National Library of Energy BETA

Sample records for key fusion reactions

  1. Method of controlling fusion reaction rates

    DOE Patents [OSTI]

    Kulsrud, Russell M. (Princeton, NJ); Furth, Harold P. (Princeton, NJ); Valeo, Ernest J. (Princeton Junction, NJ); Goldhaber, Maurice (Bayport, NY)

    1988-01-01

    A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.

  2. Method of controlling fusion reaction rates

    DOE Patents [OSTI]

    Kulsrud, R.M.; Furth, H.P.; Valeo, E.J.; Goldhaber, M.

    1983-05-09

    This invention relates to a method of controlling the reaction rates in a nuclear fusion reactor; and more particularly, to the use of polarized nuclear fuel.

  3. Dynamical dipole mode in fusion reactions

    SciTech Connect (OSTI)

    Pierroutsakou, D.; Boiano, A.; Romoli, M.; Martin, B.; Inglima, G.; La Commara, M.; Sandoli, M.; Agodi, C.; Alba, R.; Coniglione, R.; Zoppo, A. Del; Maiolino, C.; Piattelli, P.; Santonocito, D.; Sapienza, P.; Baran, V.; Glodariu, T.; Cardella, G.; De Filippo, E.; Pagano, A.

    2009-05-04

    We investigated the dynamical dipole mode, related with entrance channel charge asymmetry effects, in the {sup 40}Ar+{sup 92}Zr and {sup 36}Ar+{sup 96}Zr fusion reactions at E{sub lab} = 15.1 A and 16 A MeV, respectively. These reactions populate, through entrance channels having different charge asymmetries, a compound nucleus in the A = 126 mass energy region, identical spin distribution at an average excitation energy of about 280 MeV. The compound nucleus average excitation energy and average mass were deduced by the analysis of the light charged particle energy spectra. By studying the {gamma}-ray energy spectra and the {gamma}-ray angular distributions of the considered reactions, the dynamical nature of the prompt radiation related to the dynamical dipole mode was evidenced. The data are compared with calculations based on a collective bremsstrahlung analysis of the reaction dynamics.

  4. PPPL to launch major upgrade of key fusion energy test facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to launch major upgrade of key fusion energy test facility NSTX project will produce most ... of nuclear fusion as a clean, safe and abundant fuel for generating electricity. ...

  5. Measuring time of flight of fusion products in an inertial electrostatic confinement fusion device for spatial profiling of fusion reactions

    SciTech Connect (OSTI)

    Donovan, D. C.; Boris, D. R.; Kulcinski, G. L.; Santarius, J. F.; Piefer, G. R.

    2013-03-15

    A new diagnostic has been developed that uses the time of flight (TOF) of the products from a nuclear fusion reaction to determine the location where the fusion reaction occurred. The TOF diagnostic uses charged particle detectors on opposing sides of the inertial electrostatic confinement (IEC) device that are coupled to high resolution timing electronics to measure the spatial profile of fusion reactions occurring between the two charged particle detectors. This diagnostic was constructed and tested by the University of Wisconsin-Madison Inertial Electrostatic Confinement Fusion Group in the IEC device, HOMER, which accelerates deuterium ions to fusion relevant energies in a high voltage ({approx}100 kV), spherically symmetric, electrostatic potential well [J. F. Santarius, G. L. Kulcinski, R. P. Ashley, D. R. Boris, B. B. Cipiti, S. K. Murali, G. R. Piefer, R. F. Radel, T. E. Radel, and A. L. Wehmeyer, Fusion Sci. Technol. 47, 1238 (2005)]. The TOF diagnostic detects the products of D(d,p)T reactions and determines where along a chord through the device the fusion event occurred. The diagnostic is also capable of using charged particle spectroscopy to determine the Doppler shift imparted to the fusion products by the center of mass energy of the fusion reactants. The TOF diagnostic is thus able to collect spatial profiles of the fusion reaction density along a chord through the device, coupled with the center of mass energy of the reactions occurring at each location. This provides levels of diagnostic detail never before achieved on an IEC device.

  6. Experimental study of nuclear fusion reactions in muonic molecular systems

    SciTech Connect (OSTI)

    Bogdanova, L. N.

    2013-03-15

    Since the pioneering discovery of the muon catalysis by Alvarez [L. W. Alvarez, K. Brander, F. S. Crawford, et al., Phys. Rev. 105, 1127 (1957)], considerable efforts were aimed at observation of various fusion processes. Results of these studies facilitated understanding the properties of lightest nuclei and dynamics of low-energy fusion reactions. There still remain unsolved theoretical and experimental problems, especially in case of pt fusion.

  7. Observation of incomplete fusion reactions at l < l {sub crit}

    SciTech Connect (OSTI)

    Yadav, Abhishek Sharma, Vijay R. Singh, Devendra P. Unnati,; Singh, B. P.; Prasad, R.; Singh, Pushpendra P.; Bala, Indu; Kumar, R.; Muralithar, S.; Singh, R. P.; Sharma, M. K.

    2014-08-14

    In order to understand the presence of incomplete fusion at low energies i.e. 4-7MeV/nucleon and also to study its dependence on various entrance-channel parameters, the two type of measurements (i) excitation function for {sup 12}C+{sup 159}Tb, and (ii) forward recoil ranges for {sup 12}C+{sup 159}Tb systems have been performed. The experimentally measured excitation functions have been analyzed within the framework of compound nucleus decay using statistical model code PACE4. Analysis of data suggests the production of xn/px)n-channels via complete fusion, as these are found to be well reproduced by PACE4 predictions, while, a significant enhancement in the excitation functions of ?-emitting channels has been observed over the theoretical ones, which has been attributed due to the incomplete fusion processes. Further, the incomplete fusion events observed in case of forward recoil range measurements have been explained on the basis of the breakup fusion model, where these events may be attributed to the fusion of {sup 8}Be and/or {sup 4}He from {sup 12}C projectile to the target nucleus. In the present work, the SUMRULE model calculations are found to highly underestimate the observed incomplete fusion cross-sections which indicate that the l-values lower than l {sub crit} (limit of complete fusion) significantly contribute to the incomplete fusion reactions.

  8. Dynamical dipole mode in fusion reactions with exotic nuclear beams

    SciTech Connect (OSTI)

    Baran, V.; Rizzo, C.; Colonna, M.; Toro, M. Di; Pierroutsakou, D.

    2009-02-15

    We report the properties of the prompt dipole radiation, produced via a collective bremsstrahlung mechanism, in fusion reactions with exotic beams. We show that the {gamma} yield is sensitive to the density dependence of the symmetry energy below/around saturation. Moreover, we find that the angular distribution of the emitted photons from such fast collective mode can represent a sensitive probe of its excitation mechanism and of fusion dynamics in the entrance channel.

  9. Ab initio calculations of light-ion fusion reactions

    SciTech Connect (OSTI)

    Hupin, G.; Quaglioni, S.; Navratil, P.

    2012-10-20

    The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. Above all nuclear scattering and reactions, which require the solution of the many-body quantum-mechanical problem in the continuum, represent an extraordinary theoretical as well as computational challenge for ab initio approaches. The ab initio No-Core Shell Model/Resonating-Group Method (NCSM/RGM) complements a microscopic cluster technique with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters. This approach is capable of describing simultaneously both bound and scattering states in light nuclei. Recent applications to light nuclei scattering and fusion reactions relevant to energy production in stars and Earth based fusion facilities, such as the deuterium-{sup 3}He fusion, are presented. Progress toward the inclusion of the three nucleon force into the formalism is outlined.

  10. Nucleus-nucleus cold fusion reactions analyzed with the l-dependent 'fusion by diffusion' model

    SciTech Connect (OSTI)

    Cap, T.; Siwek-Wilczynska, K.; Wilczynski, J.

    2011-05-15

    We present a modified version of the Fusion by Diffusion (FBD) model aimed at describing the synthesis of superheavy nuclei in cold fusion reactions, in which a low excited compound nucleus emits only one neutron. The modified FBD model accounts for the angular momentum dependence of three basic factors determining the evaporation residue cross section: the capture cross section {sigma}{sub cap}(l), the fusion probability P{sub fus}(l), and the survival probability P{sub surv}(l). The fusion hindrance factor, the inverse of P{sub fus}(l), is treated in terms of thermal fluctuations in the shape degrees of freedom and is expressed as a solution of the Smoluchowski diffusion equation. The l dependence of P{sub fus}(l) results from the l-dependent potential energy surface of the colliding system. A new parametrization of the distance of starting point of the diffusion process is introduced. An analysis of a complete set of 27 excitation functions for production of superheavy nuclei in cold fusion reactions, studied in experiments at GSI Darmstadt, RIKEN Tokyo, and LBNL Berkeley, is presented. The FBD model satisfactorily reproduces shapes and absolute cross sections of all the cold fusion excitation functions. It is shown that the peak position of the excitation function for a given 1n reaction is determined by the Q value of the reaction and the height of the fission barrier of the final nucleus. This fact could possibly be used in future experiments (with well-defined beam energy) for experimental determination of the fission barrier heights.

  11. Angular momentum effects in fusion-fission and fusion-evaporation reactions

    SciTech Connect (OSTI)

    Plasil, F.

    1980-01-01

    The study of heavy-ion fusion reactions is complicated by the possible contributions of several mechanisms. The various types of heavy-ion-induced fission are discussed. Then compound-nucleus fission is considered with reference to fission barriers deduced from heavy-ion-induced fission. Next, the problems associated with measured values of evaporation-residue cross sections and the angular momentum dependence of incomplete fusion are examined. Finally, the de-excitation of compound nuclei is again taken up, this time with reference to the greatly enhanced ..cap alpha.. emission predicted on the basis of the rotating liquid drop model. 24 figures. (RWR)

  12. DOE's Ed Synakowski traces key discoveries in the quest for fusion energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Princeton Plasma Physics Lab DOE's Ed Synakowski traces key discoveries in the quest for fusion energy By Jeanne Jackson DeVoe March 9, 2016 Tweet Widget Google Plus One Share on Facebook The DOE's Associate Director of Science for Fusion Energy Sciences Ed Synakowski discusses the "aha" moments in the development of fusion energy at a March 5 Ronald E. Hatcher Science on Saturday lecture. (Photo by Elle Starkman/PPPL Office of Communications) The DOE's Associate Director of

  13. DOE's Ed Synakowski traces key discoveries in the quest for fusion energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Princeton Plasma Physics Lab DOE's Ed Synakowski traces key discoveries in the quest for fusion energy By Jeanne Jackson DeVoe March 9, 2016 Tweet Widget Google Plus One Share on Facebook The DOE's Associate Director of Science for Fusion Energy Sciences Ed Synakowski discusses the "aha" moments in the development of fusion energy at a March 5 Ronald E. Hatcher Science on Saturday lecture. (Photo by Elle Starkman/PPPL Office of Communications) The DOE's Associate Director of

  14. Using Nuclear Fusion Reactions to Peer Inside the Core of a Dense Hot

    Office of Science (SC) Website

    Plasma | U.S. DOE Office of Science (SC) Using Nuclear Fusion Reactions to Peer Inside the Core of a Dense Hot Plasma Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email

  15. PPPL to launch major upgrade of key fusion energy test facility | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab to launch major upgrade of key fusion energy test facility NSTX project will produce most powerful spherical torus in the world By John Greenwald January 9, 2012 Tweet Widget Google Plus One Share on Facebook NSTX-U cross section. NSTX-U cross section. Gallery: (Photo by Elle Starkman, PPPL Office of Communications) (Photo by Elle Starkman, PPPL Office of Communications) (Photo by Elle Starkman, PPPL Office of Communications) (Photo by Elle Starkman, PPPL Office of

  16. Ab initio calculations of light-ion fusion reactions (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Journal Article: Ab initio calculations of light-ion fusion reactions Citation Details In-Document Search Title: Ab initio calculations of light-ion fusion reactions The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. Above all nuclear scattering and reactions, which require the solution of the many-body quantum-mechanical problem in the continuum, represent an

  17. Synthesis of transactinide nuclei in cold fusion reactions using radioactive beams

    SciTech Connect (OSTI)

    Smolanczuk, Robert

    2010-06-15

    Chances of synthesis of transactinide nuclei in cold fusion reactions (one-neutron-out reactions) using radioactive beams are evaluated. Because in most of the cases intensities of radioactive beams are significantly less than those of the stable beams, reactions with the greatest radioactive-beam intensities for the particular elements are considered. The results are compared with the recent ones obtained by Loveland [Phys. Rev. C 76, 014612 (2007)], who investigated the same nuclei.

  18. DOE's Ed Synakowski traces key discoveries in the quest for fusion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the quest for fusion energy By Jeanne Jackson DeVoe March 9, 2016 Tweet Widget Google Plus One Share on Facebook The DOE's Associate Director of Science for Fusion Energy ...

  19. Fusion reactions in nuclear astrophysics: The MUSIC approach

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reactions in nuclear astrophysics: The MUSIC approach The MUSIC approach Sergio Almaraz-Calderon Sergio Almaraz-Calderon Physics Division Argonne National Laboratory 2014 ATLAS USER'S MEETING 05/15/2014 Carbon burning reactions in the stars Carbon burning in massive stars Ignition phase of Type Ia supernovae X-ray binaries NASA/CXC/PSU/L University of Chicago Flash Center S. Almaraz-Calderon ATLAS user's meeting 05/15/2014 H. Schatz X-Ray Bursts and Superbursts ● H and He burning (rp-process)

  20. Inertial confinement fusion reaction chamber and power conversion system study

    SciTech Connect (OSTI)

    Maya, I.; Schultz, K.R.; Battaglia, J.M.; Buksa, J.J.; Creedson, R.L.; Erlandson, O.D.; Levine, H.E.; Roelant, D.F.; Sanchez, H.W.; Schrader, S.A.

    1984-09-01

    GA Technologies has developed a conceptual ICF reactor system based on the Cascade rotating-bed reaction chamber concept. Unique features of the system design include the use of low activation SiC in a reaction chamber constructed of box-shaped tiles held together in compression by prestressing tendons to the vacuum chamber. Circulating Li/sub 2/O granules serve as the tritium breeding and energy transport material, cascading down the sides of the reaction chamber to the power conversion system. The total tritium inventory of the system is 6 kg; tritium recovery is accomplished directly from the granules via the vacuum system. A system for centrifugal throw transport of the hot Li/sub 2/O granules from the reaction chamber to the power conversion system has been developed. A number of issues were evaluated during the course of this study. These include the response of first-layer granules to the intense microexplosion surface heat flux, cost effective fabrication of Li/sub 2/O granules, tritium inventory and recovery issues, the thermodynamics of solids-flow options, vacuum versus helium-medium heat transfer, and the tradeoffs of capital cost versus efficiency for alternate heat exchange and power conversion system option. The resultant design options appear to be economically competitive, safe, and environmentally attractive.

  1. Photons & Fusion Newsletter - 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Photons & Fusion Newsletter - 2014 February Photons & Fusion is a monthly review of science and technology at the National Ignition Facility & Photon Science Directorate. For more information, submit a question. Nature Article Reports on Fuel Gain Achieved In NIF High-Foot Experiments A key step on the way to ignition on NIF is for the energy generated through fusion reactions in an inertially confined fusion plasma to exceed the amount of energy deposited into the

  2. Dynamical Dipole Mode in Heavy-Ion Fusion-Evaporation and Fission Reactions in the {sup 192}Pb Mass Region

    SciTech Connect (OSTI)

    Silvestri, R.; Inglima, G.; La Commara, M.; Martin, B.; Sandoli, M.; Pierroutsakou, D.; Parascandolo, C.; Boiano, A.; Romoli, M.; Agodi, C.; Alba, R.; Colonna, M.; Coniglione, R.; Del Zoppo, A.; Maiolino, C.; Santonocito, D.; Baran, V.; De Filippo, E.; Di Toro, M.; Rizzo, C.

    2011-10-28

    The prompt {gamma}-ray emission related with the dynamical dipole mode decay was investigated in the {sup 192}Pb mass region by means of the {sup 40}Ca+{sup 152}Sm and {sup 48}Ca+{sup 144}Sm fusion-evaporation and fission reactions at E{sub lab} = 11 and 10.1 MeV/nucleon, respectively. The two reactions populate, through entrance channel having different charge asymmetries, the {sup 192}Pb compound nucleus at an excitation energy of 236 MeV with identical spin distribution. Preliminary results of this experiment show that the dynamical dipole mode survives in collisions involving heavier mass reaction partners than those studied previously. As a fast cooling mechanism on the fusion path, the prompt dipole {gamma} radiation could be of interest for the synthesis of super-heavy elements through ''hot'' fusion reactions.

  3. Fusion cross sections for the {sup 9}Be+{sup 124}Sn reaction at energies near the Coulomb barrier

    SciTech Connect (OSTI)

    Parkar, V. V.; Palit, R.; Sharma, Sushil K.; Naidu, B. S.; Santra, S.; Mahata, K.; Ramachandran, K.; Joshi, P. K.; Rath, P. K.; Trivedi, T.; Raghav, A.

    2010-11-15

    The complete and incomplete fusion cross sections for {sup 9}Be+{sup 124}Sn reaction have been deduced using the online {gamma}-ray measurement technique. Complete fusion at energies above the Coulomb barrier was found to be suppressed by {approx}28% compared to the coupled-channels calculations and is in agreement with the systematics of L. R. Gasques et al. [Phys. Rev. C 79, 034605 (2009)]. Study of the projectile dependence for fusion on a {sup 124}Sn target shows that, for {sup 9}Be nuclei, the enhancement at below-barrier energies is substantial compared to that of tightly bound nuclei.

  4. Fusion-fission and quasifission in the reactions with heavy ions leading to the formation of Hs

    SciTech Connect (OSTI)

    Itkis, I. M.; Itkis, M. G.; Knyazheva, G. N.; Kozulin, E. M.

    2012-10-20

    Mass and energy distributions of binary reaction products obtained in the reactions {sup 22}Ne+{sup 249}Cf,{sup 26}Mg+{sup 248}Cm,{sup 36}S+{sup 238}U and {sup 58}Fe+{sup 208}Pb leading to Hs isotopes have been measured. At energies below the Coulomb barrier the bimodal fission of Hs*, formed in the reaction {sup 26}Mg+{sup 248}Cm, is observed. In the reaction {sup 36}S+{sup 238}U the considerable part of the symmetric fragments arises from the quasifission process. At energies above the Coulomb barrier the symmetric fragments originate mainly from fusion-fission process for both reactions with Mg and S ions. In the case of the {sup 58}Fe+{sup 208}Pb reaction the quasifission process dominates at all measured energies. The pre- and post-scission neutron multiplicities as a function of the fragment mass have been obtained for the reactions studied.

  5. Fission-Fusion: A new reaction mechanism for nuclear astrophysics based on laser-ion acceleration

    SciTech Connect (OSTI)

    Thirolf, P. G.; Gross, M.; Allinger, K.; Bin, J.; Henig, A.; Kiefer, D.; Habs, D.; Ma, W.; Schreiber, J.

    2011-10-28

    We propose to produce neutron-rich nuclei in the range of the astrophysical r-process around the waiting point N = 126 by fissioning a dense laser-accelerated thorium ion bunch in a thorium target (covered by a CH{sub 2} layer), where the light fission fragments of the beam fuse with the light fission fragments of the target. Via the 'hole-boring' mode of laser Radiation Pressure Acceleration using a high-intensity, short pulse laser, very efficiently bunches of {sup 232}Th with solid-state density can be generated from a Th target and a deuterated CD{sub 2} foil, both forming the production target assembly. Laser-accelerated Th ions with about 7 MeV/u will pass through a thin CH{sub 2} layer placed in front of a thicker second Th foil (both forming the reaction target) closely behind the production target and disintegrate into light and heavy fission fragments. In addition, light ions (d,C) from the CD{sub 2} layer of the production target will be accelerated as well, inducing the fission process of {sup 232}Th also in the second Th layer. The laser-accelerated ion bunches with solid-state density, which are about 10{sup 14} times more dense than classically accelerated ion bunches, allow for a high probability that generated fission products can fuse again. The high ion beam density may lead to a strong collective modification of the stopping power, leading to significant range and thus yield enhancement. Using a high-intensity laser as envisaged for the ELI-Nuclear Physics project in Bucharest (ELI-NP), order-of-magnitude estimates promise a fusion yield of about 10{sup 3} ions per laser pulse in the mass range of A = 180-190, thus enabling to approach the r-process waiting point at N = 126.

  6. Photo-fusion reactions in a new compact device for ELI

    SciTech Connect (OSTI)

    Moustaizis, S. D.; Auvray, P.; Hora, H.; Lalousis, P.; Larour, J.; Mourou, G. [Technical University of Crete, Science Department, 73100 Chania, Crete (Greece); LPP-Laboratoire de Physique des Plasmas, Ecole Polytechnique, Palaiseau (France); Department of Theoret. Physics, Univ. New South Wales, Sydney 2052 (Australia); Institute of Electronic Structure and Laser, FORTH, Heraklion (Greece); LPP-Laboratoire de Physique des Plasmas, Ecole Polytechnique, Palaiseau (France); LOA Laboratoire d'Optique Appliquee, ENSTA, Palaiseau Cedex (France)

    2012-07-09

    In the last few years significant progress on technological, experimental and numerical studies on fusion process in high density and high temperature plasmas produced by a high intensity laser pulse interaction with clusters in a high external applied magnetic field, enable us to propose a compact photo-fusion magnetic device for high neutron production. For the purpose of the project a pulsed magnetic field driver with values up to 110 Tesla has been developed which allows increasing the trapping time of the high density plasma in the device and improving the neutron yield. Numerical simulations show that the proposed device is capable of producing up to 10{sup 9}-10{sup 10} neutrons per laser shot with an external magnetic field of 150 Tesla. The proposed device can be used for experiments and numerical code validation concerning different conventional and (or) exotic fusion fuels.

  7. Fusion reactions in collisions induced by Li isotopes on Sn targets

    SciTech Connect (OSTI)

    Fisichella, M.; Shotter, A. C.; Di Pietro, A.; Figuera, P.; Lattuada, M.; Marchetta, C.; Musumarra, A.; Pellegriti, M. G.; Ruiz, C.; Scuderi, V.; Strano, E.; Torresi, D.; Zadro, M.

    2012-10-20

    Fusion cross sections for the {sup 6}Li+{sup 120}Sn and {sup 7}Li+{sup 119}Sn systems have been measured. We aim to search for possible effects due to the different neutron transfer Q-values, by comparing the fusion cross sections for the two systems below the barrier. This experiment is the first step of a wider systematic aiming to study the above problems in collisions induced by stable and unstable Li isotopes on tin all forming the same compound nucleus.

  8. Some thoughts on a simple mechanism for the [sup 2]H + [sup 2]H [yields] [sup 4]He cold fusion reaction

    SciTech Connect (OSTI)

    Park, A.E.

    1993-11-01

    A speculative mechanism for the creation of [sup 4]He using cold fusion is proposed. The nuclear transformation can be made by the fusion of two excited rotating ground states of deuterium into a highly excited rotating ground state of [sup 4]He. Under compression and relatively stable conditions, the formation of such a bound, stretched-out pnnp state of [sup 4]He would be favored (with respect to Coulomb repulsion) over other nuclear ground states without as much angular momentum. The reaction likely occurs at the surface of palladium. A more descriptive name for this reaction is compressed-rotational-shielded (CRS) fusion. Potential experimental conditions for enhancing the initiation of CRS fusion are discussed. 8 refs., 2 figs.

  9. Investigation of cold fusion phenomena in deuterated metals. Final report, Volume 1. Overview, executive summary, chemistry, physics, gas reactions, metallurgy. Technical information series

    SciTech Connect (OSTI)

    Anderson, L.; Barrowes, S.C.; Bergeson, H.E.; Bourgeois, F.; Cedzynska, K.

    1991-06-01

    The March 1989 announcement by Pons and Fleischmann stimulated worldwide interest in the cold fusion phenomenon. In Utah the legislature appropriated $5 million to support cold fusion research and development. As cold fusion inquiries continue worldwide, this interim report has been written to document the scientific and legal work that has been funded by the Utah legislature. Partial contents include these titles of papers: Cold Fusion Studies in a High-Pressure Sealed Cell; Tritium and Neutron Generation in Palladium Cathodes with High Deuterium Loading; Deuterium-Gas Phase Reactions on Palladium; Excess Heat Estimation with the Kalman Filter; Ultrasonic Energy Effects on Palladium Electrodes in Cold Fusion Cells; Nuclear Measurements on Deuterium-Loaded Palladium and Titanium.

  10. Investigation of reports of fusion reactions occurring at the cathode in glow discharges

    SciTech Connect (OSTI)

    Ellison, C.H.; Mahaffey, J.A.

    1996-01-01

    Recent reports of deuteron-deuteron (d-d) neutrons resulting from nuclear reactions in or at the palladium cathode of a deuterium glow discharge were investigated. The equipment, techniques, and experimental procedures are discussed in detail, as well as various possible mechanisms to produce such reactions. The results of this investigation do not confirm the presence of d-d reactions. 15 refs., 9 figs.

  11. Investigations of the deuterium-deuterium fusion reaction in cast, annealed, and cold-rolled palladium

    SciTech Connect (OSTI)

    Ilic, R.; Rant, J.; Sutej, T.; Dobersek, M.; Kristof, E.; Skvarc, J.; Kozelj, M. )

    1990-11-01

    This paper reports on a search conducted for neutrons, protons, tritons, {sup 3}He ions, gamma rays, and ion-induced X-rays from deuterium-deuterium (D-D) fusion in cast (36-g), annealed (4-g), and cold-rolled (16-g) palladium specimens and a palladium hydrogen thermal valve (11 g) electrochemically charged with deuterium. The palladium cathodes were charged in an electrolytic cell (0.1 M LiOD (99.8% deuterium), platinum anode) at a current density of 25 mA/cm{sup 2} from 20 to 140 h.

  12. PRODUCTION OF {sup 9}Be THROUGH THE {alpha}-FUSION REACTION OF METAL-POOR COSMIC RAYS AND STELLAR FLARES

    SciTech Connect (OSTI)

    Kusakabe, Motohiko; Kawasaki, Masahiro E-mail: kawasaki@icrr.u-tokyo.ac.jp

    2013-04-10

    Spectroscopic observations of metal-poor stars have indicated possible {sup 6}Li abundances that are much larger than the primordial abundance predicted in the standard big bang nucleosynthesis model. Possible mechanisms of {sup 6}Li production in metal-poor stars include pregalactic and cosmological cosmic-ray (CR) nucleosynthesis and nucleosynthesis by flare-accelerated nuclides. We study {sup 9}Be production via two-step {alpha}-fusion reactions of CR or flare-accelerated {sup 3,4}He through {sup 6}He and {sup 6,7}Li, in pregalactic structure, intergalactic medium, and stellar surfaces. We solve transfer equations of CR or flare particles and calculate nuclear yields of {sup 6}He, {sup 6,7}Li, and {sup 9}Be taking account of probabilities of processing {sup 6}He and {sup 6,7}Li into {sup 9}Be via fusions with {alpha} particles. Yield ratios, i.e., {sup 9}Be/{sup 6}Li, are then calculated for the CR and flare nucleosynthesis models. We suggest that the future observations of {sup 9}Be in metal-poor stars may find enhanced abundances originating from metal-poor CR or flare activities.

  13. US ITER | Why Fusion?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Why Fusion? US Fusion Research Educational Resources Why Fusion? Home > Why Fusion? What is Fusion? Fusion is a key element in long-term US energy plans. ITER will allow scientists to explore the physics of a burning plasma at energy densities close to that of a commercial power plant. This is a critical step towards producing and delivering electricity from fusion to the grid. Nuclear fusion occurs naturally in stars, like our sun. When hydrogen gets hot enough, the process of fusion

  14. Sensitivity of fusion and quasi-elastic barrier distributions of {sub 16}O+{sub 144}Sm reaction on the coupling radius parameter

    SciTech Connect (OSTI)

    Zamrun, Muhammad; Usman, Ida; Variani, Viska Inda; Kassim, Hasan Abu

    2014-03-05

    We study the heavy-ion collision at sub-barrier energies of {sub 16}O+{sub 144}Sm system using full order coupled-channels formalism. We especially investigate the sensitivity of fusion and quasi-elastic barrier distributions for this system on the coupling radius parameter. We found that the coupled-channels calculations of the fusion and the quasi-elastic barrier distributions are sensitive to the coupling radius for this reaction in contrast to the fusion and quasi-elastic cross section. Our study indicates that the larger coupling radius, i.e., r{sub coup}=1.20, is required by the experimental quasi-elastic barrier distribution. However, the experimental fusion barrier distribution compulsory the small value, i.e., r{sub coup}=1.06.

  15. Dynamical dipole mode in fusion reactions at 16 MeV/nucleon and beam energy dependence

    SciTech Connect (OSTI)

    Pierroutsakou, D.; Boiano, A.; Romoli, M.; Martin, B.; Inglima, G.; Commara, M. La; Parascandolo, C.; Sandoli, M.; Agodi, C.; Alba, R.; Colonna, M.; Coniglione, R.; Zoppo, A. Del; Maiolino, C.; Piattelli, P.; Santonocito, D.; Sapienza, P.; Baran, V.; Cardella, G.; Filippo, E. De

    2009-08-15

    High-energy {gamma} rays and light charged particles from the {sup 36}Ar+{sup 96}Zr and {sup 40}Ar+{sup 92}Zr reactions at E{sub lab}=16 and 15.1 MeV/nucleon, respectively, were measured in coincidence with evaporation residues by means of the MEDEA multidetector array coupled to four parallel plate avalanche counters. The aim of this experiment was to investigate the prompt {gamma} radiation, emitted in the decay of the dynamical dipole mode, in the {approx}16 MeV/nucleon energy range and to map its beam energy dependence, comparing the present results with our previous ones obtained at lower energies. The studied reactions populate, through entrance channels having different charge asymmetries, a compound nucleus in the region of Ce under the same conditions of excitation energy and spin. Light charged particle energy spectra were used to pin down the average excitation energy and the average mass of the system. By studying the {gamma}-ray spectra of the charge symmetric reaction {sup 40}Ar+{sup 92}Zr, the statistical giant dipole resonance (GDR) parameters and angular distribution were extracted, and a comparison of the linearized 90 deg. {gamma}-ray spectra of the two reactions revealed a 12% extra yield in the GDR energy region for the more charge asymmetric system. The center-of-mass angular distribution data of this extra {gamma} yield, compatible with a dipole oscillating along the symmetry axis of the dinuclear system, support its dynamical nature. The experimental findings are compared with theoretical predictions performed within a Boltzmann-Nordheim-Vlasov transport model and based on a collective bremsstrahlung analysis of the entrance channel reaction dynamics. An interesting sensitivity to the symmetry term of the equation of state and to in-medium effects on nucleon-nucleon (nn) cross sections is finally discussed.

  16. An overview on incomplete fusion reaction dynamics at energy range ? 3-8 MeV/A

    SciTech Connect (OSTI)

    Ali, Rahbar; Singh, D.; Ansari, M. Afzal; Kumar, Rakesh; Muralithar, S.; Golda, K. S.; Singh, R. P.; Bhowmik, R. K.; Rashid, M. H.; Guin, R.; Das, S. K.

    2014-08-14

    The information of ICF reaction has been obtained from the measurement of excitation function (EF) of ERs populated in the interaction of {sup 20}Ne and {sup 16}O on {sup 55}Mn, {sup 159}Tb and {sup 156}Gd targets. Sizable enhancement in the measured cross-sections has been observed in ?-emitting channels over theoretical predictions, which has been attributed to ICF of the projectile. In order to confirm the findings of the measurements and analysis of EFs, the forward recoil range distributions of ERs populated in {sup 20}Ne+{sup 159}Tb (E ?165MeV) and {sup 16}O+{sup 156}Gd (E ? 72, 82 and 93MeV) systems, have been measured. It has been observed that peaks appearing at different cumulative thicknesses in the stopping medium are related with different degree of linear momentum transfer from projectile to target nucleus by adopting the break-up fusion model consideration. In order to deduce the angular momentum involved in various CF and / or ICF reaction products, spin distribution and side-feeding intensity profiles of radio-nuclides populated via CF and ICF channels in {sup 16}O+{sup 160}Gd system at energy, E ? 5.6 MeV/A, have been studied. Spin distribution of ICF products are found to be distinctly different than that observed from CF products.

  17. Results of an attempt to measure increased rates of the reaction D-2 + D-2 yields He-3 + n in a nonelectrochemical cold fusion experiment

    SciTech Connect (OSTI)

    Fralick, G.C.; Decker, A.J.; Blue, J.W.

    1989-12-01

    An experiment was performed to look for evidence of deuterium fusion in palladium. The experiment, which involved introducing deuterium into the palladium filter of a hydrogen purifier, was designed to detect neutrons produced in the reaction D-2 + D-2 yields He-3 + n as well as heat production. The neutron counts for deuterium did not differ significantly from background or from the counts for a hydrogen control. Heat production was detected when deuterium, but not hydrogen, was pumped from the purifier.

  18. Exploring the influence of transfer channels on fusion reactions: The case of 40 Ca + 58,64 Ni

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bourgin, D.; Courtin, S.; Haas, F.; Goasduff, A.; Stefanini, A. M.; Montagnoli, G.; Montanari, D.; Corradi, L.; Huiming, J.; Scarlassara, F.; et al

    2015-01-29

    Fusion cross sections have been measured in the 40Ca + 58Ni and 40Ca + 64Ni systems at beam energies ranging from Elab = 104.75 MeV to 153.5 MeV using the Laboratori Nazionali di Legnaro electrostatic deflector. Distributions of barriers have been extracted from the experimental data. Preliminary coupled channel calculations were performed and hints of effects of neutron transfers on the fusion below the barrier in the 40Ca + 64Ni are discussed.

  19. Multinational achievement: PPPL collaborates on record fusion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multinational achievement: PPPL collaborates on record fusion plasma in tokamak in China ... for suppressing instabilities that can cut short the life of controlled fusion reactions. ...

  20. X-ray bang-time and fusion reaction history at ~ps resolution using RadOptic detection

    SciTech Connect (OSTI)

    Vernon, S P; Lowry, M E; Baker, K L; Bennett, C V; Celeste, J R; Cerjan, C; Haynes, S; Hernandez, V J; Hsing, W W; London, R A; Moran, B; von Wittenau, A S; Steele, P T; Stewart, R E

    2012-05-01

    We report recent progress in the development of RadOptic detectors, radiation to optical converters, that rely upon x-ray absorption induced modulation of the optical refractive index of a semiconductor sensor medium to amplitude modulate an optical probe beam. The sensor temporal response is determined by the dynamics of the electron-hole pair creation and subsequent relaxation in the sensor medium. Response times of a few ps have been demonstrated in a series of experiments conducted at the LLNL Jupiter Laser Facility. This technology will enable x-ray bang-time and fusion burn-history measurements with {approx} ps resolution.

  1. Fusion roadmapping | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion roadmapping Subscribe to RSS - Fusion roadmapping The process of mapping a path to a commercial fusion reactor by planning a sequence of future machines. DOE's Ed Synakowski traces key discoveries in the quest for fusion energy The path to creating sustainable fusion energy as a clean, abundant and affordable source of electric energy has been filled with "aha moments" that have led to a point in history when the international fusion experiment, ITER, is poised to produce more

  2. Cold nuclear fusion

    SciTech Connect (OSTI)

    Tsyganov, E. N.

    2012-02-15

    Recent accelerator experiments on fusion of various elements have clearly demonstrated that the effective cross-sections of these reactions depend on what material the target particle is placed in. In these experiments, there was a significant increase in the probability of interaction when target nuclei are imbedded in a conducting crystal or are a part of it. These experiments open a new perspective on the problem of so-called cold nuclear fusion.

  3. Atomic data for fusion

    SciTech Connect (OSTI)

    Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A.; Barnett, C.F.

    1990-07-01

    This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research.

  4. Exploring the influence of transfer channels on fusion reactions: The case of 40 Ca + 58,64 Ni

    SciTech Connect (OSTI)

    Bourgin, D.; Courtin, S.; Haas, F.; Goasduff, A.; Stefanini, A. M.; Montagnoli, G.; Montanari, D.; Corradi, L.; Huiming, J.; Scarlassara, F.; Fioretto, E.; Simenel, C.; Rowley, N.; Jiang, C. L.; Szilner, S.; Mijatović, T.

    2015-01-29

    Fusion cross sections have been measured in the 40Ca + 58Ni and 40Ca + 64Ni systems at beam energies ranging from Elab = 104.75 MeV to 153.5 MeV using the Laboratori Nazionali di Legnaro electrostatic deflector. Distributions of barriers have been extracted from the experimental data. Preliminary coupled channel calculations were performed and hints of effects of neutron transfers on the fusion below the barrier in the 40Ca + 64Ni are discussed.

  5. Rajesh Maingi adds a new strategic dimension to fusion and plasma...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rajesh Maingi adds a new strategic dimension to fusion and plasma physics research By John ... gas that fuels fusion reactions in donut-shaped magnetic facilities called tokamaks. ...

  6. Fusion reactor design | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reactor design Subscribe to RSS - Fusion reactor design The design of devices that use powerful magnetic fields to control plasma so fusion can take place. The most widely used magnetic confinement device is the tokamak, followed by the stellarator. DOE's Ed Synakowski traces key discoveries in the quest for fusion energy The path to creating sustainable fusion energy as a clean, abundant and affordable source of electric energy has been filled with "aha moments" that have led to a

  7. Intense fusion neutron sources

    SciTech Connect (OSTI)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-15

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 10{sup 15}-10{sup 21} neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 10{sup 20} neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  8. Key Activities

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office conducts work in several key areas to advance the development and commercialization of hydrogen and fuel cell technologies.

  9. Simulation of Fusion Plasmas

    ScienceCinema (OSTI)

    Holland, Chris [UC San Diego, San Diego, California, United States

    2010-01-08

    The upcoming ITER experiment (www.iter.org) represents the next major milestone in realizing the promise of using nuclear fusion as a commercial energy source, by moving into the ?burning plasma? regime where the dominant heat source is the internal fusion reactions. As part of its support for the ITER mission, the US fusion community is actively developing validated predictive models of the behavior of magnetically confined plasmas. In this talk, I will describe how the plasma community is using the latest high performance computing facilities to develop and refine our models of the nonlinear, multiscale plasma dynamics, and how recent advances in experimental diagnostics are allowing us to directly test and validate these models at an unprecedented level.

  10. FIREBALL: Fusion Ignition Rocket Engine with Ballistic Ablative Lithium Liner

    SciTech Connect (OSTI)

    Martin, Adam K.; Eskridge, Richard H.; Lee, Michael H.; Fimognari, Peter J.

    2006-01-20

    Thermo-nuclear fusion may be the key to a high Isp, high specific power propulsion system. In a fusion system energy is liberated within, and imparted directly to, the propellant. In principle, this can overcome the performance limitations inherent in systems that require thermal power transfer across a material boundary, and/or multiple power conversion stages (NTR, NEP). A thermo-nuclear propulsion system, which attempts to overcome some of the problems inherent in the Orion concept, is described. A dense FRC plasmoid is accelerated to high velocity (in excess of 500 km/s) and is compressed into a detached liner (pulse unit). The kinetic energy of the FRC is converted into thermal and magnetic-field energy, igniting a fusion burn in the magnetically confined plasma. The fusion reaction serves as an ignition source for the liner, which is made out of detonable materials. The energy liberated in this process is converted to thrust by a pusher-plate, as in the classic Orion concept. However with this concept, the vehicle does not carry a magazine of autonomous pulse-units. By accelerating a second, heavier FRC, which acts as a piston, right behind the first one, the velocity required to initiate the fusion burn is greatly reduced.

  11. Cold nuclear fusion and muon-catalyzed fusion. (Latest citations from the INSPEC database). Published Search

    SciTech Connect (OSTI)

    1993-12-01

    The bibliography contains citations concerning a nuclear fusion process which occurs at lower temperatures and pressures than conventional fusion reactions. The references describe theoretical and experimental results for a proposed muon-catalyzed fusion reactor, and for studies on muon sticking and reactivation. The temperature dependence of fusion rates, and resolution of some engineering challenges are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  12. Transfer reactions at ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    channels, in addition to inelastic excitations, is an essential key to understanding HI fusion enhancement (H. Esbensen and S. Landowne) dP tr dD inconsistent with BE: "slope...

  13. KEY PERSONNEL

    National Nuclear Security Administration (NNSA)

    by Mods 002, 006, 020, 029, 0049, 0065, 0084, 0091, 0106) DE-NA0000622 Section J, Appendix J, Page 1 SECTION J APPENDIX J KEY PERSONNEL 7062015 TITLE NAME President Christopher...

  14. Fusion energy | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy Subscribe to RSS - Fusion energy The energy released when two atomic nuclei fuse together. This process powers the sun and stars. Read more DOE's Ed Synakowski traces key discoveries in the quest for fusion energy The path to creating sustainable fusion energy as a clean, abundant and affordable source of electric energy has been filled with "aha moments" that have led to a point in history when the international fusion experiment, ITER, is poised to produce more fusion energy

  15. Fusion energy

    SciTech Connect (OSTI)

    Baylor, Larry

    2014-05-02

    Larry Baylor explains how the US ITER team is working to prevent solar flare-like events at a fusion energy reactor that will be like a small sun on earth

  16. Fusion energy

    ScienceCinema (OSTI)

    Baylor, Larry

    2014-05-23

    Larry Baylor explains how the US ITER team is working to prevent solar flare-like events at a fusion energy reactor that will be like a small sun on earth

  17. US ITER - Why Fusion?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    US Fusion Research Sites US Fusion Research Sites DOE Office of Science: US Fusion Energy Sciences Program Fusion Power Associates General Atomics DIIII-D National Fusion Facility Georgia Tech: Fusion Research Center Lawrence Livermore National Laboratory: National Ignition Facility Los Alamos National Laboratory: Fusion Energy Sciences MIT: Plasma Science and Fusion Center Naval Research Laboratory: Plasma Physics Division Oak Ridge National Laboratory: Fusion Energy Division Princeton Plasma

  18. Key Outcomes:

    Office of Environmental Management (EM)

    Key Points & Action Items Inaugural Meeting Thursday, August 25, 2011 Renaissance Denver Hotel Denver, Colorado Participants Tracey LeBeau, Director, Pilar Thomas, Deputy Director, and Brandt Petrasek, Special Assistant, Department of Energy, Office of Indian Energy Policy and Programs; Vice Chairman Ronald Suppah and Jim Manion, Confederated Tribes of the Warm Springs Reservation of Oregon; William Micklin, Ewiiaapaayp Band of Kumeyaay Indians; Councilman Barney Enos, Jr., Jason Hauter,

  19. KEY PERSONNEL

    National Nuclear Security Administration (NNSA)

    by Mods 002, 006, 020, 029, 0049, 0065, 0084, 0091, 0106) DE-NA0000622 Section J, Appendix J, Page 1 SECTION J APPENDIX J KEY PERSONNEL 7/06/2015 TITLE NAME President Christopher C. Gentile Vice President, Engineering Robin Stubenhofer Vice President, Integrated Supply Chain Rick Lavelock Director, Sr. Program Management Org. Vacant Director, Integrated Supply Chain Kurt Lorenzen Director, Engineering Bob Chaney Director, Quality David Schoenherr Director, Information Technology Matt Decker

  20. Fusion Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power www.pppl.gov FACT SHEET FUSION POWER Check us out on YouTube. http://www.youtube.com/ppplab Find us on Facebook. http://www.facebook.com/PPPLab Follow us on Twitter. @PPPLab Access our RSS feed @PPPLab Deuterium Electron Proton Hydrogen Tritium Neutron For centuries, the way in which the sun and stars produce their energy remained a mystery to man. During the twentieth century, scientists discovered that they produce their energy by the fusion process. E=mc 2 , Albert Einstein's familiar

  1. Deuterium concentration and cold fusion; Rate distributions in palladium

    SciTech Connect (OSTI)

    Rogers, V.C.; Sandquist, G.M.; Nielson, K.K. )

    1989-12-01

    Cold fusion reactions and excess heat production have been reported in the electrolysis of heavy water with a palladium metal cathode. Solution of the standard diffusion equation for deuterium without fusion indicates that the deuterium concentration distribution rapidly becomes constant in the palladium lattice. Solution of the nonlinear diffusion equation for deuterium undergoing fusion also gives constant deuterium concentrations, suggesting that any fusion occurs uniformly throughout the palladium lattice. The hypothesis that fusion reactions occur predominantly at the palladium surface is shown to be inconsistent with experimental data.

  2. Fusion breeder: its potential role and prospects

    SciTech Connect (OSTI)

    Lee, J.D.

    1981-01-01

    The fusion breeder is a concept that utilizes 14 MeV neutrons from D + T ..-->.. n(14.1 MeV) + ..cap alpha..(3.5 MeV) fusion reactions to produce more fuel than the tritium (T) needed to sustain the fusion process. This excess fuel production capacity is used to produce fissile material (Pu-239 or U-233) for subsequent use in fission reactors. We are concentrating on a class of blankets we call fission suppressed. The blanket is the region surrounding the fusion plasma in which fusion neutrons interact to produce fuel and heat. The fission-suppressed blanket uses non-fission reactions (mainly (n,2n) or (n,n't)) to generate excess neutrons for the production of net fuel. This is in contrast to the fast fission class of blankets which use (n,fiss) reactions to generate excess neutrons. Fusion reactors with fast fission blankets are commony known as fusion-fission hybrids because they combine fusion and fission in the same device.

  3. Fusion Science to Prepare

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DIII-D Explorations of Fusion Science to Prepare for ITER and FNSF Dr. Richard Buttery General Atomics Tuesday, Dec 10, 2013 - 11:00AM MBG AUDITORIUM Refreshments at 10:45AM The PrinceTon Plasma Physics laboraTory is a U.s. DeParTmenT of energy faciliTy Recent DIII-D research has provided significant new in- formation for the physics basis of key scientific issues for successful operation of ITER and future steady state fu- sion tokamaks, including control of edge localized modes (ELMs), plasma

  4. Inertial fusion energy: A clearer view of the environmental and safety perspectives

    SciTech Connect (OSTI)

    Latkowski, J.F.

    1996-11-01

    If fusion energy is to achieve its full potential for safety and environmental (S&E) advantages, the S&E characteristics of fusion power plant designs must be quantified and understood, and the resulting insights must be embodied in the ongoing process of development of fusion energy. As part of this task, the present work compares S&E characteristics of five inertial and two magnetic fusion power plant designs. For each design, a set of radiological hazard indices has been calculated with a system of computer codes and data libraries assembled for this purpose. These indices quantify the radiological hazards associated with the operation of fusion power plants with respect to three classes of hazard: accidents, occupational exposure, and waste disposal. The three classes of hazard have been qualitatively integrated to rank the best and worst fusion power plant designs with respect to S&E characteristics. From these rankings, the specific designs, and other S&E trends, design features that result in S&E advantages have been identified. Additionally, key areas for future fusion research have been identified. Specific experiments needed include the investigation of elemental release rates (expanded to include many more materials) and the verification of sequential charged-particle reactions. Improvements to the calculational methodology are recommended to enable future comparative analyses to represent more accurately the radiological hazards presented by fusion power plants. Finally, future work must consider economic effects. Trade-offs among design features will be decided not by S&E characteristics alone, but also by cost-benefit analyses. 118 refs., 35 figs., 35 tabs.

  5. Tritium accountancy in fusion systems

    SciTech Connect (OSTI)

    Klein, J.E.; Clark, E.A.; Harvel, C.D.; Farmer, D.A.; Tovo, L.L.; Poore, A.S.; Moore, M.L.

    2015-03-15

    The US Department of Energy (DOE) has clearly defined requirements for nuclear material control and accountability (MCA) of tritium whereas the International Atomic Energy Agency (IAEA) does not since tritium is not a fissile material. MCA requirements are expected for tritium fusion machines and will be dictated by the host country or regulatory body where the machine is operated. Material Balance Areas (MBA) are defined to aid in the tracking and reporting of nuclear material movements and inventories. Material sub-accounts (MSA) are established along with key measurement points (KMP) to further subdivide a MBA to localize and minimize uncertainties in the inventory difference (ID) calculations for tritium accountancy. Fusion systems try to minimize tritium inventory which may require continuous movement of material through the MSA. The ability of making meaningful measurements of these material transfers is described in terms of establishing the MSA structure to perform and reconcile ID calculations. For fusion machines, changes to the traditional ID equation will be discussed which includes breeding, burn-up, and retention of tritium in the fusion device. The concept of 'net' tritium quantities consumed or lost in fusion devices is described in terms of inventory taking strategies and how it is used to track the accumulation of tritium in components or fusion machines. (authors)

  6. TRITIUM ACCOUNTANCY IN FUSION SYSTEMS

    SciTech Connect (OSTI)

    Klein, J. E.; Farmer, D. A.; Moore, M. L.; Tovo, L. L.; Poore, A. S.; Clark, E. A.; Harvel, C. D.

    2014-03-06

    The US Department of Energy (DOE) has clearly defined requirements for nuclear material control and accountability (MC&A) of tritium whereas the International Atomic Energy Agency (IAEA) does not since tritium is not a fissile material. MC&A requirements are expected for tritium fusion machines and will be dictated by the host country or regulatory body where the machine is operated. Material Balance Areas (MBAs) are defined to aid in the tracking and reporting of nuclear material movements and inventories. Material subaccounts (MSAs) are established along with key measurement points (KMPs) to further subdivide a MBA to localize and minimize uncertainties in the inventory difference (ID) calculations for tritium accountancy. Fusion systems try to minimize tritium inventory which may require continuous movement of material through the MSAs. The ability of making meaningful measurements of these material transfers is described in terms of establishing the MSA structure to perform and reconcile ID calculations. For fusion machines, changes to the traditional ID equation will be discussed which includes breading, burn-up, and retention of tritium in the fusion device. The concept of net tritium quantities consumed or lost in fusion devices is described in terms of inventory taking strategies and how it is used to track the accumulation of tritium in components or fusion machines.

  7. Fusion Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Energy Sciences Fusion Energy Sciences Expanding the fundamental understanding of matter at very high temperatures and densities and to build the scientific foundation ...

  8. NSR Key Number Retrieval

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NSR Key Number Retrieval Pease enter key in the box Submit

  9. Heavy Element Synthesis Reaction Mechanisms W. Loveland Oregon State University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reaction Mechanisms W. Loveland Oregon State University Production of Heavy Elements in Complete Fusion Reactions * We need to know three spin-dependent quantities: (a) the capture cross section, (b) the fusion probability and (c) the survival probability, and their isospin dependence where Examples of cold fusion predictions The problem Hot fusion examples "How good are the model predictions of cross sections" * Very controversial Zagrebaev and Greiner (2015) Zagrebaev et al. (2001)

  10. Magneto-inertial fusion (MIF) needs a

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magneto-inertial fusion (MIF) needs a credible demonstration of the key physics principles along with validated simulation models in order to be able to adequately assess the prospects for attractive MIF energy production. SNL and the Laboratory for Laser Energetics at the University of Rochester (LLE) are working collaboratively to investigate the compression and heating of magnetized plasmas at fusion relevant conditions. This work is being conducted through a series of focused experiments

  11. Fusion pumped light source

    DOE Patents [OSTI]

    Pappas, Daniel S. (Los Alamos, NM)

    1989-01-01

    Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the laser medium.

  12. US ITER - Why Fusion?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Educational Resources Fusion Educational Resources DOE Office of Science Fusion Energy Programs Education Links FuseNet: The European Fusion Education Network General Atomics Fusion Education PPPL Science Education Program PPPL FusEdWeb Educational Outreach: US ITER staff members are available for presentations on fusion energy and the ITER project to technical, civic, community, and student groups. To make arrangements for a speaker, please contact Mark Uhran, Communications Manager,

  13. Fusion Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Energy Sciences Fusion Energy Sciences Expanding the fundamental understanding of matter at very high temperatures and densities and to build the scientific foundation needed to develop a fusion energy source. Get Expertise Don Rej (505) 665-1883 Email Building the scientific foundation needed to develop a fusion energy source The mission of the DOE Office of Science's Fusion Energy Sciences (FES) program is to expand the fundamental understanding of matter at very high temperatures and

  14. Fusion Power Associates Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Power Associates Awards Fusion Power Associates is "a non-profit, tax-exempt research and educational foundation, providing information on the status of fusion development and other applications of plasma science and fusion research". The Association makes awards in four categories: Distinguished Career Awards, Leadership Awards, Excellence in Fusion Engineering, and Special Awards. Since 1987, Distinguished Career Awards have been presented "to individuals who have made

  15. Cold nuclear fusion and muon-catalyzed fusion. (Latest citations from the INSPEC: Information services for the Physics and Engineering Communities data base). Published Search

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    The bibliography contains citations concerning a nuclear fusion process which occurs at lower temperatures and pressures than conventional fusion reactions. The references describe theoretical and experimental results for a proposed muon-catalyzed fusion reactor, and for studies on muon sticking and reactivation. The temperature dependence of fusion rates, and resolution of some engineering challenges are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  16. Fusion Forum 1981

    SciTech Connect (OSTI)

    Fowler, T.K.

    1981-07-28

    This review covers the basics of the fusion process. Some research programs and their present status are mentioned. (MOW)

  17. Magneto-Inertial Fusion

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wurden, G. A.; Hsu, S. C.; Intrator, T. P.; Grabowski, T. C.; Degnan, J. H.; Domonkos, M.; Turchi, P. J.; Campbell, E. M.; Sinars, D. B.; Herrmann, M. C.; et al

    2015-11-17

    In this community white paper, we describe an approach to achieving fusion which employs a hybrid of elements from the traditional magnetic and inertial fusion concepts, called magneto-inertial fusion (MIF). The status of MIF research in North America at multiple institutions is summarized including recent progress, research opportunities, and future plans.

  18. A semi-analytic model of magnetized liner inertial fusion

    SciTech Connect (OSTI)

    McBride, Ryan D.; Slutz, Stephen A.

    2015-05-15

    Presented is a semi-analytic model of magnetized liner inertial fusion (MagLIF). This model accounts for several key aspects of MagLIF, including: (1) preheat of the fuel (optionally via laser absorption); (2) pulsed-power-driven liner implosion; (3) liner compressibility with an analytic equation of state, artificial viscosity, internal magnetic pressure, and ohmic heating; (4) adiabatic compression and heating of the fuel; (5) radiative losses and fuel opacity; (6) magnetic flux compression with Nernst thermoelectric losses; (7) magnetized electron and ion thermal conduction losses; (8) end losses; (9) enhanced losses due to prescribed dopant concentrations and contaminant mix; (10) deuterium-deuterium and deuterium-tritium primary fusion reactions for arbitrary deuterium to tritium fuel ratios; and (11) magnetized α-particle fuel heating. We show that this simplified model, with its transparent and accessible physics, can be used to reproduce the general 1D behavior presented throughout the original MagLIF paper [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)]. We also discuss some important physics insights gained as a result of developing this model, such as the dependence of radiative loss rates on the radial fraction of the fuel that is preheated.

  19. Control of a laser inertial confinement fusion-fission power plant

    SciTech Connect (OSTI)

    Moses, Edward L; Latkowski, Jeffrey F; Kramer, Kevin J

    2015-11-05

    A laser inertial-confinement fusion-fission energy power plant is described. The fusion-fission hybrid system uses inertial confinement fusion to produce neutrons from a fusion reaction of deuterium and tritium. The fusion neutrons drive a sub-critical blanket of fissile or fertile fuel. A coolant circulated through the fuel extracts heat from the fuel that is used to generate electricity. The inertial confinement fusion reaction can be implemented using central hot spot or fast ignition fusion, and direct or indirect drive. The fusion neutrons result in ultra-deep burn-up of the fuel in the fission blanket, thus enabling the burning of nuclear waste. Fuels include depleted uranium, natural uranium, enriched uranium, spent nuclear fuel, thorium, and weapons grade plutonium. LIFE engines can meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the highly undesirable stockpiles of depleted uranium, spent nuclear fuel and excess weapons materials.

  20. Control of a laser inertial confinement fusion-fission power plant

    SciTech Connect (OSTI)

    Moses, Edward I.; Latkowski, Jeffery F.; Kramer, Kevin J.

    2015-10-27

    A laser inertial-confinement fusion-fission energy power plant is described. The fusion-fission hybrid system uses inertial confinement fusion to produce neutrons from a fusion reaction of deuterium and tritium. The fusion neutrons drive a sub-critical blanket of fissile or fertile fuel. A coolant circulated through the fuel extracts heat from the fuel that is used to generate electricity. The inertial confinement fusion reaction can be implemented using central hot spot or fast ignition fusion, and direct or indirect drive. The fusion neutrons result in ultra-deep burn-up of the fuel in the fission blanket, thus enabling the burning of nuclear waste. Fuels include depleted uranium, natural uranium, enriched uranium, spent nuclear fuel, thorium, and weapons grade plutonium. LIFE engines can meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the highly undesirable stockpiles of depleted uranium, spent nuclear fuel and excess weapons materials.

  1. The Effects of Neutron Transfer on Nuclear Fusion at Low Energies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effects of Neutron Transfer on Nuclear Fusion at Low Energies Nuclear fusion produces heavier nuclei in stars and in laboratories. At energies so low that a classical particle could not penetrate the Coulomb repulsion of the nucleus, the Coulomb barrier, fusion takes place by quantum tunneling. At these energies, fusion rates can be sensitive to the interplay between nuclear structure and nuclear reactions. This talk presents experimental studies of the influence of neutron transfer on

  2. Public Key Cryptography and Key Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-02-15

    The use and management of certificate-based public key cryptography for the Department of Energy (DOE) requires the establishment of a public key infrastructure (PKI). This chapter defines the policy related to roles, requirements, and responsibilities for establishing and maintaining a DOE PKI and the documentation necessary to ensure that all certificates are managed in a manner that maintains the overall trust required to support a viable PKI. Canceled by DOE N 251.112.

  3. Photons & Fusion Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photons fusion / 2012 Photons & Fusion Newsletter August 2012 Photons & Fusion is a monthly review of science and technology at the National Ignition Facility & Photon Science Directorate. For more information , submit a question. Preparing the NIF Beamlines for Routine High-Energy Operations Much more went into NIF's record-breaking two-megajoule (MJ), 500-terawatt (TW)-plus shot on July 5 than just turning up the energy of NIF's 192 powerful lasers (see the LLNL News Release). In

  4. Binding Behavior of Dopamine Transporter Key to Understanding Chemical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactions in the Brain Binding Behavior of Dopamine Transporter Key to Understanding Chemical Reactions in the Brain Binding Behavior of Dopamine Transporter Key to Understanding Chemical Reactions in the Brain Print Wednesday, 09 December 2015 00:00 Most people have heard of adrenaline, the chemical that causes the "fight or flight" reaction in humans. Most people have also heard of the chemical substances cocaine and methamphetamine, which also elicit a particular (perhaps

  5. Photons & Fusion Newsletter - 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery Science on NIF: Exploring the Physics of Star Formation Article on MOIRE Optics on Cover of Applied Optics Mode 1 Drive Asymmetry in NIF Inertial Confinement Fusion...

  6. Fusion Communication Summit cover

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COMMUNICATIONS SUMMIT for U.S. Magnetic Fusion September 12-13, 2012 Princeton University - Frist Campus Center Princeton, New Jersey, USA Mission Statement Announcements...

  7. Glossary of fusion energy

    SciTech Connect (OSTI)

    Whitson, M.O.

    1982-01-01

    This glossary gives brief descriptions of approximately 400 terms used by the fusion community. Schematic diagrams and photographs of the major US experiments are also included. (MOW)

  8. Photons & Fusion Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Photons & Fusion Newsletter May 2012 Reducing the Time to Grow Good Cryogenic Layers One of the most demanding aspects of preparing targets for NIF ignition experiments is...

  9. Photons & Fusion Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 2013 Photons & Fusion is a monthly review of science and technology at the National Ignition Facility & Photon Science Directorate. For more information, submit a question....

  10. Magnetic fusion reactor economics

    SciTech Connect (OSTI)

    Krakowski, R.A.

    1995-12-01

    An almost primordial trend in the conversion and use of energy is an increased complexity and cost of conversion systems designed to utilize cheaper and more-abundant fuels; this trend is exemplified by the progression fossil fission {yields} fusion. The present projections of the latter indicate that capital costs of the fusion ``burner`` far exceed any commensurate savings associated with the cheapest and most-abundant of fuels. These projections suggest competitive fusion power only if internal costs associate with the use of fossil or fission fuels emerge to make them either uneconomic, unacceptable, or both with respect to expensive fusion systems. This ``implementation-by-default`` plan for fusion is re-examined by identifying in general terms fusion power-plant embodiments that might compete favorably under conditions where internal costs (both economic and environmental) of fossil and/or fission are not as great as is needed to justify the contemporary vision for fusion power. Competitive fusion power in this context will require a significant broadening of an overly focused program to explore the physics and simbiotic technologies leading to more compact, simplified, and efficient plasma-confinement configurations that reside at the heart of an attractive fusion power plant.

  11. Fusion and Ignition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science Fusion and Ignition What is Fusion? Fusion is the process that powers the sun and the stars. Fusion describes what happens when the nuclei of light atoms overcome the electrical resistance that keeps them apart and get close enough to activate the strong nuclear force that holds them together, or "fuse." When fused, they form a bigger nucleus; two elements combine to create a different element at the level of the nucleus. Making elements fuse requires an enormous amount of heat

  12. Taming Plasma Fusion Snakes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Image credit: Linda Sugiyama Controlled nuclear fusion has held the promise of a safe, clean, sustainable energy resource for decades. Now, with concerns over global climate change ...

  13. Bioenergy Key Publications

    Broader source: Energy.gov [DOE]

    The following key publications are issued by the U.S. Department of Energy’s Bioenergy Technologies Office.

  14. Key Milestones/Outlook

    Broader source: Energy.gov [DOE]

    Key Milestones/Outlook per the Department of Energy 2015 Congressional Budget Request, Environmental Management, March 2014

  15. Palladium metallurgy and cold fusion; Some remarks

    SciTech Connect (OSTI)

    Murr, L.E. )

    1990-04-01

    In this paper the recent confusion surrounding claims for the observation of cold fusion involving palladium electrodes in electrochemical cells containing deuterium might be clarified to some extent if the palladium metallurgy, particularly in the context of fundamental microstructures, are accurately defined. Both the palladium/hydrogen and palladium/deuterium systems have been extensively investigated, and it is asserted more than two decades ago that the palladium/hydrogen system was perhaps the most extensively, experimentally investigated metal/gas system. Ordinary hydrogen absorbed in palladium fused to form helium, while in the 1940's Wilner actually observed the fusion reaction at the center of the current cold fusion controversy: d + d {yields} {sup 3}He + n (where d = {sup 2}H represents a deuteron, and n is a neutron). In the experiment by Wilner, a deuterium-saturated palladium sheet was bombarded with accelerated deuterons. The product neutrons (n) were slowed by paraffin wax and detected by the activation of silver.

  16. Science DMZ Fuels Fusion Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net Science DMZ Fuels Fusion Research General Atomics remote controls fusion experiments, bridges...

  17. Review of the Inertial Fusion Energy Program

    SciTech Connect (OSTI)

    none,

    2004-03-29

    Igniting fusion fuel in the laboratory remains an alluring goal for two reasons: the desire to study matter under the extreme conditions needed for fusion burn, and the potential of harnessing the energy released as an attractive energy source for mankind. The inertial confinement approach to fusion involves rapidly compressing a tiny spherical capsule of fuel, initially a few millimeters in radius, to densities and temperatures higher than those in the core of the sun. The ignited plasma is confined solely by its own inertia long enough for a significant fraction of the fuel to burn before the plasma expands, cools down and the fusion reactions are quenched. The potential of this confinement approach as an attractive energy source is being studied in the Inertial Fusion Energy (IFE) program, which is the subject of this report. A complex set of interrelated requirements for IFE has motivated the study of novel potential solutions. Three types of drivers for fuel compression are presently studied: high-averagepower lasers (HAPL), heavy-ion (HI) accelerators, and Z-Pinches. The three main approaches to IFE are based on these drivers, along with the specific type of target (which contains the fuel capsule) and chamber that appear most promising for a particular driver.

  18. Realizing Technologies for Magnetized Target Fusion

    SciTech Connect (OSTI)

    Wurden, Glen A.

    2012-08-24

    Researchers are making progress with a range of magneto-inertial fusion (MIF) concepts. All of these approaches use the addition of a magnetic field to a target plasma, and then compress the plasma to fusion conditions. The beauty of MIF is that driver power requirements are reduced, compared to classical inertial fusion approaches, and simultaneously the compression timescales can be longer, and required implosion velocities are slower. The presence of a sufficiently large Bfield expands the accessibility to ignition, even at lower values of the density-radius product, and can confine fusion alphas. A key constraint is that the lifetime of the MIF target plasma has to be matched to the timescale of the driver technology (whether liners, heavy ions, or lasers). To achieve sufficient burn-up fraction, scaling suggests that larger yields are more effective. To handle the larger yields (GJ level), thick liquid wall chambers are certainly desired (no plasma/neutron damage materials problem) and probably required. With larger yields, slower repetition rates ({approx}0.1-1 Hz) for this intrinsically pulsed approach to fusion are possible, which means that chamber clearing between pulses can be accomplished on timescales that are compatible with simple clearing techniques (flowing liquid droplet curtains). However, demonstration of the required reliable delivery of hundreds of MJ of energy, for millions of pulses per year, is an ongoing pulsed power technical challenge.

  19. HEDP and new directions for fusion energy

    SciTech Connect (OSTI)

    Kirkpatrick, Ronald C

    2009-01-01

    The Quest for fusion energy has a long history and the demonstration of thermonuclear energy release in 1951 represented a record achievement for high energy density. While this first demonstration was in response to the extreme fears of mankind, it also marked the beginning of a great hope that it would usher in an era of boundless cheap energy. In fact, fusion still promises to be an enabling technology that can be compared to the prehistoric utilization of fire. Why has the quest for fusion energy been so long on promises and so short in fulfillment? This paper briefly reviews past approaches to fusion energy and suggests new directions. By putting aside the old thinking and vigorously applying our experimental, computational and theoretical tools developed over the past decades we should be able to make rapid progress toward satisfying an urgent need. Fusion not only holds the key to abundant green energy, but also promises to enable deep space missions and the creation of rare elements and isotopes for wide-ranging industrial applications and medical diagnostics.

  20. Key Events Timeline

    Broader source: Energy.gov [DOE]

    This document lists key events beginning with the April 20 fire on the Deepwater Horizon through July 28th. Updated July 28, 2010.

  1. ARM - Key Science Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govScienceKey Science Questions Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional &...

  2. Virtual-state internal nuclear fusion in metal lattices

    SciTech Connect (OSTI)

    Bussard, R.W. )

    1989-09-01

    A model of deuterium-deuterium (D-D) fusion in metal lattices is presented based on two phenomena: reactions between virtual-state pairs of deuterons bound by electrons of high effective mass m and deuterium energy upscattering by fast ions from fusion or tritium reactions with virtual-state nuclear structure groups in palladium nuclei. Since m is a decreasing function of deuterium ion bulk density n/sub 0/ the exponential barrier tunneling factor decreases rapidly with m. As a result, the fusion rate reaches a maximum at a loading density above zero but less than saturation. This can explain observations of transient neutron output from the (/sup 3/He,n) branch, of D-D fusion.

  3. Integrated Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    SciTech Connect (OSTI)

    Latkowski, J F; Kramer, K J; Abbott, R P; Morris, K R; DeMuth, J; Divol, L; El-Dasher, B; Lafuente, A; Loosmore, G; Reyes, S; Moses, G A; Fratoni, M; Flowers, D; Aceves, S; Rhodes, M; Kane, J; Scott, H; Kramer, R; Pantano, C; Scullard, C; Sawicki, R; Wilks, S; Mehl, M

    2010-12-07

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. A key component of a LIFE engine is the fusion chamber subsystem. The present work details the chamber design for the pure fusion option. The fusion chamber consists of the first wall and blanket. This integrated system must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated LIFE design that meets all of these requirements is described herein.

  4. Inertial Confinement Fusion and the National Ignition Facility (NIF)

    SciTech Connect (OSTI)

    Ross, P.

    2012-08-29

    Inertial confinement fusion (ICF) seeks to provide sustainable fusion energy by compressing frozen deuterium and tritium fuel to extremely high densities. The advantages of fusion vs. fission are discussed, including total energy per reaction and energy per nucleon. The Lawson Criterion, defining the requirements for ignition, is derived and explained. Different confinement methods and their implications are discussed. The feasibility of creating a power plant using ICF is analyzed using realistic and feasible numbers. The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is shown as a significant step forward toward making a fusion power plant based on ICF. NIF is the worlds largest laser, delivering 1.8 MJ of energy, with a peak power greater than 500 TW. NIF is actively striving toward the goal of fusion energy. Other uses for NIF are discussed.

  5. Spherical torus fusion reactor

    DOE Patents [OSTI]

    Martin Peng, Y.K.M.

    1985-10-03

    The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

  6. Fusion-breeder program

    SciTech Connect (OSTI)

    Moir, R.W.

    1982-11-19

    The various approaches to a combined fusion-fission reactor for the purpose of breeding /sup 239/Pu and /sup 233/U are described. Design aspects and cost estimates for fuel production and electricity generation are discussed. (MOW)

  7. Inertial-confinement-fusion targets

    SciTech Connect (OSTI)

    Hendricks, C.D.

    1982-08-10

    Much of the research in laser fusion has been done using simple ball on-stalk targets filled with a deuterium-tritium mixture. The targets operated in the exploding pusher mode in which the laser energy was delivered in a very short time (approx. 100 ps or less) and was absorbed by the glass wall of the target. The high energy density in the glass literally exploded the shell with the inward moving glass compressing the DT fuel to high temperatures and moderate densities. Temperatures achieved were high enough to produce DT reactions and accompanying thermonuclear neutrons and alpha particles. The primary criteria imposed on the target builders were: (1) wall thickness, (2) sphere diameter, and (3) fuel in the sphere.

  8. Multishell inertial confinement fusion target

    DOE Patents [OSTI]

    Holland, James R. (Butler, PA); Del Vecchio, Robert M. (Vandergrift, PA)

    1984-01-01

    A method of fabricating multishell fuel targets for inertial confinement fusion usage. Sacrificial hemispherical molds encapsulate a concentric fuel pellet which is positioned by fiber nets stretched tautly across each hemispherical mold section. The fiber ends of the net protrude outwardly beyond the mold surfaces. The joint between the sacrificial hemispheres is smoothed. A ceramic or glass cover is then deposited about the finished mold surfaces to produce an inner spherical surface having continuously smooth surface configuration. The sacrificial mold is removed by gaseous reaction accomplished through the porous ceramic cover prior to enclosing of the outer sphere by addition of an outer coating. The multishell target comprises the inner fuel pellet concentrically arranged within a surrounding coated cover or shell by fiber nets imbedded within the cover material.

  9. Multishell inertial confinement fusion target

    DOE Patents [OSTI]

    Holland, James R. (Butler, PA); Del Vecchio, Robert M. (Vandergrift, PA)

    1987-01-01

    A method of fabricating multishell fuel targets for inertial confinement fusion usage. Sacrificial hemispherical molds encapsulate a concentric fuel pellet which is positioned by fiber nets stretched tautly across each hemispherical mold section. The fiber ends of the net protrude outwardly beyond the mold surfaces. The joint between the sacrificial hemispheres is smoothed. A ceramic or glass cover is then deposited about the finished mold surfaces to produce an inner spherical surface having continuously smooth surface configuration. The sacrificial mold is removed by gaseous reactions accomplished through the porous ceramic cover prior to enclosing of the outer sphere by addition of an outer coating. The multishell target comprises the inner fuel pellet concentrically arranged within a surrounding coated cover or shell by fiber nets imbedded within the cover material.

  10. Optical key system

    DOE Patents [OSTI]

    Hagans, Karla G. (Livermore, CA); Clough, Robert E. (Danville, CA)

    2000-01-01

    An optical key system comprises a battery-operated optical key and an isolated lock that derives both its operating power and unlock signals from the correct optical key. A light emitting diode or laser diode is included within the optical key and is connected to transmit a bit-serial password. The key user physically enters either the code-to-transmit directly, or an index to a pseudorandom number code, in the key. Such person identification numbers can be retained permanently, or ephemeral. When a send button is pressed, the key transmits a beam of light modulated with the password information. The modulated beam of light is received by a corresponding optical lock with a photovoltaic cell that produces enough power from the beam of light to operate a password-screen digital logic. In one application, an acceptable password allows a two watt power laser diode to pump ignition and timing information over a fiberoptic cable into a sealed engine compartment. The receipt of a good password allows the fuel pump, spark, and starter systems to each operate. Therefore, bypassing the lock mechanism as is now routine with automobile thieves is pointless because the engine is so thoroughly disabled.

  11. ITER Fusion Energy

    ScienceCinema (OSTI)

    Dr. Norbert Holtkamp

    2010-01-08

    ITER (in Latin ?the way?) is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier over one and thus release energy. In the fusion process two isotopes of hydrogen ? deuterium and tritium ? fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q ? 10 (input power 50 MW / output power 500 MW). The ITER Organization was officially established in Cadarache, France, on 24 October 2007. The seven members engaged in the project ? China, the European Union, India, Japan, Korea, Russia and the United States ? represent more than half the world?s population. The costs for ITER are shared by the seven members. The cost for the construction will be approximately 5.5 billion Euros, a similar amount is foreseen for the twenty-year phase of operation and the subsequent decommissioning.

  12. Fusion safety program Annual report, Fiscal year 1995

    SciTech Connect (OSTI)

    Longhurst, G.R.; Cadwallader, L.C.; Carmack, W.J.

    1995-12-01

    This report summarizes the major activities of the Fusion Safety Program in FY-95. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory, and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions. Among the technical areas covered in this report are tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate database development, and safety code development and application to fusion safety issues. Most of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and the technical support for commercial fusion facility conceptual design studies. A final activity described is work to develop DOE Technical Standards for Safety of Fusion Test Facilities.

  13. Fusion Safety Program annual report, fiscal year 1994

    SciTech Connect (OSTI)

    Longhurst, G.R.; Cadwallader, L.C.; Dolan, T.J.; Herring, J.S.; McCarthy, K.A.; Merrill, B.J.; Motloch, C.G.; Petti, D.A.

    1995-03-01

    This report summarizes the major activities of the Fusion Safety Program in fiscal year 1994. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions, including the University of Wisconsin. The technical areas covered in this report include tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate data base development, and thermalhydraulics code development and their application to fusion safety issues. Much of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and of the technical support for commercial fusion facility conceptual design studies. A major activity this year has been work to develop a DOE Technical Standard for the safety of fusion test facilities.

  14. Public Key FPGA Software

    Energy Science and Technology Software Center (OSTI)

    2013-07-25

    The Public Key (PK) FPGA software performs asymmetric authentication using the 163-bit Elliptic Curve Digital Signature Algorithm (ECDSA) on an embedded FPGA platform. A digital signature is created on user-supplied data, and communication with a host system is performed via a Serial Peripheral Interface (SPI) bus. Software includes all components necessary for signing, including custom random number generator for key creation and SHA-256 for data hashing.

  15. Spherical torus fusion reactor

    DOE Patents [OSTI]

    Peng, Yueng-Kay M.

    1989-01-01

    A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

  16. Peaceful Uses of Fusion

    DOE R&D Accomplishments [OSTI]

    Teller, E.

    1958-07-03

    Applications of thermonuclear energy for peaceful and constructive purposes are surveyed. Developments and problems in the release and control of fusion energy are reviewed. It is pointed out that the future of thermonuclear power reactors will depend upon the construction of a machine that produces more electric energy than it consumes. The fuel for thermonuclear reactors is cheap and practically inexhaustible. Thermonuclear reactors produce less dangerous radioactive materials than fission reactors and, when once brought under control, are not as likely to be subject to dangerous excursions. The interaction of the hot plasma with magnetic fields opens the way for the direct production of electricity. It is possible that explosive fusion energy released underground may be harnessed for the production of electricity before the same feat is accomplished in controlled fusion processes. Applications of underground detonations of fission devices in mining and for the enhancement of oil flow in large low-specific-yield formations are also suggested.

  17. Fusion welding process

    DOE Patents [OSTI]

    Thomas, Kenneth C. (Export, PA); Jones, Eric D. (Salem, PA); McBride, Marvin A. (Hempfield Township, Westmoreland County, PA)

    1983-01-01

    A process for the fusion welding of nickel alloy steel members wherein a ferrite containing pellet is inserted into a cavity in one member and melted by a welding torch. The resulting weld nugget, a fusion of the nickel containing alloy from the members to be welded and the pellet, has a composition which is sufficiently low in nickel content such that ferrite phases occur within the weld nugget, resulting in improved weld properties. The steel alloys encompassed also include alloys containing carbon and manganese, considered nickel equivalents.

  18. Cryptographic Key Management System

    SciTech Connect (OSTI)

    No, author

    2014-02-21

    This report summarizes the outcome of U.S. Department of Energy (DOE) contract DE-OE0000543, requesting the design of a Cryptographic Key Management System (CKMS) for the secure management of cryptographic keys for the energy sector infrastructure. Prime contractor Sypris Electronics, in collaboration with Oak Ridge National Laboratories (ORNL), Electric Power Research Institute (EPRI), Valicore Technologies, and Purdue University's Center for Education and Research in Information Assurance and Security (CERIAS) and Smart Meter Integration Laboratory (SMIL), has designed, developed and evaluated the CKMS solution. We provide an overview of the project in Section 3, review the core contributions of all contractors in Section 4, and discuss bene#12;ts to the DOE in Section 5. In Section 6 we describe the technical construction of the CKMS solution, and review its key contributions in Section 6.9. Section 7 describes the evaluation and demonstration of the CKMS solution in different environments. We summarize the key project objectives in Section 8, list publications resulting from the project in Section 9, and conclude with a discussion on commercialization in Section 10 and future work in Section 11.

  19. Laser-driven fusion etching process

    DOE Patents [OSTI]

    Ashby, Carol I. H. (Edgewood, NM); Brannon, Paul J. (Albuquerque, NM); Gerardo, James B. (Albuquerque, NM)

    1989-01-01

    The surfaces of solid ionic substrates are etched by a radiation-driven chemical reaction. The process involves exposing an ionic substrate coated with a layer of a reactant material on its surface to radiation, e.g. a laser, to induce localized melting of the substrate which results in the occurrance of a fusion reaction between the substrate and coating material. The resultant reaction product and excess reactant salt are then removed from the surface of the substrate with a solvent which is relatively inert towards the substrate. The laser-driven chemical etching process is especially suitable for etching ionic salt substrates, e.g., a solid inorganic salt such as LiNbO.sub.3, such as used in electro-optical/acousto-optic devices. It is also suitable for applications wherein the etching process is required to produce an etched ionic substrate having a smooth surface morphology or when a very rapid etching rate is desired.

  20. Laser-driven fusion etching process

    DOE Patents [OSTI]

    Ashby, C.I.H.; Brannon, P.J.; Gerardo, J.B.

    1987-08-25

    The surfaces of solids are etched by a radiation-driven chemical reaction. The process involves exposing a substrate coated with a layer of a reactant material on its surface to radiation, e.g., a laser, to induce localized melting of the substrate which results in the occurrence of a fusion reaction between the substrate and coating material. The resultant reaction product and excess reactant salt are then removed from the surface of the substrate with a solvent which is relatively inert towards the substrate. The laser-driven chemical etching process is especially suitable for etching ionic substrates, e.g., LiNbO/sub 3/, such as used in electro-optical/acousto-optic devices. It is also suitable for applications wherein the etching process is required to produce an etched ionic substrate having a smooth surface morphology or when a very rapid etching rate is desired.

  1. Comments on the model for coherent deuteron-deuteron fusion in crystalline Pd-D lattice

    SciTech Connect (OSTI)

    Vaidya, S.N. )

    1993-08-01

    The enhancement of the deuteron-deuteron fusion rate is estimated for a coherent interaction mechanism under realistic experimental conditions. The extension of this mechanism to (n,[gamma]) reactions is outlined. 19 refs., 2 figs.

  2. Physics (selected articles). [Nuclear fusion

    SciTech Connect (OSTI)

    Shiyao, Z.; Zesheng, C.; Xiaolung, X.; Qiang, H.

    1982-09-01

    Controlled nuclear fusion as a new energy source was investigated. It will be possible in the 1980's to obtain thermal nuclear ignition, and in the early 2000's nuclear fusion may be used to supplement the energy shortage. It is predicted that in the 2000's nuclear fusion will occupy an important position as a global source of energy.

  3. Fusion, mechanical joining methods pros, cons--Part 2. [Natural gas pipelines use of mechanical and fusion joints

    SciTech Connect (OSTI)

    Gunther, K.M. )

    1993-10-01

    Two basic techniques accepted by gas distribution utility companies for joining polyethylene pipe underground are fusion methods and mechanical joining. Washington Gas Light Co., uses the fusion methods for the most part and uses mechanical joints for repair and final tie-ins where fusion methods are impractical or impossible to use. Fusion methods used by gas industry users of plastic pipe are: butt fusion; socket fusion; saddle fusion; electrofusion. Mechanical pipe joining techniques or procedures include: factory made mechanical joints such as meter risers and transition fittings; hydraulic compression couplings; bolted and screwed compression couplings; stab type compression couplings; interior seal couplings. Every joining method has strengths, weaknesses, pitfalls and ways they can fail in service. The key is making the best selection based on such factors as location, temperature, conditions, available equipment, personnel training level and cost. No one method will do it all or every company would be using that particular method. Part 2 focuses on strengths, weaknesses, pitfalls and failure possibilities of the five mechanical techniques.

  4. NREL Makes Key Appointments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Makes Key Appointments Staffing for Distributed Energy and Tech Management Announced For more information contact: Gary Schmitz, 303-275-4050 email: Gary Schmitz Golden, Colo., Feb. 28, 2001 - Two veterans of energy research have been named to newly created positions at the U.S. Department of Energy's National Renewable Energy Laboratory. Jack Darnell was named Deputy Associate Director for NREL's recently reorganized Planning and Technology Management Division. Anthony Schaffhauser has been

  5. Bioenergy Key Publications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    KEY PUBLICATIONS BIOENERGY TECHNOLOGIES OFFICE Budget and Investment Resources PUBLICATION TITLE PUBLICATION DATE Bioenergy Technologies Office FY 2015 Budget-at-a-Glance March 2014 FY 2015 Congressional Budget Request (pp. 53-71) March 2014 American Recovery and Reinvestment Act: Bioenergy Technologies Office Investments June 2012 2013 Peer Review Report February 2014 Office Overview Resources PUBLICATION TITLE PUBLICATION DATE Bioenergy Technologies Office Walkthrough Presentation July 2014

  6. Fusion pumped laser

    DOE Patents [OSTI]

    Pappas, D.S.

    1987-07-31

    The apparatus of this invention may comprise a system for generating laser radiation from a high-energy neutron source. The neutron source is a tokamak fusion reactor generating a long pulse of high-energy neutrons and having a temperature and magnetic field effective to generate a neutron flux of at least 10/sup 15/ neutrons/cm/sup 2//center dot/s. Conversion means are provided adjacent the fusion reactor at a location operable for converting the high-energy neutrons to an energy source with an intensity and energy effective to excite a preselected lasing medium. A lasing medium is spaced about and responsive to the energy source to generate a population inversion effective to support laser oscillations for generating output radiation. 2 figs., 2 tabs.

  7. Photons & Fusion Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Photons & Fusion Newsletter December 2011 MIT Plasma Science Lab Develops NIF Diagnostics A typical NIF experiment is over in a few billionths of a second. Obtaining meaningful information about what occurs during this extremely brief time period, in and around a tiny target, has required the design and development of a new breed of detectors, cameras, and other diagnostic instruments, many of which have been created through partnerships with universities and national laboratories. One of

  8. Modular Aneutronic Fusion Engine

    SciTech Connect (OSTI)

    Gary Pajer, Yosef Razin, Michael Paluszek, A.H. Glasser and Samuel Cohen

    2012-05-11

    NASA's JUNO mission will arrive at Jupiter in July 2016, after nearly five years in space. Since operational costs tend to rise with mission time, minimizing such times becomes a top priority. We present the conceptual design for a 10MW aneutronic fusion engine with high exhaust velocities that would reduce transit time for a Jupiter mission to eighteen months and enable more challenging exploration missions in the solar system and beyond. __________________________________________________

  9. (Fusion energy research)

    SciTech Connect (OSTI)

    Phillips, C.A.

    1988-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer.

  10. Magnetized Target Fusion Collaboration. Final report

    SciTech Connect (OSTI)

    John Slough

    2012-04-18

    Nuclear fusion has the potential to satisfy the prodigious power that the world will demand in the future, but it has yet to be harnessed as a practical energy source. The entry of fusion as a viable, competitive source of power has been stymied by the challenge of finding an economical way to provide for the confinement and heating of the plasma fuel. It is the contention here that a simpler path to fusion can be achieved by creating fusion conditions in a different regime at small scale (~ a few cm). One such program now under study, referred to as Magnetized Target Fusion (MTF), is directed at obtaining fusion in this high energy density regime by rapidly compressing a compact toroidal plasmoid commonly referred to as a Field Reversed Configuration (FRC). To make fusion practical at this smaller scale, an efficient method for compressing the FRC to fusion gain conditions is required. In one variant of MTF a conducting metal shell is imploded electrically. This radially compresses and heats the FRC plasmoid to fusion conditions. The closed magnetic field in the target plasmoid suppresses the thermal transport to the confining shell, thus lowering the imploding power needed to compress the target. The undertaking described in this report was to provide a suitable target FRC, as well as a simple and robust method for inserting and stopping the FRC within the imploding liner. The FRC must also survive during the time it takes for the metal liner to compress the FRC target. The initial work at the UW was focused on developing adequate preionization and flux trapping that were found to be essential in past experiments for obtaining the density, flux and most critically, FRC lifetime required for MTF. The timescale for testing and development of such a source can be rapidly accelerated by taking advantage of a new facility funded by the Department of Energy. At this facility, two inductive plasma accelerators (IPA) were constructed and tested. Recent experiments with these IPAs have demonstrated the ability to rapidly form, accelerate and merge two hypervelocity FRCs into a compression chamber. The resultant FRC that was formed was hot (T{sub ion} ~ 400 eV), stationary, and stable with a configuration lifetime several times that necessary for the MTF liner experiments. The accelerator length was less than 1 meter, and the time from the initiation of formation to the establishment of the final equilibrium was less than 10 microseconds. With some modification, each accelerator can be made capable of producing FRCs suitable for the production of the target plasma for the MTF liner experiment. Based on the initial FRC merging/compression results, the design and methodology for an experimental realization of the target plasma for the MTF liner experiment can now be defined. The construction and testing of the key components for the formation of the target plasma at the Air Force Research Laboratory (AFRL) will be performed on the IPA experiment, now at MSNW. A high density FRC plasmoid will be formed and accelerated out of each IPA into a merging/compression chamber similar to the imploding liner at AFRL. The properties of the resultant FRC plasma (size, temperature, density, flux, lifetime) will be obtained. The process will be optimized, and a final design for implementation at AFRL will be carried out. When implemented at AFRL it is anticipated that the colliding/merging FRCs will then be compressed by the liner. In this manner it is hoped that ultimately a plasma with ion temperatures reaching the 10 keV range and fusion gain near unity can be obtained.

  11. A lower cost development path for heavy ion fusion

    SciTech Connect (OSTI)

    Hogan, W.J.; Meier, W.R.

    1993-05-19

    If two features of the inertial fusion process are exploited successfully, they can lead to significantly lower costs for demonstrating the feasibility of commercial electric power production from this source of energy. First, fusion capsule ignition and burn physics is independent of reaction chamber size and hydrodynamically-equivalent capsules can be designed to perform at small yield, exactly as they do at large yield. This means that an integrated test of all power plant components and feasibility tests of various reaction chamber concepts can be done at much smaller sizes (about 1--2 m first wall radius) and much lower powers (tens of MWs) than magnetic fusion development facilities such as ITER. Second, the driver, which is the most expensive component of currently conceived IFE development facilities, can be used to support more than one experiment target chamber/reactor (simultaneously and/or sequentially). These two factors lead to lower development facility costs, modular facilities, and the planning flexibility to spread costs over time or do several things in parallel and thus shorten the total time needed for development of Inertial Fusion Energy (IFE). In this paper the authors describe the general feature of a heavy ion fusion development plan that takes advantage of upgradable accelerators and the ability to test chambers and reactor systems at small scale in order to reduce development time and costs.

  12. Heavy Element Synthesis Reactions W. Loveland Oregon State University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactions W. Loveland Oregon State University The role of ATLAS in helping us understand heavy element synthesis reactions and heavy element properties * Hot (E*=35-60 MeV) and Cold (E*=15 MeV) fusion reactions * Multi-nucleon transfer reactions * Fission * Atomic physics and chemistry of the heaviest elements * Structure of the heaviest nuclei The challenge of studying the heaviest elements at ATLAS * ATLAS beam time is oversubscribed * Low cross section studies - High luminosity - ATLAS has

  13. PPPL physicists win supercomputing time to simulate key energy and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    astrophysical phenomena | Princeton Plasma Physics Lab physicists win supercomputing time to simulate key energy and astrophysical phenomena By John Greenwald January 8, 2013 Tweet Widget Google Plus One Share on Facebook Gallery: Three teams led by scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have won major blocks of time on two of the world's most powerful supercomputers. Two of the projects seek to advance the development of nuclear fusion

  14. Cooling Fusion in a Flash | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cooling Fusion in a Flash American Fusion News Category: U.S. Universities Link: Cooling Fusion in a Flash

  15. Binding Behavior of Dopamine Transporter Key to Understanding Chemical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactions in the Brain Binding Behavior of Dopamine Transporter Key to Understanding Chemical Reactions in the Brain Print Most people have heard of adrenaline, the chemical that causes the "fight or flight" reaction in humans. Most people have also heard of the chemical substances cocaine and methamphetamine, which also elicit a particular (perhaps desired) human response. What most people do not know is that the same receptors in the human brain recognize the natural, or

  16. Binding Behavior of Dopamine Transporter Key to Understanding Chemical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactions in the Brain Binding Behavior of Dopamine Transporter Key to Understanding Chemical Reactions in the Brain Print Most people have heard of adrenaline, the chemical that causes the "fight or flight" reaction in humans. Most people have also heard of the chemical substances cocaine and methamphetamine, which also elicit a particular (perhaps desired) human response. What most people do not know is that the same receptors in the human brain recognize the natural, or

  17. Binding Behavior of Dopamine Transporter Key to Understanding Chemical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactions in the Brain Binding Behavior of Dopamine Transporter Key to Understanding Chemical Reactions in the Brain Print Most people have heard of adrenaline, the chemical that causes the "fight or flight" reaction in humans. Most people have also heard of the chemical substances cocaine and methamphetamine, which also elicit a particular (perhaps desired) human response. What most people do not know is that the same receptors in the human brain recognize the natural, or

  18. Binding Behavior of Dopamine Transporter Key to Understanding Chemical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactions in the Brain Binding Behavior of Dopamine Transporter Key to Understanding Chemical Reactions in the Brain Print Most people have heard of adrenaline, the chemical that causes the "fight or flight" reaction in humans. Most people have also heard of the chemical substances cocaine and methamphetamine, which also elicit a particular (perhaps desired) human response. What most people do not know is that the same receptors in the human brain recognize the natural, or

  19. COLLOQUIUM: Magnetized Target Fusion Work at General Fusion | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab December 18, 2014, 12:30pm to 2:00pm Colloquia MBG Auditorium COLLOQUIUM: Magnetized Target Fusion Work at General Fusion Dr. Michel Laberge General Fusion FOR THIS COLLOQUIUM - PLEASE NOTE SPECIAL TIME OF 12:30PM General Fusion is working on compressing a Compact Torus in liquid metal using an acoustic wave generated by compressed gas pistons. This approach has attractive reactor engineering features: strongly reduced neutrons damage (1E-5 reduction in neutron flux with

  20. Lights on: Dye dequenching reveals polymersome fusion with polymer, lipid and stealth lipid vesicles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Henderson, Ian M.; Collins, Aaron M.; Quintana, Hope A.; Montaño, Gabriel A.; Martinez, Julio A.; Paxton, Walter F.

    2015-12-13

    In this study, we develop a quantitative dye dequenching technique for the measurement of polymersome fusion, using it to characterize the salt mediated, mechanically-induced fusion of polymersomes with polymer, lipid, and so-called stealth lipid vesicles. While dye dequenching has been used to quantitatively explore liposome fusion in the past, this is the first use of dye dequenching to measure polymersome fusion of which we are aware. In addition to providing quantitative results, dye dequenching is ideal for detecting fusion in instances where DLS results would be ambiguous, such as low yield levels and size ranges outside the capabilities of DLS.more » The dye chosen for this study was a cyanine derivative, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DiR), which proved to provide excellent data on the extent of polymersome fusion. Using this technique, we have shown the limited fusion capabilities of polymersome/liposome heterofusion, notably DOPC vesicles fusing with polymersomes at half the efficiency of polymersome homofusion and DPPC vesicles showing virtually no fusion. In addition to these key heterofusion experiments, we determined the broad applicability of dye dequenching in measuring kinetic rates of polymersome fusion; and showed that even at elevated temperatures or over multiple weeks' time, no polymersome fusion occurred without agitation. Stealth liposomes formed from DPPC and PEO-functionalized lipid, however, fused with polymersomes and stealth liposomes with relatively high efficiency, lending support to our hypothesis that the response of the PEO corona to salt is a key factor in the fusion process. This last finding suggests that although the conjugation of PEO to lipids increases vesicle biocompatibility and enables their longer circulation times, it also renders the vesicles subject to destabilization under high salt and shear (e.g. in the circulatory system) that may lead to, in this case, fusion.« less

  1. Lights on: Dye dequenching reveals polymersome fusion with polymer, lipid and stealth lipid vesicles

    SciTech Connect (OSTI)

    Henderson, Ian M.; Collins, Aaron M.; Quintana, Hope A.; Montaño, Gabriel A.; Martinez, Julio A.; Paxton, Walter F.

    2015-12-13

    In this study, we develop a quantitative dye dequenching technique for the measurement of polymersome fusion, using it to characterize the salt mediated, mechanically-induced fusion of polymersomes with polymer, lipid, and so-called stealth lipid vesicles. While dye dequenching has been used to quantitatively explore liposome fusion in the past, this is the first use of dye dequenching to measure polymersome fusion of which we are aware. In addition to providing quantitative results, dye dequenching is ideal for detecting fusion in instances where DLS results would be ambiguous, such as low yield levels and size ranges outside the capabilities of DLS. The dye chosen for this study was a cyanine derivative, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DiR), which proved to provide excellent data on the extent of polymersome fusion. Using this technique, we have shown the limited fusion capabilities of polymersome/liposome heterofusion, notably DOPC vesicles fusing with polymersomes at half the efficiency of polymersome homofusion and DPPC vesicles showing virtually no fusion. In addition to these key heterofusion experiments, we determined the broad applicability of dye dequenching in measuring kinetic rates of polymersome fusion; and showed that even at elevated temperatures or over multiple weeks' time, no polymersome fusion occurred without agitation. Stealth liposomes formed from DPPC and PEO-functionalized lipid, however, fused with polymersomes and stealth liposomes with relatively high efficiency, lending support to our hypothesis that the response of the PEO corona to salt is a key factor in the fusion process. This last finding suggests that although the conjugation of PEO to lipids increases vesicle biocompatibility and enables their longer circulation times, it also renders the vesicles subject to destabilization under high salt and shear (e.g. in the circulatory system) that may lead to, in this case, fusion.

  2. Key Terms | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Key Terms Key Terms Three Door Keys data-key-571156_960_720.png Key Terms Low Vision: non-correctable reduced vision Blindness: lack of visual perception Hearing Impairment: full or partial decrease in the ability to detect or understand sounds Physical Impairment: a physical condition that permanently prevents normal body movement or control Cognitive Disabilities: difficulty with one or more types of mental tasks

  3. Response of nickel surface to pulsed fusion plasma radiations

    SciTech Connect (OSTI)

    Niranjan, Ram Rout, R. K. Srivastava, R. Gupta, Satish C.; Chakravarthy, Y.; Patel, N. N.; Alex, P.

    2014-04-24

    Nickel based alloys are being projected as suitable materials for some components of the next generation fusion reactor because of compatible thermal, electrical and mechanical properties. Pure nickel material is tested here for possibility of similar application purpose. Nickel samples (> 99.5 % purity) are exposed here to plasma radiations produced due to D-D fusion reaction inside an 11.5 kJ plasma focus device. The changes in the physical properties of the nickel surface at microscopic level which in turn change the mechanical properties are analyzed using scanning electron microscope, optical microscope, glancing incident X-ray diffractometer and Vicker's hardness gauge. The results are reported here.

  4. Fusion Rockets for Planetary Defense

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... and Y. Nakao, Field Reversed Configuration (FRC) Fusion Rocket,'' Proc. 11th Symp. ... 1988 Tandem Mirror 1.2 Chapman 1989 FRC -- Haloulakis 1989 Colliding Spheromaks -- ...

  5. Peregrinations on cold fusion

    SciTech Connect (OSTI)

    Turner, L.

    1989-01-01

    Attention is focused on the possibility of resonance-enhanced deuteron Coulomb barrier penetration. Because of the many-body nature of the interactions of room-temperature deuterons diffusing through a lattice possessing deuterons in many of the interstitial positions, the diffusing deuterons can resonate on the atomic scale in the potential wells bounded by the ascending walls of adjacent Coulomb barriers and thereby penetrate the Coulomb barriers in a fashion vastly underestimated by two-body calculations in which wells for possible resonance are absent. Indeed, perhaps the lack of robust reproducibility in cold fusion originates from the narrowness of such transmission resonances. 4 refs., 1 fig.

  6. Fusion reactor pumped laser

    DOE Patents [OSTI]

    Jassby, Daniel L. (Princeton, NJ)

    1988-01-01

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.

  7. Experimental Investigation of Ternary Alloys for Fusion Breeding Blankets

    SciTech Connect (OSTI)

    Choi, B. William; Chiu, Ing L.

    2015-10-26

    Future fusion power plants based on the deuterium-tritium (DT) fuel cycle will be required to breed the T fuel via neutron reactions with lithium, which will be incorporated in a breeding blanket that surrounds the fusion source. Recent work by LLNL proposed the used of liquid Li as the breeder in an inertial fusion energy (IFE) power plant. Subsequently, an LDRD was initiated to develop alternatives ternary alloy liquid metal breeders that have reduced chemical reactivity with water and air compared to pure Li. Part of the work plan was to experimentally investigate the phase diagrams of ternary alloys. Of particular interest was measurement of the melt temperature, which must be low enough to be compatible with the temperature limits of the steel used in the construction of the chamber and heat transfer system.

  8. Cellulose binding domain fusion proteins

    DOE Patents [OSTI]

    Shoseyov, O.; Yosef, K.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1998-02-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  9. Cellulose binding domain fusion proteins

    DOE Patents [OSTI]

    Shoseyov, Oded (Karmey Yosef, IL); Shpiegl, Itai (Rehovot, IL); Goldstein, Marc A. (Davis, CA); Doi, Roy H. (Davis, CA)

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  10. INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS

    SciTech Connect (OSTI)

    Sharp, W. M.; Friedman, A.; Grote, D. P.; Barnard, J. J.; Cohen, R. H.; Dorf, M. A.; Lund, S. M.; Perkins, L. J.; Terry, M. R.; Logan, B. G.; Bieniosek, F. M.; Faltens, A.; Henestroza, E.; Jung, J. Y.; Kwan, J. W.; Lee, E. P.; Lidia, S. M.; Ni, P. A.; Reginato, L. L.; Roy, P. K.; Seidl, P. A.; Takakuwa, J. H.; Vay, J.-L.; Waldron, W. L.; Davidson, R. C.; Gilson, E. P.; Kaganovich, I. D.; Qin, H.; Startsev, E.; Haber, I.; Kishek, R. A.; Koniges, A. E.

    2011-03-31

    Intense heavy-ion beams have long been considered a promising driver option for inertial-fusion energy production. This paper briefly compares inertial confinement fusion (ICF) to the more-familiar magnetic-confinement approach and presents some advantages of using beams of heavy ions to drive ICF instead of lasers. Key design choices in heavy-ion fusion (HIF) facilities are discussed, particularly the type of accelerator. We then review experiments carried out at Lawrence Berkeley National Laboratory (LBNL) over the past thirty years to understand various aspects of HIF driver physics. A brief review follows of present HIF research in the US and abroad, focusing on a new facility, NDCX-II, being built at LBNL to study the physics of warm dense matter heated by ions, as well as aspects of HIF target physics. Future research directions are briefly summarized.

  11. CONTROL OF MECHANICALLY ACTIVATED POLYMERSOME FUSION: FACTORS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Journal Article: CONTROL OF MECHANICALLY ACTIVATED POLYMERSOME FUSION: FACTORS AFFECTING FUSION. Citation Details In-Document Search Title: CONTROL OF MECHANICALLY ACTIVATED...

  12. CONTROL OF MECHANICALLY ACTIVATED POLYMERSOME FUSION: FACTORS...

    Office of Scientific and Technical Information (OSTI)

    MECHANICALLY ACTIVATED POLYMERSOME FUSION: FACTORS AFFECTING FUSION. Henderson, Ian M.; Paxton, Walter F Abstract not provided. Sandia National Laboratories (SNL-NM), Albuquerque,...

  13. Fusion Energy Sciences Advisory Committee (FESAC) Homepage |...

    Office of Science (SC) Website

    FESAC Home Fusion Energy Sciences Advisory Committee (FESAC) FESAC Home Meetings Members ... Print Text Size: A A A FeedbackShare Page The Fusion Energy Sciences Advisory Committee ...

  14. Secure key storage and distribution

    DOE Patents [OSTI]

    Agrawal, Punit

    2015-06-02

    This disclosure describes a distributed, fault-tolerant security system that enables the secure storage and distribution of private keys. In one implementation, the security system includes a plurality of computing resources that independently store private keys provided by publishers and encrypted using a single security system public key. To protect against malicious activity, the security system private key necessary to decrypt the publication private keys is not stored at any of the computing resources. Rather portions, or shares of the security system private key are stored at each of the computing resources within the security system and multiple security systems must communicate and share partial decryptions in order to decrypt the stored private key.

  15. Fusion heating technology

    SciTech Connect (OSTI)

    Cole, A.J.

    1982-06-01

    John Lawson established the criterion that in order to produce more energy from fusion than is necessary to heat the plasma and replenish the radiation losses, a minimum value for both the product of plasma density and confinement time t, and the temperature must be achieved. There are two types of plasma heating: neutral beam and electromagnetic wave heating. A neutral beam system is shown. Main development work on negative ion beamlines has focused on the difficult problem of the production of high current sources. The development of a 30 keV-1 ampere multisecond source module is close to being accomplished. In electromagnetic heating, the launcher, which provides the means of coupling the power to the plasma, is most important. The status of heating development is reviewed. Electron cyclotron resonance heating (ECRH), lower hybrid heating (HHH), and ion cyclotron resonance heating (ICRH) are reviewed.

  16. Fusion reactor pumped laser

    DOE Patents [OSTI]

    Jassby, D.L.

    1987-09-04

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam. 10 figs.

  17. Fusion pumped laser

    DOE Patents [OSTI]

    Pappas, Daniel S. (Los Alamos, NM)

    1989-01-01

    Apparatus is provided for generating energy in the form of laser radiation. A tokamak fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The tokamak design provides a temperature and a magnetic field which is effective to generate a neutron flux of at least 10.sup.15 neutrons/cm.sup.2.s. A conversion medium receives neutrons from the tokamak and converts the high-energy neutrons to an energy source with an intensity and an energy effective to excite a preselected lasing medium. The energy source typically comprises fission fragments, alpha particles, and radiation from a fission event. A lasing medium is provided which is responsive to the energy source to generate a population inversion which is effective to support laser oscillations for generating output radiation.

  18. Fusion Power Demonstration III

    SciTech Connect (OSTI)

    Lee, J.D.

    1985-07-01

    This is the third in the series of reports covering the Fusion Power Demonstration (FPD) design study. This volume considers the FPD-III configuration that incorporates an octopole end plug. As compared with the quadrupole end-plugged designs of FPD-I and FPD-II, this octopole configuration reduces the number of end cell magnets and shortens the minimum ignition length of the central cell. The end-cell plasma length is also reduced, which in turn reduces the size and cost of the end cell magnets and shielding. As a contiuation in the series of documents covering the FPD, this report does not stand alone as a design description of FPD-III. Design details of FPD-III subsystems that do not differ significantly from those of the FPD-II configuration are not duplicated in this report.

  19. LiWall Fusion - The New Concept of Magnetic Fusion

    SciTech Connect (OSTI)

    L.E. Zakharov

    2011-01-12

    Utilization of the outstanding abilities of a liquid lithium layer in pumping hydrogen isotopes leads to a new approach to magnetic fusion, called the LiWall Fusion. It relies on innovative plasma regimes with low edge density and high temperature. The approach combines fueling the plasma by neutral injection beams with the best possible elimination of outside neutral gas sources, which cools down the plasma edge. Prevention of cooling the plasma edge suppresses the dominant, temperature gradient related turbulence in the core. Such an approach is much more suitable for controlled fusion than the present practice, relying on high heating power for compensating essentially unlimited turbulent energy losses.

  20. One-dimensional particle simulations of Knudsen-layer effects on D-T fusion

    SciTech Connect (OSTI)

    Cohen, Bruce I.; Dimits, Andris M.; Zimmerman, George B.; Wilks, Scott C.

    2014-12-15

    Particle simulations are used to solve the fully nonlinear, collisional kinetic equation describing the interaction of a high-temperature, high-density, deuterium-tritium plasma with absorbing boundaries, a plasma source, and the influence of kinetic effects on fusion reaction rates. Both hydrodynamic and kinetic effects influence the end losses, and the simulations show departures of the ion velocity distributions from Maxwellian due to the reduction of the population of the highest energy ions (Knudsen-layer effects). The particle simulations show that the interplay between sources, plasma dynamics, and end losses results in temperature anisotropy, plasma cooling, and concomitant reductions in the fusion reaction rates. However, for the model problems and parameters considered, particle simulations show that Knudsen-layer modifications do not significantly affect the velocity distribution function for velocities most important in determining the fusion reaction rates, i.e., the thermal fusion reaction rates using the local densities and bulk temperatures give good estimates of the kinetic fusion reaction rates.

  1. Control of mechanically activated polymersome fusion: Factors affecting fusion

    SciTech Connect (OSTI)

    Henderson, Ian M.; Paxton, Walter F.

    2014-12-15

    Previously we have studied the mechanically-activated fusion of extruded (200 nm) polymer vesicles into giant polymersomes using agitation in the presence of salt. In this study we have investigated several factors contributing to this phenomenon, including the effects of (i) polymer vesicle concentration, (ii) agitation speed and duration, and iii) variation of the salt and its concentration. It was found that increasing the concentration of the polymer dramatically increases the production of giant vesicles through the increased collisions of polymersomes. Our investigations also found that increasing the frequency of agitation increased the efficiency of fusion, though ultimately limited the size of vesicle which could be produced due to the high shear involved. Finally it was determined that salt-mediation of the fusion process was not limited to NaCl, but is instead a general effect facilitated by the presence of solvated ionic compounds, albeit with different salts initiating fusion at different concentration.

  2. Control of mechanically activated polymersome fusion: Factors affecting fusion

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Henderson, Ian M.; Paxton, Walter F.

    2014-12-15

    Previously we have studied the mechanically-activated fusion of extruded (200 nm) polymer vesicles into giant polymersomes using agitation in the presence of salt. In this study we have investigated several factors contributing to this phenomenon, including the effects of (i) polymer vesicle concentration, (ii) agitation speed and duration, and iii) variation of the salt and its concentration. It was found that increasing the concentration of the polymer dramatically increases the production of giant vesicles through the increased collisions of polymersomes. Our investigations also found that increasing the frequency of agitation increased the efficiency of fusion, though ultimately limited the sizemore » of vesicle which could be produced due to the high shear involved. Finally it was determined that salt-mediation of the fusion process was not limited to NaCl, but is instead a general effect facilitated by the presence of solvated ionic compounds, albeit with different salts initiating fusion at different concentration.« less

  3. Deuterium fusion through nonequilibrium induction

    SciTech Connect (OSTI)

    Fang, P.H. )

    1991-03-01

    This paper presents a deuterium fusion system that is based on the induction of fusion through a nonequilibrium thermodynamical configuration. Mechanical excitation using ultrasound is applied to a palladium electrode with deuterium-containing liquid, a mixture of palladium powder and deuterium-containing liquid, and a system of palladium and a highly compressed deuterium gas that approximates a deuterium solid. The ultrasound, when coupled with the medium of these systems, instantaneously creates a high temperature and pressure that would induce fusion between deuterons.

  4. Key Activities | Department of Energy

    Energy Savers [EERE]

    About the Bioenergy Technologies Office » Key Activities Key Activities The Bioenergy Technologies Office's key activities are aimed at producing a viable, sustainable domestic biomass industry that produces renewable biofuels, bioproducts and biopower; enhances U.S. energy security; reduces U.S. oil dependence; provides environmental benefits (e.g., reduced greenhouse gas emissions); and creates nationwide economic opportunities. Meeting these goals requires significant and rapid advances in

  5. Key Issues | Department of Energy

    Energy Savers [EERE]

    Key Issues Key Issues The following presentations offer information about other key topics related to high performance homes. PDF icon wall_system_innovations_kochkin.pdf PDF icon removing_codes_barriers_cole.pdf PDF icon testing_residential_ariconditioners_booten_winkler.pdf PDF icon code_gaps_combustion_safety.pdf PDF icon automated_utility_bill_calibration_polly.pdf PDF icon predicting_envelope_leakage_griffiths.pdf More Documents & Publications Code Gaps and Future Research Needs of

  6. Key Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Key Activities Key Activities Key Activities Bringing Innovative Manufacturing Technologies and Materials to Full "To Scale" Industrial Use Innovation is inherent in all of AMO's investment activities helping small, medium, and large manufacturers develop cutting-edge clean energy products and technology that reduce energy consumption in every stage or place it is used in industry. Built upon a foundation of strong public-private partnerships, our support of advanced manufacturing

  7. Key Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About the Program » Key Activities Key Activities The Water Power Program conducts work in four key areas at the forefront of water power research. The Program is structured to help the United States meet its growing energy demands sustainably and cost-effectively by developing innovative renewable water power technologies, breaking down market barriers to deployment, building the infrastructure to test new technologies, and assessing water power resources for integration into our nation's

  8. Fusion of {sup 48}Ca+{sup 48}Ca Far Below the Barrier

    SciTech Connect (OSTI)

    Scarlassara, F.; Montagnoli, G.; Mason, P.; Stefanini, A. M.; Silvestri, R.; Corradi, L.; Fioretto, E.; Guiot, B.; Courtin, S.; Haas, F.; Lebhertz, D.; Szilner, S.

    2009-08-26

    In recent years, a puzzling pattern has been observed in fusion cross sections well below the Coulomb barrier, characterized as a departure from the exponential-like behavior predicted by standard coupled-channels models, known as fusion hindrance. We report on recent fusion measurements performed at the Laboratori Nazionali di Legnaro, in particular the {sup 48}Ca+{sup 48}Ca reaction down to the level of 0.6 {mu}b. Unlike most recent results in this field, we do not observe the typical divergent behavior of the logarithmic derivative; but rather a sort of saturation, albeit at a larger value than predicted with a standard nucleus-nucleus potential.

  9. A REALISTIC EXAMINATION OF COLD FUSION CLAIMS 24 YEARS LATER

    SciTech Connect (OSTI)

    Shanahan, K.

    2012-10-22

    On March 29, 1989, chemists Martin Fleischmann and Stanley Pons announced they had discovered an effect whose explanation was required to lie in the realm of nuclear reactions. Their claim, and those subsequent to it of roughly similar nature, became known as cold fusion. Research continues to this day on this effect, but what has become clear is that whatever it is, it is not a conventional fusion process. Thus the cold fusion moniker is somewhat inappropriate and many current researchers in the field prefer the term Low Energy Nuclear Reactions (LENR), although other terms have been coined for it as well. the results developed out of the LENR research do in fact show something is happening to produce signals which might be interpreted as supporting nuclear reactions (which is what encourages and sustains LENR researchers), but which can also be interpreted via a set of unique and interesting conventional processes. The focus of this document is to describe and address recent objections to such processes so that subsequent LENR research can be guided to develop information that will determine whether either set of explanations has merit. It is hoped that criteria delineated herein will aid the USDOE and other agencies in determining if LENR proposals are meritorious and worthy of support or not.

  10. Fusion Cross Section in the {sup 4,6}He+{sup 64}Zn Collisions Around the Coulomb Barrier

    SciTech Connect (OSTI)

    Fisichella, M.; Di Pietro, A.; Figuera, P.; Marchetta, C.; Lattuada, M.; Musumarra, A.; Pellegriti, M. G.; Scuderi, V.; Strano, E.; Torresi, D.; Milin, M.; Skukan, N.; Zadro, M.

    2011-10-28

    New fusion data for the {sup 4}He+{sup 64}Zn system at sub-barrier energies are measured to cover the same energy region of previous measurements for {sup 6}He+{sup 64}Zn. Aim of the experiment was to compare the fusion excitation functions for the two system to investigate on the effects of the {sup 6}He neutron-halo structure on the fusion reaction mechanism at energies around the Coulomb barrier. The fusion cross section was measured by using an activation technique. Comparing the two systems, we observe an enhancement of the fusion cross section in the reaction induced by {sup 6}He, at and below the Coulomb barrier.

  11. U. S. Fusion Energy Future

    SciTech Connect (OSTI)

    John A. Schmidt; Dan Jassby; Scott Larson; Maria Pueyo; Paul H. Rutherford

    2000-10-12

    Fusion implementation scenarios for the US have been developed. The dependence of these scenarios on both the fusion development and implementation paths has been assessed. A range of implementation paths has been studied. The deployment of CANDU fission reactors in Canada and the deployment of fission reactors in France have been assessed as possible models for US fusion deployment. The waste production and resource (including tritium) needs have been assessed. The conclusion that can be drawn from these studies is that it is challenging to make a significant impact on energy production during this century. However, the rapid deployment of fission reactors in Canada and France support fusion implementation scenarios for the US with significant power production during this century. If the country can meet the schedule requirements then the resource needs and waste production are found to be manageable problems.

  12. Laser fusion monthly -- August 1980

    SciTech Connect (OSTI)

    Ahlstrom, H.G.

    1980-08-01

    This report documents the monthly progress for the laser fusion research at Lawrence Livermore National Laboratory. First it gives facilities report for both the Shiva and Argus projects. Topics discussed include; laser system for the Nova Project; the fusion experiments analysis facility; optical/x-ray streak camera; Shiva Dante System temporal response; 2{omega}{sub 0} experiment; and planning for an ICF engineering test facility.

  13. Sandia Energy - CRF Researchers Measure Reaction Rates of Second...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measure Reaction Rates of Second Key Atmospheric Component Researchers at Sandia's Combustion Research Facility, the University of Manchester, Bristol University, University of...

  14. Blanket materials for DT fusion reactors

    SciTech Connect (OSTI)

    Smith, D.L.

    1981-01-01

    This paper presents an overview of the critical materials issues that must be considered in the development of a tritium breeding blanket for a tokamak fusion reactor that operates on the D-T-Li fuel cycle. The primary requirements of the blanket system are identified and the important criteria that must be considered in the development of blanket technology are summarized. The candidate materials are listed for the different blanket components, e.g., breeder, coolant, structure and neutron multiplier. Three blanket concepts that appear to offer the most potential are: (1) liquid-metal breeder/coolant, (2) liquid-metal breeder/separate coolant, and (3) solid breeder/separate coolant. The major uncertainties associated with each of the design concepts are discussed and the key materials R and D requirements for each concept are identified.

  15. Fusion of neutron-rich oxygen isotopes in the crust of accreting neutron stars

    SciTech Connect (OSTI)

    Horowitz, C. J.; Dussan, H.; Berry, D. K.

    2008-04-15

    Fusion reactions in the crust of an accreting neutron star are an important source of heat, and the depth at which these reactions occur is important for determining the temperature profile of the star. Fusion reactions depend strongly on the nuclear charge Z. Nuclei with Z{<=}6 can fuse at low densities in a liquid ocean. However, nuclei with Z=8 or 10 may not burn until higher densities where the crust is solid and electron capture has made the nuclei neutron rich. We calculate the S factor for fusion reactions of neutron rich nuclei including {sup 24}O+{sup 24}O and {sup 28}Ne+{sup 28}Ne. We use a simple barrier penetration model. The S factor could be further enhanced by dynamical effects involving the neutron rich skin. This possible enhancement in S should be studied in the laboratory with neutron rich radioactive beams. We model the structure of the crust with molecular dynamics simulations. We find that the crust of accreting neutron stars may contain micro-crystals or regions of phase separation. Nevertheless, the screening factors that we determine for the enhancement of the rate of thermonuclear reactions are insensitive to these features. Finally, we calculate the rate of thermonuclear {sup 24}O+{sup 24}O fusion and find that {sup 24}O should burn at densities near 10{sup 11} g/cm{sup 3}. The energy released from this and similar reactions may be important for the temperature profile of the star.

  16. The National Ignition Facility and the Path to Fusion Energy

    SciTech Connect (OSTI)

    Moses, E

    2011-07-26

    The National Ignition Facility (NIF) is operational and conducting experiments at the Lawrence Livermore National Laboratory (LLNL). The NIF is the world's largest and most energetic laser experimental facility with 192 beams capable of delivering 1.8 megajoules of 500-terawatt ultraviolet laser energy, over 60 times more energy than any previous laser system. The NIF can create temperatures of more than 100 million degrees and pressures more than 100 billion times Earth's atmospheric pressure. These conditions, similar to those at the center of the sun, have never been created in the laboratory and will allow scientists to probe the physics of planetary interiors, supernovae, black holes, and other phenomena. The NIF's laser beams are designed to compress fusion targets to the conditions required for thermonuclear burn, liberating more energy than is required to initiate the fusion reactions. Experiments on the NIF are focusing on demonstrating fusion ignition and burn via inertial confinement fusion (ICF). The ignition program is conducted via the National Ignition Campaign (NIC) - a partnership among LLNL, Los Alamos National Laboratory, Sandia National Laboratories, University of Rochester Laboratory for Laser Energetics, and General Atomics. The NIC program has also established collaborations with the Atomic Weapons Establishment in the United Kingdom, Commissariat a Energie Atomique in France, Massachusetts Institute of Technology, Lawrence Berkeley National Laboratory, and many others. Ignition experiments have begun that form the basis of the overall NIF strategy for achieving ignition. Accomplishing this goal will demonstrate the feasibility of fusion as a source of limitless, clean energy for the future. This paper discusses the current status of the NIC, the experimental steps needed toward achieving ignition and the steps required to demonstrate and enable the delivery of fusion energy as a viable carbon-free energy source.

  17. Kinetic advantage of controlled intermediate nuclear fusion

    SciTech Connect (OSTI)

    Guo Xiaoming

    2012-09-26

    The dominated process of controlled fusion is to let nuclei gain enough kinetic energy to overcome Coulomb barrier. As a result, a fusion scheme can consider two factors in its design: to increase kinetic energy of nuclei and to alter the Coulomb barrier. Cold Fusion and Hot fusion are all one-factor schemes while Intermediate Fusion is a twofactors scheme. This made CINF kinetically superior. Cold Fusion reduces deuteron-deuteron distance, addressing Coulomb barrier, and Hot Fusion heat up plasma into extreme high temperature, addressing kinetic energy. Without enough kinetic energy made Cold Fusion skeptical. Extreme high temperature made Hot Fusion very difficult to engineer. Because CIFN addresses both factors, CIFN is a more promising technique to be industrialized.

  18. Summary of Assessment of Prospects for Inertial Fusion Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary of Assessment of Prospects for Inertial Fusion Energy American Fusion News Category: National Ignition Facility Link: Summary of Assessment of Prospects for Inertial Fusion...

  19. Using Radio Waves to Control Fusion Plasma Density

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Radio Waves to Control Fusion Plasma Density Using Radio Waves to Control Fusion Plasma Density Simulations Run at NERSC Support Fusion Experiments at MIT, General Atomics ...

  20. Plasma Blobs and Filaments: Fusion Scientists Discover Secrets...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Blobs and Filaments: Fusion Scientists Discover Secrets of Turbulent Edge Transport American Fusion News Category: U.S. Universities Link: Plasma Blobs and Filaments: Fusion...

  1. Placing Fusion Power on a Pedestal | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Placing Fusion Power on a Pedestal American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: Placing Fusion Power on a Pedestal

  2. Applying physics, teamwork to fusion energy science | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Lab Applying physics, teamwork to fusion energy science American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: Applying physics, teamwork to fusion energy science

  3. Key Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Key Activities Key Activities The SunShot Initiative issues competitive solicitations that fund selective research projects aimed at transforming the ways the United States generates, stores, and utilizes solar energy. The targeted strategies supported by the SunShot Initiative include activities that seek to: Shorten the amount of time needed to move promising new solar photovoltaic and concentrating solar power technologies from development to commercialization Increase efficiency, reduce

  4. Concept of DT fuel cycle for a fusion neutron source

    SciTech Connect (OSTI)

    Anan'ev, S.; Spitsyn, A.V.; Kuteev, B.V.; Cherkez, D.I.; Shirnin, P.N.; Kazakovsky, N.T.

    2015-03-15

    A concept of DT-fusion neutron source (FNS) with the neutron yield higher than 10{sup 18} neutrons per second is under design in Russia. Such a FNS is of interest for many applications: 1) basic and applied research (neutron scattering, etc); 2) testing the structural materials for fusion reactors; 3) control of sub-critical nuclear systems and 4) nuclear waste processing (including transmutation of minor actinides). This paper describes the fuel cycle concept of a compact fusion neutron source based on a small spherical tokamak (FNS-ST) with a MW range of DT fusion power and considers the key physics issues of this device. The major and minor radii are ∼0.5 and ∼0.3 m, magnetic field ∼1.5 T, heating power less than 15 MW and plasma current 1-2 MA. The system provides the fuel mixture with equal fractions of D and T (D:T = 1:1) for all FNS technology systems. (authors)

  5. Fusion bonding and alignment fixture

    DOE Patents [OSTI]

    Ackler, Harold D.; Swierkowski, Stefan P.; Tarte, Lisa A.; Hicks, Randall K.

    2000-01-01

    An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all the components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

  6. Method for vacuum fusion bonding

    DOE Patents [OSTI]

    Ackler, Harold D.; Swierkowski, Stefan P.; Tarte, Lisa A.; Hicks, Randall K.

    2001-01-01

    An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

  7. Generic magnetic fusion reactor cost assessment

    SciTech Connect (OSTI)

    Sheffield, J.

    1984-01-01

    A generic D-T burning magnetic fusion reactor model shows that within the constraints set by generic limitations it is possible for magnetic fusion to be a competitive source of electricity in the 21st century.

  8. Effects of magnetization on fusion product trapping and secondary neutron spectra

    SciTech Connect (OSTI)

    Knapp, P. F.; Schmit, P. F.; Hansen, S. B.; Gomez, M. R.; Hahn, K. D.; Sinars, D. B.; Peterson, K. J.; Slutz, S. A.; Sefkow, A. B.; Awe, T. J.; Harding, E.; Jennings, C. A.; Desjarlais, M. P.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Geissel, M.; Harvey-Thompson, A. J.; Porter, J. L.; Rochau, G. A.; and others

    2015-05-15

    By magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner Inertial Fusion experiments conducted on the Z machine at Sandia National Laboratories. We show that in these experiments BR ≈ 0.34(+0.14/−0.06) MG · cm, a ∼ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. This is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.

  9. Effects of magnetization on fusion product trapping and secondary neutron spectra

    SciTech Connect (OSTI)

    Knapp, Patrick F.; Schmit, Paul F.; Hansen, Stephanie B.; Gomez, Matthew R.; Hahn, Kelly D.; Sinars, Daniel Brian; Peterson, Kyle J.; Slutz, Stephen A.; Sefkow, Adam B.; Awe, Thomas James; Harding, Eric; Jennings, Christopher A.; Desjarlais, M. P.; Chandler, Gordon A.; Cooper, Gary Wayne; Cuneo, Michael Edward; Geissel, Matthias; Harvey-Thompson, Adam James; Porter, John L.; Rochau, Gregory A.; Rovang, Dean C.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Stygar, William A.; Herrmann, Mark

    2015-05-14

    In magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, we found that the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ?R, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner InertialFusion experiments conducted on the Z machine at Sandia National Laboratories. Furthermore, we show that in these experiments BR ? 0.34(+0.14/-0.06) MG cm, a ~ 14 increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. Lastly, this is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.

  10. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOE Patents [OSTI]

    Lasche, George P. (Arlington, VA)

    1988-01-01

    A high-power-density laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems.

  11. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOE Patents [OSTI]

    Lasche, G.P.

    1987-02-20

    A high-power-density-laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems. 25 figs.

  12. Key China Energy Statistics 2011

    SciTech Connect (OSTI)

    Levine, Mark; Fridley, David; Lu, Hongyou; Fino-Chen, Cecilia

    2012-01-15

    The China Energy Group at Lawrence Berkeley National Laboratory (LBNL) was established in 1988. Over the years the Group has gained recognition as an authoritative source of China energy statistics through the publication of its China Energy Databook (CED). In 2008 the Group published the Seventh Edition of the CED (http://china.lbl.gov/research/chinaenergy-databook). This handbook summarizes key statistics from the CED and is expressly modeled on the International Energy Agencys Key World Energy Statistics series of publications. The handbook contains timely, clearly-presented data on the supply, transformation, and consumption of all major energy sources.

  13. Key China Energy Statistics 2012

    SciTech Connect (OSTI)

    Levine, Mark; Fridley, David; Lu, Hongyou; Fino-Chen, Cecilia

    2012-05-01

    The China Energy Group at Lawrence Berkeley National Laboratory (LBNL) was established in 1988. Over the years the Group has gained recognition as an authoritative source of China energy statistics through the publication of its China Energy Databook (CED). The Group has published seven editions to date of the CED (http://china.lbl.gov/research/chinaenergy-databook). This handbook summarizes key statistics from the CED and is expressly modeled on the International Energy Agencys Key World Energy Statistics series of publications. The handbook contains timely, clearly-presented data on the supply, transformation, and consumption of all major energy sources.

  14. Experimental investigation of muon-catalyzed t + t fusion

    SciTech Connect (OSTI)

    Bogdanova, L. N.; Bom, V. R.; Demin, A. M.; Demin, D. L.; Eijk, C. W. E. van; Filchagin, S. V.; Filchenkov, V. V.; Grafov, N. N. Grishechkin, S. K.; Gritsaj, K. I.; Konin, A. D.; Kuryakin, A. V.; Medved', S. V.; Musyaev, R. K.; Rudenko, A. I.; Tumkin, D. P.; Vinogradov, Yu. I.; Yukhimchuk, A. A.; Yukhimchuk, S. A.; Zinov, V. G.

    2009-02-15

    The muon-catalyzed fusion ({mu}CF) process in tritium was studied by the {mu}CF collaboration on the muon beam of the JINR Phasotron. The measurements were carried out with a liquid tritium target at the temperature 22 K and density approximately 1.25 of the liquid hydrogen density (LHD). Parameters of the {mu}CF cycle were determined: the tt{mu} muonic molecule formation rate {lambda}{sub tt{mu}} = 2.84(0.32) {mu}s{sup -1}, the tt{mu} fusion reaction rate {lambda}{sub f} = 15.6(2.0) {mu}s{sup -1}, and the probability of muon sticking to helium {omega}{sub tt}= 13.9(1.5)%. The results agree with those obtained earlier by other groups, but better accuracy was achieved due to our unique experimental method.

  15. Fusion-fission hybrid studies in the United States

    SciTech Connect (OSTI)

    Moir, R.W.; Lee, J.D.; Berwald, D.H.; Cheng, E.T.; Delene, J.G.; Jassby, D.L.

    1986-05-20

    Systems and conceptual design studies have been carried out on the following three hybrid types: (1) The fission-suppressed hybrid, which maximizes fissile material produced (Pu or /sup 233/U) per unit of total nuclear power by suppressing the fission process and multiplying neutrons by (n,2n) reactions in materials like beryllium. (2) The fast-fission hybrid, which maximizes fissile material produced per unit of fusion power by maximizing fission of /sup 238/U (Pu is produced) in which twice the fissile atoms per unit of fusion power (but only a third per unit of nuclear power) are made. (3) The power hybrid, which amplifies power in the blanket for power production but does not produce fuel to sell. All three types must sell electrical power to be economical.

  16. Exo-endo cellulase fusion protein

    DOE Patents [OSTI]

    Bower, Benjamin S.; Larenas, Edmund A.; Mitchinson, Colin

    2012-01-17

    The present invention relates to a heterologous exo-endo cellulase fusion construct, which encodes a fusion protein having cellulolytic activity comprising a catalytic domain derived from a fungal exo-cellobiohydrolase and a catalytic domain derived from an endoglucanase. The invention also relates to vectors and fungal host cells comprising the heterologous exo-endo cellulase fusion construct as well as methods for producing a cellulase fusion protein and enzymatic cellulase compositions.

  17. Z-Pinch Fusion for Energy Applications

    SciTech Connect (OSTI)

    SPIELMAN,RICK B.

    2000-01-01

    Z pinches, the oldest fusion concept, have recently been revisited in light of significant advances in the fields of plasma physics and pulsed power engineering. The possibility exists for z-pinch fusion to play a role in commercial energy applications. We report on work to develop z-pinch fusion concepts, the result of an extensive literature search, and the output for a congressionally-mandated workshop on fusion energy held in Snowmass, Co July 11-23,1999.

  18. 1994 International Sherwood Fusion Theory Conference

    SciTech Connect (OSTI)

    1994-04-01

    This report contains the abstracts of the paper presented at the 1994 International Sherwood Fusion Theory Conference.

  19. Breakthrough: Neutron Science for the Fusion Mission

    SciTech Connect (OSTI)

    McGreevy, Robert

    2012-04-24

    How Oak Ridge National Laboratory is helping to solve the world's energy problems through fusion energy research.

  20. Experimental Fusion Research | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental Fusion Research PPPL fusion research centers on the National Spherical Torus Experiment (NSTX), which is undergoing a $94 million upgrade that will make it the most powerful experimental fusion facility, or tokamak, of its type in the world when work is completed in 2014. Experiments will test the ability of the upgraded spherical facility to maintain a high-performance plasma under conditions of extreme heat and power. Results could strongly influence the design of future fusion

  1. Breakthrough: Neutron Science for the Fusion Mission

    ScienceCinema (OSTI)

    McGreevy, Robert

    2014-06-03

    How Oak Ridge National Laboratory is helping to solve the world's energy problems through fusion energy research.

  2. American Fusion News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    American Fusion News General Atomics (GA) December 4, 2012 The Scorpion's Strategy: "Catch and Subdue" December 4, 2012 Frozen Bullets Tame Unruly Edge Plasmas in Fusion Experiment February 15, 2012 General Atomics (GA) Fusion News: A New Spin on Understanding Plasma Confinement See All Massachusetts Institute of Technology (MIT) April 5, 2013 Applying physics, teamwork to fusion energy science February 22, 2013 A Tour of Plasma Physics in Downtown Cambridge December 4, 2012 Placing

  3. Structure of the Newcastle disease virus F protein in the post-fusion conformation

    SciTech Connect (OSTI)

    Swanson, Kurt; Wen, Xiaolin; Leser, George P.; Paterson, Reay G.; Lamb, Robert A.; Jardetzky, Theodore S. (Stanford-MED); (NWU); (HHMI)

    2010-11-17

    The paramyxovirus F protein is a class I viral membrane fusion protein which undergoes a significant refolding transition during virus entry. Previous studies of the Newcastle disease virus, human parainfluenza virus 3 and parainfluenza virus 5 F proteins revealed differences in the pre- and post-fusion structures. The NDV Queensland (Q) F structure lacked structural elements observed in the other two structures, which are key to the refolding and fusogenic activity of F. Here we present the NDV Australia-Victoria (AV) F protein post-fusion structure and provide EM evidence for its folding to a pre-fusion form. The NDV AV F structure contains heptad repeat elements missing in the previous NDV Q F structure, forming a post-fusion six-helix bundle (6HB) similar to the post-fusion hPIV3 F structure. Electrostatic and temperature factor analysis of the F structures points to regions of these proteins that may be functionally important in their membrane fusion activity.

  4. A1.5 Fusion Performance

    SciTech Connect (OSTI)

    Amendt, P

    2011-03-31

    Analysis and radiation hydrodynamics simulations for expected high-gain fusion target performance on a demonstration 1-GWe Laser Inertial Fusion Energy (LIFE) power plant in the mid-2030s timeframe are presented. The required laser energy driver is 2.2 MJ at a 0.351-{micro}m wavelength, and a fusion target gain greater than 60 at a repetition rate of 16 Hz is the design goal for economic and commercial attractiveness. A scaling-law analysis is developed to benchmark the design parameter space for hohlraum-driven central hot-spot ignition. A suite of integrated hohlraum simulations is presented to test the modeling assumptions and provide a basis for a near-term experimental resolution of the key physics uncertainties on the National Ignition Facility (NIF). The NIF is poised to demonstrate ignition by 2012 based on the central hot spot (CHS) mode of ignition and propagating thermonuclear burn [1]. This immediate prospect underscores the imperative and timeliness of advancing inertial fusion as a carbon-free, virtually limitless source of energy by the mid-21st century to substantially offset fossil fuel technologies. To this end, an intensive effort is underway to leverage success at the NIF and to provide the foundations for a prototype 'LIFE.1' engineering test facility by {approx}2025, followed by a commercially viable 'LIFE.2' demonstration power plant operating at 1 GWe by {approx}2035. The current design goal for LIFE.2 is to accommodate {approx}2.2 MJ of laser energy (entering the high-Z radiation enclosure or 'hohlraum') at a 0.351-{micro}m wavelength operating at a repetition rate of 16 Hz and to provide a fusion target yield of 132 MJ. To achieve this design goal first requires a '0-d' analytic gain model that allows convenient exploration of parameter space and target optimization. This step is then followed by 2- and 3-dimensional radiation-hydrodynamics simulations that incorporate laser beam transport, x-ray radiation transport, atomic physics, and thermonuclear burn [2]. These simulations form the basis for assessing the susceptibility to hydrodynamic instability growth, target performance margins, laser backscatter induced by plasma density fluctuations within the hohlraum, and the threat spectrum emerging from the igniting capsule, e.g., spectra, fluences and anisotropy of the x rays and ions, for input into the chamber survivability calculations. The simulations follow the guidelines of a 'point design' methodology, which formally designates a well-defined milestone in concept development that meets established criteria for experimental testing. In Section 2, the 0-d analytic gain model to survey gain versus laser energy parameter space is discussed. Section 3 looks at the status of integrated hohlraum simulations and the needed improvements in laser-hohlraum coupling efficiency to meet the LIFE.2 threshold (net) target gain of {approx}60. Section 4 considers advanced hohlraum designs to well exceed the LIFE.2 design goal for satisfactory performance margins. We summarize in Sec. 5.

  5. Recent progress in the development of materials for fusion reactors

    SciTech Connect (OSTI)

    Bloom, E.E.; Rowcliffe, A.F.

    1991-01-01

    Development of materials with suitable properties is essential if fusion is to be realized as an economic, safe, and environmentally acceptable energy source. For each of the major reactor systems (e.g., superconducting magnets, blankets, divertors, auxiliary heating, and diagnostic devices), material requirements have been defined and alloy and ceramic systems, which have attractive properties for the various applications, have been identified. The next experimental fusion reactor, the International Thermonuclear Experimental Reactor (ITER), will utilize existing materials technology. However, for many applications in power reactors, existing materials do not have adequate properties and advanced materials must be developed. This paper presents an overview of the status of materials technology in four key areas: structural materials for the first wall and blanket (FWB), plasma-facing materials, materials for superconducting magnets, and ceramics for electrical and structural applications. 7 refs.

  6. Effect of particle pinch on the fusion performance and profile features of an international thermonuclear experimental reactor-like fusion reactor

    SciTech Connect (OSTI)

    Wang, Shijia Wang, Shaojie

    2015-04-15

    The evolution of the plasma temperature and density in an international thermonuclear experimental reactor (ITER)-like fusion device has been studied by numerically solving the energy transport equation coupled with the particle transport equation. The effect of particle pinch, which depends on the magnetic curvature and the safety factor, has been taken into account. The plasma is primarily heated by the alpha particles which are produced by the deuterium-tritium fusion reactions. A semi-empirical method, which adopts the ITERH-98P(y,2) scaling law, has been used to evaluate the transport coefficients. The fusion performances (the fusion energy gain factor, Q) similar to the ITER inductive scenario and non-inductive scenario (with reversed magnetic shear) are obtained. It is shown that the particle pinch has significant effects on the fusion performance and profiles of a fusion reactor. When the volume-averaged density is fixed, particle pinch can lower the pedestal density by ∼30%, with the Q value and the central pressure almost unchanged. When the particle source or the pedestal density is fixed, the particle pinch can significantly enhance the Q value by  60%, with the central pressure also significantly raised.

  7. Theoretical Fusion Research | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Theory & Computational Department Weekly Highlights Weekly Seminars Basic Plasma Science Plasma Astrophysics Other Physics and Engineering Research PPPL Technical Reports NSTX-U Education Organization Contact Us Overview Experimental Fusion Research Theoretical Fusion Research Theory & Computational Department Weekly Highlights Weekly Seminars Basic Plasma Science Plasma Astrophysics Other Physics and Engineering Research PPPL Technical Reports NSTX-U Theoretical Fusion Research About

  8. Senate targets fusion, backs NIF

    SciTech Connect (OSTI)

    Lawler, A.

    1995-08-01

    This article discusses a budget approved by the Senate Appropriations Committee which funds the fusion program even lower than the drastically reduced level the House approved in July. Work on the International Thermonuclear Experimental Reactor (ITER) would continue but the Tokamak Physics Experiment would be halted. At the same time, the Senate bill allots money to start work on the National Ignition Facility (NIF).

  9. Ignition and Inertial Confinement Fusion at The National Ignition Facility

    SciTech Connect (OSTI)

    Moses, E

    2009-10-01

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and for studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF is now conducting experiments to commission the laser drive, the hohlraum and the capsule and to develop the infrastructure needed to begin the first ignition experiments in FY 2010. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. NIF will achieve this by concentrating the energy from the 192 beams into a mm{sup 3}-sized target and igniting a deuterium-tritium mix, liberating more energy than is required to initiate the fusion reaction. NIF's ignition program is a national effort managed via the National Ignition Campaign (NIC). The NIC has two major goals: execution of DT ignition experiments starting in FY2010 with the goal of demonstrating ignition and a reliable, repeatable ignition platform by the conclusion of the NIC at the end of FY2012. The NIC will also develop the infrastructure and the processes required to operate NIF as a national user facility. The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on laser fusion as a viable energy option. A laser fusion-based energy concept that builds on NIF, known as LIFE (Laser Inertial Fusion Energy), is currently under development. LIFE is inherently safe and can provide a global carbon-free energy generation solution in the 21st century. This paper describes recent progress on NIF, NIC, and the LIFE concept.

  10. How Fusion Energy Works | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fusion Energy Works How Energy Works 33 likes How Fusion Energy Works Fusion energy is the energy source of the sun and all of the stars. In fusion, two light atomic nuclei are fused together to create energy (as opposed to fission where the nucleus of an atom is split apart). The scientific basis underlying fusion energy is known as plasma physics. Plasma is one of the one of the four fundamental states of matter and makes up 99 percent of the visible universe. On a basic level, a plasma is a

  11. Project Information by Key Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Information Project Information by Key Technology Jump to: High Performance Materials Innovative Energy Concepts Sensors and Controls Simulation-Based Engineering Water Management R&D View Project Information by Program Area HIGH PERFORMANCE MATERIALS Agreement Number Project Title Performer Name Program Area FE0024076 Advanced Ultrasupercritical (AUSC) Tube Membrane Panel Development Alstom Power Inc. Plant Optimization Technologies FWP-AL-10-450-007 Design of Multiscale Systems

  12. Key Steps | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Key Steps The Postdoctoral Program Office welcomes you to Argonne National Laboratory. Your academic achievements and demonstrated research capabilities will undoubtedly contribute to the continuing scientific and technological success of the Laboratory. It is our intention that your tenure at Argonne be as productive and rewarding as possible. Your goals and needs may evolve as you progress through your appointment. We take the approach of providing guidance, resources and programs targeted to

  13. Photons & Fusion Newsletter - 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    news Photons & Fusion Newsletter - 2014 May ARC Beamlet Profiles NIF Petawatt Laser Is on Track to Completion The Advanced Radiographic Capability (ARC), a petawatt-class laser now being developed for NIF, is moving rapidly along the path to completion and commissioning.... April Star-forming Pillars of Creation in the Eagle Nebula Discovery Science on NIF: Exploring the Physics of Star Formation For the past several years, astronomers at the University of Maryland and theorists and

  14. fusion | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    fusion | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home /

  15. Road Blocks Yield Key Information about a Catalyst | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Road Blocks Yield Key Information about a Catalyst Researchers systematically blocked key chemical reaction pathways to get unambiguous information about how carbon-nitrogen bonds are formed in a catalytic reaction known as hydroamination. Understanding a multi-step catalytic mechanism is like a solving a puzzle where you can't see the pieces. However, you can add your own "pieces" with known shapes to figure out what other pieces of the puzzle then will (or will not) fit.

  16. Fusion Institutions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Fusion Institutions Fusion Energy Sciences (FES) FES Home About Research Fusion Institutions Fusion Links International Activities Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information » Research Fusion

  17. Fusion proton diagnostic for the C-2 field reversed configuration

    SciTech Connect (OSTI)

    Magee, R. M. Clary, R.; Korepanov, S.; Smirnov, A.; Garate, E.; Knapp, K.; Tkachev, A.

    2014-11-15

    Measurements of the flux of fusion products from high temperature plasmas provide valuable insights into the ion energy distribution, as the fusion reaction rate is a very sensitive function of ion energy. In C-2, where field reversed configuration plasmas are formed by the collision of two compact toroids and partially sustained by high power neutral beam injection [M. Binderbauer et al., Phys. Rev. Lett. 105, 045003 (2010); M. Tuszewski et al., Phys. Rev. Lett. 108, 255008 (2012)], measurements of DD fusion neutron flux are used to diagnose ion temperature and study fast ion confinement and dynamics. In this paper, we will describe the development of a new 3 MeV proton detector that will complement existing neutron detectors. The detector is a large area (50?cm{sup 2}), partially depleted, ion implanted silicon diode operated in a pulse counting regime. While the scintillator-based neutron detectors allow for high time resolution measurements (?100 kHz), they have no spatial or energy resolution. The proton detector will provide 10 cm spatial resolution, allowing us to determine if the axial distribution of fast ions is consistent with classical fast ion theory or whether anomalous scattering mechanisms are active. We will describe in detail the diagnostic design and present initial data from a neutral beam test chamber.

  18. Fusion Nuclear Science Pathways Assessment

    SciTech Connect (OSTI)

    C.E. Kessel, et. al.

    2012-02-23

    With the strong commitment of the US to the success of the ITER burning plasma mission, and the project overall, it is prudent to consider how to take the most advantage of this investment. The production of energy from fusion has been a long sought goal, and the subject of several programmatic investigations and time line proposals [1]. The nuclear aspects of fusion research have largely been avoided experimentally for practical reasons, resulting in a strong emphasis on plasma science. Meanwhile, ITER has brought into focus how the interface between the plasma and engineering/technology, presents the most challenging problems for design. In fact, this situation is becoming the rule and no longer the exception. ITER will demonstrate the deposition of 0.5 GW of neutron heating to the blanket, deliver a heat load of 10-20 MW/m2 or more on the divertor, inject 50-100 MW of heating power to the plasma, all at the expected size scale of a power plant. However, in spite of this, and a number of other technologies relevant power plant, ITER will provide a low neutron exposure compared to the levels expected to a fusion power plant, and will purchase its tritium entirely from world reserves accumulated from decades of CANDU reactor operations. Such a decision for ITER is technically well founded, allowing the use of conventional materials and water coolant, avoiding the thick tritium breeding blankets required for tritium self-sufficiency, and allowing the concentration on burning plasma and plasma-engineering interface issues. The neutron fluence experienced in ITER over its entire lifetime will be ~ 0.3 MW-yr/m2, while a fusion power plant is expected to experience 120-180 MW-yr/m2 over its lifetime. ITER utilizes shielding blanket modules, with no tritium breeding, except in test blanket modules (TBM) located in 3 ports on the midplane [2], which will provide early tests of the fusion nuclear environment with very low tritium production (a few g per year).

  19. Inertially confined fusion using heavy ion drivers

    SciTech Connect (OSTI)

    Herrmannsfeldt, W.B.; Bangerter, R.O.; Bock, R.; Hogan, W.J.; Lindl, J.D.

    1991-10-01

    The various technical issues of HIF will be briefly reviewed in this paper. It will be seen that there are numerous areas in common in all the approaches to HIF. In the recent International Symposium on Heavy Ion Inertial Fusion, the attendees met in specialized workshop sessions to consider the needs for research in each area. Each of the workshop groups considered the key questions of this report: (1) Is this an appropriate time for international collaboration in HIF? (2) Which problems are most appropriate for such collaboration? (3) Can the sharing of target design information be set aside until other driver and systems issues are better resolved, by which time it might be supposed that there could be a relaxation of classification of target issues? (4) What form(s) of collaboration are most appropriate, e.g., bilateral or multilateral? (5) Can international collaboration be sensibly attempted without significant increases in funding for HIF? The authors of this report share the conviction that collaboration on a broad scale is mandatory for HIF to have the resources, both financial and personnel, to progress to a demonstration experiment. Ultimately it may be possible for a single driver with the energy, power, focusibility, and pulse shape to satisfy the needs of the international community for target physics research. Such a facility could service multiple experimental chambers with a variety of beam geometries and target concepts.

  20. Inertially confined fusion using heavy ion drivers

    SciTech Connect (OSTI)

    Herrmannsfeldt, W.B. ); Bangerter, R.O. ); Bock, R. ); Hogan, W.J.; Lindl, J.D. )

    1991-10-01

    The various technical issues of HIF will be briefly reviewed in this paper. It will be seen that there are numerous areas in common in all the approaches to HIF. In the recent International Symposium on Heavy Ion Inertial Fusion, the attendees met in specialized workshop sessions to consider the needs for research in each area. Each of the workshop groups considered the key questions of this report: (1) Is this an appropriate time for international collaboration in HIF (2) Which problems are most appropriate for such collaboration (3) Can the sharing of target design information be set aside until other driver and systems issues are better resolved, by which time it might be supposed that there could be a relaxation of classification of target issues (4) What form(s) of collaboration are most appropriate, e.g., bilateral or multilateral (5) Can international collaboration be sensibly attempted without significant increases in funding for HIF The authors of this report share the conviction that collaboration on a broad scale is mandatory for HIF to have the resources, both financial and personnel, to progress to a demonstration experiment. Ultimately it may be possible for a single driver with the energy, power, focusibility, and pulse shape to satisfy the needs of the international community for target physics research. Such a facility could service multiple experimental chambers with a variety of beam geometries and target concepts.

  1. Brain Receptor Structures Key to Future Therapeutics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brain Receptor Structures Key to Future Therapeutics Brain Receptor Structures Key to Future Therapeutics Print Wednesday, 28 January 2015 00:00 With an aging population in ...

  2. Dynamical approach to heavy-ion induced fusion using actinide target

    SciTech Connect (OSTI)

    Aritomo, Y.; Hagino, K.; Chiba, S.; Nishio, K.

    2012-10-20

    To treat heavy-ion reactions using actinide target nucleus, we propose a model which takes into account the coupling to the collective states of interacting nuclei in the penetration of the Coulomb barrier and the dynamical evolution of nuclear shape from the contact configuration. A fluctuation-dissipation model (Langevin equation) was applied in the dynamical calculation, where effect of nuclear orientation at the initial impact on the prolately deformed target nucleus was considered. Using this model, we analyzed the experimental data for the mass distribution of fission fragments (MDFF) in the reaction of {sup 36}S+{sup 238}U at several incident energies. Fusion-fission, quasifission and deep-quasi-fission are separated as different trajectories on the potential energy surface. We estimated the fusion cross section of the reaction.

  3. Inertial Confinement Fusion: Quarterly report, April-June 1996

    SciTech Connect (OSTI)

    Correll, D.

    1996-06-01

    The lead article, `Ion-beam propagation in a low-density reactor chamber for heavy-ion inertial fusion` (p. 89), explores the ability of heavy-ion beams to be adequately transported and focused in an IFE reactor. The next article, `Efficient production and applications of 2- to 10-keV x rays by laser-heated underdense radiators` (p. 96), explores the ability of the NIF to produce sufficient high-energy x rays for diagnostic backlighting, target preheating, or uniform irradiation of large test objects for Nuclear Weapons Effects Testing. For capsule implosion experiments, the increasing energies and distances involved in the NIF compared to Nova require the development of new diagnostics methods. The article `Fusion reaction-rate measurements--Nova and NIF` (p. 115) first reviews the use of time-resolved neutron measurements on Nova to monitor fusion burn histories and then explores the limitations of that technique, principally Doppler broadening, for the proposed NIF. It also explores the use of gamma rays on Nova, thereby providing a proof-of-principle for using gamma rays for monitoring fusion burn histories on the NIF. The articles `The energetics of gas-filled hohlraums` (p. 110) and `Measurements of laser- speckle-induced perturbations in laser-driven foils` (p. 123) report measurements on Nova of two important aspects of implosion experiments. The first characterizes the amount of energy lost from a hohlraum by stimulated Brillouin and Raman scattering as a function of gas fill and laser-beam uniformity. The second of these articles shows that the growth of density nonuniformities implanted on smooth capsule surfaces by laser speckle can be correlated with the effects of physical surface roughness. The article `Laser-tissue interaction modeling with the LATIS computer program` (p. 103) explores the use of modeling to enhance the effectiveness--maximize desired effects and minimize collateral damage--of lasers for medical purposes.

  4. Self-similar structure and experimental signatures of suprathermal ion distribution in inertial confinement fusion implosions

    SciTech Connect (OSTI)

    Kagan, Grigory; Svyatskiy, D.; Rinderknecht, H. G.; Rosenberg, M. J.; Zylstra, A. B.; Huang, C. -K.; McDevitt, C. J.

    2015-09-03

    The distribution function of suprathermal ions is found to be self-similar under conditions relevant to inertial confinement fusion hot spots. By utilizing this feature, interference between the hydrodynamic instabilities and kinetic effects is for the first time assessed quantitatively to find that the instabilities substantially aggravate the fusion reactivity reduction. Thus, the ion tail depletion is also shown to lower the experimentally inferred ion temperature, a novel kinetic effect that may explain the discrepancy between the exploding pusher experiments and rad-hydro simulations and contribute to the observation that temperature inferred from DD reaction products is lower than from DT at the National Ignition Facility.

  5. PPPL Races Ahead with Fusion Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Power... PPPL Races Ahead with Fusion Research RESEARCH NEWS FROM PPPL uest Summer 2013, Issue 1 Contents 02 New Paths to Fusion Energy 09 ADVANCING FUSION THEORY 12 ADVANCING PLASMA SCIENCE 15 PARTNERSHIPS & COLLABORATIONS 19 EDUCATION & OUTREACH AWARDS Inside back cover Letter from the Director W elcome to the premiere issue of Quest, the annual magazine of the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL). We are pleased to provide this news of our strides

  6. Tritium Gas Processing for Magnetic Fusion

    Office of Environmental Management (EM)

    Processing for Magnetic Fusion SRNL-STI-2014-00168 Bernice Rogers Clean Energy - Savannah River National Laboratory April 24, 2014 The views and opinions expressed herein do not necessarily reflect those of any international organization, the US Government SRNL-STI-2014-00168 Presentation Outline * Background Information * Simplified Fusion Fuel Cycle * Select Requirements Fuel Cycle * Confinement * Process * Summary 2 3 What is Fusion? Small Atom Small Atom Large Atom ENERGY + 4 deuterium

  7. Review of alternative concepts for magnetic fusion

    SciTech Connect (OSTI)

    Krakowski, R.A.; Miller, R.L.; Hagenson, R.L.

    1980-01-01

    Although the Tokamak represents the mainstay of the world's quest for magnetic fusion power, with the tandem mirror serving as a primary backup concept in the US fusion program, a wide range of alternative fusion concepts (AFC's) have been and are being pursued. This review presents a summary of past and present reactor projections of a majority of AFC's. Whenever possible, quantitative results are given.

  8. Fusion Power | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Power For centuries, the way in which the sun and stars produce their energy remained a mystery to man. During the twentieth century, scientists discovered that they produce their energy through the fusion of light atoms. E=mc2, Albert Einstein's familiar formula, provided the basis for understanding fusion. Einstein's theory that mass can be converted into energy was further explored by other physicists who discovered two practical methods for achieving this conversion. Publication File:

  9. Hydrogen Fusion An Opportunity for Global Leadership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Process of Hydrogen Fusion Hydrogen fusion, the process that powers our sun and the stars, is the most fundamental energy source in the visible universe. Directly, it provides sunlight, while indirectly it is the driver behind all "renewable" energies (solar-thermal and photovoltaic, wind, biomass and ocean- thermal). Even the fossil fuels (oil, gas and coal), which were derived over long periods of time from ancient biomass, are by-products of hydrogen fusion. The energy released

  10. Inertial confinement fusion | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inertial confinement fusion Subscribe to RSS - Inertial confinement fusion An experimental process that uses lasers to compress plasma to sufficiently high temperatures and densities for fusion to occur. Such experiments are carried out in places such as the National Ignition Facility at the Lawrence Livermore National Laboratory in Livermore, California. Graduate students from two British universities install a critical new diagnostic on NSTX-U A system of antennas similar to those that

  11. COLLOQUIUM: DIII-D Explorations of Fusion Science to Prepare for ITER and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FNSF | Princeton Plasma Physics Lab December 10, 2013, 11:00am to 12:30pm Colloquia MBG Auditorium COLLOQUIUM: DIII-D Explorations of Fusion Science to Prepare for ITER and FNSF Dr. Richard Buttery General Atomics, DIII-D Presentation: File Presentation Abstract: PDF icon COLL.12.10.13.pdf Recent DIII-D research has provided significant new information for the physics basis of key scientific issues for successful operation of ITER and future steady state fusion tokamaks, including control of

  12. Fusion materials science and technology research opportunities...

    Office of Scientific and Technical Information (OSTI)

    the ITER era Citation Details In-Document Search Title: Fusion materials science and technology research opportunities now and during the ITER era Several high-priority...

  13. PPPL Races Ahead with Fusion Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of unprecedented size and power that is under construction in France, and cooperation with other ... Goldston's model, published in the journal Nuclear Fusion, predicts the ...

  14. How Fusion Energy Works | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    3 likes How Fusion Energy Works Fusion energy is the energy source of the sun and all of the stars. In fusion, two light atomic nuclei are fused together to create energy (as opposed to fission where the nucleus of an atom is split apart). The scientific basis underlying fusion energy is known as plasma physics. Plasma is one of the one of the four fundamental states of matter and makes up 99 percent of the visible universe. On a basic level, a plasma is a hot ionized gas. The ultimate goal of

  15. Response to FESAC survey, Non-Fusion Connections to Fusion Energy Sciences.

    Office of Scientific and Technical Information (OSTI)

    Long Duration Directional Drives for Star Formation and Photoionization (Technical Report) | SciTech Connect Response to FESAC survey, Non-Fusion Connections to Fusion Energy Sciences. Long Duration Directional Drives for Star Formation and Photoionization Citation Details In-Document Search Title: Response to FESAC survey, Non-Fusion Connections to Fusion Energy Sciences. Long Duration Directional Drives for Star Formation and Photoionization Due to the iconic status of the pillars of the

  16. fusion

    National Nuclear Security Administration (NNSA)

    in size from a pinhead to a small pea, is filled with a mixture of two isotopes of hydrogen (deuterium (D) and tritium (T)) and is subjected to a sudden application of...

  17. fusion

    National Nuclear Security Administration (NNSA)

    in size from a pinhead to a small pea, is filled with a mixture of two isotopes of hydrogen (deuterium (D) and tritium (T)) and is subjected to a sudden application of intense...

  18. Questions and answers about ITER and fusion energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    QA & What is fusion? Fusion, the energy source of the sun and stars, is the most efficient process for converting mass into energy (E mc 2 ). The fusion process is ...

  19. Deuterium Uptake in Magnetic Fusion Devices with Lithium Conditioned Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Walls | Princeton Plasma Physics Lab Deuterium Uptake in Magnetic Fusion Devices with Lithium Conditioned Carbon Walls American Fusion News Category: U.S. Universities Link: Deuterium Uptake in Magnetic Fusion Devices with Lithium Conditioned Carbon Walls

  20. Frozen Bullets Tame Unruly Edge Plasmas in Fusion Experiment | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab Frozen Bullets Tame Unruly Edge Plasmas in Fusion Experiment American Fusion News Category: General Atomics (GA) Link: Frozen Bullets Tame Unruly Edge Plasmas in Fusion Experiment

  1. Modeling of Heat and Mass Transfer in Fusion Welding (Book) ...

    Office of Scientific and Technical Information (OSTI)

    Book: Modeling of Heat and Mass Transfer in Fusion Welding Citation Details In-Document Search Title: Modeling of Heat and Mass Transfer in Fusion Welding In fusion welding, parts...

  2. Fokker–Planck kinetic modeling of suprathermal α-particles in a fusion plasma

    SciTech Connect (OSTI)

    Peigney, B.E.

    2014-12-01

    We present an ion kinetic model describing the transport of suprathermal α-particles in inertial fusion targets. The analysis of the underlying physical model enables us to develop efficient numerical methods to simulate the creation, transport and collisional relaxation of fusion reaction products (α-particles) at a kinetic level. The model assumes spherical symmetry in configuration space and axial symmetry in velocity space around the mean flow velocity. A two-energy-scale approach leads to a self-consistent modeling of the coupling between suprathermal α-particles and the thermal bulk of the imploding plasma. This method provides an accurate numerical treatment of energy deposition and transport processes involving suprathermal particles. The numerical tools presented here are then validated against known analytical results. This enables us to investigate the potential role of ion kinetic effects on the physics of ignition and thermonuclear burn in inertial confinement fusion schemes.

  3. Plasmas are Hot and Fusion is Cool

    SciTech Connect (OSTI)

    2011-01-01

    Plasmas are Hot and Fusion is Cold. The DOE Princeton Plasma Physics Laboratory (PPPL) collaborates to develop fusion as a safe, clean and abundant energy source for the future. This video discusses PPPL's research and development on plasma, the fourth state of matter.

  4. Experimental demonstration of fusion-relevant conditions in magnetized

    Office of Scientific and Technical Information (OSTI)

    liner inertial fusion (Journal Article) | DOE PAGES Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion « Prev Next » Title: Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed

  5. Highly Charged Ions in Magnetic Fusion Plasmas: Research Opportunities...

    Office of Scientific and Technical Information (OSTI)

    Highly Charged Ions in Magnetic Fusion Plasmas: Research Opportunities and Diagnostic Necessities Citation Details In-Document Search Title: Highly Charged Ions in Magnetic Fusion ...

  6. Fusion Nuclear Science and Technology Program - Status and Plans...

    Office of Environmental Management (EM)

    Plans for Tritium Research Fusion Nuclear Science and Technology Program - Status and ... Idaho on September 23-25, 2014. PDF icon Fusion Nuclear Science and Technology Program - ...

  7. Fusion Nuclear Science and Technology Program - Status and plans...

    Office of Environmental Management (EM)

    plans for tritium research Fusion Nuclear Science and Technology Program - Status and ... New Jersey on May 05-07, 2015. PDF icon Fusion Nuclear Science and Technology Program - ...

  8. Plasma Turbulence Simulations Reveal Promising Insight for Fusion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Insight for Fusion Energy By Argonne National Laboratory March 31, 2014 Tweet Widget Google Plus One Share on Facebook Simulation of microturbulence in a tokamak fusion device. ...

  9. Scientists discuss progress toward magnetic fusion energy at...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists discuss progress toward magnetic fusion energy at 2013 AAAS annual meeting ... Scientists participating in the worldwide effort to develop magnetic fusion energy for ...

  10. "Fueling method for small, steady-state, aneutronic FRC fusion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fueling method for small, steady-state, aneutronic FRC fusion reactors" Inventors Samuel ... of small field-reversed-configuration (FRC) fusion reactors enabling steady power ...

  11. An improvement to the global standard for modeling fusion plasmas...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The program's updates, reported this week in Nuclear Fusion, could ... as ITER, the international experiment under construction in France to demonstrate the feasibility of fusion power. ...

  12. What Causes Electron Heat Loss in Fusion Plasma?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Causes Heat Loss in Fusion Plasmas? What Causes Electron Heat Loss in Fusion Plasma? 3D Simulations Run at NERSC Unlock Puzzling Secret September 22, 2015 fusionplasmabelova ...

  13. DOE Science Showcase - Clean Fusion Power | OSTI, US Dept of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Fusion Power Search Results from DOE Databases View research documents, ... related to advanced systems for fusion energy and nuclear power, primary scientific challenges ...

  14. HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation

    SciTech Connect (OSTI)

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from a LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., /sup 137/Cs, /sup 90/Sr, /sup 129/I, /sup 99/Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,..cap alpha..), (n,..gamma..), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R = 1.0 to 3.0) requirements. These studies also indicate that masses on the order of 1.0 g at densities of rho greater than or equal to 500.0 g/cm/sup 3/ are required for a practical fusion-based fission product transmutation system.

  15. The Brain: Key To a Better Computer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brain: Key To a Better Computer - Sandia Energy Energy Search Icon Sandia Home Locations ... Twitter Google + Vimeo GovDelivery SlideShare The Brain: Key To a Better Computer Home...

  16. Antibody-independent Targeted Quantification of TMPRSS2-ERG Fusion Protein Products in Prostate Cancer

    SciTech Connect (OSTI)

    He, Jintang; Sun, Xuefei; Shi, Tujin; Schepmoes, Athena A.; Fillmore, Thomas L.; Petyuk, Vladislav A.; Xie, Fang; Zhao, Rui; Gritsenko, Marina A.; Yang, Feng; Kitabayashi, Naoki; Chae, Sung Suk; Rubin, Mark; Siddiqui, Javed; Wei, John; Chinnaiyan, Arul M.; Qian, Weijun; Smith, Richard D.; Kagan, Jacob; Srivastava, Sudhir; Rodland, Karin D.; Liu, Tao; Camp, David G.

    2014-10-01

    Fusions between the transmembrane protease serine 2 (TMPRSS2) and ETS related gene (ERG) represent one of the most specific biomarkers that define a distinct molecular subtype of prostate cancer. The studies on TMPRSS2-ERG gene fusions have seldom been performed at the protein level, primarily due to the lack of high-quality antibodies or an antibody-independent method that is sufficiently sensitive for detecting the truncated ERG protein products resulting from TMPRSS2-ERG gene fusions and alternative splicing. Herein, we applied a recently developed PRISM (high-pressure high-resolution separations with intelligent selection and multiplexing)-SRM (selected reaction monitoring) strategy for quantifying ERG protein in prostate cancer cell lines and tumors. The highly sensitive PRISM-SRM assays led to confident detection of 6 unique ERG peptides in either the TMPRSS2-ERG positive cell lines or tissues but not in the negative controls, indicating that ERG protein expression is highly correlated with TMPRSS2-ERG gene rearrangements. Significantly, our results demonstrated for the first time that at least two groups of ERG protein isoforms were simultaneously expressed at variable levels in TMPRSS2-ERG positive samples as evidenced by concomitant detection of two mutually exclusive peptides. Three peptides shared across almost all fusion protein products were determined to be the most abundant peptides, and hence can be used as signature peptides for detecting ERG overexpression resulting from TMPRSS2-ERG gene fusion. These PRISM-SRM assays provide valuable tools for studying TMPRSS2-ERG gene fusion protein products, thus improving our understanding of the role of TMPRSS2-ERG gene fusion in the biology of prostate cancer.

  17. Progress in Heavy Ion Fusion

    SciTech Connect (OSTI)

    Herrmannsfeldt, W.B.

    1988-09-01

    The progress of the field of Heavy Ion Fusion has been documented in the proceedings of the series of International Symposia that, in recent years, have occurred every second year. The latest of these conferences was hosted by Gesellshaft fuer Schwerionenforshung (GSI) in Darmstadt, West Germany, June 28-30, 1988. For this report, a few highlights from the conference are selected, stressing experimental progress and prospects for future advances. A little extra time is devoted to report on the developments at the Lawrence Berkeley Laboratory (LBL) which is the center for most of the HIFAR program. The Director of the HIFAR program at LBL is Denis Keefe, who presented the HIF report at the last two of the meetings in this series, and in whose place the author is appearing now. 4 refs., 1 fig.

  18. Ion Rings for Magnetic Fusion

    SciTech Connect (OSTI)

    Greenly, John, B.

    2005-07-31

    This Final Technical Report presents the results of the program, Ion Rings for Magnetic Fusion, which was carried out under Department of Energy funding during the period August, 1993 to January, 2005. The central objective of the program was to study the properties of field-reversed configurations formed by ion rings. In order to reach this objective, our experimental program, called the Field-reversed Ion Ring Experiment, FIREX, undertook to develop an efficient, economical technology for the production of field-reversed ion rings. A field-reversed configuration (FRC) in which the azimuthal (field-reversing) current is carried by ions with gyro-radius comparable to the magnetic separatrix radius is called a field-reversed ion ring. A background plasma is required for charge neutralization of the ring, and this plasma will be confined within the ring's closed magnetic flux. Ion rings have long been of interest as the basis of compact magnetic fusion reactors, as the basis for a high-power accelerator for an inertial fusion driver, and for other applications of high power ion beams or plasmas of high energy density. Specifically, the FIREX program was intended to address the longstanding question of the contribution of large-orbit ions to the observed stability of experimental FRCs to the MHD tilt mode. Typical experimental FRCs with s {approx} 2-4, where s is the ratio of separatrix radius to ion gyro-radius, have been stable to tilting, but desired values for a fusion reactor, s > 20, should be unstable. The FIREX ring would consist of a plasma with large s for the background ions, but with s {approx} 1 for the ring ions. By varying the proportions of these two populations, the minimum proportion of large-orbit ions necessary for stability could be determined. The incorporation of large-orbit ions, perhaps by neutral-beam injection, into an FRC has been advanced for the purpose of stabilizing, heating, controlling angular momentum, and aiding the formation of a reactor-scale FRC, and the FIREX program was intended to test the ideas behind this approach. We will describe in this report the technological development path and advances in physics understanding that allowed FIREX to reach a regime in which ion rings were reproducibly created with up to about half the current necessary to produce field reversal. Unfortunately, the experiments were limited to this level by a fundamental, unanticipated aspect of the physics of strong ion rings in plasma. The FIREX ring is a strongly anisotropic, current-carrying population of ions moving faster than the Alfven speed in the background plasma. The rapidly changing ring current excites very large-amplitude Alfven waves in the plasma, and these waves strongly affect the ring, causing rapid energy loss in a way that is not compatible with the success of the ring trapping scenario around which FIREX was designed. The result was that FIREX rings were always very short-lived. We will discuss the implication of these results for possible future use of large-orbit ions in FRCs. In short, it appears that a certain range of the parameters characterizing the ring Alfven mach number and distribution function must be avoided to allow the existence of a long-lived energetic ion component in an FRC. This report will explain why FIREX experimental results cannot be directly scaled to quantitatively predict this range for a particular FRC configuration. This will require accurate, three-dimensional simulations. FIREX results do constitute a very good dataset for validating such a code, and simulations already carried out during this program provide a guide to the important physics involved.

  19. Vanadium recycling for fusion reactors

    SciTech Connect (OSTI)

    Dolan, T.J.; Butterworth, G.J.

    1994-04-01

    Very stringent purity specifications must be applied to low activation vanadium alloys, in order to meet recycling goals requiring low residual dose rates after 50--100 years. Methods of vanadium production and purification which might meet these limits are described. Following a suitable cooling period after their use, the vanadium alloy components can be melted in a controlled atmosphere to remove volatile radioisotopes. The aim of the melting and decontamination process will be the achievement of dose rates low enough for ``hands-on`` refabrication of new reactor components from the reclaimed metal. The processes required to permit hands-on recycling appear to be technically feasible, and demonstration experiments are recommended. Background information relevant to the use of vanadium alloys in fusion reactors, including health hazards, resources, and economics, is provided.

  20. Fusion neutron generation computations in a stellarator-mirror hybrid with neutral beam injection

    SciTech Connect (OSTI)

    Moiseenko, V. E.; Agren, O.

    2012-06-19

    In the paper [Moiseenko V.E., Noack K., Agren O. 'Stellarator-mirror based fusion driven fission reactor' J Fusion Energy 29 (2010) 65.], a version of a fusion driven system (FDS), i.e. a sub-critical fast fission assembly with a fusion plasma neutron source, is proposed. The plasma part of the reactor is based on a stellarator with a small mirror part. Hot ions with high perpendicular energy are assumed to be trapped in the magnetic mirror part. The stellarator part which connects to the mirror part and provides confinement for the bulk (deuterium) plasma. In the magnetic well of the mirror part, fusion reactions occur from collisions between a of hot ion component (tritium) with cold background plasma ions. RF heating is one option to heat the tritium. A more conventional method to sustain the hot ions is neutral beam injection (NBI), which is here studied numerically for the above-mentioned hybrid scheme. For these studies, a new kinetic code, KNBIM, has been developed. The code takes into account Coulomb collisions between the hot ions and the background plasma. The geometry of the confining magnetic field is arbitrary for the code. It is accounted for via a numerical bounce averaging procedure. Along with the kinetic calculations the neutron generation intensity and its spatial distribution are computed.

  1. Microfluidic chemical reaction circuits

    DOE Patents [OSTI]

    Lee, Chung-cheng (Irvine, CA); Sui, Guodong (Los Angeles, CA); Elizarov, Arkadij (Valley Village, CA); Kolb, Hartmuth C. (Playa del Rey, CA); Huang, Jiang (San Jose, CA); Heath, James R. (South Pasadena, CA); Phelps, Michael E. (Los Angeles, CA); Quake, Stephen R. (Stanford, CA); Tseng, Hsian-rong (Los Angeles, CA); Wyatt, Paul (Tipperary, IE); Daridon, Antoine (Mont-Sur-Rolle, CH)

    2012-06-26

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  2. Reaction coordinates for electron transfer reactions

    SciTech Connect (OSTI)

    Rasaiah, Jayendran C.; Zhu Jianjun

    2008-12-07

    The polarization fluctuation and energy gap formulations of the reaction coordinate for outer sphere electron transfer are linearly related to the constant energy constraint Lagrangian multiplier m in Marcus' theory of electron transfer. The quadratic dependence of the free energies of the reactant and product intermediates on m and m+1, respectively, leads to similar dependence of the free energies on the reaction coordinates and to the same dependence of the activation energy on the reorganization energy and the standard reaction free energy. Within the approximations of a continuum model of the solvent and linear response of the longitudinal polarization to the electric field in Marcus' theory, both formulations of the reaction coordinate are expected to lead to the same results.

  3. Expectations for {sup 12}C and {sup 16}O induced fusion cross sections at energies of astrophysical interest.

    SciTech Connect (OSTI)

    Jiang, C. L.; Rehm, K. E.; Back, B. B.; Janssens, R.V.F; Physics

    2007-01-12

    The extrapolations of cross sections for fusion reactions involving {sup 12}C and {sup 16}O nuclei down to energies relevant for explosive stellar burning have been reexamined. Based on a systematic study of fusion in heavier systems, it is expected that a suppression of the fusion process will also be present in these light heavy-ion systems at extreme sub-barrier energies due to the saturation properties of nuclear matter. Previous phenomenological extrapolations of the S factor for light heavy-ion fusion based on optical model calculations may therefore have overestimated the corresponding reaction rates. A new 'recipe' is proposed to extrapolate S factors for light heavy-ion reactions to low energies taking the hindrance behavior into account. It is based on a fit to the logarithmic derivative of the experimental cross section which is much less sensitive to overall normalization discrepancies between different data sets than other approaches. This method, therefore, represents a significant improvement over other extrapolations. The impact on the astrophysical reaction rates is discussed.

  4. Expectations for {sup 12}C and {sup 16}O induced fusion cross sections at energies of astrophysical interest

    SciTech Connect (OSTI)

    Jiang, C. L.; Rehm, K. E.; Back, B. B.; Janssens, R. V. F. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2007-01-15

    The extrapolations of cross sections for fusion reactions involving {sup 12}C and {sup 16}O nuclei down to energies relevant for explosive stellar burning have been reexamined. Based on a systematic study of fusion in heavier systems, it is expected that a suppression of the fusion process will also be present in these light heavy-ion systems at extreme sub-barrier energies due to the saturation properties of nuclear matter. Previous phenomenological extrapolations of the S factor for light heavy-ion fusion based on optical model calculations may therefore have overestimated the corresponding reaction rates. A new ''recipe'' is proposed to extrapolate S factors for light heavy-ion reactions to low energies taking the hindrance behavior into account. It is based on a fit to the logarithmic derivative of the experimental cross section which is much less sensitive to overall normalization discrepancies between different data sets than other approaches. This method, therefore, represents a significant improvement over other extrapolations. The impact on the astrophysical reaction rates is discussed.

  5. Fusion utility in the Knudsen layer

    SciTech Connect (OSTI)

    Davidovits, Seth; Fisch, Nathaniel J.

    2014-09-15

    In inertial confinement fusion, the loss of fast ions from the edge of the fusing hot-spot region reduces the reactivity below its Maxwellian value. The loss of fast ions may be pronounced because of the long mean free paths of fast ions, compared with those of thermal ions. We introduce a fusion utility function to demonstrate essential features of this Knudsen layer effect, in both magnetized and unmagnetized cases. The fusion utility concept is also used to evaluate the restoring reactivity in the Knudsen layer by manipulating fast ions in phase space using waves.

  6. Fusion Utility in the Knudsen Layer

    SciTech Connect (OSTI)

    Davidovits, Seth; Fisch, Nathaniel J.

    2014-08-01

    In inertial confi#12;nement fusion, the loss of fast ions from the edge of the fusing hot-spot region reduces the reactivity below its Maxwellian value. The loss of fast ions may be pronounced because of the long mean free paths of fast ions, compared to those of thermal ions. We introduce a fusion utility function to demonstrate essential features of this Knudsen layer e#11;ffect, in both magnetized and unmagnetized cases. The fusion utility concept is also used to evaluate restoring the reactivity in the Knudsen layer by manipulating fast ions in phase space using waves.

  7. Quantifying the {sup 12}C+{sup 12}C sub-Coulomb fusion with the time-dependent wave-packet method

    SciTech Connect (OSTI)

    Diaz-Torres, Alexis; Wiescher, Michael

    2012-10-20

    This contribution provides a preliminary study of the {sup 12}C+{sup 12}C sub-Coulomb fusion reaction using the time-dependent wave-packet method within a nuclear molecular picture. The theoretical sub-Coulomb fusion resonances seem to correspond well with observations. The present method might be a more suitable tool for expanding the cross-section predictions towards lower energies than the commonly used potential-model approximation.

  8. Basics of Fusion-Fissison Research Facility (FFRF) as a Fusion Neutron Source

    SciTech Connect (OSTI)

    Leonid E. Zakharov

    2011-06-03

    FFRF, standing for the Fusion-Fission Research Facility represents an option for the next step project of ASIPP (Hefei, China) aiming to a first fusion-fission multifunctional device [1]. FFRF strongly relies on new, Lithium Wall Fusion plasma regimes, the development of which has already started in the US and China. With R/a=4/1m/m, Ipl=5 MA, Btor=4-6 T, PDT=50- 100 MW, Pfission=80-4000MW, 1 m thick blanket, FFRF has a unique fusion mission of a stationary fusion neutron source. Its pioneering mission of merging fusion and fission consists in accumulation of design, experimental, and operational data for future hybrid applications.

  9. 2013-2014 SECTION II: HEAVY ION REACTIONS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recent results of 45Sc-induced fusion evaporation reactions on 158,160Gd T. A. Werke, D. A. Mayorov, M. C. Alfonso, M. M. Frey, and C. M. Folden III Production cross sections of residues in 50Ti-induced reactions D. A. Mayorov, T. A. Werke, M. C. Alfonso, M. M. Frey, E. E. Tereshatov, and C. M. Folden III Development of nuclear forensics program at Texas A&M University T. K. Bhardwaj, J. R. Allred, K. F. Jones, P. M. Mendoza, R. L. Du, C. M. Folden III, and S. S. Chirayath Exploring the

  10. Fusion energy development: Breakeven and beyond: Keynote address

    SciTech Connect (OSTI)

    Furth, H.P.

    1988-02-01

    The scientific feasibility, technological inevitability, and economic necessity of fusion as an energy source are discussed.

  11. COLLOQUIUM: Fusion Rockets for Planetary Defense | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2016, 4:15pm to 5:30pm MBG AUDITORIUM COLLOQUIUM: Fusion Rockets for Planetary Defense Dr. Glen Wurden Los Alamos National Laboratory Contact Information Coordinator(s): Ms....

  12. 1995 International Sherwood Fusion Theory Conference

    SciTech Connect (OSTI)

    1995-07-01

    This book is a guide to the 1995 International Sherwood Fusion Theory Conference. It consists largely of abstracts of the oral and poster presentations that were to be made, and gives some general information about the conference and its schedule.

  13. Research Needs for Magnetic Fusion Energy Sciences. Report of the Research Needs Workshop (ReNeW) Bethesda, Maryland, June 8-12, 2009

    SciTech Connect (OSTI)

    2009-06-08

    Nuclear fusion - the process that powers the sun - offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITE R fusion collaboration, which involves seven parties representing half the world's population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES ) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW's task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.) This Report presents a portfolio of research activities for US research in magnetic fusion for the next two decades. It is intended to provide a strategic framework for realizing practical fusion energy. The portfolio is the product of ten months of fusion-community study and discussion, culminating in a Workshop held in Bethesda, Maryland, from June 8 to June 12, 2009. The Workshop involved some 200 scientists from Universities, National Laboratories and private industry, including several scientists from outside the US. Largely following the Basic Research Needs model established by the Office of Basic Energy Sciences (BES ), the Report presents a collection of discrete research activities, here called 'thrusts.' Each thrust is based on an explicitly identified question, or coherent set of questions, on the frontier of fusion science. It presents a strategy to find the needed answers, combining the necessary intellectual and hardware tools, experimental facilities, and computational resources into an integrated, focused program. The thrusts should be viewed as building blocks for a fusion program plan whose overall structure will be developed by OFES , using whatever additional community input it requests. Part I of the Report reviews the issues identified in previous fusion-community studies, which systematically identified the key research issues and described them in considerable detail. It then considers in some detail the scientific and technical means that can be used to address these is sues. It ends by showing how these various research requirements are organized into a set of eighteen thrusts. Part II presents a detailed and self-contained discussion of each thrust, including the goals, required facilities and tools for each. This Executive Summary focuses on a survey of the ReNeW thrusts. The following brief review of fusion science is intended to provide context for that survey. A more detailed discussion of fusion science can be found in an Appendix to this Summary, entitled 'A Fusion Primer.'

  14. Fluidized wall for protecting fusion chamber walls

    DOE Patents [OSTI]

    Maniscalco, James A. (Danville, CA); Meier, Wayne R. (Livermore, CA)

    1982-01-01

    Apparatus for protecting the inner wall of a fusion chamber from microexplosion debris, x-rays, neutrons, etc. produced by deuterium-tritium (DT) targets imploded within the fusion chamber. The apparatus utilizes a fluidized wall similar to a waterfall comprising liquid lithium or solid pellets of lithium-ceramic, the waterfall forming a blanket to prevent damage of the structural materials of the chamber.

  15. Learn More about Fusion & Lasers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Learn More about Fusion & Lasers How Lasers Work Learn how lasers were developed and how they work. Outreach NIF & Photon Science researchers take learning opportunities on the road. Glossary Don't know what something means? Find definitions of terms related to NIF, fusion, and photon science in our glossary. For Teachers LLNL's Science Education Program provides professional development instruction to in-service and pre-service teachers. For Kids See how we make giant crystals and how

  16. Solar fusion cross sections II: the pp chain and CNO cycles

    SciTech Connect (OSTI)

    Adelberger, E G; Bemmerer, D; Bertulani, C A; Chen, J -W; Costantini, H; Couder, M; Cyburt, R; Davids, B; Freedman, S J; Gai, M; Garcia, A; Gazit, D; Gialanella, L; Greife, U; Hass, M; Heeger, K; Haxton, W C; Imbriani, G; Itahashi, T; Junghans, A; Kubodera, K; Langanke, K; Leitner, D; Leitner, M; Marcucci, L E; Motobayashi, T; Mukhamedzhanov, A; Nollett, Kenneth M; Nunes, F M; Park, T -S; Parker, P D; Prati, P; Ramsey-Musolf, M J; Hamish Robertson, R G; Schiavilla, R; Simpson, E C; Snover, K A; Spitaleri, C; Strieder, F; Suemmerer, K; Trautvetter, R E; Tribble, R E; Typel, S; Uberseder, E; Vetter, P; Wiescher, M

    2011-04-01

    The available data on nuclear fusion cross sections important to energy generation in the Sun and other hydrogen-burning stars and to solar neutrino production are summarized and critically evaluated. Recommended values and uncertainties are provided for key cross sections, and a recommended spectrum is given for 8B solar neutrinos. Opportunities for further increasing the precision of key rates are also discussed, including new facilities, new experimental techniques, and improvements in theory. This review, which summarizes the conclusions of a workshop held at the Institute for Nuclear Theory, Seattle, in January 2009, is intended as a 10-year update and supplement to 1998, Rev. Mod. Phys. 70, 1265.

  17. Performance of a palladium membrane reactor using a Ni catalyst for fusion fuel impurities processing

    SciTech Connect (OSTI)

    Willm, R.S. [Los Alamos National Lab., NM (United States); Okuno, K. [Japan Atomic Energy Research Inst., Ibaraki-ken (Japan)

    1994-12-31

    The palladium membrane reactor (PMR) provides a means to recover hydrogen isotopes from impurities expected to be present in fusion reactor exhaust. This recovery is based on reactions such as water gas shift and steam reforming for which conversion is equilibrium limited. By including a selectively permeable membrane such as Pd/Ag in the catalyst bed, hydrogen isotopes can be removed from the reacting environment, thus promoting the reaction to complete conversion. Such a device has been built and operated at the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory (LANL). For the reactions listed above, earlier study with this unit has shown that hydrogen single-pass recoveries approaching 100% can be achieved. It was also determined that a nickel catalyst is a feasible choice for use with a PMR appropriate for fusion fuel impurities processing. The purpose of this study is to systematically assess the performance of the PMR using a nickel catalyst. Reactions which will be studied include the water gas shift reaction, steam reforming and methane cracking. Extended operation will be performed to detect performance degradation if it exists. The use of methane in these tests may lead to the formation of coke on the catalyst. Methods of removing the coke such as treatment with carbon dioxide or diluted oxygen will be examined.

  18. Performance of a palladium membrane reactor using a Ni catalyst for fusion fuel impurities processing

    SciTech Connect (OSTI)

    Willms, R.S.; Wilhelm, R. [Los Alamos National Lab., NM (United States); Okuno, K. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    1994-07-01

    The palladium membrane reactor (PNM) provides a means to recover hydrogen isotopes from impurities expected to be present in fusion reactor exhaust. This recovery is based on reactions such as water-gas shift and steam reforming for which conversion is equilibrium limited. By including a selectively permeable membrane such as Pd/Ag in the catalyst bed, hydrogen isotopes can be removed from the reacting environment, thus promoting the reaction to complete conversion. Such a device has been built and operated at the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory (LANL). For the reactions listed above, earlier study with this unit has shown that hydrogen single-pass recoveries approaching 100% can be achieved. It was also determined that a nickel catalyst is a feasible choice for use with a PMR appropriate for fusion fuel impurities processing. The purpose of this study was to systematically assess the performance of the PMR using a nickel catalyst over a range of temperatures, feed compositions and flowrates. Reactions which were studied are the water-gas shift reaction and steam reforming.

  19. Cold versus hot fusion deuterium branching ratios

    SciTech Connect (OSTI)

    Fox, H.; Bass, R.

    1995-12-31

    A major source of misunderstanding of the nature of cold nuclear fusion has been the expectation that the deuterium branching ratios occurring within a palladium lattice would be consistent with the gas-plasma branching ratios. This misunderstanding has led to the concept of the dead graduate student, the 1989`s feverish but fruitless search for neutron emissions from cold fusion reactors, and the follow-on condemnation of the new science of cold fusion. The experimental facts are that in a properly loaded palladium lattice, the deuterium fusion produces neutrons at little above background, a greatly less-than-expected production of tritium (the tritium desert), and substantially more helium-4 than is observed in hot plasma physics. The experimental evidence is now compelling (800 reports of success from 30 countries) that cold nuclear fusion is a reality, that the branching ratios are unexpected, and that a new science is struggling to be recognized. Commercialization of some types of cold fusion devices has already begun.

  20. Fission-suppressed fusion breeder on the thorium cycle and nonproliferation

    SciTech Connect (OSTI)

    Moir, R. W.

    2012-06-19

    Fusion reactors could be designed to breed fissile material while suppressing fissioning thereby enhancing safety. The produced fuel could be used to startup and makeup fuel for fission reactors. Each fusion reaction can produce typically 0.6 fissile atoms and release about 1.6 times the 14 MeV neutron's energy in the blanket in the fission-suppressed design. This production rate is 2660 kg/1000 MW of fusion power for a year. The revenues would be doubled from such a plant by selling fuel at a price of 60/g and electricity at $0.05/kWh for Q=P{sub fusion}/P{sub input}=4. Fusion reactors could be designed to destroy fission wastes by transmutation and fissioning but this is not a natural use of fusion whereas it is a designed use of fission reactors. Fusion could supply makeup fuel to fission reactors that were dedicated to fissioning wastes with some of their neutrons. The design for safety and heat removal and other items is already accomplished with fission reactors. Whereas fusion reactors have geometry that compromises safety with a complex and thin wall separating the fusion zone from the blanket zone where wastes could be destroyed. Nonproliferation can be enhanced by mixing {sup 233}U with {sup 238}U. Also nonproliferation is enhanced in typical fission-suppressed designs by generating up to 0.05 {sup 232}U atoms for each {sup 233}U atom produced from thorium, about twice the IAEA standards of 'reduced protection' or 'self protection.' With 2.4%{sup 232}U, high explosive material is predicted to degrade owing to ionizing radiation after a little over 1/2 year and the heat rate is 77 W just after separation and climbs to over 600 W ten years later. The fissile material can be used to fuel most any fission reactor but is especially appropriate for molten salt reactors (MSR) also called liquid fluoride thorium reactors (LFTR) because of the molten fuel does not need hands on fabrication and handling.

  1. Key Actions for Optimizing for KNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Key Actions for Optimizing for KNL Key Actions for Optimizing for KNL This webinar consisted of a presentation by Nathan Wichmann of Cray entitled, "Key Actions When Optimizing for KNL." Nathan is a Principal Performance Engineer responsible for tackling performance problems at Cray for many years and he is our contact for the NERSC/Cray Cori Applications Center of Excellence. Nathan's presentation results, in part, from his participation in several "brainstorming" telecons

  2. Florida Keys Electric Cooperative- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Note: The Florida Keys Electric Cooperative rebates were depleted in June of 2015. According to the website, rebates will be offered again dependent upon future funding.

  3. Brain Receptor Structures Key to Future Therapeutics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brain Receptor Structures Key to Future Therapeutics Print With an aging population in America, it is more important than ever to discover ways to treat or prevent diseases...

  4. Explosives performance key to stockpile stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    key to stockpile stewardship A new video shows how researchers use scientific guns to induce shock waves into explosive materials to study their performance and...

  5. Carotenoid Pigment is the Key to Photoprotection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS researchers have recently discovered a surprising key event in this energy-quenching process. Photoprotection Through Shifting Pigments Through photosynthesis, plants are able...

  6. Brain Receptor Structures Key to Future Therapeutics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brain Receptor Structures Key to Future Therapeutics Print With an aging population in ... diseases affecting the brain and its ability to make new connections and recall memories. ...

  7. Resonant thermonuclear reaction rate

    SciTech Connect (OSTI)

    Haubold, H.J.; Mathai, A.M.

    1986-08-01

    Basic physical principles for the resonant and nonresonant thermonuclear reaction rates are applied to find their standard representations for nuclear astrophysics. Closed-form representations for the resonant reaction rate are derived in terms of Meijer's G-italic-function. Analytic representations of the resonant and nonresonant nuclear reaction rates are compared and the appearance of Meijer's G-italic-function is discussed in physical terms.

  8. Sleeve reaction chamber system

    DOE Patents [OSTI]

    Northrup, M. Allen (Berkeley, CA); Beeman, Barton V. (San Mateo, CA); Benett, William J. (Livermore, CA); Hadley, Dean R. (Manteca, CA); Landre, Phoebe (Livermore, CA); Lehew, Stacy L. (Livermore, CA); Krulevitch, Peter A. (Pleasanton, CA)

    2009-08-25

    A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.

  9. TRIMOLECULAR REACTIONS OF URANIUM HEXAFLUORIDE WITH WATER

    SciTech Connect (OSTI)

    Westbrook, M.; Becnel, J.; Garrison, S.

    2010-02-25

    The hydrolysis reaction of uranium hexafluoride (UF{sub 6}) is a key step in the synthesis of uranium dioxide (UO{sub 2}) powder for nuclear fuels. Mechanisms for the hydrolysis reactions are studied here with density functional theory and the Stuttgart small-core scalar relativistic pseudopotential and associated basis set for uranium. The reaction of a single UF{sub 6} molecule with a water molecule in the gas phase has been previously predicted to proceed over a relatively sizeable barrier of 78.2 kJ {center_dot} mol{sup -1}, indicating this reaction is only feasible at elevated temperatures. Given the observed formation of a second morphology for the UO{sub 2} product coupled with the observations of rapid, spontaneous hydrolysis at ambient conditions, an alternate reaction pathway must exist. In the present work, two trimolecular hydrolysis mechanisms are studied with density functional theory: (1) the reaction between two UF{sub 6} molecules and one water molecule, and (2) the reaction of two water molecules with a single UF{sub 6} molecule. The predicted reaction of two UF{sub 6} molecules with one water molecule displays an interesting 'fluorine-shuttle' mechanism, a significant energy barrier of 69.0 kJ {center_dot} mol{sup -1} to the formation of UF{sub 5}OH, and an enthalpy of reaction ({Delta}H{sub 298}) of +17.9 kJ {center_dot} mol{sup -1}. The reaction of a single UF{sub 6} molecule with two water molecules displays a 'proton-shuttle' mechanism, and is more favorable, having a slightly lower computed energy barrier of 58.9 kJ {center_dot} mol{sup -1} and an exothermic enthalpy of reaction ({Delta}H{sub 298}) of -13.9 kJ {center_dot} mol{sup -1}. The exothermic nature of the overall UF{sub 6} + 2 {center_dot} H{sub 2}O trimolecular reaction and the lowering of the barrier height with respect to the bimolecular reaction are encouraging; however, the sizable energy barrier indicates further study of the UF{sub 6} hydrolysis reaction mechanism is warranted to resolve the remaining discrepancies between the predicted mechanisms and experimental observations.

  10. Global epigenomic analysis indicates protocadherin-7 activates osteoclastogenesis by promoting cellcell fusion

    SciTech Connect (OSTI)

    Nakamura, Haruhiko; Nakashima, Tomoki; Hayashi, Mikihito; Izawa, Naohiro; Yasui, Tetsuro; Aburatani, Hiroyuki; Tanaka, Sakae; Takayanagi, Hiroshi

    2014-12-12

    Highlights: Identification of epigenetically regulated genes during osteoclastogenesis. Pcdh7 is regulated by H3K4me3 and H3K27me3 during osteoclastogenesis. Pcdh7 expression is increased by RANKL during osteoclastogenesis. Establishment of novel cell fusion analysis for osteoclasts by imaging cytometer. Pcdh7 regulates osteoclastogenesis by promoting cell fusion related gene expressions. - Abstract: Gene expression is dependent not only on genomic sequences, but also epigenetic control, in which the regulation of chromatin by histone modification plays a crucial role. Histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 27 trimethylation (H3K27me3) are related to transcriptionally activated and silenced sequences, respectively. Osteoclasts, the multinucleated cells that resorb bone, are generated by the fusion of precursor cells of monocyte/macrophage lineage. To elucidate the molecular and epigenetic regulation of osteoclast differentiation, we performed a chromatin immunoprecipitation sequencing (ChIP-seq) analysis for H3K4me3 and H3K27me3 in combination with RNA sequencing. We focused on the histone modification change from H3K4me3(+)H3K27me3(+) to H3K4me3(+)H3K27me3() and identified the protocadherin-7 gene (Pcdh7) to be among the genes epigenetically regulated during osteoclastogenesis. Pcdh7 was induced by RANKL stimulation in an NFAT-dependent manner. The knockdown of Pcdh7 inhibited RANKL-induced osteoclast differentiation due to the impairment of cellcell fusion, accompanied by a decreased expression of the fusion-related genes Dcstamp, Ocstamp and Atp6v0d2. This study demonstrates that Pcdh7 plays a key role in osteoclastogenesis by promoting cellcell fusion.

  11. Cours-XI/Clavin2015.key

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    : (x)u(x) u D CJ Square-wave model: thickness of the reaction zone thickness of the induction zone d ind , d d ind , T u T N T b x x 0 reaction rate d ind lead shock I 1,2 d...

  12. Fusion and Plasmas | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Fusion and Plasmas Fusion Energy Sciences (FES) FES Home About Organization Chart .pdf ... Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy ...

  13. Near- and sub-barrier fusion of {sup 6}He+{sup 40}Ar

    SciTech Connect (OSTI)

    Hinnefeld, J.D.; Kolata, J.J.; Belbot, M.; Lamkin, K.; Zahar, M.; Santi, P.; Kugi, J.

    1993-10-01

    A measurement of the fusion cross section for {sup 6}He + {sup 40}Ar near and below the Coulomb barrier has been performed using a {sup 6}He beam from the UND/Um radioactive beam facility. The {sup 6}He nucleus is thought to have a neutron skin surrounding a {sup 6}He core. If this is the case, then Coulomb polarization of the core relative to the halo might result in neutron flow along a neck, and therefore to a large enhancement of the sub-barrier fusion cross section. {sup 6}He nuclei, of incident energy 10.05 {+-} 0.44 MeV, were directed into a segmented ionization counter (MUSIC) filled with P10 at 40 torr. The {sup 40}Ar in the detector gas served also as the target nuclei. {sup 6}He energies in the 50-cm active length of the detector varied from 7.75 MeV down to 3.05 MeV. Calculations indicate that fusion events should be distinguishable from most non-fusion events on the basis of energy deposition patterns in the ten MUSIC detector segments. For some large-angle scattering events a more elaborate analysis involving detailed Monte Carlo simulation of the various reactions is necessary.

  14. Captured key electrical safety lockout system

    DOE Patents [OSTI]

    Darimont, Daniel E. (Aurora, IL)

    1995-01-01

    A safety lockout apparatus for an electrical circuit includes an electrical switch, a key, a lock and a blocking mechanism. The electrical switch is movable between an ON position at which the electrical circuit is energized and an OFF position at which the electrical circuit is deactivated. The lock is adapted to receive the key and is rotatable among a plurality of positions by the key. The key is only insertable and removable when the lock is at a preselected position. The lock is maintained in the preselected position when the key is removed from the lock. The blocking mechanism physically maintains the switch in its OFF position when the key is removed from the lock. The blocking mechanism preferably includes a member driven by the lock between a first position at which the electrical switch is movable between its ON and OFF positions and a second position at which the member physically maintains the electrical switch in its OFF position. Advantageously, the driven member's second position corresponds to the preselected position at which the key can be removed from and inserted into the lock.

  15. Captured key electrical safety lockout system

    DOE Patents [OSTI]

    Darimont, D.E.

    1995-10-31

    A safety lockout apparatus for an electrical circuit includes an electrical switch, a key, a lock and a blocking mechanism. The electrical switch is movable between an ON position at which the electrical circuit is energized and an OFF position at which the electrical circuit is deactivated. The lock is adapted to receive the key and is rotatable among a plurality of positions by the key. The key is only insertable and removable when the lock is at a preselected position. The lock is maintained in the preselected position when the key is removed from the lock. The blocking mechanism physically maintains the switch in its OFF position when the key is removed from the lock. The blocking mechanism preferably includes a member driven by the lock between a first position at which the electrical switch is movable between its ON and OFF positions and a second position at which the member physically maintains the electrical switch in its OFF position. Advantageously, the driven member`s second position corresponds to the preselected position at which the key can be removed from and inserted into the lock. 7 figs.

  16. Questions and answers about ITER and fusion energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    QA & What is fusion? Fusion, the energy source of the sun and stars, is the most efficient process for converting mass into energy (E = mc 2 ). The fusion process is environmentally benign and does not emit gases that contribute to global warming or acid rain. Abundant fuel supplies for fusion are available that could meet the needs of the world's population for more than 10,000 years if the fusion process is harnessed successfully. When will fusion successfully produce useable energy? The

  17. DOE and Fusion Links | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE and Fusion Links United States Department of Energy U.S. Department of Energy Office of Science Office of Fusion Energy Sciences U.S. D.O.E. Princeton Site Office Map showing U.S. Fusion Program Participants U.S. D.O.E. Science Laboratories U.S. D.O.E. User Facilities U.S. D.O.E. Funding Opportunities Other Fusion Research Sites United States Sites General Atomics (GA) MIT Plasma Science and Fusion Center U.S. ITER National Ignition Facility (NIF) American Fusion News International Sites

  18. Cours-I/Clavin2015.key

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    velocity flame thickness Overall reaction rate. Arrhenius law I 3) 8 P.Clavin I Maxwell 1867 Einstein 1905 Back to the kinetic theory of gases Molecular di usion Random Walk <...

  19. Cours-III/Clavin2015.key

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    approximation (Low Mach number) 3-2. One-step irreversible reaction 3-3. Unity Lewis number and large activation energy 3-4. Zeldovich & Frank-Kamenetskii asymptotic...

  20. PARKING KEY: State Handicap Medically Permitted

    National Nuclear Security Administration (NNSA)

    PARKING KEY: State Handicap Medically Permitted Preferred (LEED) Visitor Motorcycle New Parking Spots / Parallel Parking NATIONAL SECURITY CAMPUS The DOE's National Security Campus is managed and operated by Honeywell. REVISED: August 2014

  1. Brain Receptor Structures Key to Future Therapeutics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brain Receptor Structures Key to Future Therapeutics Brain Receptor Structures Key to Future Therapeutics Print Wednesday, 28 January 2015 00:00 With an aging population in America, it is more important than ever to discover ways to treat or prevent diseases affecting the brain and its ability to make new connections and recall memories. Some of the most important players in the brain's normal function are the glutamate receptors, which are involved in nervous-system development and function.

  2. Explosives performance key to stockpile stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explosives performance key to stockpile stewardship Explosives performance key to stockpile stewardship A new video shows how researchers use scientific guns to induce shock waves into explosive materials to study their performance and properties. November 3, 2014 Adam Pacheco of shock and detonation physics presses the "fire" button during an experiment at the two-stage gas gun facility. Adam Pacheco of shock and detonation physics presses the "fire" button during an

  3. Carotenoid Pigment is the Key to Photoprotection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carotenoid Pigment is the Key to Photoprotection Print Overexposure to sunlight, which is damaging to natural photosynthetic systems of green plants and cyanobacteria, is also expected to be damaging to artificial photosynthetic systems. Nature has solved the problem through a photoprotective mechanism called "nonphotochemical quenching," in which excess solar energy is safely dissipated as heat. ALS researchers have recently discovered a surprising key event in this energy-quenching

  4. Carotenoid Pigment is the Key to Photoprotection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carotenoid Pigment is the Key to Photoprotection Print Overexposure to sunlight, which is damaging to natural photosynthetic systems of green plants and cyanobacteria, is also expected to be damaging to artificial photosynthetic systems. Nature has solved the problem through a photoprotective mechanism called "nonphotochemical quenching," in which excess solar energy is safely dissipated as heat. ALS researchers have recently discovered a surprising key event in this energy-quenching

  5. Carotenoid Pigment is the Key to Photoprotection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carotenoid Pigment is the Key to Photoprotection Print Overexposure to sunlight, which is damaging to natural photosynthetic systems of green plants and cyanobacteria, is also expected to be damaging to artificial photosynthetic systems. Nature has solved the problem through a photoprotective mechanism called "nonphotochemical quenching," in which excess solar energy is safely dissipated as heat. ALS researchers have recently discovered a surprising key event in this energy-quenching

  6. Explosives performance key to stockpile stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explosives performance key to stockpile stewardship Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Explosives performance key to stockpile stewardship A new video shows how researchers use scientific guns to induce shock waves into explosive materials to study their performance and properties January 1, 2015 Adam Pacheco of shock and detonation physics presses the "fire" button during an experiment at the

  7. 'Thirsty' Metals Key to Longer Battery Lifetimes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    'Thirsty' Metals Key to Longer Battery Lifetimes 'Thirsty' Metals Key to Longer Battery Lifetimes Computations at NERSC show how multiply charged metal ions impact battery capacity June 30, 2014 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov PCCPxantheascover Imagine a cell phone battery that lasted a whole week on a single charge. A car battery that worked for months between charges. A massive battery that stores the intermittent electricity from wind turbines and releases it when

  8. Carotenoid Pigment is the Key to Photoprotection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carotenoid Pigment is the Key to Photoprotection Print Overexposure to sunlight, which is damaging to natural photosynthetic systems of green plants and cyanobacteria, is also expected to be damaging to artificial photosynthetic systems. Nature has solved the problem through a photoprotective mechanism called "nonphotochemical quenching," in which excess solar energy is safely dissipated as heat. ALS researchers have recently discovered a surprising key event in this energy-quenching

  9. Carotenoid Pigment is the Key to Photoprotection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carotenoid Pigment is the Key to Photoprotection Carotenoid Pigment is the Key to Photoprotection Print Wednesday, 30 September 2015 00:00 Overexposure to sunlight, which is damaging to natural photosynthetic systems of green plants and cyanobacteria, is also expected to be damaging to artificial photosynthetic systems. Nature has solved the problem through a photoprotective mechanism called "nonphotochemical quenching," in which excess solar energy is safely dissipated as heat. ALS

  10. STGWG Key Outcomes for May 3, 2010

    Energy Savers [EERE]

    Key Outcomes-Nashville 2010 Page 1 State and Tribal Government Working Group (STGWG) Nashville, Tennessee - May 3, 2010 KEY OUTCOMES OVERVIEW Members appreciated the participation of all DOE officials at the STGWG meeting in Nashville, and are especially appreciative of the participation of high-level DOE management, such as Sky Gallegos, Deputy Assistant Secretary of the Office of Congressional and Intergovernmental Affairs, and Frank Marcinowski, Acting Chief Technical Officer and Deputy

  11. First wall for polarized fusion reactors

    DOE Patents [OSTI]

    Greenside, H.S.; Budny, R.V.; Post, D.E. Jr.

    1985-01-29

    A first-wall or first-wall coating for use in a fusion reactor having polarized fuel may be formed of a low-Z non-metallic material having slow spin relaxation, i.e., a depolarization rate greater than 1 sec/sup -1/. Materials having these properties include hydrogenated and deuterated amorphous semiconductors. A method for preventing the rapid depolarization of a polarized plasma in a fusion device may comprise the step of providing a first-wall or first-wall coating formed of a low-Z, non-metallic material having a depolarization rate greater than 1 sec/sup -1/.

  12. Radiological Dose Calculations for Fusion Facilities

    SciTech Connect (OSTI)

    Michael L. Abbott; Lee C. Cadwallader; David A. Petti

    2003-04-01

    This report summarizes the results and rationale for radiological dose calculations for the maximally exposed individual during fusion accident conditions. Early doses per unit activity (Sieverts per TeraBecquerel) are given for 535 magnetic fusion isotopes of interest for several release scenarios. These data can be used for accident assessment calculations to determine if the accident consequences exceed Nuclear Regulatory Commission and Department of Energy evaluation guides. A generalized yearly dose estimate for routine releases, based on 1 Terabecquerel unit releases per radionuclide, has also been performed using averaged site parameters and assumed populations. These routine release data are useful for assessing designs against US Environmental Protection Agency yearly release limits.

  13. Driven reconnection in magnetic fusion experiments

    SciTech Connect (OSTI)

    Fitzpatrick, R.

    1995-11-01

    Error fields (i.e. small non-axisymmetric perturbations of the magnetic field due to coil misalignments, etc.) are a fact of life in magnetic fusion experiments. What effects do error fields have on plasma confinement? How can any detrimental effects be alleviated? These, and other, questions are explored in detail in this lecture using simple resistive magnetohydrodynamic (resistance MHD) arguments. Although the lecture concentrates on one particular type of magnetic fusion device, namely, the tokamak, the analysis is fairly general and could also be used to examine the effects of error fields on other types of device (e.g. Reversed Field Pinches, Stellerators, etc.).

  14. Magnetized liner inertial fusion (MagLIF)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetized liner inertial fusion (MagLIF) [1] is an inertial confinement fusion (ICF) scheme using cylindrical compression of magnetized, preheated DT gas. A 10 - 30 T axial magnetic field reduces electron thermal conductivity allowing near-adiabatic compression at implosion velocities of order 100 km/s, much lower than the 300 km/s or more required for conventional ICF. Preheating to at least 100 eV ensures that keV temperatures are reached with a convergence ratio no greater than 30. The

  15. Research on anisotropy of fusion-produced protons and neutrons emission from high-current plasma-focus discharges

    SciTech Connect (OSTI)

    Malinowski, K. Sadowski, M. J.; Szydlowski, A.; Skladnik-Sadowska, E.; Czaus, K.; Kwiatkowski, R.; Zaloga, D.; Paduch, M.; Zielinska, E.

    2015-01-15

    The paper concerns fast protons and neutrons from D-D fusion reactions in a Plasma-Focus-1000U facility. Measurements were performed with nuclear-track detectors arranged in sandwiches of an Al-foil and two PM-355 detectors separated by a polyethylene-plate. The Al-foil eliminated all primary deuterons, but was penetrable for fast fusion protons. The foil and first PM-355 detector were penetrable for fast neutrons, which were converted into recoil-protons in the polyethylene and recorded in the second PM-355 detector. The sandwiches were irradiated by discharges of comparable neutron-yields. Analyses of etched tracks and computer simulations of the fusion-products behavior in the detectors were performed.

  16. Reactor for exothermic reactions

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A. (Bellaire, TX); Hearn, Dennis (Houston, TX); Jones, Jr., Edward M. (Friendswood, TX)

    1993-01-01

    A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120.degree. to 300.degree. F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  17. Reactor for exothermic reactions

    DOE Patents [OSTI]

    Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.

    1993-03-02

    A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  18. Advanced fission and fossil plant economics-implications for fusion

    SciTech Connect (OSTI)

    Delene, J.G.

    1994-09-01

    In order for fusion energy to be a viable option for electric power generation, it must either directly compete with future alternatives or serve as a reasonable backup if the alternatives become unacceptable. This paper discusses projected costs for the most likely competitors with fusion power for baseload electric capacity and what these costs imply for fusion economics. The competitors examined include advanced nuclear fission and advanced fossil-fired plants. The projected costs and their basis are discussed. The estimates for these technologies are compared with cost estimates for magnetic and inertial confinement fusion plants. The conclusion of the analysis is that fusion faces formidable economic competition. Although the cost level for fusion appears greater than that for fission or fossil, the costs are not so high as to preclude fusion`s potential competitiveness.

  19. Advanced fission and fossil plant economics-implications for fusion

    SciTech Connect (OSTI)

    Delene, J.G.

    1994-11-01

    In order for fusion energy to be a viable option for electric power generation, it must either directly compete with future alternatives or serve as a reasonable backup if the alternatives become unacceptable. This paper discusses projected costs for the most likely competitors with fusion power for base-load electric capacity and what these costs imply for fusion economics. The competitors examined include advanced nuclear fission and advanced fossil-fired plants. The projected costs and their basis are discussed. The estimates for these technologies are compared with cost estimates for magnetic and inertial confinement fusion plants. The conclusion of the analysis is that fusion faces formidable economic competition. Although the cost level for fusion appears greater than that for fission or fossil, the costs are not so high as to preclude fusion`s potential competitiveness.

  20. N-Terminal T4 Lysozyme Fusion Facilitates Crystallization of...

    Office of Scientific and Technical Information (OSTI)

    N-Terminal T4 Lysozyme Fusion Facilitates Crystallization of a G Protein Coupled Receptor Citation Details In-Document Search Title: N-Terminal T4 Lysozyme Fusion Facilitates...

  1. Fusion diagnostic developed at PPPL sheds light on plasma behavior...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion diagnostic developed at PPPL sheds light on plasma behavior at EAST By Kitta ... (PPPL) has enabled a research team at a fusion energy experiment in China to observe--in ...

  2. PPPL engineer named winner of the 2013 Fusion Technology Award...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    engineer named winner of the 2013 Fusion Technology Award By John Greenwald May 1, 2013 ... advice is sought by engineers around the world, has won the 2013 Fusion Technology Award. ...

  3. COLLOQUIUM: Progress towards fusion on NIF and Z requires new...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    towards fusion on NIF and Z requires new plasma measurement capabilities Dr. Joe Kilkenny LLNLGA Dr. Greg Rochau SNL There is significant progress towards fusion on NIF and Z ...

  4. Accelerator Fusion Research Division 1991 summary of activities

    SciTech Connect (OSTI)

    Berkner, Klaus H.

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

  5. Accelerator & Fusion Research Division 1991 summary of activities

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

  6. MIT's Plasma Science Fusion Center: Tokamak Experiments Come Clean about

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impurity Transport | Princeton Plasma Physics Lab Tokamak Experiments Come Clean about Impurity Transport American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: MIT's Plasma Science Fusion Center: Tokamak Experiments Come Clean about Impurity Transport

  7. 2015 Key Water Power Program and National Laboratory Accomplishments...

    Energy Savers [EERE]

    5 Key Water Power Program and National Laboratory Accomplishments Report 2015 Key Water Power Program and National Laboratory Accomplishments Report 2015 Key Water Power Program ...

  8. 2015 Key Water Power Program and National Laboratory Accomplishments...

    Energy Savers [EERE]

    2015 Key Water Power Program and National Laboratory Accomplishments Slideshow 2015 Key Water Power Program and National Laboratory Accomplishments Slideshow 2015 Key Water Power ...

  9. TEC Working Group Topic Groups Routing Key Documents | Department...

    Office of Environmental Management (EM)

    Key Documents TEC Working Group Topic Groups Routing Key Documents KEY DOCUMENTS PDF icon Proposed Task Plan - Routing Topic Group More Documents & Publications TEC Working Group...

  10. TEC Working Group Topic Groups Section 180(c) Key Documents ...

    Office of Environmental Management (EM)

    Key Documents TEC Working Group Topic Groups Section 180(c) Key Documents Key Documents Briefing Package for Section 180(c) Implementation - July 2005 PDF icon Executive Summary...

  11. TEC Working Group Topic Groups Rail Key Documents | Department...

    Office of Environmental Management (EM)

    Rail Key Documents TEC Working Group Topic Groups Rail Key Documents KEY DOCUMENTS Radiation Monitoring Subgroup Intermodal Subgroup Planning Subgroup PDF icon Current FRA State...

  12. Self-similar structure and experimental signatures of suprathermal ion distribution in inertial confinement fusion implosions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kagan, Grigory; Svyatskiy, D.; Rinderknecht, H. G.; Rosenberg, M. J.; Zylstra, A. B.; Huang, C. -K.; McDevitt, C. J.

    2015-09-03

    The distribution function of suprathermal ions is found to be self-similar under conditions relevant to inertial confinement fusion hot spots. By utilizing this feature, interference between the hydrodynamic instabilities and kinetic effects is for the first time assessed quantitatively to find that the instabilities substantially aggravate the fusion reactivity reduction. Thus, the ion tail depletion is also shown to lower the experimentally inferred ion temperature, a novel kinetic effect that may explain the discrepancy between the exploding pusher experiments and rad-hydro simulations and contribute to the observation that temperature inferred from DD reaction products is lower than from DT atmore » the National Ignition Facility.« less

  13. Observation of d-d fusion neutrons during degassing of deuterium-loaded palladium

    SciTech Connect (OSTI)

    Bittner, M.; Meister, A.; Seeliger, D.; Schwierz, R.; Wuestner, P. )

    1993-05-01

    Experiments with two massive deuterium-loaded palladium samples designed to search for deuteron-deuteron (d-d) fusion during thermal degassing are described. In the heavier of the two samples, which has a total mass of [approximately] 0.5 kg, during deuterium expulsion from the metal, a significant neutron excess count rate was detected by two independent NE-213 scintillation neutron detectors. The maximum time-dependent excess count rate corresponds to a d-d reaction rate of (3 [+-] 1) [times] 10[sup [minus]25] per deuteron pair per second. From detector pulse height spectra, the energy of the neutrons is determined to be [approximately] 2.5 MeV, as expected for d-d fusion neutrons. 10 refs., 10 figs., 2 tabs.

  14. Using Radio Waves to Control Fusion Plasma Density

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Radio Waves to Control Fusion Plasma Density Using Radio Waves to Control Fusion Plasma Density Simulations Run at NERSC Support Fusion Experiments at MIT, General Atomics October 29, 2014 Radiowavesplasma Supercomputer simulation shows turbulent density fluctuations in the core of the Alcator C-Mod tokamak during strong electron heating. Image: Darin Ernst, MIT Recent fusion experiments on the DIII-D tokamak at General Atomics and the Alcator C-Mod tokamak at Massachusetts Institute of

  15. Diagnosing magnetized liner inertial fusion experiments on Z (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | DOE PAGES Diagnosing magnetized liner inertial fusion experiments on Z This content will become publicly available on May 14, 2016 « Prev Next » Title: Diagnosing magnetized liner inertial fusion experiments on Z The Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (~1012 DD neutrons) from multi-keV deuterium plasmasinertially confined by slow (~10 cm/μs), stable, cylindrical

  16. Effects of magnetization on fusion product trapping and secondary neutron

    Office of Scientific and Technical Information (OSTI)

    spectra (Journal Article) | DOE PAGES Effects of magnetization on fusion product trapping and secondary neutron spectra This content will become publicly available on May 14, 2016 « Prev Next » Title: Effects of magnetization on fusion product trapping and secondary neutron spectra In magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, we found that the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field

  17. Fusion Machines of the World | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Machines of the World NSTX-U IS ONE OF AN ELITE GROUP of magnetic fusion facilities scattered across the globe. These powerful and complex machines are advancing mankind's quest to harness fusion as a safe, clean and abundant source of energy for producing electricity. Here is a selection of major facilities. Publication File: PDF icon NSTX-U_presskit_print_FusionMachines-World

  18. MIT Plasma Science & Fusion Center: research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Program Information Publications & News Meetings & Seminars Contact Information Physics Research Fusion Technology & Engineering Plasma Technology Waves & Beams Useful...

  19. Low-Energy Nuclear Reactions of Protons in Host Metals at Picometre Distance

    SciTech Connect (OSTI)

    Heinrich Hora; George H. Miley; Jak C. Kelly

    2000-11-12

    A review is given for the explanation of the measurements of Miley et al. of a fully reproducible generation of nuclei of the whole periodic table by protons in host metals during a several-weeks reaction. Similar low-energy nuclear reactions (LENR) were observed by other groups. The fact that the heavy nuclides are not due to pollution can be seen from the fact that such very rare elements as thulium and terbium were detected by unique K-shell X-ray spectra. The nuclear reaction energy goes into the heavy nuclei as measured from much bigger traces in CR39 than from alphas. The fact that any reaction of the protons results in stable daughter nuclei is confirmed by the fact that the highest energy gain is resulting with stable reaction products. This has been explained in Ref. 2, and the energy gain for the heavy element generation by a compound reaction was discussed. The explanation is based on the model of the authors from 1989 to assume free motion of the protons contrary to localized crystalline states. A relation of the reaction time U on distance d of the reacting nuclei by a power law with an exponent 34.8 was derived. Based on few reproducible D-D reactions, a reaction time near the range of megaseconds and a reaction distance of nanometers was concluded. A splendid confirmation of the picometre-megasecond reactions was achieved by Li et al. from his direct quantum mechanical calculations of the hot fusion D-T reactions based on a one-step selective resonance tunneling model. Li et al. were able for the first time to derive the cross sections of the hot fusion. Li's application to picometre distance showed megasecond reaction times with no neutron or gamma emission. Because of the imaginary part in the Schroedinger potential, the problem of the level width is reduced by damping.

  20. Computer experiments concerning palladium-deuterium and titanium-deuterium lattices - implications to phenomenon of low-energy nuclear reaction

    SciTech Connect (OSTI)

    Rao, K.R.; Chaplot, S.L.

    1996-12-01

    Short-lived large energy fluctuations (SLEFs) in solids, proposed by Khait, are known to be responsible for several anomalous properties in a variety of materials. The study of SLEFs in palladium-deuterium and titanium-deuterium lattices via computer experiments is reported. The relevance of these large energy fluctuations in penetrating coulombic barriers in these systems is discussed. Such dynamical effects arising from the phonon bath in solids may enhance nuclear reaction probabilities leading to cold fusion. Expected cold fusion reaction rates are reported taking into account the effective charges of the deuterium atoms in the solid and SLEF frequencies. 25 refs., 7 figs., 1 tab.

  1. Inertial confinement fusion quarterly report, April--June 1994. Volume 4, Number 3

    SciTech Connect (OSTI)

    Shaw, M.J.

    1994-06-01

    This issue of the ICF Quarterly contains six articles covering a wide range of activities within the Inertial Confinement Fusion (ICF) Program. It concentrates on target design; theoretical spectral analysis of ICF capsule surfaces; laser fusion experimental methods; and an alternative ICF design, based on ultrafast, ultrapowerful lasers. A key issue for the success of the ICF process is the hydrodynamic stability of the imploding capsule. There are two primary sources of instability growth in the ICF process: (1) asymmetries in the x-ray flux that drive the compression lead to asymmetric in the imploding surface; (2) imperfections on the capsule surface can grow into large perturbations, degrading the capsule performance. In recent years, a great deal of effort, both experimentally and theoretically, has been spent to enhance the Program`s ability to measure, model, and minimize instability growth during an implosion. Four the articles in this issue discuss this subject.

  2. Dynamic microscopic theory of fusion using DC-TDHF

    SciTech Connect (OSTI)

    Umar, A. S.; Oberacker, V. E.; Keser, R.; Maruhn, J. A.; Reinhard, P.-G.

    2012-10-20

    The density-constrained time-dependent Hartree-Fock (DC-TDHF) theory is a fully microscopic approach for calculating heavy-ion interaction potentials and fusion cross sections below and above the fusion barrier. We discuss recent applications of DC-TDHF method to fusion of light and heavy systems.

  3. Accelerator and Fusion Research Division 1989 summary of activities

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    This report discusses the research being conducted at Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division. The main topics covered are: heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; high-energy physics technology; and bevalac operations.

  4. Safeguard Requirements for Fusion Power Plants

    SciTech Connect (OSTI)

    Robert J. Goldston and Alexander Glaser

    2012-08-10

    Nuclear proliferation risks from magnetic fusion energy associated with access to fissile materials can be divided into three main categories: 1) clandestine production of fissile material in an undeclared facility, 2) covert production and diversion of such material in a declared and safeguarded facility, and 3) use of a declared facility in a breakout scenario, in which a state openly produces fissile material in violation of international agreements. The degree of risk in each of these categories is assessed, taking into account both state and non-state actors, and it is found that safeguards are required for fusion energy to be highly attractive from a non-proliferation standpoint. Specific safeguard requirements and R&D needs are outlined for each category of risk, and the technical capability of the ITER experiment, under construction, to contribute to this R&D is noted. A preliminary analysis indicates a potential legal pathway for fusion power systems to be brought under the Treaty for the Non-Proliferation of Nuclear Weapons. "Vertical" proliferation risks associated with tritium and with the knowledge that can be gained from inertial fusion energy R&D are outlined.

  5. Fusion Simulation Program Definition. Final report

    SciTech Connect (OSTI)

    Cary, John R.

    2012-09-05

    We have completed our contributions to the Fusion Simulation Program Definition Project. Our contributions were in the overall planning with concentration in the definition of the area of Software Integration and Support. We contributed to the planning of multiple meetings, and we contributed to multiple planning documents.

  6. Inertial Confinement Fusion | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Inertial Confinement Fusion | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs

  7. Portuguese research program on nuclear fusion

    SciTech Connect (OSTI)

    Varandas, C.A.F.; Cabral, J.A.C.; Manso, M.E.

    1994-12-01

    The Portuguese research program on nuclear fusion is presented. The experimental activity associated with the tokamak ISTTOK as well as the work carried out in the frame of international collaboration are summarized. The main technological features of ISTTOK are described along with studies on microwave reflectometry. Future plans are briefly described.

  8. Solving The Long-Standing Problem Of Low-Energy Nuclear Reactions At The Highest Microscopic Level. Annual Continuation And Progress Report, August 15, 2014 -- August 14, 2015

    SciTech Connect (OSTI)

    Quaglioni, Sofia

    2015-03-19

    The aim of this project is to develop a comprehensive framework that will lead to a fundamental description of both structural properties and reactions of light nuclei in terms of constituent protons and neutrons interacting through nucleon-nucleon (NN) and three-nucleon (3N) forces. This project will provide the research community with the theoretical and computational tools what will enable: an accurate prediction for fusion reactions that power stars and Earth-based fusion facilities; an improved description of the spectroscopy of exotic nuclei, including light Borromean systems; and, a fundamental understanding of the three-nucleon force in nuclear reaction and nuclei at the drip line.

  9. Macron Formed Liner Compression as a Practical Method for Enabling Magneto-Inertial Fusion

    SciTech Connect (OSTI)

    Slough, John

    2011-12-10

    The entry of fusion as a viable, competitive source of power has been stymied by the challenge of finding an economical way to provide for the confinement and heating of the plasma fuel. The main impediment for current nuclear fusion concepts is the complexity and large mass associated with the confinement systems. To take advantage of the smaller scale, higher density regime of magnetic fusion, an efficient method for achieving the compressional heating required to reach fusion gain conditions must be found. The very compact, high energy density plasmoid commonly referred to as a Field Reversed Configuration (FRC) provides for an ideal target for this purpose. To make fusion with the FRC practical, an efficient method for repetitively compressing the FRC to fusion gain conditions is required. A novel approach to be explored in this endeavor is to remotely launch a converging array of small macro-particles (macrons) that merge and form a more massive liner inside the reactor which then radially compresses and heats the FRC plasmoid to fusion conditions. The closed magnetic field in the target FRC plasmoid suppresses the thermal transport to the confining liner significantly lowering the imploding power needed to compress the target. With the momentum flux being delivered by an assemblage of low mass, but high velocity macrons, many of the difficulties encountered with the liner implosion power technology are eliminated. The undertaking to be described in this proposal is to evaluate the feasibility achieving fusion conditions from this simple and low cost approach to fusion. During phase I the design and testing of the key components for the creation of the macron formed liner have been successfully carried out. Detailed numerical calculations of the merging, formation and radial implosion of the Macron Formed Liner (MFL) were also performed. The phase II effort will focus on an experimental demonstration of the macron launcher at full power, and the demonstration of megagauss magnetic field compression by a small array of full scale macrons. In addition the physics of the compression of an FRC to fusion conditions will be undertaken with a smaller scale MFL. The timescale for testing will be rapidly accelerated by taking advantage of other facilities at MSNW where the target FRC will be created and translated inside the MFL just prior to implosion of the MFL. Experimental success would establish the concept at the “proof of principle” level and the following phase III effort would focus on the full development of the concept into a fusion gain device. Successful operation would lead to several benefits in various fields. It would have application to high energy density physics, as well as nuclear waste transmutation and alternate fission fuel cycles. The smaller scale device could find immediate application as an intense source of neutrons for diagnostic imaging and non-invasive object interrogation.

  10. COMMENTS ON "A NEW LOOK AT LOW-ENERGY NUCLEAR REACTION RESEARCH"

    SciTech Connect (OSTI)

    Shanahan, K.

    2009-12-30

    Cold fusion researchers have accumulated a large body of anomalous results over the last 20 years that they claim proves a new, mysterious nuclear reaction is active in systems they study. Krivit and Marwan give a brief and wholly positive view of this body of research. Unfortunately, cold fusion researchers routinely ignore conventional explanations of their observations, and claim much greater than real accuracy and precision for their techniques. This paper attempts to equally briefly address those aspects of the field with the intent of providing a balanced view of the field, and to establish some criteria for subsequent publications in this arena.

  11. Double-Pionic Fusion of Nuclear Systems and the 'ABC' Effect: Approaching a Puzzle by Exclusive and Kinematically Complete Measurements

    SciTech Connect (OSTI)

    Bashkanov, M.; Clement, H.; Doroshkevich, E.; Khakimova, O.; Kren, F.; Meier, R.; Pricking, A.; Skorodko, T.; Wagner, G. J.; Bargholtz, C.; Geren, L.; Lindberg, K.; Tegner, P.-E.; Zartova, I.; Berlowski, M.; Stepaniak, J.; Bogoslawsky, D.; Ivanov, G.; Jiganov, E.; Morosov, B.

    2009-02-06

    The ABC effect--a puzzling low-mass enhancement in the {pi}{pi} invariant mass spectrum, first observed by Abashian, Booth, and Crowe--is well known from inclusive measurements of two-pion production in nuclear fusion reactions. Here we report on the first exclusive and kinematically complete measurements of the most basic double-pionic fusion reaction pn{yields}d{pi}{sup 0}{pi}{sup 0} at beam energies of 1.03 and 1.35 GeV. The measurements, which have been carried out at CELSIUS-WASA, reveal the ABC effect to be a ({pi}{pi}){sub I=L=0} channel phenomenon associated with both a resonancelike energy dependence in the integral cross section and the formation of a {delta}{delta} system in the intermediate state. A corresponding simple s-channel resonance ansatz provides a surprisingly good description of the data.

  12. Velocity pump reaction turbine

    DOE Patents [OSTI]

    House, Palmer A. (Walnut Creek, CA)

    1984-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  13. Velocity pump reaction turbine

    DOE Patents [OSTI]

    House, Palmer A. (Walnut Creek, CA)

    1982-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  14. Key Management Challenges in Smart Grid

    SciTech Connect (OSTI)

    Sheldon, Frederick T; Duren, Mike

    2012-01-01

    Agenda Awarded in February 2011 Team of industry and research organizations Project Objectives Address difficult issues Complexity Diversity of systems Scale Longevity of solution Participate in standards efforts and working groups Develop innovative key management solutions Modeling and simulation ORNL Cyber Security Econometric Enterprise System Demonstrate effectiveness of solution Demonstrate scalability

  15. Polymerase chain reaction system

    DOE Patents [OSTI]

    Benett, William J.; Richards, James B.; Stratton, Paul L.; Hadley, Dean R.; Milanovich, Fred P.; Belgrader, Phil; Meyer, Peter L.

    2004-03-02

    A portable polymerase chain reaction DNA amplification and detection system includes one or more chamber modules. Each module supports a duplex assay of a biological sample. Each module has two parallel interrogation ports with a linear optical system. The system is capable of being handheld.

  16. Magneto-inertial Fusion: An Emerging Concept for Inertial Fusion and Dense Plasmas in Ultrahigh Magnetic Fields

    SciTech Connect (OSTI)

    Thio, Francis Y.C.

    2008-01-01

    An overview of the U.S. program in magneto-inertial fusion (MIF) is given in terms of its technical rationale, scientific goals, vision, research plans, needs, and the research facilities currently available in support of the program. Magneto-inertial fusion is an emerging concept for inertial fusion and a pathway to the study of dense plasmas in ultrahigh magnetic fields (magnetic fields in excess of 500 T). The presence of magnetic field in an inertial fusion target suppresses cross-field thermal transport and potentially could enable more attractive inertial fusion energy systems. A vigorous program in magnetized high energy density laboratory plasmas (HED-LP) addressing the scientific basis of magneto-inertial fusion has been initiated by the Office of Fusion Energy Sciences of the U.S. Department of Energy involving a number of universities, government laboratories and private institutions.

  17. Center at plasma laboratory wins $12 million grant for fusion research |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab Center at plasma laboratory wins $12 million grant for fusion research By John Greenwald October 10, 2012 Tweet Widget Google Plus One Share on Facebook C.S. Chang, who heads the Center for Edge Physics Simulation at the Princeton Plasma Physics Lab, stands by a high-performance computer cluster at the laboratory. With a $12.25 million grant from the U.S. Department of Energy, Chang and other researchers will develop computer codes to simulate a key component of

  18. The search for solid state fusion lasers

    SciTech Connect (OSTI)

    Weber, M.J. )

    1989-04-01

    Inertial confinement fusion (ICF) research puts severe demands on the laser driver. In recent years large, multibeam Nd:glass lasers have provided a flexible experimental tool for exploring fusion target physics because of their high powers, variable pulse length and shape, wavelength flexibility using harmonic generation, and adjustable that Nd:glass lasers can be scaled up to provide a single-phase, multi-megajoule, high-gain laboratory microfusion facility, and gas-cooled slab amplifiers with laser diode pump sources are viable candidates for an efficient, high repetition rate, megawatt driver for an ICF reactor. In both applications requirements for energy storage and energy extraction drastically limit the choice of lasing media. Nonlinear optical effects and optical damage are additional design constraints. New laser architectures applicable to ICF drivers and possible laser materials, both crystals and glasses, are surveyed. 20 refs., 2 figs.

  19. Generalized Lawson Criteria for Inertial Confinement Fusion

    SciTech Connect (OSTI)

    Tipton, Robert E.

    2015-08-27

    The Lawson Criterion was proposed by John D. Lawson in 1955 as a general measure of the conditions necessary for a magnetic fusion device to reach thermonuclear ignition. Over the years, similar ignition criteria have been proposed which would be suitable for Inertial Confinement Fusion (ICF) designs. This paper will compare and contrast several ICF ignition criteria based on Lawson’s original ideas. Both analytical and numerical results will be presented which will demonstrate that although the various criteria differ in some details, they are closely related and perform similarly as ignition criteria. A simple approximation will also be presented which allows the inference of each ignition parameter directly from the measured data taken on most shots fired at the National Ignition Facility (NIF) with a minimum reliance on computer simulations. Evidence will be presented which indicates that the experimentally inferred ignition parameters on the best NIF shots are very close to the ignition threshold.

  20. Multishell inertial-confinement-fusion target

    SciTech Connect (OSTI)

    Holland, J.R.; Del Vecchio, R.M.

    1981-06-01

    This disclosure relates to fusion targets. It deals particularly with the production of multishell inertial confinement fusion targets. The fuel pellet within such targets is designed to compress isentropically under laser or particle irradiation. When a short pulse at extremely high power density strikes the target containing deuterium-tritium fuel, the resulting plasma is confined briefly by its own inertia. Thermonuclear energy can be released in less time than it takes the fuel pellet to blow apart. However, efficient thermonuclear burn requires that the plasma must remain intact at extremely high temperatures and densities for a time sufficient to allow a large fraction of the nuclei to react. Development of multishell targets has been directed at this problem.

  1. Methodology for Scaling Fusion Power Plant Availability

    SciTech Connect (OSTI)

    Lester M. Waganer

    2011-01-04

    Normally in the U.S. fusion power plant conceptual design studies, the development of the plant availability and the plant capital and operating costs makes the implicit assumption that the plant is a 10th of a kind fusion power plant. This is in keeping with the DOE guidelines published in the 1970s, the PNL report1, "Fusion Reactor Design Studies - Standard Accounts for Cost Estimates. This assumption specifically defines the level of the industry and technology maturity and eliminates the need to define the necessary research and development efforts and costs to construct a one of a kind or the first of a kind power plant. It also assumes all the "teething" problems have been solved and the plant can operate in the manner intended. The plant availability analysis assumes all maintenance actions have been refined and optimized by the operation of the prior nine or so plants. The actions are defined to be as quick and efficient as possible. This study will present a methodology to enable estimation of the availability of the one of a kind (one OAK) plant or first of a kind (1st OAK) plant. To clarify, one of the OAK facilities might be the pilot plant or the demo plant that is prototypical of the next generation power plant, but it is not a full-scale fusion power plant with all fully validated "mature" subsystems. The first OAK facility is truly the first commercial plant of a common design that represents the next generation plant design. However, its subsystems, maintenance equipment and procedures will continue to be refined to achieve the goals for the 10th OAK power plant.

  2. First wall for polarized fusion reactors

    DOE Patents [OSTI]

    Greenside, Henry S.; Budny, Robert V.; Post, Jr., Douglass E.

    1988-01-01

    Depolarization mechanisms arising from the recycling of the polarized fuel at the limiter and the first-wall of a fusion reactor are greater than those mechanisms in the plasma. Rapid depolarization of the plasma is prevented by providing a first-wall or first-wall coating formed of a low-Z, non-metallic material having a depolarization rate greater than 1 sec.sup.-1.

  3. AN ACOUSTICALLY DRIVEN MAGNETIZED TARGET FUSION REACTOR

    SciTech Connect (OSTI)

    Laberge, Michel

    2009-07-26

    We propose a new acoustic compression scheme for a MTF power plant. A strong acoustic wave is produced by piston impacts. The wave focuses in liquid PbLi to compress a pre-formed FRC plasma. Simulations indicate the possibility of building an economical 60 MWe power plant. A proof-of-principle experiment produces a small D-D fusion yield of 2000 neutrons per shot.

  4. Inspection of Fusion Joints in Plastic Pipe

    SciTech Connect (OSTI)

    Connie Reichert

    2005-09-01

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost-effective method exists for assessing the quality of fusion joints in the field. Visual examination and pressure testing are current nondestructive approaches, which do not provide any assurance about the long-term pipeline performance. This project developed, demonstrated, and validated an in-situ nondestructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system includes a laser-based image-recognition system that automatically generates and interprets digital images of pipe joints and assigns them a pass/fail rating, which eliminates operator bias in evaluating joint quality. An EWI-patented process, the Weld Zone Inspection Method (WZIM) was developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation, which reveals the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and nonstandard conditions. These welds were subjected to the WZIM and two destructive forms of testing: short-term tensile testing and long-term creep rupture testing. There appears to be a direct correlation between the WZIM and the destructive testing results. Although WZIM appears to be more sensitive than destructive testing can verify, the approach appears valid.

  5. nuclear fusion | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    fusion | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home /

  6. 2005 Chemical Reactions at Surfaces

    SciTech Connect (OSTI)

    Cynthia M. Friend

    2006-03-14

    The Gordon Research Conference (GRC) on 2005 Chemical Reactions at Surfaces was held at Ventura Beach Marriott, Ventura California from February 13, 2005 through February 18, 2005. The Conference was well-attended with 124 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. In designing the formal speakers program, emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate lively discussion about the key issues in the field today. Time for formal presentations was limited in the interest of group discussions. In order that more scientists could communicate their most recent results, poster presentation time was scheduled. Attached is a copy of the formal schedule and speaker program and the poster program. In addition to these formal interactions, 'free time' was scheduled to allow informal discussions. Such discussions are fostering new collaborations and joint efforts in the field.

  7. Key technologies for tritium storage bed development

    SciTech Connect (OSTI)

    Yu, S.H.; Chang, M.H.; Kang, H.G.; Chung, D.Y.; Oh, Y.H.; Jung, K.J.; Chung, H.; Koo, D.; Sohn, S.H.; Song, K.M.

    2015-03-15

    ITER Storage and Delivery System (SDS) is a complex system involving tens of storage beds. The most important SDS getter bed will be used for the absorption and desorption of hydrogen isotopes in accordance with the fusion fuel cycle scenario. In this paper the current status concerning research/development activities for the optimal approach to the final SDS design is introduced. A thermal analysis is performed and discussed on the aspect of heat losses considering whether the reflector and/or the feed-through is present or not. A thermal hydraulic simulation shows that the presence of 3 or 4 reflectors minimize the heat loss. Another important point is to introduce the real-time gas analysis in the He{sup 3} collection system. In this study 2 independent strength methods based on gas chromatography and quadruple mass spectrometer for one and on a modified self-assaying quadruple mass spectrometer for the second are applied to separate the hydrogen isotopes in helium gas. Another issue is the possibility of using depleted uranium getter material for the storage of hydrogen isotopes, especially of tritium.

  8. Vacuum fusion bonding of glass plates

    DOE Patents [OSTI]

    Swierkowski, Steve P. (Livermore, CA); Davidson, James C. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

    2001-01-01

    An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

  9. Vacuum fusion bonding of glass plates

    DOE Patents [OSTI]

    Swierkowski, Steve P. (Livermore, CA); Davidson, James C. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

    2000-01-01

    An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

  10. Key Physical Mechanisms in Nanostructured Solar Cells

    SciTech Connect (OSTI)

    Dr Stephan Bremner

    2010-07-21

    The objective of the project was to study both theoretically and experimentally the excitation, recombination and transport properties required for nanostructured solar cells to deliver energy conversion efficiencies well in excess of conventional limits. These objectives were met by concentrating on three key areas, namely, investigation of physical mechanisms present in nanostructured solar cells, characterization of loss mechanisms in nanostructured solar cells and determining the properties required of nanostructured solar cells in order to achieve high efficiency and the design implications.

  11. Identification of Key Barriers in Workforce Development

    SciTech Connect (OSTI)

    2008-03-31

    This report documents the identification of key barriers in the development of an adequate national security workforce as part of the National Security Preparedness Project, being performed under a Department of Energy/National Nuclear Security Administration grant. Many barriers exist that prevent the development of an adequate number of propertly trained national security personnel. Some barriers can be eliminated in a short-term manner, whereas others will involve a long-term strategy that takes into account public policy.

  12. Brain Receptor Structures Key to Future Therapeutics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brain Receptor Structures Key to Future Therapeutics Print With an aging population in America, it is more important than ever to discover ways to treat or prevent diseases affecting the brain and its ability to make new connections and recall memories. Some of the most important players in the brain's normal function are the glutamate receptors, which are involved in nervous-system development and function. These molecules transmit signals between nerve cells and are critical to learning and

  13. Brain Receptor Structures Key to Future Therapeutics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brain Receptor Structures Key to Future Therapeutics Print With an aging population in America, it is more important than ever to discover ways to treat or prevent diseases affecting the brain and its ability to make new connections and recall memories. Some of the most important players in the brain's normal function are the glutamate receptors, which are involved in nervous-system development and function. These molecules transmit signals between nerve cells and are critical to learning and

  14. Brain Receptor Structures Key to Future Therapeutics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brain Receptor Structures Key to Future Therapeutics Print With an aging population in America, it is more important than ever to discover ways to treat or prevent diseases affecting the brain and its ability to make new connections and recall memories. Some of the most important players in the brain's normal function are the glutamate receptors, which are involved in nervous-system development and function. These molecules transmit signals between nerve cells and are critical to learning and

  15. Brain Receptor Structures Key to Future Therapeutics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brain Receptor Structures Key to Future Therapeutics Print With an aging population in America, it is more important than ever to discover ways to treat or prevent diseases affecting the brain and its ability to make new connections and recall memories. Some of the most important players in the brain's normal function are the glutamate receptors, which are involved in nervous-system development and function. These molecules transmit signals between nerve cells and are critical to learning and

  16. Key Issues in Tribal Energy Development

    Office of Environmental Management (EM)

    Key Issues in Tribal Energy Development Common Issues, Causes and Solutions Douglas C. MacCourt, Ater Wynne LLP Chair Chair, Executive Committee Indian Law Practice Group Indian Law Section Ater Wynne LLP Oregon State Bar Association dcm@aterwynne.com www.aterwynne.com US DOE Tribal Energy Program/NREL Denver, Colorado October 25-28, 2010 Overview of Presentation * Overview of Handbook * A note on Alaska * Common development issues and solutions 1. Finding Early Stage Risk Capital * Necessary

  17. Key Renewable Energy Opportunities for Oklahoma Tribes

    Office of Environmental Management (EM)

    KEY RENEWABLE ENERGY OPPORTUNITIES FOR OKLAHOMA TRIBES August 13, 2012 COX CONVENTION CENTER 100 West Sheridan Avenue, Oklahoma City, OK 73102 (405) 602-8500 The fifth in a series of planned U.S. DOE Office of Indian Energy-sponsored strategic energy development & investment forums, this forum is designed to give Oklahoma tribal leaders the opportunity to receive the latest updates on DOE's energy development efforts in Indian Country. The Forum will provide a venue for tribal leaders to

  18. TIMELY DELIVERY OF LASER INERTIAL FUSION ENERGY (LIFE)

    SciTech Connect (OSTI)

    Dunne, A M

    2010-11-30

    The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory. A key goal of the NIF is to demonstrate fusion ignition for the first time in the laboratory. Its flexibility allows multiple target designs (both indirect and direct drive) to be fielded, offering substantial scope for optimization of a robust target design. In this paper we discuss an approach to generating gigawatt levels of electrical power from a laser-driven source of fusion neutrons based on these demonstration experiments. This 'LIFE' concept enables rapid time-to-market for a commercial power plant, assuming success with ignition and a technology demonstration program that links directly to a facility design and construction project. The LIFE design makes use of recent advances in diode-pumped, solid-state laser technology. It adopts the paradigm of Line Replaceable Units utilized on the NIF to provide high levels of availability and maintainability and mitigate the need for advanced materials development. A demonstration LIFE plant based on these design principles is described, along with the areas of technology development required prior to plant construction. A goal-oriented, evidence-based approach has been proposed to allow LIFE power plant rollout on a time scale that meets policy imperatives and is consistent with utility planning horizons. The system-level delivery builds from our prior national investment over many decades and makes full use of the distributed capability in laser technology, the ubiquity of semiconductor diodes, high volume manufacturing markets, and U.S. capability in fusion science and nuclear engineering. The LIFE approach is based on the ignition evidence emerging from NIF and adopts a line-replaceable unit approach to ensure high plant availability and to allow evolution from available technologies and materials. Utilization of a proven physics platform for the ignition scheme is an essential component of an acceptably low-risk solution. The degree of coupling seen on NIF between driver and target performance mandates that little deviation be adopted from the NIF geometry and beamline characteristics. Similarly, the strong coupling between subsystems in an operational power plant mandates that a self-consistent solution be established via an integrated facility delivery project. The benefits of separability of the subsystems within an IFE plant (driver, chamber, targets, etc.) emerge in the operational phase of a power plant rather than in its developmental phase. An optimized roadmap for IFE delivery needs to account for this to avoid nugatory effort and inconsistent solutions. For LIFE, a system design has been established that could lead to an operating power plant by the mid-2020s, drawing from an integrated subsystem development program to demonstrate the required technology readiness on a time scale compatible with the construction plan. Much technical development work still remains, as does alignment of key stakeholder groups to this newly emerging development option. If the required timeline is to be met, then preparation of a viable program is required alongside the demonstration of ignition on NIF. This will enable timely analysis of the technical and economic case and establishment of the appropriate delivery partnership.

  19. Accelerator-based fusion with a low temperature target

    SciTech Connect (OSTI)

    Phillips, R. E.; Ordonez, C. A.

    2013-04-19

    Neutron generators are in use in a number of scientific and commercial endeavors. They function by triggering fusion reactions between accelerated ions (usually deuterons) and a stationary cold target (e.g., containing tritium). This setup has the potential to generate energy. It has been shown that if the energy transfer between injected ions and target electrons is sufficiently small, net energy gain can be achieved. Three possible avenues are: (a) a hot target with high electron temperature, (b) a cold non-neutral target with an electron deficiency, or (c) a cold target with a high Fermi energy. A study of the third possibility is reported in light of recent research that points to a new phase of hydrogen, which is hypothesized to be related to metallic hydrogen. As such, the target is considered to be composed of nuclei and delocalized electrons. The electrons are treated as conduction electrons, with the average minimum excitation energy being approximately equal to 40% of the Fermi energy. The Fermi energy is directly related to the electron density. Preliminary results indicate that if the claimed electron densities in the new phase of hydrogen were achieved in a target, the energy transfer to electrons would be small enough to allow net energy gain.

  20. Inertial confinement fusion. 1995 ICF annual report, October 1994--September 1995

    SciTech Connect (OSTI)

    1996-06-01

    Lawrence Livermore National Laboratory`s (LLNL`s) Inertial Confinement Fusion (ICF) Program is a Department of Energy (DOE) Defense Program research and advanced technology development program focused on the goal of demonstrating thermonuclear fusion ignition and energy gain in the laboratory. During FY 1995, the ICF Program continued to conduct ignition target physics optimization studies and weapons physics experiments in support of the Defense Program`s stockpile stewardship goals. It also continued to develop technologies in support of the performance, cost, and schedule goals of the National Ignition Facility (NIF) Project. The NIF is a key element of the DOE`s Stockpile Stewardship and Management Program. In addition to its primary Defense Program goals, the ICF Program provides research and development opportunities in fundamental high-energy-density physics and supports the necessary research base for the possible long-term application to inertial fusion energy (IFE). Also, ICF technologies have had spin-off applications for industrial and governmental use. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  1. Reaction chemistry of cerium

    SciTech Connect (OSTI)

    1997-01-01

    It is truly ironic that a synthetic organic chemist likely has far greater knowledge of the reaction chemistry of cerium(IV) than an inorganic colleague. Cerium(IV) reagents have long since been employed as oxidants in effecting a wide variety of organic transformations. Conversely, prior to the late 1980s, the number of well characterized cerium(IV) complexes did not extend past a handful of known species. Though in many other areas, interest in the molecular chemistry of the 4f-elements has undergone an explosive growth over the last twenty years, the chemistry of cerium(IV) has for the most part been overlooked. This report describes reactions of cerium complexes and structure.

  2. A Fusion Development Facility on the Critical Path to Fusion Energy

    SciTech Connect (OSTI)

    Chan, V. S.; Stambaugh, R

    2011-01-01

    A fusion development facility (FDF) based on the tokamak approach with normal conducting magnetic field coils is presented. FDF is envisioned as a facility with the dual objective of carrying forward advanced tokamak (AT) physics and enabling the development of fusion energy applications. AT physics enables the design of a compact steady-state machine of moderate gain that can provide the neutron fluence required for FDF's nuclear science development objective. A compact device offers a uniquely viable path for research and development in closing the fusion fuel cycle because of the demand to consume only a moderate quantity of the limited supply of tritium fuel before the technology is in hand for breeding tritium.

  3. A fusion development facility on the critical path to fusion energy

    SciTech Connect (OSTI)

    Chan, Dr. Vincent; Canik, John; Peng, Yueng Kay Martin

    2011-01-01

    A fusion development facility (FDF) based on the tokamak approach with normal conducting magnetic field coils is presented. FDF is envisioned as a facility with the dual objective of carrying forward advanced tokamak (AT) physics and enabling the development of fusion energy applications. AT physics enables the design of a compact steady-state machine of moderate gain that can provide the neutron fluence required for FDF s nuclear science development objective. A compact device offers a uniquely viable path for research and development in closing the fusion fuel cycle because of the demand to consume only a moderate quantity of the limited supply of tritium fuel before the technology is in hand for breeding tritium.

  4. Fission and quasifission modes in heavy-ion-induced reactions leading to the formation of Hs{sup *}

    SciTech Connect (OSTI)

    Itkis, I. M.; Kozulin, E. M.; Itkis, M. G.; Knyazheva, G. N.; Bogachev, A. A.; Chernysheva, E. V.; Krupa, L.; Oganessian, Yu. Ts.; Zagrebaev, V. I.; Rusanov, A. Ya.; Goennenwein, F.; Dorvaux, O.; Stuttge, L.; Hanappe, F.; Vardaci, E.; Goes Brennand, E. de

    2011-06-15

    Mass and energy distributions of binary reaction products obtained in the reactions {sup 22}Ne+{sup 249}Cf,{sup 26}Mg+{sup 248}Cm, {sup 36}S+{sup 238}U, and {sup 58}Fe+{sup 208}Pb have been measured. All reactions lead to Hs isotopes. At energies below the Coulomb barrier the bimodal fission of Hs{sup *}, formed in the reaction {sup 26}Mg+{sup 248}Cm, is observed. In the reaction {sup 36}S+{sup 238}U, leading to the formation of a similar compound nucleus, the main part of the symmetric fragments arises from the quasifission process. At energies above the Coulomb barrier fusion-fission is the main process leading to the formation of symmetric fragments for both reactions with Mg and S ions. In the case of the {sup 58}Fe+{sup 208}Pb reaction the quasifission process dominates at all measured energies.

  5. TEC Working Group Topic Groups Security Key Documents | Department...

    Office of Environmental Management (EM)

    Key Documents TEC Working Group Topic Groups Security Key Documents Key Documents PDF icon Security TG Work Plan August 7, 2006 PDF icon Security Lessons Learned Document August 2,...

  6. Method for encryption and transmission of digital keying data

    DOE Patents [OSTI]

    Mniszewski, Susan M.; Springer, Edward A.; Brenner, David P.

    1988-01-01

    A method for the encryption, transmission, and subsequent decryption of digital keying data. The method utilizes the Data Encryption Standard and is implemented by means of a pair of apparatus, each of which is selectable to operate as either a master unit or remote unit. Each unit contains a set of key encryption keys which are indexed by a common indexing system. The master unit operates upon command from the remote unit to generate a data encryption key and encrypt the data encryption key using a preselected key encryption key. The encrypted data encryption key and an index designator are then downloaded to the remote unit, where the data encryption key is decrypted for subsequent use in the encryption and transmission data. Downloading of the encrypted data encryption key enables frequent change of keys without requiring manual entry or storage of keys at the remote unit.

  7. NERSC.COE.key.actions-4.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC8 CoE Key Actions when optimizing for KNL Nathan Wichmann wichmann@cray.com Outline 2/24/2014 Cray Private 2 Characterization and Multi-node Considerations ● Target Science ● Profiles and Hotspots ● Scaling and Communication Single node optimizations ● Memory and cache footprint analysis ● Memory bandwidth requirements ● Vectorization ● Creating a kernel to aid in further analysis and testing Example: BerkeleyGW - FF kernel What Science do you want to run on Cori 3 Identify 1

  8. The Heavy Ion Fusion Science Virtual National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Heavy Ion Fusion Science Virtual National Laboratory Python in a Parallel Environment Dave Grote - LLNL & LBNL NUG2013 User Day Wednesday, February 15, 2013 Slide 2 The Heavy Ion Fusion Science Virtual National Laboratory Outline * Why we use Python * How we use Python * Parallel Python with pyMPI * Our graphics model with Pygist * Parallel Python drawbacks and resolutions - Start up time - Static building * Conclusions Slide 3 The Heavy Ion Fusion Science Virtual National Laboratory 3

  9. What Causes Electron Heat Loss in Fusion Plasma?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Causes Heat Loss in Fusion Plasmas? What Causes Electron Heat Loss in Fusion Plasma? 3D Simulations Run at NERSC Unlock Puzzling Secret September 22, 2015 fusionplasmabelova Contour plots of magnetic-field perturbation for n=4. Creating controlled fusion energy entails many challenges, but one of the most basic is heating plasma-hot gas composed of electrons and charged atoms-to extremely high temperatures and then maintaining those temperatures. Now scientist Elena Belova of the U.S. Department

  10. Plasma Turbulence Simulations Reveal Promising Insight for Fusion Energy |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab Plasma Turbulence Simulations Reveal Promising Insight for Fusion Energy By Argonne National Laboratory March 31, 2014 Tweet Widget Google Plus One Share on Facebook Simulation of microturbulence in a tokamak fusion device. (Credit: Chad Jones and Kwan-Liu Ma, University of California, Davis; Stephane Ethier, Princeton Plasma Physics Laboratory) Simulation of microturbulence in a tokamak fusion device. (Credit: Chad Jones and Kwan-Liu Ma, University of

  11. Direct Fusion Drive for a Human Mars Orbital Mission

    SciTech Connect (OSTI)

    Paluszek, Michael; Pajer, Gary; Razin, Yosef; Slonaker, James; Cohen, Samuel; Feder, Russ; Griffin, Kevin; Walsh, Matthew

    2014-08-01

    The Direct Fusion Drive (DFD) is a nuclear fusion engine that produces both thrust and electric power. It employs a field reversed configuration with an odd-parity rotating magnetic field heating system to heat the plasma to fusion temperatures. The engine uses deuterium and helium-3 as fuel and additional deuterium that is heated in the scrape-off layer for thrust augmentation. In this way variable exhaust velocity and thrust is obtained.

  12. AVTA: 2010 Ford Fusion HEV Testing Results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ford Fusion HEV Testing Results AVTA: 2010 Ford Fusion HEV Testing Results The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2010 Ford Fusion hybrid-electric

  13. Physicist Zoe Martin's fusion quest: a stellar future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zoe Martin's fusion quest: a stellar future Physicist Zoe Martin's fusion quest: a stellar future From revealing radiation hydrodynamics to creating energy, physics student pursues science's boundaries. August 27, 2013 Zoe Martin's fusion quest: a stellar future From revealing radiation hydrodynamics to creating energy, physics student pursues science's boundaries. She also pursues gravity-defying dance in her spare time. Martin said her mentor, physicist Leslie Sherrill, takes the time to

  14. Chuck Kessel Wins the 2015 Fusion Technology Award | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Lab Chuck Kessel Wins the 2015 Fusion Technology Award By Raphael Rosen July 13, 2015 Tweet Widget Google Plus One Share on Facebook Chuck Kessel, a principal engineer at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL), has won the 2015 Fusion Technology Award. The honor, from the Institute of Electrical and Electronics Engineers' (IEEE) Nuclear and Plasma Sciences Society, recognizes outstanding contributions to fusion engineering and technology.

  15. Large Scale Production Computing and Storage Requirements for Fusion Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences: Target 2017 Large Scale Production Computing and Storage Requirements for Fusion Energy Sciences: Target 2017 The NERSC Program Requirements Review "Large Scale Production Computing and Storage Requirements for Fusion Energy Sciences" is organized by the Department of Energy's Office of Fusion Energy Sciences (FES), Office of Advanced Scientific Computing Research (ASCR), and the National Energy Research Scientific Computing Center (NERSC). The review's goal is to

  16. Theoretical and experimental studies on the cold nuclear fusion phenomena

    SciTech Connect (OSTI)

    Harith, M.A. . Faculty of Science); Palleschi, V.; Salvetti, A.; Salvetti, G.; Singh, D.P.; Vaselli, M. )

    1990-07-01

    A realistic estimate of the interionic potential that may account for the experimentally observed fusion rates ({approx}10{sup {minus}23} deuterium-deuterium fusion/s) in palladium is presented. Moreover, some preliminary calorimetric studies on the hydrogen absorption process in palladium, performed in a cell with pressure up to 20 bars, are discussed. A detailed analysis of the sensitivity and calibration of the calorimetric system is also presented.

  17. Lab Breakthrough: Neutron Science for the Fusion Mission | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Neutron Science for the Fusion Mission Lab Breakthrough: Neutron Science for the Fusion Mission May 16, 2012 - 9:52am Addthis An accelerator team lead by Robert McGreevy at Oak Ridge National Laboratory is testing material - a critical role in building an experimental fusion reactor for commercial use. As part of the international coalition, they expect to have an operational reactor by 2050. View the entire Lab Breakthrough playlist. Michael Hess Michael Hess Former Digital

  18. IFMIF - International Fusion Materials Irradiation Facility Conceptual Design Activity/Interim Report

    SciTech Connect (OSTI)

    Rennich, M.J.

    1995-12-01

    Environmental acceptability, safety, and economic viability win ultimately be the keys to the widespread introduction of fusion power. This will entail the development of radiation- resistant and low- activation materials. These low-activation materials must also survive exposure to damage from neutrons having an energy spectrum peaked near 14 MeV with annual radiation doses in the range of 20 displacements per atom (dpa). Testing of candidate materials, therefore, requires a high-flux source of high energy neutrons. The problem is that there is currently no high-flux source of neutrons in the energy range above a few MeV. The goal, is therefore, to provide an irradiation facility for use by fusion material scientists in the search for low-activation and damage-resistant materials. An accellerator-based neutron source has been established through a number of international studies and workshops` as an essential step for materials development and testing. The mission of the International Fusion Materials Irradiation Facility (IFMIF) is to provide an accelerator-based, deuterium-lithium (D-Li) neutron source to produce high energy neutrons at sufficient intensity and irradiation volume to test samples of candidate materials up to about a full lifetime of anticipated use in fusion energy reactors. would also provide calibration and validation of data from fission reactor and other accelerator-based irradiation tests. It would generate material- specific activation and radiological properties data, and support the analysis of materials for use in safety, maintenance, recycling, decommissioning, and waste disposal systems.

  19. Gyrokinetic simulations of turbulent transport in fusion plasmas

    SciTech Connect (OSTI)

    Rogers, Barrett Neil

    2013-05-30

    This is the final report for a DOE award that was targeted at understanding and simulating turbulence and transport in plasma fusion devices such as tokamaks.

  20. Laser fusion experiment yields record energy at NIF | National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser fusion experiment yields record energy at NIF | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  1. Apparatus for an Inertial Fusion Reactor Inventor Abraham Massry...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apparatus for an Inertial Fusion Reactor Inventor Abraham Massry This invention is comprised of a very large vacuum chamber capable of withstanding a very high neutron flux...

  2. PLASMA PHYSICS AND FUSION TECHNOLOGY; GRAPHITE; CREEP; PHYSICAL...

    Office of Scientific and Technical Information (OSTI)

    creep of graphite) Kennedy, C.R. 36 MATERIALS SCIENCE; 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; GRAPHITE; CREEP; PHYSICAL RADIATION EFFECTS; JAPAN; MEETINGS; TRAVEL; ASIA; CARBON;...

  3. MIT Plasma Science & Fusion Center: research>alcator>

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of harnessing the nuclear process that powers our sun. This stellar process, called fusion, produces minimal waste and offers the hope of an almost limitless supply of safe,...

  4. MIT Plasma Science & Fusion Center: research>alcator>information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Beams Technology & Engineering Francis Bitter Magnet Laboratory Useful Links What is Fusion? The nucleus of an atom consists of protons, which have a positive electrical charge,...

  5. MIT Plasma Science & Fusion Center: research>alcator>research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information Physics Research High-Energy- Density Physics Waves & Beams Fusion Technology & Engineering Plasma Technology Useful Links Collaborations at Alcator...

  6. MIT Plasma Science & Fusion Center: research>alcator>introduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information Physics Research High-Energy- Density Physics Waves & Beams Fusion Technology & Engineering Francis Bitter Magnet Laboratoroy Useful Links The links...

  7. Highly Charged Ions in Magnetic Fusion Plasmas: Research Opportunities...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Highly Charged Ions in Magnetic Fusion Plasmas: Research Opportunities and Diagnostic Necessities Citation Details In-Document Search Title: Highly Charged Ions in...

  8. AND FUSION TECHNOLOGY; MFTF DEVICES; DESIGN; DEUTERIUM; MAGNET...

    Office of Scientific and Technical Information (OSTI)

    MFTF-. cap alpha. + T progress report Nelson, W.D. (ed.) 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; MFTF DEVICES; DESIGN; DEUTERIUM; MAGNET COILS; MAINTENANCE; REACTOR FUELING;...

  9. Inertial Confinement Fusion: How to Make a Star

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inertial Confinement Fusion: How to Make a Star The idea for the National Ignition Facility (NIF) grew out of the decades-long effort to generate fusion burn and gain in the laboratory. Current nuclear power plants, which use fission, or the splitting of atoms to produce energy, have been pumping out electric power for more than 50 years. But achieving nuclear fusion burn and gain has not yet been demonstrated to be viable for electricity production. For fusion burn and gain to occur, a special

  10. Magnetic Fusion Energy Research: A Summary of Accomplishments

    DOE R&D Accomplishments [OSTI]

    1986-12-01

    Some of the more important contributions of the research program needed to establish the scientific and technical base for fusion power production are discussed. (MOW)

  11. Physicist John Schmidt, designer of cutting-edge fusion facilities...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy's Princeton Plasma Physics Laboratory (PPPL) made him a highly respected leader in the worldwide quest for fusion energy, died on February 13 following a brain hemorrhage. ...

  12. California Energy Incentive Programs An Annual Update on Key...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Update on Key Energy Issues and Financial Opportunities for Federal Sites in California California Energy Incentive Programs An Annual Update on Key Energy Issues and...

  13. Rapid Compression Machine ? A Key Experimental Device to Effectively...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compression Machine A Key Experimental Device to Effectively Collaborate with Basic Energy Sciences Rapid Compression Machine A Key Experimental Device to Effectively...

  14. New report highlights key composite testing trends for more reliable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    highlights key composite testing trends for more reliable and lower cost wind blade ... New report highlights key composite testing trends for more reliable and lower cost wind ...

  15. Building America Expert Meeting: Key Innovations for Adding Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Key Innovations for Adding Energy Efficiency to Maintenance Projects Building America Expert Meeting: Key Innovations for Adding Energy Efficiency to Maintenance Projects This ...

  16. Keys to Successful Quality Assurance and Quality Control Programs (101) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Keys to Successful Quality Assurance and Quality Control Programs (101) Keys to Successful Quality Assurance and Quality Control Programs (101) January 28

  17. Key Renewable Energy Opportunities for Oklahoma Tribes | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Key Renewable Energy Opportunities for Oklahoma Tribes Key Renewable Energy Opportunities for Oklahoma Tribes August 13, 2012 Oklahoma City, Oklahoma Cox Convention Center The...

  18. Keys to Successful Quality Assurance and Quality Control Programs...

    Office of Environmental Management (EM)

    Keys to Successful Quality Assurance and Quality Control Programs (101) Keys to Successful Quality Assurance and Quality Control Programs (101) January 28...

  19. PEM Fuel Cell Technology, Key Research Needs and Approaches ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology, Key Research Needs and Approaches (Presentation) PEM Fuel Cell Technology, Key Research Needs and Approaches (Presentation) Presented at the DOE Fuel Cell...

  20. Key Dates | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Key Dates Albert Einstein Distinguished Educator Fellowship (AEF) Program Einstein Fellowship Home Eligibility Benefits Obligations How to Apply Key Dates Frequently Asked...

  1. Key Parameters Governing the Energy Density of Rechargeable Li...

    Office of Scientific and Technical Information (OSTI)

    Key Parameters Governing the Energy Density of Rechargeable LiS Batteries Citation Details In-Document Search Title: Key Parameters Governing the Energy Density of Rechargeable ...

  2. Spotlight on Key Program Strategies from the Better Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Spotlight on Key Program Strategies from the Better Buildings Neighborhood Program, Final Evaluation Volume 6 Spotlight on Key Program Strategies from the Better Buildings Neighborhood ...

  3. Self-Referenced Continuous-Variable Quantum Key Distribution...

    Office of Scientific and Technical Information (OSTI)

    Self-Referenced Continuous-Variable Quantum Key Distribution Protocol Citation Details In-Document Search Title: Self-Referenced Continuous-Variable Quantum Key Distribution ...

  4. Optical coatings for laser fusion applications

    SciTech Connect (OSTI)

    Lowdermilk, W.H.; Milam, D.; Rainer, F.

    1980-04-24

    Lasers for fusion experiments use thin-film dielectric coatings for reflecting, antireflecting and polarizing surface elements. Coatings are most important to the Nd:glass laser application. The most important requirements of these coatings are accuracy of the average value of reflectance and transmission, uniformity of amplitude and phase front of the reflected or transmitted light, and laser damage threshold. Damage resistance strongly affects the laser's design and performance. The success of advanced lasers for future experiments and for reactor applications requires significant developments in damage resistant coatings for ultraviolet laser radiation.

  5. Overview of the RFX fusion science program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 (2011) 094023 (12pp) doi:10.1088/0029-5515/51/9/094023 Overview of the RFX fusion science program P. Martin 1 , J. Adamek 2 , P. Agostinetti 1 , M. Agostini 1 , A. Alfier 1 , C. Angioni 3 , V. Antoni 1 , L. Apolloni 1 , F. Auriemma 1 , O. Barana 1 , S. Barison 4 , M. Baruzzo 1 , P. Bettini 1 , M. Boldrin 1 , T. Bolzonella 1 , D. Bonfiglio 1 , F. Bonomo 1 , A.H. Boozer 5,6 , M. Brombin 1 , J. Brotankova 2 , A. Buffa 1 , A. Canton 1 , S. Cappello 1 , L. Carraro 1 , R. Cavazzana 1 , M. Cavinato

  6. Packed fluidized bed blanket for fusion reactor

    DOE Patents [OSTI]

    Chi, John W. H. (Mt. Lebanon, PA)

    1984-01-01

    A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.

  7. Fusion Basics | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Basics What is Plasma? Plasma is a state of matter along with solids, liquids and gases. It consists of a partially-ionized gas, containing ions, electrons, and neutral atoms. So what does that mean? In a plasma, some electrons are freed from their atoms, allowing current and electricity to flow. In fact, one of the few naturally-occurring plasmas found here on Earth is lightning! Can you think of other plasmas? Fluorescent light bulbs contain mercury plasma. Stars, such as the sun are

  8. T-661: ColdFusion Security Hotfix | APSB11-14, ColdFusion Important Update

    Broader source: Energy.gov [DOE]

    Vulnerabilities have been identified in ColdFusion 9.0.1 and earlier versions for Windows, Macintosh and UNIX. These vulnerabilities could lead to a cross-site request forgery (CSRF) or a remote denial-of-service (DoS). Adobe recommends users update their product installation using the instructions provided below.

  9. SECTION II: HEAVY ION REACTIONS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    II: HEAVY ION REACTIONS Experimental Determination of the Symmetry Energy of a Low Density Nuclear Gas ...II-1 S....

  10. Activation analyses for different fusion structural alloys

    SciTech Connect (OSTI)

    Attaya, H.; Smith, D.

    1991-12-31

    The leading candidate structural materials, viz., the vanadium alloys, the nickel or the manganese stabilized austenitic steels, and the ferritic steels, are analysed in terms of their induced activation in the TPSS fusion power reactor. The TPSS reactor has 1950 MW fusion power and inboard and outboard average neutron wall loading of 3.75 and 5.35 MW/m{sup 2} respectively. The results shows that, after one year of continuous operation, the vanadium alloys have the least radioactivity at reactor shutdown. The maximum difference between the induced radioactivity in the vanadium alloys and in the other iron-based alloys occurs at about 10 years after reactor shutdown. At this time, the total reactor radioactivity, using the vanadium alloys, is about two orders of magnitude less than the total reactor radioactivity utilizing any other alloy. The difference is even larger in the first wall, the FW-vanadium activation is 3 orders of magnitude less than other alloys` FW activation. 2 refs., 7 figs.

  11. Activation analyses for different fusion structural alloys

    SciTech Connect (OSTI)

    Attaya, H.; Smith, D.

    1991-01-01

    The leading candidate structural materials, viz., the vanadium alloys, the nickel or the manganese stabilized austenitic steels, and the ferritic steels, are analysed in terms of their induced activation in the TPSS fusion power reactor. The TPSS reactor has 1950 MW fusion power and inboard and outboard average neutron wall loading of 3.75 and 5.35 MW/m{sup 2} respectively. The results shows that, after one year of continuous operation, the vanadium alloys have the least radioactivity at reactor shutdown. The maximum difference between the induced radioactivity in the vanadium alloys and in the other iron-based alloys occurs at about 10 years after reactor shutdown. At this time, the total reactor radioactivity, using the vanadium alloys, is about two orders of magnitude less than the total reactor radioactivity utilizing any other alloy. The difference is even larger in the first wall, the FW-vanadium activation is 3 orders of magnitude less than other alloys' FW activation. 2 refs., 7 figs.

  12. Dust Combustion Safety Issues for Fusion Applications

    SciTech Connect (OSTI)

    L. C. Cadwallader

    2003-05-01

    This report summarizes the results of a safety research task to identify the safety issues and phenomenology of metallic dust fires and explosions that are postulated for fusion experiments. There are a variety of metal dusts that are created by plasma erosion and disruptions within the plasma chamber, as well as normal industrial dusts generated in the more conventional equipment in the balance of plant. For fusion, in-vessel dusts are generally mixtures of several elements; that is, the constituent elements in alloys and the variety of elements used for in-vessel materials. For example, in-vessel dust could be composed of beryllium from a first wall coating, tungsten from a divertor plate, copper from a plasma heating antenna or diagnostic, and perhaps some iron and chromium from the steel vessel wall or titanium and vanadium from the vessel wall. Each of these elements has its own unique combustion characteristics, and mixtures of elements must be evaluated for the mixtures combustion properties. Issues of particle size, dust temperature, and presence of other combustible materials (i.e., deuterium and tritium) also affect combustion in air. Combustion in other gases has also been investigated to determine if there are safety concerns with inert atmospheres, such as nitrogen. Several coolants have also been reviewed to determine if coolant breach into the plasma chamber would enhance the combustion threat; for example, in-vessel steam from a water coolant breach will react with metal dust. The results of this review are presented here.

  13. New Accelerator Will Study Steps on the Path to Fusion Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Accelerator Will Study Steps on the Path to Fusion Power New Accelerator Will Study Steps on the Path to Fusion Power Unusual Machine Tailor-made to Examine Heavy-ion Fusion ...

  14. ScienceLive chat page: on the future of fusion research | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Lab ScienceLive chat page: on the future of fusion research American Fusion News Category: U.S. Universities Link: ScienceLive chat page: on the future of fusion research

  15. General Atomics (GA) Fusion News: A New Spin on Understanding Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Confinement | Princeton Plasma Physics Lab General Atomics (GA) Fusion News: A New Spin on Understanding Plasma Confinement American Fusion News Category: General Atomics (GA) Link: General Atomics (GA) Fusion News: A New Spin on Understanding Plasma Confinement

  16. Fusion utility in the Knudsen layer (Journal Article) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Fusion utility in the Knudsen layer Citation Details In-Document Search Title: Fusion utility in the Knudsen layer In inertial confinement fusion, the loss of fast ions from the...

  17. SECTION L -ATTACHMENT B - LISTING OF KEY PERSONNEL

    National Nuclear Security Administration (NNSA)

    H SECTION J APPENDIX H KEY PERSONNEL [Note: To be inserted by the Contracting Officer after

  18. Purdue Contribution of Fusion Simulation Program

    SciTech Connect (OSTI)

    Jeffrey Brooks

    2011-09-30

    The overall science goal of the FSP is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in research related to the International Thermonuclear Experimental Reactor (ITER) and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. [1]. Initial FSP research will focus on two critical areas: 1) the plasma edge and 2) whole device modeling including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model (WDM) will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a critical impediment to successful operation of machines like ITER. If disruptions prove unable to be avoided, their associated dynamics and effects will be addressed in the next phase of the FSP. The FSP plan targets the needed modeling capabilities by developing Integrated Science Applications (ISAs) specific to their needs. The Pedestal-Boundary model will include boundary magnetic topology, cross-field transport of multi-species plasmas, parallel plasma transport, neutral transport, atomic physics and interactions with the plasma wall. It will address the origins and structure of the plasma electric field, rotation, the L-H transition, and the wide variety of pedestal relaxation mechanisms. The Whole Device Model will predict the entire discharge evolution given external actuators (i.e., magnets, power supplies, heating, current drive and fueling systems) and control strategies. Based on components operating over a range of physics fidelity, the WDM will model the plasma equilibrium, plasma sources, profile evolution, linear stability and nonlinear evolution toward a disruption (but not the full disruption dynamics). The plan assumes that, as the FSP matures and demonstrates success, the program will evolve and grow, enabling additional science problems to be addressed. The next set of integration opportunities could include: 1) Simulation of disruption dynamics and their effects; 2) Prediction of core profile including 3D effects, mesoscale dynamics and integration with the edge plasma; 3) Computation of non-thermal particle distributions, self-consistent with fusion, radio frequency (RF) and neutral beam injection (NBI) sources, magnetohydrodynamics (MHD) and short-wavelength turbulence.

  19. Fission-suppressed hybrid reactor: the fusion breeder

    SciTech Connect (OSTI)

    Moir, R.W.; Lee, J.D.; Coops, M.S.

    1982-12-01

    Results of a conceptual design study of a /sup 233/U-producing fusion breeder are presented. The majority of the study was devoted to conceptual design and evaluation of a fission-suppressed blanket and to fuel cycle issues such as fuel reprocessing, fuel handling, and fuel management. Studies in the areas of fusion engineering, reactor safety, and economics were also performed.

  20. Methods of detection using a cellulose binding domain fusion product

    DOE Patents [OSTI]

    Shoseyov, Oded (Shimshon, IL); Shpiegl, Itai (North Gallilea, IL); Goldstein, Marc A. (Davis, CA); Doi, Roy H. (Davis, CA)

    1999-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  1. Variable control of neutron albedo in toroidal fusion devices

    DOE Patents [OSTI]

    Jassby, D.L.; Micklich, B.J.

    1983-06-01

    This invention pertains to methods of controlling in the steady state, neutron albedo in toroidal fusion devices, and in particular, to methods of controlling the flux and energy distribution of collided neutrons which are incident on an outboard wall of a toroidal fusion device.

  2. C+C Fusion Cross Sections Measurements for Nuclear Astrophysics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Almaraz-Calderon, S.; Carnelli, P. F. F.; Rehm, K. E.; Albers, M.; Alcorta, M.; Bertone, P. F.; Digiovine, B.; Esbensen, H.; Fernandez Niello, J. O.; Henderson, D.; et al

    2015-06-02

    Total fusion cross section of carbon isotopes were obtained using the newly developed MUSIC detector. MUSIC is a highly efficient, active target-detector system designed to measure fusion excitation functions with radioactive beams. The present measurements are relevant for understanding x-ray superbursts. The results of the first MUSIC campaign as well as the astrophysical implications are presented in this work.

  3. The TITAN reversed-field-pinch fusion reactor study

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This report discusses research on the titan-1 fusion power core. The major topics covered are: titan-1 fusion-power-core engineering; titan-1 divertor engineering; titan-1 tritium systems; titan-1 safety design and radioactive-waste disposal; and titan-1 maintenance procedures.

  4. Joint Working Group for Fusion Safety | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Business Operations Careers/ Human Resources Directory Environment, Safety & Health Environmental Management System Joint Working Group for Fusion Safety Furth Plasma Physics Library Lab Leadership Organization Chart Technology Transfer Contact Us Business Operations Careers/ Human Resources Directory Environment, Safety & Health Environmental Management System Joint Working Group for Fusion Safety Furth Plasma Physics Library Lab Leadership Organization Chart Technology Transfer Joint

  5. Methods of detection using a cellulose binding domain fusion product

    DOE Patents [OSTI]

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1999-01-05

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 34 figs.

  6. Inertial fusion: an energy-production option for the future

    SciTech Connect (OSTI)

    Hovingh, J.; Pitts, J.H.; Monsler, M.J.; Grow, G.R.

    1982-05-01

    The authors discuss the inertial-confinement approach to fusion energy. After explaining the fundamentals of fusion, they describe the state of the art of fusion experiments, emphasizing the results achieved through the use of neodymium-doped glass lasers at Lawrence Livermore National Laboratory and at other laboratories. They highlight recent experimental results confirming theoretical predictions that short-wavelength lasers have excellent energy absorption on fuel pellets. Compressions of deuterium-tritium fuel of over 100 times liquid density have been measured, only a factor of 10 away from the compression required for a commercial reactor. Finally, it is shown how to exploit the unique characteristics of inertial fusion to design reactor chambers that have a very high power density and a long life, features that the authors believe will eventually lead to fusion power at a competitive cost.

  7. LIFE: The Case for Early Commercialization of Fusion Energy

    SciTech Connect (OSTI)

    Anklam, T; Simon, A J; Powers, S; Meier, W R

    2010-11-30

    This paper presents the case for early commercialization of laser inertial fusion energy (LIFE). Results taken from systems modeling of the US electrical generating enterprise quantify the benefits of fusion energy in terms of carbon emission, nuclear waste and plutonium production avoidance. Sensitivity of benefits-gained to timing of market-entry is presented. These results show the importance of achieving market entry in the 2030 time frame. Economic modeling results show that fusion energy can be competitive with other low-carbon energy sources. The paper concludes with a description of the LIFE commercialization path. It proposes constructing a demonstration facility capable of continuous fusion operations within 10 to 15 years. This facility will qualify the processes and materials needed for a commercial fusion power plant.

  8. Experimental Observation of Nuclear Reactions in Palladium and Uranium - Possible Explanation by Hydrex Mode

    SciTech Connect (OSTI)

    Dufour, J.; Murat, D.; Dufour, X.; Foos, J

    2001-07-15

    Experiments with uranium are presented that show a highly exothermal reaction, which can only be of nuclear origin. One striking point of these results is that they clearly show that what is being observed is not some kind of fusion reaction of the deuterium present (only exceedingly small amounts of it are present). This is a strong indication that hydrogen can trigger nuclear reactions that seem to involve the nuclei of the lattice (which would yield a fission-like pattern of products). Confronted with a situation where some experiments in the field yield a fusion-like pattern of products (CF experiments) and others a fissionlike one (LENR experiments), one can reasonably wonder whether one is not observing two aspects of the same phenomenon. Thus, it is proposed to describe CF and LENR reactions as essentially the same phenomenon based on the possible existence of a still hypothetical proton/electron resonance, which would catalyze fissionlike reactions with a neutron sink. Finally, a series of experiments is proposed to assess this hypothesis.

  9. Fusion scientists gear up to learn how to harness plasma energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Living on the edge Fusion scientists gear up to learn how to harness plasma energy By ... Researchers working on an advanced experimental fusion reactor are readying experiments ...

  10. Construction completed, PPPL is set to resume world-class fusion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Construction completed, PPPL is set to resume world-class fusion research later this fall ... Plasma Physics Laboratory (PPPL), world-leading fusion research resumes later this fall. ...

  11. PPPL and ITER: Lab teams support the world's largest fusion experiment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    France. ITER is designed to demonstrate the scientific and technological feasibility of fusion power by the ... design and operation of nuclear fusion facilities, but ...

  12. Cadwallader, L.C. 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; MAGNETIC

    Office of Scientific and Technical Information (OSTI)

    Selected component failure rate values from fusion safety assessment tasks Cadwallader, L.C. 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; MAGNETIC CONFINEMENT; THERMONUCLEAR DEVICES;...

  13. U.S. Signs International Fusion Energy Agreement; Large-Scale...

    Office of Science (SC) Website

    U.S. Signs International Fusion Energy Agreement; Large-Scale, Clean Fusion Energy Project to Begin Construction News News Home Featured Articles Science Headlines 2015 2014 2013 ...

  14. Fusion Energy Sciences (FES) Homepage | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Programs FES Home Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory ...

  15. Simulations of Inertial Confinement Fusion Driven by a Novel Synchrotron Radiation-Based X-Ray Igniter

    SciTech Connect (OSTI)

    Shlyaptsev, V; Tatchyn, R

    2004-01-13

    The advantages and challenges of using a powerful x-ray source for the fast ignition of compressed Inertial Confinement Fusion (ICF) targets have been considered. The requirements for such a source together with the optics to focus the x-rays onto compressed DT cores lead to a conceptual design based on Energy Recovery Linacs (ERLs) and long wigglers to produce x-ray pulses with the appropriate phase space properties. A comparative assessment of the parameters of the igniter system indicates that the technologies for building it, although expensive, are physically achievable. Our x-ray fast ignition (XFI) scheme requires substantially smaller energy for the initiation of nuclear fusion reactions than other methods.

  16. Laser-fusion targets for reactors

    DOE Patents [OSTI]

    Nuckolls, John H. (Livermore, CA); Thiessen, Albert R. (Livermore, CA)

    1987-01-01

    A laser target comprising a thermonuclear fuel capsule composed of a centrally located quantity of fuel surrounded by at least one or more layers or shells of material for forming an atmosphere around the capsule by a low energy laser prepulse. The fuel may be formed as a solid core or hollow shell, and, under certain applications, a pusher-layer or shell is located intermediate the fuel and the atmosphere forming material. The fuel is ignited by symmetrical implosion via energy produced by a laser, or other energy sources such as an electron beam machine or ion beam machine, whereby thermonuclear burn of the fuel capsule creates energy for applications such as generation of electricity via a laser fusion reactor.

  17. Fusion-fission energy systems evaluation

    SciTech Connect (OSTI)

    Teofilo, V.L.; Aase, D.T.; Bickford, W.E.

    1980-01-01

    This report serves as the basis for comparing the fusion-fission (hybrid) energy system concept with other advanced technology fissile fuel breeding concepts evaluated in the Nonproliferation Alternative Systems Assessment Program (NASAP). As such, much of the information and data provided herein is in a form that meets the NASAP data requirements. Since the hybrid concept has not been studied as extensively as many of the other fission concepts being examined in NASAP, the provided data and information are sparse relative to these more developed concepts. Nevertheless, this report is intended to provide a perspective on hybrids and to summarize the findings of the rather limited analyses made to date on this concept.

  18. Thermomagnetic burn control for magnetic fusion reactor

    DOE Patents [OSTI]

    Rawls, John M. (Del Mar, CA); Peuron, Unto A. (Solana Beach, CA)

    1982-01-01

    Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors (30a, 30b, etc.) formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma (12) and a toroidal field coil (18). A mechanism (60) for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.

  19. Thermomagnetic burn control for magnetic fusion reactor

    DOE Patents [OSTI]

    Rawls, J.M.; Peuron, A.U.

    1980-07-01

    Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma and a toroidal field coil. A mechanism for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.

  20. Numerical Studies of Impurities in Fusion Plasmas

    DOE R&D Accomplishments [OSTI]

    Hulse, R. A.

    1982-09-01

    The coupled partial differential equations used to describe the behavior of impurity ions in magnetically confined controlled fusion plasmas require numerical solution for cases of practical interest. Computer codes developed for impurity modeling at the Princeton Plasma Physics Laboratory are used as examples of the types of codes employed for this purpose. These codes solve for the impurity ionization state densities and associated radiation rates using atomic physics appropriate for these low-density, high-temperature plasmas. The simpler codes solve local equations in zero spatial dimensions while more complex cases require codes which explicitly include transport of the impurity ions simultaneously with the atomic processes of ionization and recombination. Typical applications are discussed and computational results are presented for selected cases of interest.

  1. Particle beam fusion progress report for 1989

    SciTech Connect (OSTI)

    Sweeney, M.A.

    1994-08-01

    This report summarizes the progress on the pulsed power approach to inertial confinement fusion. In 1989, the authors achieved a proton focal intensity of 5 TW/cm{sup 2} on PBFA-II in a 15-cm-radius applied magnetic-field (applied-B) ion diode. This is an improvement by a factor of 4 compared to previous PBFA-II experiments. They completed development of the three-dimensional (3-D), electromagnetic, particle-in-cell code QUICKSILVER and obtained the first 3-D simulations of an applied-B ion diode. The simulations, together with analytic theory, suggest that control of electromagnetic instabilities could reduce ion divergence. In experiments using a lithium fluoride source, they delivered 26 kJ of lithium energy to the diode axis. Rutherford-scattered ion diagnostics have been developed and tested using a conical foil located inside the diode. They can now obtain energy density profiles by using range filters and recording ion images on nuclear track recording film. Timing uncertainties in power flow experiments on PBFA-II have been reduced by a factor of 5. They are investigating three plasma opening switches that use magnetic fields to control and confine the injected plasma. These new switches provide better power flow than the standard plasma erosion switch. Advanced pulsed-power fusion drivers will require extraction-geometry applied-B ion diodes. During this reporting period, progress was made in evaluating the generation, transport, and focus of multiple ion beams in an extraction geometry and in assessing the probable damage to a target chamber first wall.

  2. Two chamber reaction furnace

    DOE Patents [OSTI]

    Blaugher, R.D.

    1998-05-05

    A vertical two chamber reaction furnace is described. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 C and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  3. Metal-Ion-Mediated Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers from Patras (Greece), Nicosia (Cyprus), Karlsruhe (Germany), Zaragoza (Spain), and the ALS at Berkeley Lab have studied metal-ion-mediated reactions of...

  4. Inertial Fusion Power Plant Concept of Operations and Maintenance

    SciTech Connect (OSTI)

    Anklam, T.; Knutson, B.; Dunne, A. M.; Kasper, J.; Sheehan, T.; Lang, D.; Roberts, V.; Mau, D.

    2015-01-15

    Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oil refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.

  5. Florida Keys El Coop Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    Keys El Coop Assn, Inc Jump to: navigation, search Name: Florida Keys El Coop Assn, Inc Place: Florida Phone Number: 305-852-2431 Website: www.fkec.com Twitter: @FLKeysElectric...

  6. EERE Clean Energy Collaborations with India Play Key Role in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EERE Clean Energy Collaborations with India Play Key Role in U.S.-India Energy Dialogue EERE Clean Energy Collaborations with India Play Key Role in U.S.-India Energy Dialogue ...

  7. GREET Bioenergy Life Cycle Analysis and Key Issues for Woody...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GREET Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks GREET Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks Breakout Session 2D-Building Market ...

  8. Diagnosing magnetized liner inertial fusion experiments on Z

    SciTech Connect (OSTI)

    Hansen, S. B. Gomez, M. R.; Sefkow, A. B.; Slutz, S. A.; Sinars, D. B.; Hahn, K. D.; Harding, E. C.; Knapp, P. F.; Schmit, P. F.; Awe, T. J.; McBride, R. D.; Jennings, C. A.; Geissel, M.; Harvey-Thompson, A. J.; Peterson, K. J.; Rovang, D. C.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Hess, M. H.; and others

    2015-05-15

    Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (∼10{sup 12} DD neutrons) from multi-keV deuterium plasmas inertially confined by slow (∼10 cm/μs), stable, cylindrical implosions. Effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 10{sup 10}. Analysis of extensive power, imaging, and spectroscopic x-ray measurements provides a detailed picture of ∼3 keV temperatures, 0.3 g/cm{sup 3} densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.

  9. Variable control of neutron albedo in toroidal fusion devices

    DOE Patents [OSTI]

    Jassby, Daniel L. (Princeton, NJ); Micklich, Bradley J. (Princeton, NJ)

    1986-01-01

    An arrangement is provided for controlling neutron albedo in toroidal fusion devices having inboard and outboard vacuum vessel walls for containment of the neutrons of a fusion plasma. Neutron albedo material is disposed immediately adjacent the inboard wall, and is movable, preferably in vertical directions, so as to be brought into and out of neutron modifying communication with the fusion neutrons. Neutron albedo material preferably comprises a liquid form, but may also take pebble, stringer and curtain-like forms. A neutron flux valve, rotatable about a vertical axis is also disclosed.

  10. Diagnosing magnetized liner inertial fusion experiments on Z

    SciTech Connect (OSTI)

    Hansen, Stephanie B.; Gomez, Matthew R.; Sefkow, Adam B.; Slutz, Stephen A.; Sinars, Daniel Brian; Hahn, Kelly; Harding, Eric; Knapp, Patrick; Schmit, Paul; Awe, Thomas James; McBride, Ryan D.; Jennings, Christopher; Geissel, Matthias; Harvey-Thompson, Adam James; Peterson, K. J.; Rovang, Dean C.; Chandler, Gordon A.; Cooper, Gary Wayne; Cuneo, Michael Edward; Herrmann, Mark C.; Mark Harry Hess; Johns, Owen; Lamppa, Derek C.; Martin, Matthew; Porter, J. L.; Robertson, G. K.; Rochau, G. A.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Vesey, R. A.; Blue, B. E.; Ryutov, D.; Schroen, Diana; Tomlinson, K.

    2015-05-14

    The Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (~1012 DD neutrons) from multi-keV deuterium plasmasinertially confined by slow (~10 cm/?s), stable, cylindrical implosions. Moreover, effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 1010. Further analysis of extensive power, imaging, and spectroscopicx-ray measurements provides a detailed picture of ~3 keV temperatures, 0.3 g/cm3 densities, gradients, and mix in the fuel and liner over the 12 ns stagnation duration.

  11. Fusion Energy Greg Hammett & Russell Kulsred Princeton University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spitzer's 100th: Founding PPPL & Pioneering Work in Fusion Energy Greg Hammett & Russell Kulsred Princeton University Wednesday, Dec 4, 2013 - 4:15PM MBG AUDITORIUM Refreshments at 4:00PM The PrinceTon Plasma Physics laboraTory is a U.s. DeParTmenT of energy faciliTy Lyman Spitzer, Jr. made major contributions in several fields of astrophysics, plasma physics, and fusion energy. He invented the novel stellarator concept for confining plasmas for fusion, and was an early proponent of

  12. COLLOQUIUM: The Many Faces of Fusion | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 14, 2014, 4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: The Many Faces of Fusion Mr. Dan Clery Science Magazine Dan Clery, a veteran journalist for Science magazine and author of "A Piece of the Sun," a wide-ranging account of the quest for fusion energy, will provide a whirlwind tour of the history of fusion from the 1850s to the present day and the people who made it happen. The journey will take in atom spies, superpower summits, hijackings by Palestinian terrorists,

  13. SECTION L -ATTACHMENT B - LISTING OF KEY PERSONNEL

    National Nuclear Security Administration (NNSA)

    B, Page 1 SECTION L ATTACHMENT B LISTING OF KEY PERSONNEL TITLE NAME Note: Addremove extra rows if needed...

  14. Residential Energy Efficiency Financing: Key Elements of Program Design

    Broader source: Energy.gov [DOE]

    Presents key programmatic elements and context of financing initiatives, including contractor support, rebates, quality assurance, and more.

  15. Key Dates | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Key Dates DOE Office of Science Graduate Student Research (SCGSR) Program SCGSR Home Eligibility Benefits Participant Obligations How to Apply Information for Laboratory Scientists and Thesis Advisors Key Dates Frequently Asked Questions Contact WDTS Home Key Dates Print Text Size: A A A FeedbackShare Page The SCGSR Program Key Dates are noted below. At the submission deadline (shown in red), the online application system will close after which no additional materials will be accepted. The

  16. 2015 Key Water Power Program and National Laboratory Accomplishments

    Energy Savers [EERE]

    Slideshow | Department of Energy 2015 Key Water Power Program and National Laboratory Accomplishments Slideshow 2015 Key Water Power Program and National Laboratory Accomplishments Slideshow Addthis 2015 Key Water Power Program and National Laboratory Accomplishments Report 1 of 28 2015 Key Water Power Program and National Laboratory Accomplishments Report By accelerating the development of markets for hydropower and marine and hydrokinetic (MHK) projects, the Water Power Program is striving

  17. 2015 Key Wind Program and National Laboratory Accomplishments Slideshow |

    Energy Savers [EERE]

    Department of Energy 2015 Key Wind Program and National Laboratory Accomplishments Slideshow 2015 Key Wind Program and National Laboratory Accomplishments Slideshow Addthis 2015 Key Wind Program and National Laboratory Accomplishments 1 of 32 2015 Key Wind Program and National Laboratory Accomplishments The U.S. Department of Energy (DOE) Wind Program is committed to helping the nation secure cost-competitive sources of renewable energy through the development and deployment of innovative

  18. 2015 Key Water Power Program and National Laboratory Accomplishments

    Energy Savers [EERE]

    Slideshow | Department of Energy 2015 Key Water Power Program and National Laboratory Accomplishments Slideshow 2015 Key Water Power Program and National Laboratory Accomplishments Slideshow 2015 Key Water Power Program and National Laboratory Accomplishments Report 1 of 28 2015 Key Water Power Program and National Laboratory Accomplishments Report By accelerating the development of markets for hydropower and marine and hydrokinetic (MHK) projects, the Water Power Program is striving to

  19. 2015 Key Wind Program and National Laboratory Accomplishments | Department

    Energy Savers [EERE]

    of Energy 2015 Key Wind Program and National Laboratory Accomplishments 2015 Key Wind Program and National Laboratory Accomplishments 2015 Key Wind Program and National Laboratory Accomplishments 1 of 32 2015 Key Wind Program and National Laboratory Accomplishments The U.S. Department of Energy (DOE) Wind Program is committed to helping the nation secure cost-competitive sources of renewable energy through the development and deployment of innovative wind power technologies. By investing in

  20. Schedules of Key Environmental Impact Statements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Schedules of Key Environmental Impact Statements Schedules of Key Environmental Impact Statements This document graphically displays the milestone dates and projected schedules of key Environmental Impact Statements (updated monthly). This chart represents anticipated activity and is not a commitment for documentation or date. Last Revised: 12/15/2015 Download Document PDF icon Schedules of Key Environmental Impact Statements (December 2015) More Documents & Publications

  1. Spotlight on Key Program Strategies from the Better Buildings Neighborhood

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program, Final Evaluation Volume 6 | Department of Energy Spotlight on Key Program Strategies from the Better Buildings Neighborhood Program, Final Evaluation Volume 6 Spotlight on Key Program Strategies from the Better Buildings Neighborhood Program, Final Evaluation Volume 6 Final Report: Spotlight on Key Program Strategies from the Better Buildings Neighborhood Program, Final Evaluation Volume 6, American Recovery and Reinvestment Act of 2009, June 2015. PDF icon Spotlight on Key Program

  2. Response to FESAC survey, non-fusion connections to Fusion Energy Sciences. Applications of the FES-supported beam and plasma simulation code, Warp

    SciTech Connect (OSTI)

    Friedman, A.; Grote, D. P.; Vay, J. L.

    2015-05-29

    The Fusion Energy Sciences Advisory Committee’s subcommittee on non-fusion applications (FESAC NFA) is conducting a survey to obtain information from the fusion community about non-fusion work that has resulted from their DOE-funded fusion research. The subcommittee has requested that members of the community describe recent developments connected to the activities of the DOE Office of Fusion Energy Sciences. Two questions in particular were posed by the subcommittee. This document contains the authors’ responses to those questions.

  3. Preface to Special Topic: Advances in Radio Frequency Physics in Fusion Plasmas

    SciTech Connect (OSTI)

    Tuccillo, Angelo A.; Ceccuzzi, Silvio; Phillips, Cynthia K.

    2014-06-15

    It has long been recognized that auxiliary plasma heating will be required to achieve the high temperature, high density conditions within a magnetically confined plasma in which a fusion burn may be sustained by copious fusion reactions. Consequently, the application of radio and microwave frequency electromagnetic waves to magnetically confined plasma, commonly referred to as RF, has been a major part of the program almost since its inception in the 1950s. These RF waves provide heating, current drive, plasma profile control, and Magnetohydrodynamics (MHD) stabilization. Fusion experiments employ electromagnetic radiation in a wide range of frequencies, from tens of MHz to hundreds of GHz. The fusion devices containing the plasma are typically tori, axisymmetric or non, in which the equilibrium magnetic fields are composed of a strong toroidal magnetic field generated by external coils, and a poloidal field created, at least in the symmetric configurations, by currents flowing in the plasma. The waves are excited in the peripheral regions of the plasma, by specially designed launching structures, and subsequently propagate into the core regions, where resonant wave-plasma interactions produce localized heating or other modification of the local equilibrium profiles. Experimental studies coupled with the development of theoretical models and advanced simulation codes over the past 40+ years have led to an unprecedented understanding of the physics of RF heating and current drive in the core of magnetic fusion devices. Nevertheless, there are serious gaps in our knowledge base that continue to have a negative impact on the success of ongoing experiments and that must be resolved as the program progresses to the next generation devices and ultimately to demo and fusion power plant. A serious gap, at least in the ion cyclotron (IC) range of frequencies and partially in the lower hybrid frequency ranges, is the difficulty in coupling large amount of power to the plasma while minimizing the interaction between the plasma and launching structures. These potentially harmful interactions between the plasma and the vessel and launching structures are challenging: (i) significant and variable loss of power in the edge regions of confined plasmas and surrounding vessel structures adversely affect the core plasma performance and lifetime of a device; (ii) the launcher design is partly trial and error, with the consequence that launchers may have to be reconfigured after initial tests in a given device, at an additional cost. Over the broader frequency range, another serious gap is a quantitative lack of understanding of the combined effects of nonlinear wave-plasma processes, energetic particle interactions and non-axisymmetric equilibrium effects on determining the overall efficiency of plasma equilibrium and stability profile control techniques using RF waves. This is complicated by a corresponding lack of predictive understanding of the time evolution of transport and stability processes in fusion plasmas.

  4. Diversity & Flexibility Key to Sustainability | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diversity & Flexibility Key to Sustainability Diversity & Flexibility Key to Sustainability Plenary V: Biofuels and Sustainability: Acknowledging Challenges and Confronting Misconceptions Diversity & Flexibility Key to Sustainability David Babson, Senior Fuels Engineer, Union of Concerned Scientists PDF icon babson_bioenergy_2015.pdf More Documents & Publications Market Drivers for Biofuels Biomass Basics: The Facts About Bioenergy Biomass Basics: The Facts About Bioenergy

  5. Key Activities of the Geothermal Technologies Office | Department of Energy

    Office of Environmental Management (EM)

    About the Geothermal Technologies Office » Key Activities of the Geothermal Technologies Office Key Activities of the Geothermal Technologies Office Key activities for the Geothermal Technologies Office (GTO) include research, development and demonstration; system validation; technology validation; strategic planning, analysis, and R&D integration. Specific activities are summarized below. Program Area Activities Enhanced Geothermal Systems (EGS) GTO conducts research, development and

  6. Method to Exhaust Fusion-Product Tritons and Alpha Particles Rapidly from

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D-3He Fueled FRC Fusion Reactors | Princeton Plasma Physics Lab Exhaust Fusion-Product Tritons and Alpha Particles Rapidly from D-3He Fueled FRC Fusion Reactors A method is described how to reduce neutron production from small D-3He burning FRC fusion reactors, thereby reducing the shielding required and allowing safer operation and less maintenance. No.: M-898

  7. An important challenge in magnetic fusion research is to obtain...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control of edge transport barriers on Alcator C-Mod A crucial challenge in magnetic fusion is to obtain high energy confinement in a stationary plasma that is compatible with...

  8. Data fusion in neutron and X-ray computed tomography

    SciTech Connect (OSTI)

    Schrapp, Michael J.; Goldammer, Matthias; Schulz, Michael; Issani, Siraj; Bhamidipati, Suryanarayana; Bni, Peter

    2014-10-28

    We present a fusion methodology between neutron and X-ray computed tomography (CT). On the one hand, the inspection by X-ray CT of a wide class of multimaterials in non-destructive testing applications suffers from limited information of object features. On the other hand, neutron imaging can provide complementary data in such a way that the combination of both data sets fully characterizes the object. In this contribution, a novel data fusion procedure, called Fusion Regularized Simultaneous Algebraic Reconstruction Technique, is developed where the X-ray reconstruction is modified to fulfill the available data from the imaging with neutrons. The experiments, which were obtained from an aluminum profile containing a steel screw, and attached carbon fiber plates demonstrate that the image quality in CT can be significantly improved when the proposed fusion method is used.

  9. The Heavy Ion Fusion Program in the USA

    SciTech Connect (OSTI)

    Bangerter, R.O.

    2000-03-17

    The U.S. Department of Energy has established a new, larger inertial fusion energy program. To manage program growth, we have developed a new inertial fusion energy research and we have established a Virtual National Laboratory for Heavy Ion Fusion. There has been significant technical progress. Improvements in target design have reduced the predicted energy requirements by approximately a factor of two. There have also been important experiments on chamber dynamics and other inertial fusion technologies. The accelerator program has completed a number of small-scale experiments. Experiments with driver-scale beams are being designed -- including experiments with driver-scale ion sources and injectors. Finally we are developing the technologies needed to build a major research facility known as the Integrated Research Experiment (IRE)

  10. New tech could be "Mr. Fusion" for biofuel | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    convert waste from kitchens or latrines into an alcohol that can power diesel engines. New tech could be "Mr. Fusion" for biofuel By Else Tennessen * September 13, 2013 Tweet...

  11. U.S. Signs International Fusion Energy Agreement | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Large-Scale, Clean Fusion Energy Project to Begin Construction PARIS, FRANCE - ... The U.S. is proud to be part of this partnership, and to join in the pursuit of nuclear ...

  12. Heavy Ion Fusion Accelerator Research (HIFAR) half-year report, October 1, 1988--March 31, 1989

    SciTech Connect (OSTI)

    Not Available

    1989-06-01

    The basic objective of the Heavy Ion Fusion Accelerator Research (HIFAR) program is to assess the suitability of heavy ion accelerators as igniters for Inertial Confinement Fusion (ICF). A specific accelerator technology, the induction linac, has been studied at the Lawrence Berkeley Laboratory and has reached the point at which its viability for ICF applications can be assessed over the next few years. The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the validation of new accelerator strategies, to cut costs. Key elements to be addressed include: beam quality limits set by transverse and longitudinal beam physics; development of induction accelerating modules, and multiple-beam hardware, at affordable costs; acceleration of multiple beams with current amplification --both new features in a linac -- without significant dilution of the optical quality of the beams; and final bunching, transport, and accurate focusing on a small target.

  13. Scientists discuss progress toward magnetic fusion energy at 2013 AAAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    annual meeting | Princeton Plasma Physics Lab Scientists discuss progress toward magnetic fusion energy at 2013 AAAS annual meeting February 21, 2013 Tweet Widget Google Plus One Share on Facebook Scientists participating in the worldwide effort to develop magnetic fusion energy for generating electricity gave progress reports to the 2013 annual meeting of the American Association for the Advancement of Science in Boston. Speaking were physicists George "Hutch" Neilson of the U.S.

  14. Sandia non-fusion R&D supported by FES.

    SciTech Connect (OSTI)

    Nygren, Richard E.

    2015-06-03

    Until 2012, Sandia participated regularly in non-fusion R&D that was supported primarily through our collaborations with companies in the DOE program for Small Business Innovative Research but also in some work-for-others contracts. In this work, funds were recovered from collaborating institutions for the staff time and materials used, but FES had supported the facility itself and in doing so enabled the contributions to the non-fusion R&D below.

  15. Fusion Nuclear Science and Technology Program - Status and Plans for

    Office of Environmental Management (EM)

    Tritium Research | Department of Energy Plans for Tritium Research Fusion Nuclear Science and Technology Program - Status and Plans for Tritium Research Presentation from the 34th Tritium Focus Group Meeting held in Idaho Falls, Idaho on September 23-25, 2014. PDF icon Fusion Nuclear Science and Technology Program - Status and Plans for Tritium Research More Documents & Publications Tritium Operation Improvements at the Idaho National Laboratory (INL) Safety and Tritium Applied Research

  16. The Bleeding 'Edge' of Fusion Research | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Bleeding 'Edge' of Fusion Research By Oak Ridge National Laboratory March 20, 2014 Tweet Widget Google Plus One Share on Facebook Part of a visualization of turbulence spreading inward from the plasma edge. To watch the visualization, click the link at the end of the article. Part of a visualization of turbulence spreading inward from the plasma edge. To watch the visualization, click the link at the end of the article. Few problems have vexed physicists like fusion, the process by which

  17. Inertial Confinement Fusion R&D and Nuclear Proliferation

    SciTech Connect (OSTI)

    Robert J. Goldston

    2011-04-28

    In a few months, or a few years, the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory may achieve fusion gain using 192 powerful lasers to generate x-rays that will compress and heat a small target containing isotopes of hydrogen. This event would mark a major milestone after decades of research on inertial confinement fusion (ICF). It might also mark the beginning of an accelerated global effort to harness fusion energy based on this science and technology. Unlike magnetic confinement fusion (ITER, 2011), in which hot fusion fuel is confined continuously by strong magnetic fields, inertial confinement fusion involves repetitive fusion explosions, taking advantage of some aspects of the science learned from the design and testing of hydrogen bombs. The NIF was built primarily because of the information it would provide on weapons physics, helping the United States to steward its stockpile of nuclear weapons without further underground testing. The U.S. National Academies' National Research Council is now hosting a study to assess the prospects for energy from inertial confinement fusion. While this study has a classified sub-panel on target physics, it has not been charged with examining the potential nuclear proliferation risks associated with ICF R&D. We argue here that this question urgently requires direct and transparent examination, so that means to mitigate risks can be assessed, and the potential residual risks can be balanced against the potential benefits, now being assessed by the NRC. This concern is not new (Holdren, 1978), but its urgency is now higher than ever before.

  18. Phil Heitzenroeder named winner of the 2013 Fusion Technology Award |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab Phil Heitzenroeder named winner of the 2013 Fusion Technology Award By John Greenwald April 30, 2013 Tweet Widget Google Plus One Share on Facebook Phil Heitzenroeder (Photo by Elle Starkman/PPPL Office of Communications) Phil Heitzenroeder Phil Heitzenroeder, who leads the Mechanical Engineering Division at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) and whose advice is sought by engineers around the world, has won the 2013 Fusion

  19. Highly Charged Ions in Magnetic Fusion Plasmas: Research Opportunities and

    Office of Scientific and Technical Information (OSTI)

    Diagnostic Necessities (Journal Article) | SciTech Connect Highly Charged Ions in Magnetic Fusion Plasmas: Research Opportunities and Diagnostic Necessities Citation Details In-Document Search Title: Highly Charged Ions in Magnetic Fusion Plasmas: Research Opportunities and Diagnostic Necessities Authors: Beiersdorfer, P Publication Date: 2014-12-12 OSTI Identifier: 1213663 Report Number(s): LLNL-JRNL-665610 DOE Contract Number: DE-AC52-07NA27344 Resource Type: Journal Article Resource

  20. Development of aerogel-lined targets for inertial confinement fusion

    Office of Scientific and Technical Information (OSTI)

    experiments (Thesis/Dissertation) | SciTech Connect Thesis/Dissertation: Development of aerogel-lined targets for inertial confinement fusion experiments Citation Details In-Document Search Title: Development of aerogel-lined targets for inertial confinement fusion experiments Authors: Braun, T Publication Date: 2013-03-05 OSTI Identifier: 1077169 Report Number(s): LLNL-TH-631353 DOE Contract Number: W-7405-ENG-48 Resource Type: Thesis/Dissertation Research Org: Lawrence Livermore National