Powered by Deep Web Technologies
Note: This page contains sample records for the topic "kerosene-type jet fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

U.S. Exports of Kerosene-Type Jet Fuel (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Kerosene-Type Jet Fuel Exports; Kerosene-Type Jet Fuel Exports by Destination; Kerosene-Type Jet Fuel Supply and Disposition ...

2

Idaho Kerosene-Type Jet Fuel Retail Sales by Refiners ...  

U.S. Energy Information Administration (EIA)

Referring Pages: Idaho Kerosene-Type Jet Fuel Refiner Sales Volumes; Idaho Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene, ...

3

Missouri Kerosene-Type Jet Fuel Wholesale/Resale Volume by ...  

U.S. Energy Information Administration (EIA)

Referring Pages: Kerosene-Type Jet Fuel Sales for Resale Refiner Sales Volumes; Missouri Kerosene-Type Jet Fuel Refiner Sales Volumes; Missouri Sales for Resale ...

4

New Mexico Kerosene-Type Jet Fuel Wholesale/Resale Volume by ...  

U.S. Energy Information Administration (EIA)

Referring Pages: Kerosene-Type Jet Fuel Sales for Resale Refiner Sales Volumes; New Mexico Kerosene-Type Jet Fuel Refiner Sales Volumes; New Mexico Sales for Resale ...

5

Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel  

Gasoline and Diesel Fuel Update (EIA)

Gallon Excluding Taxes) - Continued Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Sales to End Users Sales for Resale Sales to End Users Sales for Resale...

6

South Carolina Kerosene-Type Jet Fuel All Sales/Deliveries by ...  

U.S. Energy Information Administration (EIA)

South Carolina Kerosene-Type Jet Fuel All Sales/Deliveries by Prime Supplier (Thousand Gallons per Day)

7

Arkansas Kerosene-Type Jet Fuel Retail Sales by Refiners (Thousand ...  

U.S. Energy Information Administration (EIA)

Referring Pages: Arkansas Kerosene-Type Jet Fuel Refiner Sales Volumes; Arkansas Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 ...

8

U.S. Product Supplied of Kerosene-Type Jet Fuel (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Product Supplied of Kerosene-Type Jet Fuel (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 295,460 ...

9

U.S. Exports to Italy of Kerosene-Type Jet Fuel (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Exports to Italy of Kerosene-Type Jet Fuel (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2005: 2: 2008: 23: 9: 18: 2009: 89: 2010: 10 ...

10

New Jersey Kerosene-Type Jet Fuel All Sales/Deliveries by Prime ...  

U.S. Energy Information Administration (EIA)

New Jersey Kerosene-Type Jet Fuel All Sales/Deliveries by Prime Supplier (Thousand Gallons per Day) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8

11

U.S. Kerosene-Type Jet Fuel All Sales/Deliveries by Prime Supplier ...  

U.S. Energy Information Administration (EIA)

U.S. Kerosene-Type Jet Fuel All Sales/Deliveries by Prime Supplier (Thousand Gallons per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1983: 30,535.1 ...

12

,"Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes" Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes",60,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refoth_a_epjk_vtr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refoth_a_epjk_vtr_mgalpd_m.htm" ,"Source:","Energy Information Administration"

13

U.S. Kerosene-Type Jet Fuel Stocks at Refineries (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Kerosene-Type Jet Fuel Stocks at Refineries (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: 13,255: 14,640: 14,907: 15,583: 14,878 ...

14

U.S. Imports of Kerosene-Type Jet Fuel, Bonded (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Imports of Kerosene-Type Jet Fuel, Bonded (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: 1,406: 1,620: 1,231: 1,388: 1,379: 1,456 ...

15

Kerosene-Type Jet Fuel  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Shell storage capacity ...

16

Kerosene-Type Jet Fuel Net Production  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Finished motor gasoline ...

17

Stocks of Kerosene-Type Jet Fuel  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Stocks include those ...

18

Exports of Kerosene-Type Jet Fuel  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and RBOB ...

19

Kerosene-Type Jet Fuel Exports  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

20

Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel  

Gasoline and Diesel Fuel Update (EIA)

01.2 01.2 94.7 61.3 60.3 71.8 65.8 February ............................. 100.6 96.5 56.9 57.3 73.4 65.7 March .................................. 105.0 100.6 59.0 59.6 69.0 68.0 April .................................... 111.4 107.5 66.0 65.3 80.5 75.1 May ..................................... 114.4 110.0 63.3 62.2 68.4 66.1 June .................................... 113.5 107.0 57.7 57.5 58.5 59.8 July ..................................... 113.7 105.3 60.3 59.6 64.6 61.7 August ................................ 114.4 107.1 65.1 64.5 69.5 66.6 September .......................... 114.3 106.8 71.8 71.6 76.4 75.6 October ............................... 115.0 107.1 73.6 73.6 87.1 80.7 November ........................... 115.1 108.4 71.7 72.2 88.7 79.7 December ........................... 115.3

Note: This page contains sample records for the topic "kerosene-type jet fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Refinery & Blender Net Production of Kerosene-Type Jet Fuel  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

22

Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel  

Gasoline and Diesel Fuel Update (EIA)

99.6 99.6 92.9 52.3 52.2 67.4 56.6 February ............................. 99.8 93.2 52.2 52.0 62.8 55.2 March .................................. 99.0 93.1 50.5 50.1 59.4 52.8 April .................................... 101.3 96.6 52.8 52.6 56.1 56.0 May ..................................... 105.8 102.2 55.0 54.7 51.7 57.7 June .................................... 106.4 101.6 53.2 53.1 54.9 53.2 July ..................................... 101.8 100.1 51.9 51.3 51.3 52.3 August ................................ 99.2 98.9 53.4 53.1 53.3 54.9 September .......................... 101.3 98.7 55.7 55.2 57.3 58.0 October ............................... 96.8 96.3 54.9 54.1 56.5 57.0 November ........................... 95.4 94.2 57.0 56.3 62.8 60.5 December ........................... 96.0 95.3 59.2 58.6

23

Prime Supplier Sales Volumes of Kerosene-Type Jet Fuel  

Gasoline and Diesel Fuel Update (EIA)

58,921.8 56,922.5 55,453.9 54,959.2 53,458.9 54,523.8 1983-2012 58,921.8 56,922.5 55,453.9 54,959.2 53,458.9 54,523.8 1983-2012 East Coast (PADD 1) 15,392.8 16,081.8 15,898.2 15,821.2 15,588.0 15,512.9 1983-2012 New England (PADD 1A) 1,279.6 1,525.1 1,132.7 1,146.9 1,177.7 1,153.8 1983-2012 Connecticut 204.6 192.9 153.5 157.1 W 181.0 1983-2012 Maine 175.6 141.7 134.2 161.7 132.7 125.2 1983-2012 Massachusetts 819.4 1,118 676.6 675.6 720.1 710.2 1983-2012 New Hampshire 15.1 15.4 W 62.0 64.1 38.8 1983-2012 Rhode Island 33.3 30.3 75.7 67.2 W W 1983-2012 Vermont 31.6 26.9 W 23.4 23.8 W 1983-2012 Central Atlantic (PADD 1B) 7,527.2 7,614.5 7,315.1 7,397.0 7,311.6 7,228.9 1983-2012 Delaware 11.2 11.9 8.7 10.1 10.0 14.1 1983-2012 District of Columbia - - - - - - 1983-2012

24

Kerosene-Type Jet Fuel Imports from Singapore  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

25

Kerosene-Type Jet Fuel Imports from France  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

26

Kerosene-Type Jet Fuel Imports from Non OPEC  

U.S. Energy Information Administration (EIA)

... Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and United Arab Emirates. Totals may not equal sum of components due to independent rounding.

27

Kerosene-Type Jet Fuel Imports from Aruba  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

28

Kerosene-Type Jet Fuel Imports from Singapore  

U.S. Energy Information Administration (EIA)

Indonesia withdrew from OPEC in January 2009, Angola joined OPEC in January 2007, Ecuador withdrew from OPEC in January 1993 and rejoined in November ...

29

Kerosene-Type Jet Fuel Imports from Indonesia  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

30

Kerosene-Type Jet Fuel Refinery Stocks by Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

31

Kerosene-Type Jet Fuel Imports from China  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

32

Product Supplied for Kerosene-Type Jet Fuel  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Data may not add to ...

33

Kerosene-Type Jet Fuel Imports from All Countries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

34

Refinery Net Production of Kerosene-Type Jet Fuel - Commercial  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

35

Kerosene-Type Jet Fuel Production - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Beginning in 1993, motor ...

36

Prime Supplier Sales of Kerosene-Type Jet Fuel  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Retail prices and Prime ...

37

Kerosene-Type Jet Fuel Imports from Mexico  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

38

Refiner Retail Price of Kerosene-Type Jet Fuel  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Retail prices and Prime ...

39

Kerosene-Type Jet Fuel Imports by Area of Entry  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil includes ...

40

Prime Supplier Sales Volumes of Kerosene-Type Jet Fuel  

U.S. Energy Information Administration (EIA) Indexed Site

58,386.8 57,380.8 57,511.7 61,022.4 59,252.0 55,062.2 1983-2013 58,386.8 57,380.8 57,511.7 61,022.4 59,252.0 55,062.2 1983-2013 East Coast (PADD 1) 18,284.2 16,437.1 16,943.8 16,884.2 16,412.3 14,287.5 1983-2013 New England (PADD 1A) 1,211.3 1,172.2 1,228.4 1,207.8 1,432.6 1,121.1 1983-2013 Connecticut 212.1 202.7 207.0 164.4 246.4 169.3 1983-2013 Maine 115.8 127.2 131.1 141.6 144.0 137.8 1983-2013 Massachusetts 738.4 705.5 738.7 743.0 863.8 670.3 1983-2013 New Hampshire 37.4 29.5 35.2 41.8 50.6 44.1 1983-2013 Rhode Island 88.5 W 89.9 89.9 99.2 76.9 1983-2013 Vermont 19.1 W 26.5 27.0 28.7 22.7 1983-2013 Central Atlantic (PADD 1B) 9,320.4 7,996.8 8,594.9 8,104.5 8,284.9 7,114.1 1983-2013 Delaware W W W W W W 1983-2013 District of Columbia W W W W W W 1983-2013

Note: This page contains sample records for the topic "kerosene-type jet fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Kerosene-Type Jet Fuel Imports from Bahrain  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

42

Kerosene-Type Jet Fuel Exports by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

43

Wisconsin Kerosene-Type Jet Fuel Retail Sales by Refiners ...  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1984: 132.4: 141.2: 143.4: 141.9: 1985: 159.3: 174.1: 176.8: 156.5: 121.5: 117.2: 131.5: 137.9: 135.5: 152.8 ...

44

U.S. Kerosene-Type Jet Fuel Imports  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

45

Gulf Coast (PADD 3) Kerosene-Type Jet Fuel Imports  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

46

Missouri Kerosene-Type Jet Fuel Refiner Sales Volumes  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Values shown for the ...

47

Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes  

U.S. Energy Information Administration (EIA) Indexed Site

33,033.1 32,893.1 32,452.7 33,281.4 32,532.8 30,000.3 1983-2013 33,033.1 32,893.1 32,452.7 33,281.4 32,532.8 30,000.3 1983-2013 East Coast (PADD 1) 8,170.7 7,484.8 7,317.4 7,494.1 7,085.1 5,550.5 1983-2013 New England (PADD 1A) W W W 337.4 390.2 279.7 1983-2013 Connecticut W W W W W W 1984-2013 Maine W W W W W W 1984-2013 Massachusetts W W W W W W 1984-2013 New Hampshire - - - W - - 1984-2013 Rhode Island W W W W W W 1984-2013 Vermont - - - - - - 1984-2013 Central Atlantic (PADD 1B) 4,254.7 4,171.6 4,469.2 4,834.6 4,713.8 3,787.7 1983-2013 Delaware - - - - - - 1984-2013 District of Columbia - - - - - - 1984-2013 Maryland W W W W W W 1984-2013 New Jersey 2,477.5 2,444.1 2,660.1 2,524.8 2,448.5 1,789.9 1984-2013 New York 1,435.8 1,430.6 1,480.5 W W W 1984-2013

48

Prices of Refiner Kerosene-Type Jet Fuel Sales to End Users  

Gasoline and Diesel Fuel Update (EIA)

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History U.S. 2.165 3.052 1.704 2.201 3.054 3.104 1978-2012 East Coast (PADD 1) 2.161 3.068 1.707 2.201 3.064 3.126 1983-2012 New England (PADD 1A) 2.224 3.113 1.737 2.216 3.098 3.179 1983-2012 Connecticut 2.222 W W W W W 1983-2012 Maine W W W W W W 1983-2012 Massachusetts W W W W 3.088 3.154 1983-2012 New Hampshire W W W W W - 1983-2012 Rhode Island W W W W W W 1983-2012 Vermont W W - - - W 1983-2012 Central Atlantic (PADD 1B) 2.158 3.080 1.694 2.192 3.060 3.116 1983-2012 Delaware W - - W - - 1983-2012 District of Columbia - - - - - - 1983-2012 Maryland 2.151 2.962 1.645 2.198 3.039 W 1983-2012 New Jersey 2.106 3.014 1.684 2.182 3.050 3.105 1983-2012

49

East Coast (PADD 1) Product Supplied of Kerosene-Type Jet Fuel ...  

U.S. Energy Information Administration (EIA)

456: 507: 447: 462: 433: 511: 459: 457: 482: 491: 1991: 557: 487: 490: 401: 389: 420: 500: 477: 423: 424: 433: 487: 1992: 462: 456: 384: 441: 386: 465: 463: 472: 432 ...

50

U.S. Exports to Panama of Kerosene-Type Jet Fuel (Thousand ...  

U.S. Energy Information Administration (EIA)

456: 90: 389: 627: 503: 300: 411-= No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

51

Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes  

Gasoline and Diesel Fuel Update (EIA)

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History U.S. 40,136.3 39,913.9 37,954.6 34,775.2 33,272.0 32,545.7 1983-2012 East Coast (PADD 1) 9,039.8 9,693.3 9,041.1 8,730.4 7,785.9 6,813.2 1983-2012 New England (PADD 1A) 606.3 930.0 766.0 790.7 679.4 373.7 1983-2012 Connecticut 171.1 W W W W W 1983-2012 Maine W W W W W W 1983-2012 Massachusetts W W W W 495.6 189.3 1983-2012 New Hampshire W W W W W - 1983-2012 Rhode Island W W W W W W 1983-2012 Vermont W W - - - W 1983-2012 Central Atlantic (PADD 1B) 4,645.2 4,946.6 5,127.5 4,696.7 3,983.7 3,569.8 1983-2012 Delaware W - - W - - 1983-2012 District of Columbia - - - - - - 1983-2012 Maryland W 209.8 210.3 190.8 177.5 W 1983-2012 New Jersey 1,463.5 1,555.6 2,006.2 1,922.4 1,913.2 1,646.2 1983-2012

52

Prices of Refiner Kerosene-Type Jet Fuel Sales to End Users  

U.S. Energy Information Administration (EIA) Indexed Site

2.922 2.787 2.813 2.908 3.002 3.040 1975-2013 2.922 2.787 2.813 2.908 3.002 3.040 1975-2013 East Coast (PADD 1) 2.907 2.783 2.825 2.919 3.028 3.055 1983-2013 New England (PADD 1A) W W W 2.973 3.085 3.129 1983-2013 Connecticut W W W W W W 1984-2013 Maine W W W W W W 1984-2013 Massachusetts W W W W W W 1984-2013 New Hampshire - - - W - - 1984-2013 Rhode Island W W W W W W 1984-2013 Vermont - - - - - - 1984-2013 Central Atlantic (PADD 1B) 2.899 2.763 2.816 2.904 3.011 3.043 1983-2013 Delaware - - - - - - 1984-2013 District of Columbia - - - - - - 1984-2013 Maryland W W W W W W 1984-2013 New Jersey 2.881 2.748 2.805 2.895 3.003 3.038 1984-2013 New York 2.930 2.788 2.830 W W W 1984-2013 Pennsylvania 2.906 2.766 2.852 2.908 3.018 3.020 1984-2013

53

U.S. Imports from Singapore of Kerosene-Type Jet Fuel (Thousand ...  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2004: 308: 101: 358: 292: 418: 465: 295: 252: 2005: 840: 27: 550: 249: 300: 314: 2006: 304: 314: 660: 329: 331 ...

54

Weekly East Coast (PADD 1) Ending Stocks of Kerosene-Type Jet Fuel ...  

U.S. Energy Information Administration (EIA)

9,977 : 04/20 : 9,525 : 04/27 : 8,585 : 2012-May: 05/04 : 8,884 : 05/11 : 8,607 : 05/18 : 10,044 : 05/25 : 10,075 : 2012-Jun: 06/01 : 9,465 : 06/08 : 10,058 : 06/15 :

55

Refining District Texas Gulf Coast Kerosene-Type Jet Fuel Stocks ...  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: 3,029: 3,968: 3,482: 3,284: 3,543: 3,978: 3,501: 3,707: 2,993: 2,931: 3,003: 2,636: 1994: 3,924: 3,273 ...

56

Michigan Kerosene-Type Jet Fuel All Sales/Deliveries by Prime ...  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 276.4: 475.2: 567.8: 603.9: 716.4: 715.9: 785.3: 1990's: 887.4: 869.1: 917.2 ...

57

U.S. Exports to Nigeria of Kerosene-Type Jet Fuel (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2008: 276: 586: 551: 241: 2009: 313: 592: 594: 2010: 276: 249: 300: 751: 328: 295: 285: 276: 303: 2011: 277: 563 ...

58

U.S. Product Supplied of Kerosene-Type Jet Fuel (Thousand Barrels ...  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1965: 316: 285: 316: 312: 335: 330: 349: 345: 371: 334: 334: 372: 1966: 364: 401: 391: 426: 369: 421: 291: 306 ...

59

West Coast (PADD 5) Refinery Yield of Kerosene-Type Jet Fuel (Percent)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1990's: 15.1: 15.7: 16.1: 17.9: 17.3: 16.5: 15.8: 2000's: 16.2: 16.0: 16.0: 16.0: 16.2 ...

60

Weekly U.S. Product Supplied of Kerosene-Type Jet Fuel (Thousand ...  

U.S. Energy Information Administration (EIA)

Year-Month Week 1 Week 2 Week 3 Week 4 Week 5; End Date Value End Date Value End Date Value End Date Value End Date Value; 1991-Feb : 02/08 : 1,466 : 02/15 : 1,226

Note: This page contains sample records for the topic "kerosene-type jet fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

U.S. Refinery Yield of Kerosene-Type Jet Fuel (Percent)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1990's: 9.2: 9.8: 9.7: 10.4: 10.3: 9.9: 10.2: 2000's: 10.3: 9.8: 9.8: 9.5: 9.7: 9.8: 9.3 ...

62

Weekly U.S. Ending Stocks of Kerosene-Type Jet Fuel (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Year-Month Week 1 Week 2 Week 3 Week 4 Week 5; End Date Value End Date Value End Date Value End Date Value End Date Value; 1982-Aug : 08/20 : 33,523 : 08/27

63

Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Values shown for the ...

64

U.S. Product Supplied of Kerosene-Type Jet Fuel (Thousand Barrels ...  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1970's: 842: 771: 791: 789: 831: 858: 876: 1980's: 851: 809: 804: 839: 953: 1,005: 1,105 ...

65

Net Imports of Kerosene-Type Jet Fuel into the U.S. by Country  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

66

Alabama Kerosene-Type Jet Fuel Retail Sales by Refiners (Thousand ...  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 81.5: 89.7: 79.0: 75.4: 74.1: 79.3: 84.2: 1990's: 100.4: 96.7: W: 105.9: 108.2 ...

67

U.S. Imports from Malaysia of Kerosene-Type Jet Fuel (Thousand ...  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2004: 311: 2005: 200: 2008: 301: 2010: 30: 212: 301: 2012: 310-

68

Kerosene-Type Jet Fuel Imports from OPEC - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

69

Kerosene-Type Jet Fuel Movements by Pipeline between PAD Districts  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and RBOB ...

70

Weekly U.S. Exports of Kerosene-Type Jet Fuel (Thousand Barrels ...  

U.S. Energy Information Administration (EIA)

Year-Month Week 1 Week 2 Week 3 Week 4 Week 5; End Date Value End Date Value End Date Value End Date Value End Date Value; 2010-Jun: 06/04 : 59 : 06/11 : 59 : 06/18

71

Weekly U.S. Imports of Kerosene-Type Jet Fuel (Thousand Barrels ...  

U.S. Energy Information Administration (EIA)

Year-Month Week 1 Week 2 Week 3 Week 4 Week 5; End Date Value End Date Value End Date Value End Date Value End Date Value; 1982-Aug : 08/20 : 24 : 08/27 : 0

72

U.S. Exports of Kerosene-Type Jet Fuel (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 28: 21: 10: 18: 16: 12: 19: 22: 20: 14: 23: 222: 1982: 255: 245: 80: 44: 27: 38: 32: 32: 41: 35: 269: 692 ...

73

U.S. Exports to Haiti of Kerosene-Type Jet Fuel (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 2000's: 0: 2: 2010's: 0-

74

Weekly West Coast (PADD 5) Imports of Kerosene-Type Jet Fuel ...  

U.S. Energy Information Administration (EIA)

Year-Month Week 1 Week 2 Week 3 Week 4 Week 5; End Date Value End Date Value End Date Value End Date Value End Date Value; 2004-Apr : 04/09 : NA : 04/16 : NA : 04/23

75

U.S. Imports of Kerosene-Type Jet Fuel (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 29: 48: 30: 48: 64: 87: 102: 1990's: 100: 55: 74: 90: 107: 96: 109: 91: 124: 128 ...

76

Kerosene-Type Jet Fuel Movements by Tanker and Barge between PAD ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and RBOB ...

77

Table 41. Refiner Volumes of Aviation Fuels, Kerosene, No. 1 ...  

U.S. Energy Information Administration (EIA)

Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene No. 1 Distillate Propane ... 51.4 75.5 6,451.9 3,309.5 W 476.2 ...

78

Prices of Refiner No. 2 Diesel Fuel Sales for Resale  

U.S. Energy Information Administration (EIA)

... Values shown for kerosene-type jet fuel for the current month at the U.S. and PADD levels are initial estimates calculated using prior history of the series as ...

79

Table 36. Refiner Prices of Aviation Fuels and Kerosene by PAD ...  

U.S. Energy Information Administration (EIA)

Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Sales to End Users Sales for Resale Sales to ... 102.5 96.1 51.9 53.7 72.9 54.7 Florida

80

Jet Fuel from Microalgal Lipids  

DOE Green Energy (OSTI)

A fact sheet on production of jet fuel or multi-purpose military fuel from lipids produced by microalgae.

Not Available

2006-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "kerosene-type jet fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Biofuels – Jet fuel  

This is a process for producing jet fuel from biological feed stock, including animal fats and oils, vegetable oils, and crop seed oils. The aviation and fuel-producing communities would have the option of leveraging available renewable and/or ...

82

Jet Fuel Supply/Price Outlook - Fueling the Recovery  

U.S. Energy Information Administration (EIA)

Jet Fuel Supply/Price Outlook: Fueling the Recovery Energy Information Administration Presentation to 4th International Jet Fuel Conference February ...

83

Jet fuel from LPG  

SciTech Connect

Explains how jet fuel can be manufactured from propane and/or butane with attractive rates of return. This scheme is advantageous where large reserves of LPG-bearing gas is available or LPG is in excess. The following sequence of processes in involved: dehydrogenation of propane (and/or butane) to propylene (and/or butylene); polymerization of this monomer to a substantial yield of the desired polymer by recycling undesired polymer; and hydrotreating the polymer to saturate double bonds. An attribute of this process scheme is that each of the individual processes has been practiced commercially. The process should have appeal in those parts of the world which have large reserves of LPG-bearing natural gas but little or no crude oil, or where large excesses of LPG are available. Concludes that economic analysis shows attractive rates of return in a range of reasonable propane costs and product selling prices.

Maples, R.E.; Jones, J.R.

1983-02-01T23:59:59.000Z

84

Advanced thermally stable jet fuels  

Science Conference Proceedings (OSTI)

The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume (Sections 1 through 5).

Schobert, H.H.

1999-01-31T23:59:59.000Z

85

Production of biocomponent containing jet fuels  

Science Conference Proceedings (OSTI)

Recent demands for low aromatic content jet fuels have shown significant increase in the last 20 years. This was generated by the growing of aviation. Further than quality requirements were more aggravated in front of jet fuels. This was generated by ... Keywords: aromatic content, biocomponent, crystallization point, jet fuel, kerosene, vegetable oil

Z. Eller; P. Solymosi; T. Kasza; Z. Varga; J. Hancsók

2011-12-01T23:59:59.000Z

86

Jet Fuel from Bio-Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

Jet Fuel from Bio-Diesel Background Due to concerns with limited resources of petroleum-based fuels, the demand for using renewable feedstocks, such as vegetable oils and animal...

87

HEFA and F-T jet fuel cost analyses  

E-Print Network (OSTI)

Aviation and the Environment 2. HEFA jet fuel from vegetable oil bottom-up cost study 3. HEFA jet fuel from microalgae bottom-up cost

Nick Carter; Michael Bredehoeft; Christoph Wollersheim; Hakan Olcay; James Hileman; Steven Barrett; Website Lae. Mit. Edu

2012-01-01T23:59:59.000Z

88

Puerto Rico Refinery Catalytic Hydrotreating, Kerosene/Jet Fuel ...  

U.S. Energy Information Administration (EIA)

Puerto Rico Refinery Catalytic Hydrotreating, Kerosene/Jet Fuel Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

89

Michigan Refinery Catalytic Hydrotreating, Kerosene/Jet Fuel ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro.. Kerosene/Jet Fuel Downstream Charge Capacity (B/SD) Michigan Downstream Charge Capacity of Operable Petroleum Refineries ...

90

West Coast (PADD 5) Imports from Singapore of Kerosene-Type Jet ...  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 2000's: 2,489: 2,280: 2,847: 1,433: 326: 318: 2010's: 303-

91

Ejector device for direct injection fuel jet  

SciTech Connect

Disclosed is a device for increasing entrainment and mixing in an air/fuel zone of a direct fuel injection system. The device comprises an ejector nozzle in the form of an inverted funnel whose central axis is aligned along the central axis of a fuel injector jet and whose narrow end is placed just above the jet outlet. It is found that effective ejector performance is achieved when the ejector geometry is adjusted such that it comprises a funnel whose interior surface diverges about 7.degree. to about 9.degree. away from the funnel central axis, wherein the funnel inlet diameter is about 2 to about 3 times the diameter of the injected fuel plume as the fuel plume reaches the ejector inlet, and wherein the funnel length equal to about 1 to about 4 times the ejector inlet diameter. Moreover, the ejector is most effectively disposed at a separation distance away from the fuel jet equal to about 1 to about 2 time the ejector inlet diameter.

Upatnieks, Ansis (Livermore, CA)

2006-05-30T23:59:59.000Z

92

Environmental and economic assessment of microalgae-derived jet fuel  

E-Print Network (OSTI)

Significant efforts must be undertaken to quantitatively assess various alternative jet fuel pathways when working towards achieving environmental and economic United States commercial and military alternative aviation ...

Carter, Nicholas Aaron

2012-01-01T23:59:59.000Z

93

U.S. Refinery Catalytic Hydrotreating, Kerosene/Jet Fuel ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro.. Kerosene/Jet Fuel Downstream Charge Capacity (B/SD) U.S. Downstream Charge Capacity of Operable Petroleum Refineries ...

94

Sooting characteristics of surrogates for jet fuels  

Science Conference Proceedings (OSTI)

Currently, modeling the combustion of aviation fuels, such as JP-8 and JetA, is not feasible due to the complexity and compositional variation of these practical fuels. Surrogate fuel mixtures, composed of a few pure hydrocarbon compounds, are a key step toward modeling the combustion of practical aviation fuels. For the surrogate to simulate the practical fuel, the composition must be designed to reproduce certain pre-designated chemical parameters such as sooting tendency, H/C ratio, autoignition, as well as physical parameters such as boiling range and density. In this study, we focused only on the sooting characteristics based on the Threshold Soot Index (TSI). New measurements of TSI values derived from the smoke point along with other sooting tendency data from the literature have been combined to develop a set of recommended TSI values for pure compounds used to make surrogate mixtures. When formulating the surrogate fuel mixtures, the TSI values of the components are used to predict the TSI of the mixture. To verify the empirical mixture rule for TSI, the TSI values of several binary mixtures of candidate surrogate components were measured. Binary mixtures were also used to derive a TSI for iso-cetane, which had not previously been measured, and to verify the TSI for 1-methylnaphthalene, which had a low smoke point and large relative uncertainty as a pure compound. Lastly, surrogate mixtures containing three components were tested to see how well the measured TSI values matched the predicted values, and to demonstrate that a target value for TSI can be maintained using various components, while also holding the H/C ratio constant. (author)

Mensch, Amy; Santoro, Robert J.; Litzinger, Thomas A. [Department of Mechanical and Nuclear Engineering, and The Propulsion Engineering Research Center, The Pennsylvania State University, University Park, PA 16802 (United States); Lee, S.-Y. [Department of Mechanical Engineering and Engineering Mechanics, Michigan Technological University, Houghton, MI 49931 (United States)

2010-06-15T23:59:59.000Z

95

A jet fuel surrogate formulated by real fuel properties  

Science Conference Proceedings (OSTI)

An implicit methodology based on chemical group theory to formulate a jet aviation fuel surrogate by the measurements of several combustion related fuel properties is tested. The empirical formula and derived cetane number of an actual aviation fuel, POSF 4658, have been determined. A three component surrogate fuel for POSF 4658 has been formulated by constraining a mixture of n-decane, iso-octane and toluene to reproduce the hydrogen/carbon ratio and derived cetane number of the target fuel. The validity of the proposed surrogate is evaluated by experimental measurement of select combustion properties of POSF 4658, and the POSF 4658 surrogate. (1)A variable pressure flow reactor has been used to chart the chemical reactivity of stoichiometric mixtures of POSF 4658/O{sub 2}/N{sub 2} and POSF 4658 surrogate/O{sub 2}/N{sub 2} at 12.5 atm and 500-1000 K, fixing the carbon content at 0.3% for both mixtures. (2)The high temperature chemical reactivity and chemical kinetic-molecular diffusion coupling of POSF 4658 and POSF 4658 surrogate have been evaluated by measurement of the strained extinction limit of diffusion flames. (3)The autoignition behavior of POSF 4658 and POSF 4658 surrogate has been measured with a shock tube at 674-1222 K and with a rapid compression machine at 645-714 K for stoichiometric mixtures of fuel in air at pressures close to 20 atm. The flow reactor study shows that the character and extent of chemical reactivity of both fuels at low temperature (500-675 K) and high temperature (900 K+) are extremely similar. Slight differences in the transition from the end of the negative temperature coefficient regime to hot ignition are observed. The diffusion flame strained extinction limits of the fuels are observed to be indistinguishable when compared on a molar basis. Ignition delay measurements also show that POSF 4658 exhibits NTC behavior. Moreover, the ignition delays of both fuels are also extremely similar over the temperature range studied in both shock tube and rapid compression machine experiments. A chemical kinetic model is constructed and utilized to interpret the experimental observations and provides a rationale as to why the real fuel and surrogate fuel exhibit such similar reactivity. (author)

Dooley, Stephen; Won, Sang Hee; Chaos, Marcos; Heyne, Joshua; Ju, Yiguang; Dryer, Frederick L. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Kumar, Kamal; Sung, Chih-Jen [School of Engineering, University of Connecticut, Storrs, CT (United States); Wang, Haowei; Oehlschlaeger, Matthew A. [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY (United States); Santoro, Robert J.; Litzinger, Thomas A. [Propulsion Engineering Research Center, The Pennsylvania State University, University Park, PA (United States)

2010-12-15T23:59:59.000Z

96

Production of jet fuel from coal-derived liquids  

Science Conference Proceedings (OSTI)

Amoco and Lummus Crest, under a contract with the United States Department of Energy, are evaluating the process options and economics for upgrading the naphtha, crude phenols, and tar oil by-products from the Great Plains Coal Gasification Plant to jet fuels and other salable products. Task 1 of the work, in which processes to produce each of the three jet fuels, JP-4, JP-8, and JP-8X, were designed, has been completed. The formal Task 1 report should issue next quarter. Task 2 work was initiated this quarter. In Task 2, process conditions for producing jet fuel from the Great Plains tar oil stream will be verified and samples of each of the three jet fuels will be produced. Experimental work shows that the hydrotreating conditions specified in Task 1 will not convert sufficient aromatics in the tar oil to produce jet fuel. Alternative schemes have been proposed and are being tested in the laboratories at Amoco Research Center. The simplest of these schemes, in which the heavy ends from the hydrotreater are recycled to extinction, was tested and proved infeasible. A second stage, fixed bed hydrotreater will be added to the process along with the expanded bed, first-stage hydrotreater and the hydrocracker specified in the Task 1 design. Future work will include additional experiments to specify the best process configuration and production of samples of each of the three grades of jet fuel. 6 figs., 7 tabs.

Furlong, M.W.; Fox, J.D.; Masin, J.G.; Soderberg, D.J.

1988-01-01T23:59:59.000Z

97

Interactions of Jet Fuels with Nitrile O-Rings: Petroleum-Derived versus Synthetic Fuels  

SciTech Connect

A transition from petroleum~derived jet fuels to blends with Fischer-Tropsch (F~T) fuels, and ultimately fully synthetic hydro-isomerized F-T fuels has raised concern about the fate of plasticizers in nitrile-butadiene rubber a-rings that are contacted by the fuels as this transition occurs. The partitioning of plasticizers and fuel molecules between nitrile a-rings and petroleum-derived, synthetic, and additized-synthetic jet fuels has been measured. Thermal desorption of o-rings soaked in the various jet fuels followed by gas chromatographic analysis with a mass spectrometric detector showed many of the plasticizer and stabilizer compounds were removed from the o-rings regardless of the contact fuel. Fuel molecules were observed to migrate into the o-rings for the petroleum-derived fuel as did both the fuel and additive for a synthetic F-T jet fuel additized with benzyl alcohol, but less for the unadditized synthetic fuel. The specific compounds or classes of compounds involved in the partitioning were identified and a semiquantitative comparison of relative partitioning of the compounds of interest was made. The results provide another step forward in improving the confidence level of using additized, fully synthetic jet fuel in the place of petroleum-derived fuel.

Gormley, R.J.; Link, D.D.; Baltrus, J.P.; Zandhuis, P.H.

2009-01-01T23:59:59.000Z

98

Interactions of Jet Fuels with Nitrile O-Rings: Petroleum-Derived versus Synthetic Fuels  

SciTech Connect

A transition from petroleum-derived jet fuels to blends with Fischer-Tropsch (F-T) fuels, and ultimately fully synthetic hydro-isomerized F-T fuels has raised concern about the fate of plasticizers in nitrile-butadiene rubber o-rings that are contacted by the fuels as this transition occurs. The partitioning of plasticizers and fuel molecules between nitrile o-rings and petroleum-derived, synthetic, and additized-synthetic jet fuels has been measured. Thermal desorption of o-rings soaked in the various jet fuels followed by gas chromatographic analysis with a mass spectrometric detector showed many of the plasticizer and stabilizer compounds were removed from the o-rings regardless of the contact fuel. Fuel molecules were observed to migrate into the o-rings for the petroleum-derived fuel as did both the fuel and additive for a synthetic F-T jet fuel additized with benzyl alcohol, but less for the unadditized synthetic fuel. The specific compounds or classes of compounds involved in the partitioning were identified and a semiquantitative comparison of relative partitioning of the compounds of interest was made. The results provide another step forward in improving the confidence level of using additized, fuIly synthetic jet fuel in the place of petroleum-derived fueL

Gormley, R.J.; Link, D.D.; Baltrus, J.P.; Zandhuis, P.H.

2008-01-01T23:59:59.000Z

99

Production of jet fuel from coal-derived liquids  

Science Conference Proceedings (OSTI)

Amoco and Lummus Crest, under a contract with the United States Department of Energy, are evaluating the process options and economics for upgrading the naphtha, crude phenols, and tar oil by-products from the Great Plains Coal Gasification Plant to jet fuels and other salable products. Conceptual processing schemes for maximizing the production of Grades JP-4, JP-8, and high-density (JP-8X) jet fuels, for maximizing profits, and for profitable production of each of the three jet fuels from the by-product liquids have been developed. Economic analyses of the designs show that jet fuel can be produced from the by-products, but not economically. However, jet fuel production could be subsidized profitably by processing the phenolic and naphtha streams to cresols, phenols, BTX, and other valuable chemical by-products. Uncertainties in the studies are marketability of the chemical by-products, replacement fuel costs, and viable schemes to process the phenol stream, among others. 8 figs., 2 tabs.

Furlong, M.W.; Fox, J.D.; Masin, J.G.; Soderberg, D.J.

1990-01-01T23:59:59.000Z

100

Integrated coke, asphalt and jet fuel production process and apparatus  

DOE Patents (OSTI)

A process and apparatus for the production of coke, asphalt and jet fuel m a feed of fossil fuels containing volatile carbon compounds therein is disclosed. The process includes the steps of pyrolyzing the feed in an entrained bed pyrolyzing means, separating the volatile pyrolysis products from the solid pyrolysis products removing at least one coke from the solid pyrolysis products, fractionating the volatile pyrolysis products to produce an overhead stream and a bottom stream which is useful as asphalt for road pavement, condensing the overhead stream to produce a condensed liquid fraction and a noncondensable, gaseous fraction, and removing water from the condensed liquid fraction to produce a jet fuel-containing product. The disclosed apparatus is useful for practicing the foregoing process. the process provides a useful method of mass producing and jet fuels from materials such as coal, oil shale and tar sands.

Shang, Jer Y. (McLean, VA)

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "kerosene-type jet fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Past, present and emerging toxicity issues for jet fuel  

SciTech Connect

The US Air Force wrote the specification for the first official hydrocarbon-based jet fuel, JP-4, in 1951. This paper will briefly review the toxicity of the current fuel, JP-8, as compared to JP-4. JP-8 has been found to have low acute toxicity with the adverse effects being slight dermal irritation and weak dermal sensitization in animals. JP-4 also has low acute toxicity with slight dermal irritation as the adverse effect. Respiratory tract sensory irritation was greater in JP-8 than in JP-4. Recent data suggest exposure to jet fuel may contribute to hearing loss. Subchronic studies for 90 days with JP-8 and JP-4 showed little toxicity with the primary effect being male rat specific hydrocarbon nephropathy. A 1-year study was conducted for JP-4. The only tumors seen were associated with the male rat specific hydrocarbon nephropathy. A number of immunosuppressive effects have been seen after exposure to JP-8. Limited neurobehavioral effects have been associated with JP-8. JP-8 is not a developmental toxicant and has little reproductive toxicity. JP-4 has not been tested for immune, neurobehavioral or reproductive endpoints. JP-8 and JP-4 were negative in mutagenicity tests but JP-4 showed an increase in unscheduled DNA synthesis. Currently, JP-8 is being used as the standard for comparison of future fuels, including alternative fuels. Emerging issues of concern with jet fuels include naphthalene content, immunotoxicity and inhalation exposure characterization and modeling of complex mixtures such as jet fuels.

Mattie, David R., E-mail: david.mattie@wpafb.af.mil [Applied Biotechnology Branch, Air Force Research Laboratory, AFRL/RHPB Bldg. 837, 2729 R Street, Wright-Patterson Air Force Base, OH 45433-5707 (United States); Sterner, Teresa R. [HJF, AFRL/RHPB Bldg 837, 2729 R Street, Wright-Patterson Air Force Base, OH 45433-5707 (United States)

2011-07-15T23:59:59.000Z

102

Production of jet fuels from coal derived liquids  

SciTech Connect

Amoco and Lummus Crest have developed seven cases for upgrading by-product liquids from the Great Plains Coal Gasification Plant to jet fuels, and in several of the cases, saleable chemicals in addition to jet fuels. The analysis shows that the various grades of jet fuel can be produced from the Great Plains tar oil, but not economically. However, the phenolic and naphtha streams do have the potential to significantly increase (on the order of $10--15 million/year) the net revenues at Great Plains by producing chemicals, especially cresylic acid, cresol, and xylenol. The amount of these chemicals, which can be marketed, is a concern, but profits can be generated even when oxygenated chemical sales are limited to 10 percent of the US market. Another concern is that while commercial processes exist to extract phenolic mixtures, these processes have not been demonstrated with the Great Plains phenolic stream. 9 refs., 24 figs., 14 tabs.

Fleming, B.A.; Fox, J.D.; Furlong, M.W.; Masin, J.G.; Sault, L.P.; Tatterson, D.F. (Amoco Oil Co., Naperville, IL (USA). Research and Development Dept.); Fornoff, L.L.; Link, M.A.; Stahlnecker, E.; Torster, K. (Lummus Crest, Inc., Bloomfield, NJ (USA))

1988-09-01T23:59:59.000Z

103

Market Cost of Renewable Jet Fuel Adoption in the United States  

E-Print Network (OSTI)

Market Cost of Renewable Jet Fuel Adoption in the United States Niven Winchester, Dominic Mc on recycled paper #12;1 Market Cost of Renewable Jet Fuel Adoption in the United States Niven Winchester Administration (FAA) has a goal that one billion gallons of renewable jet fuel is consumed by the US aviation

104

Production of jet fuels from coal derived liquids  

Science Conference Proceedings (OSTI)

Amoco Oil Company has conducted bench- and pilot plant-scale experiments to produce jet fuels from the tar oil from the Great Plains Coal Gasification Plant in Beulah, North Dakota. Experiments show that the hydroprocessing conditions recommended in Task 1 are not severe enough to saturate the aromatics in the tar oil to meet jet fuel specifications. Alternatives were investigated. Jet fuel specifications can be achieved when the tar oil is: hydrotreated in an expanded-bed hydrotreater to lower aromatics and heteroatom content; the effluent is then hydrotreated in a second, fixed bed hydrotreater; and, finally, the 550{degree}F boiling fraction from the two hydrotreaters is hydrocracked to extinction. The process was verified by pilot-plant production of 2 barrels of JP-8 turbine fuel, which met all but the flash point specification for JP-8. In addition, small samples of JP-4, JP-8, and high-density fuel were produced as a part of Task 2. 13 figs., 21 tabs.

Furlong, M.; Fox, J.; Masin, J.

1989-06-01T23:59:59.000Z

105

Integrated coke, asphalt and jet fuel production process and apparatus  

DOE Patents (OSTI)

A process and apparatus for the production of coke, asphalt and jet fuel from a feed of fossil fuels containing volatile carbon compounds therein is disclosed. The process includes the steps of pyrolyzing the feed in an entrained bed pyrolyzing means, separating the volatile pyrolysis products from the solid pyrolysis products, removing at least some coke from the solid pyrolysis products, fractionating the volatile pyrolysis products to produce an overhead stream and a bottom stream which is useful as asphalt for road pavement, condensing the overhead stream to produce a condensed liquid fraction and a noncondensable, gaseous fraction, and removing water from the condensed liquid fraction to produce a jet fuel-containing product. The disclosed apparatus is useful for practicing the foregoing process. The process provides a useful method of mass producing these products from materials such as coal, oil shale and tar sands. 1 fig.

Shang, Jer Yu.

1989-10-17T23:59:59.000Z

106

Glossary - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

It includes kerosene-type jet fuel and naphtha-type jet fuel. Joint Implementation (JI): ... Joint-use facility: A multiple-purpose hydroelectric plant.

107

Production of jet fuel from coal-derived liquids  

DOE Green Energy (OSTI)

Amoco and Lummus Crest are evaluating the process options and economics for upgrading the naphtha, crude phenols, and tar oil by-products from the Great Plains Coal Gasification Plant to jet fuels and other salable products. Analytical characterizations of these three by-products indicate the range of products that can be manufactured from each, and potential problems which could be encountered during refining. These characterizations, along with limited experimental data and Amoco's proprietary process models, were used to design conceptual processing schemes for maximizing the production of Grades JP-4, JP-8, and high density (JP-8X) jet fuels from the by-product liquids. In addition to the maximum jet fuel schemes, conceptual designs have also been formulated for maximizing profits from refining of the Great Plains by-products. Conceptual processing schemes for profitable production of JP-4, JP-8, and JP-8X have been developed, as has a maximum profit'' case. All four of these additional cases have now been transferred to Lummus for design and integration studies. Development of these schemes required the use of linear programming technology. This technology includes not only conventional refining processes which have been adapted for use with coal-derived liquids (e.g. hydrotreating, hydrocracking), but also processes which may be uniquely suited to the Great Plains by-products such as cresylic acid extraction, hydordealkylation, and needle coking. 6 figs., 3 tabs.

Furlong, M.W.; Fox, J.D.; Masin, J.G.; Soderberg, D.J.

1987-01-01T23:59:59.000Z

108

Production of jet fuels from coal-derived liquids  

Science Conference Proceedings (OSTI)

Samples of jet fuel (JP-4, JP-8, JP-8X) produced from the liquid by-products of the gasification of lignite coal from the Great Plains Gasification Plant were analyzed to determine the quantity and type of organo-oxygen compounds present. Results were compared to similar fuel samples produced from petroleum. Large quantities of oxygen compounds were found in the coal-derived liquids and were removed in the refining process. Trace quantities of organo-oxygenate compounds were suspected to be present in the refined fuels. Compounds were identified and quantified as part of an effort to determine the effect of these compounds in fuel instability. Results of the analysis showed trace levels of phenols, naphthols, benzofurans, hexanol, and hydrogenated naphthols were present in levels below 100 ppM. 9 figs., 3 tabs.

Knudson, C.L.

1990-06-01T23:59:59.000Z

109

Jet flames of a refuse derived fuel  

SciTech Connect

This paper is concerned with combustion of a refuse derived fuel in a small-scale flame. The objective is to provide a direct comparison of the RDF flame properties with properties of pulverized coal flames fired under similar boundary conditions. Measurements of temperature, gas composition (O{sub 2}, CO{sub 2}, CO, NO) and burnout have demonstrated fundamental differences between the coal flames and the RDF flames. The pulverized coals ignite in the close vicinity of the burner and most of the combustion is completed within the first 300 ms. Despite the high volatile content of the RDF, its combustion extends far into the furnace and after 1.8 s residence time only a 94% burnout has been achieved. This effect has been attributed not only to the larger particle size of fluffy RDF particles but also to differences in RDF volatiles if compared to coal volatiles. Substantial amounts of oily tars have been observed in the RDF flames even though the flame temperatures exceeded 1300 C. The presence of these tars has enhanced the slagging propensity of RDF flames and rapidly growing deposits of high carbon content have been observed. (author)

Weber, Roman; Kupka, Tomasz; Zajac, Krzysztof [Institute of Energy Process Engineering and Fuel Technology, Clausthal University of Technology, Agicolastrasse 4, 38 678 Clausthal-Zellerfeld (Germany)

2009-04-15T23:59:59.000Z

110

Isolation and Identification of Nitrogen Species in Jet Fuel and Diesel Fuel  

Science Conference Proceedings (OSTI)

Many performance characteristics of liquid fuels-including lubricity, the ability to swell seal materials, storage stability, and thermal stability-are determined, to a large degree, by the trace polar species that the fuel contains. Because the polar fraction comprises such a small portion of the fuel matrix, it is difficult to detect these species without first isolating them from the bulk fuel. This manuscript describes the extension of previous work that established a protocol for the isolation and identification of oxygenates in jet fuels. The current work shows that a liquid-liquid extraction using methanol, followed by an isolation step using high-performance liquid chromatography (HPLC) with a silica column, can successfully separate polar nitrogen-containing species from the fuel, in addition to separating oxygenates. The analytical protocol further isolates the polar target species using a polar capillary gas chromatography (GC) column and a nontraditional oven heating program. The method is amenable to milliliter quantitites of fuel samples and produces a matrix that can be analyzed directly, using typical GC methods. The method was evaluated using spiked surrogate fuels, as well as actual petroleum-derived jet fuel samples. Furthermore, it is shown that the method also can be extended for use on diesel fuels.

Link, D.D.; Baltrus, J.P.; Zandhuis, P.H.

2007-05-01T23:59:59.000Z

111

Isolation and Identification of Nitrogen Species in Jet Fuel and Diesel Fuel  

Science Conference Proceedings (OSTI)

Many performance characteristics of liquid fuels--including lubricity, the ability to swell seal materials, storage stability, and thermal stability--are determined, to a large degree, by the trace polar species that the fuel contains. Because the polar fraction comprises such a small portion of the fuel matrix, it is difficult to detect these species without first isolating them from the bulk fuel. This manuscript describes the extension of previous work that established a protocol for the isolation and identification of oxygenates in jet fuels. The current work shows that a liquid-liquid extraction using methanol, followed by an isolation step using high-performance liquid chromatography (HPLC) with a silica column, can successfully separate polar nitrogen-containing species from the fuel, in addition to separating oxygenates. The analytical protocol further isolates the polar target species using a polar capillary gas chromatography (GC) column and a nontraditional oven heating program. The method is amenable to milliliter quantitites of fuel samples and produces a matrix that can be analyzed directly, using typical GC methods. The method was evaluated using spiked surrogate fuels, as well as actual petroleum-derived jet fuel samples. Furthermore, it is shown that the method also can be extended for use on diesel fuels.

Link, D.D.; Baltrus, J.P.; Zandhuis, P.H.

2007-05-01T23:59:59.000Z

112

Delta Air Lines plans to increase jet fuel yield at Trainer ...  

U.S. Energy Information Administration (EIA)

Last year a few refineries had jet fuel yields in the range that Delta has planned for Trainer, but only for a few months of the year.

113

Production of jet fuel from coal-derived liquids  

SciTech Connect

Amoco and Lummus-Crest, under a contract with the United States Department of Energy, are evaluating the process options and economics for upgrading the naphtha, crude phenols, and tar oil by-products from the Great Plains Coal Gasification Plant to jet fuels and other salable products. Analytical characterizations of these three by-products indicate the range of products that can be manufactured from each and potential problems which could be encountered during refining. These characterizations, along with limited experimental data and Amoco's proprietary process models, were used to design conceptual processing schemes for maximizing the production of Grades JP-4, JP-8, and high-density (JP-8X) jet fuels from the by-product liquids. Conceptual designs have been completed and a case for profitable production of JP-8 has been selected for experimental testing and preliminary design. Samples of JP-4, JP-8, and JP-8X aviation turbine fuels have been manufactured from the Great Plains tar oil. Larger samples of JP-8 have also been produced and shipped to the US Air Force for further testing. Lummus-Crest Inc. is now completing a preliminary process design for the profitable production of JP-8 and has made recommendations for a production run to produce larger quantities of JP-8. 2 figs., 3 tabs.

Furlong, M.W.; Fox, J.D.; Masin, J.G.

1989-01-01T23:59:59.000Z

114

Production of jet fuel from coal-derived liquids  

SciTech Connect

Amoco and Lummus-Crest, under a contract with the United States Department of Energy, are evaluating the process options and economics for upgrading the naphtha, crude phenols, and tar oil by-products from the Great Plains Coal Gasification Plant to jet fuels and other salable products. Analytical characterizations of these three by-products indicate the range of products that can be manufactured from each and potential problems which could be encountered during refining. These characterizations, along with limited experimental data and Amoco's proprietary process models, were used to design conceptual processing schemes for maximizing the production of Grades JP-4, JP-8, and high-density (JP-8X) jet fuels from the by-product liquids. Conceptual designs have been completed and a case for profitable production of JP-8 has been selected for experimental testing and preliminary design in the later phases of the contract. Samples of JP-4, JP-8, and JP-8X aviation turbine fuels have been manufactured from the Great Plains tar oil. Larger samples of JP-8 are nearly completed. Specification of a design basis for profitable production of JP-8 is under way. 5 figs., 4 tabs.

Furlong, M.W.; Fox, J.D.; Masin, J.G.

1988-01-01T23:59:59.000Z

115

Group combustion of liquid fuel in laminar spray jet  

SciTech Connect

The present study examines the global configuration, detailed structure, and combustion characteristic of sprays under various firing conditions represented by various principal parameters including group combustion number, fuel-air mass ratio, Reynolds number, and spray angle. A system of conservation equations of spray flames in an axisymmetric configuration is solved by a finite-difference method for n-Butylbenzen (C/sub 10/H/sub 14/). An extensive spray sensitivity study reveals remarkable insight into the group flame structure which can be adopted as a basic engineering criteria for spray flame classification. It can be used to develop practical guides for the design of atomizers and burners. Highlights of the study are described in the following. There are three principal spray group combustion modes that may occur independently in a spray burner. These combustion modes are external, internal and critical group combustion modes, according to the relative magnitude of the length of the flame and the spray jet. The external group flame, located outside the spray jet is deemed to be the principal combustion configuration of practical spray flame. Predicted spray structure of the external flame is found to be in good agreement with the experimental observations. In particular, axial and radial distributions of major spray variables, droplet size, number density of droplet, concentration of fuel and oxidizer, velocities, and temperature, together with the flame contour and jet boundary are in qualitative agreement with the laboratory scale kerosene spray flame reported by Onuma and coworkers (1974, 1976). The existence of an air deficient fuel rich combustible mixture in the spray core is expected to provoke significant thermal decomposition of the hydrocarbon and also facilitate the formation of soot and particles.

Kim, H.Y.

1982-01-01T23:59:59.000Z

116

Coal liquefaction process wherein jet fuel, diesel fuel and/or ASTM No. 2 fuel oil is recovered  

DOE Patents (OSTI)

An improved process for the liquefaction of coal and similar solid carbonaceous materials wherein a hydrogen donor solvent or diluent derived from the solid carbonaceous material is used to form a slurry of the solid carbonaceous material and wherein the naphthenic components from the solvent or diluent fraction are separated and used as jet fuel components. The extraction increases the relative concentration of hydroaromatic (hydrogen donor) components and as a result reduces the gas yield during liquefaction and decreases hydrogen consumption during said liquefaction. The hydrogenation severity can be controlled to increase the yield of naphthenic components and hence the yield of jet fuel and in a preferred embodiment jet fuel yield is maximized while at the same time maintaining solvent balance.

Bauman, Richard F. (Houston, TX); Ryan, Daniel F. (Friendswood, TX)

1982-01-01T23:59:59.000Z

117

Production of jet fuel from coal-derived liquids  

SciTech Connect

Amoco and Lummus Crest, under a contract with the United States Department of Energy, are evaluating the process options and economics for upgrading the naphtha, crude phenols, and tar oil by-products from the Great Plains Coal Gasification Plant to jet fuels and other salable products. Analytical characterizations of these three by-products indicate the range of products that can be manufactured from each, and potential problems which could be encountered during refining. These characterizations, along with limited experimental data and Amoco's proprietary process models, were used to design conceptual processing schemes for maximizing the production of Grades JP-4, JP-8, and high-density (JP-8X) jet fuels from the by-product liquids. Conceptual designs have been completed and a case for profitable production of JP-8 has been selected for experimental testing and preliminary design in the later phases of the contract. Experimental work to date has shown that the tar oil stream requires substantially more severe processing than the preliminary design estimates indicated. A new design basis is now being tested and samples of JP-4, JP-8, and JP-8X are in production, based on that new, more severe processing scheme. Six barrels of tar oil have been hydrotreated according to the first step of the processing scheme and will be used to produce barrel quantities of JP-8. 2 refs., 2 figs.

Furlong, M.W.; Fox, J.D.; Masin, J.G.

1988-01-01T23:59:59.000Z

118

Climate policy and the airline industry : emissions trading and renewable jet fuel  

E-Print Network (OSTI)

In this thesis, I assess the impact of the current EU Emissions Trading Scheme and a hypothetical renewable jet fuel mandate on US airlines. I find that both the EU Scheme up until 2020 and a renewable jet fuel mandate of ...

McConnachie, D. (Dominic Alistair)

2012-01-01T23:59:59.000Z

119

Control of flames by tangential jet actuators in oxy-fuel burners  

Science Conference Proceedings (OSTI)

The active control of oxy-fuel flames from burners with separated jets is investigated. The control system consists of four small jet actuators, placed tangential to the exit of the main jets to generate a swirling flow. These actuators are able to modify the flow structure and to act on mixing between the reactants and consequently on the flame behavior. The burner (25 kW) is composed of separated jets, one jet of natural gas and one or two jets of pure oxygen. Experiments are conducted with three burner configurations, according to the number of jets, the jet exit velocities, and the separation distance between the jets. OH chemiluminescence measurements, particle image velocimetry, and measurements of NO{sub x} emissions are used to characterize the flow and the flame structure. Results show that the small jet actuators have a significant influence on the behavior of jets and the flame characteristics, particularly in the stabilization zone. It is shown that the control leads to a decrease in lift-off heights and to better stability of the flame. The use of jet actuators induces high jet spreading and an increase in turbulence intensity, which improves the mixing between the reactants and the surrounding fluid. Pollutant measurements show important results in terms of NO{sub x} reductions (up to 60%), in particular for low swirl intensity. The burner parameters, such as the number of jets and the spacing between the jets, also impact the flame behavior and NO{sub x} formation. (author)

Boushaki, Toufik [CORIA UMR 6614 CNRS-Universite et INSA de ROUEN, Site Universitaire du Madrillet, 76801 Saint Etienne du Rouvray, Cedex (France); Universite de Toulouse-INPT-UPS, IMFT (Institut de Mecanique des Fluides de Toulouse), Allee Camille Soula, F-31400 Toulouse, Cedex (France); Sautet, Jean-Charles [CORIA UMR 6614 CNRS-Universite et INSA de ROUEN, Site Universitaire du Madrillet, 76801 Saint Etienne du Rouvray, Cedex (France); Labegorre, Bernard [Air Liquide, Centre de Recherche Claude-Delorme, Les Loges-en-Josas, B.P. 126 78354 Jouy-en-Josas, Cedex (France)

2009-11-15T23:59:59.000Z

120

Jet Fuel from Camelina: Jet Fuel From Camelina Sativa: A Systems Approach  

SciTech Connect

PETRO Project: NC State will genetically modify the oil-crop plant Camelina sativa to produce high quantities of both modified oils and terpenes. These components are optimized for thermocatalytic conversion into energy-dense drop-in transportation fuels. The genetically engineered Camelina will capture more carbon than current varieties and have higher oil yields. The Camelina will be more tolerant to drought and heat, which makes it suitable for farming in warmer and drier climate zones in the US. The increased productivity of NC State’s-enhanced Camelina and the development of energy-effective harvesting, extraction, and conversion technology could provide an alternative non-petrochemical source of fuel.

None

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "kerosene-type jet fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Word Pro - S9.lwp  

U.S. Energy Information Administration (EIA) Indexed Site

of Petroleum Products to End Users (Dollars a per Gallon, Excluding Taxes) Finished Motor Gasoline b Finished Aviation Gasoline Kerosene- Type Jet Fuel Kerosene No. 2 Fuel...

122

Word Pro - S9.lwp  

U.S. Energy Information Administration (EIA) Indexed Site

Prices of Petroleum Products for Resale (Dollars a per Gallon, Excluding Taxes) Finished Motor Gasoline b Finished Aviation Gasoline Kerosene- Type Jet Fuel Kerosene No. 2 Fuel...

123

Theoretical Study of the Thermal Decomposition of a Jet Fuel Surrogate  

E-Print Network (OSTI)

In a scramjet, the fuel can be used to cool down the engine walls. The thermal decomposition of the jet fuel changes the reacting mixture before its combustion. A numerical study of the pyrolysis of norbornane, a jet fuel surrogate, has been performed. Rate constants of some sensitive reaction channels have been calculated by means of quantum chemical calculations at the CBS-QB3 level of theory. The mechanism has been validated against experimental results obtained in a jet-stirred reactor and important and/or sensitive pathways have been derived.

Sirjean, Baptiste; Glaude, Pierre-Alexandre; Ruiz-Lopez, M F; Fournet, René

2009-01-01T23:59:59.000Z

124

Advanced thermally stable jet fuels: Technical progress report, October 1994--December 1994  

DOE Green Energy (OSTI)

There are five tasks within this project on thermally stable coal-based jet fuels. Progress on each of the tasks is described. Task 1, Investigation of the quantitative degradation chemistry of fuels, has 5 subtasks which are described: Literature review on thermal stability of jet fuels; Pyrolytic and catalytic reactions of potential endothermic fuels: cis- and trans-decalin; Use of site specific {sup 13}C-labeling to examine the thermal stressing of 1-phenylhexane: A case study for the determination of reaction kinetics in complex fuel mixtures versus model compound studies; Estimation of critical temperatures of jet fuels; and Surface effects on deposit formation in a flow reactor system. Under Task 2, Investigation of incipient deposition, the subtask reported is Uncertainty analysis on growth and deposition of particles during heating of coal-derived aviation gas turbine fuels; under Task 3, Characterization of solid gums, sediments, and carbonaceous deposits, is subtask, Studies of surface chemistry of PX-21 activated carbon during thermal degradation of jet A-1 fuel and n-dodecane; under Task 4, Coal-based fuel stabilization studies, is subtask, Exploratory screening and development potential of jet fuel thermal stabilizers over 400 C; and under Task 5, Exploratory studies on the direct conversion of coal to high quality jet fuels, are 4 subtasks: Novel approaches to low-severity coal liquefaction and coal/resid co-processing using water and dispersed catalysts; Shape-selective naphthalene hydrogenation for production of thermally stable jet fuels; Design of a batch mode and a continuous mode three-phase reactor system for the liquefaction of coal and upgrading of coal liquids; and Exploratory studies on coal liquids upgrading using mesopores molecular sieve catalysts. 136 refs., 69 figs., 24 tabs.

Schobert, H.H.; Eser, S.; Song, C.; Hatcher, P.G.; Boehman, A.; Coleman, M.M.

1995-02-01T23:59:59.000Z

125

Advanced thermally stable jet fuels: Technical progress report, July 1994--September 1994  

DOE Green Energy (OSTI)

There are five tasks within this project on thermally stable coal-based jet fuels. Progress on each of the tasks is described. Task 1, Investigation of the quantitative degradation chemistry of fuels, has 3 subtasks which are described: Pyrolysis of n-alkylbenzenes; Thermal decomposition of n-tetradecane in near-critical region; and Re-examining the effects of reactant and inert gas pressure on tetradecane pyrolysis--Effect of cold volume in batch reactor. Under Task 2, Investigation of incipient deposition, the subtask reported is Uncertainty analysis on growth and deposition of particles during heating of coal-derived aviation gas turbine fuels; under Task 3, Investigation of the quantitative degradation chemistry of fuels, is subtask, Effects of high surface area activated carbon and decalin on thermal degradation of jet A-1 fuel and n-dodecane; under Task 4, Coal-based fuel stabilization studies, is subtask, Screening potential jet fuel stabilizers using the model compound dodecane; and under Task 5, Exploratory studies on the direct conversion of coal to high quality jet fuels, is subtask, Shape-selective naphthalene hydrogenation for production of thermally stable jet fuels. 25 refs., 64 figs., 22 tabs.

Schobert, H.H.; Eser, S.; Song, C.; Hatcher, P.G.; Boehman, A.; Coleman, M.M.

1994-07-01T23:59:59.000Z

126

Market Cost of Renewable Jet Fuel Adoption in the United States  

E-Print Network (OSTI)

The US Federal Aviation Administration (FAA) has a goal that one billion gallons of renewable jet fuel is consumed by the US aviation industry each year from 2018. We examine the cost to US airlines of meeting this goal ...

Winchester, N.

127

Life-cycle assessment of Greenhouse Gas emissions from alternative jet fuels  

E-Print Network (OSTI)

The key motivation for this work was the potential impact of alternative jet fuel use on emissions that contribute to global climate change. This work focused on one specific aspect in examining the feasibility of using ...

Wong, Hsin Min

2008-01-01T23:59:59.000Z

128

Cost-benefit analysis of ultra-low sulfur jet fuel  

E-Print Network (OSTI)

The growth of aviation has spurred increased study of its environmental impacts and the possible mitigation thereof. One emissions reduction option is the introduction of an Ultra Low Sulfur (ULS) jet fuel standard for ...

Kuhn, Stephen (Stephen Richard)

2010-01-01T23:59:59.000Z

129

Experimental study of ethylene counterflow diffusion flames perturbed by trace amounts of jet fuel and jet fuel surrogates under incipiently sooting conditions  

SciTech Connect

The structure of an ethylene counterflow diffusion flame doped with 2000 ppm on a molar basis of either jet fuel or two jet fuel surrogates is studied under incipient sooting conditions. The doped flames have identical stoichiometric mixture fractions (z{sub f} = 0.18) and strain rates (a = 92 s{sup -1}), resulting in a well-defined and fixed temperature/time history for all of the flames. Gas samples are extracted from the flame with quartz microprobes for subsequent GC/MS analysis. Profiles of critical fuel decomposition products and soot precursors, such as benzene and toluene, are compared. The data for C7-C12 alkanes are consistent with typical decomposition of large alkanes with both surrogates showing good qualitative agreement with jet fuel in their pyrolysis trends. Olefins are formed as the fuel alkanes decompose, with agreement between the surrogates and jet fuel that improves for small alkenes, probably because of an increase in kinetic pathways which makes the specifics of the alkane structure less important. Good agreement between jet fuel and the surrogates is found with respect to critical soot precursors such as benzene and toluene. Although the six-component Utah/Yale surrogate performs better than the Aachen surrogate, the latter performs adequately and retains the advantage of simplicity, since it consists of only two components. The acetylene profiles present a unique multimodal behavior that can be attributed to acetylene's participation in early stages of formation of soot precursors, such as benzene and other large pyrolysis products, as well as in the surface growth of soot particles. (author)

Jahangirian, Saeed; Gomez, Alessandro [Department of Mechanical Engineering, Yale Center for Combustion Studies, New Haven, CT 06477 (United States); McEnally, Charles S. [Department of Chemical Engineering, Yale Center for Combustion Studies, New Haven, CT 06477 (United States)

2009-09-15T23:59:59.000Z

130

Jet Jet Jet Jet  

NLE Websites -- All DOE Office Websites (Extended Search)

protons protons top quark bottom quark muon top quark antiprotons bottom quark low energy muon quark quark - W boson + Jet Jet Jet Jet neutrino W boson particles antiparticles A Top Antitop Quark Event from the D-Zero Detector at Fermilab muon low energy muon Jet Jet Jet Jet particles antiparticles Particles Seen by the D-Zero Detector at Fermilab in a Top Antitop Quark Event. DST LEGO 16-JUL-1996 15:32 Run 92704 Event 14022 9-JUL-1995 13:17 MUON MUON Miss ET ET DST ETA-PHI 4 MUON 1 MISS ET 4 JET (HAD) (EM) D-Zero Detector at Fermi National Accelerator Laboratory Lego Plot CAL+TKS END VIEW 16-JUL-1996 15:33 Run 92704 Event 14022 9-JUL-1995 13:17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

131

X:\\Data_Publication\\Pma\\current\\ventura\\pma00.vp  

Gasoline and Diesel Fuel Update (EIA)

by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) - Continued Geographic Area Year Aviation Gasoline Kerosene-Type Jet Fuel Propane Kerosene Sales to End Users...

132

untitled  

Gasoline and Diesel Fuel Update (EIA)

by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) - Continued Geographic Area Year Aviation Gasoline Kerosene-Type Jet Fuel Propane Kerosene Sales to End Users...

133

X:\\L6046\\Data_Publication\\Pma\\current\\ventura\\pma.vp  

Gasoline and Diesel Fuel Update (EIA)

by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) - Continued Geographic Area Year Aviation Gasoline Kerosene-Type Jet Fuel Propane Kerosene Sales to End Users...

134

Refiner Prices of Gasoline, All Grades - Sales to End Users  

U.S. Energy Information Administration (EIA)

(Dollars per Gallon Excluding Taxes) Sales ... Values shown for kerosene-type jet fuel for the current month at the U.S. and PADD levels are initial ...

135

Performance of Sulfur Tolerant Reforming Catalysts for Production of Hydrogen from Jet Fuel Simulants  

E-Print Network (OSTI)

ReceiVed August 2, 2007 The development of robust desulfurizers and new reforming catalysts for fuel cells: the desulfurization of jet fuel and the development of sulfur-tolerant reforming catalysts/C) ratios. The water gas shift reaction is then used to convert additional CO into CO2. Nickel has been

Azad, Abdul-Majeed

136

Advanced thermally stable jet fuels. Technical progress report, April 1994--June 1994  

Science Conference Proceedings (OSTI)

Research continued on coal-based, thermally stable, jet fuels. Significant progress has been made on the detection of polycyclic aromatic hydrocarbons present in highly stressed fuels, using high-performance liquid chromatography (HPLC) with diode-array detection. Gas chromatography is not able to detect compounds with {>=}6 fused aromatic rings, but such compounds can be identified using the HPLC method. The concentration of such compounds is low in comparison to aromatics of 1-3 rings, but the role of the large compounds in the formation of solid deposits may be crucial in determining the thermal stability of a fuel. The unusual properties of fluid fuels in the near-critical region appear to have significant effects on their thermal decomposition reactions. This issue has been investigated in the present reporting period using n-tetradecane as a model compound for fuel decomposition. Temperature-programmed retention indices are very useful for gas chromatographic and gas chromatography/mass spectrometric analysis of coal and petroleum derived jet fuels. We have demonstrated this in the identification of components in two JP-8 fuels and their liquid chromatographic fractions. The role of activated carbon surfaces as catalysts in the thermal stressing of jet fuel was investigated using n-dodecane and n-octane as model compounds. In some cases the reactions were spiked with addition of 5% decalin to test the ability of the carbon to catalyze the transformation of decalin to naphthalene. We have previously shown that benzyl alcohol and 1,4-benzenedimethanol are effective stabilizers at temperatures {>=}400{degrees}C for jet fuels and the model compound dodecane. The addition of ethanol to hydrocarbon/benzyl alcohol mixtures has a significant effect on the thermal stabilization of jet fuels above 400{degrees}C. Ethanol appears to function by reducing the benzaldehyde formed during the degradation of the benzyl alcohol. This reduction regenerates the benzyl alcohol.

Schobert, H.H.; Eser, S.; Song, C. [and others

1994-07-01T23:59:59.000Z

137

NREL: News - NREL Teams with Navy, Private Industry to Make Jet Fuel from  

NLE Websites -- All DOE Office Websites (Extended Search)

313 313 NREL Teams with Navy, Private Industry to Make Jet Fuel from Switchgrass Project could spur jobs in rural America, lead to less reliance of foreign oil June 6, 2013 The Energy Department's National Renewable Energy Laboratory (NREL) is partnering with Cobalt Technologies, U.S. Navy, and Show Me Energy Cooperative to demonstrate that jet fuel can be made economically and in large quantities from a renewable biomass feedstock such as switch grass. "This can be an important step in the efforts to continue to displace petroleum by using biomass resources," NREL Manager for Bioprocess Integration R&D Dan Schell said. "We're converting biomass into sugars for subsequent conversion to butanol and then to JP5 jet fuel." It's one of four biorefinery projects funded recently by the Energy

138

Advanced thermally stable jet fuels. Technical progress report, April 1995--June 1995  

Science Conference Proceedings (OSTI)

Research continued on thermally stable jet fuel from coal liquids and petroleum distillates. The oxidative and thermal stabilities of ten fuels have been studied by differential scanning calorimetry and in microautoclave reactors. The compositions of the stressed fuels (as well as the unreacted fuels) were characterized by gas chromatography and gas chromatography/mass spectrometry. In addition, simulated distillation curves were determined by thermogravimetric analysis. The product distributions and reaction mechanisms for the thermal decomposition of n-alkanes in near-critical and supercritical regions were studied. The emphasis of the work in this reporting period has been placed on reaction mechanisms and product distributions. Work is continuing on obtaining additional {sup 13}C-labeled jet fuel components for future thermal stressing studies. Compounds of current interest include 6-{sup 13}C-dodecane and 1-cyclohexyl-1-{sup 13}C-hexane. Further analysis of the formation of solids from the thermal stressing of decane and decalin has been performed.

Schobert, H.H.; Eser, S.; Boehman, A.; Song, C. [and others

1995-08-01T23:59:59.000Z

139

An experimental study of the autoignition characteristics of conventional jet fuel/oxidizer mixtures: Jet-A and JP-8  

Science Conference Proceedings (OSTI)

Ignition delay times of Jet-A/oxidizer and JP-8/oxidizer mixtures are measured using a heated rapid compression machine at compressed charge pressures corresponding to 7, 15, and 30 bar, compressed temperatures ranging from 650 to 1100 K, and equivalence ratios varying from 0.42 to 2.26. When using air as the oxidant, two oxidizer-to-fuel mass ratios of 13 and 19 are investigated. To achieve higher compressed temperatures for fuel lean mixtures (equivalence ratio of {proportional_to}0.42), argon dilution is also used and the corresponding oxidizer-to-fuel mass ratio is 84.9. For the conditions studied, experimental results show two-stage ignition characteristics for both Jet-A and JP-8. Variations of both the first-stage and overall ignition delays with compressed temperature, compressed pressure, and equivalence ratio are reported and correlated. It is noted that the negative temperature coefficient phenomenon becomes more prominent at relatively lower pressures. Furthermore, the first-stage-ignition delay is found to be less sensitive to changes in equivalence ratio and primarily dependent on temperature. (author)

Kumar, Kamal; Sung, Chih-Jen [Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106 (United States)

2010-04-15T23:59:59.000Z

140

Jet fuel ignition delay times: Shock tube experiments over wide conditions and surrogate model predictions  

Science Conference Proceedings (OSTI)

Ignition delay times were measured for gas-phase jet fuel (Jet-A and JP-8) in air behind reflected shock waves in a heated high-pressure shock tube. Initial reflected shock conditions were as follows: temperatures of 715-1229 K, pressures of 17-51 atm, equivalence ratios of 0.5 and 1, and oxygen concentrations of 10 and 21% in synthetic air. Ignition delay times were measured using sidewall pressure and OH* emission at 306 nm. Longer ignition delay times at low temperatures (715-850 K) were accessed by utilizing driver-gas tailoring methods. Also presented is a review of previous ignition delay time measurements of kerosene-based fuels and recent work on surrogate fuel and kinetic mechanism development. To our knowledge, we report the first gas-phase shock tube ignition delay time data for JP-8, and our measurements for Jet-A are for a broader range of conditions than previously available. Our results have very low scatter and are in excellent agreement with the limited previous shock tube data for Jet-A. Although JP-8 and Jet-A have slightly different compositions, their ignition delay times are very similar. A simple 1/P dependence was found for ignition delay times from 874 to 1220 K for the pressure range studied for both fuels. Ignition delay time variations with equivalence ratio and oxygen concentration were also investigated. The new experimental results were compared with predictions of several kinetic mechanisms, using different jet fuel surrogate mixtures. (author)

Vasu, Subith S.; Davidson, David F.; Hanson, Ronald K. [Mechanical Engineering Department, Stanford University, Stanford, CA 94305 (United States)

2008-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "kerosene-type jet fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Jet Fuel from Microalgal Lipids; National Renewable Energy Laboratory (NREL) Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

Probably our most pressing energy need is Probably our most pressing energy need is to develop domestic, renewable substitutes for imported transportation fuel. Ethanol made from starch or sugar such as corn grain already displaces about 2% of gasoline and making it from cellulosic biomass will allow much greater displacement. Biodiesel made from oil crops such as soybeans can displace some of our diesel use. Unfortunately, neither of these biofuels can help supply jet fuel, for which energy density and low-temperature fuel properties are critical. Ethanol is not dense enough having only about half the energy per volume of jet fuel. Biodiesel has about 80% the energy density of kerosene, but can solidify at the low temperatures of high altitude flight. In

142

Possible use of polyaphronated hydrocarbons at jet fuels  

Science Conference Proceedings (OSTI)

The Air Force is interested in low cost missile propulsion systems which meet the need for increased stand off range and can fly at high speeds at both low and high altitudes. Due to their high performance capabilities, liquid fueled ramjets are important candidates for these missions. They tend to perform well when the combustor length is long enough to enable all of the fuel to be burned before being lost through the exhaust nozzle. When a combustor has to be shortened due to size limitations, liquid fuel performance drops as a result of not burning all of the injected fuel. Proper fuel injection and atomization are essential factors in obtaining high performance in all liquid fueled ramjets and other air breathing combustion systems. Poor fuel atomization results in low combustion efficiency, contributes to combustion instability, and aids in the formation of pollutants. Very fine fuel atomization requires complex fuel control injection systems which are impractical for ramjet applications. The recent developments in the colloid system, polyaphrons, opens up the possibility that fuels prepared in this way may increase the performance of ramjet propulsion systems, particularly those which are limited in combustion efficiency due to short evaporation and residence times, such as is the case for the very compact swirl combustor configurations. Polyaphrons have the potential to induce better atomization thereby decreasing residence times required for individual droplet burning.

Sebba, F.; Schetz, J.A. (Virginia Polytechnic Institute and State Univ., Blacksburg (USA)); Neff, R.B. (Aero Propulsion Lab., Wright-Patterson Air Force Base, OH (USA))

1987-04-01T23:59:59.000Z

143

Advanced thermally stable jet fuels. Technical progress report, July 1995--September 1995  

SciTech Connect

The Penn State program in advanced thermally stable jet engine fuels has five components: development of mechanisms of degradation and solids formation; quantitative measurement of growth of sub-micrometer-sized and micrometer particles suspended in fuels during thermal stresses; characterization of carbonaceous deposits by various instrumental and microscopic methods; elucidation of the role of additives in retarding the formation of carbonaceous solids; and assessment of the potential of producing high yields of cycloalkanes and hydroaromatics by direct coal liquefaction. Progress is described.

Schobert, H.H.; Eser, S.; Song, C. [and others

1995-10-01T23:59:59.000Z

144

Feasibility of producing jet fuel from GPGP (Great Plains Gasification Plant) by-products  

Science Conference Proceedings (OSTI)

The Great Plains Gasification Plant (GPGP) in Beulah, North Dakota, is in close proximity to several Air Force bases along our northern tier. This plant is producing over 137 million cubic feet per day of high-Btu Natural Gas from North Dakota lignite. In addition, the plant generates three liquid streams, naphtha, crude phenol, and tar oil. The naphtha may be directly marketable because of its low boiling point and high aromatic content. The other two streams, totalling about 4300 barrels per day, are available as potential sources of aviation fuel jet fuel for the Air Force. The overall objective of this project is to assess the technical and economic feasibility of producing aviation turbine fuel from the by-product streams of GPGP. These streams, as well as fractions, thereof, will be characterized and subsequently processed over a wide range of process conditions. The resulting turbine fuel products will be analyzed to determine their chemical and physical characteristics as compared to petroleum-based fuels to meet the military specification requirements. A second objective is to assess the conversion of the by-product streams into a new, higher-density aviation fuel. Since no performance specifications currently exist for a high-density jet fuel, reaction products and intermediates will only be characterized to indicate the feasibility of producing such a fuel. This report discusses the suitability of the tar oil stream. 5 refs., 20 figs., 15 tabs.

Willson, W.G.; Knudson, C.L.; Rindt, J.R.

1987-01-01T23:59:59.000Z

145

Feasibility of producing jet fuel from GPGP (Great Plains Gasification Plant) by-products  

SciTech Connect

The Great Plains Gasification Plant (GPGP) in Beulah, North Dakota, is in close proximity to several Air Force bases along our northern tier. This plant is producing over 137 million cubic feet per day high-Btu SNG from North Dakota lignite. In addition, the plant generates three liquid streams, naphtha, crude phenol, and tar oil. The naphtha may be directly marketable because of its low boiling point and high aromatic content. The other two streams, totalling about 4300 barrels per day, are available as potential sources of aviation jet fuel for the Air Force. The overall objective of this project is to assess the technical and economic feasibility of producing aviation turbine fuel from the by-product streams of GPGP. These streams, as well as fractions thereof, will be characterized and subsequently processed over a wide range of process conditions. The resulting turbine fuel products will be analyzed to determine their chemical and physical characteristics as compared to petroleum-based fuels to meet the military specification requirements. A second objective is to assess the conversion of the by-product streams into a new, higher-density aviation fuel. Since no performance specifications currently exist for a high-density jet fuel, reaction products and intermediates will only be characterized to indicate the feasibility of producing such a fuel. This report describes results on feedstock characterization. 6 figs., 5 tabs.

Willson, W.G.; Knudson, C.L.; Rindt, J.R.

1987-01-01T23:59:59.000Z

146

H-mode fueling optimization with the supersonic deuterium jet in NSTX  

SciTech Connect

High-performance, long-pulse 0.7-1.2 MA 6-7 MW NBI-heated small-ELM H-mode plasma discharges are developed in the National Spherical Torus Experiment (NSTX) as prototypes for confinement and current drive extrapolations to future spherical tori. It is envisioned that innovative lithium coating techniques for H-mode density pumping and a supersonic deuterium jet for plasma refueling will be used to achieve the low pedestal collisionality and low n{sub e}/n{sub G} fractions (0.3-0.6), both of which being essential conditions for maximizing the non-inductive (bootstrap and beam driven) current fractions. The low field side supersonic gas injector (SGI) on NSTX consists of a small converging-diverging graphite Laval nozzle and a piezoelectric gas valve. The nozzle is capable of producing a deuterium jet with Mach number M {le} 4, estimated gas density at the nozzle exit n {le} 5 x 10{sup 23} m{sup -3}, estimated temperature T {ge} 70 K, and flow velocity v = 2:4 km/s. The nozzle Reynolds number Reis {approx_equal} 6000. The nozzle and the valve are enclosed in a protective carbon fiber composite shroud and mounted on a movable probe at a midplane port location. Despite the beneficial L-mode fueling experience with supersonic jets in limiter tokamaks, there is a limited experience with fueling of high-performance H-mode divertor discharges and the associated density, MHD stability, and MARFE limits. In initial supersonic deuterium jet fueling experiments in NSTX, a reliable H-mode access, a low NBI power threshold, P{sub LH} {le} 2 MW, and a high fueling efficiency (0.1-0.4) have been demonstrated. Progress has also been made toward a better control of the injected fueling gas by decreasing the uncontrolled high field side (HFS) injector fueling rate by up to 95 % and complementing it with the supersonic jet fueling. These results motivated recent upgrades to the SGI gas delivery and control systems. The new SGI-Upgrade (SGI-U) capabilities include multi-pulse ms-scale controls and a reservoir gas pressure up to P{sub 0} = 5000 Torr. In this paper we summarize recent progress toward optimization of H-mode fueling in NSTX using the SGI-U.

Soukhanovskii, V A; Bell, M G; Bell, R E; Gates, D A; Kaita, R; Kugel, H W; LeBlanc, B P; Lundberg, D P; Maingi, R; Menard, J E; Raman, R; Roquemore, A L; Stotler, D P

2008-06-18T23:59:59.000Z

147

Refinery Integration of By-Products from Coal-Derived Jet Fuels  

SciTech Connect

The final report summarizes the accomplishments toward project goals during length of the project. The goal of this project was to integrate coal into a refinery in order to produce coal-based jet fuel, with the major goal to examine the products other than jet fuel. These products are in the gasoline, diesel and fuel oil range and result from coal-based jet fuel production from an Air Force funded program. The main goal of Task 1 was the production of coal-based jet fuel and other products that would need to be utilized in other fuels or for non-fuel sources, using known refining technology. The gasoline, diesel fuel, and fuel oil were tested in other aspects of the project. Light cycle oil (LCO) and refined chemical oil (RCO) were blended, hydrotreated to removed sulfur, and hydrogenated, then fractionated in the original production of jet fuel. Two main approaches, taken during the project period, varied where the fractionation took place, in order to preserve the life of catalysts used, which includes (1) fractionation of the hydrotreated blend to remove sulfur and nitrogen, followed by a hydrogenation step of the lighter fraction, and (2) fractionation of the LCO and RCO before any hydrotreatment. Task 2 involved assessment of the impact of refinery integration of JP-900 production on gasoline and diesel fuel. Fuel properties, ignition characteristics and engine combustion of model fuels and fuel samples from pilot-scale production runs were characterized. The model fuels used to represent the coal-based fuel streams were blended into full-boiling range fuels to simulate the mixing of fuel streams within the refinery to create potential 'finished' fuels. The representative compounds of the coal-based gasoline were cyclohexane and methyl cyclohexane, and for the coal-base diesel fuel they were fluorine and phenanthrene. Both the octane number (ON) of the coal-based gasoline and the cetane number (CN) of the coal-based diesel were low, relative to commercial fuels ({approx}60 ON for coal-based gasoline and {approx}20 CN for coal-based diesel fuel). Therefore, the allowable range of blending levels was studied where the blend would achieve acceptable performance. However, in both cases of the coal-based fuels, their ignition characteristics may make them ideal fuels for advanced combustion strategies where lower ON and CN are desirable. Task 3 was designed to develop new approaches for producing ultra clean fuels and value-added chemicals from refinery streams involving coal as a part of the feedstock. It consisted of the following three parts: (1) desulfurization and denitrogenation which involves both new adsorption approach for selective removal of nitrogen and sulfur and new catalysts for more effective hydrotreating and the combination of adsorption denitrogenation with hydrodesulfurization; (2) saturation of two-ring aromatics that included new design of sulfur resistant noble-metal catalysts for hydrogenation of naphthalene and tetralin in middle distillate fuels, and (3) value-added chemicals from naphthalene and biphenyl, which aimed at developing value-added organic chemicals from refinery streams such as 2,6-dimethylnaphthalene and 4,4{prime}-dimethylbiphenyl as precursors to advanced polymer materials. Major advances were achieved in this project in designing the catalysts and sorbent materials, and in developing fundamental understanding. The objective of Task 4 was to evaluate the effect of introducing coal into an existing petroleum refinery on the fuel oil product, specifically trace element emissions. Activities performed to accomplish this objective included analyzing two petroleum-based commercial heavy fuel oils (i.e., No. 6 fuel oils) as baseline fuels and three co-processed fuel oils, characterizing the atomization performance of a No. 6 fuel oil, measuring the combustion performance and emissions of the five fuels, specifically major, minor, and trace elements when fired in a watertube boiler designed for natural gas/fuel oil, and determining the boiler performance when firing the five fuels. Two

Caroline Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

2008-03-31T23:59:59.000Z

148

Finished Motor Gasoline Net Production  

Gasoline and Diesel Fuel Update (EIA)

Data Series: Finished Motor Gasoline Finished Motor Gasoline (less Adj.) Reformulated Gasoline Reformulated Gasoline Blenede w/ Fuel Ethanol Reformulated Other Gasoline Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Other Conventional Gasoline Finished Motor Gasoline Adjustment Kerosene-Type Jet Fuel Kerosene-Type Jet, Commercial Kerosene-Type Jet, Military Distillate Fuel Oil Distillate Fuel Oil, 15 ppm Sulfur and Under Distillate Fuel Oil > 15 ppm to 500 ppm Sulfur Distillate Fuel Oil > 500 ppm Sulfur Residual Fuel Oil Propane/Propylene Period: Weekly 4-Week Average

149

Advanced thermally stable jet fuels. Technical progress report, October 1993--December 1993  

DOE Green Energy (OSTI)

The Penn State program in advancd thermally stable coal-based jet fuels has five broad objectives: (1) development of mechanisms of degradation and solids formation; (2) quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) elucidation of the role of additives in retarding them formation of vcarbonaceous solids; and, (5) assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal.

Schobert, H.H.; Eser, S.; Song, C.; Hatcher, P.G.; Walsh, P.M.; Coleman, M.M.

1994-01-01T23:59:59.000Z

150

Refinery Integration of By-Products from Coal-Derived Jet Fuels  

Science Conference Proceedings (OSTI)

This report summarizes the accomplishments toward project goals during the first twelve months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

2004-09-17T23:59:59.000Z

151

REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS  

Science Conference Proceedings (OSTI)

This report summarizes the accomplishments toward project goals during the first six months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

2004-04-23T23:59:59.000Z

152

REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS  

SciTech Connect

This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

2005-05-18T23:59:59.000Z

153

Refinery Integration of By-Products from Coal-Derived Jet Fuels  

Science Conference Proceedings (OSTI)

This report summarizes the accomplishments toward project goals during the first six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of fuel oil indicates that the fuel is somewhere in between a No. 4 and a No. 6 fuel oil. Emission testing indicates the fuel burns similarly to these two fuels, but trace metals for the coal-based material are different than petroleum-based fuel oils. Co-coking studies using cleaned coal are highly reproducible in the pilot-scale delayed coker. Evaluation of the coke by Alcoa, Inc. indicated that while the coke produced is of very good quality, the metals content of the carbon is still high in iron and silica. Coke is being evaluated for other possible uses. Methods to reduce metal content are being evaluated.

Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

2006-05-17T23:59:59.000Z

154

Refinery Integration of By-Products from Coal-Derived Jet Fuels  

Science Conference Proceedings (OSTI)

This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Evaluations to assess the quality of coal based fuel oil are reported. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

2005-11-17T23:59:59.000Z

155

Advanced thermally stable jet fuels. Technical progress report, January 1995--March 1995  

SciTech Connect

Quantitative structure-property relationships have been applied to study the thermal stability of pure hydrocarbons typical of jet fuel components. A simple method of chemical structure description in terms of Benson groups was tested in searching for structure-property relationships for the hydrocarbons tested experimentally in this program. Molecular connectivity as a structure-based approach to chemical structure-property relationship analysis was also tested. Further development of both the experimental data base and computational methods will be necessary. Thermal decomposition studies, using glass tube reactors, were extended to two additional model compounds: n-decane and n-dodecane. Efforts on refining the deposit growth measurement and characterization of suspended matter in stressed fuels have lead to improvements in the analysis of stressed fuels. Catalytic hydrogenation and dehydrogenation studies utilizing a molybdenum sulfide catalyst are also described.

Schobert, H.H.; Eser, S.; Song, C. [and others

1995-06-01T23:59:59.000Z

156

Performance and emissions of a catalytic reactor with propane, diesel, and Jet A fuels  

DOE Green Energy (OSTI)

As part of the ERDA-funded Gas Turbine Highway Vehicle Systems project, tests were made to determine the performance and emissions of a catalytic reactor operated with propane, No. 2 diesel, and Jet A fuels. A 12-cm diameter and 16-cm long catalytic reactor using a proprietary noble metal catalyst was operated at an inlet temperature of 800 K, a pressure of 3 x 10/sup 5/ Pa and reference velocities of 10 to 15 m/s. No significant differences between the performance of the three fuels were observed when 98.5% purity propane was used. The combustion efficiency for 99.8% purity propane tested later was significantly lower, however. The diesel fuel contained 135 ppM of bound nitrogen and consequently produced the highest NO/sub x/ emissions of the three fuels. As much as 85% of the bound nitrogen was converted to NO/sub x/. Steady-state emissions goals based on half the most stringent proposed automotive standards were met when the reactor was operated at an adiabatic combustion temperature higher than 1350 K with all fuels except the 99.8% purity propane. With that fuel, a minimum temperature of 1480 K was required.

Anderson, D.N.

1977-01-01T23:59:59.000Z

157

Advanced thermally stable jet fuels. Technical progress report, July 1993--September 1993  

DOE Green Energy (OSTI)

The Penn State program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) development of mechanisms of degradation and solids formation; (2) quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. An exploratory study was conducted to investigate the pyrolysis of n-butylbenzene in a flow reactor at atmospheric pressure. A number of similarities to trends previously observed in high-pressure static reactions were identified. The product distribution from pyrolysis of n-tetradecane at 400{degrees}C and 425{degrees}C was investigated. The critical temperatures of a suite of petroleum- and coal-derived jet fuels were measured by a rapidly heating sealed tube method. Work has continued on refining the measurements of deposit growth for stressing mixtures of coal-derived JP-8C with tetradecane. Current work has given emphasis to the initial stages of fuel decomposition and the onset of deposition. Pretreatment of JPTS fuel with PX-21 activated carbon (50 mg of PX-21 in 15 mL JPTS) delayed degradation and prevented carbon deposition during thermal stressing at 425{degrees}C for 5 h in nitrogen and air atmospheres. Clear indications of initial and subsequent deposit formation on different metal surfaces have been identified for thermal stressing of dodecane. Seven additives were tested for their ability to retard decomposition of dodecane at 450{degrees}C under nitrogen. Nuclear magnetic resonance data for Dammar resin indicates that structures proposed in the literature are not entirely correct.

Schobert, H.H.; Eser, S.; Song, C.; Hatcher, P.G.; Walsh, P.M.; Coleman, M.M.

1993-12-01T23:59:59.000Z

158

Composition-explicit distillation curves of aviation fuel JP-8 and a coal-based jet fuel  

Science Conference Proceedings (OSTI)

We have recently introduced several important improvements in the measurement of distillation curves for complex fluids. The modifications to the classical measurement provide for (1) a composition explicit data channel for each distillate fraction (for both qualitative and quantitative analysis); (2) temperature measurements that are true thermodynamic state points; (3) temperature, volume, and pressure measurements of low uncertainty suitable for an equation of state development; (4) consistency with a century of historical data; (5) an assessment of the energy content of each distillate fraction; (6) a trace chemical analysis of each distillate fraction; and (7) a corrosivity assessment of each distillate fraction. The most significant modification is achieved with a new sampling approach that allows precise qualitative as well as quantitative analyses of each fraction, on the fly. We have applied the new method to the measurement of rocket propellant, gasoline, and jet fuels. In this paper, we present the application of the technique to representative batches of the military aviation fuel JP-8, and also to a coal-derived fuel developed as a potential substitute. We present not only the distillation curves but also a chemical characterization of each fraction and discuss the contrasts between the two fluids. 26 refs., 5 figs., 6 tabs.

Beverly L. Smith; Thomas J. Bruno [National Institute of Standards and Technology, Boulder, CO (United States). Physical and Chemical Properties Division

2007-09-15T23:59:59.000Z

159

Measurements of fuel mixture fraction oscillations of a turbulent jet non-premixed flame  

Science Conference Proceedings (OSTI)

This work describes new type of combustion instability for which the 3-way coupling between mixing, flame heat release, and acoustics is modified by local buoyancy effects. Measurements of fuel mixture fraction are made for a non-premixed jet flame in a combustion chamber to assess the dynamics of mixing under imposed acoustic oscillations (22-55 Hz). Infrared laser absorption and phase resolved acetone-planar laser induced fluorescence are used to measure the fuel mixture fraction and then the degree of fuel/air mixing is calculated by determining the unmixedness. Results show acoustic excitation causes oscillations in the degree of fuel/air mixing at the driving frequency, which results in oscillatory flame behavior. This oscillatory flame behavior couples to the buoyancy and this in turn affects the mixing. Results also show that the mixing becomes less effective when the excitation frequency is increased or when the flame is present, compared to the non-reacting case. This work describes a key coupling mechanism that occurs when buoyancy is a significant factor in the flow field. (author)

Kanga, D.M. [LG Chem Research Park, Dajeon 305-380 (Korea); Fernandez, V.; Culick, F.E.C. [Department of Mechanical Engineering, California Institute of Technology, Pasadena, CA 91125 (United States); Ratner, A. [Department of Mechanical and Industrial Engineering, University of Iowa, Iowa City, IA 52242 (United States)

2009-01-15T23:59:59.000Z

160

Advanced thermally stable jet fuels. Technical progress report, August 1992--October 1992  

DOE Green Energy (OSTI)

The Penn State program in advanced thermally stable coal-based jet fuels has five borad objectives: (1) development of mechanisms of degradation and solids formation; (2) quantitative measurement of growth of sub-micrometer and miocrometer-sized particles suspended in fuels during thermal stressing; (3) characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) elucidation of the role of additives in retarding the formation of carbonaceous solids; and (5) assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Pyrolysis of four isomers of butylbenzene was investigated in static microautoclave reactors at 450{degrees}C under 0.69 MPa of UHP N{sub 2}. Thee rates of disappearance of substrates were found to depend upon the bonding energy of C{alpha}-C{beta} bond in the side chain in the initial period of pyrolysis reactions. Possible catalytic effects of metal surfaces on thermal degradation and deposit formation at temperatures >400{degrees}C have been studied. Carbon deposition depends on the composition of the metal surfaces, and also depends on the chemical compositions of the reactants. Thermal stressing of JP-8 was conducted in the presence of alumina, carbonaceous deposits recovered from earlier stressing experiments, activated carbon, carbon black, and graphite. The addition of different solid carbons during thermal stressing leads to different reaction mechanisms. {sup 13}C NMR spectroscopy, along with {sup 13}C-labeling techniques, have been used to examine the thermal stability of a jet fuel sample mixed with 5% benzyl alcohol. Several heterometallic complexes consisting of two transition metals and sulfur in a single molecule were synthesized and tested as precursors of bimetallic dispersed catalysts for liquefaction of a Montana subbituminous and Pittsburgh No. 8 bituminous coals.

Schobert, H.H.; Eser, S.; Song, C.; Hatcher, P.G.; Walsh, P.M.; Coleman, M.M.; Bortiatynski, J.; Burgess, C.; Dutta, R.; Gergova, K.; Lai, W.C.; Li, J.; McKinney, D.; Parfitt, D.; Peng, Y.; Sanghani, P.; Yoon, E.

1993-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "kerosene-type jet fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Refinery Integration of By-Products from Coal-Derived Jet Fuels  

Science Conference Proceedings (OSTI)

This report summarizes the accomplishments toward project goals during the no cost extension period of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts for a third round of testing, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Hydrotreating and hydrogenation of the product has been completed, and due to removal of material before processing, yield of the jet fuel fraction has decreased relative to an increase in the gasoline fraction. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO from the latest modification) indicates that the fraction is heavier than a No. 6 fuel oil. Combustion efficiency on our research boiler is {approx}63% for the heavy RCO fraction, lower than the combustion performance for previous co-coking fuel oils and No. 6 fuel oil. Emission testing indicates that the coal derived material has more trace metals related to coal than petroleum, as seen in previous runs. An additional coal has been procured and is being processed for the next series of delayed co-coking runs. The co-coking of the runs with the new coal have begun, with the coke yield similar to previous runs, but the gas yield is lower and the liquid yield is higher. Characterization of the products continues. Work continues on characterization of liquids and solids from co-coking of hydrotreated decant oils; liquid yields include more saturated and hydro- aromatics, while the coke quality varies depending on the conditions used. Pitch material is being generated from the heavy fraction of co-coking.

Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

2007-03-17T23:59:59.000Z

162

Lithuania Exports of Crude Oil and Petroleum Products by Destination  

U.S. Energy Information Administration (EIA)

Kerosene-Type Jet Fuel : 0: 2012-2012: Special Naphthas : 0 : 0: 2008-2012: Residual Fuel Oil : 1: 0 : 2010-2011: Waxes : 0: 0: 0: 0 : 2008-2011: Asphalt and Road Oil ...

163

U.S. Imports from Singapore  

U.S. Energy Information Administration (EIA)

Kerosene-Type Jet Fuel: 1,433: 326: 318: 303 : 2004-2010: Residual Fuel Oil: 250 : 217: 431: 449 : 1993-2011: Less than 0.31% Sulfur : 217 : 449 : 2005-2011: 0.31 to ...

164

Guyana Net Imports of Crude Oil and Petroleum Products into the U.S.  

U.S. Energy Information Administration (EIA)

Kerosene-Type Jet Fuel : 0 : 2011-2011: Special Naphthas: 0: 0 : 0: 0: 0: 2004-2012: Residual Fuel Oil : 0: 0: 0: 0: 0: 2004-2012: Waxes: 0: 0 : 0: 0: 2004-2012 ...

165

Malaysia Net Imports of Crude Oil and Petroleum Products into the U.S.  

U.S. Energy Information Administration (EIA)

Kerosene-Type Jet Fuel : 1 : 1 : 1: 2004-2012: Special Naphthas: 0: 0: 0: 0: 0: 0: 2004-2012: Residual Fuel Oil: 0: 1: 2-3-2: 0: 1994-2012: Naphtha for Petrochem ...

166

Singapore Net Imports of Crude Oil and Petroleum Products into the ...  

U.S. Energy Information Administration (EIA)

Kerosene-Type Jet Fuel : 2004-2012: Special Naphthas: 0: 0: 0: 0-3: 0: 2004-2013: Residual Fuel Oil-232-100-184-102-69-112: 2004-2013: Naphtha for Petrochem ...

167

Georgia, Republic of Exports of Crude Oil and Petroleum Products ...  

U.S. Energy Information Administration (EIA)

Distillate Fuel Oil : 0 : 2011-2011: Greater than 15 to 500 ppm Sulfur : 0 : 2011-2011: Kerosene-Type Jet Fuel : 475: 1: 2011-2012: Special Naphthas : 2 : 2005-2008:

168

U.S. Imports from Singapore  

U.S. Energy Information Administration (EIA)

Kerosene-Type Jet Fuel : 2004-2010: Residual Fuel Oil : 1993-2011: Less than 0.31% Sulfur : 2005-2011: 0.31 to 1.00% Sulfur : 2007-2010:

169

Weekly Petroleum Status Report February 13, 2013  

U.S. Energy Information Administration (EIA)

Spot Prices of Crude Oil, Motor Gasoline, and Heating Oil: PDF: CSV: 12: Spot Prices of Ultra-Low Sulfur Diesel Fuel, Kerosene-Type Jet Fuel, and Propane PDF: CSV: 13:

170

West Virginia Refiner Petroleum Product Prices  

U.S. Energy Information Administration (EIA)

No. 4 Fuel -----1993-2013-= No ... Values shown for kerosene-type jet fuel for the current month at the U.S. and PADD levels are initial estimates calculated using ...

171

Kansas Refiner Petroleum Product Prices  

U.S. Energy Information Administration (EIA)

No. 4 Fuel -----1993-2013-= No ... Values shown for kerosene-type jet fuel for the current month at the U.S. and PADD levels are initial estimates ...

172

Advanced thermally stable jet fuels. Technical progress report, January 1996--March 1996  

Science Conference Proceedings (OSTI)

A reactive structure index was developed to correlate the molecular structures of saturated hydrocarbons with their reactivities using a linear group contribution method. The index is composed of several sub-indices determined from the structure, including carbon group indices, ring index, and conformation index. The effects on decomposition of ring structure, side-chain length, steric isomers, and branching were examined. Good correlations were obtained for two sets of saturated hydrocarbons. The reactivity of alkanes and cycloalkanes increases with increasing chain or side-chain length. Cycloalkanes are desirable components of advanced jet fuels, in terms of having higher thermal stability and density than n-alkanes of the same carbon number. The cis-isomer is usually more reactive than the trans-isomer, except for cis-1,3-dimethylcyclohexane. which is more stable than its trans-isomer. The presence of a branch or branches appears to decrease the decomposition rate compared to n-alkanes.

Schobert, H.H.; Eser, S.; Song, C. [and others

1996-08-01T23:59:59.000Z

173

Refinery Integration of By-Products from Coal-Derived Jet Fuels  

SciTech Connect

This report summarizes the accomplishments toward project goals during the second six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts and examination of carbon material, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO from the latest modification) indicates that the fraction is heavier than a No. 6 fuel oil. Combustion efficiency on our research boiler is {approx}63% for the heavy RCO fraction, lower than the combustion performance for previous co-coking fuel oils and No. 6 fuel oil. An additional coal has been procured and is being processed for the next series of delayed co-coking runs. Work continues on characterization of liquids and solids from co-coking of hydrotreated decant oils; liquid yields include more saturated and hydro- aromatics, while the coke quality varies depending on the conditions used. Pitch material is being generated from the heavy fraction of co-coking. Investigation of coal extraction as a method to produce RCO continues; the reactor modifications to filter the products hot and to do multi-stage extraction improve extraction yields from {approx}50 % to {approx}70%. Carbon characterization of co-cokes for use as various carbon artifacts continues.

Caroline E. Burgess Clifford; Andre' Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

2006-09-17T23:59:59.000Z

174

Advanced thermally stable jet fuels. Technical progress report, April 1993--June 1993  

DOE Green Energy (OSTI)

The Penn State program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) development of mechanisms of degradation and solids formation; (2) quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) elucidation of the role of additives in retarding the formation of carbonaceous solids; and (5) assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Some of our accomplishments and findings are: The product distribution and reaction mechanisms for pyrolysis of alkylcyclohexanes at 450{degree}C have been investigated in detail. In this report we present results of pyrolysis of cyclohexane and a variety of alkylcyclohexanes in nitrogen atmospheres, along with pseudo-first order rate constants, and possible reaction mechanisms for the origin of major pyrolysis products are presented. Addition of PX-21 activated carbon effectively stops the formation of carbonaceous solids on reactor walls during thermal stressing of JPTS. A review of physical and chemical interactions in supercritical fluids has been completed. Work has begun on thermal stability studies of a second generation of fuel additives, 1,2,3,4-tetrahydro-l-naphthol, 9,10-phenanthrenediol, phthalan, and 1,2-benzenedimethanol, and with careful selection of the feedstock, it is possible to achieve 85--95% conversion of coal to liquids, with 40--50% of the dichloromethane-soluble products being naphthalenes. (Further hydrogenation of the naphthalenes should produce the desired highly stable decalins.)

Schobert, H.H.; Eser, S.; Song, C. [and others

1993-10-01T23:59:59.000Z

175

One-dimensional turbulence model simulations of autoignition of hydrogen/carbon monoxide fuel mixtures in a turbulent jet  

Science Conference Proceedings (OSTI)

The autoignition of hydrogen/carbon monoxide in a turbulent jet with preheated co-flow air is studied using the one-dimensional turbulence (ODT) model. The simulations are performed at atmospheric pressure based on varying the jet Reynolds number and the oxidizer preheat temperature for two compositions corresponding to varying the ratios of H{sub 2} and CO in the fuel stream. Moreover, simulations for homogeneous autoignition are implemented for similar mixture conditions for comparison with the turbulent jet results. The results identify the key effects of differential diffusion and turbulence on the onset and eventual progress of autoignition in the turbulent jets. The differential diffusion of hydrogen fuels results in a reduction of the ignition delay relative to similar conditions of homogeneous autoignition. Turbulence may play an important role in delaying ignition at high-turbulence conditions, a process countered by the differential diffusion of hydrogen relative to carbon monoxide; however, when ignition is established, turbulence enhances the overall rates of combustion of the non-premixed flame downstream of the ignition point. (author)

Gupta, Kamlesh G.; Echekki, Tarek [Department of Mechanical and Aerospace Engineering, North Carolina State University, NC (United States)

2011-02-15T23:59:59.000Z

176

Microalgal Production of Jet Fuel: Cooperative Research and Development Final Report, CRADA Number CRD-07-208  

DOE Green Energy (OSTI)

Microalgae are photosynthetic microorganisms that can use CO2 and sunlight to generate the complex biomolecules necessary for their survival. These biomolecules include energy-rich lipid compounds that can be converted using existing refinery equipment into valuable bio-derived fuels, including jet fuel for military and commercial use. Through a dedicated and thorough collaborative research, development and deployment program, the team of the National Renewable Energy Laboratory (NREL) and Chevron will identify a suitable algae strain that will surpass the per-acre biomass productivity of terrestrial plant crops.

Jarvis, E. E.; Pienkos, P. T.

2012-06-01T23:59:59.000Z

177

U.S. Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene,  

Gasoline and Diesel Fuel Update (EIA)

Sales Type: Sales to End Users Sales for Resale Sales Type: Sales to End Users Sales for Resale Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Sales Type Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Aviation Gasoline 93.3 8.2 10.0 12.0 10.9 11.4 1983-2013 Kerosene-Type Jet Fuel 32,893.1 32,452.7 33,281.4 32,532.8 29,876.9 29,004.1 1983-2013 Propane (Consumer Grade) 6,321.3 6,161.4 5,990.4 6,377.7 6,892.8 3,264.5 1983-2013 Kerosene 3.5 2.4 3.6 2.2 3.6 8.8 1983-2013 No. 1 Distillate 45.2 31.9 36.3 32.5 44.6 103.0 1983-2013 No. 2 Distillate 11,266.8 11,311.6 11,647.9 11,375.1 11,192.1 12,138.1 1983-2013 No. 2 Diesel Fuel NA NA NA NA NA NA 1994-2013

178

Neutron spectroscopy as a fuel ion ratio diagnostic: Lessons from JET and prospects for ITER  

SciTech Connect

The determination of the fuel ion ratio n{sub t}/n{sub d} in ITER is required at a precision of 20%, time resolution of 100 ms, spatial resolution of a/10, and over a range of 0.016 keV and for n{sub T}/n{sub D}<0.6. A crucial issue is the signal-to-background situation in the measurement of the weak 2.5 MeV emission from DD reactions in the presence of a background of scattered 14 MeV DT neutrons. Important experimental input and corroboration for this assessment are presented from the time-of-flight neutron spectrometer at JET where the presence of a strong component of backscattered neutrons is observed. Neutron emission components on ITER due to beam-thermal and tritium-tritium reactions can further enhance the prospects for NES.

Ericsson, G.; Conroy, S.; Gatu Johnson, M.; Andersson Sunden, E.; Cecconello, M.; Eriksson, J.; Hellesen, C.; Sangaroon, S.; Weiszflog, M. [Department of Physics and Astronomy, Uppsala University (EURATOM-VR Association), SE-75120 Uppsala (Sweden); Collaboration: JET EFDA Contributors

2010-10-15T23:59:59.000Z

179

untitled  

Annual Energy Outlook 2012 (EIA)

Gallon Excluding Taxes) Geographic Area Year Aviation Gasoline Kerosene-Type Jet Fuel Propane Kerosene Sales to End Users Sales for Resale Sales to End Users Sales for Resale...

180

Experimental and computational study of methane counterflow diffusion flames perturbed by trace amounts of either jet fuel or a 6-component surrogate under non-sooting conditions  

Science Conference Proceedings (OSTI)

The chemical structure of a methane counterflow diffusion flame and of the same flame doped with 1000 ppm (molar) of either jet fuel or a 6-component jet fuel surrogate was analyzed experimentally, by gas sampling via quartz microprobes and subsequent GC/MS analysis, and computationally using a semi-detailed kinetic mechanism for the surrogate blend. Conditions were chosen to ensure that all three flames were non-sooting, with identical temperature profiles and stoichiometric mixture fraction, through a judicious selection of feed stream composition and strain rate. The experimental dataset provides a glimpse of the pyrolysis and oxidation behavior of jet fuel in a diffusion flame. The jet fuel initial oxidation is consistent with anticipated chemical kinetic behavior, based on thermal decomposition of large alkanes to smaller and smaller fragments and the survival of ring-stabilized aromatics at higher temperatures. The 6-component surrogate captures the same trend correctly, but the agreement is not quantitative with respect to some of the aromatics such as benzene and toluene. Various alkanes, alkenes and aromatics among the jet fuel components are either only qualitatively characterized or could not be identified, because of the presence of many isomers and overlapping spectra in the chromatogram, leaving 80% of the carbon from the jet fuel unaccounted for in the early pyrolysis history of the parent fuel. Computationally, the one-dimensional code adopted a semi-detailed kinetic mechanism for the surrogate blend that is based on an existing hierarchically constructed kinetic model for alkanes and simple aromatics, extended to account for the presence of tetralin and methylcyclohexane as reference fuels. The computational results are in reasonably good agreement with the experimental ones for the surrogate behavior, with the greatest discrepancy in the concentrations of aromatics and ethylene. (author)

Bufferand, H.; Tosatto, L.; La Mantia, B.; Smooke, M.D.; Gomez, A. [Department of Mechanical Engineering, Yale Center for Combustion Studies, Yale University, New Haven, CT 06520-8286 (United States)

2009-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "kerosene-type jet fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Evaluation of the natural biodegradation of jet fuel JP-8 in various soils using respirometry. Master`s thesis  

Science Conference Proceedings (OSTI)

This research effort used an automated respirometer to evaluate the intrinsic aerobic biodegradation potential of jet fuel JP-8 in various types of natural soils. Four replications of a complete factorial design experiment were accomplished using three levels of fuel and three types of soil in a three by three matrix of treatments. Laboratory microcosms were prepared containing the treatments, using the soils in a close to natural state, and allowed to react for fourteen days. A two-way ANOVA test on the experimental data demonstrated a strong positive correlation between the amount of fuel biodegraded with the initial level of fuel and also with the clay content of the soil. Interaction effects were also observed between the two factors. The continuous oxygen uptake rate curves were used to follow biodegradation of the fuel through the various steps of biological growth. The biokinetics of the observed reactions could be inferred from the oxygen rate curves. Analyses of soil nutrient consumption and the predicted ratio of oxygen uptake to carbon dioxide production were also done. Regression analysis demonstrated a significant reduction in nirates in microcosms with higher initial levels of fuel.

Baker, J.A.

1995-12-01T23:59:59.000Z

182

Water consumption footprint and land requirements of alternative diesel and jet fuel  

E-Print Network (OSTI)

The Renewable Fuels Standard 2 (RFS2) is an important component of alternative transportation fuels policy in the United States (US). By mandating the production of alternative fuels, RFS2 attempts to address a number of ...

Staples, Mark Douglas

2013-01-01T23:59:59.000Z

183

Materials Susceptibility in Contaminated Alternative Fuel  

Science Conference Proceedings (OSTI)

... Jet Fuel certification ... 50% of fuel should be alterative fuel blends by 2025 • Many alternative fuels have already been certified ...

2013-08-28T23:59:59.000Z

184

Production of jet fuels from coal-derived liquids. Volume 7. GPGP jet-fuels production program. Evaluation of technical uncertainties for producing jet fuels from liquid by-products of the Great Plains gasification plant. Interim report, 2 October 1987-30 September 1988  

Science Conference Proceedings (OSTI)

In September 1986, the Fuels Branch of the Aero Propulsion Laboratory at Wright-Patterson Air Force Base, Ohio, began an investigation of the potential of jet-fuel production from the liquid by-product streams produced by the gasification of lignite at the Great Plains Gasification Plant (GPGP) in Beulah, North Dakota. Funding was provided by the Department of Energy (DOE) Pittsburgh Energy Technology Center (PETC) to administer the experimental portion of this effort. This document reports the results of the effort by Burns and Roe Services Corporation/Science Applications International Corporation (BRSC/SAIC) to analyze GPGP operations and develop correlations for the liquid by-products and plant operating factors such as coal feed rate and coal characteristics.

Fraser, M.D.; Rossi, R.J.; Wan, E.I.

1989-01-01T23:59:59.000Z

185

Composition and properties of jet and diesel fuels derived from coal and shale  

Science Conference Proceedings (OSTI)

Important properties controlling the availability and efficient use of fuels for Navy aircraft and ships are a) low temperature properties

J. Solash; R. N. Hazlett

1981-01-01T23:59:59.000Z

186

Direct numerical simulation of temporally evolving luminous jet flames with detailed fuel and soot chemistry  

Science Conference Proceedings (OSTI)

Direct numerical simulations of 2D temporally-evolving luminous turbulent ethylene-air jet diffusion flames are performed using a high-order compressible Navier-Stokes solver. The simulations use a reduced mechanism derived from a detailed ethylene-air chemical kinetic mechanism that includes the reaction pathways for the formation of polycyclic aromatic hydrocarbons. The gas-phase chemistry is coupled with a detailed soot particle model based on the method of moments with interpolative closure that accounts for soot nucleation, coagulation, surface growth through HACA mechanism, and oxidation. Radiative heat transfer of CO{sub 2}, H{sub 2}O, and soot is treated by solving the radiative transfer equation using the discrete transfer method. This work presents preliminary results of radiation effects on soot dynamics at the tip of a jet diffusion flame with a particular focus on soot formation/oxidation.

Sankaran, Ramanan [ORNL

2011-01-01T23:59:59.000Z

187

Comparison of Selected EIA-782 Data With Other Data Sources  

Reports and Publications (EIA)

This article compares annual average prices reported from the EIA-782 survey series for residential No. 2 distillate, on-highway diesel fuel, retail regular motor gasoline, refiner No. 2 fuel oil for resale, refiner No. 2 diesel fuel for resale, refiner regular motor gasoline for resale, and refiner kerosene-type jet fuel for resale with annual average prices reported by other sources. In terms of volume, it compares EIA-782C Prime Supplier annual volumes for motor gasoline (all grades), distillate fuel oil, kerosene-type jet fuel and residual fuel oil with annual volumes from other sources.

Carol Joyce Blumberg

2012-12-12T23:59:59.000Z

188

U.S. Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene,  

Gasoline and Diesel Fuel Update (EIA)

103.5 144.3 150.9 116.6 117.5 101.0 1983-2012 103.5 144.3 150.9 116.6 117.5 101.0 1983-2012 Kerosene-Type Jet Fuel 40,136.3 39,913.9 37,954.6 34,775.2 33,272.0 32,545.7 1983-2012 Propane (Consumer Grade) 3,263.4 2,672.2 3,671.1 3,871.2 4,457.3 5,556.4 1983-2012 Kerosene 139.7 46.0 39.8 30.3 27.1 21.0 1983-2012 No. 1 Distillate 161.0 102.0 100.9 107.8 108.9 108.5 1983-2012 No. 2 Distillate 24,345.6 20,801.6 17,757.7 15,767.1 13,802.1 12,536.7 1983-2012 No. 2 Diesel Fuel NA NA NA NA NA NA 1994-2012 Ultra Low-Sulfur 12,415.9 12,419.4 12,458.2 11,698.0 10,441.1 10,608.9 2007-2012 Low-Sulfur 7,720.2 6,037.6 3,392.4 3,186.1 2,579.3 1,185.4 1994-2012 High-Sulfur 3,419.6 1,403.5 1,028.3 448.8 402.0 427.5 1994-2012 No. 2 Fuel Oil 789.9 941.0 878.9 434.2 379.7 314.9

189

Microchannel Distillation of JP-8 Jet Fuel for Sulfur Content Reduction  

Science Conference Proceedings (OSTI)

In microchannel based distillation processes, thin vapor and liquid films are contacted in small channels where mass transfer is diffusion-limited. The microchannel architecture enables improvements in distillation processes. A shorter height equivalent of a theoretical plate (HETP) and therefore a more compact distillation unit can be achieved. A microchannel distillation unit was used to produce a light fraction of JP-8 fuel with reduced sulfur content for use as feed to produce fuel-cell grade hydrogen. The HETP of the microchannel unit is discussed, as well as the effects of process conditions such as feed temperature, flow rate, and reflux ratio.

Zheng, Feng; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Huang, Xiwen; King, David L.

2006-09-16T23:59:59.000Z

190

U.S. Sales for Resale Refiner Sales Volumes of Aviation Fuels, Kerosene,  

Gasoline and Diesel Fuel Update (EIA)

May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Aviation Gasoline 413.1 602.6 593.2 547.1 431.5 432.6 1983-2013 Kerosene-Type Jet Fuel 26,119.1 27,197.0 28,168.9 27,226.7 25,645.0 27,379.5 1983-2013 Propane (Consumer Grade) 26,164.7 24,627.2 25,506.9 30,382.5 31,250.8 38,981.9 1983-2013 Kerosene 1,302.3 897.9 1,049.8 1,199.7 1,224.4 1,318.9 1983-2013 No. 1 Distillate 197.2 124.8 141.7 228.9 336.0 947.3 1983-2013 No. 2 Distillate 148,472.9 149,527.5 153,402.1 152,957.9 149,298.1 160,704.2 1983-2013 No. 2 Diesel Fuel NA NA NA NA NA NA 1994-2013 Ultra Low-Sulfur 140,589.9 143,645.5 145,899.9 142,352.7 139,922.9 151,092.7 2007-2013 Low-Sulfur 1,976.7 1,020.9 2,521.9 2,944.3 2,205.9 3,904.5 1994-2013 High-Sulfur

191

PLIF flow visualization of methane gas jet from spark plug fuel injector in a direct injection spark ignition engine  

Science Conference Proceedings (OSTI)

A Spark Plug Fuel Injection (SPFI), which is a combination of a fuel injector and a spark plug was developed with the aim to convert any gasoline port injection spark ignition engine to gaseous fuel direct injection [1]. A direct fuel injector is combined ... Keywords: air-fuel mixing, direct fuel injection, flow visualization, gaseous fuel, laser-induced fluorescent

Taib Iskandar Mohamad; How Heoy Geok

2008-11-01T23:59:59.000Z

192

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Kerosene-Type Jet Fuel Sales to End Users " Kerosene-Type Jet Fuel Sales to End Users " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Prices of Refiner Kerosene-Type Jet Fuel Sales to End Users ",60,"Monthly","9/2013","7/15/1975" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_pri_refoth_a_epjk_ptg_dpgal_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pri_refoth_a_epjk_ptg_dpgal_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

193

BioJet Corporation | Open Energy Information  

Open Energy Info (EERE)

93940 Sector Carbon Product Monterey-based carbon credit developer and producer of bio-jet fuel derived from jatropha. References BioJet Corporation1 LinkedIn Connections...

194

Production of jet fuels from coal-derived liquids. Volume 6. Preliminary analysis of upgrading alternatives for the Great Plains liquid by-production streams. Interim report, March 1987-February 1988  

Science Conference Proceedings (OSTI)

Amoco and Lummus Crest have developed seven cases for upgrading by-product liquids from the Great Plains Coal Gasification plant to jet fuels, and in several of the cases, saleable chemicals in addition to jet fuels. The analysis shows that the various grades of jet fuel can be produced from the Great Plains tar oil, but not economically. However the phenolic and naptha streams do have the potential to significantly increase (on the order of $10-15 million/year) the net revenues at Great Plains by producing chemicals, especially cresylic acid, cresol, and xylenol. The amount of these chemicals, which can be marketed, is a concern, but profits can be generated even when oxygenated chemical sales are limited to 10% of the U.S. market. Another concern is that while commercial processes exist to extract phenolic mixtures, these processes have not been demonstrated with the Great Plains phenolic stream.

Fleming, B.A.; Fox, J.D.; Furlong, M.W.; Masin, J.G.; Sault, L.P.

1988-09-01T23:59:59.000Z

195

Measurement of Selected Physical and Chemical Properties of Blends of Coaal-Based Jet fuel with Dodecane and Norpar-13.  

E-Print Network (OSTI)

??The aim of this work was to investigate the impact of blending a coal-based fuel, JP-900, with two model paraffinic fuels, dodecane and Norpar-13, on… (more)

Guiadem, Sidonie

2009-01-01T23:59:59.000Z

196

Jet Observables Without Jet Algorithms  

E-Print Network (OSTI)

We introduce a new class of event shapes to characterize the jet-like structure of an event. Like traditional event shapes, our observables are infrared/collinear safe and involve a sum over all hadrons in an event, but like a jet clustering algorithm, they incorporate a jet radius parameter and a transverse momentum cut. Three of the ubiquitous jet-based observables---jet multiplicity, summed scalar transverse momentum, and missing transverse momentum---have event shape counterparts that are closely correlated with their jet-based cousins. Due to their "local" computational structure, these jet-like event shapes could potentially be used for trigger-level event selection at the LHC. Intriguingly, the jet multiplicity event shape typically takes on non-integer values, highlighting the inherent ambiguity in defining jets. By inverting jet multiplicity, we show how to characterize the transverse momentum of the n-th hardest jet without actually finding the constituents of that jet. Since many physics applications do require knowledge about the jet constituents, we also build a hybrid event shape that incorporates (local) jet clustering information. As a straightforward application of our general technique, we derive an event-shape version of jet trimming, allowing event-wide jet grooming without explicit jet identification. Finally, we briefly mention possible applications of our method for jet substructure studies.

Daniele Bertolini; Tucker Chan; Jesse Thaler

2013-10-28T23:59:59.000Z

197

Singapore Exports of Crude Oil and Petroleum Products by Destination  

U.S. Energy Information Administration (EIA)

Kerosene-Type Jet Fuel : 2012-2012: Special Naphthas: 0: 0: 0: 0: 0: 108: 1993-2013: Residual Fuel Oil: 3,227: 7,198: 3,010: 5,718: 3,067: 2,153: 1993-2013: Waxes: 0 ...

198

Singapore Net Imports of Crude Oil and Petroleum Products into the ...  

U.S. Energy Information Administration (EIA)

Kerosene-Type Jet Fuel: 4: 1: 1: 1 : 0: 2004-2012: Special Naphthas-1-1: 0-1: 0-1: 2004-2012: Residual Fuel Oil-59-67-102-117-112-103: 2004-2012: Naphtha for ...

199

Bahamas Net Imports of Crude Oil and Petroleum Products into the U.S.  

U.S. Energy Information Administration (EIA)

Kerosene-Type Jet Fuel-1-1-2-2-2-2: 2004-2012: Special Naphthas: 0: 0: 0: 0-1-2: 2004-2012: Residual Fuel Oil-20-12-17-23-14-11: 1993-2012: Naphtha for Petrochem ...

200

Safe Fluids for Jet Engine Texts  

Science Conference Proceedings (OSTI)

... industry and DoD use NIST calibration services for hydrocarbon liquid flow to ensure agreement and quality of measurements of jet fuel flow and ...

2012-08-29T23:59:59.000Z

Note: This page contains sample records for the topic "kerosene-type jet fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Available Technologies: Alternative Diesel Fuel from Biosynthetic ...  

Imaging Tools; Lasers; ... Cold weather anticlouding additive for diesel fuels ; Diesel or jet fuel alternative; Platform for advanced biosynthetic fuels development ;

202

Life cycle assessment of greenhouse gas emissions and non-CO? combustion effects from alternative jet fuels  

E-Print Network (OSTI)

The long-term viability and success of a transportation fuel depends on both economic and environmental sustainability. This thesis focuses specifically on assessing the life cycle greenhouse gas (GHG) emissions and non-CO ...

Stratton, Russell William

2010-01-01T23:59:59.000Z

203

Effects of inclined jets on turbulent oxy-flame characteristics in a triple jet burner  

Science Conference Proceedings (OSTI)

The reactants are generally injected into the industrial furnaces by jets. An effective method to act on combustion in such systems is to control the way injection jets. The present study concerns the control of turbulent flames by the jets deflection in a natural gas-oxygen burner with separated jets. The burner of 25 kW power is constituted with three aligned jets, one central natural gas jet surrounded by two oxygen jets. The principal idea is to confine the fuel jet by oxygen jets to favour the mixing in order to improve the flame stability and consequently to reduce the pollutant emissions like NO{sub x}. The flame stability and its structural properties are analyzed by the OH chemiluminescence. The Particle Image Velocimetry technique has been used to characterize the dynamic field. Results show that the control by inclined jets has a considerable effect on the dynamic behaviour and flame topology. Indeed, the control by incline of oxygen jets towards fuel jet showed a double interest: a better stabilization of flame and a significant reduction of nitrogen oxides. Measurements showed that the deflection favours the mixing and accelerates the fusion of jets allowing the flame stabilization. (author)

Boushaki, T.; Mergheni, M.A.; Sautet, J.C. [CORIA UMR 6614 CNRS-Universite et INSA de ROUEN, Avenue de l'Universite, 76 801 Saint Etienne du Rouvray, Cedex (France); Labegorre, B. [Air Liquide CRCD, Les Loges en Josas, BP 126, 78350 Jouy en Josas (France)

2008-07-15T23:59:59.000Z

204

Jet engine's speed controller with constant pressure chamber  

Science Conference Proceedings (OSTI)

The paper deals with an automatic system meant to control a jet engine's rotation speed, through the fuel injection's control, based on a constant pressure chamber controller. One has established the non-linear mathematical model (based on the motion ... Keywords: actuator, control, fuel injection, fuel pump, jet-engine, pressure chamber

Alexandru Nicolae Tudosie

2008-06-01T23:59:59.000Z

205

Residual Fuel Oil - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Other products includes pentanes plus, other hydrocarbons, oxygenates, hydrogen, unfinished oils, gasoline, special naphthas, jet fuel, lubricants, asphalt and road ...

206

Midwest (PADD 2) Fuel Consumed at Refineries  

U.S. Energy Information Administration (EIA)

Other products includes pentanes plus, other hydrocarbons, oxygenates, hydrogen, unfinished oils, gasoline, special naphthas, jet fuel, lubricants, asphalt and road ...

207

PAD District 5 Fuel Consumed at Refineries  

U.S. Energy Information Administration (EIA)

Other products includes pentanes plus, other hydrocarbons, oxygenates, hydrogen, unfinished oils, gasoline, special naphthas, jet fuel, lubricants, asphalt and road ...

208

PAD District 4 Fuel Consumed at Refineries  

U.S. Energy Information Administration (EIA)

Other products includes pentanes plus, other hydrocarbons, oxygenates, hydrogen, unfinished oils, gasoline, special naphthas, jet fuel, lubricants, asphalt and road ...

209

Microsoft Word - articlev5.doc  

Gasoline and Diesel Fuel Update (EIA)

March 2008 March 2008 viii A Comparison of EIA-782 Petroleum Product Price and Volume Data with Other Sources By Carol Joyce Blumberg Highlights The article "A Comparison of EIA-782 Petroleum Product Price and Volume Data with Other Sources" has appeared in Petroleum Marketing Monthly since 1989. It compares annual average prices reported from the EIA-782 survey series for residential No. 2 distillate, on-highway diesel fuel, retail regular motor gasoline, refiner No. 2 fuel oil for resale, refiner No. 2 diesel fuel for resale, refiner regular motor gasoline for resale, and refiner kerosene-type jet fuel for resale with annual average prices reported by other sources. In terms of volume, it compares EIA-782C Prime Supplier annual volumes for motor gasoline (all grades), distillate fuel oil, kerosene-type jet fuel and residual fuel oil with annual

210

Microsoft Word - articlev4.doc  

Gasoline and Diesel Fuel Update (EIA)

April 2010 April 2010 viii A Comparison of EIA-782 Petroleum Product Price and Volume Data with Other Sources, 1999 to 2008 By Carol Joyce Blumberg Highlights This article compares annual average prices reported from the EIA-782 survey series for residential No. 2 distillate, on- highway diesel fuel, retail regular motor gasoline, refiner No. 2 fuel oil for resale, refiner No. 2 diesel fuel for resale, refiner regular motor gasoline for resale, and refiner kerosene-type jet fuel for resale with annual average prices reported by other sources. In terms of volume, it compares EIA-782C Prime Supplier annual volumes for motor gasoline (all grades), distillate fuel oil, kerosene-type jet fuel and residual fuel oil with annual volumes from other sources. The other sources used for comparison in this article were the EIA-821 survey, EIA-878 survey, EIA-888

211

untitled  

Gasoline and Diesel Fuel Update (EIA)

Comparison of EIA-782 Petroleum Product Price and Comparison of EIA-782 Petroleum Product Price and Volume Data with Other Sources, 1998 to 2007 By Carol Joyce Blumberg Highlights This article compares annual average prices reported from the EIA-782 survey series for residential No. 2 distillate, on- highway diesel fuel, retail regular motor gasoline, refiner No. 2 fuel oil for resale, refiner No. 2 diesel fuel for resale, refiner regular motor gasoline for resale, and refiner kerosene-type jet fuel for resale with annual average prices reported by other sources. In terms of volume, it compares EIA-782C Prime Supplier annual volumes for motor gasoline (all grades), distillate fuel oil, kerosene-type jet fuel and residual fuel oil with annual volumes from other sources. The other sources used for comparison in this article were the EIA-821 survey, EIA-878 survey, EIA-888

212

untitled  

Gasoline and Diesel Fuel Update (EIA)

EIA-782 EIA-782 Petroleum Product Price and Volume Data with Other Sources By Carol Joyce Blumberg Highlights The article "A Comparison of Selected EIA-782 Data With Other Data Sources" has appeared in Petroleum Marketing Monthly since 1989. It compares annual average prices reported from the EIA-782 survey series for residential No. 2 distillate, on-highway diesel fuel, retail regular motor gasoline, refiner No. 2 fuel oil for resale, refiner No. 2 diesel fuel for resale, refiner regular motor gasoline for resale, and refiner kerosene-type jet fuel for resale with annual average prices reported by other sources. In terms of volume, it compares EIA-782C Prime Supplier annual volumes for motor gasoline (all grades), distillate fuel oil, kerosene-type jet fuel and residual

213

Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

214

Laser Raman scattering measurements of differential molecular diffusion in turbulent nonpremixed jet flames of H{sub 2}/CO{sub 2} fuel  

DOE Green Energy (OSTI)

This paper explores effects of differential diffusion in nonpremixed turbulent jet flames. Pulsed Raman scattering spectroscopy is used to measure temperature and species concentrations in chemically reacting jets of H{sub 2}/CO{sub 2} into air, over a range of jet Reynolds numbers from 1,000 to 30,000 based on cold jet fluid properties. Results show significant effects of differential diffusion at all jet Reynolds numbers considered. Differential diffusion between H{sub 2} and C0{sub 2} produces differences between the hydrogen element mixture fraction ({xi}{sub H}) and the carbon element mixture fraction ({xi}{sub c}). The greatest effects occur on the rich side of stoichiometric, where {xi}{sub H} is observed to be smaller than {xi}{sub C} at all Reynolds numbers. Differential diffusion between H{sub 2} and H{sub 2}O creates a net flux of hydrogen element toward the stoichiometric contour and causes a local maximum in {xi}H that occurs near the stoichiometric condition. A differential diffusion variable {sup Z}H is defined as the difference between {xi}{sub H} and {xi}{sub C}. The variance Of {sup Z}H conditional on {xi}{sub C} also shows that differential diffusion effects are greatest on the rich side of the flame. Conditional variances of {sup Z}H are largest at intermediate Reynolds numbers.

Smith, L.L.; Dibble, R.W.; Talbot, L. [California Univ., Berkeley, CA (United States). Dept. of Mechanical Engineering; Barlow, R.S.; Carter, C.D. [Sandia National Labs., Livermore, CA (United States)

1994-01-01T23:59:59.000Z

215

Fuel  

E-Print Network (OSTI)

heavy-water-moderated, light-water-moderated and liquid-metal cooled fast breeder reactors fueled with natural or low-enriched uranium and containing thorium mixed with the uranium or in separate target channels. U-232 decays with a 69-year half-life through 1.9-year half-life Th-228 to Tl-208, which emits a 2.6 MeV gamma ray upon decay. We find that pressurized light-water-reactors fueled with LEU-thorium fuel at high burnup (70 MWd/kg) produce U-233 with U-232 contamination levels of about 0.4 percent. At this contamination level, a 5 kg sphere of U-233 would produce a gammaray dose rate of 13 and 38 rem/hr at 1 meter one and ten years after chemical purification respectively. The associated plutonium contains 7.5 percent of the undesirable heat-generating 88-year half-life isotope Pu-238. However, just as it is possible to produce weapon-grade plutonium in low-burnup fuel, it is also practical to use heavy-water reactors to produce U-233 containing only a few ppm of U-232 if the thorium is segregated in “target ” channels and discharged a few times more frequently than the natural-uranium “driver ” fuel. The dose rate from a 5-kg solid sphere of U-233 containing 5 ppm U-232 could be reduced by a further factor of 30, to about 2 mrem/hr, with a close-fitting lead sphere weighing about 100 kg. Thus the proliferation resistance of thorium fuel cycles depends very much upon how they are implemented. The original version of this manuscript was received by Science & Global Security on

Jungmin Kang A

2001-01-01T23:59:59.000Z

216

East Coast (PADD 1) Fuel Consumed at Refineries  

U.S. Energy Information Administration (EIA)

Other products includes pentanes plus, other hydrocarbons, oxygenates, hydrogen, unfinished oils, gasoline, special naphthas, jet fuel, lubricants, asphalt and road ...

217

Gulf Coast (PADD 3) Fuel Consumed at Refineries  

U.S. Energy Information Administration (EIA)

Other products includes pentanes plus, other hydrocarbons, oxygenates, hydrogen, unfinished oils, gasoline, special naphthas, jet fuel, lubricants, asphalt and road ...

218

BCA Perspective on Fuel Cell APUs  

NLE Websites -- All DOE Office Websites (Extended Search)

(Overall system at cruise) 0.6 litre Jet-A 40% less fuel used In-flight SFC* saving is 0.7% * Specific Fuel Consumption Fuel saving opportunity on the...

219

Multiphysics CFD Modeling of a Free Falling Jet during Melt-Blowing ...  

Science Conference Proceedings (OSTI)

Presentation Title, Multiphysics CFD Modeling of a Free Falling Jet during Melt- Blowing Slag Fiberization ... A Micro-Macro Model of a PEM Fuel Cell System.

220

Thermal Interaction Between Molten Metal Jet and Sodium Pool: Effect of Principal Factors Governing Fragmentation of the Jet  

SciTech Connect

To clarify the effects of the principal factors that govern the thermal fragmentation of a molten metallic fuel jet in the course of fuel-coolant interaction, which is important in evaluating the sequence of core disruptive accidents (CDAs) for metallic fuel fast reactors, basic experiments were carried out using molten metallic fuel simulants (copper and silver) and a sodium pool.Fragmentation of a molten metal jet with a solid crust was caused by internal pressure produced by the boiling of sodium, which is locally entrapped inside the jet due to hydrodynamic motion between the jet and the coolant. The superheating and the latent heat of fusion of the jet are the principal factors governing this type of thermal fragmentation. On the other hand, the effect of the initial sodium temperature is regarded as negligible in the case of thermal conditions expected to result in CDAs for practical metallic fuel cores. Based on the fragmentation data for several kinds of jets (Cu, Ag, SUS, U, and U-5 wt% Zr alloy), an empirical correlation is proposed that is applicable to the calculation of a mass median diameter of fragments produced by the thermal fragmentation of the jet with a solid crust under low ambient Weber number conditions.

Nishimura, Satoshi [Central Research Institute of Electric Power Industry (CRIEPI) (Japan); Kinoshita, Izumi [Central Research Institute of Electric Power Industry (CRIEPI) (Japan); Sugiyama, Ken-Ichiro [Hokkaido University (Japan); Ueda, Nobuyuki [Central Research Institute of Electric Power Industry (CRIEPI) (Japan)

2005-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "kerosene-type jet fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Fueling area site assessment  

SciTech Connect

This report provides results of a Site Assessment performed at the Fuel Storage Area at Buckley ANG Base in Aurora, Colorado. Buckley ANG Base occupies 3,328 acres of land within the City of Aurora in Arapahoe County, Colorado. The Fuel Storage Area (also known as the Fueling Area) is located on the west side of the Base at the intersection of South Powderhorn Street and East Breckenridge Avenue. The Fueling Area consists of above ground storage tanks in a bermed area, pumps, piping, valves, an unloading stand and a fill stand. Jet fuel from the Fueling Area is used to support aircraft operations at the Base. Jet fuel is stored in two 200,000 gallon above ground storage tanks. Fuel is received in tanker trucks at the unloading stand located south and east of the storage tanks. Fuel required for aircraft fueling and other use is transferred into tanker trucks at the fill stand and transported to various points on the Base. The Fuel Storage Area has been in operation for over 20 years and handles approximately 7 million gallons of jet fuel annually.

1996-08-15T23:59:59.000Z

222

Plasma jet ignition device  

DOE Patents (OSTI)

An ignition device of the plasma jet type is disclosed. The device has a cylindrical cavity formed in insulating material with an electrode at one end. The other end of the cylindrical cavity is closed by a metal plate with a small orifice in the center which plate serves as a second electrode. An arc jumping between the first electrode and the orifice plate causes the formation of a highly-ionized plasma in the cavity which is ejected through the orifice into the engine cylinder area to ignite the main fuel mixture. Two improvements are disclosed to enhance the operation of the device and the length of the plasma plume. One improvement is a metal hydride ring which is inserted in the cavity next to the first electrode. During operation, the high temperature in the cavity and the highly excited nature of the plasma breaks down the metal hydride, liberating hydrogen which acts as an additional fuel to help plasma formation. A second improvement consists of a cavity insert containing a plurality of spaced, metal rings. The rings act as secondary spark gap electrodes reducing the voltage needed to maintain the initial arc in the cavity.

McIlwain, Michael E. (Franklin, MA); Grant, Jonathan F. (Wayland, MA); Golenko, Zsolt (North Reading, MA); Wittstein, Alan D. (Fairfield, CT)

1985-01-15T23:59:59.000Z

223

AltAir Fuels | Open Energy Information  

Open Energy Info (EERE)

Sector Renewable Energy Product Seattle-based developer of projects for the production of jet fuel from renewable and sustainable oils. References AltAir Fuels1 LinkedIn...

224

Aviation turbine fuels, 1985  

Science Conference Proceedings (OSTI)

Samples of this report are typical 1985 production and were analyzed in the laboratories of 17 manufactures of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the National Institute for Petroleum and Energy Research (NIPER), Bartlesville, Oklahoma, the American Petroleum Institute (API), and the United States Department of Energy (DOE), Bartlesville Project Office. results for certain properties of 88 samples of aviation turbine fuels are included in the report for military grades JP-4 and JP-5, and commercial type Jet A. Previous aviation fuel survey reports are listed.

Dickson, C.L.; Woodward, P.W.

1986-05-01T23:59:59.000Z

225

Aviation turbine fuels, 1982  

Science Conference Proceedings (OSTI)

Properties of some aviation turbine fuels marketed in the United States during 1982 are presented in this report. The samples represented are typical 1982 production and were analyzed in the laboratories of 14 manufacturers of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma, and the American Petroleum Institute (API). Results for the properties of 90 samples of aviation turbine fuels are included in the report for military grades JP-4 and HP-5, and commercial type Jet A.

Shelton, E.M.; Dickson, C.L.

1983-03-01T23:59:59.000Z

226

Deep desulfurization of hydrocarbon fuels  

SciTech Connect

The invention relates to processes for reducing the sulfur content in hydrocarbon fuels such as gasoline, diesel fuel and jet fuel. The invention provides a method and materials for producing ultra low sulfur content transportation fuels for motor vehicles as well as for applications such as fuel cells. The materials and method of the invention may be used at ambient or elevated temperatures and at ambient or elevated pressures without the need for hydrogen.

Song, Chunshan (State College, PA); Ma, Xiaoliang (State College, PA); Sprague, Michael J. (Calgary, CA); Subramani, Velu (State College, PA)

2012-04-17T23:59:59.000Z

227

Hypervelocity impact jet formation  

SciTech Connect

The hypervelocity impact of a particle on a surface generates a jet of shocked material which is thrown from the impact site. A simple analytic model has been developed to obtain expressions for the evolution of this jet of ejecta. The analysis is based on applying the conservation equations of mass and momentum to the problem of a normal impact of a sphere against a semi-infinite flat target. Expressions are developed for the evolution of the jet velocity, jet release point and the locus of points which describe the ejecta envelope. These analytical ejecta profiles are compared with high speed photographs of impact jet formation. 6 refs., 7 figs.

Ang, J.A.

1991-01-01T23:59:59.000Z

228

Ideal magnetohydrodynamic simulations of unmagnetized dense plasma jet injection into a hot strongly magnetized plasma  

E-Print Network (OSTI)

We present results from three-dimensional ideal magnetohydrodynamic simulations of unmagnetized dense plasma jet injection into a hot strongly magnetized plasma, with the aim of providing insight into core fueling of a tokamak with parameters relevant for ITER (International Thermonuclear Experimental Reactor) and NSTX (National Spherical Torus Experiment). Unmagnetized jet injection is similar to compact toroid injection but with higher possible injection density and total mass, as well as a potentially smaller footprint for the injector hardware. Our simulation results show that the unmagnetized dense jet is quickly magnetized upon injection. The penetration depth of the jet into the tokamak plasma is mostly dependent on the jet's initial kinetic energy while the jet's magnetic field determines its interior evolution. A key requirement for spatially precise fueling is for the jet's slowing-down time to be less than the time for the perturbed tokamak magnetic flux to relax due to magnetic reconnection. Thus ...

Liu, Wei

2010-01-01T23:59:59.000Z

229

Jet-wall interaction effects on diesel combustion and soot formation.  

SciTech Connect

The effects of wall interaction on combustion and soot formation processes of a diesel fuel jet were investigated in an optically-accessible constant-volume combustion vessel at experimental conditions typical of a diesel engine. At identical ambient and injector conditions, soot processes were studied in free jets, plane wall jets, and 'confined' wall jets (a box-shaped geometry simulating secondary interaction with adjacent walls and jets in an engine). The investigation showed that soot levels are significantly lower in a plane wall jet compared to a free jet. At some operating conditions, sooting free jets become soot-free as plane wall jets. Possible mechanisms to explain the reduced or delayed soot formation upon wall interaction include an increased fuel-air mixing rate and a wall-jet-cooling effect. However, in a confined-jet configuration, there is an opposite trend in soot formation. Jet confinement causes combustion gases to be redirected towards the incoming jet, causing the lift-off length to shorten and soot to increase. This effect can be avoided by ending fuel injection prior to the time of significant interaction with redirected combustion gases. For a fixed confined-wall geometry, an increase in ambient gas density delays jet interaction, allowing longer injection durations with no increase in soot. Jet interaction with redirected combustion products may also be avoided using reduced ambient oxygen concentration because of an increased ignition delay. Although simplified geometries were employed, the identification of important mechanisms affecting soot formation after the time of wall interaction is expected to be useful for understanding these processes in more complex and realistic diesel engine geometries.

Pickett, Lyle M.; Lopez, J. Javier (Polytechnic University of Valencia)

2004-09-01T23:59:59.000Z

230

Simplified jet-A kinetic mechanism for combustor application  

SciTech Connect

Successful modeling of combustion and emissions in gas turbine engine combustors requires an adequate description of the reaction mechanism. For hydrocarbon oxidation, detailed mechanisms are only available for the simplest types of hydrocarbons such as methane, ethane, acetylene, and propane. These detailed mechanisms contain a large number of chemical species participating simultaneously in many elementary kinetic steps. Current computational fluid dynamic (CFD) models must include fuel vaporization, fuel-air mixing, chemical reactions, and complicated boundary geometries. To simulate these conditions a very sophisticated computer model is required, which requires large computer memory capacity and long run times. Therefore, gas turbine combustion modeling has frequently been simplified by using global reaction mechanisms, which can predict only the quantities of interest: heat release rates, flame temperature, and emissions. Jet fuels are wide-boiling-range hydrocarbons with ranges extending through those of gasoline and kerosene. These fuels are chemically complex, often containing more than 300 components. Jet fuel typically can be characterized as containing 70 vol pct paraffin compounds and 25 vol pct aromatic compounds. A five-step Jet-A fuel mechanism which involves pyrolysis and subsequent oxidation of paraffin and aromatic compounds is presented here. This mechanism is verified by comparing with Jet-A fuel ignition delay time experimental data, and species concentrations obtained from flametube experiments. This five-step mechanism appears to be better than the current one- and two-step mechanisms.

Lee, Chiming; Kundu, K.; Ghorashi, B.

1993-01-01T23:59:59.000Z

231

The ATLAS jet trigger  

E-Print Network (OSTI)

The ATLAS jet trigger system has a 3-level structure, and was designed based on the concept of Regions Of Interest, where only regions of the detector around interesting Level-1 objects are reconstructed at the higher levels. This philosophy has changed during 2011, and there now exists the possibility to unpacking the full calorimeter at Event Filter. In 2012, full calorimeter unpacking is also available at Level-2, in addition jet energies are now calibrated to jet energy scale, and cleaning cuts are applied to reduce rate spikes. This paper presents the performance of the jet trigger in 2011 and an overview of the new features available for 2012.

Tamsett, M; The ATLAS collaboration

2012-01-01T23:59:59.000Z

232

Table 8.5d Consumption of Combustible Fuels for ...  

U.S. Energy Information Administration (EIA)

biomass. Through 2000, also includes non-renewable waste ... (CHP) and commercial electricity-only plants. 4 Jet fuel, kerosene, other petroleum ...

233

Fabrication of Solid Electrolyte Dendrites for Solid Oxide Fuel Cell ...  

Science Conference Proceedings (OSTI)

Fabrication of Solid Electrolyte Dendrites for Solid Oxide Fuel Cell Miniaturizations · Fabrication of TiN Nanoparticle Dispersed Si3N4 Ceramics by Wet Jet ...

234

Virtual Screening of Materials for Gaseous Fuel Storage  

Science Conference Proceedings (OSTI)

Presentation Title, Virtual Screening of Materials for Gaseous Fuel Storage .... Numerical Study on Behavior of Top-Blown Supersonic Jets and Their Interaction  ...

235

Pulsed jet combustion generator for premixed charge engines  

DOE Patents (OSTI)

A method and device for generating pulsed jets which will form plumes comprising eddie structures, which will entrain a fuel/air mixture from the head space of an internal combustion engine, and mixing this fuel/air mixture with a pre-ignited fuel/air mixture of the plumes thereby causing combustion of the reactants to occur within the interior of the eddie structures.

Oppenheim, A. K. (Berkeley, CA); Stewart, H. E. (Alameda, CA); Hom, K. (Hercules, CA)

1990-01-01T23:59:59.000Z

236

Jet Mass Spectra in Higgs + One Jet at NNLL  

E-Print Network (OSTI)

The invariant mass of a jet is a benchmark variable describing the structure of jets at the LHC. We calculate the jet mass spectrum for Higgs plus one jet at the LHC at next-to-next-to-leading logarithmic (NNLL) order using a factorization formula. At this order, the cross section becomes sensitive to perturbation theory at the soft m_jet^2/p_T^jet scale. Our calculation is exclusive and uses the 1-jettiness global event shape to implement a veto on additional jets. The dominant dependence on the jet veto is removed by normalizing the spectrum, leaving residual dependence from non-global logarithms depending on the ratio of the jet mass and jet veto variables. For our exclusive jet cross section these non-global logarithms are parametrically smaller than in the inclusive case, allowing us to obtain a complete NNLL result. Results for the dependence of the jet mass spectrum on the kinematics, jet algorithm, and jet size R are given. Using individual partonic channels we illustrate the difference between the jet mass spectra for quark and gluon jets. We also study the effect of hadronization and underlying event on the jet mass in PYTHIA. To highlight the similarity of inclusive and exclusive jet mass spectra, a comparison to LHC data is presented.

Teppo T. Jouttenus; Iain W. Stewart; Frank J. Tackmann; Wouter J. Waalewijn

2013-02-04T23:59:59.000Z

237

FastJet user manual  

E-Print Network (OSTI)

FastJet is a C++ package that provides a broad range of jet finding and analysis tools. It includes efficient native implementations of all widely used 2-to-1 sequential recombination jet algorithms for pp and e+e- collisions, as well as access to 3rd party jet algorithms through a plugin mechanism, including all currently used cone algorithms. FastJet also provides means to facilitate the manipulation of jet substructure, including some common boosted heavy-object taggers, as well as tools for estimation of pileup and underlying-event noise levels, determination of jet areas and subtraction or suppression of noise in jets.

Matteo Cacciari; Gavin P. Salam; Gregory Soyez

2011-11-25T23:59:59.000Z

238

Jet production at HERA  

E-Print Network (OSTI)

Recent results from jet production in deep inelastic ep scattering to investigate parton dynamics at low x are reviewed. The results on jet production in deep inelastic scattering and photoproduction used to test perturbative QCD are discussed and the values of alphas(Mz) extracted from a QCD analysis of the data are presented

C. Glasman

2004-10-07T23:59:59.000Z

239

Jet plume injection and combustion system for internal combustion engines  

DOE Patents (OSTI)

An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

Oppenheim, Antoni K. (Kensington, CA); Maxson, James A. (Berkeley, CA); Hensinger, David M. (Albany, CA)

1993-01-01T23:59:59.000Z

240

Jet plume injection and combustion system for internal combustion engines  

DOE Patents (OSTI)

This invention is comprised of an improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

Oppenheim, A.K.; Maxson, J.A.; Hensinger, D.M.

1992-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "kerosene-type jet fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Jet plume injection and combustion system for internal combustion engines  

DOE Patents (OSTI)

An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure. 24 figures.

Oppenheim, A.K.; Maxson, J.A.; Hensinger, D.M.

1993-12-21T23:59:59.000Z

242

Energy Department Assisting Launch of Low Greenhouse Gas-Emitting Jet  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Assisting Launch of Low Greenhouse Gas-Emitting Energy Department Assisting Launch of Low Greenhouse Gas-Emitting Jet Fuels Energy Department Assisting Launch of Low Greenhouse Gas-Emitting Jet Fuels November 20, 2013 - 8:54am Addthis USAF photo by Senior Airman Matthew Bruch. USAF photo by Senior Airman Matthew Bruch. Did you know? The US Air Force has made energy efficiency an important aspect of their work. In 2006, the Air Force set a goal of reducing aviation fuel consumption 10 percent by 2015; a goal that they have already exceeded. The Department of Energy recognized the Air Force this August with a 2013 Federal Energy Management Program Award. On behalf of the Department of Defense and the U.S. Air Force, the Energy Department is seeking research projects that would lead to the commercial production of coal-derived jet fuel. Creating jet fuels from coal

243

Price of Motor Gasoline Through Retail Outlets  

Gasoline and Diesel Fuel Update (EIA)

Prices, Sales Volumes & Stocks by State Prices, Sales Volumes & Stocks by State (Dollars per Gallon Excluding Taxes) Data Series: Retail Price - Motor Gasoline Retail Price - Regular Gasoline Retail Price - Midgrade Gasoline Retail Price - Premium Gasoline Retail Price - Aviation Gasoline Retail Price - Kerosene-Type Jet Fuel Retail Price - Propane Retail Price - Kerosene Retail Price - No. 1 Distillate Retail Price - No. 2 Distillate Retail Price - No. 2 Fuel Oil Retail Price - No. 2 Diesel Fuel Retail Price - No. 4 Fuel Oil Prime Supplier Sales - Motor Gasoline Prime Supplier Sales - Regular Gasoline Prime Supplier Sales - Midgrade Gasoline Prime Supplier Sales - Premium Gasoline Prime Supplier Sales - Aviation Gasoline Prime Supplier Sales - Kerosene-Type Jet Fuel Prime Supplier Sales - Propane (Consumer Grade) Prime Supplier Sales - Kerosene Prime Supplier Sales - No. 1 Distillate Prime Supplier Sales - No. 2 Distillate Prime Supplier Sales - No. 2 Fuel Oil Prime Supplier Sales - No. 2 Diesel Fuel Prime Supplier Sales - No. 4 Fuel Oil Prime Supplier Sales - Residual Fuel Oil Stocks - Finished Motor Gasoline Stocks - Reformulated Gasoline Stocks - Conventional Gasoline Stocks - Motor Gasoline Blending Components Stocks - Kerosene Stocks - Distillate Fuel Oil Stocks - Distillate F.O., 15 ppm and under Sulfur Stocks - Distillate F.O., Greater than 15 to 500 ppm Sulfur Stocks - Distillate F.O., Greater 500 ppm Sulfur Stocks - Residual Fuel Oil Stocks - Propane/Propylene Period: Monthly Annual

244

Figure 6. Transportation energy consumption by fuel, 1990-2040 ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 6. Transportation energy consumption by fuel, 1990-2040 (quadrillion Btu) Motor Gasoline, no E85 Pipeline Other E85 Jet Fuel

245

Commercial Jet Fuel Production - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Beginning in 1993, motor ...

246

Total Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Imports - Other Conventional Gasoline Imports - Motor Gasoline Blend. Components Imports - Motor Gasoline Blend. Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w/ Ether Imports - Motor Gasoline Blend. Components, RBOB w/ Alcohol Imports - Motor Gasoline Blend. Components, CBOB Imports - Motor Gasoline Blend. Components, GTAB Imports - Motor Gasoline Blend. Components, Other Imports - Fuel Ethanol Imports - Kerosene-Type Jet Fuel Imports - Distillate Fuel Oil Imports - Distillate F.O., 15 ppm Sulfur and Under Imports - Distillate F.O., > 15 ppm to 500 ppm Sulfur Imports - Distillate F.O., > 500 ppm to 2000 ppm Sulfur Imports - Distillate F.O., > 2000 ppm Sulfur Imports - Residual Fuel Oil Imports - Propane/Propylene Imports - Other Other Oils Imports - Kerosene Imports - NGPLs/LRGs (Excluding Propane/Propylene) Exports - Total Crude Oil and Products Exports - Crude Oil Exports - Products Exports - Finished Motor Gasoline Exports - Kerosene-Type Jet Fuel Exports - Distillate Fuel Oil Exports - Residual Fuel Oil Exports - Propane/Propylene Exports - Other Oils Net Imports - Total Crude Oil and Products Net Imports - Crude Oil Net Imports - Petroleum Products Period: Weekly 4-Week Avg.

247

Design and development of an automated acoustic based jet engine performance evaluator  

Science Conference Proceedings (OSTI)

Aircraft jet engines produce loud thundering sound that is caused due to high rate of fuel-air combustion. However due to improper combustion caused by non proportional air-fuel ratios, malfunction of fuel feed or any other loose gauging, certain abnormal ...

Atif Bin Mansoor; Hammad Ahmed; Z. Mahmood

2009-02-01T23:59:59.000Z

248

Jet Quenching at LHC  

E-Print Network (OSTI)

We review up-to-date results on high-pt particles and jets in heavy ion collisions by three major LHC experiments, ALICE, ATLAS, and CMS. Results of analyses of 2010 and 2011 Pb+Pb data at $\\sqrt{s_{NN}} = 2.76$ TeV are discussed. We concentrate mainly on results by fully reconstructed jets and discuss similarities and important differences in measurements among experiments. We point to the importance of understanding the results in a view of difference between quark-initiated and gluon-initiated jets

Martin Spousta

2013-05-28T23:59:59.000Z

249

Angular Scaling In Jets  

SciTech Connect

We introduce a jet shape observable defined for an ensemble of jets in terms of two-particle angular correlations and a resolution parameter R. This quantity is infrared and collinear safe and can be interpreted as a scaling exponent for the angular distribution of mass inside the jet. For small R it is close to the value 2 as a consequence of the approximately scale invariant QCD dynamics. For large R it is sensitive to non-perturbative effects. We describe the use of this correlation function for tests of QCD, for studying underlying event and pile-up effects, and for tuning Monte Carlo event generators.

Jankowiak, Martin; Larkoski, Andrew J.; /SLAC

2012-02-17T23:59:59.000Z

250

Jets with Variable R  

E-Print Network (OSTI)

We introduce a new class of jet algorithms designed to return conical jets with a variable Delta R radius. A specific example, in which Delta R scales as 1/pT, proves particularly useful in capturing the kinematic features of a wide variety of hard scattering processes. We implement this Delta R scaling in a sequential recombination algorithm and test it by reconstructing resonance masses and kinematic endpoints. These test cases show 10-20% improvements in signal efficiency compared to fixed Delta R algorithms. We also comment on cuts useful in reducing continuum jet backgrounds.

David Krohn; Jesse Thaler; Lian-Tao Wang

2009-03-02T23:59:59.000Z

251

Large-eddy simulation of a plane reacting jet transversely injected into supersonic turbulent channel flow  

Science Conference Proceedings (OSTI)

A plane, chemically reacting jet of fuel injected through a narrow spanwise slot into supersonic and fully turbulent air flow in a channel with isothermal, parallel walls is investigated using a semi-implicit large-eddy simulation technique. It is based ... Keywords: high-order numerical schemes, infinitely fast chemistry, large-eddy simulation, plane jet in crossflow, supersonic turbulent channel flow

Ch. Schaupp; R. Friedrich

2010-12-01T23:59:59.000Z

252

Hydrogen and Gaseous Fuel Safety and Toxicity  

DOE Green Energy (OSTI)

Non-traditional motor fuels are receiving increased attention and use. This paper examines the safety of three alternative gaseous fuels plus gasoline and the advantages and disadvantages of each. The gaseous fuels are hydrogen, methane (natural gas), and propane. Qualitatively, the overall risks of the four fuels should be close. Gasoline is the most toxic. For small leaks, hydrogen has the highest ignition probability and the gaseous fuels have the highest risk of a burning jet or cloud.

Lee C. Cadwallader; J. Sephen Herring

2007-06-01T23:59:59.000Z

253

Petroleum marketing monthly, December 1983  

SciTech Connect

The preliminary statistics for October 1983, show that total operator sales of selected petroleum products, measured in gallons per day, decreased by 2.1 percent compared to the final September sales data. Substantial decreases in sales were reported for each of the four transportation fuels: motor gasoline, No. 2 diesel fuel, aviation gasoline, and kerosene-type jet fuel. Conversely, large increases were reported in operator sales of No. 2 fuel oil, while sales of the secondary heating fuels (kerosene, No. 1 distillate, and propane), along with sales of No. 4 and residual fuel oils, increased slightly. Total operator sales decreased at both the retail and wholesale levels. Because the smaller operators increased their retail product sales, their share of the total operator market increased slightly. Operator prices were predominantly down, except for retail prices of No. 2 fuel oil, aviation gasoline, and kerosene, and the wholesale prices of kerosene-type jet fuel and low-sulfur residual fuel oil. The average retail price of No. 2 distillate for all sellers similarly increased slightly, primarily as a result of increased sales to residential customers. Sales activity for each of the principal product groups are summarized.

1984-01-01T23:59:59.000Z

254

Ammonia chemistry in a flameless jet  

Science Conference Proceedings (OSTI)

In this paper, the nitrogen chemistry in an ammonia (NH{sub 3}) doped flameless jet is investigated using a kinetic reactor network model. The reactor network model is used to explain the main differences in ammonia chemistry for methane (CH{sub 4})-containing fuels and methane-free fuels. The chemical pathways of nitrogen oxides (NO{sub x}) formation and destruction are identified using rate-of-production analysis. The results show that in the case of natural gas, ammonia reacts relatively late at fuel lean condition leading to high NO{sub x} emissions. In the pre-ignition zone, the ammonia chemistry is blocked due to the absence of free radicals which are consumed by methane-methyl radical (CH{sub 3}) conversion. In the case of methane-free gas, the ammonia reacted very rapidly and complete decomposition was reached in the fuel rich region of the jet. In this case the necessary radicals for the ammonia conversion are generated from hydrogen (H{sub 2}) oxidation. (author)

Zieba, Mariusz; Schuster, Anja; Scheffknecht, Guenter [Institute of Process Engineering and Power Plant Technology, University of Stuttgart, Pfaffenwaldring 23, D-70569 Stuttgart (Germany); Brink, Anders; Hupa, Mikko [Process Chemistry Centre, Aabo Akademi University, Biskopsgatan 8, 20500 Aabo (Finland)

2009-10-15T23:59:59.000Z

255

Life-cycle analysis of alternative aviation fuels in GREET  

SciTech Connect

The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet fuel production unless carbon management practices, such as carbon capture and storage, are used.

Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S. (Energy Systems)

2012-07-23T23:59:59.000Z

256

Aviation fuels, 1983  

Science Conference Proceedings (OSTI)

Properties of some aviation gasolines and aviation turbine fuels marketed in the United States during 1983 are presented in this report. The samples represented are typical 1983 production and were analyzed in the laboratories of 12 manufacturers of aviation gasolines and 18 producers of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the National Institute for Petroleum and Energy Research (NIPER), Bartlesville, Oklahoma, and the American Petroleum Institute (API). Results for properties of 34 samples of grades 80/87, 100/130, and 100LL for aviation gasolines, and 104 samples of military grades JP-4 and JP-5, and commercial type Jet A for aviation turbine fuels are included in this report.

Shelton, E.M.; Dickson, C.L.

1984-04-01T23:59:59.000Z

257

Organic vapor jet printing system  

DOE Patents (OSTI)

An organic vapor jet printing system includes a pump for increasing the pressure of an organic flux.

Forrest, Stephen R

2012-10-23T23:59:59.000Z

258

Table 8.6c Estimated Consumption of Combustible Fuels for Useful ...  

U.S. Energy Information Administration (EIA)

11 Commercial combined-heat-and-power (CHP) plants. 4 Jet fuel, kerosene, other petroleum liquids, and waste oil. 12 Industrial combined-heat-and-power (CHP) plants.

259

Blender Net Production of Finished Motor Gasoline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 ppm to 500 ppm Sulfur Distillate F.O., Greater than 500 ppm Sulfur Residual Fuel Oil Residual Fuel Less Than 0.31 Percent Sulfur Residual Fuel 0.31 to 1.00 Percent Sulfur Residual Fuel Greater Than 1.00 Percent Sulfur Special Naphthas Lubricants Asphalt and Road Oil Miscellaneous Products Processing Gain(-) or Loss(+) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

260

Emergency fuels utilization guidebook. Alternative Fuels Utilization Program  

DOE Green Energy (OSTI)

The basic concept of an emergency fuel is to safely and effectively use blends of specification fuels and hydrocarbon liquids which are free in the sense that they have been commandeered or volunteered from lower priority uses to provide critical transportation services for short-duration emergencies on the order of weeks, or perhaps months. A wide variety of liquid hydrocarbons not normally used as fuels for internal combustion engines have been categorized generically, including limited information on physical characteristics and chemical composition which might prove useful and instructive to fleet operators. Fuels covered are: gasoline and diesel fuel; alcohols; solvents; jet fuels; kerosene; heating oils; residual fuels; crude oils; vegetable oils; gaseous fuels.

Not Available

1980-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "kerosene-type jet fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Fresh Equatorial Jets  

Science Conference Proceedings (OSTI)

A vertically sheared eastward jet in the equatorial Pacific in late 1991 and early 1992 carried relatively fresh water from the western Pacific overriding the saltier surface layer of the central region. Salinity anomalies of about ?1.0 psu were ...

Dean Roemmich; Michele Morris; W. R. Young; J. R. Donguy

1994-03-01T23:59:59.000Z

262

Flow cytometer jet monitor system  

DOE Patents (OSTI)

A direct jet monitor illuminates the jet of a flow cytometer in a monitor wavelength band which is substantially separate from the substance wavelength band. When a laser is used to cause fluorescence of the substance, it may be appropriate to use an infrared source to illuminate the jet and thus optically monitor the conditions within the jet through a CCD camera or the like. This optical monitoring may be provided to some type of controller or feedback system which automatically changes either the horizontal location of the jet, the point at which droplet separation occurs, or some other condition within the jet in order to maintain optimum conditions. The direct jet monitor may be operated simultaneously with the substance property sensing and analysis system so that continuous monitoring may be achieved without interfering with the substance data gathering and may be configured so as to allow the front of the analysis or free fall area to be unobstructed during processing.

Van den Engh, Ger (Seattle, WA)

1997-01-01T23:59:59.000Z

263

Pulverized coal fuel injector  

DOE Patents (OSTI)

A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO.sub.2 formation.

Rini, Michael J. (Hebron, CT); Towle, David P. (Windsor, CT)

1992-01-01T23:59:59.000Z

264

Hydrogen Fueling in California Catherine Dunwoody  

E-Print Network (OSTI)

, and biodiesel, and methods were identified for estimating future prices for transportation electricity, natural energy, gasoline, diesel, jet fuel, ethanol, E85, propane, biodiesel, transportation fuel demand, demand)......................................................................................................15 FIGURE 5: Imported Refiner Acquisition Cost (RAC), Gasoline and Diesel Crude-to-Retail Price

California at Davis, University of

265

Jet initiation of PBX 9502  

SciTech Connect

This report details the progress of an effort to determine the quantitative aspects of the initiation of PBX 9502 (95% TATB, 5% Kel-F 800) by copper jets. The particular jet used was that produced by the LAW warhead (66-mm diameter, 42/sup 0/ angle cone, copper-lined, conical shaped charge). Fifteen experiments, in various configurations, have been fired to define the essential parameters for quantitatively measuring the jet performance and initiation of bare PBX 9502. 7 refs., 8 figs.

McAfee, J.M.

1987-07-01T23:59:59.000Z

266

Photon + jets at D0  

E-Print Network (OSTI)

Photon plus jet production has been studied by the D0 experiment in Run II of the Fermilab Tevatron Collider at a centre of mass energy of sqrt{s}=1.96 TeV. Measurements of the inclusive photon, inclusive photon plus jet, photon plus heavy flavour jet cross sections and double parton interactions in photon plus three jet events are presented. They are based on integrated luminosities between 0.4 fb$^-1 and 1.0 fb^-1. The results are compared to perturbative QCD calculations in various approximations.

Lars Sonnenschein

2009-06-15T23:59:59.000Z

267

Variability of Southern Ocean Jets Near Topography  

Science Conference Proceedings (OSTI)

The interaction of jets with topography in the Southern Ocean is investigated using 19 years of altimetry data. In particular, the “jet jumping” mode of variability, by which two or more jets passing close to the same topographic feature show ...

Christopher C. Chapman; Rosemary Morrow

268

pmm.vp  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Table 46. Prime Supplier Sales Volumes of Aviation Fuels, No. 4 Fuel Oil, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) Geographic Area Month Aviation Gasoline Kerosene- Type Jet Fuel No. 4 Fuel Oil a Propane (Consumer Grade) Residual Fuel Oil Sulfur Less Than or Equal to 1 Percent Sulfur Greater Than 1 Percent Total Residual Fuel Oil United States September 2013 ........................ 528.1 55,062.2 147.0 31,019.9 1,941.7 8,519.6 10,461.3 August 2013 .............................. 624.3 59,252.0 122.6 28,245.1 2,259.8 11,371.3 13,631.1 September 2012 ........................ 707.7 52,548.7 119.7 28,336.2 1,866.8 9,714.0 11,580.8 PAD District I September 2013 ........................

269

Shroud for a submerged jet cutting nozzle  

DOE Patents (OSTI)

A shroud for a submerged jet cutting nozzle is described which separates the jet from surrounding fluid environment and enhances the cutting effect.

Schwab, Thomas L. (1369 Windsor Way, Livermore, CA 94550)

1978-01-01T23:59:59.000Z

270

Interferometric Visualization of Jet Flames  

Science Conference Proceedings (OSTI)

This paper presents visualizations of reacting, round jets of the premixed and nonpremixed type realized by using interferometry and, complementarily, direct photography. The available interferometer, proposed by Carlomagno (1986), employs low-cost components ... Keywords: coherent structures, combustion, destabilization, interferometry, jet flames

A. Stella; G. Guj; A. Mataloni

2000-01-01T23:59:59.000Z

271

Jet quenching and heavy quarks  

E-Print Network (OSTI)

Jet quenching and more generally physics at high transverse momentum P_T scales is a cornerstone of the heavy-ion physics program at the LHC. In this work, the current understanding of jet quenching in terms of a QCD shower evolution being modified by the surrounding medium is reviewed along with the evidence for this picture from light parton high P_T observables. Conceptually, the same QCD shower description should also be relevant for heavy quarks, but with several important modifications introduced by the quark masses. Thus especially in the limit of small jet energy over quark mass E_jet/m_q, the relevant physics may be rather different from light quark jets, and several attempts to explain the observed phenomenology of heavy quarks at high P_T are discussed here.

Thorsten Renk

2013-09-12T23:59:59.000Z

272

Hydrothermal processing of high-lipid biomass to fuels  

E-Print Network (OSTI)

High-lipid algae are potential sources of biofuels. Lipids in this biomass provide a straightforward chemical route to hydrocarbon-based high energy-density fuels needed for diesel and jet engines. However, current schemes ...

Johnson, Michael C., Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

273

(1) Facility Name: (7) (2) Brand of Fuel: (8)  

E-Print Network (OSTI)

Tank Capacity (Gallons) Midgrade Gasoline (89 Octane) Product (13) Annual Sales Volume (Gallons) (14 (Explain): Bio-Diesel (B-20) Compressed Natural Gas (CNG) Commercial Jet Fuel (18) Propane Finished

274

Water cooled steam jet  

DOE Patents (OSTI)

A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

Wagner, Jr., Edward P. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

275

Sensitivity of Perturbation Variance and Fluxes in Turbulent Jets to Changes in the Mean Jet  

Science Conference Proceedings (OSTI)

Synoptic-scale eddy variance and fluxes of heat and momentum in midlatitude jets are sensitive to small changes in mean jet velocity, dissipation, and static stability. In this work the change in the jet producing the greatest increase in ...

Brian F. Farrell; Petros J. Ioannou

2004-11-01T23:59:59.000Z

276

Petroleum Marketing Monthly, April 1984  

SciTech Connect

The preliminary statistics for April 1984 show that total refiner/gas plant operator sales of selected petroleum products (measured in gallons per day) decreased by 8.6% compared with final March sales. Declines in sales were reported for all products except premium motor gasoline, aviation gasoline, and No. 2 diesel. Refiner/gas plant operator price changes were mixed in April. At the retail level, No. 2 distillate prices were down, as were retail prices for kerosene-type jet fuel, kerosene, No. 1 distillate, and No. 4 fuel oil. Retail prices for motor gasoline, aviation gasoline, high-sulfur residual fuel oil, and propane increased. Motor gasoline prices also increased at the wholesale level, as did wholesale prices of No. 2 fuel oil and high-sulfur residual fuel. The April sales activity for each of the principal product groups is summarized. 12 figures, 59 tables.

1984-07-01T23:59:59.000Z

277

Midwest (PADD 2) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

278

Net Imports of Total Crude Oil and Products into the U.S. by Country  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Products Pentanes Plus Liquefied Petroleum Gases Unfinished Oils Finished Motor Gasoline Reformulated Conventional Motor Gasoline Blending Components Reformulated Gasoline Blend. Comp. Conventional Gasoline Blend. Comp. MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., 500 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period-Unit: Monthly-Thousand Barrels per Day Annual-Thousand Barrels per Day

279

Midwest (PADD 2) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

280

East Coast (PADD 1) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

Note: This page contains sample records for the topic "kerosene-type jet fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Operational characteristics of a parallel jet MILD combustion burner system  

SciTech Connect

This study describes the performance and stability characteristics of a parallel jet MILD (Moderate or Intense Low-oxygen Dilution) combustion burner system in a laboratory-scale furnace, in which the reactants and exhaust ports are all mounted on the same wall. Thermal field measurements are presented for cases with and without combustion air preheat, in addition to global temperature and emission measurements for a range of equivalence ratio, heat extraction, air preheat and fuel dilution levels. The present furnace/burner configuration proved to operate without the need for external air preheating, and achieved a high degree of temperature uniformity. Based on an analysis of the temperature distribution and emissions, PSR model predictions, and equilibrium calculations, the CO formation was found to be related to the mixing patterns and furnace temperature rather than reaction quenching by the heat exchanger. The critical equivalence ratio, or excess air level, which maintains low CO emissions is reported for different heat exchanger positions, and an optimum operating condition is identified. Results of CO and NO{sub x} emissions, together with visual observations and a simplified two-dimensional analysis of the furnace aerodynamics, demonstrate that fuel jet momentum controls the stability of this multiple jet system. A stability diagram showing the threshold for stable operation is reported, which is not explained by previous stability criteria. (author)

Szegoe, G.G.; Dally, B.B.; Nathan, G.J. [School of Mechanical Engineering, The University of Adelaide, South Australia, 5005 (Australia)

2009-02-15T23:59:59.000Z

282

Fuel.vp  

Gasoline and Diesel Fuel Update (EIA)

F2: Jet Fuel Consumption, Price, and Expenditure Estimates, 2012 F2: Jet Fuel Consumption, Price, and Expenditure Estimates, 2012 State Jet Fuel a Consumption Prices Expenditures Thousand Barrels Trillion Btu Dollars per Million Btu Million Dollars Alabama 2,193 12.4 23.24 289.1 Alaska 19,966 113.2 23.28 2,635.6 Arizona 3,812 21.6 23.28 503.2 Arkansas 988 5.6 22.84 128.0 California 94,474 535.7 22.88 12,256.9 Colorado 10,601 60.1 23.04 1,384.7 Connecticut 1,699 9.6 23.55 226.9 Delaware 132 0.7 23.08 17.3 Dist. of Col. 0 0.0 - - Florida 33,167 188.1 23.23 4,368.5 Georgia 11,252 63.8 22.84 1,457.5 Hawaii 11,311 64.1 22.94 1,471.3 Idaho 726 4.1 24.50 100.9 Illinois 24,668 139.9 22.85 3,196.2 Indiana 8,519 48.3 22.80 1,101.3 Iowa 1,101 6.2 23.44 146.3 Kansas 2,759 15.6 22.97 359.3 Kentucky 9,000 51.0 23.07 1,177.5 Louisiana 19,080 108.2 22.79 2,464.9 Maine 1,175 6.7 23.55 156.9 Maryland 2,100 11.9 23.08 274.8 Massachusetts

283

Jet Performance and Jet Energy Scale Determination at CMS  

Science Conference Proceedings (OSTI)

We describe the jet response of the CMS calorimeter which will be used to study pp collisions at Large Hadron Collider at CERN, Geneva, Switzerland at {radical}(s) = 14 TeV. The electromagnetic section of calorimeter consists of lead tungstate crystals which gives an excellent resolution for electrons. The hadron section is brass-scintillator sampling calorimeter read by wavelength shifting fibers in the central region (vertical bar {eta} vertical bar < 3.0) and steel/quartz-fibers in the forward (3.0 < vertical bar {eta} vertical bar < 5.0) region. Extensive test beam calibration data has been collected. A GEANT-based calorimeter simulation has been tuned to reproduce the test beam measurements. The calorimeter response to jets has been determined using this tuned simulation. We describe the calorimeter response to jets, the jet energy resolution, and the procedure we plan to use to establish the jet energy scale from a combination of test beam and pp data when we start taking data in September 2007.

Bhatti, Anwar A. [Experimental Physics Laboratory, The Rockefeller University, 1230 York Ave, New York NY 10021 (United States)

2006-10-27T23:59:59.000Z

284

Chandra Discovery of an X-ray Jet and Lobes in 3C 15  

E-Print Network (OSTI)

We report the Chandra detection of an X-ray jet in 3C 15. The peak of the X-ray emission in the jet is 4.1'' (a projected distance of 5.1 kpc) from the nucleus, and coincident with a component previously identified in the radio and optical jets. We examine four models for the X-ray jet emission: (I) weak synchrotron cooling in equip., (II) moderate synchrotron cooling in equip., (III) weak synchrotron plus SSC cooling, and (IV) moderate synchrotron plus SSC cooling. We argue that case (II) can most reasonably explain the overall emission from knot C. Case (III) is also possible, but requires a large departure from equipartition and for the jet power to be comparable to that of the brightest quasars. Diffuse X-ray emission has also been detected, distributed widely over the full extent (63kpc x 25kpc) of the radio lobes. We compare the total energy contained in the lobes with the jet power estimated from knot C, and discuss the energetic link between the jet and the lobes. We argue that the fueling time (t_fue...

Kataoka, J; Edwards, P G; Kino, M; Takahara, F; Serino, Y; Kawai, N; Martel, A R

2003-01-01T23:59:59.000Z

285

Jet Joint Undertaking  

E-Print Network (OSTI)

Recent experience with the use of tritium fuel in the Tokamak Fusion Test Reactor and the Joint European Torus, together with progress in developing the technical design of the International Thermonuclear Experimental Reactor has expanded the technical knowledge base for tritium issues in fusion. This paper reports on an IEA workshop that brought together scientists and engineers to share experience and expertise on all fusion related tritium issues. Extensive discussion periods were devoted to exploring outstanding issues and identifying potential R&D avenues to address them. This paper summarizes the presentations, discussions and recommendations.

C H Skinner; C Gentile; J Hosea; D Mueller; P Coad; Abingdon Ox Ea; G Federici; Garching Germany; R Haange

1998-01-01T23:59:59.000Z

286

Chandra Discovery of an X-ray Jet and Lobes in 3C 15  

E-Print Network (OSTI)

We report the Chandra detection of an X-ray jet in 3C 15. The peak of the X-ray emission in the jet is 4.1'' (a projected distance of 5.1 kpc) from the nucleus, and coincident with a component previously identified in the radio and optical jets. We examine four models for the X-ray jet emission: (I) weak synchrotron cooling in equip., (II) moderate synchrotron cooling in equip., (III) weak synchrotron plus SSC cooling, and (IV) moderate synchrotron plus SSC cooling. We argue that case (II) can most reasonably explain the overall emission from knot C. Case (III) is also possible, but requires a large departure from equipartition and for the jet power to be comparable to that of the brightest quasars. Diffuse X-ray emission has also been detected, distributed widely over the full extent (63kpc x 25kpc) of the radio lobes. We compare the total energy contained in the lobes with the jet power estimated from knot C, and discuss the energetic link between the jet and the lobes. We argue that the fueling time (t_fuel) and the source age (t_src) are comparable for case (II), whereas t_fuel thermal galaxy halo and non-thermal relativistic electrons in the radio lobes. Finally, we show that the X-ray emission from the nucleus is not adequately fitted by a simple absorbed power-law model, but needs an additional power-law with heavy absorption intrinsic to the source. Such a high column density is consistent with the presence of a dense, dusty torus which obscures the quasar nucleus.

J. Kataoka; J. P. Leahy; P. G. Edwards; M. Kino; F. Takahara; Y. Serino; N. Kawai; A. R. Martel

2003-08-12T23:59:59.000Z

287

Fossil fuels -- future fuels  

Science Conference Proceedings (OSTI)

Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

NONE

1998-03-01T23:59:59.000Z

288

Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Fueling Infrastructure Incentives to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on AddThis.com... More in this section... Federal State Advanced Search

289

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) and Fueling Infrastructure Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on AddThis.com...

290

Method for producing H.sub.2 using a rotating drum reactor with a pulse jet heat source  

DOE Patents (OSTI)

A method of producing hydrogen by an endothermic steam-carbon reaction using a rotating drum reactor and a pulse jet combustor. The pulse jet combustor uses coal dust as a fuel to provide reaction temperatures of 1300.degree. to 1400.degree. F. Low-rank coal, water, limestone and catalyst are fed into the drum reactor where they are heated, tumbled and reacted. Part of the reaction product from the rotating drum reactor is hydrogen which can be utilized in suitable devices.

Paulson, Leland E. (Morgantown, WV)

1990-01-01T23:59:59.000Z

291

A pulverized coal fuel injector  

DOE Patents (OSTI)

A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO{sub 2} formation.

Rini, M.J.; Towle, D.P.

1991-12-31T23:59:59.000Z

292

Rocky Mountain (PADD 4) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

293

Total Crude Oil and Products Imports from All Countries  

U.S. Energy Information Administration (EIA) Indexed Site

Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

294

Crude Oil and Petroleum Products Movements by Pipeline between PAD  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline between PAD Districts Pipeline between PAD Districts Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Renewable Diesel Fuel Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

295

Gulf Coast (PADD 3) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

296

Rocky Mountain (PADD 4) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

297

Calculations of slurry pump jet impingement loads  

SciTech Connect

This paper presents a methodology to calculate the impingement load in the region of a submerged turbulent jet where a potential core exits and the jet is not fully developed. The profile of the jet flow velocities is represented by a piece-wise linear function which satisfies the conservation of momentum flux of the jet flow. The adequacy of the of the predicted jet expansion is further verified by considering the continuity of the jet flow from the region of potential core to the fully developed region. The jet impingement load can be calculated either as a direct impingement force or a drag force using the jet velocity field determined by the methodology presented.

Wu, T.T.

1996-03-04T23:59:59.000Z

298

African Easterly Jet: Structure and Maintenance  

Science Conference Proceedings (OSTI)

This article investigates the African easterly jet (AEJ), its structure, and the forcings contributing to its maintenance, critically revisiting previous work that attributed the maintenance of the jet to soil moisture gradients over tropical ...

Man-Li C. Wu; Oreste Reale; Siegfried D. Schubert; Max J. Suarez; Randy D. Koster; Philip J. Pegion

2009-09-01T23:59:59.000Z

299

Eddy Formation in 2½-Layer, Quasigeostrophic Jets  

Science Conference Proceedings (OSTI)

The formation of nonlinear eddies in unstable 2½-layer, quasigeostrophic jets is investigated using a piecewise constant potential vorticity, “contour dynamical” model. Both infinite and semi-infinite jet dynamics are explored, considering a ...

Ilson C. A. da Silveira; Glenn R. Flierl

2002-03-01T23:59:59.000Z

300

Dynamics of the Southern Hemisphere Spiral Jet  

Science Conference Proceedings (OSTI)

The formation of the Southern Hemisphere spiral jet is investigated using observations over a 40-yr period. It is found that between late March and early April, the upper-tropospheric westerly jet in the Southern Hemisphere undergoes a transition ...

Lindsey N. Williams; Sukyoung Lee; Seok-Woo Son

2007-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "kerosene-type jet fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Shaping Planetary Nebulae by Jets  

E-Print Network (OSTI)

We conduct 2D axisymmetrical hydrodynamical simulations to investigate the interaction of a collimated fast wind (CFW; wide jets) with a spherical AGB wind. The code includes radiative cooling. We find that the shape of the planetary nebula (PN) is sensitive to the exact mass loss history of the AGB wind, and the opening angle of the CFW. Some typical PN morphologies are obtained, but many other observed morphologies seem to require more ingredients than what we assume in our present simulations, e.g., equatorial AGB wind, and ionization and fast wind during the PN phase. The hot bipolar bubble formed by the jets is an X-ray source.

Muhammad Akashi

2007-09-06T23:59:59.000Z

302

Inclusive jet production at Tevatron  

Science Conference Proceedings (OSTI)

The CDF and D0 Collaborations have measured the inclusive jet cross section using 1992--93 collider data at {radical}s = 1,800 GeV. The D0 measurement is higher than NLO QCD predictions, though within systematic uncertainties. The CDF measurement is in very good agreement with NLO QCD predictions for transverse energies (E{sub T}) below 200 GeV. However it is systemically higher than NLO QCD predictions for E{sub T} above 200 GeV. The CDF measurement of two-jet mass and total transverse energy spectra also show a similar excess above QCD predictions at higher E{sub T}.

Bhatti, A.A.; CDF Collaboration; D0 Collaboration

1995-07-01T23:59:59.000Z

303

Jet physics at HERA, Tevatron and LHC  

E-Print Network (OSTI)

In this short report, we discuss the Jet Physics results and perspectives at HERA, Tevatron and LHC.

C. Royon

2008-11-10T23:59:59.000Z

304

Inclusive jet production at the Tevatron  

SciTech Connect

Preliminary results on inclusive jet production in proton-antiproton collisions at {radical}s = 1.96 TeV based on 1 fb{sup -1} of CDF Run II data are presented. Measurements are preformed using different jet algorithms in a wide range of jet transverse momentum and jet rapidity. The measured cross sections are compared to next-to-leading order perturbative QCD calculations

Norniella, Olga; /Barcelona, IFAE

2006-08-01T23:59:59.000Z

305

Alternative Fuels Data Center: Drop-In Biofuels  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Drop-In Biofuels to Drop-In Biofuels to someone by E-mail Share Alternative Fuels Data Center: Drop-In Biofuels on Facebook Tweet about Alternative Fuels Data Center: Drop-In Biofuels on Twitter Bookmark Alternative Fuels Data Center: Drop-In Biofuels on Google Bookmark Alternative Fuels Data Center: Drop-In Biofuels on Delicious Rank Alternative Fuels Data Center: Drop-In Biofuels on Digg Find More places to share Alternative Fuels Data Center: Drop-In Biofuels on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol P-Series Renewable Natural Gas xTL Fuels Drop-In Biofuels Drop-in biofuels are hydrocarbon fuels substantially similar to gasoline, diesel, or jet fuels. These fuels can be made from a variety of biomass feedstocks including crop residues, woody biomass, dedicated energy crops,

306

Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Use Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative

307

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative

308

Effects of Coaxial Air on Nitrogen-Diluted Hydrogen Jet Diffusion Flame Length and NOx Emission  

DOE Green Energy (OSTI)

Turbulent nitrogen-diluted hydrogen jet diffusion flames with high velocity coaxial air flows are investigated for their NOx emission levels. This study is motivated by the DOE turbine program’s goal of achieving 2 ppm dry low NOx from turbine combustors running on nitrogen-diluted high-hydrogen fuels. In this study, effects of coaxial air velocity and momentum are varied while maintaining low overall equivalence ratios to eliminate the effects of recirculation of combustion products on flame lengths, flame temperatures, and resulting NOx emission levels. The nature of flame length and NOx emission scaling relationships are found to vary, depending on whether the combined fuel and coaxial air jet is fuel-rich or fuel-lean. In the absence of differential diffusion effects, flame lengths agree well with predicted trends, and NOx emissions levels are shown to decrease with increasing coaxial air velocity, as expected. Normalizing the NOx emission index with a flame residence time reveals some interesting trends, and indicates that a global flame strain based on the difference between the fuel and coaxial air velocities, as is traditionally used, is not a viable parameter for scaling the normalized NOx emissions of coaxial air jet diffusion flames.

Weiland, N.T.; Chen, R.-H.; Strakey, P.A.

2007-10-01T23:59:59.000Z

309

Fuel Cell Technologies Office: Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Cells Search Search Help Fuel Cells EERE Fuel Cell Technologies Office Fuel Cells Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Fuel...

310

Realistic Probability Estimates For Destructive Overpressure Events In Heated Center Wing Tanks Of Commercial Jet Aircraft  

SciTech Connect

The Federal Aviation Administration (FAA) identified 17 accidents that may have resulted from fuel tank explosions on commercial aircraft from 1959 to 2001. Seven events involved JP 4 or JP 4/Jet A mixtures that are no longer used for commercial aircraft fuel. The remaining 10 events involved Jet A or Jet A1 fuels that are in current use by the commercial aircraft industry. Four fuel tank explosions occurred in center wing tanks (CWTs) where on-board appliances can potentially transfer heat to the tank. These tanks are designated as ''Heated Center Wing Tanks'' (HCWT). Since 1996, the FAA has significantly increased the rate at which it has mandated airworthiness directives (ADs) directed at elimination of ignition sources. This effort includes the adoption, in 2001, of Special Federal Aviation Regulation 88 of 14 CFR part 21 (SFAR 88 ''Fuel Tank System Fault Tolerance Evaluation Requirements''). This paper addresses SFAR 88 effectiveness in reducing HCWT ignition source probability. Our statistical analysis, relating the occurrence of both on-ground and in-flight HCWT explosions to the cumulative flight hours of commercial passenger aircraft containing HCWT's reveals that the best estimate of HCWT explosion rate is 1 explosion in 1.4 x 10{sup 8} flight hours. Based on an analysis of SFAR 88 by Sandia National Laboratories and our independent analysis, SFAR 88 reduces current risk of historical HCWT explosion by at least a factor of 10, thus meeting an FAA risk criteria of 1 accident in billion flight hours. This paper also surveys and analyzes parameters for Jet A fuel ignition in HCWT's. Because of the paucity of in-flight HCWT explosions, we conclude that the intersection of the parameters necessary and sufficient to result in an HCWT explosion with sufficient overpressure to rupture the HCWT is extremely rare.

Alvares, N; Lambert, H

2007-02-07T23:59:59.000Z

311

(1) Facility Name: (7) Business Name: (2) Brand of Fuel: (8) Mailing Address  

E-Print Network (OSTI)

Tank Capacity (Gallons) Midgrade Gasoline (89 Octane) Product (13) Annual Sales Volume (Gallons) (14 (Explain): Bio-Diesel (B-20) Compressed Natural Gas (CNG) Commercial Jet Fuel (18) Propane Finished

312

Fuel pin  

DOE Patents (OSTI)

A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

1987-11-24T23:59:59.000Z

313

Converting syncrudes to transportation fuels: Appendix 1  

DOE Green Energy (OSTI)

Syncrudes derived from oil shale and those produced in direct coal liquefaction processes can be converted to transportation fuels using modern commercial hydroprocessing technology. Upgrading routes typically consist of hydrogen addition and removal of heteroatom and inorganic impurities. This paper reviews refining routes and discusses the properties of finished transportation fuel products (gasoline, jet fuel, diesel) produced from syncrudes. Fuels produced from bituminous coal, subbituminous coal, and lignite are contrasted with those produced from oil shale and petroleum. Transportation fuels from shale oil resemble those from waxy petroleum crudes. Upgraded products from liquids made in H-Coal, EDS, and SRC-II direct coal liquefaction processes are low in paraffin content and consist mainly of cyclic hydrocarbons. As a result, the latter have some unusual and desirable properties for transportation fuels. 14 refs., 8 figs., 8 tabs.

Sullivan, R.F.; O'Rear, D.J.; Frumkin, H.A.

1981-01-01T23:59:59.000Z

314

Refinery Yield of Liquefied Refinery Gases  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Yield Refinery Yield (Percent) Product: Liquefied Refinery Gases Finished Motor Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Residual Fuel Oil Naphtha for Petrochemical Feedstock Use Other Oils for Petrochemical Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Still Gas Miscellaneous Products Processing Gain(-) or Loss(+) Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 5.3 5.4 5.2 5.2 5.1 3.9 1993-2013 PADD 1 4.4 5.1 4.9 4.9 4.6 2.1 1993-2013 East Coast 4.4 5.3 5.1 5.1 4.9 2.2 1993-2013

315

Modeling of NOx formation in circular laminar jet flames  

E-Print Network (OSTI)

Emissions of oxides of nitrogen (NOx) from combustion devices is a topic of tremendous current importance. The bulk of the review of NOx emissions has been in the field of turbulent jet flames. However laminar jet flames have provided much insight into the relative importance of NOx reaction pathways in non premixed combustion for various flame conditions. The existing models include detailed chemistry kinetics for various species involved in the flame. These detailed models involve very complex integration of hundreds of chemical reactions of various species and their intermediates. Hence such models are highly time consuming and also normally involve heavy computational costs. This work proposes a numerical model to compute the total production of NOx in a non-premixed isolated circular laminar jet flame. The jet consists of the fuel rich inner region and the O2 rich outer region. The model estimates both thermal NOx and prompt NOx assuming single step kinetics for NOx formation and a thin flame model. Further the amount of air entrainment by jet depends upon the Sc number of fuel. The higher the Sc number, the higher is the air entrained which lowers the flame temperature and hence NOx formation. With increasing Sc number, flame volume increases which leads to an increase in the NOx formation. The effect of the Sc number variation on the net production of NOx and flame structure is also investigated. The effect of equilibrium chemistry for CO2 CO + 1/2 O2 and H2O H2 +1/2 O2 on total NOx emission is studied. Also the effect of both CO2 and H2O equilibrium is considered simultaneously and the net x NO formation for propane is 45 ppm. The split between pre-flame and post-flame regions is also investigated. For Propane, 96% of NO emissions occur in the pre-flame region and about 4% in the post-flame region. The model predictions are compared with experimental values of NOx missions reported elsewhere.

Siwatch, Vivek

2005-12-01T23:59:59.000Z

316

The effect of jet velocity ratio on aerodynamics of a rectangular slot-burner in the presence of cross-flow  

Science Conference Proceedings (OSTI)

In a typical coal-fired power station boiler the ignition and the combustion of the fuel is largely controlled by burner aerodynamics. An experimental and numerical study of the rectangular slot-burners widely used on power stations in Victoria, Australia has been conducted to improve understanding of jet development within the boiler. The 1:15 scale model burner consisted of a central (primary) rectangular fuel nozzle with two (secondary) rectangular air jets positioned above and below it. The burner jets entered the measurement vessel at an angle of 60 deg to the wall. A cross-flow jet was attached to the wall of the vessel to simulate the recirculation prevalent in power station boilers. Experiments were conducted using a primary to cross-flow jet velocity ratio ({phi}) of 1.0 and secondary to primary jet velocity ratios ({phi}) of 1.0 and 3.0. Laser Doppler Anemometry (LDA) was used to measure mean and turbulent velocity components in the near field and downstream regions of the jets. Cross-flow significantly influenced the near field flow development from the slot-burner by deviating both primary and secondary jets from their geometric axes towards the wall. The degree of deviation was greater for {phi} = 1.0 since the higher velocity secondary jets increased the overall momentum of the primary jet for {phi} = 3.0. A numerical investigation of the rectangular slot-burner was also performed. First, the numerical results were validated against the experimental results and then visualization of the developing flow field was used to reveal the finer details of the cross-flow/burner jet interaction. Agreement between numerical and experimental jet features was good, although the numerical results predicted a primary jet that was marginally too narrow. Also the predicted downstream behaviour for {phi} = 3.0 deviated more significantly from experimental observation. Using the SST turbulence model, the numerical results suggested that a twin vortex was generated behind the initial region of the primary jet and this would aid in mixing of gas and fuel between primary and secondary jets. (author)

Ahmed, S. [CSIRO Manufacturing and Materials Technology, Highett VIC-3190 (Australia); Hart, J.; Naser, J. [School of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn VIC-3122 (Australia); Nikolov, J.; Solnordal, C.; Yang, W. [CSIRO Minerals, Clayton, VIC-3169 (Australia)

2007-11-15T23:59:59.000Z

317

Understanding and predicting soot generation in turbulent non-premixed jet flames.  

DOE Green Energy (OSTI)

This report documents the results of a project funded by DoD's Strategic Environmental Research and Development Program (SERDP) on the science behind development of predictive models for soot emission from gas turbine engines. Measurements of soot formation were performed in laminar flat premixed flames and turbulent non-premixed jet flames at 1 atm pressure and in turbulent liquid spray flames under representative conditions for takeoff in a gas turbine engine. The laminar flames and open jet flames used both ethylene and a prevaporized JP-8 surrogate fuel composed of n-dodecane and m-xylene. The pressurized turbulent jet flame measurements used the JP-8 surrogate fuel and compared its combustion and sooting characteristics to a world-average JP-8 fuel sample. The pressurized jet flame measurements demonstrated that the surrogate was representative of JP-8, with a somewhat higher tendency to soot formation. The premixed flame measurements revealed that flame temperature has a strong impact on the rate of soot nucleation and particle coagulation, but little sensitivity in the overall trends was found with different fuels. An extensive array of non-intrusive optical and laser-based measurements was performed in turbulent non-premixed jet flames established on specially designed piloted burners. Soot concentration data was collected throughout the flames, together with instantaneous images showing the relationship between soot and the OH radical and soot and PAH. A detailed chemical kinetic mechanism for ethylene combustion, including fuel-rich chemistry and benzene formation steps, was compiled, validated, and reduced. The reduced ethylene mechanism was incorporated into a high-fidelity LES code, together with a moment-based soot model and models for thermal radiation, to evaluate the ability of the chemistry and soot models to predict soot formation in the jet diffusion flame. The LES results highlight the importance of including an optically-thick radiation model to accurately predict gas temperatures and thus soot formation rates. When including such a radiation model, the LES model predicts mean soot concentrations within 30% in the ethylene jet flame.

Wang, Hai (University of Southern California, Los Angeles, CA); Kook, Sanghoon; Doom, Jeffrey; Oefelein, Joseph Charles; Zhang, Jiayao; Shaddix, Christopher R.; Schefer, Robert W.; Pickett, Lyle M.

2010-10-01T23:59:59.000Z

318

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Fueling Infrastructure Funding and Technical Assistance and Fueling Infrastructure Funding and Technical Assistance to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Digg

319

Beaming and Jets in GRBs  

E-Print Network (OSTI)

The origin of GRBs have been a mystery for almost 30 years. The afterglowobserved in the last few years enabled redshift determination for a handful ofbursts, and the cosmological origin is now firmly established. Though thedistance scale is settled, there still remains orders of magnitude uncertaintyin their rate and in the total energy that is released in the explosion due tothe possibility that the emission is not spherical but jet-like. Contrary tothe GRB itself, the afterglow can be measured up to months and even years afterthe burst, and it can provide crucial information on the geometry of theejecta. We review the theory of afterglow from jets and discuss the evidencethat at least some of the bursts are not spherical. We discuss the prospects ofpolarization measurements, and show that this is a powerful tool inconstraining the geometry of the explosion.

Sari, R

2000-01-01T23:59:59.000Z

320

Today in Energy - High airline jet fuel costs prompt cost ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... and idling time. ... Delta stated that it anticipates cost savings of $300 million per year as a result of this ...

Note: This page contains sample records for the topic "kerosene-type jet fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Hydrocracking is an important source of diesel and jet fuel ...  

U.S. Energy Information Administration (EIA)

The hydrocracker upgrades low-quality heavy gas oils from the atmospheric or vacuum distillation tower ... This keeps the reactor temperature from coo ...

322

Hydrocracking is an important source of diesel and jet fuel ...  

U.S. Energy Information Administration (EIA)

Hydrogen is also used to control the temperature of the reactor—it is fed into the reactor at different points. This keeps the reactor temperature from cooling ...

323

Hydrocracking is an important source of diesel and jet fuel ...  

U.S. Energy Information Administration (EIA)

The hydrocracker upgrades low-quality heavy gas oils from the atmospheric or vacuum distillation tower ... This keeps the reactor temperature from cooling to the ...

324

Prime Supplier Sales Volumes of Naphtha-Type Jet Fuel  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Values shown for the ...

325

Fuels Technology - Capabilities - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Capabilities Fuels Technology Advanced petroleum-based fuels Fuel-borne reductants On-board reforming Alternative fuels...

326

Alternative Fuels Data Center: Alternative Fuel and Special Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Special Fuel Definitions to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel and Special Fuel Definitions

327

Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Motor Fuel Motor Carrier Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Motor Carrier Fuel Tax Effective January 1, 2014, a person who operates a commercial motor vehicle

328

The ATLAS b-Jet Trigger  

E-Print Network (OSTI)

The online event selection is crucial to reject most of the events containing uninteresting background collisions while preserving as much as possible the interesting physical signals. The b-jet selection is part of the trigger strategy of the ATLAS experiment and a set of dedicated triggers was contributing to the event selection for the 2011 running. The b-jets acceptance is increased and the background reduced by lowering jet transverse energy thresholds at the first trigger level and applying b-tagging techniques at the subsequent levels. Different physics channels, especially topologies containing more than one b-jet where higher rejection factors are achieved, benefit from using the b-jet trigger. An overview of the b-jet trigger menu and performance on data is presented.

Per Hansson

2011-11-17T23:59:59.000Z

329

Turbulent fluid jet excavation in cohesive soil : with particular application to jet grouting  

E-Print Network (OSTI)

This thesis reviews the jet grouting methodology, and the current state of practice and research. Current methods of prediction of jet grout diameters are highly empirical and site specific, and do not take into account ...

Ho, Chu Eu

2005-01-01T23:59:59.000Z

330

Alternative Fuels Data Center: Alternative Fuel Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Promotion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Promotion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Promotion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Promotion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Promotion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Promotion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Promotion The Missouri Alternative Fuels Commission (Commission) promotes the continued production and use of alternative transportation fuels in

331

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition The definition of an alternative fuel includes natural gas, liquefied petroleum gas, electricity, hydrogen, fuel mixtures containing not less

332

Alternative Fuels Data Center: Ethanol Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Ethanol Fueling Stations Photo of an ethanol fueling station. Thousands of ethanol fueling stations are available in the United States.

333

Alternative Fuels Data Center: Hydrogen Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Hydrogen Fueling Stations Photo of a hydrogen fueling station. A handful of hydrogen fueling stations are available in the United States

334

Alternative Fuels Data Center: Biodiesel Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fueling Stations on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Biodiesel Fueling Stations Photo of a biodiesel fueling station. Hundreds of biodiesel fueling stations are available in the United States.

335

Increasing jet entrainment, mixing and spreading  

DOE Patents (OSTI)

A free jet of air is disturbed at a frequency that substantially matches natural turbulences in the free jet to increase the entrainment, mixing, and spreading of air by the free jet, for example in a room or other enclosure. The disturbances are created by pulsing the flow of air that creates the free jet at the desired frequency. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct. 11 figs.

Farrington, R.B.

1994-08-16T23:59:59.000Z

336

Increasing jet entrainment, mixing and spreading  

DOE Patents (OSTI)

A free jet of air is disturbed at a frequency that substantially matches natural turbulences in the free jet to increase the entrainment, mixing, and spreading of air by the free jet, for example in a room or other enclosure. The disturbances are created by pulsing the flow of air that creates the free jet at the desired frequency. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct.

Farrington, Robert B. (Wheatridge, CO)

1994-01-01T23:59:59.000Z

337

EIA - AEO2010 - Liquid fuels taxes and tax credits  

Gasoline and Diesel Fuel Update (EIA)

Liquid fuels taxes and tax credits Liquid fuels taxes and tax credits Annual Energy Outlook 2010 with Projections to 2035 Liquid fuels taxes and tax credits This section provides a review of the treatment of Federal fuels taxes and tax credits in AEO2010. Excise taxes on highway fuel The treatment of Federal highway fuel taxes remains unchanged from the previous yearÂ’s AEO. Gasoline is taxed at 18.4 cents per gallon, diesel fuel at 24.4 cents per gallon, and jet fuel at 4.4 cents per gallon, consistent with current laws and regulations. Consistent with Federal budgeting procedures, which dictate that excise taxes dedicated to a trust fund, if expiring, are assumed to be extended at current rates, these taxes are maintained at their present levels, without adjustment for inflation, throughout the projection [9]. State fuel taxes are calculated on the basis of a volume-weighted average for diesel, gasoline, and jet fuels. The State fuel taxes were updated as of July 2009 [10] and are held constant in real terms over the projection period, consistent with historical experience.

338

Scaling of cell size in cellular instabilities of nonpremixed jet flames  

SciTech Connect

Systematic experiments have been undertaken to study the parameter dependence of cellular instability and in particular the scaling of the resulting cell size in CO{sub 2}-diluted H{sub 2}-O{sub 2} jet diffusion flames. Cellular flames are known to arise near the extinction limit when reactant Lewis numbers are relatively low. The Lewis numbers of the investigated near-extinction mixtures, based on the initial mixture strength {phi}{sub m} and ambient conditions, varied in the ranges [1.1-1.3] for oxygen and [0.25-0.29] for hydrogen ({phi}{sub m} is defined here as the fuel-to-oxygen mass ratio, normalized by the stoichiometric ratio). The experiments were carried out both in an axisymmetric jet (AJ) burner and in a two-dimensional slot burner known as a Wolfhard-Parker (WP) burner with an oxidizer co-flow (mostly 100% O{sub 2}) of fixed low velocity. First, the region of cellular flames adjacent to the extinction limit was characterized in terms of initial H{sub 2} concentration and fuel jet velocity, with all other parameters fixed. Then, the wavelength of the cellular instability, i.e., the cell size, was determined as a function of the fuel jet velocity and the initial mixture strength {phi}{sub m}. For conditions not too close to extinction, this wavelength is found to increase with the square root of the vorticity thickness of the jet shear layer and roughly the 1/5 power of {phi}{sub m}. Very close to extinction, this scaling breaks down and will likely switch to a scaling with the flame thickness, i.e., involving the Damkoehler number. (author)

Lo Jacono, D.; Monkewitz, P.A. [Ecole Polytechnique Federale de Lausanne, Laboratory of Fluid Mechanics, CH-1015 Lausanne (Switzerland)

2007-10-15T23:59:59.000Z

339

Mechanisms of Jet Formation on the Giant Planets  

Science Conference Proceedings (OSTI)

The giant planet atmospheres exhibit alternating prograde (eastward) and retrograde (westward) jets of different speeds and widths, with an equatorial jet that is prograde on Jupiter and Saturn and retrograde on Uranus and Neptune. The jets are ...

Junjun Liu; Tapio Schneider

2010-11-01T23:59:59.000Z

340

SpartyJet 4.0 User's Manual  

E-Print Network (OSTI)

SpartyJet is a set of software tools for jet finding and analysis, built around the FastJet library of jet algorithms. SpartyJet provides four key extensions to FastJet: a simple Python interface to most FastJet features, a powerful framework for building up modular analyses, extensive input file handling capabilities, and a graphical browser for viewing analysis output and creating new on-the-fly analyses. Many of these capabilities rely on a ROOT-based backend. Beyond finding jets, many jet tools in SpartyJet perform measurement of jet or event variables, available to subsequent tools and stored in the final output. SpartyJet can be downloaded from HepForge at http://projects.hepforge.org/spartyjet.

Pierre-Antoine Delsart; Kurtis L. Geerlings; Joey Huston; Brian T. Martin; Christopher K. Vermilion

2012-01-17T23:59:59.000Z

Note: This page contains sample records for the topic "kerosene-type jet fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Natural Fueling of a Tokamak Fusion Reactor  

E-Print Network (OSTI)

A natural fueling mechanism that helps to maintain the main core deuterium and tritium (DT) density profiles in a tokamak fusion reactor is discussed. In H-mode plasmas dominated by ion- temperature gradient (ITG) driven turbulence, cold DT ions near the edge will naturally pinch radially inward towards the core. This mechanism is due to the quasi-neutral heat flux dominated nature of ITG turbulence and still applies when trapped and passing kinetic electron effects are included. Fueling using shallow pellet injection or supersonic gas jets is augmented by an inward pinch of could DT fuel. The natural fueling mechanism is demonstrated using the three-dimensional toroidal electromagnetic gyrokinetic turbulence code GEM and is analyzed using quasilinear theory. Profiles similar to those used for conservative ITER transport modeling that have a completely flat density profile are examined and it is found that natural fueling actually reduces the linear growth rates and energy transport.

Wan, Weigang; Chen, Yang; Perkins, Francis W

2009-01-01T23:59:59.000Z

342

Fuel Cell Technologies Office: Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cells Search Search Help Fuel Cells EERE Fuel Cell Technologies Office Fuel Cells...

343

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on AddThis.com...

344

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on AddThis.com...

345

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on AddThis.com...

346

Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on AddThis.com... More in this section...

347

Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on AddThis.com...

348

Angular Energy Distribution of Collapsar-Jets  

E-Print Network (OSTI)

Collapsars are fast-spinning, massive stars, whose core collapse liberates an energy, that can be channeled in the form of ultrarelativistic jets. These jets transport the energy from the collapsed core to large distances, where it is dissipated in the form of long-duration gamma-ray bursts. In this paper we study the dynamics of ultrarelativistic jets produced in collapsars. Also we extrapolate our results to infer the angular energy distribution of the produced outflows in the afterglow phase. Our main focus is to look for global energetical properties which can be imprinted by the different structure of different progenitor stars. Thus, we employ a number of pre-supernova, stellar models (with distinct masses and metallicities), and inject in all of them jets with fixed initial conditions. We assume that at the injection nozzle, the jet is mildly relativistic (Lorentz factor $\\sim 5$), has a finite half-opening angle ($5^\\circ$), and carries a power of $10^{51} $erg s$^{-1}$. These jets arrive intact to the stellar surface and break out of it. A large Lorentz factor region $\\Gamma\\simmore 100$ develops well before the jet reaches the surface of the star, in the unshocked part of the beam, located between the injection nozzle and the first recollimation shock. These high values of $\\Gamma$ are possible because the finite opening angle of the jet allows for free expansion towards the radial direction. We find a strong correlation between the angular energy distribution of the jet, after its eruption from the progenitor surface, and the mass of the progenitors. The angular energy distribution of the jets from light progenitor models is steeper than that of the jets injected in more massive progenitor stars. This trend is also imprinted in the angular distribution of isotropic equivalent energy.

Akira Mizuta; Miguel A. Aloy

2008-12-28T23:59:59.000Z

349

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 September 2013 Table 35. Percent Yield of Petroleum Products by PAD and Refining Districts, September 2013 Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Liquefied Refinery Gases ......................................... 2.2 1.0 2.1 4.3 1.3 2.0 3.4 Finished Motor Gasoline 1 ......................................... 46.0 35.4 45.2 51.1 50.3 48.6 50.4 Finished Aviation Gasoline 2 ..................................... - - - - 1.2 - 0.1 Kerosene-Type Jet Fuel ........................................... 7.4 - 6.8 7.6 6.9 3.6 6.6 Kerosene .................................................................. 0.3 - 0.2 0.0 - 0.1 0.0 Distillate Fuel Oil .......................................................

350

untitled  

U.S. Energy Information Administration (EIA) Indexed Site

Percent Yield of Petroleum Products by PAD and Refining Districts, 2012 Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Liquefied Refinery Gases ......................................... 3.9 1.0 3.6 4.5 1.2 2.1 3.5 Finished Motor Gasoline 1 ......................................... 46.8 36.2 46.0 50.6 50.9 48.3 50.1 Finished Aviation Gasoline 2 ..................................... - - - - 0.5 - 0.1 Kerosene-Type Jet Fuel ........................................... 5.3 - 4.8 7.8 5.7 4.6 6.8 Kerosene .................................................................. 0.1 0.1 0.1 0.1 - 0.0 0.1 Distillate Fuel Oil .......................................................

351

Enhanced boiling heat transfer by submerged, vibration induced jets .  

E-Print Network (OSTI)

??In this analysis, the efficacy of cavitation jets for heat transfer enhancement was demonstrated. The cavitation jet was formed from a cluster of cavitation bubbles… (more)

Tillery, Steven W.

2005-01-01T23:59:59.000Z

352

Aerosol Jet® Material Deposition for High Resolution Printed ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Aerosol Jet printing, is finding wide use in a number of ... The Aerosol Jet systems deposit a wide variety of functional materials onto a wide ...

353

Refinery Stocks of Crude Oil and Petroleum Products  

Gasoline and Diesel Fuel Update (EIA)

Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Motor Gasoline Blending Components MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - RBOB for Blending with Alcohol* MGBC - RBOB for Blending with Ether* MGBC - Conventional MGBC - Conventional CBOB MGBC - Conventional GTAB MGBC - Conventional Other Aviation Gasoline Blending Components Finished Motor Gasoline Reformulated Reformulated Blended with Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended with Fuel Ethanol Conventional Gasoline Blended with Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Distillate Fuel Oil, Greater than 500 ppm Residual Fuel Oil Less than 0.31 Percent Sulfur 0.31 to 1.00 Percent Sulfur Greater than 1.00 Percent Sulfur Petrochemical Feedstocks Naphtha for Petrochemical Feedstock Use Other Oils for Petrochemical Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Marketable Coke Asphalt and Road Oil Miscellaneous Products Period-Units: Monthly-Thousand Barrels Annual-Thousand Barrels

354

Electro jet drilling using hybrid NNGA approach  

Science Conference Proceedings (OSTI)

This paper presents a hybrid neural network and genetic algorithm (NNGA) approach for the multi-response optimization of the electro jet drilling (EJD) process. The approach first uses a neural network model to predict the response parameters of the ... Keywords: Electro jet drilling, Electrochemical machining, Genetic algorithm, Multi-response, Neural network, Optimization

Mohan Sen; H. S. Shan

2007-02-01T23:59:59.000Z

355

Formation of Jets by Baroclinic Turbulence  

Science Conference Proceedings (OSTI)

Turbulent fluids are frequently observed to spontaneously self-organize into large spatial-scale jets; geophysical examples of this phenomenon include the Jovian banded winds and the earth’s polar-front jet. These relatively steady large-scale ...

Brian F. Farrell; Petros J. Ioannou

2008-11-01T23:59:59.000Z

356

Dynamics of the West African Westerly Jet  

Science Conference Proceedings (OSTI)

The West African westerly jet (WAWJ) is a low-level westerly jet located at 8°–11°N over the eastern Atlantic and the West African coast. It is clearly distinguished from the monsoon westerly flow by its structure and dynamics, and plays an ...

Bing Pu; Kerry H. Cook

2010-12-01T23:59:59.000Z

357

Inertial Resonance Induced by an Oceanic Jet  

Science Conference Proceedings (OSTI)

The dynamics of the mixed layer in the presence of an embedded geostrophic jet has been investigated using a simple 1½-layer model and a two-dimensional primitive equation model. The jet vorticity induces a spatial variability of the wind-driven ...

P. Klein; A. M. Treguier

1993-09-01T23:59:59.000Z

358

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Infrastructure Grants to someone by E-mail Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on AddThis.com...

359

Ditau jets in Higgs searches  

SciTech Connect

Understanding and identifying ditau jets--jets consisting of pairs of tau particles--can be of crucial importance and may even turn out to be a necessity if the Higgs boson decays dominantly to new light scalars which, on the other hand, decay to tau pairs. As often seen in various models beyond the standard model such as in the next-to-minimal supersymmetric standard model, Higgs portals, etc., the lightness of these new states ensures their large transverse momenta and, as a consequence, the collinearity of their decay products. We show that the nonstandard signatures of these objects, which can easily be missed by standard analysis techniques, can be superbly exploited in an analysis based on subjet observables. When combined with additional selection strategies, this analysis can even facilitate an early discovery of the Higgs boson. To be specific, a light Higgs can be found with S/{radical}(B) > or approx. 5 from L{approx_equal}12 fb{sup -1} of data. We combine all these observables into a single discriminating likelihood that can be employed toward the construction of a realistic and standalone ditau tagger.

Englert, Christoph; Roy, Tuhin S.; Spannowsky, Michael [Institute for Theoretical Physics, Heidelberg University, 69120 Heidelberg (Germany); Department of Physics, University of Washington, Seattle, Washington 98195 (United States); Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97403 (United States)

2011-10-01T23:59:59.000Z

360

Hydrogen Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

explored as a fuel for passenger vehicles. It can be used in fuel cells to power electric motors or burned in internal combustion engines (ICEs). It is an environmentally...

Note: This page contains sample records for the topic "kerosene-type jet fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Hypervelocity jets from conical hollow-charges  

Science Conference Proceedings (OSTI)

In this article the formation of jets by means of the implosion of conical targets is analyzed. This implosion might be induced by high intensity lasers or X rays. It is known of experiments with explosive and numeric simulations that the formation of jets depends critically on the aperture of the cone. It is found in these simulations that for a given collapsing speed an angle of the cone exists below which jet doesn't take place. This critical angle grows with the collapsing speed. The numerical simulations seem to indicate that the production of jets is related to the separation of the shock wave that takes place in the collapsing region. We will also analyze the mass and kinetic energy of the jets taken place as a function of the initial opening of the cone.

Velarde, P. M.; Martinez-Val, J. M.; Eliezer, S.; Piera, M.; Guillen, J.; Cobo, M. D.; Ogando, F.; Crisol, A.; Gonzalez, L.; Prieto, J.; Velarde, G. [Instituto de Fusion Nuclear Universidad Politecnico de Madrid Jose Gutierrez Abascal 2, 28006 Madrid (Spain)

1997-04-15T23:59:59.000Z

362

A dichotomy in radio jet orientations  

E-Print Network (OSTI)

We examine the relative orientations of radio jets, central dust and stars in low-power (i.e., FR I and FR I/II) radio galaxies. We use the position angles of jet and dust to constrain the three-dimensional angle $\\theta_{\\rm DJ}$ between jet and dust. For galaxies with filamentary dust 'lanes' (which tend to be misaligned with the galaxy major axis) the jet is approximately perpendicular to the dust structure, while for galaxies with elliptical dust distributions (typically aligned with the galaxy major axis) there is a much wider distribution of $\\theta_{\\rm DJ}$. nThe dust ellipses are consistent with being nearly circular thin disks viewed at random viewing angles. The lanes are likely warped, unsettled dust structures. We consider two scenarios to explain the dust/jet orientation dichotomy.

Gijs Verdoes Kleijn; Tim de Zeeuw

2005-11-30T23:59:59.000Z

363

Comparison of heat transfer characteristics of axisymmetric and two dimensional reattachment jet nozzles to conventional jet impingement nozzles.  

E-Print Network (OSTI)

??The Radial Jet Reattachment (RJR) nozzle was developed over the past decade as a modification of the In-Line Jet (ILJ) nozzle in order to enhance… (more)

Narayanan, Vinod

2012-01-01T23:59:59.000Z

364

Weekly Petroleum Status Report  

U.S. Energy Information Administration (EIA) Indexed Site

5 5 Table 12. Spot Prices of Ultra-Low Sulfur Diesel Fuel, Kerosene-Type Jet Fuel, and Propane, 2012 to Present (Dollars per Gallon) Year / Product Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 No. 2 Distillate Ultra-Low Sulfur Diesel Fuel New York Harbor ................ 3.080 3.223 3.302 3.242 2.987 2.710 2.921 3.179 3.229 3.236 3.180 3.070 U.S. Gulf Coast ................... 3.034 3.178 3.270 3.217 2.947 2.667 2.879 3.143 3.186 3.157 2.997 2.960 Los Angeles ........................ 3.088 3.242 3.384 3.252 3.007 2.654 2.854 3.225 3.299 3.226 3.071 2.971 Kerosene-Type Jet Fuel U.S. Gulf Coast ..................... 3.087 3.207 3.256 3.226 2.974 2.678 2.892 3.156 3.191 3.111 2.960 2.940 Propane Mont Belvieu ......................... 1.294 1.220 1.261 1.196 0.954 0.788 0.874 0.901 0.910 0.962 0.890 0.797 2013 No. 2 Distillate

365

A DNS study on the stabilization mechanism of a turbulent lifted ethylene jet flame in highly-heated coflow  

SciTech Connect

Direct numerical simulation (DNS) of the near-field of a three-dimensional spatially-developing turbulent ethylene jet flame in highly-heated coflow is performed with a reduced mechanism to determine the stabilization mechanism. The DNS was performed at a jet Reynolds number of 10,000 with over 1.29 billion grid points. The results show that auto-ignition in a fuel-lean mixture at the flame base is the main source of stabilization of the lifted jet flame. The Damkoehler number and chemical explosive mode (CEM) analysis also verify that auto-ignition occurs at the flame base. In addition to auto-ignition, Lagrangian tracking of the flame base reveals the passage of large-scale flow structures and their correlation with the fluctuations of the flame base similar to a previous study (Yoo et al., J. Fluid Mech. 640 (2009) 453-481) with hydrogen/air jet flames. It is also observed that the present lifted flame base exhibits a cyclic 'saw-tooth' shaped movement marked by rapid movement upstream and slower movement downstream. This is a consequence of the lifted flame being stabilized by a balance between consecutive auto-ignition events in hot fuel-lean mixtures and convection induced by the high-speed jet and coflow velocities. This is confirmed by Lagrangian tracking of key variables including the flame-normal velocity, displacement speed, scalar dissipation rate, and mixture fraction at the stabilization point.

Yoo, Chun S [Sandia National Laboratories (SNL)

2011-01-01T23:59:59.000Z

366

Alternative Fuels Data Center: Alternative Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fueling Alternative Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

367

Fuel Cell Technologies Office: Fuel Cell Animation  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Animation to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Animation on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Animation on...

368

Alternative Fuels Data Center: Emerging Fuels  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emerging Fuels Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Emerging Fuels to someone by E-mail Share Alternative Fuels Data Center: Emerging Fuels on Facebook Tweet about Alternative Fuels Data Center: Emerging Fuels on Twitter Bookmark Alternative Fuels Data Center: Emerging Fuels on Google Bookmark Alternative Fuels Data Center: Emerging Fuels on Delicious Rank Alternative Fuels Data Center: Emerging Fuels on Digg Find More places to share Alternative Fuels Data Center: Emerging Fuels on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol P-Series Renewable Natural Gas xTL Fuels Emerging Alternative Fuels Several emerging alternative fuels are under development or already developed and may be available in the United States. These fuels may

369

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Converting chemical energy of hydrogenated fuels into electricity Project Description Invented in 1839, fuels cells powered the Gemini and Apollo space missions, as well as the space shuttle. Although fuel cells have been successfully used in such applications, they have proven difficult to make more cost-effective and durable for commercial applications, particularly for the rigors of daily transportation. Since the 1970s, scientists at Los Alamos have managed to make various scientific breakthroughs that have contributed to the development of modern fuel cell systems. Specific efforts include the following: * Finding alternative and more cost-effective catalysts than platinum. * Enhancing the durability of fuel cells by developing advanced materials and

370

Composite Octet Searches with Jet Substructure  

Science Conference Proceedings (OSTI)

Many new physics models with strongly interacting sectors predict a mass hierarchy between the lightest vector meson and the lightest pseudoscalar mesons. We examine the power of jet substructure tools to extend the 7 TeV LHC sensitivity to these new states for the case of QCD octet mesons, considering both two gluon and two b-jet decay modes for the pseudoscalar mesons. We develop both a simple dijet search using only the jet mass and a more sophisticated jet substructure analysis, both of which can discover the composite octets in a dijet-like signature. The reach depends on the mass hierarchy between the vector and pseudoscalar mesons. We find that for the pseudoscalar-to-vector meson mass ratio below approximately 0.2 the simple jet mass analysis provides the best discovery limit; for a ratio between 0.2 and the QCD-like value of 0.3, the sophisticated jet substructure analysis has the best discovery potential; for a ratio above approximately 0.3, the standard four-jet analysis is more suitable.

Bai, Yang; /SLAC; Shelton, Jessie; /Yale U.

2012-02-14T23:59:59.000Z

371

Stability Regimes of Turbulent Nitrogen-Diluted Hydrogen Jet Flames  

SciTech Connect

One option for combustion in zero-emission Integrated Gasification Combined Cycle (IGCC) power plants is non-premixed combustion of nitrogen-diluted hydrogen in air. An important aspect to non-premixed combustion is flame stability or anchoring, though only a few fundamental stability studies of these flames have taken place to date. The following paper presents the results of experiments investigating the effects of nitrogen diluent fraction, jet diameter, and exit velocity on the static stability limits of a turbulent hydrogen jet flame issuing from a thin-lipped tube into a quiescent atmosphere. Four different stability limits are observed: detachment from the burner lip, reattachment to the burner lip, transition from a laminar lifted flame base to blowout or to a turbulent lifted flame, and transition from a turbulent lifted flame to blowout. The applicability of existing theories and correlations to the stability results is discussed. These results are an important step in assessing the viability of a non-premixed combustion approach using hydrogen diluted with nitrogen as a fuel.

Weiland, N.T.; Strakey, P.A.

2007-03-01T23:59:59.000Z

372

Numerical Simulations of Boiling Jet Impingement Cooling in Power Electronics  

DOE Green Energy (OSTI)

This paper explores turbulent boiling jet impingement for cooling power electronic components in hybrid electric vehicles.

Narumanchi, S.; Troshko, A.; Hassani, V.; Bharathan, D.

2006-12-01T23:59:59.000Z

373

THE RHIC HYDROGEN JET LUMINESCENCE MONITOR.  

DOE Green Energy (OSTI)

A hydrogen jet polarimeter was developed for the RHIC accelerator to improve the process of measuring polarization. Particle beams intersecting with gas molecules can produce light by the process known as luminescence. This light can then be focused, collected, and processed giving important information such as size, position, emittance, motion, and other parameters. The RHIC hydrogen jet polarimeter was modified in 2005 with specialized optics, vacuum windows, light transport, and a new camera system making it possible to monitor the luminescence produced by polarized protons intersecting the hydrogen beam. This paper describes the configuration and preliminary measurements taken using the RHIC hydrogen jet polarimeter as a luminescence monitor.

RUSSO,T.; BELLAVIA, S.; GASSNER, D.; THIEBERGER, P.; TRBOJEVIC, D.; TSANG, T.

2007-06-25T23:59:59.000Z

374

Jet spoiler arrangement for wind turbine  

DOE Patents (OSTI)

An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the ends thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby inducing stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

Cyrus, Jack D. (Corrales, NM); Kadlec, Emil G. (Albuquerque, NM); Klimas, Paul C. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

375

Jet spoiler arrangement for wind turbine  

DOE Patents (OSTI)

An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the end thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby including stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

Cyrus, J.D.; Kadlec, E.G.; Klimas, P.C.

1983-09-15T23:59:59.000Z

376

Study of falling-jet flash evaporators  

DOE Green Energy (OSTI)

Experimental results of flash evaporation from sheets of water, 3.2 mm and 6.3 mm thick and 27.9 cm wide, falling freely in the presence of their own vapor, are reported. With no flashing the jets fall in coherent sheets, but with flashing the jets were observed to spread and break up into droplets. Flashing was characterized by an effectiveness parameter, which was found to increase with increasing water temperature and jet length. Variations in water flow rate and heat flux did not influence the effectiveness appreciably.

Kreith, F.; Olson, D.A.; Bharathan, D.; Green, H.J.

1982-11-01T23:59:59.000Z

377

Method of production H/sub 2/ using a rotating drum reactor with a pulse jet heat source  

DOE Patents (OSTI)

A method of producing hydrogen by an endothermic steam-carbon reaction using a rotating drum reactor and a pulse jet combustor. The pulse jet combustor uses coal dust as a fuel to provide reaction temperatures of 1300/degree/ to 1400/degree/F. Low-rank coal, water, limestone and catalyst are fed into the drum reactor where they are heated, tumbled and reacted. Part of the reaction product from the rotating drum reactor is hydrogen which can be utilized in suitable devices. 1 fig.

Paulson, L.E.

1988-05-13T23:59:59.000Z

378

Production of coal-based fuels and value-added products: coal to liquids using petroleum refinery streams  

SciTech Connect

We are studying several processes that utilize coal, coal-derived materials, or biomass in existing refining facilities. A major emphasis is the production of a coal-based replacement for JP-8 jet fuel. This fuel is very similar to Jet A and jet A-1 in commercial variation, so this work has significant carry-over into the private sector. We have been focusing on three processes that would be retrofitted into a refinery: (1) coal tar/refinery stream blending and hydro-treatment; (2) coal extraction using refinery streams followed by hydro-treatment; and (3) co-coking of coal blended with refinery streams. 4 figs., 5 tabs.

Clifford, C.E.B.; Schobert, H.H. [Pennsylvania State University, PA (United States)

2008-07-01T23:59:59.000Z

379

Jet production in muon scattering at Fermilab E665  

SciTech Connect

Measurements of multi-jet production rates from Muon-Nucleon and Muon-Nuclei scattering at Fermilab-E665 are presented. Jet rates are defined by the JADE clustering algorithm. Rates in Muon-Nucleon deep-inelastic scattering are compared to Monte Carlo model predictions. Preliminary results from jet production on heavy targets, in the shadowing region, show a higher suppression of two-forward jets as compared to one-forward jet production.

Salgado, C.W.; E665 Collaboration

1993-11-01T23:59:59.000Z

380

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science » Materials Science » Fuel Cells Fuel Cells Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Melissa Fox Applied Energy Email Catherine Padro Sensors & Electrochemical Devices Email Fernando Garzon Sensors & Electrochemical Devices Email Piotr Zelenay Sensors & Electrochemical Devices Email Rod Borup Sensors & Electrochemical Devices Email Karen E. Kippen Experimental Physical Sciences Email Like a battery, a fuel cell consists of two electrodes separated by an electrolyte-in polymer electrolyte fuel cells, the separator is made of a thin polymeric membrane. Unlike a battery, a fuel cell does not need recharging-it continues to produce electricity as long as fuel flows

Note: This page contains sample records for the topic "kerosene-type jet fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Stochastic Dynamics of the Midlatitude Atmospheric Jet  

Science Conference Proceedings (OSTI)

The innate tendency of the background straining field of the midlatitude atmospheric jet to preferentially amplify a subset of disturbances produces a characteristic response to stochastic perturbation whether the perturbations are internally ...

Brian F. Farrell; Peteros J. Ioannou

1995-05-01T23:59:59.000Z

382

Jets (relativistic and non) in astrophysics  

E-Print Network (OSTI)

Let's take stock of the situation on one of the most studied astrophysical phenomena during the latest years: the jets escaping from protostars, stellar singularities, GRB and active galactic nuclei.

Foschini, Luigi

2010-01-01T23:59:59.000Z

383

String model for spinning quark jets  

Science Conference Proceedings (OSTI)

A string model of quark hadronization, taking the quark spin degree of freedom into account, is proposed. The method for using the model in a Monte-Carlo code for jet generation is given.

Artru, X.; Belghobsi, Z. [Universite de Lyon, CNRS/IN2P3 and Universite Lyon 1, Institut de Physique Nucleaire de Lyon, Laboratoire de Physique Theorique, Universite de Jijel (Algeria)

2012-06-27T23:59:59.000Z

384

Mixing Processes within the Polar Night Jet  

Science Conference Proceedings (OSTI)

Lagrangian material line simulations are performed using U.K. Meteorological Office assimilated winds and temperatures to examine mixing processes in the middle- and lower-stratospheric polar night jet during the 1992 Southern Hemisphere spring ...

R. Bradley Pierce; T. Duncan Fairlie; William L. Grose; Richard Swinbank; Alan O'Neill

1994-10-01T23:59:59.000Z

385

Internal shocks model for microquasar jets  

E-Print Network (OSTI)

We present an internal shocks model to investigate particle acceleration and radiation production in microquasar jets. The jet is modelled with discrete ejecta at various time intervals. These ejecta (or 'shells') may have different properties including the bulk velocity. Faster shells can catch up and collide with the slower ones, thus giving rise to shocks. The particles are accelerated inside the shocked plasma. Each collision results in a new shell, which may take part in any subsequent collisions as well as radiate due to synchrotron radiation. Almost continuous energy dissipation along the jet can be obtained with a large number of shell collisions. We investigate the spectral energy distribution of such jets as well as the physical significance of various parameters (e.g. the time interval between ejections and the shell size).

Omar Jamil; Rob Fender; Christian Kaiser

2008-11-20T23:59:59.000Z

386

Current-driven instability of magnetic jets  

E-Print Network (OSTI)

MHD instabilities can be responsible for the complex morphology of astrophysical jets. We consider the stability properties of jets containing both the azimuthal and axial field of subthermal strength. The presence of the magnetic field with complex topology in jets is suggested by theoretical models and it is consistent with recent observations. Stability is discussed by means of a linear analysis of the ideal MHD equations.We argue that, in the presence of azimuthal and axial magnetic fields, the jet is always unstable to non-axisymmetric perturbations. Stabilization does not occur even if the strengths of these field components are comparable. If the axial field is weaker than the azimuthal one, instability occurs for perturbations with any azimuthal wave number $m$, and the growth rate reach a saturation value for small values of $m$. If the axial field is stronger than the toroidal one, the instability shows off for perturbations with relatively large $m$.

Bonanno, Alfio

2010-01-01T23:59:59.000Z

387

The Initial Composition of Jet Condensation Trails  

Science Conference Proceedings (OSTI)

Physicochemical processes that generate and transform aerosols in jet aircraft plumes are discussed on the basis of theoretical models and recent observations of young contrails in the upper troposphere. The initial evolution of optical depth and ...

B. Kärcher; Th Peter; U. M. Biermann; U. Schumann

1996-11-01T23:59:59.000Z

388

Persistent Multiple Jets and PV Staircase  

Science Conference Proceedings (OSTI)

The persistence of multiple jets is investigated with a quasigeostrophic, two-layer, ?-plane channel model. Linearly unstable normal modes are found to be capable of qualitatively describing the eddy fluxes of the nonlinear model. For a ...

Changhyun Yoo; Sukyoung Lee

2010-07-01T23:59:59.000Z

389

Developments of the ATLAS Jet Trigger  

E-Print Network (OSTI)

There have been a lot of recent changes in the ATLAS jet trigger. The standard strategy, based on Regions Of Interest, is not well-suited for multi-jet events since it leads to pathologies and efficiency losses. This philosophy has been changed for the jet trigger, and we now have the possibility of unpacking the full calorimeter at Event Filter and (even for a small subset of the events) at an intermediate level between Level-1 and Level-2. We also moved to the use of calibrated scale at trigger level, and to the application of noise cuts to reduce rate spikes. We will present the performance of the jet trigger in 2011, when most of these changes were operational

Lopes, L; The ATLAS collaboration

2012-01-01T23:59:59.000Z

390

Performance of the ATLAS Jet Trigger  

E-Print Network (OSTI)

There have been a lot of recent changes in the ATLAS jet trigger. The standard strategy, based on Regions Of Interest, is not well-suited for multi-jet events since it leads to pathologies and efficiency losses. This philosophy has been changed for the jet trigger, and we now have the possibility of unpacking the full calorimeter at Event Filter and (even for a small subset of the events) at an intermediate level between Level-1 and Level-2. We also moved to the use of calibrated scale at trigger level, and to the application of noise cuts to reduce rate spikes. We will present the performance of the jet trigger in 2011, when most of these changes were operational

Lopes, L; The ATLAS collaboration

2012-01-01T23:59:59.000Z

391

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells The Solid State Energy Conversion Alliance (SECA) program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust solid oxide fuel cell (SOFC) system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of $175 per kW, and demonstrating lifetime performance degradation of less than 0.2 percent per

392

Alternative Fuels Data Center: Fuel Prices  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicles Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Prices to someone by E-mail Share Alternative Fuels Data Center: Fuel Prices on Facebook Tweet about Alternative Fuels Data Center: Fuel Prices on Twitter Bookmark Alternative Fuels Data Center: Fuel Prices on Google Bookmark Alternative Fuels Data Center: Fuel Prices on Delicious Rank Alternative Fuels Data Center: Fuel Prices on Digg Find More places to share Alternative Fuels Data Center: Fuel Prices on AddThis.com... Fuel Prices As gasoline prices increase, alternative fuels appeal more to vehicle fleet managers and consumers. Like gasoline, alternative fuel prices can fluctuate based on location, time of year, and political climate. Alternative Fuel Price Report

393

Alternative Fuels Data Center: Alternative Fuel License  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel License to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel License on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel License on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel License on Google Bookmark Alternative Fuels Data Center: Alternative Fuel License on Delicious Rank Alternative Fuels Data Center: Alternative Fuel License on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel License Any person acting as an alternative fuels dealer must hold a valid alternative fuel license and certificate from the Wisconsin Department of Administration. Except for alternative fuels that a dealer delivers into a

394

Alternative Fuels Data Center: Alternative Fuel License  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel License to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel License on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel License on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel License on Google Bookmark Alternative Fuels Data Center: Alternative Fuel License on Delicious Rank Alternative Fuels Data Center: Alternative Fuel License on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel License Alternative fuel providers, bulk users, and retailers, or any person who fuels an alternative fuel vehicle from a private source that does not pay

395

Petroleum Marketing Monthly, May 1984. [Contains glossary  

SciTech Connect

The preliminary statistics for May 1984, summarized in the table below, show that total refiner/gas plant operator sales of selected petroleum products (measured in gallons per day) increased by 2.3% compared with final April sales. Increases in sales were reported for the three grades of motor gasoline, both aviation fuels, No. 2 diesel fuel, and both grades of residual fuel. As expected, sales of four seasonal fuels (No. 2 fuel oil, kerosene, No. 1 distillate, and propane) declined in May, as did sales of No. 4 fuel oil. Refiner/gas plant operator price changes were mixed in May. Motor gasoline retail prices rose, as did those for kerosene-type jet fuel, No. 1 distillate, No. 2 diesel fuel, No. 4 fuel oil, and high-sulfur residual fuel. Refiner/gas plant operator wholesale prices decreased for motor gasoline, No. 4 fuel oil, low-sulfur residual fuel, and propane. Wholesale prices for the other products increased. The May sales activity for each of the principal product groups is tabulated.

1984-08-01T23:59:59.000Z

396

Novel Fuel  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2009. Symposium, Energy Materials. Presentation Title, Novel Fuel. Author(s), Naum Gosin, Igor ...

397

Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE))

Fuel cells are an emerging technology that can provide heat and electricity for buildings and electrical power for vehicles and electronic devices.

398

New results on jet fragmentation at CDF  

SciTech Connect

Presented are the latest results of jet fragmentation studies at the Tevatron using the CDF Run II detector. Studies include the distribution of transverse momenta (Kt) of particles jets, two-particle momentum correlations, and indirectly global event shapes in p{bar p} collisions. Results are discussed within the context of recent Next-to-Leading Log calculations as well as earlier experimental results from the Tevatron and e{sup +}e{sup -} colliders.

Jindariani, Sergo; /Florida U.

2006-12-01T23:59:59.000Z

399

Dark Matter Jets at the LHC  

SciTech Connect

We argue that dark matter particles which have strong interactions with the Standard Model particles are not excluded by current astrophysical constraints. These dark matter particles have unique signatures at colliders; instead of missing energy, the dark matter particles produce jets. We propose a new search strategy for such strongly interacting particles by looking for a signal of two trackless jets. We show that suitable cuts can plausibly allow us to find these signals at the LHC even in early data.

Bai, Yang; /SLAC; Rajaraman, Arvind; /UC, Irvine

2012-03-28T23:59:59.000Z

400

Supersonic Jet Excitation using Flapping Injection  

E-Print Network (OSTI)

Supersonic jet noise reduction is important for high speed military aircraft. Lower acoustic levels would reduce structural fatigue leading to longer lifetime of the jet aircraft. It is not solely structural aspects which are of importance, health issues of the pilot and the airfield per- sonnel are also very important, as high acoustic levels may result in severe hearing damage. It remains a major challenge to reduce the overall noise levels of the aircraft, where the supersonic exhaust is the main noise source for near ground operation. Fluidic injection into the supersonic jet at the nozzle exhaust has been shown as a promising method for noise reduction. It has been shown to speed up the mix- ing process of the main jet, hence reducing the kinetic energy level of the jet and the power of the total acoustic radiation. Furthermore, the interaction mechanism between the fluidic injection and the shock structure in the jet exhaust plays a crucial role in the total noise radia- tion. In this study, LES is used...

Hafsteinsson, Haukur; Andersson, Niklas; Cuppoletti, Daniel; Gutmark, Ephraim; Prisell, Erik

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "kerosene-type jet fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Alternative Fuels Data Center: Electricity Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Fuel Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on AddThis.com... More in this section... Electricity Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Electricity Fuel Basics Photo of a plug-in hybrid vehicle fueling. Electricity is considered an alternative fuel under the Energy Policy Act

402

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition The following fuels are defined as alternative fuels by the Energy Policy Act (EPAct) of 1992: pure methanol, ethanol, and other alcohols; blends of

403

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax A state excise tax is imposed on the use of alternative fuels. Alternative fuels include liquefied petroleum gas (LPG or propane), compressed natural gas (CNG), and liquefied natural gas (LNG). The current tax rates are as

404

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard RFS Volumes by Year Enlarge illustration The Renewable Fuel Standard (RFS) is a federal program that requires transportation fuel sold in the U.S. to contain a minimum volume of

405

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuels Tax Alternative Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Excise taxes on alternative fuels are imposed on a gasoline gallon equivalent basis. The tax rate for each alternative fuel type is based on the number of motor vehicles licensed in the state that use the specific

406

Alternative Fuels Data Center: Alternative Fuel Loans  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Loans Fuel Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Loans on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Loans The Oregon Department of Energy administers the State Energy Loan Program (SELP) which offers low-interest loans for qualified projects. Eligible alternative fuel projects include fuel production facilities, dedicated

407

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Alternative fuels are subject to an excise tax at a rate of $0.205 per gasoline gallon equivalent, with a variable component equal to at least 5% of the average wholesale price of the fuel. (Reference Senate Bill 454,

408

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax The excise tax imposed on an alternative fuel distributed in New Mexico is $0.12 per gallon. Alternative fuels subject to the excise tax include liquefied petroleum gas (or propane), compressed natural gas, and liquefied

409

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Tax Alternative Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The Minnesota Department of Revenue imposes an excise tax on the first licensed distributor that receives E85 fuel products in the state and on distributors, special fuel dealers, or bulk purchasers of other alternative

410

Global NOx Measurements in Turbulent Nitrogen-Diluted Hydrogen Jet Flames  

DOE Green Energy (OSTI)

Turbulent hydrogen diffusion flames diluted with nitrogen are currently being studied to assess their ability to achieve the DOE Turbine Program’s aggressive emissions goal of 2 ppm NOx in a hydrogen-fueled IGCC gas turbine combustor. Since the unstrained adiabatic flame temperatures of these diluted flames are not low enough to eliminate thermal NOx formation the focus of the current work is to study how the effects of flame residence time and global flame strain can be used to help achieve the stated NOx emissions goal. Dry NOx measurements are presented as a function of jet diameter nitrogen dilution and jet velocity for a turbulent hydrogen/nitrogen jet issuing from a thin-lipped tube in an atmospheric pressure combustor. The NOx emission indices from these experiments are normalized by the flame residence time to ascertain the effects of global flame strain and fuel Lewis Number on the NOx emissions. In addition dilute hydrogen diffusion flame experiments were performed in a high-pressure combustor at 2 4 and 8 atm. The NOx emission data from these experiments are discussed as well as the results from a Computational Fluid Dynamics modeling effort currently underway to help explain the experimental data.

Weiland, N.T.; Strakey, P.A.

2007-03-01T23:59:59.000Z

411

Certification of alternative aviation fuels and blend components  

SciTech Connect

Aviation turbine engine fuel specifications are governed by ASTM International, formerly known as the American Society for Testing and Materials (ASTM) International, and the British Ministry of Defence (MOD). ASTM D1655 Standard Specification for Aviation Turbine Fuels and MOD Defence Standard 91-91 are the guiding specifications for this fuel throughout most of the world. Both of these documents rely heavily on the vast amount of experience in production and use of turbine engine fuels from conventional sources, such as crude oil, natural gas condensates, heavy oil, shale oil, and oil sands. Turbine engine fuel derived from these resources and meeting the above specifications has properties that are generally considered acceptable for fuels to be used in turbine engines. Alternative and synthetic fuel components are approved for use to blend with conventional turbine engine fuels after considerable testing. ASTM has established a specification for fuels containing synthesized hydrocarbons under D7566, and the MOD has included additional requirements for fuels containing synthetic components under Annex D of DS91-91. New turbine engine fuel additives and blend components need to be evaluated using ASTM D4054, Standard Practice for Qualification and Approval of New Aviation Turbine Fuels and Fuel Additives. This paper discusses these specifications and testing requirements in light of recent literature claiming that some biomass-derived blend components, which have been used to blend in conventional aviation fuel, meet the requirements for aviation turbine fuels as specified by ASTM and the MOD. The 'Table 1' requirements listed in both D1655 and DS91-91 are predicated on the assumption that the feedstocks used to make fuels meeting these requirements are from approved sources. Recent papers have implied that commercial jet fuel can be blended with renewable components that are not hydrocarbons (such as fatty acid methyl esters). These are not allowed blend components for turbine engine fuels as discussed in this paper.

Wilson III, George R. (Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238 (United States)); Edwards, Tim; Corporan, Edwin (United States Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States)); Freerks, Robert L. (Rentech, Incorporated, 1331 17th Street, Denver, Colorado 80202 (United States))

2013-01-15T23:59:59.000Z

412

Jet energy scale determination in the D0 experiment  

E-Print Network (OSTI)

The calibration of jet energy measured in the \\DZero detector is presented, based on ppbar collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. Jet energies are measured using a sampling calorimeter composed of uranium and liquid argon as the passive and active media, respectively. This paper describes the energy calibration of jets performed with photon+jet, Z+jet and dijet{} events, with jet transverse momentum pT > 6 GeV and pseudorapidity range |eta| energy in simulation and in particular of the effects due to the flavor of the parton originating the jet, correcting biases up to 3%-4% in jets with low pT originating from gluons and up to 6%-8% in jets from b quarks.

D0 Collaboration

2013-12-24T23:59:59.000Z

413

AIAA Paper 2006-0102 Analysis of Jet Effects on Co-Flow Jet Airfoil  

E-Print Network (OSTI)

.-C. Zha, C. Paxton, A. Conley, A. Wells, and B. Carroll, "Effect of Injection Slot Size on High in this paper to analyze the jet effect on co-flow jet airfoil with injection and suction and the airfoil with injection only. The ducts reaction forces formulations to be included for lift and drag calculation

Zha, Gecheng

414

Crude Oil and Petroleum Products Total Stocks Stocks by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated, RBOB MGBC - Reformulated, RBOB w/ Alcohol MGBC - Reformulated, RBOB w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Conventional Other Aviation Gasoline Blending Comp. Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated Gasoline, Other Conventional Gasoline Conventional Gasoline Blended Fuel Ethanol Conventional Gasoline Blended Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater 500 ppm Sulfur Residual Fuel Oil Residual F.O., than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petro. Feedstock Use Other Oils for Petro. Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

415

East Coast (PADD 1) Total Crude Oil and Petroleum Products Net Receipts by  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Gasoline Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products

416

U.S. Crude Oil and Petroleum Products Stocks by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Ethylene Propane/Propylene Propylene (Nonfuel Use) Normal Butane/Butylene Refinery Grade Butane Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated, RBOB MGBC - Reformulated, RBOB w/ Alcohol MGBC - Reformulated, RBOB w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Conventional Other Aviation Gasoline Blending Comp. Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated Gasoline, Other Conventional Gasoline Conventional Gasoline Blended Fuel Ethanol Conventional Gasoline Blended Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater 500 ppm Sulfur Residual Fuel Oil Residual F.O., than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petro. Feedstock Use Other Oils for Petro. Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products

417

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Tax Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax Special fuels, including biodiesel, biodiesel blends, biomass-based diesel, biomass-based diesel blends, and liquefied natural gas, have a reduced tax rate of $0.27 per gallon. Liquefied petroleum gas (LPG or propane) and

418

Alternative Fuels Data Center: Special Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Special Fuel Tax to Special Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Special Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Special Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Special Fuel Tax on Google Bookmark Alternative Fuels Data Center: Special Fuel Tax on Delicious Rank Alternative Fuels Data Center: Special Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Special Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Special Fuel Tax Effective January 1, 2014, certain special fuels sold or used to propel motor vehicles are subject to a license tax. Liquefied natural gas is subject to a tax of $0.16 per diesel gallon equivalent. Compressed natural

419

Alternative Fuels Data Center: Renewable Fuels Assessment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Assessment to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Assessment on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Assessment on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Assessment on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Assessment on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Assessment on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Assessment on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Assessment The U.S. Department of Defense (DOD) prepared a report, Opportunities for DOD Use of Alternative and Renewable Fuels, on the use and potential use of

420

Alternative Fuels Data Center: Biodiesel Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Basics Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Basics on AddThis.com... More in this section... Biodiesel Basics Blends Production & Distribution Specifications Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Biodiesel Fuel Basics Related Information National Biofuels Action Plan Biodiesel is a domestically produced, renewable fuel that can be

Note: This page contains sample records for the topic "kerosene-type jet fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard At least 2% of all diesel fuel sold in Washington must be biodiesel or renewable diesel. This requirement will increase to 5% 180 days after the

422

Alternative Fuels Data Center: Biodiesel Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Fuel Use to Biodiesel Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Fuel Use The Iowa Department of Transportation (IDOT) may purchase biodiesel for use in IDOT vehicles through the biodiesel fuel revolving fund created in the state treasury. The fund consists of money received from the sale of Energy

423

Alternative Fuels Data Center: Ethanol Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Basics to Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this section... Ethanol Basics Blends Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Fuel Basics Related Information National Biofuels Action Plan Ethanol is a renewable fuel made from various plant materials collectively

424

Alternative Fuels Data Center: Biodiesel Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Use to Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Fuel Use The South Dakota Department of Transportation and employees using state diesel vehicles must stock and use fuel blends containing a minimum of 2% biodiesel (B2) that meets or exceeds the most current ASTM specification

425

Alternative Fuels Data Center: Hydrogen Fuel Specifications  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Fuel Hydrogen Fuel Specifications to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Specifications on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Specifications on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Specifications on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Specifications on Delicious Rank Alternative Fuels Data Center: Hydrogen Fuel Specifications on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fuel Specifications on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hydrogen Fuel Specifications The California Department of Food and Agriculture, Division of Measurement Standards (DMS) established interim specifications for hydrogen fuels for

426

Alternative Fuels Data Center: Flexible Fuel Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Flexible Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicles on Digg Find More places to share Alternative Fuels Data Center: Flexible Fuel Vehicles on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Flexible Fuel Vehicles Photo of a flexible fuel vehicle.

427

Alternative Fuels Data Center: Alternative Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Use Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Use on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Use on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Use All state employees operating flexible fuel or diesel vehicles as part of the state fleet must use E85 or biodiesel blends whenever reasonably available. Additionally, the Nebraska Transportation Services Bureau and

428

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Alternative fuels used to propel vehicles of any kind on public highways are taxed at a rate determined on a gasoline gallon equivalent basis. The tax rates are posted in the Pennsylvania Bulletin. (Reference Title 75

429

Conversion of Pentose-Derived Furans into Hydrocarbon Fuels  

Science Conference Proceedings (OSTI)

We are interested in the conversion of biomass-derived hemicellulose into hydrocarbon molecules that can be used in the formulation of 'drop-in' fuels such as gasoline (C5-12), diesel (C10-20) and jet fuel (C9-16). Our focus lies on the use of furfuryl alcohol as a starting material since that is already produced commercially from hemicellulose-derived pentoses. The steps required to convert the latter into hydrocarbons are 1) oligomerization of furfuryl alcohol to form dimers (C10) and trimers (C15), and 2) hydrotreatment of the dimers and trimers to produce a mixture of linear hydrocarbons with carbon chain lengths in the range of diesel and jet fuels. However, furfuryl alcohol readily polymerizes to form resins in the presence of an acid catalyst, and the exothermic oligomerization must be carried out under reaction control. This presentation will discuss our progress in the development of this sugar-to-hydrocarbon pathway.

Moens, L.; Johnson, D. K.

2012-01-01T23:59:59.000Z

430

Alternative Fuels Data Center: Alternative Fuel Infrastructure...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Type Alternative Fuel Infrastructure Development Program The Tennessee Department of Environment and Conservation provides funding for alternative fueling infrastructure...

431

Fuel Chemistry Preprints  

Science Conference Proceedings (OSTI)

Papers are presented under the following symposia titles: advances in fuel cell research; biorefineries - renewable fuels and chemicals; chemistry of fuels and emerging fuel technologies; fuel processing for hydrogen production; membranes for energy and fuel applications; new progress in C1 chemistry; research challenges for the hydrogen economy, hydrogen storage; SciMix fuel chemistry; and ultraclean transportation fuels.

NONE

2005-09-30T23:59:59.000Z

432

FUEL ELEMENT  

DOE Patents (OSTI)

A ceramic fuel element for a nuclear reactor that has improved structural stability as well as improved cooling and fission product retention characteristics is presented. The fuel element includes a plurality of stacked hollow ceramic moderator blocks arranged along a tubular raetallic shroud that encloses a series of axially apertured moderator cylinders spaced inwardly of the shroud. A plurality of ceramic nuclear fuel rods are arranged in the annular space between the shroud and cylinders of moderator and appropriate support means and means for directing gas coolant through the annular space are also provided. (AEC)

Bean, R.W.

1963-11-19T23:59:59.000Z

433

ON THE STRUCTURE AND STABILITY OF MAGNETIC TOWER JETS  

SciTech Connect

Modern theoretical models of astrophysical jets combine accretion, rotation, and magnetic fields to launch and collimate supersonic flows from a central source. Near the source, magnetic field strengths must be large enough to collimate the jet requiring that the Poynting flux exceeds the kinetic energy flux. The extent to which the Poynting flux dominates kinetic energy flux at large distances from the engine distinguishes two classes of models. In magneto-centrifugal launch models, magnetic fields dominate only at scales {approx}< 100 engine radii, after which the jets become hydrodynamically dominated (HD). By contrast, in Poynting flux dominated (PFD) magnetic tower models, the field dominates even out to much larger scales. To compare the large distance propagation differences of these two paradigms, we perform three-dimensional ideal magnetohydrodynamic adaptive mesh refinement simulations of both HD and PFD stellar jets formed via the same energy flux. We also compare how thermal energy losses and rotation of the jet base affects the stability in these jets. For the conditions described, we show that PFD and HD exhibit observationally distinguishable features: PFD jets are lighter, slower, and less stable than HD jets. Unlike HD jets, PFD jets develop current-driven instabilities that are exacerbated as cooling and rotation increase, resulting in jets that are clumpier than those in the HD limit. Our PFD jet simulations also resemble the magnetic towers that have been recently created in laboratory astrophysical jet experiments.

Huarte-Espinosa, M.; Frank, A.; Blackman, E. G. [Department of Physics and Astronomy, University of Rochester, 600 Wilson Boulevard, Rochester, NY 14627-0171 (United States); Ciardi, A. [LERMA, Universite Pierre et Marie Curie, Observatoire de Paris, F-92195 Meudon (France); Hartigan, P. [Department of Physics and Astronomy, Rice University, 6100 S. Main, Houston, TX 77521-1892 (United States); Lebedev, S. V.; Chittenden, J. P. [Blackett Laboratory, Imperial College London, SW7 2BW London (United Kingdom)

2012-09-20T23:59:59.000Z

434

Automatic inspection system for nuclear fuel pellets or rods  

DOE Patents (OSTI)

An automatic inspection system is provided for determining surface defects on cylindrical objects such as nuclear fuel pellets or rods. The active element of the system is a compound ring having a plurality of pneumatic jet units directed into a central bore. These jet units are connected to provide multiple circuits, each circuit being provided with a pressure sensor. The outputs of the sensors are fed to a comparator circuit whereby a signal is generated when the difference of pressure between pneumatic circuits, caused by a defect, exceeds a pre-set amount. This signal may be used to divert the piece being inspected into a "reject" storage bin or the like.

Miller, Jr., William H. (Oak Ridge, TN); Sease, John D. (Knoxville, TN); Hamel, William R. (Concord, TN); Bradley, Ronnie A. (Oak Ridge, TN)

1978-01-01T23:59:59.000Z

435

Alternative Fuels Data Center: Fuel Quality Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Quality Standards Fuel Quality Standards to someone by E-mail Share Alternative Fuels Data Center: Fuel Quality Standards on Facebook Tweet about Alternative Fuels Data Center: Fuel Quality Standards on Twitter Bookmark Alternative Fuels Data Center: Fuel Quality Standards on Google Bookmark Alternative Fuels Data Center: Fuel Quality Standards on Delicious Rank Alternative Fuels Data Center: Fuel Quality Standards on Digg Find More places to share Alternative Fuels Data Center: Fuel Quality Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Quality Standards The South Dakota Department of Public Safety may promulgate rules establishing: Standards for the maximum volume percentages of ethanol and methanol

436

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate One year after in-state production has reached 350 million gallons of cellulosic ethanol and sustained this volume for three months, all gasoline

437

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate All gasoline sold in the state must be blended with 10% ethanol (E10). Gasoline with an octane rating of 91 or above is exempt from this mandate,

438

Alternative Fuels Data Center: Renewable Fuels Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Promotion to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Promotion on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Promotion on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Promotion on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Promotion on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Promotion on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Promotion Recognizing that biofuels such as ethanol and biodiesel will be an important part of the state's energy economy and advanced research in

439

Alternative Fuels Data Center: Alternative Fuels Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuels Alternative Fuels Promotion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Promotion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Promotion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Promotion on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Promotion on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Promotion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Promotion The state of Hawaii has signed a memorandum of understanding (MOU) with the U.S. Department of Energy to collaborate to produce 70% of the state's

440

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Tax Alternative Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The excise tax imposed on compressed natural gas (CNG), liquefied natural gas (LNG), and liquefied petroleum gas (LPG or propane) used to operate a vehicle can be paid through an annual flat rate sticker tax based on the

Note: This page contains sample records for the topic "kerosene-type jet fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Alternative Fuels Data Center: Renewable Fuel Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Promotion to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Promotion on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Promotion on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Promotion on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Promotion on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Promotion on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Promotion The Texas Bioenergy Policy Council and the Texas Bioenergy Research Committee were established to promote the goal of making biofuels a

442

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard Within six months following the point at which monthly production of denatured ethanol produced in Louisiana equals or exceeds a minimum annualized production volume of 50 million gallons, at least 2% of the

443

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Tax Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The state road tax for vehicles that operate on propane (liquefied petroleum gas, or LPG) or natural gas is paid through the purchase of an annual flat fee sticker, and the amount is based on the vehicle's gross

444

Alternative Fuels Data Center: Propane Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Stations to someone by E-mail Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Propane Fueling Stations Photo of a liquefied petroleum gas fueling station. Thousands of liquefied petroleum gas (propane) fueling stations are

445

Alternative Fuels Data Center: Alternative Fuel Study  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Study Alternative Fuel Study to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Study on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Study on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Study on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Study on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Study on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Study on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Study As directed by the Nevada Legislature, the Legislative Commission (Commission) conducted an interim study in 2011 concerning the production and use of energy in the state. The study included information on the use

446

Refinery & Blender Net Production of Total Finished Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

& Blender Net Production & Blender Net Production Product: Total Finished Petroleum Products Liquefied Refinery Gases Ethane/Ethylene Ethane Ethylene Propane/Propylene Propane Propylene Normal Butane/Butylene Normal Butane Butylene Isobutane/Isobutylene Isobutane Isobutylene Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Gasoline Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 ppm to 500 ppm Sulfur Distillate F.O., Greater than 500 ppm Sulfur Residual Fuel Oil Residual Fuel Less Than 0.31 Percent Sulfur Residual Fuel 0.31 to 1.00 Percent Sulfur Residual Fuel Greater Than 1.00 Percent Sulfur Petrochemical Feedstocks Naphtha For Petro. Feed. Use Other Oils For Petro. Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Asphalt and Road Oil Still Gas Miscellaneous Products Processing Gain(-) or Loss(+) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

447

Total Crude Oil and Petroleum Products Net Receipts by Pipeline, Tanker,  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

448

Crude Oil and Petroleum Products Movements by Tanker, Pipeline, and Barge  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Unfinished Oils Motor Gasoline Blend. Components (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

449

Crude Oil and Petroleum Products Movements by Tanker and Barge between PAD  

U.S. Energy Information Administration (EIA) Indexed Site

Tanker and Barge between PAD Districts Tanker and Barge between PAD Districts Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Liquefied Petroleum Gases Unfinished Oils Motor Gasoline Blending Components MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Residual FO - Less than 0.31% Sulfur Residual FO - 0.31 to 1.00% Sulfur Residual FO - Greater than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

450

Fuels - Biodiesel  

NLE Websites -- All DOE Office Websites (Extended Search)

* Biodiesel * Biodiesel * Butanol * Ethanol * Hydrogen * Natural Gas * Fischer-Tropsch Batteries Cross-Cutting Assessments Engines GREET Hybrid Electric Vehicles Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Clean Diesel Fuels Background Reducing our country's dependence on foreign oil and the rising costs of crude oil are primary reasons for a renewed interest in alternative fuels for the transportation sector. Stringent emissions regulations and public concern about mobile sources of air pollution provide additional incentives to develop fuels that generate fewer emissions, potentially reducing the need for sophisticated, expensive exhaust after-treatment devices.

451

Hydrogen Fuel  

Energy.gov (U.S. Department of Energy (DOE))

Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal, natural gas, nuclear power, and renewable power. These...

452

Fuel Economy  

NLE Websites -- All DOE Office Websites (Extended Search)

Selling your car? Advertise its fuel economy with our Used Car Label tool. Download a label for on-line ads. Print a label to attach to your car. Did you know? You can purchase...

453

High energy emission from galactic jets  

E-Print Network (OSTI)

In this chapter we review some aspects of X-ray binaries, particularly those presenting steady jets, i.e. microquasars. Because of their proximity and similarities with active galactic nuclei (AGN), galactic jet sources are unique laboratories to test astrophysical theories of a universal scope. Due to recent observational progress made with the new generation of gamma-ray imaging atmospheric Cherenkov telescopes and in view of the upcoming km3-size neutrino detectors, we focus especially on the possible high-energy gamma radiation and neutrino emission. In connection with this, we also comment about astrophysical jets present in young stellar objects, and we briefly discuss similarities and differences with extragalactic AGN and gamma-ray bursters.

H. R. Christiansen

2013-06-07T23:59:59.000Z

454

Emissions characteristics of Military Helicopter Engines Fueled with JP-8 and a Fischer-Tropsch Fuel  

SciTech Connect

The rapid growth in aviation activities and more stringent U.S. Environmental Protection Agency regulations have increased concerns regarding aircraft emissions, due to their harmful health and environmental impacts, especially in the vicinity of airports and military bases. In this study, the gaseous and particulate-matter emissions of two General Electric T701C engines and one T700 engine were evaluated. The T700 series engines power the U.S. Army's Black Hawk and Apache helicopters. The engines were fueled with standard military JP-8 fuel and were tested at three power settings. In addition, one of the T701C engines was operated on a natural-gas-derived Fischer-Tropsch synthetic paraffinic kerosene jet fuel. Test results show that the T701C engine emits significantly lower particulate-matter emissions than the T700 for all conditions tested. Particulate-matter mass emission indices ranged from 0.2-1.4 g/kg fuel for the T700 and 0.2-0.6 g/kg fuel for the T701C. Slightly higher NOx and lower CO emissions were observed for the T701C compared with the T700. Operation of the T701C with the Fischer-Tropsch fuel rendered dramatic reductions in soot emissions relative to operation on JP-8, due primarily to the lack of aromatic compounds in the alternative fuel. The Fischer-Tropsch fuel also produced smaller particles and slight reductions in CO emissions.

Corporan, E. [Air Force Research Laboratory, Wright-Patterson AFB, OH; DeWitt, M. [Air Force Research Laboratory, Wright-Patterson AFB, OH; Klingshirn, Christopher D [ORNL; Striebich, Richard [Air Force Research Laboratory, Wright-Patterson AFB, OH; Cheng, Mengdawn [ORNL

2010-01-01T23:59:59.000Z

455

Jet physics from static charges in AdS space  

E-Print Network (OSTI)

Soft interactions with high-energy jets are explored in radial coordinates which exploit the approximately conformal behavior of perturbative gauge theories. In these coordinates, the jets, approximated by Wilson lines, ...

Stewart, Iain

456

The Dynamical Relationship between Subtropical and Eddy-Driven Jets  

Science Conference Proceedings (OSTI)

This study examines the impact of a subtropical jet on the development of baroclinic waves and polar-front jets with an idealized multilevel primitive equation model. Linear stability analysis and initial-value approaches suggest that baroclinic ...

Sukyoung Lee; Hyun-kyung Kim

2003-06-01T23:59:59.000Z

457

Recirculation Gyres Forced by a Beta-Plane Jet  

Science Conference Proceedings (OSTI)

A numerical model, with quasigeostrophic and barotropic dynamics, is used to study the forcing of mean flows by an unstable jet. The initially zonal jet has specified shape and transport at the western inflow boundary and is sufficiently intense ...

Steven R. Jayne; Nelson G. Hogg; Paola Malanotte-Rizzoli

1996-04-01T23:59:59.000Z

458

Jet Jumping: Low-Frequency Variability in the Southern Ocean  

Science Conference Proceedings (OSTI)

The authors study intrinsic variability in the position of jets in a ?-plane channel ocean with simple topography using a quasigeostrophic numerical model. This study links the variability in jet position with abyssal anticyclones that form as a ...

Christopher C. Chapman; Andrew McC. Hogg

2013-05-01T23:59:59.000Z

459

Formation of Jets and Equatorial Superrotation on Jupiter  

Science Conference Proceedings (OSTI)

The zonal flow in Jupiter’s upper troposphere is organized into alternating retrograde and prograde jets, with a prograde (superrotating) jet at the equator. Existing models posit as the driver of the flow either differential radiative heating of ...

Tapio Schneider; Junjun Liu

2009-03-01T23:59:59.000Z

460

Optimized Parameters for a Mercury Jet Target  

Science Conference Proceedings (OSTI)

A study of target parameters for a high-power, liquid mercury jet target system for a neutrino factory or muon collider is presented. Using the MARS code, we simulate particle production initiated by incoming protons with kinetic energies between 2 and 100 GeV. For each proton beam energy, we maximize production by varying the geometric parameters of the target: the mercury jet radius, the incoming proton beam angle, and the crossing angle between the mercury jet and the proton beam. The number of muons surviving through an ionization cooling channel is determined as a function of the proton beam energy. We optimize the mercury jet target parameters: the mercury jet radius, the incoming proton beam angle and the crossing angle between the mercury jet and the proton beam for each proton beam energy. The optimized target radius varies from about 0.4 cm to 0.6 cm as the proton beam energy increases. The optimized beam angle varies from 75 mrad to 120 mrad. The optimized crossing angle is near 20 mrad for energies above 5 GeV. These values differ from earlier choices of 67 mrad for the beam angle and 33 mrad for the crossing angle. These new choices for the beam parameters increase the meson production by about 20% compared to the earlier parameters. Our study demonstrates that the maximum meson production efficiency per unit proton beam power occurs when the proton kinetic energy is in the range of 5-15 GeV. Finally, the dependence on energy of the number of muons at the end of the cooling channel is nearly identical to the dependence on energy of the meson production 50 m from the target. This demonstrates that the target parameters can be optimized without the additional step of running the distribution through a code such as ICOOL that simulates the bunching, phase rotation, and cooling.

Ding, X.; Kirk, H.

2010-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "kerosene-type jet fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Centrifugally driven electrostatic instability in extragalactic jets  

SciTech Connect

The stability problem of the rotation-induced electrostatic wave in extragalactic jets is presented. Solving a set of equations describing dynamics of a relativistic plasma flow of active galactic nuclei (AGN) jets, an expression of the instability rate has been derived and analyzed for typical values of AGNs. The growth rate was studied versus the wavelength and the inclination angle and it has been found that the instability process is very efficient with respect to the accretion disk evolution, indicating high efficiency of the instability.

Osmanov, Z. [Georgian National Astrophysical Observatory, Kazbegi ave. 2a, Tbilisi 0160 (Georgia)

2008-03-15T23:59:59.000Z

462

Gamma-Ray Bursts: Jets and Energetics  

E-Print Network (OSTI)

The relativistic outflows from gamma-ray bursts are now thought to be narrowly collimated into jets. After correcting for this jet geometry there is a remarkable constancy of both the energy radiated by the burst and the kinetic energy carried by the outflow. Gamma-ray bursts are still the most luminous explosions in the Universe, but they release energies that are comparable to supernovae. The diversity of cosmic explosions appears to be governed by the fraction of energy that is coupled to ultra-relativistic ejecta.

D. A. Frail

2003-11-12T23:59:59.000Z

463

Gravity waves from vortex dipoles and jets  

E-Print Network (OSTI)

The dissertation first investigates gravity wave generation and propagation from jets within idealized vortex dipoles using a nonhydrostatic mesoscale model. Several initially balanced and localized jets induced by vortex dipoles are examined here. Within these dipoles, inertia-gravity waves with intrinsic frequencies 1-2 times the Coriolis parameter are simulated in the jet exit region. The ray tracing analysis reveals strong variation of wave characteristics along ray paths. The dependence of wave amplitude on the Rossby number is examined through experiments in which the two vortices are initially separated by a large distance but subsequently approach each other and form a vortex dipole with an associated amplifying localized jet. The amplitude of stationary gravity waves in the simulations with a 90-km grid spacing increases nearly linearly with the square of the Rossby number but significantly more rapidly when smaller grid spacing is used. To further address the source mechanism of the gravity waves within the vortex dipole, a linear numerical framework is developed based on the framework proposed by Plougonven and Zhang (2007). Using the nonlinearly balanced fields as the basic state and driven by three types of large scale forcing, the vorticity, divergence and thermodynamic forcing, this linear model is utilized to obtain linear wave responses. The wave packets in the linear responses compare reasonably well with the MM5 simulated gravity waves. It is suggested that the vorticity forcing is the leading contribution to both gravity waves in the jet exit region and the ascent/descent feature in the jet core. This linear model is also adopted to study inertia-gravity waves in the vicinity of a baroclinic jet during the life cycle of an idealized baroclinic wave. It is found that the thermodynamic forcing and the vorticity forcing are equally important to the gravity waves in the low stratosphere, but the divergence forcing is again playing a lesser role. Two groups of wave packets are present in the linear responses; their sources appear to locate either near the surface front or near the middle/upper tropospheric jet.

Wang, Shuguang

2008-08-01T23:59:59.000Z

464

Enhancement of wall jet transport properties  

DOE Patents (OSTI)

By enhancing the natural instabilities in the boundary layer and in the free shear layer of a wall jet, the boundary is minimized thereby increasing the transport of heat and mass. Enhancing the natural instabilities is accomplished by pulsing the flow of air that creates the wall jet. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct.

Claunch, Scott D. (Broomfield, CO); Farrington, Robert B. (Golden, CO)

1997-01-01T23:59:59.000Z

465

High pressure water jet mining machine  

DOE Patents (OSTI)

A high pressure water jet mining machine for the longwall mining of coal is described. The machine is generally in the shape of a plowshare and is advanced in the direction in which the coal is cut. The machine has mounted thereon a plurality of nozzle modules each containing a high pressure water jet nozzle disposed to oscillate in a particular plane. The nozzle modules are oriented to cut in vertical and horizontal planes on the leading edge of the machine and the coal so cut is cleaved off by the wedge-shaped body.

Barker, Clark R. (Rolla, MO)

1981-05-05T23:59:59.000Z

466

The Cambridge Jet algorithm: features and applications  

E-Print Network (OSTI)

Jet clustering algorithms are widely used to analyse hadronic events in high energy collisions. Recently a new clustering method, known as `Cambridge', has been introduced. In this article we present an algorithm to determine the transition values of y_cut for this clustering scheme, which allows to resolve any event to a definite number of jets in the final state. We discuss some particularities of the Cambridge clustering method and compare its performance to the Durham clustering scheme for Monte Carlo generated e+e- annihilation events.

Stan Bentvelsen; Irmtraud Meyer

1998-03-12T23:59:59.000Z

467

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Definition to someone by E-mail Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition Alternative fuel is defined as compressed natural gas, propane, ethanol, or any mixture containing 85% or more ethanol (E85) with gasoline or other

468

Jets and the hadronic final state at HERA  

E-Print Network (OSTI)

Recent results on jets and the hadronic final state from the HERA collaborations H1 and ZEUS are reviewed.

T. Schoerner-Sadenius

2004-10-07T23:59:59.000Z

469

Photon - Jet Correlations and Constraints on Fragmentation Functions  

E-Print Network (OSTI)

We study the production of a large-pT photon in association with a jet in proton-proton collisions. We examine the sensitivity of the jet rapidity distribution to the gluon distribution function in the proton. We then assess the sensitivity of various photon + jet correlation observables to the photon fragmentation functions. We argue that RHIC data on photon-jet correlations can be used to constrain the photon fragmentation functions in a region which was barely accessible in LEP experiments.

Z. Belghobsi; M. Fontannaz; J. -Ph. Guillet; G. Heinrich; E. Pilon; M. Werlen

2009-03-27T23:59:59.000Z

470

On the Counter-jet Emission in GRB Afterglows  

Science Conference Proceedings (OSTI)

We investigate the dynamical evolution of double-sided jets and present detailed numerical studies on the emission from the receding jet of gamma-ray bursts. It is found that the receding jet emission is generally very weak and only manifests as a plateau in the late time radio afterglow light curves. Additionally, we find that the effect of synchrotron self-absorption can influence the peak time of the receding jet emission significantly.

Wang Xin; Huang, Y. F. [Department of Astronomy, Nanjing University, Nanjing 210093 (China)

2010-10-15T23:59:59.000Z

471

Gauge/gravity duality and jets in strongly coupled plasma  

E-Print Network (OSTI)

We discuss jets in strongly coupled N = 4 supersymmetric Yang-Mills plasma and their dual gravitational description.

Chesler, Paul M

2009-01-01T23:59:59.000Z

472

Gauge/gravity duality and jets in strongly coupled plasma  

E-Print Network (OSTI)

We discuss jets in strongly coupled N = 4 supersymmetric Yang-Mills plasma and their dual gravitational description.

Paul M. Chesler

2009-07-26T23:59:59.000Z

473

Improved understanding and control of high-speed jet interaction flows  

E-Print Network (OSTI)

A numerical study of the flow field generated by injection through diamondshaped orifices into a high-speed flow is presented in this document. Jet interaction flows have a wide range of applications in the field of engineering. These applications include the use of jets for fuel injection in scramjets, for reaction control of high-speed aerodynamic bodies and as cooling jets for skins of high-speed vehicles. A necessary requirement in the use of transverse jets for these and other applications is a thorough understanding of the physics of the interaction between the jet and freestream. This interaction generates numerous flow structures that include multiple shocks, vortices, recirculation regions and shear layers. This study involves diamond-shaped orifices that have the advantage of generating weaker or attached interaction shocks as compared to circular injectors. These injectors also negate the effects due to the recirculation region that is formed upstream of the injector. This study was undertaken in order to gain further understanding of the flow features generated by diamond-shaped injectors in a high-speed flow. Numerical simulations were performed using two different levels of turbulence models. Reynolds? Averaged Navier-Stokes (RANS) simulations were performed using the GASP flow solver while Detached-Eddy Simulation (DES) runs were performed using the Cobalt flow solver. A total of fifteen diamond injector simulations were performed using the RANS model for a 15 half-angle diamond injector. The fifteen simulations spanned over five different injection angles and three jet total pressures. In addition to these, two circular injector simulations were also performed. In addition, low pressure normal injection through diamond and circular orifices simulations were performed using DES. Results obtained from CFD were compared to available experimental data. The resulting flow structure and the turbulent properties of the flow were examined in detail. The normal injection case through the diamond-shaped orifice at the lowest jet total pressure was defined as the baseline case and is presented in detail. In order to study the effect of different components of the vorticity transport equation, an in-house code was used post-process the results from the RANS runs.

Srinivasan, Ravichandra

2005-12-01T23:59:59.000Z