largest markets and highest payoffs for laser fusion are associated with electric power production. Hence, much of this report evaluates the prospects of producing commercial electricity with laser fusion. To this end, we have described in detail a new and promising laser fusion concept--the liquid lithium waterfall reactor. In addition, we have taken the most attractive features from our laser studies and used them to compare laser fusion to other long-range sources of energy (breeder reactors and solar energy). It is our contention that all three sources of electrical energy should be developed to the point where the final selections are primarily based on economic competitiveness. The other potential applications of laser fusion (fissile fuel production, synthetic fuel production, actinide burning, and propulsion) are also discussed, and our preliminary plan for the engineering development of laser fusion is presented.

Maniscalco, J.; Blink, J.; Buntzen, R.; Hovingh, J.; Meier, W.; Monsler, M.; Walker, P.

1977-11-17T23:59:59.000Z

324

Future of Inertial Fusion Energy  

Science Conference Proceedings (OSTI)

In the past 50 years, fusion R&D programs have made enormous technical progress. Projected billion-dollar scale research facilities are designed to approach net energy production. In this century, scientific and engineering progress must continue until the economics of fusion power plants improves sufficiently to win large scale private funding in competition with fission and non-nuclear energy systems. This economic advantage must be sustained: trillion dollar investments will be required to build enough fusion power plants to generate ten percent of the world's energy. For Inertial Fusion Energy, multi-billion dollar driver costs must be reduced by up to an order of magnitude, to a small fraction of the total cost of the power plant. Major cost reductions could be achieved via substantial improvements in target performance-both higher gain and reduced ignition energy. Large target performance improvements may be feasible through a combination of design innovations, e.g., ''fast ignition,'' propagation down density gradients, and compression of fusion fuel with a combination of driver and chemical energy. The assumptions that limit projected performance of fusion targets should be carefully examined. The National Ignition Facility will enable development and testing of revolutionary targets designed to make possible economically competitive fusion power plants.

Nuckolls, J H; Wood, L L

2002-09-04T23:59:59.000Z

325

Vehicle Technologies Office: Key Activities in Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Key Activities in Key Activities in Vehicles to someone by E-mail Share Vehicle Technologies Office: Key Activities in Vehicles on Facebook Tweet about Vehicle Technologies Office: Key Activities in Vehicles on Twitter Bookmark Vehicle Technologies Office: Key Activities in Vehicles on Google Bookmark Vehicle Technologies Office: Key Activities in Vehicles on Delicious Rank Vehicle Technologies Office: Key Activities in Vehicles on Digg Find More places to share Vehicle Technologies Office: Key Activities in Vehicles on AddThis.com... Key Activities Mission, Vision, & Goals Plans, Implementation, & Results Organization & Contacts National Laboratories Budget Partnerships Key Activities in Vehicles We conduct work in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or

326

Fuel Cell Technologies Office: Key Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Key Activities to Key Activities to someone by E-mail Share Fuel Cell Technologies Office: Key Activities on Facebook Tweet about Fuel Cell Technologies Office: Key Activities on Twitter Bookmark Fuel Cell Technologies Office: Key Activities on Google Bookmark Fuel Cell Technologies Office: Key Activities on Delicious Rank Fuel Cell Technologies Office: Key Activities on Digg Find More places to share Fuel Cell Technologies Office: Key Activities on AddThis.com... Key Activities Plans, Implementation, & Results Accomplishments Organization Chart & Contacts Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Key Activities The Fuel Cell Technologies Office conducts work in several key areas to

327

A REALISTIC EXAMINATION OF COLD FUSION CLAIMS 24 YEARS LATER  

SciTech Connect

On March 29, 1989, chemists Martin Fleischmann and Stanley Pons announced they had discovered an effect whose explanation was required to lie in the realm of nuclear reactions. Their claim, and those subsequent to it of roughly similar nature, became known as ‘cold fusion’. Research continues to this day on this effect, but what has become clear is that whatever it is, it is not a conventional fusion process. Thus the ‘cold fusion’ moniker is somewhat inappropriate and many current researchers in the field prefer the term “Low Energy Nuclear Reactions (LENR)”, although other terms have been coined for it as well. the results developed out of the LENR research do in fact show something is happening to produce signals which might be interpreted as supporting nuclear reactions (which is what encourages and sustains LENR researchers), but which can also be interpreted via a set of unique and interesting conventional processes. The focus of this document is to describe and address recent objections to such processes so that subsequent LENR research can be guided to develop information that will determine whether either set of explanations has merit. It is hoped that criteria delineated herein will aid the USDOE and other agencies in determining if LENR proposals are meritorious and worthy of support or not.

Shanahan, K.

2012-10-22T23:59:59.000Z

328

Distributed Multisensor Fusion Lucy Y. Pao \\Lambda  

E-Print Network (OSTI)

Distributed Multisensor Fusion Lucy Y. Pao \\Lambda Northwestern University Evanston, IL 60208. The distributed fusion prob­ lem is more complex than the centralized fusion problem due to correlation across track estimates for the same object. We propose an approach for distributed sen­ sor fusion

Pao, Lucy Y.

329

Temperature & Nuclear Fusion 4 October 2011  

E-Print Network (OSTI)

Temperature & Nuclear Fusion 4 October 2011 Goals · Review temperature in stars · Practice using the important energy scales for nuclear fusion Temperature 1. For each relation we regularly use in class-Boltzmann equation: L = 4R2 T4 . (d) In fusion energy generation: T . #12;temperature & nuclear fusion 2 Nuclear

Militzer, Burkhard

330

Temperature & Nuclear Fusion 4 October 2011  

E-Print Network (OSTI)

Temperature & Nuclear Fusion 4 October 2011 Goals · Review temperature in stars · Practice using the important energy scales for nuclear fusion Temperature 1. For each relation we regularly use in class temperature. #12;temperature & nuclear fusion 2 Nuclear Fusion 2. There are a few different energy scales

Militzer, Burkhard

331

Fusion of Loops for Parallelism and Locality  

Science Conference Proceedings (OSTI)

AbstractżLoop fusion improves data locality and reduces synchronization in data-parallel applications. However, loop fusion is not always legal. Even when legal, fusion may introduce loop-carried dependences which prevent parallelism. In addition, performance ... Keywords: Locality enhancement, loop fusion, cache conflicts, loop transformations, data-parallel applications, scalable shared-memory multiprocessors.

Naraig Manjikian; Tarek S. Abdelrahman

1997-02-01T23:59:59.000Z

332

Super-high density laser fusion CTR  

SciTech Connect

From sixth European conference on controlled fusion and plasma physics; Moscow, USSR (30 Jul 1973). A basic discussion of laser-induced fusion is presented. Implosion development and applications are described. Implosion and thermonuclear physics are discussed in some detail along with laser technology, laser fusion reactors, and fusion energy conversion. (MOW)

Thiessen, A.; Zimmerman, G.; Weaver, T.; Emmett, J.; Nuckolls, J.; Wood, L.

1973-09-01T23:59:59.000Z

333

Fusion materials irradiations at MaRIE's fission fusion facility  

SciTech Connect

Los Alamos National Laboratory's proposed signature facility, MaRIE, will provide scientists and engineers with new capabilities for modeling, synthesizing, examining, and testing materials of the future that will enhance the USA's energy security and national security. In the area of fusion power, the development of new structural alloys with better tolerance to the harsh radiation environments expected in fusion reactors will lead to improved safety and lower operating costs. The Fission and Fusion Materials Facility (F{sup 3}), one of three pillars of the proposed MaRIE facility, will offer researchers unprecedented access to a neutron radiation environment so that the effects of radiation damage on materials can be measured in-situ, during irradiation. The calculated radiation damage conditions within the F{sup 3} match, in many respects, that of a fusion reactor first wall, making it well suited for testing fusion materials. Here we report in particular on two important characteristics of the radiation environment with relevancy to radiation damage: the primary knock-on atom spectrum and the impact of the pulse structure of the proton beam on temporal characteristics of the atomic displacement rate. With respect to both of these, analyses show the F{sup 3} has conditions that are consistent with those of a steady-state fusion reactor first wall.

Pitcher, Eric J [Los Alamos National Laboratory

2010-10-06T23:59:59.000Z

334

Algorithms for dynamic multicast key distribution  

Science Conference Proceedings (OSTI)

We study the problem of multicast key distribution for group security. Secure group communication systems typically rely on a group key, which is a secret shared among the members of the group. This key is used to provide privacy by encrypting all group ... Keywords: Dynamic key distribution, experimental algorithms, multicast

Justin Goshi; Richard E. Ladner

2007-02-01T23:59:59.000Z

335

Multiparty quantum key agreement with single particles  

Science Conference Proceedings (OSTI)

Two conditions must be satisfied in a secure quantum key agreement (QKA) protocol: (1) outside eavesdroppers cannot gain the generated key without introducing any error; (2) the generated key cannot be determined by any non-trivial subset of the participants. ... Keywords: Quantum cryptography, Quantum information, Quantum key agreement

Bin Liu; Fei Gao; Wei Huang; Qiao-Yan Wen

2013-04-01T23:59:59.000Z

336

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Our Sun Our Sun FusEdWeb: Discover Fusion CPEP's Online Fusion Course Fusion FAQ Fusion and Plasma Glossary Plasma Dictionary Student and Teacher Resources Education and Outreach Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National Ignition Facility Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Our Sun | Other Stars and Galaxies | Inertial Confinement | Magnetic Confinement The Sun Runs on Fusion Energy How the sun looks through x-ray eyes! Like all stars, the sun is a huge fusion reactor, pumping out 100 million times as much energy in a single second as the entire population of Earth

337

Graph fusion algebras of WLM(p,p')  

E-Print Network (OSTI)

We consider the W-extended logarithmic minimal model WLM(p,p'). As in the rational minimal models, the so-called fundamental fusion algebra of WLM(p,p') is described by a simple graph fusion algebra. The fusion matrices in the regular representation thereof are mutually commuting, but in general not diagonalizable. Nevertheless, we show that they can be brought simultaneously to block-diagonal forms whose blocks are upper-triangular matrices of dimension 1, 3, 5 or 9. The directed graphs associated with the two fundamental modules are described in detail. The corresponding adjacency matrices share a complete set of common generalized eigenvectors organized as a web constructed by interlacing the Jordan chains of the two matrices. This web is here called a Jordan web and it consists of connected subwebs with 1, 3, 5 or 9 generalized eigenvectors. The similarity matrix, formed by concatenating these vectors, simultaneously brings the two fundamental adjacency matrices to Jordan canonical form modulo permutation similarity. The ranks of the participating Jordan blocks are 1 or 3, and the corresponding eigenvalues are given by 2cos(j\\pi/n) where j=0,...,n and n=p,p'. For p>1, only some of the modules in the fundamental fusion algebra of WLM(p,p') are associated with boundary conditions within our lattice approach. The regular representation of the corresponding fusion subalgebra has features similar to the ones in the regular representation of the fundamental fusion algebra, but with dimensions of the upper-triangular blocks and connected Jordan-web components given by 1, 2, 3 or 8. Some of the key results are illustrated for W-extended critical percolation WLM(2,3).

Jorgen Rasmussen

2009-11-17T23:59:59.000Z

338

Particle beam fusion research at Sandia National Laboratories  

SciTech Connect

Sandia`s Particle Beam Fusion Program is investigating several driver options, based on pulsed power technology, with the goal of demonstrating a practical ignitor for Inertial Confinement Fusion (ICF) Reactors. The interrelated aspects of power conditioning and compression, beam-target interaction, and target ignition are being studied. The issues of efficiency, reliability and multiple pulse capability are being integrated into the program to provide a viable approach to an experimental power reactor. On a shorter time scale the authors expect to derive important military-related benefits from attendant research and facility development. The two most important advantages of pulsed power driven fusion are the inherent low cost and high efficiency of high current particle accelerators. However, comparison of the relative merits of particle beams and focused laser beams must include many other factors such as beam transport, and target coupling, as well as target design and fabrication. These issues are being investigated to determine if the perceived practical benefits of particle beam fusion can indeed be realized. The practical considerations are exemplified in a comparison of the leading ICF drivers. The plan being followed by Sandia involves using the Electron Beam Fusion Accelerator (EBFA) to meet three objectives by 1985: significant burn using EBFA 1, net energy gain based on an upgrade of EBFA to the 2 megajoule (MJ) level (EBFA 2), and demonstration of a single module of EBFA 2 operated in the repetitive pulse mode. These goals are dependent, of course, on success in solving several key technical problems under investigation. If these technical problems can be solved, then practical applications to fusion power could be considered. The potential for these applications has been studied using economic models that allow one to derive the cost of power based on various assumptions.

1978-12-31T23:59:59.000Z

339

SunShot Initiative: Key Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Key Activities Key Activities Printable Version Share this resource Send a link to SunShot Initiative: Key Activities to someone by E-mail Share SunShot Initiative: Key Activities on Facebook Tweet about SunShot Initiative: Key Activities on Twitter Bookmark SunShot Initiative: Key Activities on Google Bookmark SunShot Initiative: Key Activities on Delicious Rank SunShot Initiative: Key Activities on Digg Find More places to share SunShot Initiative: Key Activities on AddThis.com... Concentrating Solar Power Photovoltaics Systems Integration Balance of Systems Key Activities Under the SunShot Initiative, the DOE Solar Office issues competitive solicitations that fund selective research projects aimed at transforming the ways the United States generates, stores, and utilizes solar energy.

340

Alternative Fuels Data Center: Key Federal Legislation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Key Federal Key Federal Legislation to someone by E-mail Share Alternative Fuels Data Center: Key Federal Legislation on Facebook Tweet about Alternative Fuels Data Center: Key Federal Legislation on Twitter Bookmark Alternative Fuels Data Center: Key Federal Legislation on Google Bookmark Alternative Fuels Data Center: Key Federal Legislation on Delicious Rank Alternative Fuels Data Center: Key Federal Legislation on Digg Find More places to share Alternative Fuels Data Center: Key Federal Legislation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Key Federal Legislation The information below includes a brief chronology and summaries of key federal legislation related to alternative fuels and vehicles, air quality,

Note: This page contains sample records for the topic "key fusion reactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Renewable Energy Community: Key Elements  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy of Energy Office of Energy Efficiency & Renewable Energy National Renewable Energy Laboratory Innovation for Our Energy Future A Renewable Energy Community: Key Elements A reinvented community to meet untapped customer needs for shelter and transportation with minimal environmental impacts, stable energy costs, and a sense of belonging N. Carlisle, J. Elling, and T. Penney Technical Report NREL/TP-540-42774 January 2008 NREL is operated by Midwest Research Institute â—Ź Battelle Contract No. DE-AC36-99-GO10337 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle

342

Fusion/Plasma Physics materials  

NLE Websites -- All DOE Office Websites (Extended Search)

FusionPlasma Physics materials 71958-00 Large Chart 107 150 cm 17. 71958-01 Package of 30 Three-hole-punched Notebook Charts, chart size 43 28 cm, folded size 22 28 cm...

343

Maintenance FUSION IGNITION RESEARCH EXPERIMENT  

E-Print Network (OSTI)

to refine the system details, interfaces and the requirements for remote handling. Table 1. FIRE RadialInsulation Enclosure Remote Maintenance Module FUSION IGNITION RESEARCH EXPERIMENT SYSTEM objectives and subsystem requirements in an arrangement that allows remote maintenance of in

344

U. S. Fusion Energy Future  

SciTech Connect

Fusion implementation scenarios for the US have been developed. The dependence of these scenarios on both the fusion development and implementation paths has been assessed. A range of implementation paths has been studied. The deployment of CANDU fission reactors in Canada and the deployment of fission reactors in France have been assessed as possible models for US fusion deployment. The waste production and resource (including tritium) needs have been assessed. The conclusion that can be drawn from these studies is that it is challenging to make a significant impact on energy production during this century. However, the rapid deployment of fission reactors in Canada and France support fusion implementation scenarios for the US with significant power production during this century. If the country can meet the schedule requirements then the resource needs and waste production are found to be manageable problems.

John A. Schmidt; Dan Jassby; Scott Larson; Maria Pueyo; Paul H. Rutherford

2000-10-12T23:59:59.000Z

345

Possible fusion reactor. [Movable plasmas  

SciTech Connect

A scheme to improve performance characteristics of a tokamak-type fusion reactor is proposed. Basically, the tokamak-type plasma could be moved around so that the plasma could be heated by compression, brought to the region where the blanket surrounds the plasma, and moved so as to keep wall loading below the acceptable limit. This idea should be able to help to economize a fusion reactor.

Yoshikawa, S.

1976-05-01T23:59:59.000Z

346

Advanced synfuel production with fusion  

SciTech Connect

An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers a nearly inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets.

Powell, J.R.; Fillo, J.

1979-01-01T23:59:59.000Z

347

Laser fusion monthly -- August 1980  

SciTech Connect

This report documents the monthly progress for the laser fusion research at Lawrence Livermore National Laboratory. First it gives facilities report for both the Shiva and Argus projects. Topics discussed include; laser system for the Nova Project; the fusion experiments analysis facility; optical/x-ray streak camera; Shiva Dante System temporal response; 2{omega}{sub 0} experiment; and planning for an ICF engineering test facility.

Ahlstrom, H.G. [ed.

1980-08-01T23:59:59.000Z

348

Magnetic fusion 1985: what next  

SciTech Connect

Recent budget reductions for magnetic fusion have led to a re-examination of program schedules and objectives. Faced with delays and postponement of major facilities as previously planned, some have called for a near-term focus on science, others have stressed technology. This talk will suggest a different focus as the keynote for this conference, namely, the applications of fusion. There is no doubt that plasma science is by now mature and fusion technology is at the forefront. This has and will continue to benefit many fields of endeavor, both in actual new discoveries and techniques and in attracting and training scientists and engineers who move on to make significant contributions in science, defense and industry. Nonetheless, however superb the science or how challenging the technology, these are means, not ends. To maintain its support, the magnetic fusion program must also offer the promise of power reactors that could be competitive in the future. At this conference, several new reactor designs will be described that claim to be smaller and economically competitive with fission reactors while retaining the environmental and safety characteristics that are the hallmark of fusion. The American Nuclear Society is an appropriate forum in which to examine these new designs critically, and to stimulate better ideas and improvements. As a preview, this talk will include brief discussions of new tokamak, tandem mirror and reversed field pinch reactor designs to be presented in later sessions. Finally, as a preview of the session on fusion breeders, the talk will explore once again the economic implications of a new nuclear age, beginning with improved fission reactors fueled by fusion breeders, then ultimately evolving to reactors based solely on fusion.

Fowler, T.K.

1985-03-01T23:59:59.000Z

349

Fusion power and the environment  

SciTech Connect

Environmental characteristics of conceptual fusion-reactor systems based on magnetic confinement are examined quantitatively, and some comparisons with fission systems are made. Fusion, like all other energy sources, will not be completely free of environmental liabilities, but the most obvious of these-- tritium leakage and activation of structural materials by neutron bombardment-- are susceptible to significant reduction by ingenuity in choice of materials and design. Large fusion reactors can probably be designed so that worst-case releases of radioactivity owing to accident or sabotage would produce no prompt fatalities in the public. A world energy economy relying heavily on fusion could make heavy demands on scarce nonfuel materials, a topic deserving further attention. Fusion's potential environmental advantages are not entirely ''automatic'', converting them into practical reality will require emphasis on environmental characteristics throughout the process of reactor design and engineering. The central role of environmental impact in the long-term energy dilemma of civilization justifies the highest priority on this aspect of fusion. (auth)

Holdren, J.P.; Fowler, T.K.; Post, R.F.

1975-06-01T23:59:59.000Z

350

Prospects for Tokamak Fusion Reactors  

SciTech Connect

This paper first reviews briefly the status and plans for research in magnetic fusion energy and discusses the prospects for the tokamak magnetic configuration to be the basis for a fusion power plant. Good progress has been made in achieving fusion reactor-level, deuterium-tritium (D-T) plasmas with the production of significant fusion power in the Joint European Torus (up to 2 MW) and the Tokamak Fusion Test Reactor (up to 10 MW) tokamaks. Advances on the technologies of heating, fueling, diagnostics, and materials supported these achievements. The successes have led to the initiation of the design phases of two tokamaks, the International Thermonuclear Experimental Reactor (ITER) and the US Toroidal Physics Experiment (TPX). ITER will demonstrate the controlled ignition and extended bum of D-T plasmas with steady state as an ultimate goal. ITER will further demonstrate technologies essential to a power plant in an integrated system and perform integrated testing of the high heat flux and nuclear components required to use fusion energy for practical purposes. TPX will complement ITER by testing advanced modes of steady-state plasma operation that, coupled with the developments in ITER, will lead to an optimized demonstration power plant.

Sheffield, J.; Galambos, J.

1995-04-01T23:59:59.000Z

351

The National Ignition Facility and the Path to Fusion Energy  

SciTech Connect

The National Ignition Facility (NIF) is operational and conducting experiments at the Lawrence Livermore National Laboratory (LLNL). The NIF is the world's largest and most energetic laser experimental facility with 192 beams capable of delivering 1.8 megajoules of 500-terawatt ultraviolet laser energy, over 60 times more energy than any previous laser system. The NIF can create temperatures of more than 100 million degrees and pressures more than 100 billion times Earth's atmospheric pressure. These conditions, similar to those at the center of the sun, have never been created in the laboratory and will allow scientists to probe the physics of planetary interiors, supernovae, black holes, and other phenomena. The NIF's laser beams are designed to compress fusion targets to the conditions required for thermonuclear burn, liberating more energy than is required to initiate the fusion reactions. Experiments on the NIF are focusing on demonstrating fusion ignition and burn via inertial confinement fusion (ICF). The ignition program is conducted via the National Ignition Campaign (NIC) - a partnership among LLNL, Los Alamos National Laboratory, Sandia National Laboratories, University of Rochester Laboratory for Laser Energetics, and General Atomics. The NIC program has also established collaborations with the Atomic Weapons Establishment in the United Kingdom, Commissariat a Energie Atomique in France, Massachusetts Institute of Technology, Lawrence Berkeley National Laboratory, and many others. Ignition experiments have begun that form the basis of the overall NIF strategy for achieving ignition. Accomplishing this goal will demonstrate the feasibility of fusion as a source of limitless, clean energy for the future. This paper discusses the current status of the NIC, the experimental steps needed toward achieving ignition and the steps required to demonstrate and enable the delivery of fusion energy as a viable carbon-free energy source.

Moses, E

2011-07-26T23:59:59.000Z

352

Laser fusion diagnostics  

SciTech Connect

The current status of the capability of laser fusion diagnostics is reviewed. Optical and infrared streak cameras provide one time resolution measurement capability of less than 10 ps, while x-ray streak cameras provide 15 ps time resolution in the range of about 1--30 keV presently. Time integrated spatial resolutions of 1 ..mu..m are provided with a variety of optical techniques. Ultraviolet holographic interferometry has measured electron densities above 10/sup 21/ cm/sup -3/ with 1 ..mu..m spatial resolution and 15 ps temporal resolution. X-ray microscopes provide 3 ..mu..m time integrated resolution and the x-ray streak pinhole camera has 6 ..mu..m spatial resolution. Development of the framing camera has thus far provided 50 ..mu..m spatial resolution with 125 ps frame duration and the third order reconstruction of zone plate images has provided 3 ..mu..m resolutions for alpha particles. Time integrated measurements of x-rays span the range shown. Finally, the new Shiva neutron spectrometer increases the energy resolution capability of that technique to 25 keV for 14-MeV neutrons. These combined capabilities provide a unique set of diagnostics for the detailed measurement of the interaction of laser light with targets and a subsequent performance of those targets.

Coleman, L.W.

1978-05-09T23:59:59.000Z

353

Engineering the fusion reactor first wall  

SciTech Connect

Recently the National Academy of Engineering published a set of Grand Challenges in Engineering in which the second item listed was entitled 'Provide energy from fusion'. Clearly a key component of this challenge is the science and technology associated with creating and maintaining burning plasmas. This is being vigorously addressed with both magnetic and inertial approaches with various experiments such as ITER and NIF. Considerably less attention is being given to another key component of this challenge, namely engineering the first wall that will contain the burning plasma. This is a daunting problem requiring technologies and materials that can not only survive, but also perform multiple essential functions in this extreme environment. These functions are (1) shield the remainder of the device from radiation. (2) convert of neutron energy to useful heat and (3) breed and extract tritium to maintain the reactor fuel supply. The first wall must not contaminate the plasma with impurities. It must be infused with cooling to maintain acceptable temperatures on plasma facing and structural components. It must not degrade. It must avoid excessive build-up of tritium on surfaces, and, if surface deposits do form, must be receptive to cleaning techniques. All these functions and constraints must be met while being subjected to nuclear and thermal radiation, particle bombardment, high magnetic fields, thermal cycling and occasional impingement of plasma on the surface. And, operating in a nuclear environment, the first wall must be fully maintainable by remotely-operated manipulators. Elements of the first wall challenge have been studied since the 1970' s both in the US and internationally. Considerable foundational work has been performed on plasma facing materials and breeding blanket/shield modules. Work has included neutronics, materials fabrication and joining, fluid flow, tritium breeding, tritium recovery and containment, energy conversion, materials damage and magnetohydrodynamics. While work to date has been quite valuable, no blanket concept has been built and operated in anything approaching a realistic fusion reactor environment. Rather, work has been limited to isolated experiments on first wall components and paper studies. The need now is to complete necessary R&D on first wall components, assemble components into a practical design, and test the first wall in a realistic fusion environment. Besides supporting work, major prototype experiments could be performed in non-nuclear experiments, as part of the ITER project and as part of the Component Test Facility. The latter is under active consideration and is a proposed machine which would use a driven plasma to expose an entire first wall to a fusion environment. Key US contributors to first wall research have been UCLA, UCSD, U of Wisconsin, LANL, ORNL, PNNL, Argonne and Idaho National Lab. Current efforts have been coordinated by UCLA. It is recognized that when this work progresses to a larger scale, leadership from a national laboratory will be required. LANL is well-prepared to provide such leadership.

Wurden, Glen [Los Alamos National Laboratory; Scott, Willms [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

354

Heavy ion fusion science research for high energy density physics and fusion applications  

E-Print Network (OSTI)

1665. [38] B G Logan, 1993 Fusion Engineering and Design 22,J Perkins, (June 2007), to be submitted to Nuclear Fusion. [36] M Tabak 1996 Nuclear Fusion 36, No 2. [37] S Atzeni, and

Logan, B.G.

2007-01-01T23:59:59.000Z

355

PPPL to launch major upgrade of key fusion energy test facility...  

NLE Websites -- All DOE Office Websites (Extended Search)

in the plasma will also double and reach 2 million amperes. By contrast, a 100-watt light bulb draws one ampere of current. Achieving these increases calls for widening a stack at...

356

Primary heat transfer loop design for the Cascade inertial confinement fusion reactor  

Science Conference Proceedings (OSTI)

This study investigates a heat exchanger and balance of plant design to accompany the Cascade inertial confinement fusion reaction chamber concept. The concept uses solid Li/sub 2/O or other lithium-ceramic granules, held to the wall of a rotating reaction chamber by centrifugal action, as a tritium breeding blanket and first wall protection. The Li/sub 2/O granules enter the chamber at 800 K and exit at 1200 K after absorbing the thermal energy produced by the fusion process.

Murray, K.A.; McDowell, M.W.

1984-05-01T23:59:59.000Z

357

Answering Key Fuel Cycle Questions  

Science Conference Proceedings (OSTI)

The Advanced Fuel Cycle Initiative (AFCI) program has both “outcome” and “process” goals because it must address both waste already accumulating as well as completing the fuel cycle in connection with advanced nuclear power plant concepts. The outcome objectives are waste geological repository capacity and cost, energy security and sustainability, proliferation resistance, fuel cycle economics, and safety. The process objectives are readiness to proceed and adaptability and robustness in the face of uncertainties. A classic decision-making approach to such a multi-attribute problem would be to weight individual quantified criteria and calculate an overall figure of merit. This is inappropriate for several reasons. First, the goals are not independent. Second, the importance of different goals varies among stakeholders. Third, the importance of different goals is likely to vary with time, especially the “energy future.” Fourth, some key considerations are not easily or meaningfully quantifiable at present. Instead, at this point, we have developed 16 questions the AFCI program should answer and suggest an approach of determining for each whether relevant options improve meeting each of the program goals. We find that it is not always clear which option is best for a specific question and specific goal; this helps identify key issues for future work. In general, we suggest attempting to create as many win-win decisions (options that are attractive or neutral to most goals) as possible. Thus, to help clarify why the program is exploring the options it is, and to set the stage for future narrowing of options, we have developed 16 questions, as follows: · What are the AFCI program goals? · Which potential waste disposition approaches do we plan for? · What are the major separations, transmutation, and fuel options? · How do we address proliferation resistance? · Which potential energy futures do we plan for? · What potential external triggers do we plan for? · Should we separate uranium? · If we separate uranium, should we recycle it, store it or dispose of it? · Is it practical to plan to fabricate and handle “hot” fuel? · Which transuranic elements (TRU) should be separated and transmuted? · Of those TRU separated, which should be transmuted together? · Should we separate and/or transmute Cs and Sr isotopes that dominate near-term repository heating? · Should we separate and/or transmute very long-lived Tc and I isotopes? · Which separation technology? · What mix of transmutation technologies? · What fuel technology best supports the above decisions?

Steven J. Piet; Brent W. Dixon; J. Stephen Herring; David E. Shropshire; Mary Lou Dunzik-Gougar

2003-10-01T23:59:59.000Z

358

../fusion/templates/mapguide/maroon/css/maroon_fusion.css background-image: url(../images/background.gif);  

E-Print Network (OSTI)

../fusion/templates/mapguide/maroon/css/maroon_fusion.css body { background-image: url(../images/background.gif); ../fusion/templates/mapguide/maroon/css/ maroon_fusion.css body { background-color: #3e5c5f; ../fusion/templates/mapguide/maroon/css/ maroon_fusion.css #ToolbarVertical { background: #500000; maroon_fusion.css #Toolbar { background

Ahmad, Sajjad

359

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 44 (2004) S254S265 PII: S0029-5515(04)88685-X  

E-Print Network (OSTI)

the cost of the target supply in a fusion economy, and show that costs are within the range of commercial in the condensation reaction that builds a 1­5 µm polymer overcoat withnoreplicationofthefoamcellstructure the ablator, has a critical effect on the performance (gain) of the target. Layering requires establishing

Tillack, Mark

360

Comparison of Options for a Pilot Plant Fusion Nuclear Mission  

Science Conference Proceedings (OSTI)

A fusion pilot plant study was initiated to clarify the development needs in moving from ITER to a first of a kind fusion power plant, following a path similar to the approach adopted for the commercialization of fission. The pilot plant mission encompassed component test and fusion nuclear science missions plus the requirement to produce net electricity with high availability in a device designed to be prototypical of the commercial device. Three magnetic configuration options were developed around this mission: the advanced tokamak (AT), spherical tokamak (ST) and compact stellarator (CS). With the completion of the study and separate documentation of each design option a question can now be posed; how do the different designs compare with each other as candidates for meeting the pilot plant mission? In a pro/con format this paper will examine the key arguments for and against the AT, ST and CS magnetic configurations. Key topics addressed include: plasma parameters, device configurations, size and weight comparisons, diagnostic issues, maintenance schemes, availability influences and possible test cell arrangement schemes.

Brown, T; Goldston, R J; El-Guebaly, L; Kessel, C; Neilson, G H; Malang, S; Menard, J E; Prager, S; Waganer, L; Titus, P

2012-08-27T23:59:59.000Z

Note: This page contains sample records for the topic "key fusion reactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

ION ACCELERATORS AS DRIVERS FOR INERTIAL CONFINEMENT FUSION  

E-Print Network (OSTI)

and Controlled Nuclear Fusion Research, Brussels, Belgium,of the Heavy Ion Fusion Workshop held at Brookhaven NationalReport, Hearthfire Heavy Ion Fusion, October 1, 1979 - March

Faltens, A.

2010-01-01T23:59:59.000Z

362

General Atomics (GA) Fusion News: A New Spin on Understanding...  

NLE Websites -- All DOE Office Websites (Extended Search)

General Atomics (GA) Fusion News: A New Spin on Understanding Plasma Confinement American Fusion News Category: General Atomics (GA) Link: General Atomics (GA) Fusion News: A New...

363

Placing Fusion Power on a Pedestal | Princeton Plasma Physics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Placing Fusion Power on a Pedestal American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: Placing Fusion Power on a Pedestal...

364

Knudsen Layer Reduction of Fusion Reactivity Kim Molvig and Nelson...  

NLE Websites -- All DOE Office Websites (Extended Search)

fusion cross section determine Gamow peak in the fusion reactivity. 2 Inertially confined fusion systems typically have plasma fuel enveloped by a cold non-reacting region or...

365

Fusion Education | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Benefits of FES Fusion Education Fusion Energy Sciences (FES) FES Home About FES Research Facilities Science Highlights Benefits of FES Fusion Education Funding Opportunities...

366

Praise and suggestions for fusion research from a utility industry...  

NLE Websites -- All DOE Office Websites (Extended Search)

Select and View High Resolution Images to Download Learn More Engineering Fusion energy Fusion reactor design Inertial confinement fusion Nuclear energy Plasma physics Tokamaks...

367

Plasma Blobs and Filaments: Fusion Scientists Discover Secrets...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plasma Blobs and Filaments: Fusion Scientists Discover Secrets of Turbulent Edge Transport American Fusion News Category: U.S. Universities Link: Plasma Blobs and Filaments: Fusion...

368

Fusion systems and biset functors via ghost algebras  

E-Print Network (OSTI)

2.2 Fusion Preserving1 Background 1.1 Fusion System Basics . . . . . . 1.2A. Craven. The theory of fusion systems. Vol. 131. Cambridge

O'Hare, Shawn Michael

2013-01-01T23:59:59.000Z

369

Applying physics, teamwork to fusion energy science | Princeton...  

NLE Websites -- All DOE Office Websites (Extended Search)

Applying physics, teamwork to fusion energy science American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: Applying physics, teamwork to fusion energy...

370

Frozen Bullets Tame Unruly Edge Plasmas in Fusion Experiment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Frozen Bullets Tame Unruly Edge Plasmas in Fusion Experiment American Fusion News Category: General Atomics (GA) Link: Frozen Bullets Tame Unruly Edge Plasmas in Fusion Experiment...

371

Deuterium Uptake in Magnetic Fusion Devices with Lithium Conditioned...  

NLE Websites -- All DOE Office Websites (Extended Search)

Deuterium Uptake in Magnetic Fusion Devices with Lithium Conditioned Carbon Walls American Fusion News Category: U.S. Universities Link: Deuterium Uptake in Magnetic Fusion Devices...

372

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Glossary Glossary FusEdWeb: Discover Fusion CPEP's Online Fusion Course Fusion FAQ Fusion and Plasma Glossary Plasma Dictionary Student and Teacher Resources Education and Outreach Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National Ignition Facility Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Our Sun | Other Stars and Galaxies | Inertial Confinement | Magnetic Confinement The Glossary of Plasma Physics and Fusion Energy Research Browse | Search | Submit an Entry Introduction, Sources and Contributors This Glossary seeks to provide plain-language definitions of over 3600

373

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Home> Student and Teacher Resources > For Introductory Students Home> Student and Teacher Resources > For Introductory Students FusEdWeb: Discover Fusion CPEP's Online Fusion Course Fusion FAQ Fusion and Plasma Glossary Plasma Dictionary Student and Teacher Resources Education and Outreach Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National Ignition Facility Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Our Sun | Other Stars and Galaxies | Inertial Confinement | Magnetic Confinement Guide to Fusion Education Resources for Introductory Physics Students This is a compilation of online and offline education resources for

374

Kinetic advantage of controlled intermediate nuclear fusion  

SciTech Connect

The dominated process of controlled fusion is to let nuclei gain enough kinetic energy to overcome Coulomb barrier. As a result, a fusion scheme can consider two factors in its design: to increase kinetic energy of nuclei and to alter the Coulomb barrier. Cold Fusion and Hot fusion are all one-factor schemes while Intermediate Fusion is a twofactors scheme. This made CINF kinetically superior. Cold Fusion reduces deuteron-deuteron distance, addressing Coulomb barrier, and Hot Fusion heat up plasma into extreme high temperature, addressing kinetic energy. Without enough kinetic energy made Cold Fusion skeptical. Extreme high temperature made Hot Fusion very difficult to engineer. Because CIFN addresses both factors, CIFN is a more promising technique to be industrialized.

Guo Xiaoming [Physics and Computer Science Department, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5 (Canada)

2012-09-26T23:59:59.000Z

375

Conformal nets III: fusion of defects  

E-Print Network (OSTI)

Conformal nets provides a mathematical model for conformal field theory. We define a notion of defect between conformal nets, formalizing the idea of an interaction between two conformal field theories. We introduce an operation of fusion of defects, and prove that the fusion of two defects is again a defect, provided the fusion occurs over a conformal net of finite index. There is a notion of sector (or bimodule) between two defects, and operations of horizontal and vertical fusion of such sectors. Our most difficult technical result is that the horizontal fusion of the vacuum sectors of two defects is isomorphic to the vacuum sector of the fused defect. Equipped with this isomorphism, we construct the basic interchange isomorphism between the horizontal fusion of two vertical fusions and the vertical fusion of two horizontal fusions of sectors.

Arthur Bartels; Christopher L. Douglas; André Henriques

2013-10-30T23:59:59.000Z

376

A.: Sparse fusion frames: existence and construction  

E-Print Network (OSTI)

Abstract. Fusion frame theory is an emerging mathematical theory that provides a natural framework for performing hierarchical data processing. A fusion frame is a frame-like collection of subspaces in a Hilbert space, thereby generalizing the concept of a frame for signal representation. In this paper, we study the existence and construction of fusion frames. We first present a complete characterization of a special class of fusion frames, called Parseval fusion frames. The value of Parseval fusion frames is that the inverse fusion frame operator is equal to the identity and therefore signal reconstruction can be performed with minimal complexity. We then introduce two general methods – the spatial complement and the Naimark complement – for constructing a new fusion frame from a given fusion frame. We then establish existence conditions for fusion frames with desired properties. In particular, we address the following question: Given M, N, m ? N and {?j} M j=1, does there exist a fusion frame in RM with N subspaces of dimension m for which {?j} M j=1 are the eigenvalues of the associated fusion frame operator? We address this problem by providing an algorithm which computes such a fusion frame for almost any collection of parameters M, N, m ? N and {?j} M j=1. Moreover, we show how this procedure can be applied, if subspaces are to be added to a given fusion frame to force it to become Parseval. 1.

Robert Calderbank; Peter G. Casazza; Andreas Heinecke; Gitta Kutyniok; Ali Pezeshki

2011-01-01T23:59:59.000Z

377

Inductive learning as a fusion engine for mine detection  

SciTech Connect

Semiotics is defined by some researchers as {open_quotes}the study of the appearance (visual or otherwise) meaning, and use of symbols and symbol systems.{close_quotes} Semiotic fusion of data from multiple sensory sources is a potential solution to the problem of landmine detection. This turns out to be significant, because notwithstanding the diversity of sensor technologies being used to attack the problem, there is no single effective landmine sensor technology. The only practical, general-purpose mine detector presently available is the trained dog. Most research into mine-detection technology seeds to emulate the dog`s seemingly uncanny abilities. An ideal data-fusion system would mimic animal reaction, with the brain`s perceptive power melding multiple sensory cues into an awareness of the size and location of a mine. Furthermore, the fusion process should be adaptive, with the skill at combining cues into awareness improving with experience. Electronic data-fusion systems reported in the countermine literature use conventional vector-based pattern recognition methods. Although neural nets are popular, they have never satisfactorily met the challenge. Despite years of investigation, nobody has ever found a vector space representation that reliably characterizes mine identity. This strongly suggests that the features have not been found because researchers have been looking for the wrong characteristics. It is worth considering that dogs probably do not represent data as mathematical number lists, but they almost certainly represent data via semiotic structures.

Kercel, S.W.; Dress, W.B.

1997-08-01T23:59:59.000Z

378

Systematic study of projectile structure effect on fusion barrier distribution  

E-Print Network (OSTI)

Quasielastic excitation function measurement has been carried out for the $^{4}$He + $^{232}$Th system at $\\theta_{lab}$=160$^\\circ$ with respect to the beam direction, to obtain a representation of the fusion barrier distribution. Using the present data along with previously measured barrier distribution results on $^{12}$C, $^{16}$O, and $^{19}$F + $^{232}$Th systems a systematic analysis has been carried out to investigate the role of target and/or projectile structures on fusion barrier distribution. It is observed that for $^{4}$He, $^{12}$C, and $^{16}$O + $^{232}$Th, reactions the couplings due to target states only are required in coupled channel fusion calculations to explain the experimental data, whereas for the $^{19}$F+ $^{232}$Th system along with the coupling of target states, inelastic states of $^{19}$F are also required to explain the experimental results on fusion-barrier distribution. The width of the barrier distribution shows interesting transition behavior when plotted with respect to the target-projectile charge product for the above systems.

Pratap Roy; A. Saxena; B. K. Nayak; E. T. Mirgule; B. John; Y. K. Gupta; L. S. Danu; R. P. Vind; Ashok Kumar; R. K. Choudhury

2011-07-29T23:59:59.000Z

379

A fast new method for measuring hard-to-diagnose 3D plasmas in fusion  

NLE Websites -- All DOE Office Websites (Extended Search)

A fast new method for measuring hard-to-diagnose 3D plasmas in fusion A fast new method for measuring hard-to-diagnose 3D plasmas in fusion facilities By John Greenwald March 12, 2013 Tweet Widget Facebook Like Google Plus One A simulated plasma in the Large Helical Device showing the thin blue saddle coils that researchers used to make diagnostic measurements with the new computer code. (Photo by Graphic by Sam Lazerson) A simulated plasma in the Large Helical Device showing the thin blue saddle coils that researchers used to make diagnostic measurements with the new computer code. Scientists at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) and the National Institute for Fusion Science (NIFS) in Japan have developed a rapid method for meeting a key challenge for fusion science. The challenge has been to simulate the diagnostic measurement of

380

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network (OSTI)

for magnetic fusion reactors and IFMIF. Journal of NuclearFusion reactors blanket nucleonics. In Progress in NuclearFusion-Fission hybrid reactors. In Advances in Nuclear

Kramer, Kevin James

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "key fusion reactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network (OSTI)

32] E. Greenspan. Fusion reactors blanket nucleonics. Intemperature windows for fusion reactor structural materials.steels for magnetic fusion reactors and IFMIF. Journal of

Kramer, Kevin James

2010-01-01T23:59:59.000Z

382

Interplay between compound and fragments aspects of nuclear fission and heavy-ion reaction  

SciTech Connect

The scission point in nuclear fission plays a special role where one-body system changes to two-body system. Inverse of this situation is realized in heavy-ion fusion reaction where two-body system changes to one body system. Among several peculiar phenomena expected to occur during this change, we focus our attention to the behavior of compound and fragments shell effects. Some aspects of the interplay between compound and fragments shell effect are discussed related to the topics of the fission valleys in the potential energy surface of actinide nuclei and the fusion-like trajectory found in the cold fusion reaction leading to superheavy nuclei.

Moller, Peter [Los Alamos National Laboratory; Iwamoto, A [JAPAN; Ichikawa, I [JAPAN

2010-09-10T23:59:59.000Z

383

How does breakup influence near-barrier fusion of weakly bound light nuclei ?  

E-Print Network (OSTI)

The influence on the fusion process of coupling to collective degrees of freedom has been explored. The significant enhancement of he fusion cross setion at sub-barrier energies was understood in terms of the dynamical processes arising from strong couplings to collective inelastic excitations of the target and projectile. However, in the case of reactions where breakup becomes an important process, conflicing model predictions and experimental results have been reported in the literature. Excitation functions for sub- and near-barrier total (complete + incomplete) fusion cross sections have been measured for the $^{6,7}$Li + $^{59}$Co at the Vivitron facility and at the 8UD Pelletron tandem facility using standard $\\gamma$-ray techniques. The data extend to medium-mass systems previous works exploring the coupling effects in fusion reactions of both lighter and heavier systems. Results of continuum-discretized coupled channel (CDCC) calculations indicate a small enhancement of total fusion for the more weakly bound $^{6}$Li at sub-barrier energies, with similar cross sections for both reactions at and above the barrier. A systematic study of $^{4,6}$He induced fusion reactions with the CDCC method is in progress. The understanding of the reaction dynamics involving couplings to the breakup channels requires th explicit measurement of precise elastic scattering data as well as yields leading to the breakup itself. Recent coincidence experiments for $^{6,7}$Li + $^{59}$Co are addressing this issue. The particle identification of the breakup products have been achieved by measuring the three-body final-state correlations.

C. Beck; N. Rowley; M. Rousseau; F. Haas; P. Bednarczyk; S. Courtin; N. Kintz; F. Hoellinger; P. Papka; S. Szilner; A. Sanchez I Zafra; A. Hachem; E. Martin; O. Stezowski; A. Diaz-Torres; F. A. Souza; A. Szanto De Toledo; A. Aissaoui; N. Carlin; R. Liguori Neto; M. G. Munhoz; J. Takahashi; A. A. P. Suade; M. M. De Moura; E. M. Szanto; K. Hagino; I. J. Thompson

2004-11-03T23:59:59.000Z

384

Different activities of the reovirus FAST proteins and influenza hemagglutinin in cell-cell fusion assays and in response to membrane curvature agents  

SciTech Connect

The reovirus fusion-associated small transmembrane (FAST) proteins evolved to induce cell-cell, rather than virus-cell, membrane fusion. It is unclear whether the FAST protein fusion reaction proceeds in the same manner as the enveloped virus fusion proteins. We now show that fluorescence-based cell-cell and cell-RBC hemifusion assays are unsuited for detecting lipid mixing in the absence of content mixing during FAST protein-mediated membrane fusion. Furthermore, membrane curvature agents that inhibit hemifusion or promote pore formation mediated by influenza hemagglutinin had no effect on p14-induced cell-cell fusion, even under conditions of limiting p14 concentrations. Standard assays used to detect fusion intermediates induced by enveloped virus fusion proteins are therefore not applicable to the FAST proteins. These results suggest the possibility that the nature of the fusion intermediates or the mechanisms used to transit through the various stages of the fusion reaction may differ between these distinct classes of viral fusogens.

Clancy, Eileen K.; Barry, Chris; Ciechonska, Marta [Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, B3H 1X5 (Canada); Duncan, Roy, E-mail: roy.duncan@dal.c [Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, B3H 1X5 (Canada); Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, B3H 1X5 (Canada)

2010-02-05T23:59:59.000Z

385

The Path to Magnetic Fusion Energy  

Science Conference Proceedings (OSTI)

When the possibility of fusion as an energy source for electricity generation was realized in the 1950s, understanding of the plasma state was primitive. The fusion goal has been paced by, and has stimulated, the development of plasma physics. Our understanding of complex, nonlinear processes in plasmas is now mature. We can routinely produce and manipulate 100 million degree plasmas with remarkable finesse, and we can identify a path to commercial fusion power. The international experiment, ITER, will create a burning (self-sustained) plasma and produce 500 MW of thermal fusion power. This talk will summarize the progress in fusion research to date, and the remaining steps to fusion power.

Prager, Stewart (PPPL)

2011-05-04T23:59:59.000Z

386

On multi-column foreign key discovery  

Science Conference Proceedings (OSTI)

A foreign/primary key relationship between relational tables is one of the most important constraints in a database. From a data analysis perspective, discovering foreign keys is a crucial step in understanding and working with the data. Nevertheless, ...

Meihui Zhang; Marios Hadjieleftheriou; Beng Chin Ooi; Cecilia M. Procopiuc; Divesh Srivastava

2010-09-01T23:59:59.000Z

387

Proactive key management protocol for multicast services  

Science Conference Proceedings (OSTI)

A group key management is essential scheme guaranteeing data confidentiality in multicast. To provide the strict secrecy in group communication, the rekeying delay has to be minimized. In this paper, we propose a new group key management protocol, called ...

Dong-Hyun Je; Seung-Woo Seo

2009-06-01T23:59:59.000Z

388

Cryptographic Key Managment Workshop 2012-A Draft ...  

Science Conference Proceedings (OSTI)

... Specify the key generation methods used • Specify the random number generators used • Specify ... primary and backup facilities ...

2012-09-11T23:59:59.000Z

389

Group-Based Authentication and Key Agreement  

Science Conference Proceedings (OSTI)

This paper presents an authentication and key agreement protocol to streamline communication activities for a group of mobile stations (MSs) roaming from the same home network (HN) to a serving network (SN). In such a roaming scenario, conventional schemes ... Keywords: Authentication and key agreement, Group key, Roaming, Security, Wireless network

Yu-Wen Chen; Jui-Tang Wang; Kuang-Hui Chi; Chien-Chao Tseng

2012-02-01T23:59:59.000Z

390

What is believed about cold fusion?  

E-Print Network (OSTI)

In 1989, Fleischmann and Pons[1-5] claimed to initiate a fusion reaction between deuterons in palladium that resulted in an unusual amount of heat. This claim was rejected because insufficient supporting experimental information was provided, the claim was very difficult to replicate, and no plausible explanation could be proposed. During the 20 years since then, studies in at least 8 countries has provided a rich collection of information, improved reproducibility, and encouraged many explanations. This work has been reviewed by Storms[6] in 2007 based on over 1000 citations and will not be repeated here. This paper provides a brief and focused summary of what is believed to be true about the effect at the present time. Energy production in the form of heat is the most often investigated indication of a novel effect. The reported power ranges from a few milliwatts to over 100 watts with most studies reporting values at the low end of this range. The large range in values is caused by accidental creation of the necessary physical structures that are required to initiate the heat producing reactions, called the nuclear active environment (NAE). This environment requires a very large concentration of deuterons and involves structures having nano-sized dimensions. Although focus has been applied mostly to palladium, other elements are apparently involved.

Edmund Storms

2009-01-01T23:59:59.000Z

391

Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression  

DOE Patents (OSTI)

A high-power-density-laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems. 25 figs.

Lasche, G.P.

1987-02-20T23:59:59.000Z

392

Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression  

SciTech Connect

A high-power-density laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems.

Lasche, George P. (Arlington, VA)

1988-01-01T23:59:59.000Z

393

Z-inertial fusion energy: power plant final report FY 2006.  

SciTech Connect

This report summarizes the work conducted for the Z-inertial fusion energy (Z-IFE) late start Laboratory Directed Research Project. A major area of focus was on creating a roadmap to a z-pinch driven fusion power plant. The roadmap ties ZIFE into the Global Nuclear Energy Partnership (GNEP) initiative through the use of high energy fusion neutrons to burn the actinides of spent fuel waste. Transmutation presents a near term use for Z-IFE technology and will aid in paving the path to fusion energy. The work this year continued to develop the science and engineering needed to support the Z-IFE roadmap. This included plant system and driver cost estimates, recyclable transmission line studies, flibe characterization, reaction chamber design, and shock mitigation techniques.

Anderson, Mark (University of Wisconsin, Madison, WI); Kulcinski, Gerald (University of Wisconsin, Madison, WI); Zhao, Haihua (University of California, Berkeley, CA); Cipiti, Benjamin B.; Olson, Craig Lee; Sierra, Dannelle P.; Meier, Wayne (Lawrence Livermore National Laboratories); McConnell, Paul E.; Ghiaasiaan, M. (Georgia Institute of Technology, Atlanta, GA); Kern, Brian (Georgia Institute of Technology, Atlanta, GA); Tajima, Yu (University of California, Los Angeles, CA); Campen, Chistopher (University of California, Berkeley, CA); Sketchley, Tomas (University of California, Los Angeles, CA); Moir, R (Lawrence Livermore National Laboratories); Bardet, Philippe M. (University of California, Berkeley, CA); Durbin, Samuel; Morrow, Charles W.; Vigil, Virginia L (University of Wisconsin, Madison, WI); Modesto-Beato, Marcos A.; Franklin, James Kenneth (University of California, Berkeley, CA); Smith, James Dean; Ying, Alice (University of California, Los Angeles, CA); Cook, Jason T.; Schmitz, Lothar (University of California, Los Angeles, CA); Abdel-Khalik, S. (Georgia Institute of Technology, Atlanta, GA); Farnum, Cathy Ottinger; Abdou, Mohamed A. (University of California, Los Angeles, CA); Bonazza, Riccardo (University of Wisconsin, Madison, WI); Rodriguez, Salvador B.; Sridharan, Kumar (University of Wisconsin, Madison, WI); Rochau, Gary Eugene; Gudmundson, Jesse (University of Wisconsin, Madison, WI); Peterson, Per F. (University of California, Berkeley, CA); Marriott, Ed (University of Wisconsin, Madison, WI); Oakley, Jason (University of Wisconsin, Madison, WI)

2006-10-01T23:59:59.000Z

394

Fusion of $^{6}$Li with $^{159}$Tb} at near barrier energies  

E-Print Network (OSTI)

Complete and incomplete fusion cross sections for $^{6}$Li+$^{159}$Tb have been measured at energies around the Coulomb barrier by the $\\gamma$-ray method. The measurements show that the complete fusion cross sections at above-barrier energies are suppressed by $\\sim$34% compared to the coupled channels calculations. A comparison of the complete fusion cross sections at above-barrier energies with the existing data of $^{11,10}$B+$^{159}$Tb and $^{7}$Li+$^{159}$Tb shows that the extent of suppression is correlated with the $\\alpha$-separation energies of the projectiles. It has been argued that the Dy isotopes produced in the reaction $^{6}$Li+$^{159}$Tb, at below-barrier energies are primarily due to the $d$-transfer to unbound states of $^{159}$Tb, while both transfer and incomplete fusion processes contribute at above-barrier energies.

M. K. Pradhan; A. Mukherjee; P. Basu; A. Goswami; R. Kshetri; R. Palit; V. V. Parkar; M. Ray; Subinit Roy; P. Roy Chowdhury; M. Saha Sarkar; S. Santra

2011-06-10T23:59:59.000Z

395

Laser fusion experiments at LLL  

Science Conference Proceedings (OSTI)

These notes present the experimental basis and status for laser fusion as developed at LLL. Two other chapters, one authored by K.A. Brueckner and the other by C. Max, present the theoretical implosion physics and laser plasma interaction physics. The notes consist of six sections. The first is an introductory section which provides some of the history of inertial fusion and a simple explanation of the concepts involved. The second section presents an extensive discussion of diagnostic instrumentation used in the LLL Laser Fusion Program. The third section is a presentation of laser facilities and capabilities at LLL. The purpose here is to define capability, not to derive how it was obtained. The fourth and fifth sections present the experimental data on laser-plasma interaction and implosion physics. The last chapter is a short projection of the future.

Ahlstrom, H.G.

1980-06-16T23:59:59.000Z

396

ACCELERATOR & FUSION RESEARCH DIV. ANNUAL REPORT, OCT. 80 - SEPT. 81  

E-Print Network (OSTI)

were derived from a MAGNETIC FUSION ENERGY STAFF W, Kunkel (H. 1. F. Staff, Heavy Ion Fusion Half-year Report October 1,LBL-12594 (1981). Heavy Ion Fusion Staff, Heavy Ion Fusion

Johnson Ed, R.K.

2010-01-01T23:59:59.000Z

397

Evaluation of irradiation facility options for fusion materials research and development  

SciTech Connect

Successful development of fusion energy will require the design of high-performance structural materials that exhibit dimensional stability and good resistance to fusion neutron degradation of mechanical and physical properties. The high levels of gaseous (H, He) transmutation products associated with deuterium-tritium (D-T) fusion neutron transmutation reactions, along with displacement damage dose requirements up to 50-200 displacements per atom (dpa) for a fusion demonstration reactor (DEMO), pose an extraordinary challenge. The intense neutron source(s) is needed to address two complimentary missions: 1) Scientific investigations of radiation degradation phenomena and microstructural evolution under fusion-relevant irradiation conditions (to provide the foundation for designing improved radiation resistant materials), and 2) Engineering database development for design and licensing of next-step fusion energy machines such as a fusion DEMO. A wide variety of irradiation facilities have been proposed to investigate materials science phenomena and to test and qualify materials for a DEMO reactor. Currently available and proposed facilities include fission reactors (including isotopic and spectral tailoring techniques to modify the rate of H and He production per dpa), dual- and triple-ion accelerator irradiation facilities that enable greatly accelerated irradiation studies with fusion-relevant H and He production rates per dpa within microscopic volumes, D-Li stripping reaction and spallation neutron sources, and plasma-based sources. The advantages and limitations of the main proposed fusion materials irradiation facility options are reviewed. Evaluation parameters include irradiation volume, potential for performing accelerated irradiation studies, capital and operating costs, similarity of neutron irradiation spectrum to fusion reactor conditions, temperature and irradiation flux stability/control, ability to perform multiple-effect tests (e.g., irradiation in the presence of a flowing coolant, or in the presence of complex applied stress fields), and technical maturity/risk of the concept. Ultimately, it is anticipated that heavy utilization of ion beam and fission neutron irradiation facilities along with sophisticated materials models, in addition to a dedicated fusion-relevant neutron irradiation facility, will be necessary to provide a comprehensive and cost-effective understanding of anticipated materials evolution in a fusion DEMO and to therefore provide a timely and robust materials database.

Zinkle, Steven J [ORNL; Möslang, Anton [Karlsruhe Institute of Technology, Karlsruhe, Germany

2013-01-01T23:59:59.000Z

398

Method for vacuum fusion bonding  

DOE Patents (OSTI)

An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

Ackler, Harold D. (Sunnyvale, CA); Swierkowski, Stefan P. (Livermore, CA); Tarte, Lisa A. (Livermore, CA); Hicks, Randall K. (Stockton, CA)

2001-01-01T23:59:59.000Z

399

Fusion bonding and alignment fixture  

DOE Patents (OSTI)

An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all the components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

Ackler, Harold D. (Sunnyvale, CA); Swierkowski, Stefan P. (Livermore, CA); Tarte, Lisa A. (Livermore, CA); Hicks, Randall K. (Stockton, CA)

2000-01-01T23:59:59.000Z

400

Fusion energy for hydrogen production  

SciTech Connect

The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approximately 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approximately 50 to 70% are projected for fusion reactors using high temperature blankets.

Fillo, J.A.; Powell, J.R.; Steinberg, M.

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "key fusion reactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Fusion Breeder Program interim report  

Science Conference Proceedings (OSTI)

This interim report for the FY82 Fusion Breeder Program covers work performed during the scoping phase of the study, December, 1981-February 1982. The goals for the FY82 study are the identification and development of a reference blanket concept using the fission suppression concept and the definition of a development plan to further the fusion breeder application. The context of the study is the tandem mirror reactor, but emphasis is placed upon blanket engineering. A tokamak driver and blanket concept will be selected and studied in more detail during FY83.

Moir, R.; Lee, J.D.; Neef, W.

1982-06-11T23:59:59.000Z

402

Laser fusion monthly, February 1981  

SciTech Connect

This report is divided into the following sections: (1) facility reports (Argus and Shiva); (2) Nova project; and (3) fusion experiments. In the Fusion Experiments section of this report, the author describes the results of a series of experiments on Shiva which further the understanding of the production and transport of suprathermal electrons. He found that of the suprathermal electrons which strike a laser irradiated disk target or which interact with the rear surface of a half Cairn hohlraum target, a significant fraction of these electrons orbit the target and strike the rear of the disk. These results have significant implications in the interpretation and modeling of the laser irradiated target experiments.

Ahlstrom, H.G.

1981-02-01T23:59:59.000Z

403

Fusion reactors: a remote possibility  

SciTech Connect

The next generation of controlled thermonuclear reactor experiments will be faced with the handling problems of tritium and neutron activation that will dominate the safety and maintenance problems of future fusion reactors. The nuclear industry has been working with highly radioactive systems for many years and has developed the tools and methods to do safely productive work in the presence of high radiation fields. These methods can be applied to CTR work by extending them to the unique problems associated with fusion reactors. (auth)

Doggett, J.N.

1975-11-14T23:59:59.000Z

404

Environmental impact of fusion power  

SciTech Connect

From 140th meeting on the American Association for the Advancement of Science; San Francisco, California, USA (24 Feb The environmental effects of fusion power is considered assuming as a typical model a conceptual design for a full-scale fusion power plant. The appraisal indlcates that such a system would yield plentiful, cheap power for all of the world's energy requirements and provide fine solutions to most of the environmental pollution problems if the uncertainties in the plasma physics can be resolved in the fashion that current experiments lead one to expect. (auth)

Fraas, A.P.

1973-01-01T23:59:59.000Z

405

DOE M 200.1-1 Chapter 9, Public Key Cryptography and Key Management  

Directives, Delegations, and Requirements

The use and management of certificate-based public key cryptography for the Department of Energy (DOE) requires the establishment of a public key ...

2000-02-15T23:59:59.000Z

406

Fusion roadmapping | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion roadmapping Fusion roadmapping Subscribe to RSS - Fusion roadmapping The process of mapping a path to a commercial fusion reactor by planning a sequence of future machines. Premiere issue of "Quest" magazine details PPPL's strides toward fusion energy and advances in plasma science Quest Magazine Summer 2013 Welcome to the premiere issue of Quest, the annual magazine of the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL). Read more about Premiere issue of "Quest" magazine details PPPL's strides toward fusion energy and advances in plasma science PPPL and ITER: Lab teams support the world's largest fusion experiment with leading-edge ideas and design Read more about PPPL and ITER: Lab teams support the world's largest fusion experiment with leading-edge ideas and design

407

Image fusion for a nighttime driving display  

E-Print Network (OSTI)

An investigation into image fusion for a nighttime driving display application was performed. Most of the image fusion techniques being investigated in this application were developed for other purposes. When comparing the ...

Herrington, William Frederick

2005-01-01T23:59:59.000Z

408

Role of atomic collisions in fusion  

SciTech Connect

Atomic physics issues have played a large role in controlled fusion research. A general discussion of the present role of atomic processes in both magnetic and inertial controlled fusion work is presented.

Post, D.E.

1982-04-01T23:59:59.000Z

409

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Stars The Sun Runs on Fusion Energy Like all stars, the sun is a huge fusion reactor, pumping out 100 million times as much energy in a single second as the entire population of...

410

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

To dig deeper into the fundamental physics of fusion, simply explore any of the Guided Tour topics in the menu frame at left. For visitors new to the subject of fusion, we...

411

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

- Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Overview | The Guided Tour Lightning Sound and Fury Image courtesy of Steve Albers at NOAA On clear days and...

412

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

- Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Overview | The Guided Tour Planetary Nebulae A planetary nebula can result as a star with mass of less than...

413

Cold fusion catalyzed by muons and electrons  

SciTech Connect

Two alternative methods have been suggested to produce fusion power at low temperature. The first, muon catalyzed fusion or MCF, uses muons to spontaneously catalyze fusion through the muon mesomolecule formation. Unfortunately, this method fails to generate enough fusion energy to supply the muons, by a factor of about ten. The physics of MCF is discussed, and a possible approach to increasing the number of MCF fusions generated by each muon is mentioned. The second method, which has become known as Cold Fusion,'' involves catalysis by electrons in electrolytic cells. The physics of this process, if it exists, is more mysterious than MCF. However, it now appears to be an artifact, the claims for its reality resting largely on experimental errors occurring in rather delicate experiments. However, a very low level of such fusion claimed by Jones may be real. Experiments in cold fusion will also be discussed.

Kulsrud, R.M.

1990-10-01T23:59:59.000Z

414

Magnetic fusion: planning for the future  

SciTech Connect

A brief review of international cooperation in the fusion program is given. The author shares his views on the technical prospects and future potential of fusion as a practical energy source. (MOW)

Fowler, T.K.

1984-02-07T23:59:59.000Z

415

Demonstrating a Target Supply for Inertial Fusion Energy (A24816)  

E-Print Network (OSTI)

Fusion Science And Technology 47, 1131 (2005)16th Topical Meeting on Technology Fusion Energy Madison Wisconsin, US, 2004999609940

Goodin, D.T.

2004-11-05T23:59:59.000Z

416

ACCELERATOR & FUSION RESEARCH DIV. ANNUAL REPORT, OCT. 80 - SEPT. 81  

E-Print Network (OSTI)

Beamlines and Other fusion Reactor Components, M.S. Thesis,Future fusion experiments and reactors may require the

Johnson Ed, R.K.

2010-01-01T23:59:59.000Z

417

Calculation of fusion product angular correlation coefficients for fusion plasmas  

SciTech Connect

The angular correlation coefficients for fusion products are calculated in the cases of Maxwellian and beam-target plasmas. Measurement of these coefficients as a localized ion temperature or fast-ion diagnostic is discussed. 8 refs., 7 figs., 1 tab.

Murphy, T.J.

1987-08-01T23:59:59.000Z

418

Fusion ProgramFusion Program Overview at Los Alamos  

E-Print Network (OSTI)

p Fusion Energy: Status & Prospects Washington DC Dec. 2, 2009 U N C L A S S I F I E D Operated configuration plasma physics with the U of Washington, and field diagnostics to study radiation and plasma power windows ­ May produce technically viable design, but not with desired optimal economic

419

"50" Years of Fusion Research Fusion Innovation Research and Energy  

E-Print Network (OSTI)

· Steady-state operation is a highly desirable characteristic for a magnetic fusion power plant with toroidal multipole at GA 1966 #12;Four New Superconducting Tokamaks will Address Steady- State Advanced by Sakharov in the early 50s). ­ Wave propagation became basis for RF heating · Experimental Progress (some

420

Neutron-induced dpa, transmutations, gas production, and helium embrittlement of fusion materials  

E-Print Network (OSTI)

In a fusion reactor materials will be subjected to significant fluxes of high-energy neutrons. As well as causing radiation damage, the neutrons also initiate nuclear reactions leading to changes in the chemical composition of materials (transmutation). Many of these reactions produce gases, particularly helium, which cause additional swelling and embrittlement of materials. This paper investigates, using a combination of neutron-transport and inventory calculations, the variation in displacements per atom (dpa) and helium production levels as a function of position within the high flux regions of a recent conceptual model for the "next-step" fusion device DEMO. Subsequently, the gas production rates are used to provide revised estimates, based on new density-functional-theory results, for the critical component lifetimes associated with the helium-induced grain-boundary embrittlement of materials. The revised estimates give more optimistic projections for the lifetimes of materials in a fusion power plant co...

Gilbert, M R; Nguyen-Manh, D; Zheng, S; Packer, L W; Sublet, J -Ch

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "key fusion reactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges and Facilities  

E-Print Network (OSTI)

Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges these issues. 2 #12;FNST is the science, engineering, technology and materials Fusion Nuclear Science & Technology (FNST) FNST is the science, engineering, technology and materials for the fusion nuclear

Abdou, Mohamed

422

Science/Fusion Energy Sciences FY 2011 Congressional Budget Fusion Energy Sciences  

E-Print Network (OSTI)

Science/Fusion Energy Sciences FY 2011 Congressional Budget Fusion Energy Sciences Funding Profile FY 2010 Current Appropriation FY 2011 Request Fusion Energy Sciences Science 163,479 +57,399 182, Fusion Energy Sciences 394,518b +91,023 426,000 380,000 Public Law Authorizations: Public Law 95

423

Science/Fusion Energy Sciences FY 2007 Congressional Budget Fusion Energy Sciences  

E-Print Network (OSTI)

Science/Fusion Energy Sciences FY 2007 Congressional Budget Fusion Energy Sciences Funding Profile Adjustments FY 2006 Current Appropriation FY 2007 Request Fusion Energy Sciences Science,182 Total, Fusion Energy Sciences........... 266,947b 290,550 -2,906 287,644 318,950 Public Law

424

Axisymmetric Magnetic Mirror Fusion-Fission Hybrid  

Science Conference Proceedings (OSTI)

Fusion-Fission Hybrids and Transmutation / Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems

R. W. Moir; N. N. Martovetsky; A. W. Molvik; D. D. Ryutov; T. C. Simonen

425

Fusion Nuclear Science Facility - Advanced Tokamak Option  

Science Conference Proceedings (OSTI)

Power Plant, Demo, and FNSF / Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2)

C. P. C. Wong; V. S. Chan; A. M. Garofalo; J. A. Leuer; M. E. Sawan; J. P. Smith; R. D. Stambaugh

426

Exo-endo cellulase fusion protein  

DOE Patents (OSTI)

The present invention relates to a heterologous exo-endo cellulase fusion construct, which encodes a fusion protein having cellulolytic activity comprising a catalytic domain derived from a fungal exo-cellobiohydrolase and a catalytic domain derived from an endoglucanase. The invention also relates to vectors and fungal host cells comprising the heterologous exo-endo cellulase fusion construct as well as methods for producing a cellulase fusion protein and enzymatic cellulase compositions.

Bower, Benjamin S. (Palo Alto, CA); Larenas, Edmund A. (Palo Alto, CA); Mitchinson, Colin (Palo Alto, CA)

2012-01-17T23:59:59.000Z

427

One-to-Many Multimodal Fusion Package  

Science Conference Proceedings (OSTI)

The One-to-many Multimodal Fusion Package. Participants from the Iris Exchange (IREX) III Evaluation and the Multibiometrics ...

2012-04-05T23:59:59.000Z

428

1994 International Sherwood Fusion Theory Conference  

SciTech Connect

This report contains the abstracts of the paper presented at the 1994 International Sherwood Fusion Theory Conference.

NONE

1994-04-01T23:59:59.000Z

429

Z-Pinch Fusion for Energy Applications  

SciTech Connect

Z pinches, the oldest fusion concept, have recently been revisited in light of significant advances in the fields of plasma physics and pulsed power engineering. The possibility exists for z-pinch fusion to play a role in commercial energy applications. We report on work to develop z-pinch fusion concepts, the result of an extensive literature search, and the output for a congressionally-mandated workshop on fusion energy held in Snowmass, Co July 11-23,1999.

SPIELMAN,RICK B.

2000-01-01T23:59:59.000Z

430

FESAC Fusion Development Path Rob Goldston  

E-Print Network (OSTI)

ProjectedOntario(OPG)Tritium Inventory(kg) Candu Supply w/o Fusion Projected Tritium Supply Impacts Blanket

431

Institute of Plasma and Fusion Research  

E-Print Network (OSTI)

for fusion accumulated over 40 years of CANDU reactors operation will peak at 27 kg in the year 2027 and

432

Polynomial Fusion Rings of Logarithmic Minimal Models  

E-Print Network (OSTI)

We identify quotient polynomial rings isomorphic to the recently found fundamental fusion algebras of logarithmic minimal models.

Jorgen Rasmussen; Paul A. Pearce

2007-09-21T23:59:59.000Z

433

Heavy Ion Fusion Systems Assessment study  

SciTech Connect

The Heavy Ion Fusion Systems Assessment (HIFSA) study was conducted with the specific objective of evaluating the prospects of using induction linac drivers to generate economical electrical power from inertial confinement fusion. The study used algorithmic models of representative components of a fusion system to identify favored areas in the multidimensional parameter space. The resulting cost-of-electricity (COE) projections are comparable to those from other (magnetic) fusion scenarios, at a plant size of 100 MWe.

Dudziak, D.J.; Herrmannsfeldt, W.B.

1986-07-01T23:59:59.000Z

434

Ignition and Inertial Confinement Fusion at The National Ignition Facility  

SciTech Connect

The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and for studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF is now conducting experiments to commission the laser drive, the hohlraum and the capsule and to develop the infrastructure needed to begin the first ignition experiments in FY 2010. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. NIF will achieve this by concentrating the energy from the 192 beams into a mm{sup 3}-sized target and igniting a deuterium-tritium mix, liberating more energy than is required to initiate the fusion reaction. NIF's ignition program is a national effort managed via the National Ignition Campaign (NIC). The NIC has two major goals: execution of DT ignition experiments starting in FY2010 with the goal of demonstrating ignition and a reliable, repeatable ignition platform by the conclusion of the NIC at the end of FY2012. The NIC will also develop the infrastructure and the processes required to operate NIF as a national user facility. The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on laser fusion as a viable energy option. A laser fusion-based energy concept that builds on NIF, known as LIFE (Laser Inertial Fusion Energy), is currently under development. LIFE is inherently safe and can provide a global carbon-free energy generation solution in the 21st century. This paper describes recent progress on NIF, NIC, and the LIFE concept.

Moses, E

2009-10-01T23:59:59.000Z

435

Sensor fusion for intelligent process control.  

Science Conference Proceedings (OSTI)

An integrated system for the fusion of product and process sensors and controls for production of flat glass was envisioned, having as its objective the maximization of throughput and product quality subject to emission limits, furnace refractory wear, and other constraints. Although the project was prematurely terminated, stopping the work short of its goal, the tasks that were completed show the value of the approach and objectives. Though the demonstration was to have been done on a flat glass production line, the approach is applicable to control of production in the other sectors of the glass industry. Furthermore, the system architecture is also applicable in other industries utilizing processes in which product uniformity is determined by ability to control feed composition, mixing, heating and cooling, chemical reactions, and physical processes such as distillation, crystallization, drying, etc. The first phase of the project, with Visteon Automotive Systems as industrial partner, was focused on simulation and control of the glass annealing lehr. That work produced the analysis and computer code that provide the foundation for model-based control of annealing lehrs during steady state operation and through color and thickness changes. In the second phase of the work, with PPG Industries as the industrial partner, the emphasis was on control of temperature and combustion stoichiometry in the melting furnace, to provide a wider operating window, improve product yield, and increase energy efficiency. A program of experiments with the furnace, CFD modeling and simulation, flow measurements, and sensor fusion was undertaken to provide the experimental and theoretical basis for an integrated, model-based control system utilizing the new infrastructure installed at the demonstration site for the purpose. In spite of the fact that the project was terminated during the first year of the second phase of the work, the results of these first steps toward implementation of model-based control were sufficient to demonstrate the value of the approach to improving the productivity of glass manufacture.

Connors, John J. (PPG Industries, Inc., Harmar Township, PA); Hill, Kevin (PPG Industries, Inc., Harmar Township, PA); Hanekamp, David (PPG Industries, Inc., Harmar Township, PA); Haley, William F. (PPG Industries, Inc., Wichita Falls, TX); Gallagher, Robert J.; Gowin, Craig (PPG Industries, Inc., Batavia, IL); Farrar, Arthur R. (PPG Industries, Inc., Wichita Falls, TX); Sheaffer, Donald A.; DeYoung, Mark A. (PPG Industries, Inc., Mt. Zion, IL); Bertram, Lee A.; Dodge, Craig (PPG Industries, Inc., Mt. Zion, IL); Binion, Bruce (PPG Industries, Inc., Mt. Zion, IL); Walsh, Peter M.; Houf, William G.; Desam, Padmabhushana R. (University of Utah, Salt Lake City, UT); Tiwary, Rajiv (PPG Industries, Inc., Harmar Township, PA); Stokes, Michael R. (PPG Industries, Inc.); Miller, Alan J. (PPG Industries, Inc., Mt. Zion, IL); Michael, Richard W. (PPG Industries, Inc., Lincoln, AL); Mayer, Raymond M. (PPG Industries, Inc., Harmar Township, PA); Jiao, Yu (PPG Industries, Inc., Harmar Township, PA); Smith, Philip J. (University of Utah, Salt Lake City, UT); Arbab, Mehran (PPG Industries, Inc., Harmar Township, PA); Hillaire, Robert G.

2004-08-01T23:59:59.000Z

436

Fusion safety regulations in the United States: Progress and trends  

SciTech Connect

This paper explores the issue of regulations as they apply to current and future fusion experimental machines. It addresses fusion regulatory issues, current regulations used for fusion, the Tokamak Fusion Test Reactor experience with regulations, and future regulations to achieve fusion`s safety and environmental potential.

DeLooper, J.

1994-07-01T23:59:59.000Z

437

Applications of high-speed dust injection to magnetic fusion  

Science Conference Proceedings (OSTI)

It is now an established fact that a significant amount of dust is produced in magnetic fusion devices due to plasma-wall interactions. Dust inventory must be controlled, in particular for the next-generation steady-state fusion machines like ITER, as it can pose significant safety hazards and degrade performance. Safety concerns are due to tritium retention, dust radioactivity, toxicity, and flammability. Performance concerns include high-Z impurities carried by dust to the fusion core that can reduce plasma temperature and may even induce sudden termination of the plasma. We have recognized that dust transport, dust-plasma interactions in magnetic fusion devices can be effectively studied experimentally by injection of dust with known properties into fusion plasmas. Other applications of injected dust include diagnosis of fusion plasmas and edge localized mode (ELM)'s pacing. In diagnostic applications, dust can be regarded as a source of transient neutrals before complete ionization. ELM's pacing is a promising scheme to prevent disruptions and type I ELM's that can cause catastrophic damage to fusion machines. Different implementation schemes are available depending on applications of dust injection. One of the simplest dust injection schemes is through gravitational acceleration of dust in vacuum. Experiments at Los Alamos and Princeton will be described, both of which use piezoelectric shakers to deliver dust to plasma. In Princeton experiments, spherical particles (40 micron) have been dropped in a systematic and reproducible manner using a computer-controlled piezoelectric bending actuator operating at an acoustic (0,2) resonance. The circular actuator was constructed with a 2.5 mm diameter central hole. At resonance ({approx} 2 kHz) an applied sinusoidal voltage has been used to control the flux of particles exiting the hole. A simple screw throttle located {approx}1mm above the hole has been used to set the magnitude of the flux achieved for a given voltage. Particle fluxes ranging from a few tens of particle per second up to thousands of particles per second have been achieved using this simple device. To achieve higher dust injection speed, another key consideration is how to accelerate dust at controlled amount. In addition to gravity, other possible acceleration mechanisms include electrostatic, electromagnetic, gas-dragged, plasma-dragged, and laser-ablation-based acceleration. Features and limitations of the different acceleration methods will be discussed. We will also describe laboratory experiments on dust acceleration.

Wang, Zhehui [Los Alamos National Laboratory; Li, Yangfang [Max Planck Institute for Extraterrestrial Physics, Germany

2012-08-08T23:59:59.000Z

438

Fusion in a Staged Z-pinch  

E-Print Network (OSTI)

York (1978) Teller, E. : Fusion. Academic Press, New York (O R I G I N A L A RT I C L E Fusion in a Staged Z-pinch H.U.implosion the sim- ulated fusion-energy yield is 7.6 MJ,

Rahman, H. U.; Ney, P.; Rostoker, N.; Wessel, F. J.

2009-01-01T23:59:59.000Z

439

DISTRIBUTED SENSOR FUSION USING DYNAMIC CONSENSUS  

E-Print Network (OSTI)

DISTRIBUTED SENSOR FUSION USING DYNAMIC CONSENSUS Demetri P. Spanos Richard M. Murray California in the underlying network topology and performance, making it an interesting candidate for sensor fusion, Decentralized systems, Graph theoretic models, Sensor Fusion 1. INTRODUCTION Sensor networks are a prominent

Murray, Richard M.

440

White Paper on Magnetic Fusion Program Strategies  

E-Print Network (OSTI)

White Paper on Magnetic Fusion Program Strategies Prepared for The President's Committee May 16,1995 #12;Page 2 White Paper on Magnetic Fusion Program Strategies 1. Introduction Dramatic present our vision for the future of fusion energy research. In this white paper, following a summary

Note: This page contains sample records for the topic "key fusion reactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Designing ontologies for higher level fusion  

Science Conference Proceedings (OSTI)

The purpose of higher level fusion is to produce contextual understanding of the states of the environment and prediction of their impact in relation to specific goals of decision makers. One of the main challenges of designing higher level fusion processes ... Keywords: Basic formal ontology (BFO), Higher level fusion, Mereotopology, Ontology, Postdisaster environment, Relations

Eric G. Little; Galina L. Rogova

2009-01-01T23:59:59.000Z

442

CO/sub 2/-laser fusion  

SciTech Connect

The basic concept of laser fusion is described, with a set of requirements on the laser system. Systems and applications concepts are presented and discussed. The CO/sub 2/ laser's characteristics and advantages for laser fusion are described. Finally, technological issues in the development of CO/sub 2/ laser systems for fusion applications are discussed.

Stark, E.E. Jr.

1978-01-01T23:59:59.000Z

443

Information fusion in data privacy: A survey  

Science Conference Proceedings (OSTI)

In this paper, we review the role of information fusion in data privacy. To that end, we introduce data privacy, and describe how information and data fusion are used in some fields of data privacy. Our study is focused on the use of aggregation for ... Keywords: Data privacy, Information fusion, Microaggregation, Record linkage

Guillermo Navarro-Arribas; Vicenç Torra

2012-10-01T23:59:59.000Z

444

Reviewers Comments on the 5th Symposium and the Status of Fusion Research 2003  

DOE Green Energy (OSTI)

Better to understand the status of fusion research in the year 2003 we will first put the research in its historical context. Fusion power research, now beginning its sixth decade of continuous effort, is unique in the field of scientific research. Unique in its mixture of pure and applied research, unique in its long-term goal and its promise for the future, and unique in the degree that it has been guided and constrained by national and international governmental policy. Though fusion research's goal has from the start been precisely defined, namely, to obtain a net release of energy from controlled nuclear fusion reactions between light isotopes (in particular those of hydrogen and helium) the difficulty of the problem has spawned in the past a very wide variety of approaches to the problem. Some of these approaches have had massive international support for decades, some have been pursued only at a ''shoestring'' level by dedicated groups in small research laboratories or universities. In discussing the historical and present status of fusion research the implications of there being two distinctly different approaches to achieving net fusion power should be pointed out. The first, and oldest, approach is the use of strong magnetic fields to confine the heated fuel, in the form of a plasma and at a density typically four or five orders of magnitude smaller than the density of the atmosphere. In steady state this fusion fuel density is still sufficient to release fusion energy at the rate of many megawatts per cubic meter. The plasma confinement times required for net energy release in this regime are long--typically a second or more, representing an extremely difficult scientific challenge --witness the five decades of research in magnetic fusion, still without having reaching that goal. The second, more recently initiated approach, is of course the ''inertial'' approach. As its name implies, the ''confinement'' problem is solved ''inertially,'' that is by compressing and heating a tiny pellet of frozen fusion fuel in nanoseconds, such that before disassembly the pellet fuses and releases its energy as a micro-explosion. The first, and most thoroughly investigated means to create this compression and heating is to use multiple laser beams, with total energies of megajoules, focused down to impinge uniformly on the pellet target. To illustrate the extreme difference between the usual magnetic confinement regime at that of inertial fusion, there are twenty orders of magnitude in fusion power density (ten orders of magnitude in plasma density) between the two regimes. In principle fusion power systems could operate at any density between these extremes, if means were to be found to exploit this possibility.

Post, R F

2005-02-03T23:59:59.000Z

445

Senate targets fusion, backs NIF  

SciTech Connect

This article discusses a budget approved by the Senate Appropriations Committee which funds the fusion program even lower than the drastically reduced level the House approved in July. Work on the International Thermonuclear Experimental Reactor (ITER) would continue but the Tokamak Physics Experiment would be halted. At the same time, the Senate bill allots money to start work on the National Ignition Facility (NIF).

Lawler, A.

1995-08-01T23:59:59.000Z

446

Inertial confinement fusion (ICF) review  

Science Conference Proceedings (OSTI)

During its 1996 winter study JASON reviewed the DOE Inertial Confinement Fusion (ICF) program. This included the National Ignition Facility (NIF) and proposed studies. The result of the review was to comment on the role of the ICF program in support of the DOE Science Based Stockpile Stewardship program.

Hammer, D.; Dyson, F.; Fortson, N.; Novick, B.; Panofsky, W.; Rosenbluth, M.; Treiman, S.; York, H.

1996-03-01T23:59:59.000Z

447

Overview of ORNL Fusion Program  

E-Print Network (OSTI)

Materials Science and Technology Div. 8 Nuclear Science and Technology Div. 9 Research Reactor Div. 10 High Flux Isotope Reactor #12;Molecular dynamics simulation of particle surface interactions Controlled plasma theory and the computational base needed to understand plasma behavior in fusion devices

448

Data fusion with minimal communication  

Science Conference Proceedings (OSTI)

Two sensors obtain data vectors x and y, respectively, and transmit real vectors m&oarr;1(x) and m&oarr;2(y), respectively, to a fusion center. The authors obtain tight lower bounds on the number of messages (the sum of ...

Zhi-Quan Luo; J. N. Tsitsiklis

1994-09-01T23:59:59.000Z

449

Fusion Simulation Project Workshop Report  

E-Print Network (OSTI)

for tokamak operation, disruptions, energetic particle stability and confinement, turbulent transport to performance projections and operational limits. The Fusion Simulation Project, which will focus on tokamak and transient heat loads on the divertor . . . . . 17 2.1.3 Tritium migration and impurity transport

Gropp, Bill

450

Quantum Key Distribution Protocol with User Authentication  

E-Print Network (OSTI)

We propose a quantum key distribution protocol with quantum based user authentication. User authentication is executed by validating the correlation of GHZ states. Alice and Bob can distribute a secure key using the remaining GHZ states after authentication. This secret key does not leak even to the arbitrator by the properties of the entanglement. We will show that our protocol is secure against the cloning attack.

Lee, H; Lee, D; Lim, J; Yang, H J; Lee, Hwayean; Lee, Sangjin; Lee, Donghoon; Lim, Jongin; Yang, HyungJin

2005-01-01T23:59:59.000Z

451

Unifying classical and quantum key distillation  

E-Print Network (OSTI)

Assume that two distant parties, Alice and Bob, as well as an adversary, Eve, have access to (quantum) systems prepared jointly according to a tripartite state ?ABE. In addition, Alice and Bob can use local operations and authenticated public classical communication. Their goal is to establish a key which is unknown to Eve. We initiate the study of this scenario as a unification of two standard scenarios: (i) key distillation (agreement) from classical correlations and (ii) key distillation from pure tripartite quantum states. Firstly, we obtain generalisations of fundamental results related to scenarios (i) and (ii), including upper bounds on the key rate, i.e., the number of key bits that can be extracted per copy of ?ABE. Moreover, based on an embedding of classical distributions into quantum states, we are able to find new connections between protocols and quantities in the standard scenarios (i) and (ii). Secondly, we study specific properties of key distillation protocols. In particular, we show that every protocol that makes use of pre-shared key can be transformed into an equally efficient protocol which needs no pre-shared key. This result is of practical significance as it applies to quantum key distribution (QKD) protocols, but it also implies that the key rate cannot be locked with information on Eve’s side. Finally, we exhibit an arbitrarily large separation between the key rate in the standard setting where Eve is equipped with quantum memory and the key rate in a setting where Eve is only given classical memory. This shows that assumptions on the nature of Eve’s memory are important in order to determine the correct security threshold in QKD. 1

Matthias Christ; Renato Renner

2008-01-01T23:59:59.000Z

452

Overview of nonelectrical applications of fusion  

DOE Green Energy (OSTI)

The potential for, and importance of, nonelectrical applications of fusion energy is discussed. Three possibilities are reviewed in some detail: fusion-fission hybrids for fissile fuel production; high-temperature electrolysis and thermochemical processes for hydrogen production; and high-temperature steam for coal gasification. The hybrid could be an early application of fusion if this route is identified as a desirable goal. Hydrogen production and coal gasification processes appear feasible and could be developed as a part of the conventional fusion blanket research and development. The question of economics, particularly in view of the high capital cost of fusion plants, remains an open issue requiring more study.

Miley, G.H.

1979-01-01T23:59:59.000Z

453

New Quantum Key System Combines Speed, Distance  

Science Conference Proceedings (OSTI)

... a prototype high-speed quantum key distribution (QKD) system ... a theoretically unbreakable “one-time pad” encryption, transmission and decryption ...

2013-07-08T23:59:59.000Z

454

Nanomechanics: New Test Measures Key Properties of ...  

Science Conference Proceedings (OSTI)

Nanomechanics: New Test Measures Key Properties of ... Tests using the wrinkle-crack method, however, show ... to the longest duration tested, 10 days ...

2012-10-18T23:59:59.000Z

455

CODATA Key Values for Thermodynamics - TMS  

Science Conference Proceedings (OSTI)

Feb 8, 2007 ... This site includes internationally agreed upon values for thermodynamic properties of key chemical substances established by the Committee ...

456

Design and Analysis of Key Comparisons  

Science Conference Proceedings (OSTI)

... new methods, and make statistically best practices available ... to Key Comparisons such as data reporting and ... In the big picture, with the lowering ...

2010-11-18T23:59:59.000Z

457

Cryptographic Key Management Workshop 2009 - A Holistic ...  

Science Conference Proceedings (OSTI)

... policies Board of Directors CEO Protect critical data CSO/CISO CIO We aren't ... Encrypted Database Management Encrypted Tape Key Management ...

2012-05-07T23:59:59.000Z

458

Quantum key distribution network with wavelength addressing  

E-Print Network (OSTI)

Most traditional applications of quantum cryptography are point-to-point communications, in which only two users can exchange keys. In this letter, we present a network scheme that enable quantum key distribution between multi-user with wavelength addressing. Considering the current state of wavelength division multiplexing technique, dozens or hundreds of users can be connected to such a network and directly exchange keys with each other. With the scheme, a 4-user demonstration network was built up and key exchanges were performed.

Mo, X F; Han, Z F; Xu, F X; Zhang, T; Guo, Guang-Can; Han, Zheng-Fu; Mo, Xiao-Fan; Xu, Fang-Xing; Zhang, Tao

2006-01-01T23:59:59.000Z

459

Schedules of Key Environmental Impact Statements  

Energy.gov (U.S. Department of Energy (DOE))

This document graphically displays the milestone dates and projected schedules of key Environmental Impact Statements (updated monthly). This chart represents anticipated activity and is not a...

460

BIASED RANDOM-KEY GENETIC ALGORITHMS WITH ...  

E-Print Network (OSTI)

Handbook of Metaheuristics. Kluwer. Academic Publishers, 2003. J.F. Gonçalves and M.G.C. Resende. Biased random-key genetic algorithms for combinatorial ...

Note: This page contains sample records for the topic "key fusion reactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Two key questions about color superconductivity.  

E-Print Network (OSTI)

??We pose two key questions about color superconductivity: What are the effects of the large strange quark mass, and what are the observable consequences of… (more)

Kundu, Joydip, 1977-

2004-01-01T23:59:59.000Z

462

Comment on "Quantum dense key distribution"  

E-Print Network (OSTI)

In this Comment we question the security of recently proposed by Degiovanni et al. [Phys. Rev. A 69 (2004) 032310] scheme of quantum dense key distribution.

Antoni Wojcik

2004-05-07T23:59:59.000Z

463

Identity-based authenticated asymmetric group key agreement protocol  

Science Conference Proceedings (OSTI)

In identity-based public-key cryptography, an entity's public key can be easily derived from its identity. The direct derivation of public keys in identity-based public-key cryptography eliminates the need for certificates and solves certain public key ... Keywords: asymmetric group key agreement, bilinear map, group key agreement, identity-based public-key cryptography

Lei Zhang; Qianhong Wu; Bo Qin; Josep Domingo-Ferrer

2010-07-01T23:59:59.000Z

464

Data security on the national fusion grid  

SciTech Connect

The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

Burruss, Justine R.; Fredian, Tom W.; Thompson, Mary R.

2005-06-01T23:59:59.000Z

465

Security on the US Fusion Grid  

SciTech Connect

The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

Burruss, Justin R.; Fredian, Tom W.; Thompson, Mary R.

2005-06-01T23:59:59.000Z

466

Multimodal fusion for multimedia analysis: a survey  

E-Print Network (OSTI)

This survey aims at providing multimedia researchers with a state-of-the-art overview of fusion strategies, which are used for combining multiple modalities in order to accomplish various multimedia analysis tasks. The existing literature on multimodal fusion research is presented through several classifications based on the fusion methodology and the level of fusion (feature, decision, and hybrid). The fusion methods are described from the perspective of the basic concept, advantages, weaknesses, and their usage in various analysis tasks as reported in the literature. Moreover, several distinctive issues that influence a multimodal fusion process such as, the use of correlation and independence, confidence level, contextual information, synchronization between different modalities, and the optimal modality selection are also highlighted. Finally, we present the open issues for further research in the area of multimodal fusion.

P. K. Atrey; M. A. Hossain; Abdulmotaleb El Saddik; Mohan S. Kankanhalli

2010-01-01T23:59:59.000Z

467

American Fusion News | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

American Fusion News American Fusion News General Atomics (GA) December 4, 2012 The Scorpion's Strategy: "Catch and Subdue" December 4, 2012 Frozen Bullets Tame Unruly Edge Plasmas in Fusion Experiment February 15, 2012 General Atomics (GA) Fusion News: A New Spin on Understanding Plasma Confinement See All Massachusetts Institute of Technology (MIT) April 5, 2013 Applying physics, teamwork to fusion energy science February 22, 2013 A Tour of Plasma Physics in Downtown Cambridge December 4, 2012 Placing Fusion Power on a Pedestal September 21, 2012 MASSACHUSETTS INSTITUTUE OF TECHNOLOGY See All National Ignition Facility February 22, 2013 Summary of Assessment of Prospects for Inertial Fusion Energy February 16, 2012 National Ignition Facility (NIF): Under Pressure: Ramp-Compression Smashes

468

Final report on the Magnetized Target Fusion Collaboration  

SciTech Connect

Nuclear fusion has the potential to satisfy the prodigious power that the world will demand in the future, but it has yet to be harnessed as a practical energy source. The entry of fusion as a viable, competitive source of power has been stymied by the challenge of finding an economical way to provide for the confinement and heating of the plasma fuel. It is the contention here that a simpler path to fusion can be achieved by creating fusion conditions in a different regime at small scale (~ a few cm). One such program now under study, referred to as Magnetized Target Fusion (MTF), is directed at obtaining fusion in this high energy density regime by rapidly compressing a compact toroidal plasmoid commonly referred to as a Field Reversed Configuration (FRC). To make fusion practical at this smaller scale, an efficient method for compressing the FRC to fusion gain conditions is required. In one variant of MTF a conducting metal shell is imploded electrically. This radially compresses and heats the FRC plasmoid to fusion conditions. The closed magnetic field in the target plasmoid suppresses the thermal transport to the confining shell, thus lowering the imploding power needed to compress the target. The undertaking described in this report was to provide a suitable target FRC, as well as a simple and robust method for inserting and stopping the FRC within the imploding liner. The FRC must also survive during the time it takes for the metal liner to compress the FRC target. The initial work at the UW was focused on developing adequate preionization and flux trapping that were found to be essential in past experiments for obtaining the density, flux and most critically, FRC lifetime required for MTF. The timescale for testing and development of such a source can be rapidly accelerated by taking advantage of a new facility funded by the Department of Energy. At this facility, two inductive plasma accelerators (IPA) were constructed and tested. Recent experiments with these IPAs have demonstrated the ability to rapidly form, accelerate and merge two hypervelocity FRCs into a compression chamber. The resultant FRC that was formed was hot (T{sub ion} ~ 400 eV), stationary, and stable with a configuration lifetime several times that necessary for the MTF liner experiments. The accelerator length was less than 1 meter, and the time from the initiation of formation to the establishment of the final equilibrium was less than 10 microseconds. With some modification, each accelerator can be made capable of producing FRCs suitable for the production of the target plasma for the MTF liner experiment. Based on the initial FRC merging/compression results, the design and methodology for an experimental realization of the target plasma for the MTF liner experiment can now be defined. The construction and testing of the key components for the formation of the target plasma at the Air force Research Laboratory (AFRL) will be performed on the IPA experiment, now at MSNW. A high density FRC plasmoid will be formed and accelerated out of each IPA into a merging/compression chamber similar to the imploding liner at AFRL. The properties of the resultant FRC plasma (size, temperature, density, flux, lifetime) will be obtained. The process will be optimized, and a final design for implementation at AFRL will be carried out. When implemented at AFRL it is anticipated that the colliding/merging FRCs will then be compressed by the liner. In this manner it is hoped that ultimately a plasma with ion temperatures reaching the 10 keV range and fusion gain near unity can be obtained.

John Slough

2012-04-18T23:59:59.000Z

469

Lithium-based surfaces controlling fusion plasma behavior at the plasma-material interface  

SciTech Connect

The plasma-material interface and its impact on the performance of magnetically confined thermonuclear fusion plasmas are considered to be one of the key scientific gaps in the realization of nuclear fusion power. At this interface, high particle and heat flux from the fusion plasma can limit the material's lifetime and reliability and therefore hinder operation of the fusion device. Lithium-based surfaces are now being used in major magnetic confinement fusion devices and have observed profound effects on plasma performance including enhanced confinement, suppression and control of edge localized modes (ELM), lower hydrogen recycling and impurity suppression. The critical spatial scale length of deuterium and helium particle interactions in lithium ranges between 5-100 nm depending on the incident particle energies at the edge and magnetic configuration. Lithium-based surfaces also range from liquid state to solid lithium coatings on a variety of substrates (e.g., graphite, stainless steel, refractory metal W/Mo/etc., or porous metal structures). Temperature-dependent effects from lithium-based surfaces as plasma facing components (PFC) include magnetohydrodynamic (MHD) instability issues related to liquid lithium, surface impurity, and deuterium retention issues, and anomalous physical sputtering increase at temperatures above lithium's melting point. The paper discusses the viability of lithium-based surfaces in future burning-plasma environments such as those found in ITER and DEMO-like fusion reactor devices.

Allain, Jean Paul; Taylor, Chase N. [School of Nuclear Engineering, Purdue University, 400 Central Avenue, West Lafayette, Indiana 47907 (United States)

2012-05-15T23:59:59.000Z

470

Unifying classical and quantum key distillation  

E-Print Network (OSTI)

Assume that two distant parties, Alice and Bob, as well as an adversary, Eve, have access to (quantum) systems prepared jointly according to a tripartite state. In addition, Alice and Bob can use local operations and authenticated public classical communication. Their goal is to establish a key which is unknown to Eve. We initiate the study of this scenario as a unification of two standard scenarios: (i) key distillation (agreement) from classical correlations and (ii) key distillation from pure tripartite quantum states. Firstly, we obtain generalisations of fundamental results related to scenarios (i) and (ii), including upper bounds on the key rate. Moreover, based on an embedding of classical distributions into quantum states, we are able to find new connections between protocols and quantities in the standard scenarios (i) and (ii). Secondly, we study specific properties of key distillation protocols. In particular, we show that every protocol that makes use of pre-shared key can be transformed into an equally efficient protocol which needs no pre-shared key. This result is of practical significance as it applies to quantum key distribution (QKD) protocols, but it also implies that the key rate cannot be locked with information on Eve's side. Finally, we exhibit an arbitrarily large separation between the key rate in the standard setting where Eve is equipped with quantum memory and the key rate in a setting where Eve is only given classical memory. This shows that assumptions on the nature of Eve's memory are important in order to determine the correct security threshold in QKD.

Matthias Christandl; Artur Ekert; Michal Horodecki; Pawel Horodecki; Jonathan Oppenheim; Renato Renner

2006-08-25T23:59:59.000Z

471

Magneto-Inertial Fusion (Magnetized Target Fusion)( g g )  

E-Print Network (OSTI)

National Security, LLC for the DOE/NNSA Slide 1 LA-UR-11-01898 #12;Some Observations An economic for the DOE/NNSA 2 #12;Magneto-inertial fusion: Part of a plan B · May allow more efficient drivers, lower Operated by the Los Alamos National Security, LLC for the DOE/NNSA Slide 3 #12;A Wide Range of Driver

472

Diode-Pumped Solid-State Lasers for Internal Fusion Energy  

SciTech Connect

We have begun building the ''Mercury'' laser system as the first in a series of new generation diode-pumped solid-state lasers for inertial fusion research. Mercury will integrate three key technologies: diodes, crystals, and gas cooling, within a unique laser architecture that is scalable to kilojoule and megajoule energy levels for fusion energy applications. The primary near-term performance goals include 10% electrical efficiencies at 10 Hz and 100J with a 2-10 ns pulse length at 1.047 mm wavelength. When completed, Mercury will allow rep-rated target experiments with multiple chambers for high energy density physics research.

Payne, S A; Bibeau, C; Beach, R J; Bayramian, A; Chanteloup, J C; Ebbers, C A; Emanuel, M A; Orth, C D; Rothenberg, J. E; Schaffers, K I; Skidmore, J A; Sutton, S B; Zapata, L E; Powell, H T

1999-11-15T23:59:59.000Z

473

Mercury and Beyond: Diode-Pumped Solid-State Lasers for Inertial Fusion Energy  

SciTech Connect

We have begun building the ''Mercury'' laser system as the first in a series of new generation diode-pumped solid-state lasers for inertial fusion research. Mercury will integrate three key technologies: diodes, crystals, and gas cooling, within a unique laser architecture that is scalable to kilojoule energy levels for fusion energy applications. The primary performance goals include 10% electrical efficiencies at 10 Hz and 100 J with a 2-10 ns pulse length at 1.047 pm wavelength. When completed, Mercury will allow rep-rated target experiments with multiple target chambers for high energy density physics research.

Bibeau, C.; Beach, R.J.; Bayramian, A.; Chanteloup, J.C.; Ebbers, C.A.; Emanuel, M.A.; Orth, C.D.; Rothenberg, J.E.; Schaffers, K.I.; Skidmore, J.A.; Sutton, S.B.; Zapata, L.E.; Payne, S.A.; Powell, H.T.

1999-10-19T23:59:59.000Z

474

T-661: ColdFusion Security Hotfix | APSB11-14, ColdFusion Important Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: ColdFusion Security Hotfix | APSB11-14, ColdFusion Important 1: ColdFusion Security Hotfix | APSB11-14, ColdFusion Important Update T-661: ColdFusion Security Hotfix | APSB11-14, ColdFusion Important Update July 5, 2011 - 7:57am Addthis PROBLEM: ColdFusion 9.0.1, ColdFusion 9, ColdFusion 8.0.1, and ColdFusion 8 are affected with vulnerabilities mentioned in the security bulletins APSB11-14 and APSB11-15. ColdFusion 9.0.1, 9.0, 8.0.1 and 8.0 for Windows, Macintosh and UNIX (APSB11-14); ColdFusion integrated/installed with LCDS (APSB11-15) PLATFORM: ColdFusion 9.0.1, 9.0, 8.0.1 and 8.0 for Windows, Macintosh and UNIX ABSTRACT: Vulnerabilities have been identified in ColdFusion 9.0.1 and earlier versions for Windows, Macintosh and UNIX. These vulnerabilities could lead to a cross-site request forgery (CSRF) or a remote denial-of-service (DoS).

475

HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation  

SciTech Connect

Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., /sup 137/Cs, /sup 90/Sr, /sup 129/I, /sup 99/Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,..cap alpha..), (n,..gamma..), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R=1.0 to 3.0) requirements.

Makowitz, H.; Powell, J.R.; Wiswall, R.

1980-01-01T23:59:59.000Z

476

Inertially confined fusion using heavy ion drivers  

Science Conference Proceedings (OSTI)

The various technical issues of HIF will be briefly reviewed in this paper. It will be seen that there are numerous areas in common in all the approaches to HIF. In the recent International Symposium on Heavy Ion Inertial Fusion, the attendees met in specialized workshop sessions to consider the needs for research in each area. Each of the workshop groups considered the key questions of this report: (1) Is this an appropriate time for international collaboration in HIF (2) Which problems are most appropriate for such collaboration (3) Can the sharing of target design information be set aside until other driver and systems issues are better resolved, by which time it might be supposed that there could be a relaxation of classification of target issues (4) What form(s) of collaboration are most appropriate, e.g., bilateral or multilateral (5) Can international collaboration be sensibly attempted without significant increases in funding for HIF The authors of this report share the conviction that collaboration on a broad scale is mandatory for HIF to have the resources, both financial and personnel, to progress to a demonstration experiment. Ultimately it may be possible for a single driver with the energy, power, focusibility, and pulse shape to satisfy the needs of the international community for target physics research. Such a facility could service multiple experimental chambers with a variety of beam geometries and target concepts.

Herrmannsfeldt, W.B. (Stanford Linear Accelerator Center, Menlo Park, CA (United States)); Bangerter, R.O. (Lawrence Berkeley Lab., CA (United States)); Bock, R. (Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)); Hogan, W.J.; Lindl, J.D. (Lawrence Livermore National Lab., CA (United States))

1991-10-01T23:59:59.000Z

477

Inertially confined fusion using heavy ion drivers  

Science Conference Proceedings (OSTI)

The various technical issues of HIF will be briefly reviewed in this paper. It will be seen that there are numerous areas in common in all the approaches to HIF. In the recent International Symposium on Heavy Ion Inertial Fusion, the attendees met in specialized workshop sessions to consider the needs for research in each area. Each of the workshop groups considered the key questions of this report: (1) Is this an appropriate time for international collaboration in HIF? (2) Which problems are most appropriate for such collaboration? (3) Can the sharing of target design information be set aside until other driver and systems issues are better resolved, by which time it might be supposed that there could be a relaxation of classification of target issues? (4) What form(s) of collaboration are most appropriate, e.g., bilateral or multilateral? (5) Can international collaboration be sensibly attempted without significant increases in funding for HIF? The authors of this report share the conviction that collaboration on a broad scale is mandatory for HIF to have the resources, both financial and personnel, to progress to a demonstration experiment. Ultimately it may be possible for a single driver with the energy, power, focusibility, and pulse shape to satisfy the needs of the international community for target physics research. Such a facility could service multiple experimental chambers with a variety of beam geometries and target concepts.

Herrmannsfeldt, W.B. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Bangerter, R.O. [Lawrence Berkeley Lab., CA (United States); Bock, R. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Hogan, W.J.; Lindl, J.D. [Lawrence Livermore National Lab., CA (United States)

1991-10-01T23:59:59.000Z

478

General quantum key distribution in higher dimension  

E-Print Network (OSTI)

We study a general quantum key distribution protocol in higher dimension. In this protocol, quantum states in arbitrary g+1 (1?g?d) out of all d+1 mutually unbiased bases in a d-dimensional system can be used for the key ...

Shi, Han-Duo

479

Robust key extraction from physical uncloneable functions  

Science Conference Proceedings (OSTI)

Physical Uncloneable Functions (PUFs) can be used as a cost-effective means to store key material in an uncloneable way. Due to the fact that the key material is obtained by performing measurements on a physical system, noise is inevitably present in ... Keywords: authentication, challenge-response pair, error correction, noise, physical uncloneable function, speckle pattern

B. Škori?; P. Tuyls; W. Ophey

2005-06-01T23:59:59.000Z

480

General model of quantum key distribution  

E-Print Network (OSTI)

A general mathematical framework for quantum key distribution based on the concepts of quantum channel and Turing machine is suggested. The security for its special case is proved. The assumption is that the adversary can perform only individual (in essence, classical) attacks. For this case an advantage of quantum key distribution over classical one is shown.

A. S. Trushechkin; I. V. Volovich

2005-04-20T23:59:59.000Z

Note: This page contains sample records for the topic "key fusion reactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Fusion Nuclear Science Facility-AT: A Material and Component Testing Device  

Science Conference Proceedings (OSTI)

Fusion Technology Facilities / Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology

C. P. C. Wong; V. S. Chan; A. M. Garofalo; R. Stambaugh; M. E. Sawan; R. Kurtz; B. Merrill

482

The Suitability of the Materials Test Station for Fusion Materials Irradiations  

Science Conference Proceedings (OSTI)

Fusion Technology Facilities / Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology

E. J. Pitcher; C. T. Kelsey IV; S. A. Maloy

483

Fuel Cell Technologies Office: Key Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Key Activities Key Activities The Fuel Cell Technologies Office conducts work in several key areas to advance the development and commercialization of hydrogen and fuel cell technologies. Research, Development, and Demonstration Key areas of research, development, and demonstration (RD&D) include the following: Fuel Cell R&D, which seeks to improve the durability, reduce the cost, and improve the performance of fuel cell systems, through advances in fuel cell stack and balance of plant components Hydrogen Fuel R&D, which focuses on enabling the production of low-cost hydrogen fuel from diverse renewable pathways and addressing key challenges to hydrogen delivery and storage Manufacturing R&D, which works to develop and demonstrate advanced manufacturing technologies and processes that will reduce the cost of fuel cell systems and hydrogen technologies

484

residential sector key indicators | OpenEI  

Open Energy Info (EERE)

residential sector key indicators residential sector key indicators Dataset Summary Description This dataset is the 2009 United States Residential Sector Key Indicators and Consumption, part of the Source EIA Date Released March 01st, 2009 (5 years ago) Date Updated Unknown Keywords AEO consumption EIA energy residential sector key indicators Data application/vnd.ms-excel icon 2009 Residential Sector Key Indicators and Consumption (xls, 55.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment http://www.eia.gov/abouteia/copyrights_reuse.cfm Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote

485

A blueprint for higher-level fusion systems  

Science Conference Proceedings (OSTI)

This paper contends that demands on the data fusion community are beginning to exceed its historical roots in sensor fusion, by requiring greater development of automated situation and impact assessments and more appropriate integration with humans engaged ... Keywords: Cognitive machines, Data fusion, Higher-level fusion, Higher-level fusion interfaces, Impact assessment, Information fusion, JDL model, Object assessment, Semantic machines, Sensor fusion, Situation assessment, Situation awareness, Social machines

Dale A. Lambert

2009-01-01T23:59:59.000Z

486

Investigation of condensed matter fusion  

SciTech Connect

Work on muon-catalyzed fusion led to research on a possible new type of fusion occurring in hydrogen isotopes embedded in metal lattices. While the nuclear-product yields observed to date are so small as to require careful further checking, rates observed over short times appear sufficiently large to suggest that significant neutrons and triton yields could be realized -- if the process could be understood and controlled. During 1990, we have developed two charged-particle detection systems and three new neutron detectors. A segmented, high-efficiency neutron counter was taken into 600 m underground in a mine in Colorado for studies out of the cosmic-ray background. Significant neutron emissions were observed in this environment in both deuterium-gas-loaded metals and in electrolytic cells, confirming our earlier observations.

Jones, S.E.; Berrondo, M.; Czirr, J.B.; Decker, D.L.; Harrison, K.; Jensen, G.L.; Palmer, E.P.; Rees, L.B.; Taylor, S.; Vanfleet, H.B.; Wang, J.C.; Bennion, D.N.; Harb, J.N.; Pitt, W.G.; Thorne, J.M.; Anderson, A.N.; McMurtry, G.; Murphy, N.; Goff, F.E.

1990-12-01T23:59:59.000Z

487