Sample records for key assumptions light-duty

  1. Light Duty Combustion Research: Advanced Light-Duty Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments 2009 DOE Hydrogen Program and...

  2. Key Assumptions Policy Issues

    E-Print Network [OSTI]

    Supply Limitations 8 Withi h B l i8. Within-hour Balancing 9. Capacity and Energy Values for Wind · Independent Power Producers C t ti· Current assumptions · Winter: full availability ~ 3,200 MW · Summer: 1 t b it d d li d· Thermal: must be sited and licensed · Wind/solar: must be sited and licensed · EE

  3. Light Duty Combustion Research: Advanced Light-Duty Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    duty Diesel Combustion Research Advanced Light-Duty Combustion Experiments Paul Miles Sandia National Laboratories Light-Duty Combustion Modeling Rolf Reitz University of Wisconsin...

  4. Light Duty Efficient, Clean Combustion

    SciTech Connect (OSTI)

    Donald Stanton

    2010-12-31T23:59:59.000Z

    Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy's Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: (1) Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today's state-of-the-art diesel engine on the FTP city drive cycle; (2) Develop and design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements; (3) Maintain power density comparable to that of current conventional engines for the applicable vehicle class; and (4) Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: (1) A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target; (2) An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system; (3) Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system; (4) Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle - Additional technical barriers exist for the no NOx aftertreatment engine; (5) Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated; (6) The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing; (7) The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment; (8) The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment; (9) Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines); and (10) Key subsystems developed include - sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system. An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light-Duty Vehicles (ATP-LD) started in 2010.

  5. Light Duty Efficient, Clean Combustion

    SciTech Connect (OSTI)

    Stanton, Donald W

    2011-06-03T23:59:59.000Z

    Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy’s Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: 1. Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today’s state-ofthe- art diesel engine on the FTP city drive cycle 2. Develop & design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements. 3. Maintain power density comparable to that of current conventional engines for the applicable vehicle class. 4. Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: ? A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target ? An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system ? Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system ? Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle – Additional technical barriers exist for the no NOx aftertreatment engine ? Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated. ? The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing. ? The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment. ? The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment ? Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines) ? Key subsystems developed include – sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light- Duty Vehicles (ATP-LD) started in 2010.

  6. Light Duty Vehicle CNG Tanks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty Vehicle CNG Tanks Dane A. Boysen, PhD Program Director Advanced Research Projects Agency-Energy, US DOE dane.boysen@doe.gov Fiber Reinforced Polymer Composite...

  7. Technology Development for Light Duty High Efficient Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty High Efficient Diesel Engines Technology Development for Light Duty High Efficient Diesel Engines Improve the efficiency of diesel engines for light duty applications...

  8. Light Duty Vehicle CNG Tanks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing | Department of EnergyLiekoviiLight Duty

  9. Technical Challenges and Opportunities Light-Duty Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges and Opportunities Light-Duty Diesel Engines in North America Technical Challenges and Opportunities Light-Duty Diesel Engines in North America 2005 Diesel Engine...

  10. Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Thermal Comfort Enablers for Light-Duty Vehicle Applications Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty Vehicle Applications 2012 DOE Hydrogen and Fuel...

  11. Vehicle Technologies Office AVTA: Light Duty Alternative Fuel...

    Energy Savers [EERE]

    Office AVTA: Light Duty Alternative Fuel and Advanced Vehicle Data Vehicle Technologies Office AVTA: Light Duty Alternative Fuel and Advanced Vehicle Data The Vehicle Technologies...

  12. WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and...

    Energy Savers [EERE]

    Light-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and Gaps for Lightweight and...

  13. Ricardo's ACTION Strategy: An Enabling Light Duty Diesel Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Chief Program Engineer, Light Duty Diesel, Ricardo adrian.greaney@ricardo.com Ricardo plc 2005 DEER 2005 Our industry has already made remarkable progress in light duty diesel...

  14. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol...

    Broader source: Energy.gov (indexed) [DOE]

    Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Webinar slides from the U.S. Department of Energy...

  15. Emissions from the European Light Duty Diesel Vehicle During...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the European Light Duty Diesel Vehicle During DPF Regeneration Events Emissions from the European Light Duty Diesel Vehicle During DPF Regeneration Events Repeated partial...

  16. Light Duty Utility Arm System hot test

    SciTech Connect (OSTI)

    Howden, G.F.; Conrad, R.B.; Kiebel, G.R.

    1996-02-01T23:59:59.000Z

    This Engineering Task Plan describes the scope of work and cost for implementing a hot test of the Light Duty Utility Arm System in Tank T-106 in September 1996.

  17. Light-Duty Advanced Diesel Combustion Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    contains no proprietary or confidential information Light-Duty Advanced Diesel Combustion Research Program Manager: Gurpreet Singh, EERE-OVT M O F E Y D P A R T E N T N E E R...

  18. Light Duty Utility Arm Software Test Plan

    SciTech Connect (OSTI)

    Kiebel, G.R.

    1995-12-18T23:59:59.000Z

    This plan describes how validation testing of the software will be implemented for the integrated control and data acquisition system of the Light Duty Utility Arm System (LDUA). The purpose of LDUA software validation testing is to demonstrate and document that the LDUA software meets its software requirements specification.

  19. Light Duty Vehicle Pathways July 26, 2010

    E-Print Network [OSTI]

    Light Duty Vehicle Pathways July 26, 2010 Sam Baldwin Chief Technology Officer Office of Energy Efficiency and Renewable Energy U.S. Department of Energy #12;2 Conventional Oil International Energy Agency #12;3 InterAcademy Panel Statement On Ocean Acidification, 1 June 2009 · Signed by the National

  20. Cummins Work Toward Successful Introduction of Light-Duty Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cummins Work Toward Successful Introduction of Light-Duty Clean Diesel Engines in US Cummins Work Toward Successful Introduction of Light-Duty Clean Diesel Engines in US 2005...

  1. Sixth Northwest Conservation and Electric Power Plan Chapter 2: Key Assumptions

    E-Print Network [OSTI]

    at zero and increase to $47 per ton of CO2 emissions by 2030. Higher electricity prices reduce demandSixth Northwest Conservation and Electric Power Plan Chapter 2: Key Assumptions Summary of Key................................................................ 10 Wholesale Electricity Prices

  2. Improving the Efficiency of Light-Duty Vehicle HVAC Systems using...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric Devices and Comfort Modeling Improving the Efficiency of Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric...

  3. Decontamination trade study for the Light Duty Utility Arm

    SciTech Connect (OSTI)

    Rieck, R.H.

    1994-09-29T23:59:59.000Z

    Various methods were evaluated for decontaminating the Light Duty Utility Arm (LDUA). Physical capabilities of each method were compared with the constraints and requirements for the LDUA Decontamination System. Costs were compared and a referred alternative was chosen.

  4. Advanced Technologies for Light-Duty Vehicles (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01T23:59:59.000Z

    A fundamental concern in projecting the future attributes of light-duty vehicles-passenger cars, sport utility vehicles, pickup trucks, and minivans-is how to represent technological change and the market forces that drive it. There is always considerable uncertainty about the evolution of existing technologies, what new technologies might emerge, and how consumer preferences might influence the direction of change. Most of the new and emerging technologies expected to affect the performance and fuel use of light-duty vehicles over the next 25 years are represented in the National Energy Modeling System (NEMS); however, the potential emergence of new, unforeseen technologies makes it impossible to address all the technology options that could come into play. The previous section of Issues in Focus discussed several potential technologies that currently are not represented in NEMS. This section discusses some of the key technologies represented in NEMS that are expected to be implemented in light-duty vehicles over the next 25 years.

  5. NGNP: High Temperature Gas-Cooled Reactor Key Definitions, Plant Capabilities, and Assumptions

    SciTech Connect (OSTI)

    Wayne Moe

    2013-05-01T23:59:59.000Z

    This document provides key definitions, plant capabilities, and inputs and assumptions related to the Next Generation Nuclear Plant to be used in ongoing efforts related to the licensing and deployment of a high temperature gas-cooled reactor. These definitions, capabilities, and assumptions were extracted from a number of NGNP Project sources such as licensing related white papers, previously issued requirement documents, and preapplication interactions with the Nuclear Regulatory Commission (NRC).

  6. Light-duty diesel engine development status and engine needs

    SciTech Connect (OSTI)

    Not Available

    1980-08-01T23:59:59.000Z

    This report reviews, assesses, and summarizes the research and development status of diesel engine technology applicable to light-duty vehicles. In addition, it identifies specific basic and applied research and development needs in light-duty diesel technology and related health areas where initial or increased participation by the US Government would be desirable. The material presented in this report updates information provided in the first diesel engine status report prepared by the Aerospace Corporation for the Department of Energy in September, 1978.

  7. Light-Duty Fuel Cell Vehicles State of Development

    E-Print Network [OSTI]

    Light-Duty Fuel Cell Vehicles State of Development Fuel Cell Vehicles (FCVs) An international race is under way to commercialize fuel cell vehicles (FCVs). The competition is characterized by rapid by taking full advantage of the characteristics and capabilities of fuel cells. But most of the vehicles

  8. Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Combustion in a Light-Duty Diesel Engine Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel Engine Six different fuels were investigated to study the...

  9. High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel Engines High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel Engines 2010 DOE Vehicle...

  10. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel Engines High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Measurement and...

  11. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of RCCI Operation on a Light-Duty Multi-Cylinder Engine High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Vehicle Technologies Office Merit Review 2014:...

  12. Development of a Waste Heat Recovery System for Light Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Waste Heat Recovery System for Light Duty Diesel Engines Development of a Waste Heat Recovery System for Light Duty Diesel Engines Substantial increases in engine efficiency of a...

  13. A Study of Emissions from a Light Duty Diesel Engine with the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Study of Emissions from a Light Duty Diesel Engine with the European Particulate Measurement Programme A Study of Emissions from a Light Duty Diesel Engine with the European...

  14. Biodiesel Effects on the Operation of U.S. Light Duty Tier 2...

    Broader source: Energy.gov (indexed) [DOE]

    Biodiesel Effects on the Operation of U.S. Light Duty Tier 2 Engine and Aftertreatment Systems Biodiesel Effects on the Operation of U.S. Light Duty Tier 2 Engine and...

  15. Biodiesel Effects on the Operation of U.S. Light-Duty Tier 2...

    Broader source: Energy.gov (indexed) [DOE]

    Biodiesel Effects on the Operation of U.S. Light-Duty Tier 2 Engine and Aftertreatment Systems Biodiesel Effects on the Operation of U.S. Light-Duty Tier 2 Engine and...

  16. NGNP: High Temperature Gas-Cooled Reactor Key Definitions, Plant Capabilities, and Assumptions

    SciTech Connect (OSTI)

    Phillip Mills

    2012-02-01T23:59:59.000Z

    This document is intended to provide a Next Generation Nuclear Plant (NGNP) Project tool in which to collect and identify key definitions, plant capabilities, and inputs and assumptions to be used in ongoing efforts related to the licensing and deployment of a high temperature gas-cooled reactor (HTGR). These definitions, capabilities, and assumptions are extracted from a number of sources, including NGNP Project documents such as licensing related white papers [References 1-11] and previously issued requirement documents [References 13-15]. Also included is information agreed upon by the NGNP Regulatory Affairs group's Licensing Working Group and Configuration Council. The NGNP Project approach to licensing an HTGR plant via a combined license (COL) is defined within the referenced white papers and reference [12], and is not duplicated here.

  17. Overview of Light-Duty Vehicle Studies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartmentOutreach toTransmissionProgram |andJapaneseLight-Duty

  18. The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Emissions Reduction (DEER) Conference Presentation: Volkwagen AG, Wolfsburg, Germany 2004deerschindler.pdf More Documents & Publications Accelerating Light-Duty Diesel...

  19. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on a Light-Duty Multi-Cylinder Engine Gasoline-Like Fuel Effects on Advanced Combustion Regimes Vehicle Technologies Office Merit Review 2014: High Efficiency Clean...

  20. Desulfurization Effects on a Light-Duty Diesel Vehicle NOx Adsorber Exhaust Emission Control System

    SciTech Connect (OSTI)

    Tatur, M.; Tomazic, D.; Tyrer, H.; Thornton, M.; Kubsh, J.

    2006-05-01T23:59:59.000Z

    Analyzes the effects on gaseous emissions, before and after desulfurization, on a light-duty diesel vehicle with a NOx adsorber catalyst.

  1. Biodiesel Effects on the Operation of U.S. Light-Duty Tier 2...

    Broader source: Energy.gov (indexed) [DOE]

    NOx Adsorber SCR System Summary and Conclusions Overview Evaluate the impact of Biodiesel fuel blends on the performance of advanced emission control systems for light-duty...

  2. Biodiesel Effects on the Operation of U.S. Light Duty Tier 2...

    Broader source: Energy.gov (indexed) [DOE]

    Test Results Summary and Conclusions Project Goals Evaluate the impact of Biodiesel fuel blends on the performance of advanced emission control systems for light-duty...

  3. Light duty utility arm deployment in Hanford tank T-106

    SciTech Connect (OSTI)

    Kiebel, G.R.

    1997-07-01T23:59:59.000Z

    An existing gap in the technology for the remediation of underground waste storage tanks filled by the Light Duty Utility Arm (LDUA) System. On September 27 and 30, 1996, the LDUA System was deployed in underground storage tank T-106 at Hanford. The system performed successfully, satisfying all objectives of the in-tank operational test (hot test); performing close-up video inspection of features of tank dome, risers, and wall; and grasping and repositioning in-tank debris. The successful completion of hot testing at Hanford means that areas of tank structure and waste surface that were previously inaccessible are now within reach of remote tools for inspection, waste analysis, and small-scale retrieval. The LDUA System has become a new addition to the arsenal of technologies being applied to solve tank waste remediation challenges.

  4. Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4.0 Page 1 of 22 Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles US Department of Energy Office of Energy Efficiency and Renewable Energy and The FreedomCAR...

  5. The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow

    Broader source: Energy.gov (indexed) [DOE]

    diesel-powered light-duty vehicles 1990 1995 2000 2005 2010 2015 2020 2025 Energy Greenhouse effect CO 2 Exhaust gas emissions CO, NO x , HC, PM Importance Environmental driving...

  6. Vehicle Technologies Office Merit Review 2015: Light-Duty Diesel Combustion

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about light-duty...

  7. Light-Duty Diesel EngineTechnology to Meet Future Emissions and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Meet Future Emissions and Performance Requirements of the U.S. Market Light-Duty Diesel EngineTechnology to Meet Future Emissions and Performance Requirements of the U.S....

  8. Vehicle Technologies Office Merit Review 2015: Ultra Efficient Light Duty Powertrain with Gasoline Low Temperature Combustion

    Broader source: Energy.gov [DOE]

    Presentation given by Delphi Powertrain at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ultra efficient light duty...

  9. Retail Infrastructure Costs Comparison for Hydrogen and Electricity for Light-Duty Vehicles: Preprint

    SciTech Connect (OSTI)

    Melaina, M.; Sun, Y.; Bush, B.

    2014-08-01T23:59:59.000Z

    Both hydrogen and plug-in electric vehicles offer significant social benefits to enhance energy security and reduce criteria and greenhouse gas emissions from the transportation sector. However, the rollout of electric vehicle supply equipment (EVSE) and hydrogen retail stations (HRS) requires substantial investments with high risks due to many uncertainties. We compare retail infrastructure costs on a common basis - cost per mile, assuming fueling service to 10% of all light-duty vehicles in a typical 1.5 million person city in 2025. Our analysis considers three HRS sizes, four distinct types of EVSE and two distinct EVSE scenarios. EVSE station costs, including equipment and installation, are assumed to be 15% less than today's costs. We find that levelized retail capital costs per mile are essentially indistinguishable given the uncertainty and variability around input assumptions. Total fuel costs per mile for battery electric vehicle (BEV) and plug-in hybrid vehicle (PHEV) are, respectively, 21% lower and 13% lower than that for hydrogen fuel cell electric vehicle (FCEV) under the home-dominant scenario. Including fuel economies and vehicle costs makes FCEVs and BEVs comparable in terms of costs per mile, and PHEVs are about 10% less than FCEVs and BEVs. To account for geographic variability in energy prices and hydrogen delivery costs, we use the Scenario Evaluation, Regionalization and Analysis (SERA) model and confirm the aforementioned estimate of cost per mile, nationally averaged, but see a 15% variability in regional costs of FCEVs and a 5% variability in regional costs for BEVs.

  10. Safety equipment list for the light duty utility arm system

    SciTech Connect (OSTI)

    Barnes, G.A.

    1998-03-02T23:59:59.000Z

    The initial issue (Revision 0) of this Safety Equipment List (SEL) for the Light Duty Utility Arm (LDUA) requires an explanation for both its existence and its being what it is. All LDUA documentation leading up to creation of this SEL, and the SEL itself, is predicated on the LDUA only being approved for use in waste tanks designated as Facility Group 3, i.e., it is not approved for use in Facility Group 1 or 2 waste tanks. Facility Group 3 tanks are those in which a spontaneous or induced hydrogen gas release would be small, localized, and would not exceed 25% of the LFL when mixed with the remaining air volume in the dome space; exceeding these parameters is considered unlikely. Thus, from a NFPA flammable gas environment perspective the waste tank interior is not classified as a hazardous location. Furthermore, a hazards identification and evaluation (HNF-SD-WM-HIE-010, REV 0) performed for the LDUA system concluded that the consequences of actual LDUA system postulated accidents in Flammable Gas Facility Group 3 waste tanks would have either NO IMPACT or LOW IMPACT on the offsite public and onsite worker. Therefore, from a flammable gas perspective, there is not a rationale for classifying any of SSCs associated with the LDUA as either Safety Class (SC) or Safety Significant (SS) SSCs, which, by default, categorizes them as General Service (GS) SSCs. It follows then, based on current PHMC procedures (HNF-PRO-704 and HNF-IP-0842, Vol IV, Section 5.2) for SEL creation and content, and from a flammable gas perspective, that an SEL is NOT REQ@D HOWEVER!!! There is both a precedent and a prudency to capture all SSCS, which although GS, contribute to a Defense-In-Depth (DID) approach to the design and use of equipment in potentially flammable gas environments. This Revision 0 of the LDUA SEL has been created to capture these SSCs and they are designated as GS-DID in this document. The specific reasons for doing this are listed.

  11. Diesel Exhaust Emissions Control for Light-Duty Vehicles

    SciTech Connect (OSTI)

    Mital, R.; Li, J.; Huang, S. C.; Stroia, B. J.; Yu, R. C. (Cummins, Inc.); Anderson, J.A. (Argonne National Laboratory); Howden, Kenneth C. (U.S. Department of Energy)

    2003-03-01T23:59:59.000Z

    The objective of this paper is to present the results of diesel exhaust aftertreatment testing and analysis done under the FreedomCAR program. Nitrogen Oxides (NOx) adsorber technology was selected based on a previous investigation of various NOx aftertreatment technologies including non-thermal plasma, NOx adsorber and active lean NOx. Particulate Matter (PM) emissions were addressed by developing a catalyzed particulate filter. After various iterations of the catalyst formulation, the aftertreatment components were integrated and optimized for a light duty vehicle application. This compact exhaust aftertreatment system is dual leg and consists of a sulfur trap, NOx adsorbers, and catalyzed particulate filters (CPF). During regeneration, supplementary ARCO ECD low-sulfur diesel fuel is injected upstream of the adsorber and CPF in the exhaust. Steady state and transient emission test results with and without the exhaust aftertreatment system (EAS) are presented. Results of soot filter regeneration by injecting low-sulfur diesel fuel and slip of unregulated emissions, such as NH3, are discussed. Effects of adsorber size and bypass strategy on NOx conversion efficiency and fuel economy penalty are also presented in this paper. The results indicate that if the supplementary fuel injection is optimized, NH3 slip is negligible. During the FTP cycle, injection of low sulfur diesel fuel can create temperature exotherms high enough to regenerate a loaded CPF. With the optimized NOx adsorber regeneration strategies the fuel injection penalty can be reduced by 40 to 50%. Results for various other issues like low temperature light off, reductant optimization, exhaust sulfur management, system integration and design trade-off, are also presented and discussed in this paper. (SAE Paper SAE-2003-01-0041 © 2003 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

  12. Quantification of evaporative running losses from light-duty gasoline-powered trucks. Final report

    SciTech Connect (OSTI)

    McClement, D.

    1992-11-03T23:59:59.000Z

    The objective of the study was to determine the evaporative running loss characteristics from light-duty gasoline powered trucks. The contract involved testing of 18 randomly selected light-duty trucks by the contractor, Automotive Testing Laboratories in Indiana. Seventy-six running loss tests were performed at ambient temperatures of 40, 95, and 105 degrees Fahrenheit and driven over the LA-4 and the New York City Cycle. Six vehicles underwent Sealed Housing Evaporative Determination tests to determine if there is any relationship between other types of evaporative emissions and running loss emissions.

  13. California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (Update) (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01T23:59:59.000Z

    The state of California was given authority under the Clean Air Act Amendments of 1990 (CAAA90) to set emissions standards for light-duty vehicles that exceed federal standards. In addition, other states that do not comply with the National Ambient Air Quality Standards (NAAQS) set by the Environmental Protection Agency under CAAA90 were given the option to adopt Californias light-duty vehicle emissions standards in order to achieve air quality compliance. CAAA90 specifically identifies hydrocarbon, carbon monoxide, and NOx as vehicle-related air pollutants that can be regulated. California has led the nation in developing stricter vehicle emissions standards, and other states have adopted the California standards.

  14. Fuel Economy of the Light-Duty Vehicle Fleet (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01T23:59:59.000Z

    The U.S. fleet of light-duty vehicles consists of cars and light trucks, including minivans, sport utility vehicles (SUVs) and trucks with gross vehicle weight less than 8,500 pounds. The fuel economy of light-duty vehicles is regulated by the (Corporate Average Fuel Economy) CAFE standards set by the National Highway Traffic Safety Administration. Currently, the CAFE standard is 27.5 miles per gallon (mpg) for cars and 20.7 mpg for light trucks. The most recent increase in the CAFE standard for cars was in 1990, and the most recent increase in the CAFE standard for light trucks was in 1996.

  15. QUANTIFYING THE EXTERNAL COSTS OF VEHICLE USE: EVIDENCE FROM AMERICA'S TOP SELLING LIGHT-DUTY MODELS

    E-Print Network [OSTI]

    Kockelman, Kara M.

    -selling passenger cars and light-duty trucks in the U.S. Among these external costs, those associated with crashes estimated for several other vehicles of particular interest, including GM's Hummer and several hybrid drive: small cars, mid-sized cars, large cars, luxury cars, crossover utility vehicles (CUVs), sport

  16. Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles

    Broader source: Energy.gov [DOE]

    This document describes the basis for the technical targets for onboard hydrogen storage for light-duty vehicles in the FCT Program’s Multiyear Research, Development and Demonstration Plan. A detailed explanation of each target is given in the following pages.

  17. APBF-DEC Light-duty NOx Adsorber/DPF Project

    Broader source: Energy.gov (indexed) [DOE]

    Light - Duty NOx AdsorberDPF Project Vehicle Tests - FTP 75 (Conducted at EPA NVFEL in Ann Arbor) NOx (gmi) 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 Test No. 1 2 3 4 5 PM (mgmi)...

  18. Detroit Diesel Engine Technology for Light Duty Truck Applications - DELTA Engine Update

    SciTech Connect (OSTI)

    Freese, Charlie

    2000-08-20T23:59:59.000Z

    The early generation of the DELTA engine has been thoroughly tested and characterized in the virtual lab, during engine dynamometer testing, and on light duty trucks for personal transportation. This paper provides an up-to-date account of program findings. Further, the next generation engine design and future program plans will be briefly presented.

  19. Assessment of Fuel Economy Technologies for Light-Duty Vehicles

    SciTech Connect (OSTI)

    Greene, David L [ORNL

    2008-01-01T23:59:59.000Z

    An analysis of the number of stations and vehicles necessary to achieve future goals for sales of ethanol fuel (E85) is presented. Issues related to the supply of ethanol, which may turn out to be of even greater concern, are not analyzed here. A model of consumers decisions to purchase E85 versus gasoline based on prices, availability, and refueling frequency is derived, and preliminary results for 2010, 2017, and 2030 consistent with the president s 2007 biofuels program goals are presented. A limited sensitivity analysis is carried out to indicate key uncertainties in the trade-off between the number of stations and fuels. The analysis indicates that to meet a 2017 goal of 26 billion gallons of E85 sold, on the order of 30% to 80% of all stations may need to offer E85 and that 125 to 200 million flexible-fuel vehicles (FFVs) may need to be on the road, even if oil prices remain high. These conclusions are tentative for three reasons: there is considerable uncertainty about key parameter values, such as the price elasticity of choice between E85 and gasoline; the future prices of E85 and gasoline are uncertain; and the method of analysis used is highly aggregated it does not consider the potential benefits of regional strategies or the possible existence of market segments predisposed to purchase E85. Nonetheless, the preliminary results indicate that the 2017 biofuels program goals are ambitious and will require a massive effort to produce enough FFVs and ensure widespread availability of E85.

  20. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01T23:59:59.000Z

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  1. California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01T23:59:59.000Z

    In July 2002, California Assembly Bill 1493 (A.B. 1493) was signed into law. The law requires that the California Air Resources Board (CARB) develop and adopt, by January 1, 2005, greenhouse gas emission standards for light-duty vehicles that provide the maximum feasible reduction in emissions. In estimating the feasibility of the standard, CARB is required to consider cost-effectiveness, technological capability, economic impacts, and flexibility for manufacturers in meeting the standard.

  2. Catalyzed Diesel Particulate Filter Performance in a Light-Duty Vehicle

    SciTech Connect (OSTI)

    Sluder, C.S.

    2001-04-23T23:59:59.000Z

    Light-duty chassis dynamometer driving cycle tests were conducted on a Mercedes A170 diesel vehicle with various sulfur-level fuels and exhaust emission control systems. Triplicate runs of a modified light-duty federal test procedure (FTP), US06 cycle, and SCO3 cycle were conducted with each exhaust configuration and fuel. Ultra-low sulfur (3-ppm) diesel fuel was doped to 30- and 150-ppm sulfur so that all other fuel properties remained the same. The fuels used in these experiments met the specifications of the fuels from the DECSE (Diesel Emission Control Sulfur Effects) program. Although the Mercedes A170 vehicle is not available in the US, its emissions in the as tested condition fell within the U.S. Tier 1 full useful life standards with the OEM catalysts installed. Tests with the OEM catalysts removed showed that the OEM catalysts reduced PM emissions from the engine-out condition by 30-40% but had negligible effects on NOx emissions. Fuel sulfur level had very little effect on th e OEM catalyst performance. A prototype catalyzed diesel particulate filter (CDPF) mounted in an underfloor configuration reduced particulate matter emissions by more than 90% compared to the factory emissions control system. The results show that the CDPF did not promote any significant amounts of SO{sub 2}-to-sulfate conversion during these light-duty drive cycles.

  3. Assessing deployment strategies for ethanol and flex fuel vehicles in the U.S. light-duty vehicle fleet

    E-Print Network [OSTI]

    McAulay, Jeffrey L. (Jeffrey Lewis)

    2009-01-01T23:59:59.000Z

    Within the next 3-7 years the US light duty fleet and fuel supply will encounter what is commonly referred to as the "blend wall". This phenomenon describes the situation when more ethanol production has been mandated than ...

  4. Evaluating the impact of advanced vehicle and fuel technologies in U.S. light duty vehicle fleet

    E-Print Network [OSTI]

    Bandivadekar, Anup P

    2008-01-01T23:59:59.000Z

    The unrelenting increase in oil use by the U.S. light-duty vehicle (LDV) fleet presents an extremely challenging energy and environmental problem. A variety of propulsion technologies and fuels have the promise to reduce ...

  5. Selection of Light Duty Truck Engine Air Systems Using Virtual Lab Tests

    SciTech Connect (OSTI)

    Zhang, Houshun

    2000-08-20T23:59:59.000Z

    An integrated development approach using seasoned engine technology methodologies, virtual lab parametric investigations, and selected hardware verification tests reflects today's state-of-the-art R&D trends. This presentation will outline such a strategy. The use of this ''Wired'' approach results in substantial reduction in the development cycle time and hardware iterations. An example showing the virtual lab application for a viable design of the air-exhaust-turbocharger system of a light duty truck engine for personal transportation will be presented.

  6. Light Duty Utility Arm system pre-operational (cold test) test plan

    SciTech Connect (OSTI)

    Bennett, K.L.

    1995-10-20T23:59:59.000Z

    The Light Duty Utility (LDUA) Cold Test Facility, located in the Hanford 400 Area, will be used to support cold testing (pre- operational tests) of LDUA subsystems. Pre-operational testing is composed of subsystem development testing and rework activities, and integrated system qualification testing. Qualification testing will be conducted once development work is complete and documentation is under configuration control. Operational (hot) testing of the LDUA system will follow the testing covered in this plan and will be covered in a separate test plan

  7. Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C.TierIdaho CountyLight-Duty Vehicle Idle

  8. Tier 2 Useful Life (120,000 miles) Exhaust Emission Results for a NOx Adsorber and Diesel Particle Filter Equipped Light-Duty Diesel Vehicle

    SciTech Connect (OSTI)

    Tatur, M.; Tomazic, D.; Thornton, M.; Orban, J.; Slone, E.

    2006-05-01T23:59:59.000Z

    Investigates the emission control system performance and system desulfurization effects on regulated and unregulated emissions in a light-duty diesel engine.

  9. Feasibility Study Of Advanced Technology Hov Systems: Volume 2b: Emissions Impact Of Roadway-powered Electric Buses, Light-duty Vehicles, And Automobiles

    E-Print Network [OSTI]

    Miller, Mark A.; Dato, Victor; Chira-chavala, Ted

    1992-01-01T23:59:59.000Z

    LIGHT-DUTY VEHICLES, AND AUTOMOBILES Mark A. Miller Victorand The analysis involves automobiles in California arePowered Electric Automobiles -a---- Range of Estimated

  10. Application for certification, 1991 model-year light-duty vehicles - Sterling

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems or exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  11. Sizes, graphitic structures and fractal geometry of light-duty diesel engine particulates.

    SciTech Connect (OSTI)

    Lee, K. O.; Zhu, J.; Ciatti, S.; Choi, M. Y.; Energy Systems; Drexel Univ.

    2003-01-01T23:59:59.000Z

    The particulate matter of a light-duty diesel engine was characterized in its morphology, sizes, internal microstructures, and fractal geometry. A thermophoretic sampling system was employed to collect particulates directly from the exhaust manifold of a 1.7-liter turbocharged common-rail direct-injection diesel engine. The particulate samples collected at various engine-operating conditions were then analyzed by using a high-resolution transmission electron microscope (TEM) and an image processing/data acquisition system. Results showed that mean primary particle diameters (dp), and radii of gyration (Rg), ranged from 19.4 nm to 32.5 nm and 77.4 nm to 134.1 nm, respectively, through the entire engine-operating conditions of 675 rpm (idling) to 4000 rpm and 0% to 100% loads. It was also revealed that the other important parameters sensitive to the particulate formation, such as exhaust-gas recirculation (EGR) rate, equivalence ratio, and temperature, affected particle sizes significantly. Bigger primary particles were measured at higher EGR rates, higher equivalence ratios (fuel-rich), and lower exhaust temperatures. Fractal dimensions (D{sup f}) were measured at a range of 1.5 - 1.7, which are smaller than those measured for heavy-duty direct-injection diesel engine particulates in our previous study. This finding implies that the light-duty diesel engine used in this study produces more stretched chain-like shape particles, while the heavy-duty diesel engine emits more spherical particles. The microstructures of diesel particulates were observed at high TEM magnifications and further analyzed by a Raman spectroscope. Raman spectra revealed an atomic structure of the particulates produced at high engine loads, which is similar to that of typical graphite.

  12. Reactivity Controlled Compression Ignition (RCCI) Combustion on a Multi-Cylinder Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Curran, Scott [ORNL; Hanson, Reed M [ORNL; Wagner, Robert M [ORNL

    2012-01-01T23:59:59.000Z

    Reactivity controlled compression ignition is a low-temperature combustion technique that has been shown, both in computational fluid dynamics modeling and single-cylinder experiments, to obtain diesel-like efficiency or better with ultra-low nitrogen oxide and soot emissions, while operating primarily on gasoline-like fuels. This paper investigates reactivity controlled compression ignition operation on a four-cylinder light-duty diesel engine with production-viable hardware using conventional gasoline and diesel fuel. Experimental results are presented over a wide speed and load range using a systematic approach for achieving successful steady-state reactivity controlled compression ignition combustion. The results demonstrated diesel-like efficiency or better over the operating range explored with low engine-out nitrogen oxide and soot emissions. A peak brake thermal efficiency of 39.0% was demonstrated for 2600 r/min and 6.9 bar brake mean effective pressure with nitrogen oxide emissions reduced by an order of magnitude compared to conventional diesel combustion operation. Reactivity controlled compression ignition emissions and efficiency results are compared to conventional diesel combustion operation on the same engine.

  13. Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

  14. Biological activity of exhaust emissions from two after-treatment device-equipped light-duty diesel engines

    SciTech Connect (OSTI)

    Carraro, E.; Locatelli, A.L.; Ferrero, C.; Fea, E.; Gilli, G. [Univ. of Turin (Italy)

    1995-10-01T23:59:59.000Z

    Whole diesel exhaust has recently been classified as a portable carcinogen, and particulate exhaust known to contain mutagenic and carcinogenic chemicals, has clearly shown to be mutagenic in several genotoxicity studies. The goal of this study was to determine whether, and to what extent, the installation of some exhaust aftertreatment devices on two light-duty diesel engines (1930 cc and 2500 cc) EGR-valve equipped may reduce mutagenic activity associated to particles collected during both USA and European driving cycles. The preliminary results point out the usefulness of mutagenicity tests in the research of even new more efficient automotive emission aftertreatment devices. The aim of this investigation is to determine whether, and to what range, the use of some new aftertreatment devices on light-duty diesel engines could reduce the particle-associated genotoxic potential of diesel emissions. 24 refs., 3 figs., 1 tab.

  15. Future Potential of Hybrid and Diesel Powertrains in the U.S. Light-duty Vehicle Market

    SciTech Connect (OSTI)

    Greene, D.L.

    2004-08-23T23:59:59.000Z

    Diesel and hybrid technologies each have the potential to increase light-duty vehicle fuel economy by a third or more without loss of performance, yet these technologies have typically been excluded from technical assessments of fuel economy potential on the grounds that hybrids are too expensive and diesels cannot meet Tier 2 emissions standards. Recently, hybrid costs have come down and the few hybrid makes available are selling well. Diesels have made great strides in reducing particulate and nitrogen oxide emissions, and are likely though not certain to meet future standards. In light of these developments, this study takes a detailed look at the market potential of these two powertrain technologies and their possible impacts on light-duty vehicle fuel economy. A nested multinomial logit model of vehicle choice was calibrated to 2002 model year sales of 930 makes, models and engine-transmission configurations. Based on an assessment of the status and outlook for the two technologies, market shares were predicted for 2008, 2012 and beyond, assuming no additional increase in fuel economy standards or other new policy initiatives. Current tax incentives for hybrids are assumed to be phased out by 2008. Given announced and likely introductions by 2008, hybrids could capture 4-7% and diesels 2-4% of the light-duty market. Based on our best guesses for further introductions, these shares could increase to 10-15% for hybrids and 4-7% for diesels by 2012. The resulting impacts on fleet average fuel economy would be about +2% in 2008 and +4% in 2012. If diesels and hybrids were widely available across vehicle classes, makes, and models, they could capture 40% or more of the light-duty vehicle market.

  16. Putting policy in drive : coordinating measures to reduce fuel use and greenhouse gas emissions from U.S. light-duty vehicles

    E-Print Network [OSTI]

    Evans, Christopher W. (Christopher William)

    2008-01-01T23:59:59.000Z

    The challenges of energy security and climate change have prompted efforts to reduce fuel use and greenhouse gas emissions in light-duty vehicles within the United States. Failures in the market for lower rates of fuel ...

  17. Plasma Catalysis for NOx Reduction from Light-Duty Diesel Vehicles

    SciTech Connect (OSTI)

    None

    2005-12-15T23:59:59.000Z

    On behalf of the Department of Energy's Office of FreedomCAR and Vehicle Technologies, we are pleased to introduce the Fiscal Year (FY) 2004 Annual Progress Report for the Advanced Combustion Engine R&D Sub-Program. The mission of the FreedomCAR and Vehicle Technologies Program is to develop more energy efficient and environmentally friendly highway transportation technologies that enable Americans to use less petroleum for their vehicles. The Advanced Combustion Engine R&D Sub-Program supports this mission by removing the critical technical barriers to commercialization of advanced internal combustion engines for light-, medium-, and heavy-duty highway vehicles that meet future Federal and state emissions regulations. The primary objective of the Advanced Combustion Engine R&D Sub-Program is to improve the brake thermal efficiency of internal combustion engines from 30 to 45 percent for light-duty applications by 2010; and 40 to 55 percent for heavy-duty applications by 2012; while meeting cost, durability, and emissions constraints. R&D activities include work on combustion technologies that increase efficiency and minimize in-cylinder formation of emissions, as well as aftertreatment technologies that further reduce exhaust emissions. Work is also being conducted on ways to reduce parasitic and heat transfer losses through the development and application of thermoelectrics and turbochargers that include electricity generating capability, and conversion of mechanically driven engine components to be driven via electric motors. This introduction serves to outline the nature, current progress, and future directions of the Advanced Combustion Engine R&D Sub-Program. The research activities of this Sub-Program are planned in conjunction with the FreedomCAR Partnership and the 21st Century Truck Partnership and are carried out in collaboration with industry, national laboratories, and universities. Because of the importance of clean fuels in achieving low emissions, R&D activities are closely coordinated with the relevant activities of the Fuel Technologies Sub-Program, also within the Office of FreedomCAR and Vehicle Technologies. Research is also being undertaken on hydrogen-fueled internal combustion engines to provide an interim hydrogen-based powertrain technology that promotes the longer-range FreedomCAR Partnership goal of transitioning to a hydrogen-fueled transportation system. Hydrogen engine technologies being developed have the potential to provide diesel-like engine efficiencies with near-zero emissions.

  18. Investigating potential light-duty efficiency improvements through simulation of turbo-compounding and waste-heat recovery systems

    SciTech Connect (OSTI)

    Edwards, Kevin Dean [ORNL; Wagner, Robert M [ORNL; Briggs, Thomas E [ORNL

    2010-01-01T23:59:59.000Z

    Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to combustion irreversibility and heat loss to the coolant, through the exhaust, and by direct convection and radiation to the environment. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment. While there are significant opportunities for recovery from the exhaust and EGR cooler for heavy-duty applications, achieving similar benefits for light-duty applications is complicated by transient, low-load operation at typical driving conditions and competition with the turbocharger and aftertreatment system for the limited thermal resources. We have developed an organic Rankine cycle model using GT-Suite to investigate the potential for efficiency improvement through waste-heat recovery from the exhaust and EGR cooler of a light-duty diesel engine. The model is used to examine the effects of efficiency-improvement strategies such as cylinder deactivation, use of advanced materials and improved insulation to limit ambient heat loss, and turbo-compounding on the steady-state performance of the ORC system and the availability of thermal energy for downstream aftertreatment systems. Results from transient drive-cycle simulations are also presented, and we discuss strategies to address operational difficulties associated with transient drive cycles and balancing the thermal requirements of waste-heat recovery, turbocharging or turbo-compounding, and exhaust aftertreatment.

  19. Membrane-Based Air Composition Control for Light-Duty Diesel Vehicles: A Benefit and Cost Assessment

    SciTech Connect (OSTI)

    K. Stork; R. Poola

    1998-10-01T23:59:59.000Z

    This report presents the methodologies and results of a study conducted by Argonne National Laboratory (Argonne) to assess the benefits and costs of several membrane-based technologies. The technologies evaluated will be used in automotive emissions-control and performance-enhancement systems incorporated into light-duty diesel vehicle engines. Such engines are among the technologies that are being considered to power vehicles developed under the government-industry Partnership for a New Generation of Vehicles (PNGV). Emissions of nitrogen oxides (NO{sub x}) from diesel engines have long been considered a barrier to use of diesels in urban areas. Recently, particulate matter (PM) emissions have also become an area of increased concern because of new regulations regarding emissions of particulate matter measuring 2.5 micrometers or less (PM{sub 2.5}). Particulates are of special concern for diesel engines in the PNGV program; the program has a research goal of 0.01 gram per mile (g/mi) of particulate matter emissions under the Federal Test Procedure (FTP) cycle. This extremely low level (one-fourth the level of the Tier II standard) could threaten the viability of using diesel engines as stand-alone powerplants or in hybrid-electric vehicles. The techniques analyzed in this study can reduce NO{sub x} and particulate emissions and even increase the power density of the diesel engines used in light-duty diesel vehicles.

  20. Effect of Gasoline Properties on Exhaust Emissions from Tier 2 Light-Duty Vehicles -- Final Report: Phase 3; July 28, 2008 - July 27, 2013

    SciTech Connect (OSTI)

    Whitney, K.

    2014-05-01T23:59:59.000Z

    This report covers work the Southwest Research Institute (SwRI) Office of Automotive Engineering has conducted for the U.S. Environmental Protection Agency (EPA), the National Renewable Energy Laboratory (NREL), and the Coordinating Research Council (CRC) in support of the Energy Policy Act of 2005 (EPAct). Section 1506 of EPAct requires EPA to produce an updated fuel effects model representing the 2007 light - duty gasoline fleet, including determination of the emissions impacts of increased renewable fuel use. This report covers the exhaust emissions testing of 15 light-duty vehicles with 27 E0 through E20 test fuels, and 4 light-duty flexible fuel vehicles (FFVs) on an E85 fuel, as part of the EPAct Gasoline Light-Duty Exhaust Fuel Effects Test Program. This program will also be referred to as the EPAct/V2/E-89 Program based on the designations used for it by the EPA, NREL, and CRC, respectively. It is expected that this report will be an attachment or a chapter in the overall EPAct/V2/E-89 Program report prepared by EPA and NREL.

  1. Internship Students Engine / Powertrain Development FEV is offering challenging internships in the field of light-duty diesel powertrain. This internship is designed

    E-Print Network [OSTI]

    Hutcheon, James M.

    in the field of light-duty diesel powertrain. This internship is designed for Masters of Science candidates but are not limited to engine dynamometer testing of diesel engines, vehicle testing for emissions and performance: Harsha Nanjundaswamy Manager Diesel Engine Development Nanjundaswamy@FEV.COM FEV is a global engineering

  2. Global Assessment of Hydrogen Technologies - Task 1 Report Technology Evaluation of Hydrogen Light Duty Vehicles

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Rousseau, Aymeric

    2007-12-01T23:59:59.000Z

    This task analyzes the candidate hydrogen-fueled vehicles for near-term use in the Southeastern U.S. The purpose of this work is to assess their potential in terms of efficiency and performance. This report compares conventional, hybrid electric vehicles (HEV) with gasoline and hydrogen-fueled internal combustion engines (ICEs) as well as fuel cell and fuel cell hybrids from a technology as well as fuel economy point of view. All the vehicles have been simulated using the Powertrain System Analysis Toolkit (PSAT). First, some background information is provided on recent American automotive market trends and consequences. Moreover, available options are presented for introducing cleaner and more economical vehicles in the market in the future. In this study, analysis of various candidate hydrogen-fueled vehicles is performed using PSAT and, thus, a brief description of PSAT features and capabilities are provided. Detailed information on the simulation analysis performed is also offered, including methodology assumptions, fuel economic results, and conclusions from the findings.

  3. Simulating Study of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions Control

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models to simulate the impact of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty (LD) diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results indicate that utilizing PCCI combustion significantly reduces fuel consumption and tailpipe emissions for the conventional diesel-powered vehicle with NOx and particulate emissions controls. These benefits result from a favorable engine speed-load distribution over the cycle combined with a corresponding reduction in the need to regenerate the LNT and DPF. However, the current PCCI technology appears to offer less potential benefit for diesel HEVs equipped with similar emissions controls. This is because PCCI can only be activated over a relatively small part of the drive cycle. Thus we conclude that future utilization of PCCI in diesel HEVs will require significant extension of the available speed-load range for PCCI and revision of current HEV engine management strategies before significant benefits can be realized.

  4. Light-Duty Drive Cycle Simulations of Diesel Engine-Out Exhaust Properties for an RCCI-Enabled Vehicle

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL] [ORNL; Curran, Scott [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    In-cylinder blending of gasoline and diesel fuels to achieve low-temperature reactivity controlled compression ignition (RCCI) can reduce NOx and PM emissions while maintaining or improving brake thermal efficiency compared to conventional diesel combustion (CDC). Moreover, the dual-fueling RCCI is able to achieve these benefits by tailoring combustion reactivity over a wider range of engine operation than is possible with a single fuel. However, the currently demonstrated range of stable RCCI combustion just covers a portion of the engine speed-load range required in several light-duty drive cycles. This means that engines must switch from RCCI to CDC when speed and load fall outside of the stable RCCI range. In this study we investigated the impact of RCCI as it has recently been demonstrated on practical engine-out exhaust temperature and emissions by simulating a multi-mode RCCI-enabled vehicle operating over two urban and two highway driving cycles. To implement our simulations, we employed experimental engine maps for a multi-mode RCCI/CDC engine combined with a standard mid-size, automatic transmission, passenger vehicle in the Autonomie vehicle simulation platform. Our results include both detailed transient and cycle-averaged engine exhaust temperature and emissions for each case, and we note the potential implications of the modified exhaust properties on catalytic emissions control and utilization of waste heat recovery on future RCCI-enabled vehicles.

  5. Effect of Gasoline Properties on Exhaust Emissions from Tier 2 Light-Duty Vehicles -- Final Report: Phases 4, 5, & 6; July 28, 2008 - July 27, 2013

    SciTech Connect (OSTI)

    Whitney, K.; Shoffner, B.

    2014-06-01T23:59:59.000Z

    This report covers work the Southwest Research Institute (SwRI) Office of Automotive Engineering has conducted for the National Renewable Energy Laboratory (NREL) in support of the Energy Policy Act of 2005 (EPAct). Section 1506 of EPAct requires the EPA to produce an updated fuel effects model representing the 2007 light-duty gasoline fleet, including determination of the emissions impacts of increased renewable fuel use.

  6. DRIVE CYCLE EFFICIENCY AND EMISSIONS ESTIMATES FOR REACTIVITY CONTROLLED COMPRESSION IGNITION IN A MULTI-CYLINDER LIGHT-DUTY DIESEL ENGINE

    SciTech Connect (OSTI)

    Curran, Scott [ORNL; Briggs, Thomas E [ORNL; Cho, Kukwon [ORNL; Wagner, Robert M [ORNL

    2011-01-01T23:59:59.000Z

    In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the use of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to carry out RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing and pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOx and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. Brake thermal efficiency was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.

  7. Soybean and Coconut Biodiesel Fuel Effects on Combustion Characteristics in a Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Han, Manbae [ORNL; Cho, Kukwon [ORNL; Sluder, Scott [ORNL; Wagner, Robert M [ORNL

    2008-01-01T23:59:59.000Z

    This study investigated the effects of soybean- and coconut-derived biodiesel fuels on combustion characteristics in a 1.7-liter direct injection, common rail diesel engine. Five sets of fuels were studied: 2007 ultra-low sulfur diesel (ULSD), 5% and 20% volumetric blends of soybean biodiesel with ULSD (soybean B5 and B20), and 5% and 20% volumetric blends of coconut biodiesel with ULSD (coconut B5 and B20). In conventional diesel combustion mode, particulate matter (PM) and nitrogen oxides (NO/dx) emissions were similar for all fuels studied except soybean B20. Soybean B20 produced the lowest PM but the highest NO/dx emissions. Compared with conventional diesel combustion mode, high efficiency clean combustion (HECC) mode, achieved by increased EGR and combustion phasing, significantly reduced both PM and NO/dx emissions for all fuels studied at the expense of higher hydrocarbon (HC) and carbon monoxide (CO) emissions and an increase in fuel consumption (less than 4%). ULSD, soybean B5, and coconut B5 showed no difference in exhaust emissions. However, PM emissions increased slightly for soybean B20 and coconut B20. NO/dx emissions increased significantly for soybean B20, while those for coconut B20 were comparable to ULSD. Differences in the chemical and physical properties of soybean and coconut biodiesel fuels compared with ULSD, such as higher fuel-borne oxygen, greater viscosity, and higher boiling temperatures, play a key role in combustion processes and, therefore, exhaust emissions. Furthermore, the highly unsaturated ester composition in soybean biodiesel can be another factor in the increase of NO/dx emissions.

  8. A computational investigation of diesel and biodiesel combustion and NOx formation in a light-duty compression ignition engine

    SciTech Connect (OSTI)

    Wang, Zihan; Srinivasan, Kalyan K.; Krishnan, Sundar R.; Som, Sibendu

    2012-04-24T23:59:59.000Z

    Diesel and biodiesel combustion in a multi-cylinder light duty diesel engine were simulated during a closed cycle (from IVC to EVO), using a commercial computational fluid dynamics (CFD) code, CONVERGE, coupled with detailed chemical kinetics. The computational domain was constructed based on engine geometry and compression ratio measurements. A skeletal n-heptane-based diesel mechanism developed by researchers at Chalmers University of Technology and a reduced biodiesel mechanism derived and validated by Luo and co-workers were applied to model the combustion chemistry. The biodiesel mechanism contains 89 species and 364 reactions and uses methyl decanoate, methyl-9- decenoate, and n-heptane as the surrogate fuel mixture. The Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) spray breakup model for diesel and biodiesel was calibrated to account for the differences in physical properties of the fuels which result in variations in atomization and spray development characteristics. The simulations were able to capture the experimentally observed pressure and apparent heat release rate trends for both the fuels over a range of engine loads (BMEPs from 2.5 to 10 bar) and fuel injection timings (from 0���° BTDC to 10���° BTDC), thus validating the overall modeling approach as well as the chemical kinetic models of diesel and biodiesel surrogates. Moreover, quantitative NOx predictions for diesel combustion and qualitative NOx predictions for biodiesel combustion were obtained with the CFD simulations and the in-cylinder temperature trends were correlated to the NOx trends."

  9. Cost of Ownership and Well-to-Wheels Carbon Emissions/Oil Use of Alternative Fuels and Advanced Light-Duty Vehicle Technologies

    SciTech Connect (OSTI)

    Elgowainy, Mr. Amgad [Argonne National Laboratory (ANL); Rousseau, Mr. Aymeric [Argonne National Laboratory (ANL); Wang, Mr. Michael [Argonne National Laboratory (ANL); Ruth, Mr. Mark [National Renewable Energy Laboratory (NREL); Andress, Mr. David [David Andress & Associates, Inc.; Ward, Jacob [U.S. Department of Energy; Joseck, Fred [U.S. Department of Energy; Nguyen, Tien [U.S. Department of Energy; Das, Sujit [ORNL

    2013-01-01T23:59:59.000Z

    The U.S. Department of Energy (DOE), Argonne National Laboratory (Argonne), and the National Renewable Energy Laboratory (NREL) updated their analysis of the well-to-wheels (WTW) greenhouse gases (GHG) emissions, petroleum use, and the cost of ownership (excluding insurance, maintenance, and miscellaneous fees) of vehicle technologies that have the potential to significantly reduce GHG emissions and petroleum consumption. The analyses focused on advanced light-duty vehicle (LDV) technologies such as plug-in hybrid, battery electric, and fuel cell electric vehicles. Besides gasoline and diesel, alternative fuels considered include natural gas, advanced biofuels, electricity, and hydrogen. The Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) and Autonomie models were used along with the Argonne and NREL H2A models.

  10. Effect of E85 on RCCI Performance and Emissions on a Multi-Cylinder Light-Duty Diesel Engine - SAE World Congress

    SciTech Connect (OSTI)

    Curran, Scott [ORNL; Hanson, Reed M [ORNL; Wagner, Robert M [ORNL

    2012-01-01T23:59:59.000Z

    This paper investigates the effect of E85 on load expansion and FTP modal point emissions indices under reactivity controlled compression ignition (RCCI) operation on a light-duty multi-cylinder diesel engine. A General Motors (GM) 1.9L four-cylinder diesel engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure exhaust gas recirculation (EGR) system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline or E85. Controlling the fuel reactivity in-cylinder by the adjustment of the ratio of premixed low-reactivity fuel (gasoline or E85) to direct injected high reactivity fuel (diesel fuel) has been shown to extend the operating range of high-efficiency clean combustion (HECC) compared to the use of a single fuel alone as in homogeneous charge compression ignition (HCCI) or premixed charge compression ignition (PCCI). The effect of E85 on the Ad-hoc federal test procedure (FTP) modal points is explored along with the effect of load expansion through the light-duty diesel speed operating range. The Ad-hoc FTP modal points of 1500 rpm, 1.0bar brake mean effective pressure (BMEP); 1500rpm, 2.6bar BMEP; 2000rpm, 2.0bar BMEP; 2300rpm, 4.2bar BMEP; and 2600rpm, 8.8bar BMEP were explored. Previous results with 96 RON unleaded test gasoline (UTG-96) and ultra-low sulfur diesel (ULSD) showed that with stock hardware, the 2600rpm, 8.8bar BMEP modal point was not obtainable due to excessive cylinder pressure rise rate and unstable combustion both with and without the use of EGR. Brake thermal efficiency and emissions performance of RCCI operation with E85 and ULSD is explored and compared against conventional diesel combustion (CDC) and RCCI operation with UTG 96 and ULSD.

  11. Global Assessment of Hydrogen Technologies - Task 2 Report Comparison of Performance and Emissions from Near-Term Hydrogen Fueled Light Duty Vehicles

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ng, Henry K.; Waller, Thomas

    2007-12-01T23:59:59.000Z

    An investigation was conducted on the emissions and efficiency from hydrogen blended compressed natural gas (CNG) in light duty vehicles. The different blends used in this investigation were 0%, 15%, 30%, 50%, 80%, 95%, and ~100% hydrogen, the remainder being compressed natural gas. The blends were tested using a Ford F-150 and a Chevrolet Silverado truck supplied by Arizona Public Services. Tests on emissions were performed using four different driving condition tests. Previous investigation by Don Karner and James Frankfort on a similar Ford F-150 using a 30% hydrogen blend showed that there was substantial reduction when compared to gasoline in carbon monoxide (CO), nitrogen oxide (NOx), and carbon dioxide (CO2) emissions while the reduction in hydrocarbon (HC) emissions was minimal. This investigation was performed using different blends of CNG and hydrogen to evaluate the emissions reducing capabilities associated with the use of the different fuel blends. The results were then tested statistically to confirm or reject the hypotheses on the emission reduction capabilities. Statistically analysis was performed on the test results to determine whether hydrogen concentration in the HCNG had any effect on the emissions and the fuel efficiency. It was found that emissions from hydrogen blended compressed natural gas were a function of driving condition employed. Emissions were found to be dependent on the concentration of hydrogen in the compressed natural gas fuel blend.

  12. Simulating the Impact of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions of Particulates and NOx

    SciTech Connect (OSTI)

    Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Wagner, Robert M [ORNL; Edwards, Kevin Dean [ORNL; Smith, David E [ORNL

    2013-01-01T23:59:59.000Z

    We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models implemented in Matlab/Simulink to simulate the effect of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated engine is capable of both conventional diesel combustion (CDC) and premixed charge compression ignition (PCCI) over real transient driving cycles. Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results demonstrate that, in the simulated conventional vehicle, PCCI can significantly reduce fuel consumption and emissions by reducing the need for LNT and DPF regeneration. However, the opportunity for PCCI operation in the simulated HEV is limited because the engine typically experiences higher loads and multiple stop-start transients that are outside the allowable PCCI operating range. Thus developing ways of extending the PCCI operating range combined with improved control strategies for engine and emissions control management will be especially important for realizing the potential benefits of PCCI in HEVs.

  13. Transportation Energy Futures Series: Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    SciTech Connect (OSTI)

    Stephens, T.

    2013-03-01T23:59:59.000Z

    Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost and potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  14. Impacts of ethanol fuel level on emissions of regulated and unregulated pollutants from a fleet of gasoline light-duty vehicles

    SciTech Connect (OSTI)

    Karavalakis, Georgios; Durbin, Thomas; Shrivastava, ManishKumar B.; Zheng, Zhongqing; Villella, Phillip M.; Jung, Hee-Jung

    2012-03-30T23:59:59.000Z

    The study investigated the impact of ethanol blends on criteria emissions (THC, NMHC, CO, NOx), greenhouse gas (CO2), and a suite of unregulated pollutants in a fleet of gasoline-powered light-duty vehicles. The vehicles ranged in model year from 1984 to 2007 and included one Flexible Fuel Vehicle (FFV). Emission and fuel consumption measurements were performed in duplicate or triplicate over the Federal Test Procedure (FTP) driving cycle using a chassis dynamometer for four fuels in each of seven vehicles. The test fuels included a CARB phase 2 certification fuel with 11% MTBE content, a CARB phase 3 certification fuel with a 5.7% ethanol content, and E10, E20, E50, and E85 fuels. In most cases, THC and NMHC emissions were lower with the ethanol blends, while the use of E85 resulted in increases of THC and NMHC for the FFV. CO emissions were lower with ethanol blends for all vehicles and significantly decreased for earlier model vehicles. Results for NOx emissions were mixed, with some older vehicles showing increases with increasing ethanol level, while other vehicles showed either no impact or a slight, but not statistically significant, decrease. CO2 emissions did not show any significant trends. Fuel economy showed decreasing trends with increasing ethanol content in later model vehicles. There was also a consistent trend of increasing acetaldehyde emissions with increasing ethanol level, but other carbonyls did not show strong trends. The use of E85 resulted in significantly higher formaldehyde and acetaldehyde emissions than the specification fuels or other ethanol blends. BTEX and 1,3-butadiene emissions were lower with ethanol blends compared to the CARB 2 fuel, and were almost undetectable from the E85 fuel. The largest contribution to total carbonyls and other toxics was during the cold-start phase of FTP.

  15. Experimental Investigation of Fuel-Reactivity Controlled Compression Ignition (RCCI) Combustion Mode in a Multi-Cylinder, Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Cho, Kukwon [ORNL] [ORNL; Curran, Scott [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Sluder, Scott [ORNL] [ORNL; Parks, II, James E [ORNL; Wagner, Robert M [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    An experimental study was performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode utilizing dual-fuel approach in a light-duty, multi-cylinder diesel engine. In-cylinder fuel blending using port fuel injection of gasoline before intake valve opening (IVO) and early-cycle, direct injection of diesel fuel was used as the charge preparation and fuel blending strategy. In order to achieve the desired auto-ignition quality through the stratification of the fuel-air equivalence ratio ( ), blends of commercially available gasoline and diesel fuel were used. Engine experiments were performed at an engine speed of 2300rpm and an engine load of 4.3bar brake mean effective pressure (BMEP). It was found that significant reduction in both nitrogen oxide (NOx) and particulate matter (PM) was realized successfully through the RCCI combustion mode even without applying exhaust gas recirculation (EGR). However, high carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. The low combustion gas temperature during the expansion and exhaust processes seemed to be the dominant source of high CO emissions in the RCCI combustion mode. The high HC emissions during the RCCI combustion mode could be due to the increased combustion quenching layer thickness as well as the -stratification at the periphery of the combustion chamber. The slightly higher brake thermal efficiency (BTE) of the RCCI combustion mode was observed than the other combustion modes, such as the conventional diesel combustion (CDC) mode, and single-fuel, premixed charge compression ignition (PCCI) combustion mode. The parametric study of the RCCI combustion mode revealed that the combustion phasing and/or the peak cylinder pressure rise rate of the RCCI combustion mode could be controlled by several physical parameters premixed ratio (rp), intake swirl intensity, and start of injection (SOI) timing of directly injected fuel unlike other low temperature combustion (LTC) strategies.

  16. In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Curran, Scott [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL; Parks, II, James E [ORNL; Cho, Kukwon [ORNL] [ORNL; Sluder, Scott [ORNL] [ORNL; Kokjohn, Sage [University of Wisconsin, Madison] [University of Wisconsin, Madison; Reitz, Rolf [University of Wisconsin] [University of Wisconsin

    2010-01-01T23:59:59.000Z

    In-cylinder fuel blending of gasoline/diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a potential strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances, heat rejection, and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 4.2 bar brake mean effective pressure (BMEP). Gasoline was introduced with a port-fuel-injection system. Parameter sweeps included gasoline-to-diesel fuel ratio, intake air mixture temperature, in-cylinder swirl number, and diesel start-of-injection phasing. In addition, engine parameters were trimmed for each cylinder to balance the combustion process for maximum efficiency and lowest emissions. An important observation was the strong influence of intake charge temperature on cylinder pressure rise rate. Experiments were able to show increased thermal efficiency along with dramatic decreases in oxides of nitrogen (NOX) and particulate matter (PM). However, indicated thermal efficiency for the multi-cylinder experiments were less than expected based on modeling and single-cylinder results. The lower indicated thermal efficiency is believed to be due increased heat transfer as compared to the model predictions and suggest a need for improved cylinder-to-cylinder control and increased heat transfer control.

  17. Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofsDepartmentLife WithElectrical|

  18. Light-Duty Diesel Combustion

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. Light Duty Efficient Clean Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficient Clean Combustion February 27, 2008 Tim Frazier Research & Technology 2008 Semi-Mega Merit Review Agenda Project Goals and Objectives Project Partners Technical...

  20. Light Duty Efficient Clean Combustion

    Broader source: Energy.gov (indexed) [DOE]

    (order of the components) Thermal management strategy Fuel injection strategies VGT turbo operation VVA 13 This presentation does not contain any proprietary or confidential...

  1. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    R. H. Williams, Solar hydrogen: moving beyond fossil fuels.J. S. Cannon, Harnessing Hydrogen: The Key to Sustainablefuel cell power systems hydrogen vs. methanol: a comparative

  2. Assessment of costs and benefits of flexible and alternative fuel use in the U.S. transportation sector. Technical report fourteen: Market potential and impacts of alternative fuel use in light-duty vehicles -- A 2000/2010 analysis

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    In this report, estimates are provided of the potential, by 2010, to displace conventional light-duty vehicle motor fuels with alternative fuels--compressed natural gas (CNG), liquefied petroleum gas (LPG), methanol from natural gas, ethanol from grain and from cellulosic feedstocks, and electricity--and with replacement fuels such as oxygenates added to gasoline. The 2010 estimates include the motor fuel displacement resulting both from government programs (including the Clean Air Act and EPACT) and from potential market forces. This report also provides an estimate of motor fuel displacement by replacement and alterative fuels in the year 2000. However, in contrast to the 2010 estimates, the year 2000 estimate is restricted to an accounting of the effects of existing programs and regulations. 27 figs., 108 tabs.

  3. DRAFT, 8/2/07 List of Key Assumptions

    E-Print Network [OSTI]

    will be stacked three high. c. Lead used in the shielding can come from DOE inventories, and any radiological component of the lead will be negligible in the context of the radiological characteristics of the inventory containers handled as three packs 5. Hazardous Waste Facility Permit a. The HWFP will require modification b

  4. Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.

    SciTech Connect (OSTI)

    Wu, M.; Wu, Y.; Wang, M; Energy Systems

    2008-01-31T23:59:59.000Z

    The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

  5. Business Case for Light-Duty Diesels

    Broader source: Energy.gov (indexed) [DOE]

    Laredo - Tallahassee (1039 miles) 2 days, 1 tank, 59 mpg Jeep Liberty CRD Factory fill B5 biodiesel Local production, local fuel 9 Cost of Diesel systems? The engine Modern PC...

  6. Advanced Technology Light Duty Diesel Aftertreatment System ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approach to Low Temperature NOx Emission Abatement Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine...

  7. Advanced Technology Light Duty Diesel Aftertreatment System

    Broader source: Energy.gov (indexed) [DOE]

    Strategy Summary 1162012 U.S. Department of Energy DEER 2012 - Dearborn, MI NOx reduction values assume .4gmi EO NOx DOC-DPF-SCR type AT 0.055gmi TP NOx ...

  8. Light Duty Vehicle Pathways | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartmentPresentation from the U.S.Duty

  9. alternative fuel light-duty vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStation LocationsGeneseeValleyPerformance of®

  10. Assumptions to the Annual Energy Outlook 2013

    Gasoline and Diesel Fuel Update (EIA)

    assumptions regarding technically recoverable oil resources. Inputs to these resource estimates include the USGS World Petroleum Assessment of 2000 and oil reserves...

  11. Adaptive Hardness and Composable Security in the Plain Model from Standard Assumptions

    E-Print Network [OSTI]

    Keinan, Alon

    Adaptive Hardness and Composable Security in the Plain Model from Standard Assumptions Ran Canetti-up or public keys. Tel Aviv University, Email: Canetti@tau.ac.il Cornell University, E-Mail: huijia

  12. Optima Dock Synchronization under Different Delay Assumptions

    E-Print Network [OSTI]

    Lynch, Nancy

    Projects, National Autonomous University of Mexico (UNAM). Email: iryktvmhbitnet or anarCwatson. ibm by broadcast networks in which every message arrives to all processors at approximately the same time, message passing systems, networks, optimization, message delay assumptions, precision. Department

  13. Preliminary Assumptions for Natural Gas Peaking

    E-Print Network [OSTI]

    ; adjusted to 2012$, state construction cost index, vintage of cost estimate, scope of estimate to extent's Discussion Aeroderivative Gas Turbine Technology Proposed reference plant and assumptions Preliminary cost Robbins 2 #12;Peaking Power Plant Characteristics 6th Power Plan ($2006) Unit Size (MW) Capital Cost ($/k

  14. Supply-side Resources & Planning Assumptions

    E-Print Network [OSTI]

    - station Solar PV (from 6th Plan) 25 MW dc/20 MW net ac output using flat plate non concentrating single) ­ Storage Resource assessment data needs and applications R d f t Resources proposed for assessment Forecasts ProCost 46/19/2013 #12;6/19/2013 3 Resource data & planning assumptions Reference plant (New

  15. EVA PLANNING ASSUMPTIONS LRV TRAVERSE ASSESSMENT

    E-Print Network [OSTI]

    Rathbun, Julie A.

    VALUE. #12;ASSUMPTIONS {CONT) e METABOLIC RATES · LM OVERHEAD 1050 BTU/HR · ALSEP 1050 BTU/HR · STATION 950 BTU/HR · RIDING 550 BTU/HR #12;ACTIVITY 'METABOLIC .COMPARISON 15 ACTUAL VERSUS 16 PLANNING AVERAGE METABOLIC RATE (BTU I HR) ACTIVITY 15 ACTUAL 16 PLANNING CDR LMP LM OVERHEAD 1246 1060 '1050

  16. A new scenario framework for climate change research: The concept of Shared Climate Policy Assumptions

    SciTech Connect (OSTI)

    Kriegler, Elmar; Edmonds, James A.; Hallegatte, Stephane; Ebi, Kristie L.; Kram, Tom; Riahi, Keywan; Winkler, Harald; Van Vuuren, Detlef

    2014-04-01T23:59:59.000Z

    The paper presents the concept of shared climate policy assumptions as an important element of the new scenario framework. Shared climate policy assumptions capture key climate policy dimensions such as the type and scale of mitigation and adaptation measures. They are not specified in the socio-economic reference pathways, and therefore introduce an important third dimension to the scenario matrix architecture. Climate policy assumptions will have to be made in any climate policy scenario, and can have a significant impact on the scenario description. We conclude that a meaningful set of shared climate policy assumptions is useful for grouping individual climate policy analyses and facilitating their comparison. Shared climate policy assumptions should be designed to be policy relevant, and as a set to be broad enough to allow a comprehensive exploration of the climate change scenario space.

  17. Key distributionKey distribution Key distribution, symmetric encryption

    E-Print Network [OSTI]

    Fisher, Michael

    COMP 522 Key distributionKey distribution COMP 522 Key distribution, symmetric encryption From in a secure way and must keep the key secure" · Important issue: how to distribute secret keys? COMP 522 Key distribution, manual delivery For two parties A and B: · A key could be created by A and delivered physically

  18. Quantum key distribution with finite resources: Secret key rates via Renyi entropies

    SciTech Connect (OSTI)

    Abruzzo, Silvestre; Kampermann, Hermann; Mertz, Markus; Bruss, Dagmar [Institute for Theoretical Physics III, Heinrich-Heine-universitaet Duesseldorf, D-40225 Duesseldorf (Germany)

    2011-09-15T23:59:59.000Z

    A realistic quantum key distribution (QKD) protocol necessarily deals with finite resources, such as the number of signals exchanged by the two parties. We derive a bound on the secret key rate which is expressed as an optimization problem over Renyi entropies. Under the assumption of collective attacks by an eavesdropper, a computable estimate of our bound for the six-state protocol is provided. This bound leads to improved key rates in comparison to previous results.

  19. Light Duty Plug-in Hybrid Vehicle Systems Analysis

    Broader source: Energy.gov (indexed) [DOE]

    support Budget * Prior (DOE) - 300K (FY05-FY07) * FY08 (DOE) - 200K * Future (DOE) 150Kyr for 3 years Barriers * High cost of PHEV technology needs alternative value streams...

  20. Fire hazards evaluation for light duty utility arm system

    SciTech Connect (OSTI)

    HUCKFELDT, R.A.

    1999-02-24T23:59:59.000Z

    In accordance with DOE Order 5480.7A, Fire Protection, a Fire Hazards Analysis must be performed for all new facilities. LMHC Fire Protection has reviewed and approved the significant documentation leading up to the LDUA operation. This includes, but is not limited to, development criteria and drawings, Engineering Task Plan, Quality Assurance Program Plan, and Safety Program Plan. LMHC has provided an appropriate level of fire protection for this activity as documented.

  1. Sandia National Laboratories: light-duty diesel engine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paper Presented at American Society of Mechanical Engineers' (ASME) 2012 Internal Combustion Engine Division (ICED) Conference On August 28, 2013, in CRF, Energy, Energy...

  2. Ultra-Low Sulfur diesel Update & Future Light Duty Diesel

    Broader source: Energy.gov (indexed) [DOE]

    MARATHON PETROLEUM COMPANY LLC PARENT-MARATHON OIL COMPANY FIFTH LARGEST US REFINERY (OVER 1 MILLION BBLS OF CRUDE CAPACITY) MAJOR MARKETS IN MIDWEST AND SOUTHEAST ...

  3. Marketing Light-Duty Diesels to U.S. Consumers

    Broader source: Energy.gov (indexed) [DOE]

    levels of performance and convenience * the best platform for renewable fuels including Biodiesel, SunFuel, and SunDiesel 14 Modern TDI Diesel technology has come a long way...

  4. Fueling U.S. Light Duty Diesel Vehicles

    Broader source: Energy.gov (indexed) [DOE]

    - Cylinder deactivation - Variable valve timing & lift - Direct injectionlean burn - Turbo chargingdownsizing - Integrated starter generators - Low temperature combustion *...

  5. Light-Duty Diesel Market Potential in North America

    Broader source: Energy.gov (indexed) [DOE]

    Trends - Europe Specific Power (kWl) Future HSDI Diesel Engines Specific Power (hpl) Turbo Charged SI Engines 4V-SI Engines 80 60 20 0 40 100 60 20 0 40 80 2V-SI Engines 1930...

  6. Vehicle Technologies Office AVTA: Light Duty Alternative Fuel and Advanced

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartmentDepartment of Energy Photo of

  7. Light Duty Efficient Clean Combustion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartmentPresentation from the U.S. DOE Office

  8. Light Duty Efficient Clean Combustion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartmentPresentation from the U.S. DOE

  9. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartmentPresentation from the U.S. DOEDOE

  10. Light-Duty Advanced Diesel Combustion Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartmentPresentationThis

  11. Light-Duty Reactivity Controlled Compression Ignition Drive Cycle Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy and Emissions Estimates | Department of Energy

  12. Light-duty Diesels: Clean Enough? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy and Emissions Estimates | Department of

  13. Light-Duty Vehicle Energy Demand, Demographics, and Travel Behavior

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarketsNov-14Biomass feedstocks and the

  14. DOE Light Duty Vehicle Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department of Energy81st Lessons

  15. Opportunity Assessment Clean Diesels in the North American Light Duty

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment ofOil'sEnergy 9Industrial Applications

  16. Organic Rankine Cycle for Light Duty Passenger Vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment ofOil'sEnergy8Organic Photovoltaics

  17. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing | Department of EnergyLiekovii

  18. First Semi-Annual Report AFDC Light Duty Vehicles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancingProof of Ferromagnetic CarbonFirstDepartment

  19. Thermoelectric HVAC for Light-Duty Vehicle Applications | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector,Department of EnergytheDepartmentEnergy 1 DOE

  20. Thermoelectric HVAC for Light-Duty Vehicle Applications | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector,Department of EnergytheDepartmentEnergy 1

  1. Thermoelectric Opportunities for Light-Duty Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector,Department ofDepartment of Energy2for

  2. Thermoelectric Opportunities in Light-Duty Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector,Department ofDepartment of Energy2forin

  3. Business Case for Light-Duty Diesels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy FutureDepartment ofBUILDING-TO-GRIDLight W ater RDiesel in

  4. Emissions from the European Light Duty Diesel Vehicle During DPF

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard | Department ofEmily Knouse About UsEnergya

  5. Advanced Technology Light Duty Diesel Aftertreatment System | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAcceleratedDepartmentDepartment of EnergySupervisoryEnergy

  6. Technology Development for Light Duty High Efficient Diesel Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| DepartmentDepartment of Energy TechnologyDepartment of

  7. NGV and FCV Light Duty Transportation Perspective | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many Devils Wash, Shiprock, NewThisAbandonedDepartment of

  8. Assumption-Commitment Support for CSP Model Checking

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    AVoCS 2006 Assumption-Commitment Support for CSP Model Checking Nick Moffat1 Systems Assurance using CSP. In our formulation, an assumption-commitment style property of a process SYS takes the form-Guarantee, CSP, Model Checking, Compositional Reasoning 1 Introduction The principle of compositional program

  9. MONITORED GEOLOGIC REPOSITORY LIFE CYCLE COST ESTIMATE ASSUMPTIONS DOCUMENT

    SciTech Connect (OSTI)

    R.E. Sweeney

    2001-02-08T23:59:59.000Z

    The purpose of this assumptions document is to provide general scope, strategy, technical basis, schedule and cost assumptions for the Monitored Geologic Repository (MGR) life cycle cost (LCC) estimate and schedule update incorporating information from the Viability Assessment (VA) , License Application Design Selection (LADS), 1999 Update to the Total System Life Cycle Cost (TSLCC) estimate and from other related and updated information. This document is intended to generally follow the assumptions outlined in the previous MGR cost estimates and as further prescribed by DOE guidance.

  10. Computational soundness for standard assumptions of formal cryptography

    E-Print Network [OSTI]

    Herzog, Jonathan, 1975-

    2004-01-01T23:59:59.000Z

    This implementation is conceptually simple, and relies only on general assumptions. Specifically, it can be thought of as a 'self-referential' variation on a well-known encryption scheme. 4. Lastly, we show how the ...

  11. QKD with finite resources: secret key rates via Rényi entropies

    E-Print Network [OSTI]

    Silvestre Abruzzo; Hermann Kampermann; Markus Mertz; Dagmar Bruß

    2011-05-27T23:59:59.000Z

    A realistic Quantum Key Distribution (QKD) protocol necessarily deals with finite resources, such as the number of signals exchanged by the two parties. We derive a bound on the secret key rate which is expressed as an optimization problem over R\\'enyi entropies. Under the assumption of collective attacks by an eavesdropper, a computable estimate of our bound for the six-state protocol is provided. This bound leads to improved key rates in comparison to previous results.

  12. Security proof of practical quantum key distribution schemes

    E-Print Network [OSTI]

    Yodai Watanabe

    2005-06-29T23:59:59.000Z

    This paper provides a security proof of the Bennett-Brassard (BB84) quantum key distribution protocol in practical implementation. To prove the security, it is not assumed that defects in the devices are absorbed into an adversary's attack. In fact, the only assumption in the proof is that the source is characterized. The proof is performed by lower-bounding adversary's Renyi entropy about the key before privacy amplification. The bound reveals the leading factors reducing the key generation rate.

  13. COMPARING ALASKA'S OIL PRODUCTION TAXES: INCENTIVES AND ASSUMPTIONS1

    E-Print Network [OSTI]

    Pantaleone, Jim

    context of Alaska oil production taxes, comparing MAPA and ACES to the original petroleum profits tax (PPT1 COMPARING ALASKA'S OIL PRODUCTION TAXES: INCENTIVES AND ASSUMPTIONS1 Matthew Berman In a recent analysis comparing the current oil production tax, More Alaska Production Act (MAPA, also known as SB 21

  14. Public Key Cryptography and Key Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-02-15T23:59:59.000Z

    The use and management of certificate-based public key cryptography for the Department of Energy (DOE) requires the establishment of a public key infrastructure (PKI). This chapter defines the policy related to roles, requirements, and responsibilities for establishing and maintaining a DOE PKI and the documentation necessary to ensure that all certificates are managed in a manner that maintains the overall trust required to support a viable PKI. Canceled by DOE N 251.112.

  15. Effects of internal gain assumptions in building energy calculations

    SciTech Connect (OSTI)

    Christensen, C.; Perkins, R.

    1981-01-01T23:59:59.000Z

    The utilization of direct solar gains in buildings can be affected by operating profiles, such as schedules for internal gains, thermostat controls, and ventilation rates. Building energy analysis methods use various assumptions about these profiles. The effects of typical internal gain assumptions in energy calculations are described. Heating and cooling loads from simulations using the DOE 2.1 computer code are compared for various internal-gain inputs: typical hourly profiles, constant average profiles, and zero gain profiles. Prototype single-family-detached and multi-family-attached residential units are studied with various levels of insulation and infiltration. Small detached commercial buildings and attached zones in large commercial buildings are studied with various levels of internal gains. The results of this study indicate that calculations of annual heating and cooling loads are sensitive to internal gains, but in most cases are relatively insensitive to hourly variations in internal gains.

  16. Notes 01. The fundamental assumptions and equations of lubrication theory

    E-Print Network [OSTI]

    San Andres, Luis

    2009-01-01T23:59:59.000Z

    for unsteady or transient motions ? Journal angular speed (rad/s) NOTES 1. THE FUNDAMENTAL ASSUMPTIONS IN HYDRODYNAMIC LUBRICATION ? Dr. Luis San Andr?s (2009) 2 Fluid flow in a general physical domain is governed by the principles of: a) conservation... of the runner surface. For example, in journal bearings U * =?R J where ? is the journal angular speed in rad/s. Substitution of the dimensionless variables into the continuity equation (1) renders the following expression 0...

  17. Key Milestones/Outlook

    Broader source: Energy.gov [DOE]

    Key Milestones/Outlook per the Department of Energy 2015 Congressional Budget Request, Environmental Management, March 2014

  18. Developing a decision model to describe levels of self-directedness based upon the key assumptions of andragogy 

    E-Print Network [OSTI]

    Richards, Lance Jonathan

    2005-11-01T23:59:59.000Z

    As workplace demands change, a need has developed for alternatives to traditional education. With advancements in electronic telecommunication technologies, distance education has become a viable alternative to traditional ...

  19. Verification of energy audit assumptions: Why engineering estimates go bad

    SciTech Connect (OSTI)

    Dent, C.L.; Swanson, D.B.; Koca, R.W.; Tibbetts, B.

    1994-12-31T23:59:59.000Z

    Often, local governments do not have the resources to fully assess and implement energy efficiency measures (EEMs) even though initial payback calculations are encouraging. To address this problem, the California Energy Commission (CEC) has been operating the Energy Partnership Program (EPP) to provide technical assistance and funding to local governments for energy efficiency projects in public buildings. A government agency interested in participating in the EPP begins the process by submitting an application which is then reviewed by the CEC for energy savings potential. Selected sites are visited by the CEC, after which they may be granted a full energy audit and recommendation study by an independent energy service company (ESCO). Also, in cases where the local government does not have the capital for new equipment purchases, the CEC can provide a loan to that government which can then be repaid through the reduced utility expenditures. Since industry experience has found that, on average, actual energy savings are only 60 - 70% of engineering estimates, the CEC hired Pacific Science & Technology (PS&T) to perform end-use metering and analysis to evaluate the accuracy of the energy audit. The CEC is not only interested in evaluating the total energy savings, but also improving the accuracy of future energy audits as well. To this end, Pacific Science & Technology is reviewing and evaluating all of the basic assumptions made by the auditor such as equipment power draws, operating schedules, fixture counts, etc. These basic assumptions are common building blocks used in energy use analysis. So, the goal of this project is to improve the audit assumptions and thereby improve the accuracy of future energy audits and EEM assessments.

  20. Assumptions and ambiguities in nonplanar acoustic soliton theory

    SciTech Connect (OSTI)

    Verheest, Frank [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B–9000 Gent (Belgium) [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B–9000 Gent (Belgium); School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa); Hellberg, Manfred A. [School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa)] [School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa)

    2014-02-15T23:59:59.000Z

    There have been many recent theoretical investigations of the nonlinear evolution of electrostatic modes with cylindrical or spherical symmetry. Through a reductive perturbation analysis based on a quasiplanar stretching, a modified form of the Korteweg-de Vries or related equation is derived, containing an additional term which is linear in the electrostatic potential and singular at time t?=?0. Unfortunately, these analyses contain several restrictive assumptions and ambiguities which are normally neither properly explained nor discussed, and severely limit the applicability of the technique. Most glaring are the use of plane-wave stretchings, the assumption that shape-preserving cylindrical modes can exist and that, although time is homogeneous, the origin of time (which can be chosen arbitrarily) needs to be avoided. Hence, only in the domain where the nonlinear modes are quasiplanar, far from the axis of cylindrical or from the origin of spherical symmetry can acceptable but unexciting results be obtained. Nonplanar nonlinear modes are clearly an interesting topic of research, as some of these phenomena have been observed in experiments. However, it is argued that a proper study of such modes needs numerical simulations rather than ill-suited analytical approximations.

  1. Quantum dense key distribution

    SciTech Connect (OSTI)

    Degiovanni, I.P.; Ruo Berchera, I.; Castelletto, S.; Rastello, M.L.; Bovino, F.A.; Colla, A.M.; Castagnoli, G. [Istituto Elettrotecnico Nazionale G. Ferraris, Strada delle Cacce 91, 10135 Torino (Italy); ELSAG SpA, Via Puccini 2, 16154, Genova (Italy)

    2004-03-01T23:59:59.000Z

    This paper proposes a protocol for quantum dense key distribution. This protocol embeds the benefits of a quantum dense coding and a quantum key distribution and is able to generate shared secret keys four times more efficiently than the Bennet-Brassard 1984 protocol. We hereinafter prove the security of this scheme against individual eavesdropping attacks, and we present preliminary experimental results, showing its feasibility.

  2. Key Events Timeline

    Broader source: Energy.gov [DOE]

    This document lists key events beginning with the April 20 fire on the Deepwater Horizon through July 28th. Updated July 28, 2010.

  3. Cost and Performance Assumptions for Modeling Electricity Generation Technologies

    SciTech Connect (OSTI)

    Tidball, R.; Bluestein, J.; Rodriguez, N.; Knoke, S.

    2010-11-01T23:59:59.000Z

    The goal of this project was to compare and contrast utility scale power plant characteristics used in data sets that support energy market models. Characteristics include both technology cost and technology performance projections to the year 2050. Cost parameters include installed capital costs and operation and maintenance (O&M) costs. Performance parameters include plant size, heat rate, capacity factor or availability factor, and plant lifetime. Conventional, renewable, and emerging electricity generating technologies were considered. Six data sets, each associated with a different model, were selected. Two of the data sets represent modeled results, not direct model inputs. These two data sets include cost and performance improvements that result from increased deployment as well as resulting capacity factors estimated from particular model runs; other data sets represent model input data. For the technologies contained in each data set, the levelized cost of energy (LCOE) was also evaluated, according to published cost, performance, and fuel assumptions.

  4. Key Request (Last) (First)

    E-Print Network [OSTI]

    Carrington, Emily

    will be accessing. For Johnson Hall exterior door access bring a copy of this form to the Earth & Space SciencesKey Request Form Name: (Last) (First) Contact Info Keys Cardswipe UW Email: Hitchcock Exterior Door Room:_________ Room:_________ Johnson Room:_________ Room:_________ Kincaid Exterior Door Room

  5. Optical key system

    DOE Patents [OSTI]

    Hagans, Karla G. (Livermore, CA); Clough, Robert E. (Danville, CA)

    2000-01-01T23:59:59.000Z

    An optical key system comprises a battery-operated optical key and an isolated lock that derives both its operating power and unlock signals from the correct optical key. A light emitting diode or laser diode is included within the optical key and is connected to transmit a bit-serial password. The key user physically enters either the code-to-transmit directly, or an index to a pseudorandom number code, in the key. Such person identification numbers can be retained permanently, or ephemeral. When a send button is pressed, the key transmits a beam of light modulated with the password information. The modulated beam of light is received by a corresponding optical lock with a photovoltaic cell that produces enough power from the beam of light to operate a password-screen digital logic. In one application, an acceptable password allows a two watt power laser diode to pump ignition and timing information over a fiberoptic cable into a sealed engine compartment. The receipt of a good password allows the fuel pump, spark, and starter systems to each operate. Therefore, bypassing the lock mechanism as is now routine with automobile thieves is pointless because the engine is so thoroughly disabled.

  6. Validity of conventional assumptions concerning flexible response. Research report

    SciTech Connect (OSTI)

    Gutierrez, M.J.

    1989-01-01T23:59:59.000Z

    The North Atlantic Treaty Organization is an alliance for collective defense. Made up of 16 countries, NATO has been a successful alliance because there has been no war in Europe since 1945. In 1967, NATO adopted the strategy of flexible response, a strategy dependent upon conventional, tactical nuclear, and strategic nuclear weapons to provide deterrence from a Warsaw Pact attack. Although successful, NATO is suffering from an erosion in conventional strength. NATO continues to make assumptions about its conventional capabilities to successfully meet the requirements of the flexible response strategy. In the present day world of NATO, there is limited funding, a fact that is not likely to change any time in the foreseeable future. Limited funding makes it impossible to buy all the conventional force structure needed to ideally support the current strategy, also a fact that is unlikely to change. This paper shows limitations in some of the ways NATO assumes it can conventionally perform its mission. It is the author's position that NATO should modernize its conventional thinking to make it more in line with the realities of the situation NATO finds itself in today.

  7. Assumptions and Strategies for Conducting Research with Learning Disabled Adolescents and Young Adults

    E-Print Network [OSTI]

    Meyen, Edward L.; Schiefelbusch, Richard L.; Deshler, Donald D.; Alley, Gordon R.; Moran, Mary Ross; Clark, Frances L.

    1980-01-01T23:59:59.000Z

    This paper details the assumptions about learning disabled adolescents and young adults as well as assumptions about conducting research with this population held by researchers at the Kansas Institute. Strategies developed ...

  8. The Power of a Few Large Blocks: A credible assumption with incredible efficiency

    E-Print Network [OSTI]

    Foster, Dean P.

    i.i.d. assumption about the error structure, the two-sample t-statistic for oil was significantThe Power of a Few Large Blocks: A credible assumption with incredible efficiency Dongyu Lin and Dean P. Foster Abstract The most powerful assumption in data analysis is that of independence. Unfortu

  9. Cryptographic Key Management System

    SciTech Connect (OSTI)

    No, author

    2014-02-21T23:59:59.000Z

    This report summarizes the outcome of U.S. Department of Energy (DOE) contract DE-OE0000543, requesting the design of a Cryptographic Key Management System (CKMS) for the secure management of cryptographic keys for the energy sector infrastructure. Prime contractor Sypris Electronics, in collaboration with Oak Ridge National Laboratories (ORNL), Electric Power Research Institute (EPRI), Valicore Technologies, and Purdue University's Center for Education and Research in Information Assurance and Security (CERIAS) and Smart Meter Integration Laboratory (SMIL), has designed, developed and evaluated the CKMS solution. We provide an overview of the project in Section 3, review the core contributions of all contractors in Section 4, and discuss bene#12;ts to the DOE in Section 5. In Section 6 we describe the technical construction of the CKMS solution, and review its key contributions in Section 6.9. Section 7 describes the evaluation and demonstration of the CKMS solution in different environments. We summarize the key project objectives in Section 8, list publications resulting from the project in Section 9, and conclude with a discussion on commercialization in Section 10 and future work in Section 11.

  10. Bioenergy Key Publications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-OilBioenergy 2015 AgendaBioenergyKEY

  11. NETL: Key Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLoveReferenceAgenda Workshop AgendaGraphic of aEnergy SystemsKey

  12. NSR Key Number Retrieval

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR Key Number Retrieval Pease

  13. Security bounds for efficient decoy-state quantum key distribution

    E-Print Network [OSTI]

    Marco Lucamarini; James F. Dynes; Bernd Fröhlich; Zhiliang Yuan; Andrew J. Shields

    2015-03-25T23:59:59.000Z

    Information-theoretical security of quantum key distribution (QKD) has been convincingly proven in recent years and remarkable experiments have shown the potential of QKD for real world applications. Due to its unique capability of combining high key rate and security in a realistic finite-size scenario, the efficient version of the BB84 QKD protocol endowed with decoy states has been subject of intensive research. Its recent experimental implementation finally demonstrated a secure key rate beyond 1 Mbps over a 50 km optical fiber. However the achieved rate holds under the restrictive assumption that the eavesdropper performs collective attacks. Here, we review the protocol and generalize its security. We exploit a map by Ahrens to rigorously upper bound the Hypergeometric distribution resulting from a general eavesdropping. Despite the extended applicability of the new protocol, its key rate is only marginally smaller than its predecessor in all cases of practical interest.

  14. Key-shift transmission

    SciTech Connect (OSTI)

    Nemoto, S.

    1989-03-07T23:59:59.000Z

    A key-shift transmission is described, characterized by the speed-change shaft being divided into a pair of trough-shaped shaft halves each having an arched inner surface which defines a part of a cylindrical bore extending axially through the speed-change shaft thereby the shaft being formed into a hollow shaft, and by each of the shaft halves including a pair of flattened end surfaces which extend axially of each shaft half at both sides of the inner surface, one of the end surfaces having thereon an axially elongated projection and the other of the end surfaces having herein an axially elongated recess of a depth smaller than the height of the projection. The pair of shaft halves are engaged to each other co-rotatably by fitting the projections of the respective shaft halves into the recesses of the respective shaft halves so as to form in an outer surface of the speed-change shaft a pair of elongated axial grooves which are located radially outwardly of the elongated projections of the respective shaft halves and between the flattened end surfaces of the respective shaft halves. A pair of the shift keys are disposed within the pair of elongated axial grooves.

  15. Key recycling in authentication

    E-Print Network [OSTI]

    Christopher Portmann

    2014-09-29T23:59:59.000Z

    In their seminal work on authentication, Wegman and Carter propose that to authenticate multiple messages, it is sufficient to reuse the same hash function as long as each tag is encrypted with a one-time pad. They argue that because the one-time pad is perfectly hiding, the hash function used remains completely unknown to the adversary. Since their proof is not composable, we revisit it using a composable security framework. It turns out that the above argument is insufficient: if the adversary learns whether a corrupted message was accepted or rejected, information about the hash function is leaked, and after a bounded finite amount of rounds it is completely known. We show however that this leak is very small: Wegman and Carter's protocol is still $\\epsilon$-secure, if $\\epsilon$-almost strongly universal$_2$ hash functions are used. This implies that the secret key corresponding to the choice of hash function can be reused in the next round of authentication without any additional error than this $\\epsilon$. We also show that if the players have a mild form of synchronization, namely that the receiver knows when a message should be received, the key can be recycled for any arbitrary task, not only new rounds of authentication.

  16. Team Building Toolkit KEYS -Keys to Enhance Your Supervisory Success

    E-Print Network [OSTI]

    Walker, Matthew P.

    Team Building Toolkit KEYS - Keys to Enhance Your Supervisory Success University of California to Enhance Your Supervisory Success 2 | P a g e Table of Contents Stages of Team Development ................................................................................................ 4 Team Building at a Glance

  17. Lifting Rationality Assumptions in Binary Aggregation Umberto Grandi and Ulle Endriss

    E-Print Network [OSTI]

    Endriss, Ulle

    Lifting Rationality Assumptions in Binary Aggregation Umberto Grandi and Ulle Endriss Institute aggregation procedure will lift the rationality assumptions from the in- dividual to the collective level, i an axiomatic characterisation of the class of aggregation proce- dures that will lift all rationality

  18. Arctic Ice Dynamics Joint Experiment (AIDJEX) assumptions revisited and found inadequate

    E-Print Network [OSTI]

    Sulsky, Deborah L.

    the Arctic Ice Dynamics Joint Experiment (AIDJEX) assumptions about pack ice behavior with an eye to modeling the behavior of pack ice. A model based on these assumptions is needed to represent the deformation and stress in pack ice on scales from 10 to 100 km, and would need to explicitly resolve discontinuities

  19. OIKOS 101: 499504, 2003 Do seedlings in gaps interact? A field test of assumptions in ESS

    E-Print Network [OSTI]

    Silvertown, Jonathan

    OIKOS 101: 499­504, 2003 Do seedlings in gaps interact? A field test of assumptions in ESS seed seedlings in gaps interact? A field test of assumptions in ESS seed size models. ­ Oikos 101: 499­504. ESS for the occupancy of `safe sites' or vegetation gaps. If mortality rates are high and/or frequency-independent, ESS

  20. Appropriate technology for planning hydroelectric power projects in Nepal: the need for assumption analysis

    SciTech Connect (OSTI)

    Chandler, C.G.

    1981-06-01T23:59:59.000Z

    The study focuses on the project development process for hydroelectric project planning in Nepal. Chapter I describes the contrast between the vast potential for hydroelectric power development in Nepal and the current energy shortage within the country, not only for electricity, but for firewood and other fuel sources as well. Chapter II explores some of the unknown factors facing hydropower project planners in Nepal, where data for hydrologic, geologic, environmental, and sociological project components are lacking. The chapter also examines institutional and fiscal factors which constrain the planning process. Chapter III describes the critical role of assumptions in the project development process, and details the stages that a project goes through as it is planned. The chapter introduces the concept of assumption analysis as a technique for project planning, listing the potential conflict between the assumptions of foreign consultants and the host-country users of project outputs as an ingredient in the project's success or failure. Chapter IV demonstrates the mechanics and usefulness of assumption analysis through an Assumption Analysis Chart, which shows the interaction among project objectives, project alternatives, project assumptions, and the project development process. Assumption analysis techniques are expected to be useful among bilateral and multilateral aid donors servicing less developed countries.

  1. Behavioral Assumptions Underlying California Residential Sector Energy Efficiency Programs (2009 CIEE Report)

    Broader source: Energy.gov [DOE]

    This paper examines the behavioral assumptions that underlie California’s residential sector energy efficiency programs and recommends improvements that will help to advance the state’s ambitious greenhouse gas reduction goals.

  2. WVU Regional Research Institute grad assistant wins national award for throwing assumptions out the window

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    WVU Regional Research Institute grad assistant wins national award for throwing assumptions out the window Silicon Valley conjures images of leading edge technology. Las Vegas makes one think of gambling

  3. Diversity & Flexibility Key to Sustainability

    Broader source: Energy.gov [DOE]

    Plenary V: Biofuels and Sustainability: Acknowledging Challenges and Confronting MisconceptionsDiversity & Flexibility Key to SustainabilityDavid Babson, Senior Fuels Engineer, Union of...

  4. Security of differential phase shift quantum key distribution against individual attacks

    E-Print Network [OSTI]

    Edo Waks; Hiroki Takesue; Yoshihisa Yamamoto

    2005-08-16T23:59:59.000Z

    We derive a proof of security for the Differential Phase Shift Quantum Key Distribution (DPSQKD) protocol under the assumption that Eve is restricted to individual attacks. The security proof is derived by bounding the average collision probability, which leads directly to a bound on Eve's mutual information on the final key. The security proof applies to realistic sources based on pulsed coherent light. We then compare individual attacks to sequential attacks and show that individual attacks are more powerful.

  5. Hydrogen/Natural Gas Blends for Heavy and Light-Duty Applications

    E-Print Network [OSTI]

    for use by internal combustion engines. The rate of supplementation ranges between 30 and 50% by volume $ Criteria for achieving ultra-low exhaust emissions $ With internal combustion piston engines 89502 Abstract NRG Tech is developing engine technology that is applicable for use in heavy-duty vehicle

  6. Evaluation of aftermarket LPG conversion kits in light-duty vehicle applications. Final report

    SciTech Connect (OSTI)

    Bass, E.A. [Southwest Research Inst., San Antonio, TX (US)] [Southwest Research Inst., San Antonio, TX (US)

    1993-06-01T23:59:59.000Z

    SwRI was contracted by NREL to evaluate three LPG conversion kits on a Chevrolet Lumina. The objective of the project was to measure the Federal Test Procedure (FTP) emissions and fuel economy of these kits, and compare their performance to gasoline-fueled operation and to each other. Varying LPG fuel blends allowed a preliminary look at the potential for fuel system disturbance. The project required kit installation and adjustment according to manufacturer`s instructions. A limited amount of trouble diagnosis was also performed on the fuel systems. A simultaneous contract from the Texas Railroad Commission, in cooperation with NREL, provided funds for additional testing with market fuels (HD5 propane and industry average gasoline) and hydrocarbon (HC) emissions speciation to determine the ozone-forming potential of LPG HC emissions. This report documents the procurement, installation, and testing of these LPG conversion kits.

  7. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. Rebound 2007: Analysis of U.S. Light-Duty Vehicle Travel Statistics

    SciTech Connect (OSTI)

    Greene, David L [ORNL

    2010-01-01T23:59:59.000Z

    U.S. national time series data on vehicle travel by passenger cars and light trucks covering the period 1966 2007 are used to test for the existence, size and stability of the rebound effect for motor vehicle fuel efficiency on vehicle travel. The data show a statistically significant effect of gasoline price on vehicle travel but do not support the existence of a direct impact of fuel efficiency on vehicle travel. Additional tests indicate that fuel price effects have not been constant over time, although the hypothesis of symmetry with respect to price increases and decreases is not rejected. Small and Van Dender (2007) model of a declining rebound effect with income is tested and similar results are obtained.

  9. Resource Assessment and Land Use Change Light Duty Vehicles/Fuels

    E-Print Network [OSTI]

    Analysis Program- wide Analysis Systems Integration ANL, INL, ORNL, PNNL NREL, PNNL, INL PNNL, NREL, ORNL

  10. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

    Broader source: Energy.gov (indexed) [DOE]

    Adam Dempsey Zhiming Gao, Vitaly Prikhodko, Jim Parks, David Smith and Robert Wagner Fuels, Engines and Emissions Research Center Oak Ridge National Laboratory ACE016 This...

  11. Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  12. Electric powertrains : opportunities and challenges in the US light-duty vehicle fleet

    E-Print Network [OSTI]

    Kromer, Matthew A

    2007-01-01T23:59:59.000Z

    Managing impending environmental and energy challenges in the transport sector requires a dramatic reduction in both the petroleum consumption and greenhouse gas (GHG) emissions of in-use vehicles. This study quantifies ...

  13. acceptable light-duty diesel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with diesel. Main focus of this research is to investigate the performance of diesel engine by injecting hydrogen peroxide as blends with diesel at 2%, 5% and 10 %...

  14. DOE Targets for Onboard Hydrogen Storage Systems for Light-Duty...

    Broader source: Energy.gov (indexed) [DOE]

    FCT Program's Multiyear Research, Development and Demonstration Plan. targetsonboardhydrostorage.pdf More Documents & Publications Targets for Onboard Hydrogen Storage Systems...

  15. Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A detailed explanation of each target is given in the following pages. targetsonboardhydrostorageexplanation.pdf More Documents & Publications US DRIVE Hydrogen Storage...

  16. Vehicle Technologies Office Merit Review 2015: Lean Miller Cycle System Development for Light-Duty Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about lean miller cycle system...

  17. Assessing the fuel Use and greenhouse gas emissions of future light-duty vehicles in Japan

    E-Print Network [OSTI]

    Nishimura, Eriko

    2011-01-01T23:59:59.000Z

    Reducing greenhouse gas (GHG) emissions is of great concern in Japan, as well as elsewhere, such as in the U.S. and EU. More than 20% of GHG emissions in Japan come from the transportation sector, and a more than 70% ...

  18. Light duty vehicle full fuel cycle emissions analysis. Topical report, April 1993-April 1994

    SciTech Connect (OSTI)

    Darrow, K.G.

    1994-04-01T23:59:59.000Z

    The report provides a methodology for analyzing full fuel cycle emissions of alternative fuels for vehicles. Included in this analysis is an assessment of the following fuel cycles relevant to vehicle use: gasoline, reformulated gasoline, natural gas, liquefied petroleum gas, electric power (with onboard battery storage), ethanol, and methanol fuels. The analysis focuses on basic criteria pollutants (reactive organic gases, nitrous oxides, carbon monoxide, sulfurous oxides, and particulates less than 10 microns (PM10)). Emissions of greenhouse gases (carbon dioxide, methane, and nitrous oxide) are also defined. The analysis was conducted for two cases, United States and the State of California and two time frames, current and year 2000.

  19. Remote Viewing End Effectors for Light Duty Utility Arm Robot (U)

    SciTech Connect (OSTI)

    Heckendorn, F.M. [Westinghouse Savannah River Company, AIKEN, SC (United States); Robinson, C.W.; Haynes, H.B.; Anderosn, E.K.; Pardini, A.F. [Westinghouse Hanford Co., Richland, WA (United States)

    1996-11-04T23:59:59.000Z

    The Robotics Development Groups at the Savannah River Site (SRS) and at the Hanford site have developed remote video and photography systems for deployment in underground radioactive-waste storage tanks at the Department of Energy (DOE) sites as a part of the Office of Science and Technology (OST) program within DOE. Viewing and documenting the tank interiors and their associated annular spaces is an extremely valuable tool in characterizing their condition and contents and in controlling their remediation. Several specialized video/photography systems and robotic End Effectors have been fabricated that provide remote viewing and lighting. All are remotely deployable into and out of the tank, with all viewing functions remotely operated. Positioning all control components away from the facility prevents the potential for personnel exposure to radiation and contamination. Only the remote video systems are discussed in this paper.

  20. Accelerating Light-Duty Diesel Sales in the U.S. Market

    Broader source: Energy.gov (indexed) [DOE]

    Iceland Ireland 21,5 Denmark 23,8 Netherlands 26,8 Switzerland 28,3 U. K. 36,8 39,2 Norway 42,0 Germany 49,3 W. Europe Italy 58,3 Portugal 63,3 64,7 Austria 67,8 Spain 69,1...

  1. Evaluation of Hydrogen Storage System Characteristics for Light-Duty Vehicle Applications (Poster)

    SciTech Connect (OSTI)

    Thornton, M.; Day, K.; Brooker, A.

    2010-05-01T23:59:59.000Z

    This poster presentation demonstrates an approach to evaluate trade-offs among hydrogen storage system characteristic across several vehicle configurations and estimates the sensitivity of hydrogen storage system improvements on vehicle viability.

  2. Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01T23:59:59.000Z

    production and use of ethanol fuel is being attributed toCH 4 emissions, Increased ethanol fuel mixing, 2002-2010 On-D. Santini, 1999. “Effects of Fuel Ethanol Use on Fuel-Cycle

  3. Impact of Canada’s Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01T23:59:59.000Z

    production and use of ethanol fuel is being attributed toCH 4 emissions, Increased ethanol fuel mixing, 2002-2010 On-D. Santini, 1999. “Effects of Fuel Ethanol Use on Fuel-Cycle

  4. Vehicle Technologies Office Merit Review 2014: Light-Duty Diesel Combuston

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia Natonal Laboratories and  University of Wisconsin at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  5. Efficiency analysis of varying EGR under PCI mode of combustion in a light duty diesel engine 

    E-Print Network [OSTI]

    Pillai, Rahul Radhakrishna

    2008-10-10T23:59:59.000Z

    The recent pollution norms have brought a strong emphasis on the reduction of diesel engine emissions. Low temperature combustion technology such as premixed compression ignition (PCI) has the capability to significantly and simultaneously reduce...

  6. Impact of Fuel Metal Impurities on the Durability of a Light-Duty Diesel Aftertreatment System

    SciTech Connect (OSTI)

    Williams, A.; Burton, J.; McCormick, R. L.; Toops, T.; Wereszczak, A. A.; Fox, E. E.; Lance, M. J.; Cavataio, G.; Dobson, D.; Warner, J.; Brezny, R.; Nguyen, K.; Brookshear, D. W.

    2013-04-01T23:59:59.000Z

    Alkali and alkaline earth metal impurities found in diesel fuels are potential poisons for diesel exhaust catalysts. A set of diesel engine production exhaust systems was aged to 150,000 miles. These exhaust systems included a diesel oxidation catalyst, selective catalytic reduction (SCR) catalyst, and diesel particulate filter (DPF). Four separate exhaust systems were aged, each with a different fuel: ultralow sulfur diesel containing no measureable metals, B20 (a common biodiesel blend) containing sodium, B20 containing potassium, and B20 containing calcium, which were selected to simulate the maximum allowable levels in B100 according to ASTM D6751. Analysis included Federal Test Procedure emissions testing, bench-flow reactor testing of catalyst cores, electron probe microanalysis (EPMA), and measurement of thermo-mechanical properties of the DPFs. EPMA imaging found that the sodium and potassium penetrated into the washcoat, while calcium remained on the surface. Bench-flow reactor experiments were used to measure the standard nitrogen oxide (NOx) conversion, ammonia storage, and ammonia oxidation for each of the aged SCR catalysts. Vehicle emissions tests were conducted with each of the aged catalyst systems using a chassis dynamometer. The vehicle successfully passed the 0.2 gram/mile NOx emission standard with each of the four aged exhaust systems.

  7. Impact of Canada’s Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01T23:59:59.000Z

    Fuels, Natural Resources Canada. Sacramento, Calif. : SierraBustillo, M. , 2005. “Canada Considers Copying California’sPublishers (IWP), 2005. “Canada, Automakers Reach Historic

  8. Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01T23:59:59.000Z

    Fuels, Natural Resources Canada. Sacramento, Calif. : SierraBustillo, M. , 2005. “Canada Considers Copying California’sPublishers (IWP), 2005. “Canada, Automakers Reach Historic

  9. Engine coolant technology, performance, and life for light-duty applications

    SciTech Connect (OSTI)

    Turcotte, D.E.; Lockwood, F.E. [Valvoline Co., Lexington, KY (United States); Pfitzner, K.K.; Meszaros, L.L. [BASF Aktiengesellschaft, Ludwigshafen (Germany); Listebarger, J.K. [Ashland Chemical, Dublin, OH (United States)

    1999-08-01T23:59:59.000Z

    Recently there has been interest by motor vehicle manufacturers in developing longer-lived automotive engine coolants with an emphasis on organic acid technology (OAT). Paradoxically, the lifetime of conventional technology remains largely undefined. Concerns arising from the depleting nature of silicate have led to modern conservative change recommendations of 30,000 to 50,000 miles ({approximately}48,279 to 80,464 km). In the present work, laboratory bench test, engine dynamometer and vehicle service data from traditional silicate, hybrid and nonsilicate coolants are compared and contrasted. A new electrochemical test is used to examine passivation kinetics on aluminum. It is shown that performance and lifetime are independent of chemistry and cannot be generalized. Examples include an American silicate coolant with excellent performance on high-heat-rejecting aluminum (80 W/cm{sup 2}). European and American silicate coolants with performance defined lifetimes in excess of 300,000 miles (482,790 km), and an OAT coolant with laboratory high lead solder protection. It is concluded that the primary benefit of OAT is to meet global specifications that include chemical limitations.

  10. Efficiency analysis of varying EGR under PCI mode of combustion in a light duty diesel engine

    E-Print Network [OSTI]

    Pillai, Rahul Radhakrishna

    2008-10-10T23:59:59.000Z

    HC Hydrocarbon HCCI Homogenous Charge Compression Ignition HiMICS Homogenous Charge Intelligent Multiple Injection Combustion System IC Internal Combustion IDI Indirect Injection IMEP Indicative Mean Effective Pressure ISPOL Isuzu Poland... in HC and CO formation [2]. Two main methods have been developed to achieve the low temperature combustion. They are homogenous charge compression ignition (HCCI) and premixed compression ignition (PCI). 1.2.3 HCCI and Its Development HCCI...

  11. Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01T23:59:59.000Z

    and the Canadian Automotive Industry Respecting AutomobileAgreements with the Automotive Industry. ” http://www.nrcan-Government and the automotive industry trade associations.

  12. Impact of Canada’s Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2006-01-01T23:59:59.000Z

    and the Canadian Automotive Industry Respecting AutomobileAgreements with the Automotive Industry. ” http://www.nrcan-Government and the automotive industry trade associations.

  13. Impacts of Oxygenated Gasoline Use on California Light-Duty Vehicle Emissions

    E-Print Network [OSTI]

    Kirchstetter, Thomas W.; Singer, Brett C.; Harley, Robert A.

    1996-01-01T23:59:59.000Z

    possibly due to running loss evaporative emissions thatOnlyrunning exhaust and running loss evaporative emissionshad opposing effects on running loss evapo- gasoline shown

  14. Light-Duty Diesel EngineTechnology to Meet Future Emissions and...

    Broader source: Energy.gov (indexed) [DOE]

    of the US Market A M Greaney, Ricardo, Inc. AMGreaney@ricardo.com Ricardo plc 2004 RD.04103702.1 2 Several challenges must be met to exploit the fuel economy &...

  15. Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel...

    Broader source: Energy.gov (indexed) [DOE]

    Engine Marek Tatur, Dean Tomazic, Alok Warey FEV Inc. William Cannella Chevron Energy Technology Company Project Goals To examine which fuel properties are desirable for...

  16. Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty Vehicle Applications

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. Impacts of Oxygenated Gasoline Use on California Light-Duty Vehicle Emissions

    E-Print Network [OSTI]

    Kirchstetter, Thomas W.; Singer, Brett C.; Harley, Robert A.

    1996-01-01T23:59:59.000Z

    fuel and oxygenates (ethanol, MTBE, ETBE) emissions and onmeasured effects of MTBE, ETBE, and ethanol content on

  18. Urea SCR and DPF System for Tier 2 Diesel Light-Duty Trucks

    Broader source: Energy.gov (indexed) [DOE]

    SCR Deflectormixer, long inlet cone Larger DOC, upstream injection with spray target Turbo & EGR modifications, post injection 2.01 Reduced tailpipe NOx PM: 2-5 mgmi Increased...

  19. Drive cycle analysis of butanol/diesel blends in a light-duty vehicle.

    SciTech Connect (OSTI)

    Miers, S. A.; Carlson, R. W.; McConnell, S. S.; Ng, H. K.; Wallner, T.; LeFeber, J.; Energy Systems; Esper Images Video & Multimedia

    2008-10-01T23:59:59.000Z

    The potential exists to displace a portion of the petroleum diesel demand with butanol and positively impact engine-out particulate matter. As a preliminary investigation, 20% and 40% by volume blends of butanol with ultra low sulfur diesel fuel were operated in a 1999 Mercedes Benz C220 turbo diesel vehicle (Euro III compliant). Cold and hot start urban as well as highway drive cycle tests were performed for the two blends of butanol and compared to diesel fuel. In addition, 35 MPH and 55 MPH steady-state tests were conducted under varying road loads for the two fuel blends. Exhaust gas emissions, fuel consumption, and intake and exhaust temperatures were acquired for each test condition. Filter smoke numbers were also acquired during the steady-state tests.

  20. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

    Broader source: Energy.gov (indexed) [DOE]

    feedback control capability Gasoline Tank Air Exhaust Air HXN Exhaust HXN EGR HXN Turbo Fuel Rail Fuel Pump Fuel Pressure Regulator DRIVVEN Control * Engine thermal boundary...

  1. Addressing the Challenges of RCCI Operation on a Light-Duty...

    Broader source: Energy.gov (indexed) [DOE]

    + ULSD EGR controls MPR but may adversely impact BTE due to EGR heat rejection and turbo-machinery limitations. Ethanol-gasoline blends enable higher load operation with...

  2. High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder...

    Broader source: Energy.gov (indexed) [DOE]

    issues related to cylinder-to-cylinder balancing, dilution, heat rejection, turbo-machinery, ... * Analysis Thermodynamic analysis to understand fuel usage...

  3. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

    Broader source: Energy.gov (indexed) [DOE]

    EGR controls MPR but may adversely impact BTE stability due to EGR heat rejection and turbo-machinery limitations. Ethanol-gasoline blends enable higher load operation with...

  4. Economic Comparison of LNT Versus Urea SCR for Light-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Emission Control Technology Review Laboratory and Vehicle Demonstration of a "2nd-Generation" LNT+in-situ SCR Diesel NOx Emission Control Concept Development of Optimal...

  5. Effects of Biodiesel Operation on Light-Duty Tier 2 Engine and Emission Control Systems: Preprint

    SciTech Connect (OSTI)

    Tatur, M.; Nanjundaswamy, H.; Tomazic, D.; Thornton, M.

    2008-08-01T23:59:59.000Z

    This paper documents the impact of biodiesel blends on engine-out emissions as well as overall system performance in terms of emissions control system calibration and overall system efficiency.

  6. Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

    SciTech Connect (OSTI)

    Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

    2009-08-01T23:59:59.000Z

    Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

  7. Increasing the Fuel Economy and Safety of New Light-Duty Vehicles

    E-Print Network [OSTI]

    Wenzel, Tom; Ross, Marc

    2006-01-01T23:59:59.000Z

    behavior on risk. ” Accident Analysis and Prevention 37:age and gender. ” Accident Analysis and Prevention 27: 73-

  8. Biodiesel Effects on the Operation of U.S. Light Duty Tier 2 Engine and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-Oil Deployment in the

  9. Biodiesel Effects on the Operation of U.S. Light-Duty Tier 2 Engine and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-Oil Deployment in theAftertreatment

  10. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehilce Sector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Toolsearch keywordsclear searchCOMMERCIAL

  11. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

    Broader source: Energy.gov (indexed) [DOE]

    400k (anticipated) Duration Barriers Interactions Collaborations * Efficiencycombustion * Emission control * Engine management * Industry technical teams * DOE working...

  12. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

    Broader source: Energy.gov (indexed) [DOE]

    kwhr) BaroP (InHg) AirMassFlo w (gs) EGR Rate (%) AFR mass HC (ppm) NOx (ppm) CO (ppm) CO2 Intake (%) 1.0 1000 11.526 0.1537 0.04770 10.4 0.2369 18.90 443.0 443.4 28.91 15.91...

  13. Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel Engine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies Program (FCTP)Overviewgreen h yDepartment of

  14. Fuel Spray Research on Light-Duty Injection Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies Program (FCTP)OverviewgreenLife RequirementsUsing10

  15. Fuel Spray Research on Light-Duty Injection Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies Program (FCTP)OverviewgreenLife

  16. Fueling U.S. Light Duty Diesel Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies ProgramOutfitted with SCR |AlteringFueling

  17. Future Potential of Hybrid and Diesel Powertrains in the U.S. Light-Duty

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies ProgramOutfittedof6 *Fuels: Issues and

  18. Light Duty Diesels in North America A Huge Opportunity | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofsDepartmentLife

  19. Light Duty Diesels in the United States - Some Perspectives | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofsDepartmentLifeEnergy Emission

  20. Light Duty Diesels in the United States - Some Perspectives | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofsDepartmentLifeEnergy

  1. Light Duty Diesels in the United States - Some Perspectives | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment

  2. Light Duty Plug-in Hybrid Vehicle Systems Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartmentPresentation from the U.S.

  3. Light-Duty Diesel EngineTechnology to Meet Future Emissions and Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartmentPresentationThisRequirements of the

  4. Light-Duty Diesel Market Potential in North America | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartmentPresentationThisRequirements of

  5. Light-Duty Diesels in the U.S. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartmentPresentationThisRequirements

  6. Light-Duty Lean GDI Vehicle Technology Benchmark | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter

  7. Ricardo's ACTION Strategy: An Enabling Light Duty Diesel Technology for the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingofRetrofittingFund Webinars RevolvingUS Market |

  8. SCReaming for Low NOx - SCR for the Light Duty Market | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingofRetrofittingFundAofSCE&G-4-EStandards

  9. Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2AprilBig EddyNobel Laureate

  10. DOE Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department ofDepartment of Energy toDocumentedto Violate

  11. Cummins Work Toward Successful Introduction of Light-Duty Clean Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30,Crafty Gifts for theofPhotovoltaicsMay 16, 2013Engines

  12. Outlook for Light-Duty-Vehicle Fuel Demand | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment ofOil'sEnergy8OrganicOsmoticOutdoor Solar

  13. Multi-Mode RCCI Has Great Potential to Improve Fuel Economy in Light-Duty

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA /Ml'.SolarUS Dept ofActing Chiefof Inks and TonersDiesel

  14. Development of a Waste Heat Recovery System for Light Duty Diesel Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S HBatteries

  15. Post Mortem of 120k mi Light-Duty Urea SCR and DPF System | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of60 DATE:Annual SiteSubcommittees -SEP 0 6

  16. Progress on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+ Report Presentation:in the U.S.Logistical(S3TEC )Department ofand

  17. Target Explanation Document: Onboard Hydrogen Storage for Light-Duty Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment ofEnergy State7/109T.M.TRUPACT-IIIof

  18. Marketing Light-Duty Diesels to U.S. Consumers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 2012 (MECSEnergyEnergy

  19. Ultra-Low Sulfur diesel Update & Future Light Duty Diesel | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and BatteryUS-EU-Japan

  20. Urea SCR Durability Assessment for Tier 2 Light-Duty Truck | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUE 08:59 FAXFact Sheet Uranium MillEnergy

  1. Urea SCR and DPF System for Tier 2 Diesel Light-Duty Trucks | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUE 08:59 FAXFact Sheet Uranium

  2. Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector,Department of EnergytheDepartment

  3. Business Case for Light-Duty Diesel in the U.S. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy FutureDepartment ofBUILDING-TO-GRIDLight W ater RDiesel in the

  4. Economic Comparison of LNT Versus Urea SCR for Light-Duty Diesel Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributionsreduction system is most economical

  5. Emission Control Strategy for Downsized Light-Duty Diesels | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard | Department ofEmily Knouse About Us Emily Knouse -

  6. WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02Report |toVEHICLE TECHNOLOGIES OFFICE WORKSHOP

  7. Why Light Duty Diesels Make Sense in the North American Market | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric VehicleCenters | Department ofofto PurchaseApril 16,WhoWhy Are Weof

  8. WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and Gaps for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department ofPartnerships Toolkit VoluntaryHURRICANE * FLASHAWIPRiskGaps

  9. Target Explanation Document: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| Department of EnergyFOREnergy IV:TankDepartment ofTarget

  10. Technical Challenges and Opportunities Light-Duty Diesel Engines in North

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| Department ofGeneralWind »Assistance: Increasing CodeAmerica |

  11. Technical System Targets: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| Department ofGeneralWindBuildingOffice28-98 - May2012

  12. The Diesel Engine Powering Light-Duty Vehicles: Today and Tomorrow |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| DepartmentDepartmentThe DoDSmallManagement of theDepartment

  13. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TOTechnology Validation »Engines

  14. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TOTechnology Validation »EnginesDepartment of

  15. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TOTechnology Validation »EnginesDepartment

  16. High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e p p a a r r t t m m

  17. A Study of Emissions from a Light Duty Diesel Engine with the European

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 A Strategic Framework for SMR Deployment February 24,Particulate

  18. APBF-DEC Light-duty NOx Adsorber/DPF Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 A Strategic FrameworkRoadmap ANSI Electric

  19. Accelerating Light-Duty Diesel Sales in the U.S. Market | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated aging of roofing surfaces HugoTestingAugustPrograms

  20. Addressing the Challenges of RCCI Operation on a Light-Duty Multi-Cylinder

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated aging of1.1Energy DPFFOA ||CommonComments

  1. Mixture Formation in a Light-Duty Diesel Engine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311,Official FileEnergyAERMOD-PRIME,Department ofMixed

  2. Impact of Fuel Properties on Light-Duty Engine Performance and Emissions |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),Energy Petroleum TechnologyEnergyImagingofEGR onDepartment of

  3. Improving the Efficiency of Light-Duty Vehicle HVAC Systems using Zonal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of the Lost FoamCoolingdesign, andThermoelectric

  4. INTRODUCTION Maximal performance is a key measurement in linking the ecology,

    E-Print Network [OSTI]

    Azizi, Manny

    rely on the assumption that performance measured in the laboratory represents a true maximum. In few3947 INTRODUCTION Maximal performance is a key measurement in linking the ecology, fitness et al., 2006). Studies of mechanical power output during maximal jumps have revealed that many frog

  5. Tomography increases key rates of quantum-key-distribution protocols

    E-Print Network [OSTI]

    Shun Watanabe; Ryutaroh Matsumoto; Tomohiko Uyematsu

    2008-07-22T23:59:59.000Z

    We construct a practically implementable classical processing for the BB84 protocol and the six-state protocol that fully utilizes the accurate channel estimation method, which is also known as the quantum tomography. Our proposed processing yields at least as high key rate as the standard processing by Shor and Preskill. We show two examples of quantum channels over which the key rate of our proposed processing is strictly higher than the standard processing. In the second example, the BB84 protocol with our proposed processing yields a positive key rate even though the so-called error rate is higher than the 25% limit.

  6. Quantum key distribution with key extracted from basis information

    E-Print Network [OSTI]

    Xiongfeng Ma

    2014-10-20T23:59:59.000Z

    In conventional quantum key distribution protocols, the secure key is normally extracted from the measurement outcomes of the system. Here, a different approach is proposed, where the secure key is extracted from the measurement bases, rather than outcomes. Compared to the original Bennett-Brassard-1984 protocol, the proposed protocol involves no hardware change but modifications in data postprocessing. We show that this protocol is more robust against detector efficiency attacks and photon-number-splitting attacks when practical detectors and photon sources are used.

  7. Finite key analysis for symmetric attacks in quantum key distribution

    SciTech Connect (OSTI)

    Meyer, Tim; Kampermann, Hermann; Kleinmann, Matthias; Bruss, Dagmar [Institut fuer Theoretische Physik III, Heinrich-Heine-Universitaet Duesseldorf, D-40225 Duesseldorf (Germany)

    2006-10-15T23:59:59.000Z

    We introduce a constructive method to calculate the achievable secret key rate for a generic class of quantum key distribution protocols, when only a finite number n of signals is given. Our approach is applicable to all scenarios in which the quantum state shared by Alice and Bob is known. In particular, we consider the six state protocol with symmetric eavesdropping attacks, and show that for a small number of signals, i.e., below n{approx}10{sup 4}, the finite key rate differs significantly from the asymptotic value for n{yields}{infinity}. However, for larger n, a good approximation of the asymptotic value is found. We also study secret key rates for protocols using higher-dimensional quantum systems.

  8. Sensitivity of Rooftop PV Projections in the SunShot Vision Study to Market Assumptions

    SciTech Connect (OSTI)

    Drury, E.; Denholm, P.; Margolis, R.

    2013-01-01T23:59:59.000Z

    The SunShot Vision Study explored the potential growth of solar markets if solar prices decreased by about 75% from 2010 to 2020. The SolarDS model was used to simulate rooftop PV demand for this study, based on several PV market assumptions--future electricity rates, customer access to financing, and others--in addition to the SunShot PV price projections. This paper finds that modeled PV demand is highly sensitive to several non-price market assumptions, particularly PV financing parameters.

  9. Blind Channel Estimation in OFDM Systems by Relying on the Gaussian Assumption of the Input

    E-Print Network [OSTI]

    Quadeer, Ahmed Abdul

    Blind Channel Estimation in OFDM Systems by Relying on the Gaussian Assumption of the Input T. Y methods rely on some form of training which reduces the useful data rate. Here instead we blindly estimate maxima of the ML objective function. One is the blind Genetic algorithm and the other is the semi-blind

  10. External review of the thermal energy storage (TES) cogeneration study assumptions. Final report

    SciTech Connect (OSTI)

    Lai, B.Y.; Poirier, R.N. [Chicago Bridge and Iron Technical Services Co., Plainfield, IL (United States)

    1996-08-01T23:59:59.000Z

    This report is to provide a detailed review of the basic assumptions made in the design, sizing, performance, and economic models used in the thermal energy storage (TES)/cogeneration feasibility studies conducted by Pacific Northwest Laboratory (PNL) staff. This report is the deliverable required under the contract.

  11. RETI Phase 1B Final Report Update NET SHORT RECALCULATION AND NEW PV ASSUMPTIONS

    E-Print Network [OSTI]

    RETI Phase 1B Final Report Update NET SHORT RECALCULATION AND NEW PV ASSUMPTIONS With Revisions distributed photovoltaic (PV) installations in the Report is unclear and perhaps misleading. At the direction-generation is required. The CEC forecast assumed that 1,082 GWh will be self-generated by consumers from new PV

  12. Human lightness perception is guided by simple assumptions about reflectance and lighting

    E-Print Network [OSTI]

    Murray, Richard

    Human lightness perception is guided by simple assumptions about reflectance and lighting Richard F 0009, Toronto, Ontario, Canada, M3J 1P3 ABSTRACT Lightness constancy is the remarkable ability of human successful approaches to understanding lightness perception that have developed along independent paths

  13. On the assumption of mutual independence of jitter realizations in P-TRNG stochastic models

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    On the assumption of mutual independence of jitter realizations in P-TRNG stochastic models Patrick at transistor level and on conversion of the noise to the clock jitter exploited at the generator level. Using this approach, we can estimate proportion of the jitter coming only from the thermal noise, which is included

  14. An Assumption for the Development of Bootstrap Variants of the Akaike Information Criterion in Mixed Models

    E-Print Network [OSTI]

    Shang, Junfeng

    in Mixed Models Junfeng Shang 1, and Joseph E. Cavanaugh 2, 1 Bowling Green State University, USA 2 of Mathematics and Statistics, 450 Math Science Building, Bowling Green State University, Bowling Green, OH 43403 The University of Iowa, USA Abstract: This note provides a proof of a fundamental assumption in the verification

  15. On the Limitations of Universally Composable Two Party Computation Without Setup Assumptions #

    E-Print Network [OSTI]

    Lindell, Yehuda

    for essentially any cryptographic task in the plain model (i.e., with no setup assumptions beyond regarding the existence of universally composable protocols in the plain model without honest majority of universally composable two­party function evaluation in the plain model. Our results show that in this setting

  16. Key Issues | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report: I11IG002RTC3WASTE-TO-ENERGY:KenKeriKey Issues Key

  17. First determination of the quark mixing matrix element Vtb independent of assumptions of unitarity

    E-Print Network [OSTI]

    John Swain; Lucas Taylor

    1997-12-17T23:59:59.000Z

    We present a new method for the determination of the Cabibbo-Kobayashi-Maskawa quark mixing matrix element $|V_{tb}|$ from electroweak loop corrections, in particular those affecting the process $Z\\to b\\bar{b}$. From a combined analysis of results from the LEP, SLC, Tevatron, and neutrino scattering experiments we determine $|V_{tb}| = 0.77^{+0.18}_{-0.24}$. This is the first determination of $|V_{tb}|$ which is independent of unitarity assumptions.

  18. Key-Insulated Symmetric Key Cryptography and Mitigating Attacks against Cryptographic Cloud Software

    E-Print Network [OSTI]

    Dodis, Yevgeniy

    Key-Insulated Symmetric Key Cryptography and Mitigating Attacks against Cryptographic Cloud- sociated cryptographic keys in their entirety. In this paper, we investigate key-insulated symmetric key. To illustrate the feasibility of key-insulated symmetric key cryptography, we also report a proof

  19. A REVIEW OF ASSUMPTIONS AND ANALYSIS IN EPRI EA-3409, "HOUSEHOLD APPLIANCE CHOICE: REVISION OF REEPS BEHAVIORAL MODELS"

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    of Assumptions and Analysis in EPRI EA-3409, "Householdby the Electric Power Research Institute, Inc. ("EPRI").Neither EPRI, members of EPRI, nor Lawrence Berkeley

  20. Key Opportunities and Challenges for Program Sustainability ...

    Energy Savers [EERE]

    Key Opportunities and Challenges for Program Sustainability Key Opportunities and Challenges for Program Sustainability Better Buildings Neighborhood Program, Peer Exchange Call:...

  1. NREL: Energy Analysis - Key Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit | NationalWebmaster To contactK-12BSM -JEDI JobsKey

  2. Key Activities | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAMEnergyInvestigativeCoggin AboutofKathleen HoganKenKeyAbout

  3. Key Activities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 at IowaSecretaryDepartmentJointof Energy 30,ANDNovember 17,KeyThe

  4. Key Activities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 at IowaSecretaryDepartmentJointof Energy 30,ANDNovember 17,KeyTheThe

  5. Quantum Key Distribution with Qubit Pairs

    E-Print Network [OSTI]

    Mohd Asad Siddiqui; Tabish Qureshi

    2014-07-17T23:59:59.000Z

    We propose a new Quantum Key Distribution method in which Alice sends pairs of qubits to Bob, each in one of four possible states. Bob uses one qubit to generate a secure key and the other to generate an auxiliary key. For each pair he randomly decides which qubit to use for which key. The auxiliary key has to be added to Bob's secure key in order to match Alice's secure key. This scheme provides an additional layer of security over the standard BB84 protocol.

  6. COLLEGE AVE CAMPUS (CAC) KEY PICK UP

    E-Print Network [OSTI]

    COLLEGE AVE CAMPUS (CAC) KEY PICK UP NOTE TO ALL STUDENTS: ONLY YOU CAN PICK UP YOUR KEY. You in and key pick up. If you are unable to pick up your key by 5:00 p.m. on September 1st , please make prior in Clothier Hall on CAC. Keys not picked up during the above-noted hours can be picked up at the Housing

  7. Washington International Renewable Energy Conference 2008 Pledges: Methodology and Assumptions Summary

    SciTech Connect (OSTI)

    Babiuch, B.; Bilello, D. E.; Cowlin, S. C.; Mann, M.; Wise, A.

    2008-08-01T23:59:59.000Z

    The 2008 Washington International Renewable Energy Conference (WIREC) was held in Washington, D.C., from March 4-6, 2008, and involved nearly 9,000 people from 125 countries. The event brought together worldwide leaders in renewable energy (RE) from governments, international organizations, nongovernmental organizations, and the private sector to discuss the role that renewables can play in alleviating poverty, growing economies, and passing on a healthy planet to future generations. The conference concluded with more than 140 governments, international organizations, and private-sector representatives pledging to advance the uptake of renewable energy. The U.S. government authorized the National Renewable Energy Laboratory (NREL) to estimate the carbon dioxide (CO2) savings that would result from the pledges made at the 2008 conference. This report describes the methodology and assumptions used by NREL in quantifying the potential CO2 reductions derived from those pledges.

  8. On the validity of the Poisson assumption in sampling nanometer-sized aerosols

    SciTech Connect (OSTI)

    Damit, Brian E [ORNL] [ORNL; Wu, Dr. Chang-Yu [University of Florida, Gainesville] [University of Florida, Gainesville; Cheng, Mengdawn [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    A Poisson process is traditionally believed to apply to the sampling of aerosols. For a constant aerosol concentration, it is assumed that a Poisson process describes the fluctuation in the measured concentration because aerosols are stochastically distributed in space. Recent studies, however, have shown that sampling of micrometer-sized aerosols has non-Poissonian behavior with positive correlations. The validity of the Poisson assumption for nanometer-sized aerosols has not been examined and thus was tested in this study. Its validity was tested for four particle sizes - 10 nm, 25 nm, 50 nm and 100 nm - by sampling from indoor air with a DMA- CPC setup to obtain a time series of particle counts. Five metrics were calculated from the data: pair-correlation function (PCF), time-averaged PCF, coefficient of variation, probability of measuring a concentration at least 25% greater than average, and posterior distributions from Bayesian inference. To identify departures from Poissonian behavior, these metrics were also calculated for 1,000 computer-generated Poisson time series with the same mean as the experimental data. For nearly all comparisons, the experimental data fell within the range of 80% of the Poisson-simulation values. Essentially, the metrics for the experimental data were indistinguishable from a simulated Poisson process. The greater influence of Brownian motion for nanometer-sized aerosols may explain the Poissonian behavior observed for smaller aerosols. Although the Poisson assumption was found to be valid in this study, it must be carefully applied as the results here do not definitively prove applicability in all sampling situations.

  9. Answering Key Fuel Cycle Questions

    SciTech Connect (OSTI)

    Steven J. Piet; Brent W. Dixon; J. Stephen Herring; David E. Shropshire; Mary Lou Dunzik-Gougar

    2003-10-01T23:59:59.000Z

    The Advanced Fuel Cycle Initiative (AFCI) program has both “outcome” and “process” goals because it must address both waste already accumulating as well as completing the fuel cycle in connection with advanced nuclear power plant concepts. The outcome objectives are waste geological repository capacity and cost, energy security and sustainability, proliferation resistance, fuel cycle economics, and safety. The process objectives are readiness to proceed and adaptability and robustness in the face of uncertainties. A classic decision-making approach to such a multi-attribute problem would be to weight individual quantified criteria and calculate an overall figure of merit. This is inappropriate for several reasons. First, the goals are not independent. Second, the importance of different goals varies among stakeholders. Third, the importance of different goals is likely to vary with time, especially the “energy future.” Fourth, some key considerations are not easily or meaningfully quantifiable at present. Instead, at this point, we have developed 16 questions the AFCI program should answer and suggest an approach of determining for each whether relevant options improve meeting each of the program goals. We find that it is not always clear which option is best for a specific question and specific goal; this helps identify key issues for future work. In general, we suggest attempting to create as many win-win decisions (options that are attractive or neutral to most goals) as possible. Thus, to help clarify why the program is exploring the options it is, and to set the stage for future narrowing of options, we have developed 16 questions, as follows: · What are the AFCI program goals? · Which potential waste disposition approaches do we plan for? · What are the major separations, transmutation, and fuel options? · How do we address proliferation resistance? · Which potential energy futures do we plan for? · What potential external triggers do we plan for? · Should we separate uranium? · If we separate uranium, should we recycle it, store it or dispose of it? · Is it practical to plan to fabricate and handle “hot” fuel? · Which transuranic elements (TRU) should be separated and transmuted? · Of those TRU separated, which should be transmuted together? · Should we separate and/or transmute Cs and Sr isotopes that dominate near-term repository heating? · Should we separate and/or transmute very long-lived Tc and I isotopes? · Which separation technology? · What mix of transmutation technologies? · What fuel technology best supports the above decisions?

  10. Technical considerations related to interim source-term assumptions for emergency planning and equipment qualification. [PWR; BWR

    SciTech Connect (OSTI)

    Niemczyk, S.J.; McDowell-Boyer, L.M.

    1982-09-01T23:59:59.000Z

    The source terms recommended in the current regulatory guidance for many considerations of light water reactor (LWR) accidents were developed a number of years ago when understandings of many of the phenomena pertinent to source term estimation were relatively primitive. The purpose of the work presented here was to develop more realistic source term assumptions which could be used for interim regulatory purposes for two specific considerations, namely, equipment qualification and emergency planning. The overall approach taken was to adopt assumptions and models previously proposed for various aspects of source term estimation and to modify those assumptions and models to reflect recently gained insights into, and data describing, the release and transport of radionuclides during and after LWR accidents. To obtain illustrative estimates of the magnitudes of the source terms, the results of previous calculations employing the adopted assumptions and models were utilized and were modified to account for the effects of the recent insights and data.

  11. Sandia National Laboratories: Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    impact of swirl ratio and injection pressure on fuel-air mixing in a light-duty diesel engine." This award recognizes the best technical contribution from all ... Key Hydrogen...

  12. Assessment of Gasification-Based Biorefining at Kraft Pulp and Paper Mills in the United States, Part A: Background and Assumptions

    SciTech Connect (OSTI)

    Larson, E. D.; Consonni, S.; Katofsky, R. E.; Iisa, K.; Frederick, W. J., Jr.

    2008-11-01T23:59:59.000Z

    Commercialization of black liquor and biomass gasification technologies is anticipated in the 2010-2015 time frame, and synthesis gas from gasifiers can be converted into liquid fuels using catalytic synthesis technologies that are already commercially established in the gas-to-liquids or coal-to-liquids industries. This set of two papers describes key results from a major assessment of the prospective energy, environmental, and financial performance of commercial gasification-based biorefineries integrated with kraft pulp and paper mills [1]. Seven detailed biorefinery designs were developed for a reference mill in the southeastern United States, together with the associated mass/energy balances, air emissions estimates, and capital investment requirements. The biorefineries provide chemical recovery services and co-produce process steam for the mill, some electricity, and one of three liquid fuels: a Fischer-Tropsch synthetic crude oil (which could be refined to vehicle fuels at an existing petroleum refinery), dimethyl ether (a diesel engine fuel or propane substitute), or an ethanol-rich mixed-alcohol product. This paper describes the key assumptions that underlie the biorefinery designs. Part B will present analytical results.

  13. Quantum Key Distribution with Screening and Analyzing

    E-Print Network [OSTI]

    Won-Ho Kye

    2006-10-04T23:59:59.000Z

    We propose a quantum key distribution scheme by using screening angles and analyzing detectors which enable to notice the presence of Eve who eavesdrops the quantum channel, as the revised protocol of the recent quantum key distribution [Phys. Rev. Lett. 95, 040501 (2005)]. We discuss the security of the proposed quantum key distribution against various attacks including impersonation attack and Trojan Horse attack.

  14. Lightweight Key Establishment for Distributed Networking Environments

    E-Print Network [OSTI]

    Martin, Keith

    / COSIC Seminar 2007 Keith Martin #12;Lightweight Key Establishment/Introduction The plan 1. Wireless sensor networks 2. A key establishment framework 3. Key establishment for grids COSIC Seminar 2007 Keith Establishment/Wireless sensor networks The "classical" scenario COSIC Seminar 2007 Keith Martin #12;Lightweight

  15. Special relativity as the limit of an Aristotelian universal friction theory under Reye's assumption

    E-Print Network [OSTI]

    E. Minguzzi

    2014-11-28T23:59:59.000Z

    This work explores a classical mechanical theory under two further assumptions: (a) there is a universal dry friction force (Aristotelian mechanics), and (b) the variation of the mass of a body due to wear is proportional to the work done by the friction force on the body (Reye's hypothesis). It is shown that mass depends on velocity as in Special Relativity, and that the velocity is constant for a particular characteristic value. In the limit of vanishing friction the theory satisfies a relativity principle as bodies do not decelerate and, therefore, the absolute frame becomes unobservable. However, the limit theory is not Newtonian mechanics, with its Galilei group symmetry, but rather Special Relativity. This result suggests to regard Special Relativity as the limit of a theory presenting universal friction and exchange of mass-energy with a reservoir (vacuum). Thus, quite surprisingly, Special Relativity follows from the absolute space (ether) concept and could have been discovered following studies of Aristotelian mechanics and friction. We end the work confronting the full theory with observations. It predicts the Hubble law through tired light, and hence it is incompatible with supernova light curves unless both mechanisms of tired light (locally) and universe expansion (non-locally) are at work. It also nicely accounts for some challenging numerical coincidences involving phenomena under low acceleration.

  16. Estimating Alarm Thresholds for Process Monitoring Data under Different Assumptions about the Data Generating Mechanism

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burr, Tom; Hamada, Michael S.; Howell, John; Skurikhin, Misha; Ticknor, Larry; Weaver, Brian

    2013-01-01T23:59:59.000Z

    Process monitoring (PM) for nuclear safeguards sometimes requires estimation of thresholds corresponding to small false alarm rates. Threshold estimation dates to the 1920s with the Shewhart control chart; however, because possible new roles for PM are being evaluated in nuclear safeguards, it is timely to consider modern model selection options in the context of threshold estimation. One of the possible new PM roles involves PM residuals, where a residual is defined as residual = data ? prediction. This paper reviews alarm threshold estimation, introduces model selection options, and considers a range of assumptions regarding the data-generating mechanism for PM residuals.more »Two PM examples from nuclear safeguards are included to motivate the need for alarm threshold estimation. The first example involves mixtures of probability distributions that arise in solution monitoring, which is a common type of PM. The second example involves periodic partial cleanout of in-process inventory, leading to challenging structure in the time series of PM residuals.« less

  17. A METHOD TO EXTRACT THE REDSHIFT DISTORTION {beta} PARAMETER IN CONFIGURATION SPACE FROM MINIMAL COSMOLOGICAL ASSUMPTIONS

    SciTech Connect (OSTI)

    Tocchini-Valentini, Domenico; Barnard, Michael; Bennett, Charles L.; Szalay, Alexander S., E-mail: dtv@pha.jhu.edu [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686 (United States)

    2012-10-01T23:59:59.000Z

    We present a method to extract the redshift-space distortion {beta} parameter in configuration space with a minimal set of cosmological assumptions. We show that a novel combination of the observed monopole and quadrupole correlation functions can remove efficiently the impact of mild nonlinearities and redshift errors. The method offers a series of convenient properties: it does not depend on the theoretical linear correlation function, the mean galaxy density is irrelevant, only convolutions are used, and there is no explicit dependence on linear bias. Analyses based on dark matter N-body simulations and Fisher matrix demonstrate that errors of a few percent on {beta} are possible with a full-sky, 1 (h {sup -1} Gpc){sup 3} survey centered at a redshift of unity and with negligible shot noise. We also find a baryonic feature in the normalized quadrupole in configuration space that should complicate the extraction of the growth parameter from the linear theory asymptote, but that does not have a major impact on our method.

  18. RESIK Solar X-ray flare element abundances on a non-isothermal assumption

    E-Print Network [OSTI]

    Sylwester, B; Sylwester, J; Kepa, A

    2015-01-01T23:59:59.000Z

    Solar X-ray spectra from the RESIK crystal spectrometer on the {\\em CORONAS-F} spacecraft (spectral range $3.3-6.1$~\\AA) are analyzed for thirty-three flares using a method to derive abundances of Si, S, Ar, and K, emission lines of which feature prominently in the spectra. For each spectrum, the method first optimizes element abundances then derives the differential emission measure as a function of temperature based on a procedure given by Sylwester et al. and Withbroe. This contrasts with our previous analyses of RESIK spectra in which an isothermal assumption was used. The revised abundances (on a logarithmic scale with $A({\\rm H}) = 12$) averaged for all the flares in the analysis are $A({\\rm Si}) = 7.53 \\pm 0.08$ (previously $7.89 \\pm 0.13$), $A({\\rm S}) = 6.91 \\pm 0.07$ ($7.16 \\pm 0.17$), $A({\\rm Ar}) = 6.47 \\pm 0.08$ ($6.45 \\pm 0.07$), and $A({\\rm K}) = 5.73 \\pm 0.19$ ($5.86 \\pm 0.20$), with little evidence for time variations of abundances within the evolution of each flare. Our previous estimates of...

  19. What are the Starting Points? Evaluating Base-Year Assumptions in the Asian Modeling Exercise

    SciTech Connect (OSTI)

    Chaturvedi, Vaibhav; Waldhoff, Stephanie; Clarke, Leon E.; Fujimori, Shinichiro

    2012-12-01T23:59:59.000Z

    A common feature of model inter-comparison efforts is that the base year numbers for important parameters such as population and GDP can differ substantially across models. This paper explores the sources and implications of this variation in Asian countries across the models participating in the Asian Modeling Exercise (AME). Because the models do not all have a common base year, each team was required to provide data for 2005 for comparison purposes. This paper compares the year 2005 information for different models, noting the degree of variation in important parameters, including population, GDP, primary energy, electricity, and CO2 emissions. It then explores the difference in these key parameters across different sources of base-year information. The analysis confirms that the sources provide different values for many key parameters. This variation across data sources and additional reasons why models might provide different base-year numbers, including differences in regional definitions, differences in model base year, and differences in GDP transformation methodologies, are then discussed in the context of the AME scenarios. Finally, the paper explores the implications of base-year variation on long-term model results.

  20. Technical assumption for Mo-99 production in the MARIA reactor. Feasibility study

    SciTech Connect (OSTI)

    Jaroszewicz, J.; Pytel, K.; Dabkowski, L.; Krzysztoszek, G. [Institute of Atomic Energy, 05-400 Otwock-Swierk (Poland)

    2008-07-15T23:59:59.000Z

    The main objective of U-235 irradiation is to obtain the Tc-99m isotope which is widely used in the domain of medical diagnostics. The decisive factor determining its availability, despite its short life time, is a reaction of radioactive decay of Mo-99 into Tc- 99m. One of the possible sources of molybdenum can be achieved in course of the U-235 fission reaction. The paper presents activities and the calculations results obtained upon the feasibility study on irradiation of U-235 targets for production of molybdenum in the MARIA reactor. The activities including technical assumption were focused on performing calculation for modelling of the target and irradiation device as well as adequate equipment and tools for processing in reactor. It has been assumed that the basic component of fuel charge is an aluminium cladded plate with dimensions of 40x230x1.45 containing 4.7 g U-235. The presumed mode of the heat removal generated in the fuel charge of the reactor primary cooling circuit influences the construction of installation to be used for irradiation and the technological instrumentation. The outer channel construction for irradiation has to be identical as the standard fuel channel construction of the MARIA reactor. It enables to use the existing slab and reactor mounting sockets for the fastening of the molybdenum channel as well as the cooling water delivery system. The measurement of water temperature cooling a fuel charge and control of water flow rate in the channel can also be carried out be means of the standard instrumentation of the reactor. (author)

  1. Counterfactual quantum key distribution with high efficiency

    SciTech Connect (OSTI)

    Sun Ying [State Key Laboratory of Networking and SwitchingTechnology, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Beijing Electronic Science and Technology Institute, Beijing 100070 (China); Wen Qiaoyan [State Key Laboratory of Networking and SwitchingTechnology, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2010-11-15T23:59:59.000Z

    In a counterfactual quantum key distribution scheme, a secret key can be generated merely by transmitting the split vacuum pulses of single particles. We improve the efficiency of the first quantum key distribution scheme based on the counterfactual phenomenon. This scheme not only achieves the same security level as the original one but also has higher efficiency. We also analyze how to achieve the optimal efficiency under various conditions.

  2. Florida Keys Electric Cooperative- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Florida Keys Electric Cooperative offers residential members rebates for installing energy efficient measures. To qualify for rebates, members must first call FKEC and make an appointment for a...

  3. Brain Receptor Structures Key to Future Therapeutics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brain Receptor Structures Key to Future Therapeutics Print With an aging population in America, it is more important than ever to discover ways to treat or prevent diseases...

  4. Secure key distribution by swapping quantum entanglement

    SciTech Connect (OSTI)

    Song, Daegene [National Institute of Standards and Technology, 100 Bureau Drive, MS 8910, Gaithersburg, Maryland 20899 (United States)

    2004-03-01T23:59:59.000Z

    We report two key distribution schemes achieved by swapping quantum entanglement. Using two Bell states, two bits of secret key can be shared between two distant parties that play symmetric and equal roles. We also address eavesdropping attacks against the schemes.

  5. On quantum key distribution using ququarts

    SciTech Connect (OSTI)

    Kulik, S. P., E-mail: Sergei.Kulik@gmail.com; Shurupov, A. P. [Moscow State University (Russian Federation)

    2007-05-15T23:59:59.000Z

    A comparative analysis of quantum key distribution protocols using qubits and ququarts as information carriers is presented. Several schemes of incoherent attacks that can be used by an eavesdropper to obtain secret information are considered. The errors induced by the eavesdropper are analyzed for several key distribution protocols.

  6. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01T23:59:59.000Z

    C. E. S. Thomas, "Hydrogen and Fuel Cells: Pathway to a4-2 incorporates hydrogen and fuel cells into a roadmap thatdevelopment efforts. Hydrogen and fuel-cell technologies are

  7. Vehicle Technologies Office Merit Review 2014: Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Robert Bosch at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion concepts -...

  8. Vehicle Technologies Office Merit Review 2014: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency...

  9. A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle electrification

    E-Print Network [OSTI]

    McGaughey, Alan

    September 2014 Keywords: Electric vehicle Lithium-ion battery Battery design Production cost Electrode in addressing oil dependency, global warming, and air pollution in the United States. We investigate the role for minimum cost. Economies of scale are reached quickly at ~200e300 MWh annual production. Small-pack PHEV

  10. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01T23:59:59.000Z

    modes, allowing, say, fuel- cell costs to slide down ancurve that plots fuel-cell cost in dollars per kilowatt2002. ) production, fuel-cell cost is assumed to fall by

  11. Exploring the use of a higher octane gasoline for the U.S. light-duty vehicle fleet

    E-Print Network [OSTI]

    Chow, Eric W

    2013-01-01T23:59:59.000Z

    This thesis explores the possible benefits that can be achieved if U.S. oil companies produced and offered a grade of higher-octane gasoline to the consumer market. The octane number of a fuel represents how resistant the ...

  12. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01T23:59:59.000Z

    of electric and natural gas vehicles: draft report for yeardevice to compressed-natural-gas-vehicle consumers. ) Theof electric and natural gas vehicles” report for year one.

  13. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01T23:59:59.000Z

    Market potential of electric and natural gas vehicles: draft reportMarket potential of electric and natural gas vehicles” report

  14. Quantifying the Effects of Idle-Stop Systems on Fuel Economy in Light-Duty Passenger Vehicles

    SciTech Connect (OSTI)

    Jeff Wishart; Matthew Shirk

    2012-12-01T23:59:59.000Z

    Vehicles equipped with idle-stop (IS) systems are capable of engine shut down when the vehicle is stopped and rapid engine re-start for the vehicle launch. This capability reduces fuel consumption and emissions during periods when the engine is not being utilized to provide propulsion or to power accessories. IS systems are a low-cost and fast-growing technology in the industry-wide pursuit of increased vehicle efficiency, possibly becoming standard features in European vehicles in the near future. In contrast, currently there are only three non-hybrid vehicle models for sale in North America with IS systems and these models are distinctly low-volume models. As part of the United States Department of Energy’s Advanced Vehicle Testing Activity, ECOtality North America has tested the real-world effect of IS systems on fuel consumption in three vehicle models imported from Europe. These vehicles were chosen to represent three types of systems: (1) spark ignition with 12-V belt alternator starter; (2) compression ignition with 12-V belt alternator starter; and (3) direct-injection spark ignition, with 12-V belt alternator starter/combustion restart. The vehicles have undergone both dynamometer and on-road testing; the test results show somewhat conflicting data. The laboratory data and the portion of the on-road data in which driving is conducted on a prescribed route with trained drivers produced significant fuel economy improvement. However, the fleet data do not corroborate improvement, even though the data show significant engine-off time. It is possible that the effects of the varying driving styles and routes in the fleet testing overshadowed the fuel economy improvements. More testing with the same driver over routes that are similar with the IS system-enabled and disabled is recommended. There is anecdotal evidence that current Environmental Protection Agency fuel economy test procedures do not capture the fuel economy gains that IS systems produce in real-world driving. The program test results provide information on the veracity of these claims.

  15. Vehicle Technologies Office Merit Review 2015: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about clean...

  16. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01T23:59:59.000Z

    Table 2-5 presents the cost per kWh produced by variouselectricity rates on a cost per kWh basis only with someHybrid battery module cost per kWh required for lifecycle

  17. Alternative Fuel Evaluation Program: Alternative Fuel Light Duty Vehicle Project - Data collection responsibilities, techniques, and test procedures

    SciTech Connect (OSTI)

    none,

    1992-07-01T23:59:59.000Z

    This report describes the data gathering and analysis procedures that support the US Department of Energy`s implementation of the Alternative Motor Fuels Act (AMFA) of 1988. Specifically, test procedures, analytical methods, and data protocols are covered. The aim of these collection and analysis efforts, as mandated by AMFA, is to demonstrate the environmental, economic, and performance characteristics of alternative transportation fuels.

  18. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01T23:59:59.000Z

    Driving-age Target market Heating fuel. Figure 3-7 shows theheating fuels and the home hydrogen reformation target marketheating fuel (percentages) Discussion 3.4.1 Overall impressions A “first order approximation” of the comparison between the target market

  19. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01T23:59:59.000Z

    into utility-friendly and distributed-generation-hardware-utility-side-of-the-meter interactions and, ultimately, vehicular distributed generation

  20. Effect of Biodiesel Blending on the Speciation of Soluble Organic Fraction from a Light Duty Diesel Engine

    SciTech Connect (OSTI)

    Strzelec, Andrea [ORNL] [ORNL; Storey, John Morse [ORNL] [ORNL; Lewis Sr, Samuel Arthur [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Foster, Prof. Dave [University of Wisconsin] [University of Wisconsin; Rutland, Prof. Christopher J. [University of Wisconsin] [University of Wisconsin

    2010-01-01T23:59:59.000Z

    Soy methyl ester (SME) biodiesel was volumetrically blended with 2007 certification ultra low sulfur diesel (ULSD) fuel and run in a 1.7L direct-injection common rail diesel engine at one speed-load point (1500rpm, 2.6bar BMEP). Engine fueling rate and injection timing were adjusted to maintain a constant load, while particulate samples were collected in a diesel particulate filter (DPF) and with a dilution tunnel sampling train. The samples collected at these two locations were found to contain different levels of soluble organic fraction (SOF) and the different hydrocarbon species in the SOF. This observation indicates that traditional SOF measurements, in light of the specific sampling procedure used, may not be appropriate to DPF applications.

  1. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01T23:59:59.000Z

    fuel- cell vehicles: “Mobile Electricity" technologies andFuel-Cell Vehicles: “Mobile Electricity” Technologies, Early4 2 Mobile Electricity technologies and

  2. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01T23:59:59.000Z

    House” by Tron Architecture conceptually This is relative to what might be used in a plug-in hybrid or battery

  3. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01T23:59:59.000Z

    pink vertical line represents a driving threshold for plug-vertical lines representing the typical driving thresholds52mi of driving per refueling (chapter 2) At full, red-line

  4. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01T23:59:59.000Z

    Transition: Designing a Fuel-Cell Hypercar," presented atgoals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."

  5. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01T23:59:59.000Z

    of smaller and flexible units of generation, abandoning thethe largest generation units are the least flexible in this

  6. READ AND SIGN THE PARTIAL ASSUMPTION OF RISK ON REVERSE Risk Management 12/2012 Risk Management

    E-Print Network [OSTI]

    Oregon, University of

    READ AND SIGN THE PARTIAL ASSUMPTION OF RISK ON REVERSE Risk Management 12/2012 Risk Management Conditions of Volunteer Service Please send completed form to the Office of Risk Management: riskmanagement ___________________________________________ (name/title of department supervisor) and the Office of Risk Management, (541) 346-8316, within 24 hours

  7. Consistent Query Answering Of Conjunctive Queries Under Primary Key Constraints

    E-Print Network [OSTI]

    Pema, Enela

    2014-01-01T23:59:59.000Z

    Queries and Primary Key Constraints . . . . . . . . . .of Employee w.r.t. the primary key SSN ? {name, salary} . .query answering under primary keys: a characterization of

  8. Captured key electrical safety lockout system

    SciTech Connect (OSTI)

    Darimont, Daniel E. (Aurora, IL)

    1995-01-01T23:59:59.000Z

    A safety lockout apparatus for an electrical circuit includes an electrical switch, a key, a lock and a blocking mechanism. The electrical switch is movable between an ON position at which the electrical circuit is energized and an OFF position at which the electrical circuit is deactivated. The lock is adapted to receive the key and is rotatable among a plurality of positions by the key. The key is only insertable and removable when the lock is at a preselected position. The lock is maintained in the preselected position when the key is removed from the lock. The blocking mechanism physically maintains the switch in its OFF position when the key is removed from the lock. The blocking mechanism preferably includes a member driven by the lock between a first position at which the electrical switch is movable between its ON and OFF positions and a second position at which the member physically maintains the electrical switch in its OFF position. Advantageously, the driven member's second position corresponds to the preselected position at which the key can be removed from and inserted into the lock.

  9. Captured key electrical safety lockout system

    DOE Patents [OSTI]

    Darimont, D.E.

    1995-10-31T23:59:59.000Z

    A safety lockout apparatus for an electrical circuit includes an electrical switch, a key, a lock and a blocking mechanism. The electrical switch is movable between an ON position at which the electrical circuit is energized and an OFF position at which the electrical circuit is deactivated. The lock is adapted to receive the key and is rotatable among a plurality of positions by the key. The key is only insertable and removable when the lock is at a preselected position. The lock is maintained in the preselected position when the key is removed from the lock. The blocking mechanism physically maintains the switch in its OFF position when the key is removed from the lock. The blocking mechanism preferably includes a member driven by the lock between a first position at which the electrical switch is movable between its ON and OFF positions and a second position at which the member physically maintains the electrical switch in its OFF position. Advantageously, the driven member`s second position corresponds to the preselected position at which the key can be removed from and inserted into the lock. 7 figs.

  10. Experimental study of high speed polarization-coding quantum key distribution with sifted-key

    E-Print Network [OSTI]

    and links 1. C. H. Bennet and G. Brassard, "Quantum cryptography: Public key distribution and coin tossing

  11. September 11, 2012 NIST Key Management Workshop 2012 Secure Key Storage

    E-Print Network [OSTI]

    September 11, 2012 NIST Key Management Workshop 2012 Secure Key Storage and True Random Number Storage via PUFs - Main Idea - Reliability - Randomness -- InstantiationsInstantiations 3. True Random, including side channel resistance ° Trusted security policy routines ° Secure and authentic key storage

  12. Key Implications of the Global Economic Environment

    E-Print Network [OSTI]

    Lansky, Joshua

    Key Implications of the Global Economic Environment For PCT Filings: A Survey of the Issues DMI...............................................................................9 Annex 1: Incentives for Patent Filing: The Analytical Framework...........................11 I-1 Intellectual property, innovation, and economic growth.................................13 2-2 Individual

  13. Extracting secret keys from integrated circuits

    E-Print Network [OSTI]

    Lim, Daihyun, 1976-

    2004-01-01T23:59:59.000Z

    Modern cryptographic protocols are based on the premise that only authorized participants can obtain secret keys and access to information systems. However, various kinds of tampering methods have been devised to extract ...

  14. BACK TO BASICS: YOUR KEYS TO SAFE

    E-Print Network [OSTI]

    Kirschner, Denise

    BACK TO BASICS: YOUR KEYS TO SAFE DRIVING FINE-TUNE THE FUNDAMENTALS DRIVE SAFELY WORK WEEK: FRIDAY an occasional refresher. In fact, most company fleet safety programs emphasize basic skills and defensive

  15. Mutual Dependence for Secret Key Agreement

    E-Print Network [OSTI]

    Chan, Chung

    A mutual dependence expression is established for the secret key agreement problem when all users are active. In certain source networks, the expression can be interpreted as certain notions of connectivity and network ...

  16. Multipartite secret key distillation and bound entanglement

    E-Print Network [OSTI]

    Remigiusz Augusiak; Pawel Horodecki

    2009-09-25T23:59:59.000Z

    Recently it has been shown that quantum cryptography beyond pure entanglement distillation is possible and a paradigm for the associated protocols has been established. Here we systematically generalize the whole paradigm to the multipartite scenario. We provide constructions of new classes of multipartite bound entangled states, i.e., those with underlying twisted GHZ structure and nonzero distillable cryptographic key. We quantitatively estimate the key from below with help of the privacy squeezing technique.

  17. Multipartite secret key distillation and bound entanglement

    SciTech Connect (OSTI)

    Augusiak, Remigiusz; Horodecki, Pawel [Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-952 Gdansk (Poland) and ICFO-Institute Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-952 Gdansk (Poland)

    2009-10-15T23:59:59.000Z

    Recently it has been shown that quantum cryptography beyond pure entanglement distillation is possible and a paradigm for the associated protocols has been established. Here we systematically generalize the whole paradigm to the multipartite scenario. We provide constructions of new classes of multipartite bound entangled states, i.e., those with underlying twisted Greenberger-Horne-Zeilinger (GHZ) structure and nonzero distillable cryptographic key. We quantitatively estimate the key from below with the help of the privacy squeezing technique.

  18. Security bound of two-basis quantum-key-distribution protocols using qudits

    SciTech Connect (OSTI)

    Nikolopoulos, Georgios M.; Alber, Gernot [Institut fuer Angewandte Physik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany)

    2005-09-15T23:59:59.000Z

    We investigate the security bounds of quantum-cryptographic protocols using d-level systems. In particular, we focus on schemes that use two mutually unbiased bases, thus extending the Bennett-Brassard 1984 quantum-key-distribution scheme to higher dimensions. Under the assumption of general coherent attacks, we derive an analytic expression for the ultimate upper security bound of such quantum-cryptography schemes. This bound is well below the predictions of optimal cloning machines. The possibility of extraction of a secret key beyond entanglement distillation is discussed. In the case of qutrits we argue that any eavesdropping strategy is equivalent to a symmetric one. For higher dimensions such an equivalence is generally no longer valid.

  19. Effects of a Highway Improvement Project on Florida key Deer

    E-Print Network [OSTI]

    Parker, Israel D.; Braden, Anthony W.; Lopez, Roel R.; Silvy, Nova J.; Davis, Donald S.; Owen, Catherine B.

    2007-01-01T23:59:59.000Z

    the primary inter-island roadway in the Florida Keys. DVCsprimary source of mortality for the endangered Florida Key

  20. Reference-frame-independent quantum key distribution

    SciTech Connect (OSTI)

    Laing, Anthony; Rarity, John G.; O'Brien, Jeremy L. [Centre for Quantum Photonics, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, BS8 1UB (United Kingdom); Scarani, Valerio [Centre for Quantum Technologies and Department of Physics, National University of Singapore (Singapore)

    2010-07-15T23:59:59.000Z

    We describe a quantum key distribution protocol based on pairs of entangled qubits that generates a secure key between two partners in an environment of unknown and slowly varying reference frame. A direction of particle delivery is required, but the phases between the computational basis states need not be known or fixed. The protocol can simplify the operation of existing setups and has immediate applications to emerging scenarios such as earth-to-satellite links and the use of integrated photonic waveguides. We compute the asymptotic secret key rate for a two-qubit source, which coincides with the rate of the six-state protocol for white noise. We give the generalization of the protocol to higher-dimensional systems and detail a scheme for physical implementation in the three-dimensional qutrit case.

  1. Public key infrastructure for DOE security research

    SciTech Connect (OSTI)

    Aiken, R.; Foster, I.; Johnston, W.E. [and others

    1997-06-01T23:59:59.000Z

    This document summarizes the Department of Energy`s Second Joint Energy Research/Defence Programs Security Research Workshop. The workshop, built on the results of the first Joint Workshop which reviewed security requirements represented in a range of mission-critical ER and DP applications, discussed commonalties and differences in ER/DP requirements and approaches, and identified an integrated common set of security research priorities. One significant conclusion of the first workshop was that progress in a broad spectrum of DOE-relevant security problems and applications could best be addressed through public-key cryptography based systems, and therefore depended upon the existence of a robust, broadly deployed public-key infrastructure. Hence, public-key infrastructure ({open_quotes}PKI{close_quotes}) was adopted as a primary focus for the second workshop. The Second Joint Workshop covered a range of DOE security research and deployment efforts, as well as summaries of the state of the art in various areas relating to public-key technologies. Key findings were that a broad range of DOE applications can benefit from security architectures and technologies built on a robust, flexible, widely deployed public-key infrastructure; that there exists a collection of specific requirements for missing or undeveloped PKI functionality, together with a preliminary assessment of how these requirements can be met; that, while commercial developments can be expected to provide many relevant security technologies, there are important capabilities that commercial developments will not address, due to the unique scale, performance, diversity, distributed nature, and sensitivity of DOE applications; that DOE should encourage and support research activities intended to increase understanding of security technology requirements, and to develop critical components not forthcoming from other sources in a timely manner.

  2. Quantum repeaters and quantum key distribution: the impact of entanglement distillation on the secret key rate

    E-Print Network [OSTI]

    Sylvia Bratzik; Silvestre Abruzzo; Hermann Kampermann; Dagmar Bruß

    2013-03-14T23:59:59.000Z

    We investigate quantum repeaters in the context of quantum key distribution. We optimize the secret key rate per memory per second with respect to different distillation protocols and distillation strategies. For this purpose, we also derive an analytical expression for the average number of entangled pairs created by the quantum repeater, including classical communication times for entanglement swapping and entanglement distillation. We investigate the impact of this classical communication time on the secret key rate. We finally study the effect of the detector efficiency on the secret key rate.

  3. On the Security of Public Key Protocols

    E-Print Network [OSTI]

    Danny Dolev; et al.

    1983-01-01T23:59:59.000Z

    Recently the use of public key encryption to provide secure network communication has received considerable attention. Such public key systems are usually effective against passive eavesdroppers, who merely tap the lines and try to decipher the message. It has been pointed out, however, that an improperly designed protocol could be vulnerable to an active saboteur, one who may impersonate another user or alter the message being transmitted. Several models are formulated in which the security of protocols can be discussed precisely. Algorithms and characteri-zations that can be used to determine protocol security in these models are given.

  4. Key Renewable Energy Opportunities for Oklahoma Tribes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report: I11IG002RTC3WASTE-TO-ENERGY:KenKeriKey IssuesKEY

  5. An efficient public key infrastructure revocation mechanism

    E-Print Network [OSTI]

    Collins, Tamara Lyn

    2000-01-01T23:59:59.000Z

    IMPLEMENTATION 35 PKI Structure Key/Certificate Storage in the Repository. PKI User Interface Communication Between Entities. User Interface to RA Communication . . RA to CA Communication CA to Repository Communication. User Interface to Repository... Communication. . . . 42 11 CA to Certificate Repository Communication. . . 43 12 User Interface to Certificate Repository Communication. . . . . . . 44 13 Certificate Creation Process. . . 46 14 Certificate Revocation Process. . 48 15 Certificate Retrieval...

  6. 2 Key Achievements 7 Greenhouse Gas Reduction

    E-Print Network [OSTI]

    Princeton University Reports Contents 2 Key Achievements 7 Greenhouse Gas Reduction Campus Energy was established in 2008, the University has invested $5.3 million in energy-savings projects, resulting in annual of a 5.2-megawatt solar collector field. · Audit the remaining 20 of the top 50 energy- consuming

  7. Roadmap for selected key measurements of LHCb

    E-Print Network [OSTI]

    The LHCb Collaboration; B. Adeva; M. Adinolfi; A. Affolder; Z. Ajaltouni; J. Albrecht; F. Alessio; M. Alexander; P. Alvarez Cartelle; A. A. Alves Jr; S. Amato; Y. Amhis; J. Amoraal; J. Anderson; O. Aquines Gutierrez; L. Arrabito; M. Artuso; E. Aslanides; G. Auriemma; S. Bachmann; Y. Bagaturia; D. S. Bailey; V. Balagura; W. Baldini; MdC. Barandela Pazos; R. J. Barlow; S. Barsuk; A. Bates; C. Bauer; Th. Bauer; A. Bay; I. Bediaga; K. Belous; I. Belyaev; M. Benayoun; G. Bencivenni; R. Bernet; M. -O. Bettler; A. Bizzeti; T. Blake; F. Blanc; C. Blanks; J. Blouw; S. Blusk; A. Bobrov; V. Bocci; A. Bondar; N. Bondar; W. Bonivento; S. Borghi; A. Borgia; E. Bos; T. J. V. Bowcock; C. Bozzi; J. Bressieux; S. Brisbane; M. Britsch; N. H. Brook; H. Brown; A. Büchler-Germann; J. Buytaert; J. -P. Cachemiche; S. Cadeddu; J. M. Caicedo Carvajal; O. Callot; M. Calvi; M. Calvo Gomez; A. Camboni; W. Cameron; P. Campana; A. Carbone; G. Carboni; A. Cardini; L. Carson; K. Carvalho Akiba; G. Casse; M. Cattaneo; M. Charles; Ph. Charpentier; A. Chlopik; P. Ciambrone; X. Cid Vidal; P. J. Clark; P. E. L. Clarke; M. Clemencic; H. V. Cliff; J. Closier; C. Coca; V. Coco; J. Cogan; P. Collins; F. Constantin; G. Conti; A. Contu; G. Corti; G. A. Cowan; B. D'Almagne; C. D'Ambrosio; D. G. d'Enterria; W. Da Silva; P. David; I. De Bonis; S. De Capua; M. De Cian; F. De Lorenzi; J. M. De Miranda; L. De Paula; P. De Simone; H. De Vries; D. Decamp; H. Degaudenzi; M. Deissenroth; L. Del Buono; C. Deplano; O. Deschamps; F. Dettori; J. Dickens; H. Dijkstra; M. Dima; S. Donleavy; A. C. dos Reis; A. Dovbnya; T. Du Pree; P. -Y. Duval; L. Dwyer; R. Dzhelyadin; C. Eames; S. Easo; U. Egede; V. Egorychev; F. Eisele; S. Eisenhardt; L. Eklund; D. Esperante Pereira; L. Estève; S. Eydelman; E. Fanchini; C. Färber; G. Fardell; C. Farinelli; S. Farry; V. Fave; V. Fernandez Albor; M. Ferro-Luzzi; S. Filippov; C. Fitzpatrick; F. Fontanelli; R. Forty; M. Frank; C. Frei; M. Frosini; J. L. Fungueirino Pazos; S. Furcas; A. Gallas Torreira; D. Galli; M. Gandelman; Y. Gao; J-C. Garnier; L. Garrido; C. Gaspar; N. Gauvin; M. Gersabeck; T. Gershon; Ph. Ghez; V. Gibson; Yu. Gilitsky; V. V. Gligorov; C. Göbel; D. Golubkov; A. Golutvin; A. Gomes; M. Grabalosa Gándara; R. Graciani Diaz; L. A. Granado Cardoso; E. Graugés; G. Graziani; A. Grecu; G. Guerrer; E. Gushchin; Yu. Guz; Z. Guzik; T. Gys; F. Hachon; G. Haefeli; S. C. Haines; T. Hampson; S. Hansmann-Menzemer; R. Harji; N. Harnew; P. F. Harrison; J. He; K. Hennessy; P. Henrard; J. A. Hernando Morata; A. Hicheur; E. Hicks; W. Hofmann; K. Holubyev; P. Hopchev; W. Hulsbergen; P. Hunt; T. Huse; R. S. Huston; D. Hutchcroft; V. Iakovenko; C. Iglesias Escudero; J. Imong; R. Jacobsson; M. Jahjah Hussein; E. Jans; F. Jansen; P. Jaton; B. Jean-Marie; M. John; C. R. Jones; B. Jost; F. Kapusta; T. M. Karbach; J. Keaveney; U. Kerzel; T. Ketel; A. Keune; S. Khalil; B. Khanji; Y. M. Kim; M. Knecht; J. Knopf; S. Koblitz; A. Konoplyannikov; P. Koppenburg; I. Korolko; A. Kozlinskiy; M. Krasowski; L. Kravchuk; P. Krokovny; K. Kruzelecki; M. Kucharczyk; I. Kudryashov; T. Kvaratskheliya; D. Lacarrere; A. Lai; R. W. Lambert; G. Lanfranchi; C. Langenbruch; T. Latham; R. Le Gac; R. Lefevre; A. Leflat; J. Lefrançois; O. Leroy; K. Lessnoff; L. Li; Y. Y. Li; J. Libby; M. Lieng; R. Lindner; S. Lindsey; C. Linn; B. Liu; G. Liu; J. H. Lopes; E. Lopez Asamar; J. Luisier; F. Machefert; I. Machikhiliyan; F. Maciuc; O. Maev; J. Magnin; A. Maier; R. M. D. Mamunur; G. Manca; G. Mancinelli; N. Mangiafave; U. Marconi; F. Marin; J. Marks; G. Martellotti; A. Martens; L. Martin; D. Martinez Santos; Z. Mathe; C. Matteuzzi; V. Matveev; A. Mazurov; G. McGregor; B. Mcharek; C. Mclean; R. McNulty; M. Merk; J. Merkel; M. Merkin; R. Messi; F. C. D. Metlica; J. Michalowski; S. Miglioranzi; M. -N. Minard; S. Monteil; D. Moran; J. V. Morris; R. Mountain; I. Mous; F. Muheim; R. Muresan; F. Murtas; B. Muryn; M. Musy; J. Mylroie-Smith; P. Naik; T. Nakada; R. Nandakumar; J. Nardulli; Z. Natkaniec; M. Nedos; M. Needham; N. Neufeld; L. Nicolas; S. Nies; V. Niess; N. Nikitin; A. Noor; A. Oblakowska-Mucha; V. Obraztsov; S. Oggero; O. Okhrimenko; R. Oldeman; M. Orlandea; A. Ostankov; J. Palacios; M. Palutan; J. Panman; A. Papadelis; A. Papanestis; M. Pappagallo; C. Parkes; G. Passaleva; G. D. Patel; M. Patel; S. K. Paterson; G. N. Patrick; E. Pauna; C. Pauna; C. Pavel; A. Pazos Alvarez; A. Pellegrino; G. Penso; M. Pepe Altarelli; S. Perazzini; D. L. Perego; A. Pérez-Calero Yzquierdo; E. Perez Trigo; P. Perret; G. Pessina; A. Petrella; A. Petrolini; B. Pietrzyk; D. Pinci; S. Playfer; M. Plo Casasus; G. Polok; A. Poluektov; E. Polycarpo; D. Popov; B. Popovici; S. Poss; C. Potterat; A. Powell; S. Pozzi; V. Pugatch; A. Puig Navarro; W. Qian; J. H. Rademacker; B. Rakotomiaramanana; I. Raniuk; G. Raven; S. Redford; W. Reece

    2010-11-23T23:59:59.000Z

    Six of the key physics measurements that will be made by the LHCb experiment, concerning CP asymmetries and rare B decays, are discussed in detail. The "road map" towards the precision measurements is presented, including the use of control channels and other techniques to understand the performance of the detector with the first data from the LHC.

  8. Key Management Challenges in Smart Grid

    SciTech Connect (OSTI)

    Sheldon, Frederick T [ORNL] [ORNL; Duren, Mike [Sypris Electronics, LLC] [Sypris Electronics, LLC

    2012-01-01T23:59:59.000Z

    Agenda Awarded in February 2011 Team of industry and research organizations Project Objectives Address difficult issues Complexity Diversity of systems Scale Longevity of solution Participate in standards efforts and working groups Develop innovative key management solutions Modeling and simulation ORNL Cyber Security Econometric Enterprise System Demonstrate effectiveness of solution Demonstrate scalability

  9. CHEMICAL ABBREVIATION KEY ABBREVIATION CHEMICAL NAME HAZARDS

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Corrosive - base LiCl Lithium chloride Harmful MeOH Methanol Flammable #12;CHEMICAL ABBREVIATION KEY Irritant destain Methanol,acetic acid,H2O Flammable, Corrosive - acid DI H2O Deionized water DCM FeCl3 Iron(III) chloride Corrosive - acid FeSO4 Iron(II) sulfate Toxic H2O Water HCl Hydrochloric

  10. BACK TO BASICS: YOUR KEYS TO SAFE

    E-Print Network [OSTI]

    Kirschner, Denise

    BACK TO BASICS: YOUR KEYS TO SAFE DRIVING BUCKLE UP! Seat belts should never have time off DRIVE the back seat to the front seat.4 ·The back is the best place for pets. According to AAA, similar. Never place the shoulder portion under your arm or behind your back! ·Drivers should sit with at least

  11. Rangeland ecology: Key global research issues & questions

    E-Print Network [OSTI]

    1 Rangeland ecology: Key global research issues & questions Robin Reid and Maria Fernandez-Gimenez This paper discusses developments in our understanding about rangeland ecology and rangeland dynamics in the last 20 years. Before the late 1980's, the mainstream view in range ecology was that livestock

  12. Rangeland ecology: Key global research issues & questions

    E-Print Network [OSTI]

    1 Rangeland ecology: Key global research issues & questions Robin Reid1 and Maria Fernandez Ecology Lab 2Associate Professor Colorado State University, Fort Collins, Colorado, USA Global Issues and Questions in Rangeland Ecology · Despite the focus here on global issues, we need to recognize that Mongolia

  13. Key facts about Argonne National Laboratory

    E-Print Network [OSTI]

    Kemner, Ken

    Key facts about Argonne National Laboratory Argonne National Laboratory occupies 1,500 wooded acres in southeast DuPage County near Chicago. Mission Argonne's mission is to apply a unique blend of world needs of our nation. Argonne conducts R&D in many areas of basic and applied science and engineering

  14. www.defra.gov.uk Environmental Key

    E-Print Network [OSTI]

    ;Environmental Key Performance Indicators Reporting Guidelines for UK Business #12;Department for Environment with the Crown. This publication (excluding the logo) may be reproduced free of charge in any format or medium they operate in, and their impact on the environment, are most likely to prosper in the long-term. At the same

  15. Chemical and Petroleum Engineering Key and Lab Space Agreement

    E-Print Network [OSTI]

    Calgary, University of

    Chemical and Petroleum Engineering Key and Lab Space Agreement Key Holder Information Last Name and Petroleum Engineering remain the property of the Department. I agree to pay a deposit for the keys/Graduate Student Study space that has been assigned. Keys Any keys issued to me from the Department of Chemical

  16. Three key elements necessary for successful testing

    SciTech Connect (OSTI)

    Ehlig-Economides, C.A.; Hegeman, P. (Schlumberger Oilfield Services, Houston, TX (United States)); Clark, G. (Schlumberger Oilfield Services, Aberdeen (United Kingdom))

    1994-07-25T23:59:59.000Z

    Real-time surface readout during data acquisition, downhole shutting, and appropriate pressure gauges are three key elements for successful well tests. These elements are often overlooked in designing and implementing a successful well test. This second in a series of three articles on well testing shows how these elements affected the testing of an example well. Also reviewed are the capabilities of several new testing tools and techniques.

  17. Key Physical Mechanisms in Nanostructured Solar Cells

    SciTech Connect (OSTI)

    Dr Stephan Bremner

    2010-07-21T23:59:59.000Z

    The objective of the project was to study both theoretically and experimentally the excitation, recombination and transport properties required for nanostructured solar cells to deliver energy conversion efficiencies well in excess of conventional limits. These objectives were met by concentrating on three key areas, namely, investigation of physical mechanisms present in nanostructured solar cells, characterization of loss mechanisms in nanostructured solar cells and determining the properties required of nanostructured solar cells in order to achieve high efficiency and the design implications.

  18. Building America Expert Meeting: Key Innovations for Adding Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Key Innovations for Adding Energy Efficiency to Maintenance Projects Building America Expert Meeting: Key Innovations for Adding Energy Efficiency to Maintenance Projects This...

  19. authenticated key exchange: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    desirable attributes. Index Terms--Mutual Authentication; Key Management; SRP; Security; Smart Meter; Smart Leung, Victor C.M. 56 Authentication and Key Agreement via Memorable...

  20. analysis material key: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperature(C) 200 2 Finite key analysis for symmetric attacks in quantum key distribution Quantum Physics (arXiv) Summary: We introduce a constructive method to calculate...

  1. Cooling Towers: Understanding Key Components of Cooling Towers...

    Office of Environmental Management (EM)

    Cooling Towers: Understanding Key Components of Cooling Towers and How to Improve Water Efficiency Cooling Towers: Understanding Key Components of Cooling Towers and How to Improve...

  2. Midstream Infrastructure Improvements Key to Realizing Full Potential...

    Office of Environmental Management (EM)

    Midstream Infrastructure Improvements Key to Realizing Full Potential of Domestic Natural Gas Midstream Infrastructure Improvements Key to Realizing Full Potential of Domestic...

  3. Min-entropy and quantum key distribution: Nonzero key rates for ''small'' numbers of signals

    SciTech Connect (OSTI)

    Bratzik, Sylvia; Mertz, Markus; Kampermann, Hermann; Bruss, Dagmar [Institute for Theoretical Physics III, Heinrich-Heine-Universitaet Duesseldorf, D-40225 Duesseldorf (Germany)

    2011-02-15T23:59:59.000Z

    We calculate an achievable secret key rate for quantum key distribution with a finite number of signals by evaluating the quantum conditional min-entropy explicitly. The min-entropy for a classical random variable is the negative logarithm of the maximal value in its probability distribution. The quantum conditional min-entropy can be expressed in terms of the guessing probability, which we calculate for d-dimensional systems. We compare these key rates to previous approaches using the von Neumann entropy and find nonzero key rates for a smaller number of signals. Furthermore, we improve the secret key rates by modifying the parameter estimation step. Both improvements taken together lead to nonzero key rates for only 10{sup 4}-10{sup 5} signals. An interesting conclusion can also be drawn from the additivity of the min-entropy and its relation to the guessing probability: for a set of symmetric tensor product states, the optimal minimum-error discrimination (MED) measurement is the optimal MED measurement on each subsystem.

  4. Sensitivity of Utility-Scale Solar Deployment Projections in the SunShot Vision Study to Market and Performance Assumptions

    SciTech Connect (OSTI)

    Eurek, K.; Denholm, P.; Margolis, R.; Mowers, M.

    2013-04-01T23:59:59.000Z

    The SunShot Vision Study explored the potential growth of solar markets if solar prices decreased by about 75% from 2010 to 2020. The ReEDS model was used to simulate utility PV and CSP deployment for this present study, based on several market and performance assumptions - electricity demand, natural gas prices, coal retirements, cost and performance of non-solar renewable technologies, PV resource variability, distributed PV deployment, and solar market supply growth - in addition to the SunShot solar price projections. This study finds that utility-scale solar deployment is highly sensitive to solar prices. Other factors can have significant impacts, particularly electricity demand and natural gas prices.

  5. Quantum key distribution with entangled photon sources

    E-Print Network [OSTI]

    Xiongfeng Ma; Chi-Hang Fred Fung; Hoi-Kwong Lo

    2007-03-14T23:59:59.000Z

    A parametric down-conversion (PDC) source can be used as either a triggered single photon source or an entangled photon source in quantum key distribution (QKD). The triggering PDC QKD has already been studied in the literature. On the other hand, a model and a post-processing protocol for the entanglement PDC QKD are still missing. In this paper, we fill in this important gap by proposing such a model and a post-processing protocol for the entanglement PDC QKD. Although the PDC model is proposed to study the entanglement-based QKD, we emphasize that our generic model may also be useful for other non-QKD experiments involving a PDC source. Since an entangled PDC source is a basis independent source, we apply Koashi-Preskill's security analysis to the entanglement PDC QKD. We also investigate the entanglement PDC QKD with two-way classical communications. We find that the recurrence scheme increases the key rate and Gottesman-Lo protocol helps tolerate higher channel losses. By simulating a recent 144km open-air PDC experiment, we compare three implementations -- entanglement PDC QKD, triggering PDC QKD and coherent state QKD. The simulation result suggests that the entanglement PDC QKD can tolerate higher channel losses than the coherent state QKD. The coherent state QKD with decoy states is able to achieve highest key rate in the low and medium-loss regions. By applying Gottesman-Lo two-way post-processing protocol, the entanglement PDC QKD can tolerate up to 70dB combined channel losses (35dB for each channel) provided that the PDC source is placed in between Alice and Bob. After considering statistical fluctuations, the PDC setup can tolerate up to 53dB channel losses.

  6. STGWG Key Outcomes for May 3, 2010

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSARDevelopmental AssignmentApril 2,OCTOBER 2-3,|Key

  7. STGWG Key Outcomes for October 21, 2009

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSARDevelopmental AssignmentApril 2,OCTOBER 2-3,|Key

  8. Key Associados Bradesco JV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou New EnergyKenosistec SrlKenyonKetchikan PublicKey

  9. Bioenergy Key Publications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform isEnergyMeeting | Department ofTransportation Fuels | DepartmentKey

  10. Key Predistribution Techniques for Grid-Based Wireless Sensor Networks

    E-Print Network [OSTI]

    Key Predistribution Techniques for Grid-Based Wireless Sensor Networks Simon R. Blackburn1 , Tuvi sensor networks. Networks consisting of wireless sensor nodes ar- ranged in a grid pattern have many for the instantiation of these schemes. Key words: Key predistribution, wireless sensor networks; symmetric key

  11. Eavesdropper's Optimal Information in Variations of Bennett-Brassard 1984 Quantum Key Distribution in the Coherent Attacks

    E-Print Network [OSTI]

    W. Y. Hwang; D. Ahn; S. W. Hwang

    2001-02-03T23:59:59.000Z

    We calculate eavesdropper's optimal information on raw bits in Bennett-Brassard 1984 quantum key distribution (BB84 QKD) and six-state scheme in coherent attacks, using a formula by Lo and Chau [Science 283 (1999) 2050] with single photon assumption. We find that eavesdropper's optimal information in QKD without public announcement of bases [Phys. Lett. A 244 (1998) 489] is the same as that of a corresponding QKD WITH it in the coherent attack. We observe a sum-rule concerning each party's information.

  12. Quantum key distribution with entangled photon sources

    E-Print Network [OSTI]

    Ma, X; Lo, H K; Ma, Xiongfeng; Fung, Chi-Hang Fred; Lo, Hoi-Kwong

    2007-01-01T23:59:59.000Z

    A parametric down-conversion (PDC) source can be used as either a triggered single photon source or an entangled photon source in quantum key distribution (QKD). The triggering PDC QKD has already been studied in the literature. On the other hand, a model and a post-processing protocol for the entanglement PDC QKD are still missing. In this paper, we fill in this important gap by proposing such a model and a post-processing protocol for the entanglement PDC QKD. Although the PDC model is proposed to study the entanglement-based QKD, we emphasize that our generic model may also be useful for other non-QKD experiments involving a PDC source. Since an entangled PDC source is a basis independent source, we apply Koashi-Preskill's security analysis to the entanglement PDC QKD. We also investigate the entanglement PDC QKD with two-way classical communications. We find that the recurrence scheme increases the key rate and Gottesman-Lo protocol helps tolerate higher channel losses. By simulating a recent 144km open-a...

  13. One-way quantum key distribution: Simple upper bound on the secret key rate

    SciTech Connect (OSTI)

    Moroder, Tobias; Luetkenhaus, Norbert [Institute of Theoretical Physics I and Max-Planck Research Group, Institute of Optics, Information and Photonics, University Erlangen-Nuremberg, Staudtstrasse 7, 91058 Erlangen (Germany); Institute for Quantum Computing, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1 (Canada); Curty, Marcos [Institute of Theoretical Physics I and Max-Planck Research Group, Institute of Optics, Information and Photonics, University Erlangen-Nuremberg, Staudtstrasse 7, 91058 Erlangen (Germany)

    2006-11-15T23:59:59.000Z

    We present a simple method to obtain an upper bound on the achievable secret key rate in quantum key distribution (QKD) protocols that use only unidirectional classical communication during the public-discussion phase. This method is based on a necessary precondition for one-way secret key distillation; the legitimate users need to prove that there exists no quantum state having a symmetric extension that is compatible with the available measurements results. The main advantage of the obtained upper bound is that it can be formulated as a semidefinite program, which can be efficiently solved. We illustrate our results by analyzing two well-known qubit-based QKD protocols: the four-state protocol and the six-state protocol.

  14. authenticated key agreement: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    desirable attributes. Index Terms--Mutual Authentication; Key Management; SRP; Security; Smart Meter; Smart Leung, Victor C.M. 53 On the security of some password-based key...

  15. "Turn-Key" Open Source Software Solutions for Energy Management...

    Energy Savers [EERE]

    "Turn-Key" Open Source Software Solutions for Energy Management of Small to Medium Sized Buildings (DE-FOA-0000822) "Turn-Key" Open Source Software Solutions for Energy Management...

  16. Quantum Key Distribution by Utilizing Four-Level Particles

    E-Print Network [OSTI]

    Tao Yan; Fengli Yan

    2010-02-09T23:59:59.000Z

    We present a quantum key distribution protocol based on four-level particles entanglement. Furthermore, a controlled quantum key distribution protocol is proposed by utilizing three four-level particles. We show that the two protocols are secure.

  17. The impacts of urbanization on endangered florida key deer

    E-Print Network [OSTI]

    Harveson, Patricia Moody

    2006-04-12T23:59:59.000Z

    for resources between man and wildlife continues, it is important to understand the effects of urbanization on species. Endangered Key deer (Odocoileus virginianus clavium) are endemic to the Florida Keys archipelago stretching southwest off the southern tip...

  18. Exploring the context : a small hotel in Key West

    E-Print Network [OSTI]

    VanBeuzekom, Edrick

    1984-01-01T23:59:59.000Z

    This thesis develops a personal method and approach for designing in a delicate context such as the Key West Historic District. This thesis is composed of two parts. The first part presents observations of Key West, focusing ...

  19. actual key success: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    key exchange over an insecure channel. The security of the proposed algorithm grows as NPm, where M, P are the size of the key and the computational commplexity fo the linear...

  20. access technologies key: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    key exchange over an insecure channel. The security of the proposed algorithm grows as NPm, where M, P are the size of the key and the computational commplexity fo the linear...

  1. Turn Your Key, Be Idle Free | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Turn Your Key, Be Idle Free Turn Your Key, Be Idle Free April 13, 2010 - 7:30am Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program What activity wastes...

  2. Low-density random matrices for secret key extraction

    E-Print Network [OSTI]

    Zhou, Hongchao

    Secret key extraction, the task of extracting a secret key from shared information that is partially known by an eavesdropper, has important applications in cryptography. Motivated by the requirements of high-speed quantum ...

  3. Secret key agreement using asymmetry in channel state knowledge

    E-Print Network [OSTI]

    Wornell, Gregory W.

    We study secret-key agreement protocols over a wiretap channel controlled by a state parameter. The secret-key capacity is established when the wiretap channel is discrete and memoryless, the sender and receiver are both ...

  4. Compression station key to Texas pipeline project

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This was probably the largest pipeline project in the US last year, and the largest in Texas in the last decade. The new compressor station is a key element in this project. TECO, its servicing dealer, and compression packager worked closely throughout the planning and installation stages of the project. To handle the amount of gas required, TECO selected the GEMINI F604-1 compressor, a four-throw, single-stage unit with a six-inch stroke manufactured by Weatherford Enterra Compression Co. (WECC) in Corpus Christi, TX. TECO also chose WECC to package the compressors. Responsibility for ongoing support of the units will be shared among TECO, the service dealer and the packager. TECO is sending people to be trained by WECC, and because the G3600 family of engines is still relatively new, both the Caterpillar dealer and WECC sent people for advanced training at Caterpillar facilities in Peoria, IL. As part of its service commitment to TECO, the servicing dealer drew up a detailed product support plan, encompassing these five concerns: Training, tooling; parts support; service support; and commissioning.

  5. Relationship between key events in Earth history

    E-Print Network [OSTI]

    Gillman, Michael

    2015-01-01T23:59:59.000Z

    A model of cyclical (sinusoidal) motion of the solar system, intercepting event lines distributed at fixed intervals, explains the pattern of timings of mass extinctions, earlier glaciations, largest impact craters and the largest known extrusions of magma in the history of the Earth. The model reveals links between several sets of key events, including the end-Cretaceous and end-Ordovician extinctions with the Marinoan glaciation, and the end-Permian with the end-Serpukhovian extinctions. The model is supported by significant clusters of events and a significant reduction of impact crater size with position (sine value). The pattern of event lines is sustained to the earliest-dated impact craters (2023 and 1849 Ma) and to the origin of the solar system, close to 4567.4 Ma. The implication is that, for the entirety of its existence, the solar system has passed in a consistent manner through a predictably structured galaxy. Dark matter is a possible contender for the structure determining the event lines.

  6. Residential Energy Efficiency Financing: Key Elements of Program Design

    Broader source: Energy.gov [DOE]

    Presents key programmatic elements and context of financing initiatives, including contractor support, rebates, quality assurance, and more.

  7. The Role Of Modeling Assumptions And Policy Instruments in Evaluating The Global Implications Of U.S. Biofuel Policies

    SciTech Connect (OSTI)

    Oladosu, Gbadebo A [ORNL; Kline, Keith L [ORNL

    2010-01-01T23:59:59.000Z

    The primary objective of current U.S. biofuel law the Energy Independence and Security Act of 2007 (EISA) is to reduce dependence on imported oil, but the law also requires biofuels to meet carbon emission reduction thresholds relative to petroleum fuels. EISA created a renewable fuel standard with annual targets for U.S. biofuel use that climb gradually from 9 billion gallons per year in 2008 to 36 billion gallons (or about 136 billion liters) of biofuels per year by 2022. The most controversial aspects of the biofuel policy have centered on the global social and environmental implications of its potential land use effects. In particular, there is an ongoing debate about whether indirect land use change (ILUC) make biofuels a net source, rather sink, of carbon emissions. However, estimates of ILUC induced by biofuel production and use can only be inferred through modeling. This paper evaluates how model structure, underlying assumptions, and the representation of policy instruments influence the results of U.S. biofuel policy simulations. The analysis shows that differences in these factors can lead to divergent model estimates of land use and economic effects. Estimates of the net conversion of forests and grasslands induced by U.S. biofuel policy range from 0.09 ha/1000 gallons described in this paper to 0.73 ha/1000 gallons from early studies in the ILUC change debate. We note that several important factors governing LUC change remain to be examined. Challenges that must be addressed to improve global land use change modeling are highlighted.

  8. Residential applliance data, assumptions and methodology for end-use forecasting with EPRI-REEPS 2.1

    SciTech Connect (OSTI)

    Hwang, R.J,; Johnson, F.X.; Brown, R.E.; Hanford, J.W.; Kommey, J.G.

    1994-05-01T23:59:59.000Z

    This report details the data, assumptions and methodology for end-use forecasting of appliance energy use in the US residential sector. Our analysis uses the modeling framework provided by the Appliance Model in the Residential End-Use Energy Planning System (REEPS), which was developed by the Electric Power Research Institute. In this modeling framework, appliances include essentially all residential end-uses other than space conditioning end-uses. We have defined a distinct appliance model for each end-use based on a common modeling framework provided in the REEPS software. This report details our development of the following appliance models: refrigerator, freezer, dryer, water heater, clothes washer, dishwasher, lighting, cooking and miscellaneous. Taken together, appliances account for approximately 70% of electricity consumption and 30% of natural gas consumption in the US residential sector. Appliances are thus important to those residential sector policies or programs aimed at improving the efficiency of electricity and natural gas consumption. This report is primarily methodological in nature, taking the reader through the entire process of developing the baseline for residential appliance end-uses. Analysis steps documented in this report include: gathering technology and market data for each appliance end-use and specific technologies within those end-uses, developing cost data for the various technologies, and specifying decision models to forecast future purchase decisions by households. Our implementation of the REEPS 2.1 modeling framework draws on the extensive technology, cost and market data assembled by LBL for the purpose of analyzing federal energy conservation standards. The resulting residential appliance forecasting model offers a flexible and accurate tool for analyzing the effect of policies at the national level.

  9. A Full Key Recovery Attack on HMAC-AURORA-512

    E-Print Network [OSTI]

    A Full Key Recovery Attack on HMAC-AURORA-512 Yu Sasaki NTT Information Sharing Platform.yu@lab.ntt.co.jp Abstract. In this note, we present a full key recovery attack on HMAC- AURORA-512 when 512-bit secret keys is 2259 AURORA-512 operations, which is significantly less than the complexity of the exhaustive search

  10. Why Hierarchical Key Distribution is Appropriate for Multicast Networks

    E-Print Network [OSTI]

    Zheng, Yuliang

    Why Hierarchical Key Distribution is Appropriate for Multicast Networks Chandana Gamage, Jussipekka rationale for many key distribution schemes for multicast networks are based on heuristic arguments on e of multicast group formation and network growth to look at the selection of a key distribution scheme from

  11. Secret-key generation with correlated sources and noisy channels

    E-Print Network [OSTI]

    Khisti, Ashish

    Secret-key generation with correlated sources and noisy channels Ashish Khisti EECS Dept. MIT for secret-key generation between remote terminals is considered. The sender communicates to the receiver discrete memoryless sources. Lower and upper bounds for the secret-key rate are presented and shown

  12. Interactive Secret Key Generation over Reciprocal Fading Channels

    E-Print Network [OSTI]

    Khisti, Ashish

    Interactive Secret Key Generation over Reciprocal Fading Channels Ashish Khisti Dept. of Electrical--We study a two-terminal secret-key generation problem over a two-way, approximately reciprocal, block of the secret-key is gen- erated from the correlated channel state sequences by creating omniscience between

  13. Protecting Secret Keys with Personal Entropy Carl Ellison

    E-Print Network [OSTI]

    Schneier, Bruce

    Protecting Secret Keys with Personal Entropy Carl Ellison Cybercash, Inc., cme@cybercash.com Chris technology often requires users to protect a secret key by selecting a password or passphrase. While a good to recover the secret key. As time passes, the ability to remember the passphrase fades and the user may

  14. Secret-Key Generation over Reciprocal Fading Channels

    E-Print Network [OSTI]

    Khisti, Ashish

    Secret-Key Generation over Reciprocal Fading Channels Ashish Khisti Department of Electrical and Computer Engineering University of Toronto Nov. 14, 2012 #12;Motivation Secret-Key Generation in Wireless, 2012 2/ 22 #12;Motivation Secret-Key Generation in Wireless Fading Channels A B KA KB Forward

  15. Secret-Key Generation from Channel Reciprocity: A Separation Approach

    E-Print Network [OSTI]

    Khisti, Ashish

    Secret-Key Generation from Channel Reciprocity: A Separation Approach Ashish Khisti Department: Secret-Key Generation Secure Message Transmission Physical Layer Authentication Jamming Resistance Feb 11, 2013 2/ 20 #12;Motivation Secret-Key Generation in Wireless Fading Channels A B KA KB Forward

  16. Security proof for quantum key distribution using qudit systems

    SciTech Connect (OSTI)

    Sheridan, Lana [Centre for Quantum Technologies, National University of Singapore (Singapore); Scarani, Valerio [Centre for Quantum Technologies, National University of Singapore (Singapore); Department of Physics, National University of Singapore (Singapore)

    2010-09-15T23:59:59.000Z

    We provide security bounds against coherent attacks for two families of quantum key distribution protocols that use d-dimensional quantum systems. In the asymptotic regime, both the secret key rate for fixed noise and the robustness to noise increase with d. The finite key corrections are found to be almost insensitive to d < or approx. 20.

  17. Secure Broadcasting of a Common Message with Independent Secret Keys

    E-Print Network [OSTI]

    Khisti, Ashish

    Secure Broadcasting of a Common Message with Independent Secret Keys Rafael F. Schaefer Department broadcasting with indepen- dent secret keys is studied. The particular scenario is analyzed where a common of it. The transmitter shares independent secret keys of arbitrary rates with both legitimate receivers

  18. Dynamic Key Ring Update Mechanism for Mobile Wireless Sensor Networks

    E-Print Network [OSTI]

    Yanikoglu, Berrin

    @sabanciuniv.edu Abstract--Key distribution is an important issue to provide security in Wireless Sensor Networks (WSNs. For the performance evaluation basis, we used our mechanism together with a location based key pre-distribution scheme Terms--mobile wireless sensor networks, key ring update, security, resiliency, connectivity I

  19. Secret key distillation from shielded two-qubit states

    E-Print Network [OSTI]

    Joonwoo Bae

    2010-09-22T23:59:59.000Z

    The quantum states corresponding to a secret key are characterized using the so-called private states, where the key part consisting of a secret key is shielded by the additional systems. Based on the construction, it was shown that a secret key can be distilled from bound entangled states. In this work, I consider the shielded two-qubit states in a key-distillation scenario and derive the conditions under which a secret key can be distilled using the recurrence protocol or the two-way classical distillation, advantage distillation together with one-way postprocessing. From the security conditions, it is shown that a secret key can be distilled from bound entangled states in a much wider range. In addition, I consider the case that in which white noise is added to quantum states and show that the classical distillation protocol still works despite a certain amount of noise although the recurrence protocol does not.

  20. Secret key distillation from shielded two-qubit states

    SciTech Connect (OSTI)

    Bae, Joonwoo [School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-722 (Korea, Republic of)

    2010-05-15T23:59:59.000Z

    The quantum states corresponding to a secret key are characterized using the so-called private states, where the key part consisting of a secret key is shielded by the additional systems. Based on the construction, it was shown that a secret key can be distilled from bound entangled states. In this work, I consider the shielded two-qubit states in a key-distillation scenario and derive the conditions under which a secret key can be distilled using the recurrence protocol or the two-way classical distillation, advantage distillation together with one-way postprocessing. From the security conditions, it is shown that a secret key can be distilled from bound entangled states in a much wider range. In addition, I consider the case that in which white noise is added to quantum states and show that the classical distillation protocol still works despite a certain amount of noise although the recurrence protocol does not.

  1. Large Engineering Systems Conference on Power Engineering, July 2004, Halifax Canada. IEEE 2004 1 Abstract--One important assumption in a model of an

    E-Print Network [OSTI]

    is with the Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI 53706 USA (e Abstract--One important assumption in a model of an electricity market is the format of bids and costs. Most literature on electricity markets uses piecewise linear or quadratic functions to represent costs

  2. 1 Jitter correction formulae; mmc 11 Oct 97 We start with the assumption that the V 2 reduction can be written

    E-Print Network [OSTI]

    1 Jitter correction formulae; mmc 11 Oct 97 We start with the assumption that the V 2 reduction can be written V 2 = exp \\Gammaoe 2 h ; where oe 2 h is the high­pass phase jitter, given by the frequency \\Gamma2 , C = 0:128. When jitter correction is applied, I have tended to use a conservative value C = 0

  3. 1 Jitter correction formulae; mmc 11 Oct 97 We start with the assumption that the V 2reduction can be written

    E-Print Network [OSTI]

    1 Jitter correction formulae; mmc 11 Oct 97 We start with the assumption that the V 2 jitter, given by the frequency- domain integral Z oe2h: for W (f) / f-2 , C = 0.128. When jitter correction is applied, I have tended to use a conservative

  4. Fake state attack on practically decoy state quantum key distribution

    E-Print Network [OSTI]

    Yong-gang Tan

    2012-02-15T23:59:59.000Z

    In this paper, security of practically decoy state quantum key distribution under fake state attack is considered. If quantum key distribution is insecure under this type of attack, decoy sources can not also provide it with enough security. Strictly analysis shows that Eve should eavesdrop with the aid of photon-number-resolving instruments. In practical implementation of decoy state quantum key distribution where statistical fluctuation is considered, however, Eve can attack it successfully with threshold detectors.

  5. Sandia Energy - Direct Measurement of Key Molecule Will Increase...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Measurement of Key Molecule Will Increase Accuracy of Combustion Models Home Energy Transportation Energy CRF Facilities News News & Events Computational Modeling &...

  6. Key Practical Issues in Strengthening Safety Culture, INSAG-15

    Broader source: Energy.gov [DOE]

    Key Pratical Issues in Strengthening Safety Culture, INSAG-15. A report by the International Nuclear Safety Advisory Gorup, International Atomic Energy Agency, Vienna, 2002.

  7. MasterKey Cryptosystems AT&T Bell Labs

    E-Print Network [OSTI]

    Blaze, Matthew

    then be converted to a stream­ cipher via one of the usual block­chaining methods). We use the public­key encryption

  8. Pantex Plant Achieves Key Safety Milestone Ahead of Schedule...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Achieves Key Safety Milestone Ahead of Schedule | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  9. Key Parameters Affecting DPF Performance Degradation and Impact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Parameters Affecting DPF Performance Degradation and Impact on Lifetime Fuel Economy Key Parameters Affecting DPF Performance Degradation and Impact on Lifetime Fuel Economy...

  10. Sierra Geothermal's Key Find in Southern Nevada | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal's Key Find in Southern Nevada July 13, 2010 - 5:17pm Addthis Sierra Geothermal discovered temperatures hot enough for large-scale geothermal energy production at...

  11. Climate Action Planning: A Review of Best Practices, Key Elements...

    Open Energy Info (EERE)

    Planning: A Review of Best Practices, Key Elements, and Common Climate Strategies for Signatories to the American College & University Presidents' Climate Commitment Jump to:...

  12. Key Facts about the Biosciences Division | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to understand biological mechanisms relevant to bioremediation, climate change, energy production, and the protection of human health. BiosciencesDivisionKeyFactsOct20...

  13. Water dynamics clue to key residues in protein folding

    SciTech Connect (OSTI)

    Gao, Meng [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China)] [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China); Zhu, Huaiqiu, E-mail: hqzhu@pku.edu.cn [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China)] [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China); Yao, Xin-Qiu [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China) [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China); Department of Biophysics, Kyoto University, Sakyo Kyoto 606-8502 (Japan); She, Zhen-Su, E-mail: she@pku.edu.cn [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China)] [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China)

    2010-01-29T23:59:59.000Z

    A computational method independent of experimental protein structure information is proposed to recognize key residues in protein folding, from the study of hydration water dynamics. Based on all-atom molecular dynamics simulation, two key residues are recognized with distinct water dynamical behavior in a folding process of the Trp-cage protein. The identified key residues are shown to play an essential role in both 3D structure and hydrophobic-induced collapse. With observations on hydration water dynamics around key residues, a dynamical pathway of folding can be interpreted.

  14. Worldwide Trends in Energy Use and Efficiency: Key Insights from...

    Open Energy Info (EERE)

    Efficiency: Key Insights from International Energy Agency (IEA) Indicator Analysis in Support of the Group of Eight (G8) Plan of Action Jump to: navigation, search Tool Summary...

  15. PPPL physicists win supercomputing time to simulate key energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PPPL physicists win supercomputing time to simulate key energy and astrophysical phenomena By John Greenwald January 8, 2013 Tweet Widget Google Plus One Share on Facebook A...

  16. Mind Your Manners: Socially Appropriate Wireless Key Establishment for Groups

    E-Print Network [OSTI]

    Xu, Wenyuan

    group key establish- ment. We identify seven social and situational factors which impact group formationMind Your Manners: Socially Appropriate Wireless Key Establishment for Groups Cynthia Kuo Ahren Studer Adrian Perrig Carnegie Mellon University {cykuo, astuder, perrig}@cmu.edu ABSTRACT Group

  17. Public Key Encryption that Allows PIR Queries Eyal Kushilevitz

    E-Print Network [OSTI]

    Public Key Encryption that Allows PIR Queries Dan Boneh Eyal Kushilevitz Rafail Ostrovsky William E to create a public- key encryption scheme for Alice that allows PIR searching over encrypted documents. Our allows for Single-Database PIR writing with sublinear communication complexity, which we consider

  18. Public Key Encryption that Allows PIR Queries Eyal Kushilevitz

    E-Print Network [OSTI]

    Ostrovsky, Rafail

    Public Key Encryption that Allows PIR Queries Dan Boneh Eyal Kushilevitz Rafail Ostrovsky William E. In this paper, we show how to create a public-key encryption scheme for Alice that allows PIR searching over allows for Single-Database PIR writing with sublinear communication complexity, which we consider

  19. Key ornamental innovations facilitate diversification in an avian radiation

    E-Print Network [OSTI]

    Rubenstein, Dustin R.

    Key ornamental innovations facilitate diversification in an avian radiation Rafael Maiaa,1 , Dustin novel ways of interacting with the en- vironment (key innovations) play a fundamental role in promoting evolution of orna- mental traits. Because selection can operate only on existing vari- ation, the tendency

  20. Energy Security: A Key Requirement forSustainable Development

    E-Print Network [OSTI]

    1 Energy Security: A Key Requirement forSustainable Development Perspective and Action Plan Robert Card Under Secretary US Department of Energy August 30, 2002 Session One: Maintaining Energy Security WSSD Side Event Energy for Sustainable Development IEA/UNEP/Eskom #12;2 Energy Security is a Key

  1. Reflective cracking of shear keys in multi-beam bridges

    E-Print Network [OSTI]

    Sharpe, Graeme Peter

    2009-06-02T23:59:59.000Z

    ..............................................2 Figure 2: PCI 33? Box Girder with Shear Keys................................................................5 Figure 3: TxDOT 34? Box Girder with Shear Keys .........................................................5 Figure 4: Test Specimen... Under Tension.........................................................................12 Figure 5: Test Specimen in Bending ...............................................................................12 Figure 6: Test Specimen in Shear...

  2. USB KEY PROFILE MANAGER FOR MOZILLA A Project Report

    E-Print Network [OSTI]

    Pollett, Chris

    USB KEY PROFILE MANAGER FOR MOZILLA A Project Report Presented to The Faculty of the Department FOR THE UNIVERSITY _____________________________________________________ 3 #12;ABSTRACT USB KEY PROFILE MANAGER FOR MOZILLA By Yun Zhou Mozilla's profile manager allows users to save their private information

  3. Secret-Key Generation using Correlated Sources and Channels

    E-Print Network [OSTI]

    Khisti, Ashish

    1 Secret-Key Generation using Correlated Sources and Channels Ashish Khisti, Member, IEEE of generating a shared secret key between two terminals in a joint source-channel setup -- the terminals to correlated discrete memoryless source sequences. We establish lower and upper bounds on the secret

  4. Hybrid Secret Key Escrow Mechanisms as Counters Esa Hyytia

    E-Print Network [OSTI]

    Hyytiä, Esa

    Hybrid Secret Key Escrow Mechanisms as Counters Esa Hyyti¨a Telecommunications Research Center can be used in several ways. One interesting application of the Shamir's secret sharing scheme in the context of privacy aware traffic monitoring is to escrow a secret key after m suspicious events have been

  5. accident conditions key: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accident conditions key First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Range Condition: Key to...

  6. Security Notions for Quantum Public-Key Cryptography

    E-Print Network [OSTI]

    Takeshi Koshiba

    2007-02-19T23:59:59.000Z

    It is well known that Shor's quantum algorithm for integer factorization can break down the RSA public-key cryptosystem, which is widely used in many cryptographic applications. Thus, public-key cryptosystems in the quantum computational setting are longed for cryptology. In order to define the security notions of public-key cryptosystems, we have to model the power of the sender, receiver, adversary and channel. While we may consider a setting where quantum computers are available only to adversaries, we generally discuss what are the right security notions for (quantum) public-key cryptosystems in the quantum computational setting. Moreover, we consider the security of quantum public-key cryptosystems known so far.

  7. Apparatus, system, and method for synchronizing a timer key

    DOE Patents [OSTI]

    Condit, Reston A; Daniels, Michael A; Clemens, Gregory P; Tomberlin, Eric S; Johnson, Joel A

    2014-04-22T23:59:59.000Z

    A timer key relating to monitoring a countdown time of a countdown routine of an electronic device is disclosed. The timer key comprises a processor configured to respond to a countdown time associated with operation of the electronic device, a display operably coupled with the processor, and a housing configured to house at least the processor. The housing has an associated structure configured to engage with the electronic device to share the countdown time between the electronic device and the timer key. The processor is configured to begin a countdown routine based at least in part on the countdown time, wherein the countdown routine is at least substantially synchronized with a countdown routine of the electronic device when the timer key is removed from the electronic device. A system and method for synchronizing countdown routines of a timer key and an electronic device are also disclosed.

  8. Practical issues in quantum-key-distribution postprocessing

    SciTech Connect (OSTI)

    Fung, C.-H. Fred; Chau, H. F. [Department of Physics and Center of Theoretical and Computational Physics, University of Hong Kong, Pokfulam Road (Hong Kong); Ma Xiongfeng [Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, 200 University Ave W., Waterloo, Ontario, Canada N2L 3G1 (Canada)

    2010-01-15T23:59:59.000Z

    Quantum key distribution (QKD) is a secure key generation method between two distant parties by wisely exploiting properties of quantum mechanics. In QKD, experimental measurement outcomes on quantum states are transformed by the two parties to a secret key. This transformation is composed of many logical steps (as guided by security proofs), which together will ultimately determine the length of the final secret key and its security. We detail the procedure for performing such classical postprocessing taking into account practical concerns (including the finite-size effect and authentication and encryption for classical communications). This procedure is directly applicable to realistic QKD experiments and thus serves as a recipe that specifies what postprocessing operations are needed and what the security level is for certain lengths of the keys. Our result is applicable to the BB84 protocol with a single or entangled photon source.

  9. 7-117 The claim of a heat pump designer regarding the COP of the heat pump is to be evaluated. Assumptions The heat pump operates steadily.

    E-Print Network [OSTI]

    Bahrami, Majid

    7-47 7-117 The claim of a heat pump designer regarding the COP of the heat pump is to be evaluated. Assumptions The heat pump operates steadily. HP Wnet,in QH QL TL TH Analysis The maximum heat pump coefficient of performance would occur if the heat pump were completely reversible, 5.7 K026K300 K300 COP maxHP, LH H TT

  10. Feasibility Study Of Advanced Technology Hov Systems: Volume 2b: Emissions Impact Of Roadway-powered Electric Buses, Light-duty Vehicles, And Automobiles

    E-Print Network [OSTI]

    Miller, Mark A.; Dato, Victor; Chira-chavala, Ted

    1992-01-01T23:59:59.000Z

    for: Types of power plants in California Uncontrolledboiler power plants in Southern California. The authorsCalifornia Air Resources Board, Uncontrolled and Controlled Power Industrial Plant

  11. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    C. E. S. Thomas, "Hydrogen and Fuel Cells: Pathway to a4-2 incorporates hydrogen and fuel cells into a roadmap thatdevelopment efforts. Hydrogen and fuel-cell technologies are

  12. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    C. E. S. Thomas, "Hydrogen and Fuel Cells: Pathway to a4-2 incorporates hydrogen and fuel cells into a roadmap thatdevelopment efforts. Hydrogen and fuel-cell technologies are

  13. Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model

    E-Print Network [OSTI]

    Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

    2008-01-01T23:59:59.000Z

    in hybrid vehicles and hydrogen fuel cell vehicles are notlower production cost. Hydrogen fuel cell vehicles (FCVs) doC.DHEV C.DSL C.ETHX Fuel Cell - Hydrogen C.FCH Conventional

  14. Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model

    E-Print Network [OSTI]

    Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

    2008-01-01T23:59:59.000Z

    leg/leginx.asp 4. EIA Annual Energy Outlook 2007 with22, (4), 10. EIA Annual Energy Outlook 2006 with Projectionsto the Annual Energy Outlook 2007. Transportation Demand

  15. An Analysis of the Relationship between Casualty Risk Per Crash and Vehicle Mass and Footprint for Model Year 2000-2007 Light-Duty Vehicles-Preliminary report

    E-Print Network [OSTI]

    Wenzel, Tom

    2013-01-01T23:59:59.000Z

    or heavy-duty pickup, side airbag variables in cars, andstar ratings, seatbelt and airbag requirements, and roofNHTSA excluded the driver airbag control variables in the

  16. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    modes, allowing, say, fuel- cell costs to slide down ancurve that plots fuel-cell cost in dollars per kilowatt2002. ) production, fuel-cell cost is assumed to fall by

  17. Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model

    E-Print Network [OSTI]

    Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

    2008-01-01T23:59:59.000Z

    is sensitive to the cost of fuel cell technology, oil price,lower production cost. Hydrogen fuel cell vehicles (FCVs) do

  18. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    modes, allowing, say, fuel- cell costs to slide down ancurve that plots fuel-cell cost in dollars per kilowatt2002. ) production, fuel-cell cost is assumed to fall by

  19. Comments on the Joint Proposed Rulemaking to Establish Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards

    E-Print Network [OSTI]

    Wenzel, Thomas P

    2010-01-01T23:59:59.000Z

    on occupant safety than fuel economy standards that arethe automobile fuel economy standards program, NHTSA docketCorporate Average Fuel Economy Standards Docket No. NHTSA–

  20. Potential of electric propulsion systems to reduce petroleum use and greenhouse gas emissions in the U.S. light-duty vehicle fleet

    E-Print Network [OSTI]

    Khusid, Michael

    2010-01-01T23:59:59.000Z

    In the summer of 2008, the United States of America experienced an oil shock, first of a kind since 1970s. The American public became sensitized to the concerns about foreign oil supply and climate change and global warming, ...

  1. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    of electric and natural gas vehicles: draft report for yeardevice to compressed-natural-gas-vehicle consumers. ) Theof electric and natural gas vehicles” report for year one.

  2. Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model

    E-Print Network [OSTI]

    Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

    2008-01-01T23:59:59.000Z

    vehicles: The case of natural gas vehicles. Energy PolicyCNG: dedicated natural gas vehicles; LPG: liquefiedvehicles using low- GHG fuels such as compressed natural gas,

  3. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    of electric and natural gas vehicles: draft report for yeardevice to compressed-natural-gas-vehicle consumers. ) Theof electric and natural gas vehicles” report for year one.

  4. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    Market potential of electric and natural gas vehicles: draft reportMarket potential of electric and natural gas vehicles” report

  5. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    Market potential of electric and natural gas vehicles: draft reportMarket potential of electric and natural gas vehicles” report

  6. Variability of Battery Wear in Light Duty Plug-In Electric Vehicles Subject to Ambient Temperature, Battery Size, and Consumer Usage: Preprint

    SciTech Connect (OSTI)

    Wood, E.; Neubauer, J.; Brooker, A. D.; Gonder, J.; Smith, K. A.

    2012-08-01T23:59:59.000Z

    Battery wear in plug-in electric vehicles (PEVs) is a complex function of ambient temperature, battery size, and disparate usage. Simulations capturing varying ambient temperature profiles, battery sizes, and driving patterns are of great value to battery and vehicle manufacturers. A predictive battery wear model developed by the National Renewable Energy Laboratory captures the effects of multiple cycling and storage conditions in a representative lithium chemistry. The sensitivity of battery wear rates to ambient conditions, maximum allowable depth-of-discharge, and vehicle miles travelled is explored for two midsize vehicles: a battery electric vehicle (BEV) with a nominal range of 75 mi (121 km) and a plug-in hybrid electric vehicle (PHEV) with a nominal charge-depleting range of 40 mi (64 km). Driving distance distributions represent the variability of vehicle use, both vehicle-to-vehicle and day-to-day. Battery wear over an 8-year period was dominated by ambient conditions for the BEV with capacity fade ranging from 19% to 32% while the PHEV was most sensitive to maximum allowable depth-of-discharge with capacity fade ranging from 16% to 24%. The BEV and PHEV were comparable in terms of petroleum displacement potential after 8 years of service, due to the BEV?s limited utility for accomplishing long trips.

  7. Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model

    E-Print Network [OSTI]

    Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

    2008-01-01T23:59:59.000Z

    Delhi, India, 2007. (16) EIA. Emissions of Greenhouse Gasesglobalwarming/leg/leginx.asp 4. EIA Annual Energy Outlookto 2030. Report #DOE/EIA-0383(2007); Energy Information

  8. Vehicle Technologies Office Merit Review 2015: Computational Design and Development of a New, Lightweight Cast Alloy for Advanced Cylinder Heads in High-Efficiency, Light-Duty Engines

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about computational design and...

  9. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    electricity rates on a cost per kWh basis only with someTable 2-5 presents the cost per kWh produced by variousHybrid battery module cost per kWh required for lifecycle

  10. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    Table 2-5 presents the cost per kWh produced by variousHybrid battery module cost per kWh required for lifecycleelectricity rates on a cost per kWh basis only with some

  11. Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model

    E-Print Network [OSTI]

    Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

    2008-01-01T23:59:59.000Z

    2005; Energy Information Administration, U.S. Department of0383(2007); Energy Information Administration: 2007. http://0383(2006); Energy Information Administration: Washington,

  12. The Estimated Effect of Mass or Footprint Reduction in Recent Light-Duty Vehicles on U.S. Societal Fatality Risk per Vehicle Mile Traveled

    E-Print Network [OSTI]

    Wenzel, Tom

    2014-01-01T23:59:59.000Z

    cars or CUVs/minivans. No airbag variables were included inblocker beam”) Minivan Curtain airbag that deploys inrollovers Curtain side airbag Combo curtain/torso side

  13. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    Driving-age Target market Heating fuel. Figure 3-7 shows theheating fuels and the home hydrogen reformation target marketheating fuel (percentages) Discussion 3.4.1 Overall impressions A “first order approximation” of the comparison between the target market

  14. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    Driving-age Target market Heating fuel. Figure 3-7 shows theheating fuels and the home hydrogen reformation target marketheating fuel (percentages) Discussion 3.4.1 Overall impressions A “first order approximation” of the comparison between the target market

  15. Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model

    E-Print Network [OSTI]

    Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

    2008-01-01T23:59:59.000Z

    the production process for ethanol fuel including theS4). With the exception of ethanol, fuel CO 2 intensity ispolicy results in zero ethanol ?ex-fuel vehicle penetration

  16. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    into utility-friendly and distributed-generation-hardware-utility-side-of-the-meter interactions and, ultimately, vehicular distributed generation

  17. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    into utility-friendly and distributed-generation-hardware-utility-side-of-the-meter interactions and, ultimately, vehicular distributed generation

  18. Feasible Café Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States

    E-Print Network [OSTI]

    Burke, Andy; Abeles, Ethan

    2004-01-01T23:59:59.000Z

    R&D Co. at the SAE Hybrid Vehicle Symposium in San Diego,already being utilized in hybrid vehicles being marketed byfirst marketed their hybrid vehicles in Japan before doing

  19. Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California

    E-Print Network [OSTI]

    Burke, Andy

    2004-01-01T23:59:59.000Z

    of Conventional vs. Hybrid Vehicles, paper to be presented15 Table 10 Hybrid Vehicle Sales to Date - North America &Power Projections of Hybrid Vehicle Characteristics (1999-

  20. Feasible CAFE Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States

    E-Print Network [OSTI]

    Burke, Andy; Abeles, Ethan C.

    2004-01-01T23:59:59.000Z

    R&D Co. at the SAE Hybrid Vehicle Symposium in San Diego,already being utilized in hybrid vehicles being marketed byfirst marketed their hybrid vehicles in Japan before doing

  1. J. Air & Waste Manage. Assoc., vol 58, 2008, p. 45-54 On-board emission measurement of high loaded light duty vehicles in Algeria

    E-Print Network [OSTI]

    Boyer, Edmond

    ; Nejjari et al., 2003, Atek et al., 2004). As a result, many stations of air pollution measurement and Boukadoum, 2005). Vehicle pollutant emissions constitute not only a problem of air quality in big citiesJ. Air & Waste Manage. Assoc., vol 58, 2008, p. 45-54 On-board emission measurement of high loaded

  2. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    challenges facing hydrogen storage technologies, refuelinguncertainties surrounding hydrogen storage, fuel-cell-system1) vehicle range/hydrogen storage and 2) home refueling. 1:

  3. Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model

    E-Print Network [OSTI]

    Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

    2008-01-01T23:59:59.000Z

    GHG fuels such as compressed natural gas, low-GHG ethanol,LPG) Methane Compressed natural gas (CNG) Ethanol production

  4. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    arguments for hydrogen infrastructure in hopes of keepingfor use while hydrogen infrastructure is scarce. This wouldstages of hydrogen refueling infrastructure development.

  5. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    Mobile Electricity” Technologies, Early California Household Markets, and Innovation Managementtechnology-management, and strategic-marketing lenses to the problem of commercializing H 2 FCVs, other EDVs, and other Mobile

  6. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    Mobile Electricity” Technologies, Early California Household Markets, and Innovation ManagementMobile Electricity” Technologies, Early California Household Markets, and Innovation Managementtechnology-management, and strategic-marketing lenses to the problem of commercializing H 2 FCVs, other EDVs, and other Mobile

  7. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    fuel- cell vehicles: “Mobile Electricity" technologies andFuel-Cell Vehicles: “Mobile Electricity” Technologies, Early4 2 Mobile Electricity technologies and

  8. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    fuel-cell vehicles: “Mobile Electricity" technologies andFuel-Cell Vehicles: “Mobile Electricity” Technologies, EarlyFuel-Cell Vehicles: “Mobile Electricity” Technologies, Early

  9. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    House” by Tron Architecture conceptually This is relative to what might be used in a plug-in hybrid or battery

  10. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    House” by Tron Architecture conceptually This is relative to what might be used in a plug-in hybrid or battery

  11. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    pink vertical line represents a driving threshold for plug-vertical lines representing the typical driving thresholds52mi of driving per refueling (chapter 2) At full, red-line

  12. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    pink vertical line represents a driving threshold for plug-vertical lines representing the typical driving thresholds52mi of driving per refueling (chapter 2) At full, red-line

  13. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    goals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."Honda's More Powerful Fuel Cell Concept with Home Hydrogen

  14. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    Transition: Designing a Fuel-Cell Hypercar," presented atgoals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."

  15. The effects of driving style and vehicle performance on the real-world fuel consumption of U.S. light-duty vehicles

    E-Print Network [OSTI]

    Berry, Irene Michelle

    2010-01-01T23:59:59.000Z

    Even with advances in vehicle technology, both conservation and methods for reducing the fuel consumption of existing vehicles are needed to decrease the petroleum consumption and greenhouse gas emissions of the U.S. ...

  16. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    of smaller and flexible units of generation, abandoning thethe largest generation units are the least flexible in this

  17. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    of smaller and flexible units of generation, abandoning thethe largest generation units are the least flexible in this

  18. Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California

    E-Print Network [OSTI]

    Burke, Andy

    2004-01-01T23:59:59.000Z

    Technologies to Reduce CO2 Emissions of New Light- Dutyreduce their CO2 emissions. The emerging technologiessignificantly reduce their CO2 emissions. These technologies

  19. Key Factors in Displacement Ventilation Systems for Better IAQ

    E-Print Network [OSTI]

    Wang, X.; Chen, J.; Li, Y.; Wang, Z.

    2006-01-01T23:59:59.000Z

    This paper sets up a mathematical model of three-dimensional steady turbulence heat transfer in an air-conditioned room of multi-polluting heat sources. Numerical simulation helps identify key factors in displacement ventilation systems that affect...

  20. Daylight quantum key distribution over 1.6 km

    E-Print Network [OSTI]

    Buttler, W T; Lamoreaux, S K; Morgan, G L; Nordholt, J E; Peterson, C G

    2000-01-01T23:59:59.000Z

    Quantum key distribution (QKD) has been demonstrated over a point-to-point transmission distance brings QKD a step closer to surface-to-satellite and other long-distance applications.