National Library of Energy BETA

Sample records for kerosene distillate fuel

  1. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene...

    Gasoline and Diesel Fuel Update (EIA)

    Marketing Annual 1997 401 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  2. ,"U.S. Distillate Fuel Oil and Kerosene Sales by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  3. ,"U.S. Adjusted Distillate Fuel Oil and Kerosene Sales by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residential",4,"Annual",2014,"6/30/1984" ,"Data 2","Commercial",10,"Annual",2014,"6/30/1984" ,"Data

  4. ,"U.S. Distillate Fuel Oil and Kerosene Sales by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residential",4,"Annual",2014,"6/30/1984" ,"Data 2","Commercial",10,"Annual",2014,"6/30/1984" ,"Data

  5. ,"U.S. Sales for Resale Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates"

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Sales for Resale Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates",11,"Monthly","12/2015","1/15/1983" ,"Release

  6. ,"U.S. Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates"

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates",11,"Monthly","12/2015","1/15/1983" ,"Release

  7. Fuel oil and kerosene sales 1997

    SciTech Connect (OSTI)

    1998-08-01

    The Fuel Oil and Kerosene Sales 1997 report provides information, illustrations and state-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. 24 tabs.

  8. Distillate Fuel Oil Sales for Residential Use

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use/ Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate Commercial - No. 2 Distillate Commercial - No. 2 Fuel Oil Commercial - Ultra Low Sulfur Diesel Commercial - Low Sulfur Diesel Commercial - High Sulfur Diesel Commercial - No. 4 Fuel Oil Commercial - Residual Fuel Oil Commercial - Kerosene Industrial - Distillate Fuel Oil Industrial - No. 1 Distillate Industrial - No. 2

  9. Fuel oil and kerosene sales 1996

    SciTech Connect (OSTI)

    1997-08-01

    The Fuel Oil and Kerosene Sales 1996 report provides information, illustrations and State-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Fuel Oil and Kerosene Sales 1996. 24 tabs.

  10. Adjusted Distillate Fuel Oil Sales for Residential Use

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use/ Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate Commercial - No. 2 Distillate Commercial - No. 2 Fuel Oil Commercial - Ultra Low Sulfur Diesel Commercial - Low Sulfur Diesel Commercial - High Sulfur Diesel Commercial - No. 4 Fuel Oil Commercial - Residual Fuel Oil Commercial - Kerosene Industrial - Distillate Fuel Oil Industrial - No. 1 Distillate Industrial - No. 2

  11. Fuel oil and kerosene sales 1994

    SciTech Connect (OSTI)

    1995-09-27

    This publication contains the 1994 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the sixth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA)for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1994 edition marks the 11th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Distillate and residual fuel oil sales continued to move in opposite directions during 1994. Distillate sales rose for the third year in a row, due to a growing economy. Residual fuel oil sales, on the other hand, declined for the sixth year in a row, due to competitive natural gas prices, and a warmer heating season than in 1993. Distillate fuel oil sales increased 4.4 percent while residual fuel oil sales declined 1.6 percent. Kerosene sales decreased 1.4 percent in 1994.

  12. Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketing Annual 1999 359 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  13. Fuel Oil and Kerosene Sales 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Oil and Kerosene Sales 2014 December 2015 Independent ... DC 20585 U.S. Energy Information Administration | Fuel ... An energy-consuming sector that consists of electricity only ...

  14. Fuel oil and kerosene sales 1995

    SciTech Connect (OSTI)

    1996-09-01

    This publication contains the 1995 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the seventh year that the survey data have appeared in a separate publication. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the product supplied volumes published in the Petroleum Supply Annual (PSA). 24 tabs.

  15. Fuel oil and kerosene sales 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-29

    This publication contains the 1992 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the fourth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM for reference years 1984 through 1987. The 1992 edition marks the ninth annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA).

  16. Fuel oil and kerosene sales 1993

    SciTech Connect (OSTI)

    Not Available

    1994-10-03

    This publication contains the 1993 survey results of the ``Annual Fuel Oil and Kerosene, Sales Report`` (Form EIA-821). This is the fifth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1993 edition marks the 10th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA).

  17. Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    District and State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Sales to End Users Sales for Resale...

  18. Fuel Oil and Kerosene Sales 2007

    U.S. Energy Information Administration (EIA) Indexed Site

    national level are provided in summary tables. For Fuel Oil and Kerosene Sales on the Internet, access EIA's home page at http:www.eia.doe.gov. Internet Addresses: E-Mail:...

  19. Fuel Oil and Kerosene Sales - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    See All Petrolem Reports Fuel Oil and Kerosene Sales With Data for 2014 | Release ... EIA is considering changes to the survey Form EIA-821, "Annual Fuel Oil and Kerosene Sales ...

  20. Fuel oil and kerosene sales, 1990

    SciTech Connect (OSTI)

    Not Available

    1991-10-10

    Sales data is presented for kerosene and fuel oils. This is the second year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. 4 figs., 24 tabs.

  1. EIA-821, Annual Fuel Oil and Kerosene Sales Report Page 1 U.S. DEPARTMENT OF ENERGY

    Gasoline and Diesel Fuel Update (EIA)

    DC 20585 OMB No. 1905-0174 Expiration Date: 09/30/2017 Version No.: 2015.01 FORM EIA-821 ANNUAL FUEL OIL AND KEROSENE SALES REPORT INSTRUCTIONS 1. QUESTIONS? If you have any questions about Form EIA-821 after reading the instructions, please call our toll-free number 1-800-638- 8812. 2. PURPOSE The U.S. Energy Information Administration (EIA) Form EIA- 821, "Annual Fuel Oil and Kerosene Sales Report," is used to collect annual data on the sales of distillate and residual fuel oils,

  2. EIA-821, Annual Fuel Oil and Kerosene Sales Report Page 1 U.S. DEPARTMENT OF ENERGY

    Gasoline and Diesel Fuel Update (EIA)

    D. C. 20585 OMB No. 1905-0174 Expiration Date: 09/30/2017 Version No.: 2016.01 FORM EIA-821 ANNUAL FUEL OIL AND KEROSENE SALES REPORT INSTRUCTIONS 1. QUESTIONS? If you have any questions about Form EIA-821 after reading the instructions, please call our toll-free number 1-800-638- 8812. 2. PURPOSE The U.S. Energy Information Administration (EIA) Form EIA- 821, "Annual Fuel Oil and Kerosene Sales Report," is used to collect annual data on the sales of distillate and residual fuel oils,

  3. U.S. Sales for Resale Refiner Sales Volumes of Aviation Fuels, Kerosene,

    Gasoline and Diesel Fuel Update (EIA)

    Propane, No.1 and No. 2 Distillates Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Aviation Gasoline 634.7 494.1 516.9 557.6 346.3 348.6 1983-2015 Kerosene-Type Jet Fuel 29,371.1 29,109.5 30,025.4 27,015.9 29,610.8 30,290.2 1983-2015 Propane (Consumer Grade) 23,154.1 25,942.6 32,123.1 28,493.2 30,691.0 34,801.5 1983-2015 Kerosene 1,297.1 1,574.6 1,070.4 1,129.5 1,040.4 1,398.9 1983-2015 No. 1 Distillate 165.1 246.9 476.8 1,127.0 1,974.7 2,131.1 1983-2015 No. 2 Distillate 154,251.0

  4. Table 5.15 Fuel Oil and Kerosene Sales, 1984-2010 (Thousand Gallons)

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Fuel Oil and Kerosene Sales, 1984-2010 (Thousand Gallons) Year Distillate Fuel Oil Residential Commercial Industrial Oil Company Farm Electric Power 1 Railroad Vessel Bunkering On-Highway Diesel Military Off-Highway Diesel Other Total 1984 8,215,722 5,538,184 2,555,898 848,083 3,201,600 648,665 2,944,694 1,763,782 16,797,423 700,788 1,756,077 700,864 45,671,779 1985 7,728,057 4,463,226 2,440,661 684,227 3,102,106 523,010 2,786,479 1,698,985 17,279,650 661,644 1,522,041 168,625 43,058,711 1986

  5. U.S. Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene,

    Gasoline and Diesel Fuel Update (EIA)

    Propane, No.1 and No. 2 Distillates Sales Type: Sales to End Users Sales for Resale Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Sales Type Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Aviation Gasoline W W W W W W 1983-2015 Kerosene-Type Jet Fuel 36,092.6 34,767.7 33,201.0 32,608.3 32,500.6 32,936.1 1983-2015 Propane (Consumer Grade) 6,300.4 7,768.5 5,181.2 4,202.0 5,929.0 5,664.8

  6. The Influence of Molecular Structure of Distillate Fuels on HFRR...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Influence of Molecular Structure of Distillate Fuels on HFRR Lubricity The Influence of Molecular Structure of Distillate Fuels on HFRR Lubricity Presentation given at 2007...

  7. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene...

    U.S. Energy Information Administration (EIA) Indexed Site

    165,833.6 February ... 7,190.5 4,192.4 55,685.0 76,234.8 22,030.8 98,265.6 153,950.6 2,265.8 167,599.4 March ... 3,741.4...

  8. ,"Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes"

    U.S. Energy Information Administration (EIA) Indexed Site

    Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes",60,"Monthly","12/2015","1/15/1983" ,"Release Date:","3/1/2016" ,"Next Release

  9. Distillate Fuel Oil Assessment for Winter 1996-1997

    Reports and Publications (EIA)

    1997-01-01

    This article describes findings of an analysis of the current low level of distillate stocks which are available to help meet the demand for heating fuel this winter, and presents a summary of the Energy Information Administration's distillate fuel oil outlook for the current heating season under two weather scenarios.

  10. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Petroleum Marketing Annual 1999 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) - Continued...

  11. ,,,,"Reasons that Made Distillate Fuel Oil Unswitchable"

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel","the Products","Fuel Supply","Restrictions(b)","in Place(c)","Alternative Fuels(d)","Reason","H, I, J, and K","Don't Know" ,,,"Total United States" ...

  12. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    839.2 135.0 1,251.9 See footnotes at end of table. 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State Energy Information Administration ...

  13. ,"U.S. Adjusted Distillate Fuel Oil and Kerosene Sales by End...

    U.S. Energy Information Administration (EIA) Indexed Site

    worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Residential",4,"Annual",2013,"6301984" ,"Data...

  14. U.S. Adjusted Distillate Fuel Oil and Kerosene Sales by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia Maryland New Jersey New York Pennsylvania Lower Atlantic (PADD 1C) Florida Georgia North Carolina South Carolina Virginia West Virginia Midwest (PADD 2) Illinois Indiana Iowa Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma South Dakota Tennessee Wisconsin Gulf Coast (PADD 3) Alabama

  15. U.S. Distillate Fuel Oil and Kerosene Sales by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia Maryland New Jersey New York Pennsylvania Lower Atlantic (PADD 1C) Florida Georgia North Carolina South Carolina Virginia West Virginia Midwest (PADD 2) Illinois Indiana Iowa Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma South Dakota Tennessee Wisconsin Gulf Coast (PADD 3) Alabama

  16. Indoor air pollution from portable kerosene-fired space heaters. [Effects of wick height and fuel consumption rate

    SciTech Connect (OSTI)

    Traynor, G.W.; Apte, M.G.; Dillworth, J.F.; Grimsrud, D.T.

    1983-02-01

    Indoor use of unvented combustion appliances is known to cause an increase in indoor air pollutant levels. Laboratory tests were conducted on radiant and convective portable kerosene-fired space heaters to identify the pollutants they emit and to determine their emission rates. Laboratory-derived CO and NO/sub 2/ emission rates from unvented portable kerosense-fired space heaters are summarized and the effect of wick height and fuel consumption rate on CO and NO/sub 2/ emissions is given. Pollutant concentration profiles resulting from the use of kerosene heaters in a 27m/sup 3/ environmental chamber and a 240m/sup 3/ house are presented. When such heaters are operated for one hour in a 27m/sup 3/ chamber with 0.4 air changes per hour, the resultant CO/sub 2/ concentrations are well above the U.S. occupational standard, and NO/sub 2/ concentrations are well above California's short-term outdoor standard. Further data on parameters such as heater usage patterns and air exchange rates are needed to determine the actual pollutant exposure that kerosene heater users experience.

  17. Table 10.24 Reasons that Made Distillate Fuel Oil Unswitchable, 2006;

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Reasons that Made Distillate Fuel Oil Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Million barrels. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS Distillate Fuel Oil Unswitchable Distillate Capable of Using Adversely Affects Alternative Environmenta Contract Storage for Another Columns F, G, Code(a) Subsector and Industry Consumed as a Fue Fuel Oil Fuel Use

  18. Kerosene controversy

    SciTech Connect (OSTI)

    McClintock, M.

    1985-10-01

    Controversy over warnings about the safety of kerosene space heaters, which were felt by many to have unacceptable fire and air pollution risks, has led to improved models. New kerosene heaters have birdcage grilles to prevent burns and tipover shut-off switches to prevent fires. They are available in portable and console models. Indoor pollution tests which found significantly higher levels of carbon monoxide, nitrogen oxide, and particulates in monitored houses also found that the threshold for emission problems is 85/sup 0/F. The Consumer Product Safety Commission recommends that even the new models be operated with open doors. Unvented gas heaters introduce the same hazards, while asbestos, formaldehyde, and other substances also represent health hazards. The author provides guidelines for buying and operating a kerosene heater.

  19. Kerosene space heaters--combustion technology and kerosene characteristics

    SciTech Connect (OSTI)

    Kubayashi, k.; I Wasaki, N.

    1984-07-01

    This paper describes kerosene combustion technology. Unvented wick-type kerosene space heaters are very popular in Japan because of their economy and convenience. In recent years new vaporized kerosene burners having premixed combustion systems have been developed to solve some of the problems encountered in the older portable type. Some of the features of the new burners are instantaneous ignition, no vaporizing deposit on the burner and a wide range heating capacity. These new kerosene heaters have four major components: an air supply fan, a fuel supply assembly, a burner assembly and a control assembly. These heaters are designed to be highly reliable, have stable combustion characteristics, yield minimum carbon deposit. Finally, they are simple and inexpensive to operate.

  20. Refiner/marketer targets production of transportation fuels and distillates

    SciTech Connect (OSTI)

    Thompson, J.E.

    1997-01-01

    Citgo Petroleum Corp., the wholly owned subsidiary of Petroleos de Venezuela, S.A. (PDVSA), the Venezuelan national oil company, owns two gasoline producing refineries, a 305,000-b/d system in Lake Charles, La., and a 130,000-b/d facility in Corpus Christi, Texas. Each is considered a deep conversion facility capable of converting heavy, sour crudes into a high percentage of transportation fuels and distillates. Two smaller refineries, one in Paulsboro, N.J., and one in Savannah, GA., have the capacity to process 40,000 b/d and 28,000 b/d of crude, respectively, for asphalt products. In the past two years, Citgo`s light oils refineries operated safely and reliably with a minimum of unscheduled shutdowns. An ongoing emphasis to increase reliability has resulted in extended run lengths at the refineries. Citgo has invested $314 million at its facilities in 1995, much of this toward environmental and regulatory projects, such as the new waste water treatment unit at the Lake Charles refinery. Over the next few years, Citgo expects to complete $1.5 billion in capital spending for major processing units such as a 60,000-b/d FCC feed hydrotreater unit at the Lake Charles refinery and crude expansion at the Corpus Christi refinery. Product exchanges and expanded transport agreements are allowing Citgo to extend its marketing reach.

  1. The Influence of Molecular Structure of Distillate Fuels on HFRR Lubricity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy The Influence of Molecular Structure of Distillate Fuels on HFRR Lubricity The Influence of Molecular Structure of Distillate Fuels on HFRR Lubricity Presentation given at 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_gallant.pdf More Documents & Publications Cetane

  2. ,"New Mexico Sales of Distillate Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales of Distillate Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Sales of Distillate Fuel Oil by End Use",13,"Annual",2014,"6/30/1984" ,"Release Date:","12/22/2015" ,"Next Release Date:","Last Week of November 2016" ,"Excel

  3. ,"U.S. Adjusted Sales of Distillate Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillate Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Adjusted Sales of Distillate Fuel Oil by End Use",13,"Annual",2014,"6/30/1984" ,"Release Date:","12/22/2015" ,"Next Release Date:","Last Week of November 2016" ,"Excel File

  4. Composition-explicit distillation curves of aviation fuel JP-8 and a coal-based jet fuel

    SciTech Connect (OSTI)

    Beverly L. Smith; Thomas J. Bruno

    2007-09-15

    We have recently introduced several important improvements in the measurement of distillation curves for complex fluids. The modifications to the classical measurement provide for (1) a composition explicit data channel for each distillate fraction (for both qualitative and quantitative analysis); (2) temperature measurements that are true thermodynamic state points; (3) temperature, volume, and pressure measurements of low uncertainty suitable for an equation of state development; (4) consistency with a century of historical data; (5) an assessment of the energy content of each distillate fraction; (6) a trace chemical analysis of each distillate fraction; and (7) a corrosivity assessment of each distillate fraction. The most significant modification is achieved with a new sampling approach that allows precise qualitative as well as quantitative analyses of each fraction, on the fly. We have applied the new method to the measurement of rocket propellant, gasoline, and jet fuels. In this paper, we present the application of the technique to representative batches of the military aviation fuel JP-8, and also to a coal-derived fuel developed as a potential substitute. We present not only the distillation curves but also a chemical characterization of each fraction and discuss the contrasts between the two fluids. 26 refs., 5 figs., 6 tabs.

  5. Portable kerosene heater controversy

    SciTech Connect (OSTI)

    Decker, M.O.

    1982-04-01

    The National Kerosene Heater Association reports sales of slightly fewer than two million heaters in the United States between 1975 and 1979. More than one million were sold in 1980 and they project sales of eight to ten million by 1985. Kerosene heater dealers are urged to post warnings to customers specifying the grade of kerosene to be used. 1-K kerosene has a maximum sulfur content of .04% and is generally suitable for use in nonflue-connected burners. 2-K kerosene, with a sulfur content of as much as .30% should be used only in flue-connected burner applications. (JMT)

  6. "Table A10. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Barrels per Day)" ,,,," Inputs for Heat",,," Primary Consumption" " "," Primary Consumption for all Purposes",,," Power, and Generation of Electricity",,," for Nonfuel Purposes",,,"RSE" ,"

  7. "Table A2. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region, Industry Group, and Selected" " Industries, 1991" " (Estimates in Barrels per Day) " ,,,,," Input for Heat,",,," Primary" " ",," Consumption for All Purposes",,,"Power, and Generation of Electricity",,," Consumption for Nonfuel Purposes ",,,"RSE" "SIC",,"

  8. Vacuum Distillation

    U.S. Energy Information Administration (EIA) Indexed Site

    Day) Process: Vacuum Distillation Thermal Cracking Thermal Cracking: Coking Thermal Cracking: Delayed Coking Thermal Cracking: Fluid Coking Thermal Cracking: Visbreaking Thermal Cracking: Other/Gas Oil Thermal Cracking: Coking (Barrels/Calendar Day) Catalytic Cracking Fresh Feed Catalytic Cracking Fresh Feed (Barrels/Calendar Day) Catalytic Cracking Recycled Feed Catalytic Hydrocracking Catalytic Hydrocracking: Distillate Catalytic Hydrocracking: Gas Oil Catalytic Hydrocracking: Residual Fuel

  9. ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Relative Standard Errors for Table 10.8;" " Unit: Percents." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and" "Code(a)","Subsector and

  10. ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"

    U.S. Energy Information Administration (EIA) Indexed Site

    0.9 Relative Standard Errors for Table 10.9;" " Unit: Percents." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and" "Code(a)","Subsector and

  11. ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Relative Standard Errors for Table 10.9;" " Unit: Percents." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and" "Code(a)","Subsector and

  12. Device for collecting emissions from kerosene heaters

    SciTech Connect (OSTI)

    Gilloti, N.J.

    1984-09-04

    An apparatus for both improving the heat distribution throughout a room from a portable kerosene heater and for collecting undesirable emissions resulting from the burning of the kerosene, includes a base adapted to be mounted on the top of the heater, the base supporting a vertically extending shaft on which is mounted a heat-driven fan formed of either paper or metal, and a disposable disk mounted a spaced distance above the fan on the same shaft, the disk serving as a collector for the undesirable emissions. When the device is placed on an operating kerosene heater, the rising hot air and gases from the heater cause the fan to rotate, which in turn causes emissions from the burning fuel to move upwardly in a more or less cylindrical path. As the products of combustion move upwardly, certain emissions therein such as soot, oily vapors, etc. deposit or condense onto the surface of the spinner and disposable disk.

  13. Recovery of Navy distillate fuel from reclaimed product. Volume II. Literature review

    SciTech Connect (OSTI)

    Brinkman, D.W.; Whisman, M.L.

    1984-11-01

    In an effort to assist the Navy to better utilize its waste hydrocarbons, NIPER, with support from the US Department of Energy, is conducting research designed to ultimately develop a practical technique for converting Reclaimed Product (RP) into specification Naval Distillate Fuel (F-76). This first phase of the project was focused on reviewing the literature and available information from equipment manufacturers. The literature survey has been carefully culled for methodology applicable to the conversion of RP into diesel fuel suitable for Navy use. Based upon the results of this study, a second phase has been developed and outlined in which experiments will be performed to determine the most practical recycling technologies. It is realized that the final selection of one particular technology may be site-specific due to vast differences in RP volume and available facilities. A final phase, if funded, would involve full-scale testing of one of the recommended techniques at a refueling depot. The Phase I investigations are published in two volumes. Volume 1, Technical Discussion, includes the narrative and Appendices I and II. Appendix III, a detailed Literature Review, includes both a narrative portion and an annotated bibliography containing about 800 references and abstracts. This appendix, because of its volume, has been published separately as Volume 2.

  14. Conversion of lpg hydrocarbons to distillate fuels or lubes using integration of lpg dehydrogenation and mogdl

    SciTech Connect (OSTI)

    Chang, C. D.; Penick, J. E.; Socha, R. F.

    1985-09-17

    Disclosed is a method and apparatus for producing distillate and/or lubes which employ integrating catalytic (or thermal) dehydrogenation of paraffins with MOGDL. The process feeds the product from a low temperature propane and/or butane dehydrogenation zone into a first catalytic reactor zone, which operates at low pressure and contains zeolite oligomerization catalysts, where the low molecular weight olefins are reacted to primarily gasoline range materials. These gasoline range materials can then be pressurized to the pressure required for reacting to distillate in a second catalytic reactor zone operating at high pressure and containing a zeolite oligomerization catalyst. The distillate is subsequently sent to a hydrotreating unit and product separation zone to form lubes and other finished products.

  15. Conversion of LPG hydrocarbons to distillate fuels or lubes using integration of LPG dehydrogenation and mogdl

    SciTech Connect (OSTI)

    Chang, C.D.; Penick, J.E.; Socha, R.F.

    1987-07-07

    This patent describes an apparatus for producing distillates of lubes from paraffins, which comprise: (a) a dehydrogenation reactor including means for passing a paraffinic feedstock stream into a dehydrogenation zone at conditions of pressure and temperature selected to convert the paraffins to an olefin rich effluent stream comprising at least one of the group consisting of propylene and butylene; (b) a low pressure oligomerization catalytic reactor including means for contacting the olefin rich effluent stream in a low pressure oligomerization catalytic reactor zone with a crystalline zeolite oligomerization catalyst at conditions of pressure and temperature selected to convert olefins to a first reactor effluent stream rich in liquid olefinic gasoline range hydrocarbons; (c) a first means for separating the first reactor effluent stream to form a substantially liquid C/sub 5/+ rich stream and a C/sub 4/- rich stream; (d) means for passing the C/sub 5/+ rich stream to a high pressure oligomerization catalytic reactor zone; (e) a high pressure oligomerization catalytic reactor including means for contacting the substantially liquid C/sub 5/+ rich stream in the high pressure oligomerization catalytic reactor zone with a crystalline zeolite oligomerization catalyst at conditions of temperature and pressure selected to produce a second reactor effluent stream which is rich in distillate; (f) second means for separating the second reactor effluent stream to recover an olefinic gasoline stream and a distillate stream; and (g) a hydrotreating reactor including means for contacting the distillate stream with hydrogen in a hydrotreating unit to produce a hydrotreated distillate stream comprising lube range hydrocarbons.

  16. Conversion of LPG hydrocarbons into distillate fuels using an integral LPG dehydrogenation-MOGD process

    SciTech Connect (OSTI)

    Owen, H.; Zahner, J.C.

    1987-06-23

    This patent describes a process for converting lower paraffinic hydrocarbon feedstock comprising propane and/or butane into heavier hydrocarbons comprising gasoline and distillate, comprising the steps of: feeding the paraffinic feedstock to a dehydrogenation zone under conversion conditions for dehydrogenating at least a portion of the feedstock; recovering a first dehydrogenation gaseous effluent stream comprising propene and/or butene; contacting the first gaseous effluent steam with a liquid lean oil sorbent stream comprising C/sub 5//sup +/ hydrocarbons under sorption conditions to produce a C/sub 3//sup +/ rich liquid absorber stream and a light gas stream; sequentially pressurizing, heating and passing the C/sub 3//sup +/ rich liquid absorber stream to an oligomerization reactor zone at elevated temperature and pressure; contacting the C/sub 3//sup +/ rich stream with oligomerization catalyst in the oligomerization reactor zone for conversion of at least a portion of lower olefins to heavier hydrocarbons under oligomerization reaction conditions to provide a second reactor effluent stream comprising gasoline and distillate boiling range hydrocarbons; flash separating the second reactor effluent stream into a separator vapor stream comprising a major portion of the hydrocarbons which later form the lean oil stream, and a major portion of the C/sub 4//sup -/ hydrocarbons and a separator liquid stream comprising the gasoline and distillate boiling range materials produced in the oligomerization reactor zone; fractionating the separator liquid stream in a first product debutanizer tower into a first debutanizer overhead vapor stream comprising C/sub 4//sup -/ hydrocarbons and a product debutanizer liquid bottoms stream comprising C/sub 5//sup +/ gasoline and distillate boiling range hydrocarbons.

  17. Black Carbon and Kerosene Lighting: An Opportunity for Rapid Action on Climate Change and Clean Energy for Development

    SciTech Connect (OSTI)

    Jacobson, Arne; Bond, Tami C.; Lam, Nicholoas L.; Hultman, Nathan

    2013-04-15

    Replacing inefficient kerosene lighting with electric lighting or other clean alternatives can rapidly achieve development and energy access goals, save money and reduce climate warming. Many of the 250 million households that lack reliable access to electricity rely on inefficient and dangerous simple wick lamps and other kerosene-fueled light sources, using 4 to 25 billion liters of kerosene annually to meet basic lighting needs. Kerosene costs can be a significant household expense and subsidies are expensive. New information on kerosene lamp emissions reveals that their climate impacts are substantial. Eliminating current annual black carbon emissions would provide a climate benefit equivalent to 5 gigatons of carbon dioxide reductions over the next 20 years. Robust and low-cost technologies for supplanting simple wick and other kerosene-fueled lamps exist and are easily distributed and scalable. Improving household lighting offers a low-cost opportunity to improve development, cool the climate and reduce costs.

  18. Prime Supplier Sales Volumes of Total Distillate and Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    173,043.6 158,219.8 161,019.5 160,952.8 1983-2016 East Coast (PADD 1) 40,666.3 42,844.3 45,654.4 44,996.6 47,613.3 53,426.4 1983-2016 New England (PADD 1A) 4,961.0 5,722.1 6,997.6 ...

  19. untitled

    U.S. Energy Information Administration (EIA) Indexed Site

    by PAD District and State (Thousand Gallons per Day) - Continued Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene No. 1 Distillate Propane (Consumer...

  20. X:\\L6046\\Data_Publication\\Pma\\current\\ventura\\pma.vp

    U.S. Energy Information Administration (EIA) Indexed Site

    by PAD District and State (Thousand Gallons per Day) - Continued Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene No. 1 Distillate Propane (Consumer...

  1. Catalytic distillation structure

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A. (Bellaire, TX)

    1984-01-01

    Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.

  2. 2014 EIA-821 SURVEY: LINE-BY-LINE REFERENCE GUIDE Kerosene

    Gasoline and Diesel Fuel Update (EIA)

    2014 EIA-821 SURVEY: LINE-BY-LINE REFERENCE GUIDE Kerosene Line No. Sold directly to consumers for: 1 Residential Use (Non-Farm): * Backup generator * Home heating and cooking * Personal lawn equipment * Exclude: Apartment buildings and Farmhouses 2 Commercial Use: * Apartment building * Bank * Casino * Church * College/School/Institution * Department/Retail store * Environmental clean-up service * Flushing fuel lines * Forestry service * Golf course * Government (federal, state, local, and

  3. Total Crude Oil and Petroleum Products Imports by Area of Entry

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Other Bonded Aircraft Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., Bonded, 15 ppm and under Distillate F.O., Other, 15 ppm and under ...

  4. Catalytic distillation structure

    DOE Patents [OSTI]

    Smith, L.A. Jr.

    1984-04-17

    Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.

  5. Stocks of Distillate Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    162,375 160,715 163,597 162,478 161,343 162,260 1982-2016 PADD 1 60,190 59,942 60,204 59,399 58,136 56,642 1990-2016 New England 11,575 11,397 10,756 10,699 10,851 11,119 1990-2016 ...

  6. Imports of Distillate Fuel Oil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    191 201 232 242 306 133 1982-2016 East Coast (PADD 1) 130 158 187 198 302 125 2004-2016 Midwest (PADD 2) 6 1 1 1 2 3 2004-2016 Gulf Coast (PADD 3) 53 34 0 41 0 0 2004-2016 Rocky Mountain (PADD 4) 0 0 0 0 0 0 2004-2016 West Coast (PADD 5) 2 7 44 2 2 5

  7. Kerosene vs. electric portable heaters: the question of risk

    SciTech Connect (OSTI)

    Leff, H.S.

    1984-03-01

    As home heating costs have risen, more and more people have turned to portable electric and kerosene space heaters. Kerosene heaters are cheaper to run than electric, but there are numerous health and safety issues - many of them unanswered - associated with their use. Among the issues discussed are indoor air pollution by sulfur dioxide, the life-cycle costs, the deposition of pollution on furniture, and the fire hazards.

  8. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Gasoline and Diesel Fuel Update (EIA)

    State Motor Gasoline Kerosene Distillate Fuel Oil a a Distillate stocks located in the "Northeast Heating Oil Reserve" are not included. For details see Appendix C. Notes: Stocks...

  9. Table A3. Refiner/Reseller Prices of Distillate and Residual...

    U.S. Energy Information Administration (EIA) Indexed Site

    A3. RefinerReseller Prices of Distillate and Residual Fuel Oils, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) Geographic Area Year No. 1 Distillate No. 2...

  10. Catalytic distillation process

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A. (Bellaire, TX)

    1982-01-01

    A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  11. Catalytic distillation process

    DOE Patents [OSTI]

    Smith, L.A. Jr.

    1982-06-22

    A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  12. Advanced Distillation Final Report

    SciTech Connect (OSTI)

    Maddalena Fanelli; Ravi Arora; Annalee Tonkovich; Jennifer Marco; Ed Rode

    2010-03-24

    The Advanced Distillation project was concluded on December 31, 2009. This U.S. Department of Energy (DOE) funded project was completed successfully and within budget during a timeline approved by DOE project managers, which included a one year extension to the initial ending date. The subject technology, Microchannel Process Technology (MPT) distillation, was expected to provide both capital and operating cost savings compared to conventional distillation technology. With efforts from Velocys and its project partners, MPT distillation was successfully demonstrated at a laboratory scale and its energy savings potential was calculated. While many objectives established at the beginning of the project were met, the project was only partially successful. At the conclusion, it appears that MPT distillation is not a good fit for the targeted separation of ethane and ethylene in large-scale ethylene production facilities, as greater advantages were seen for smaller scale distillations. Early in the project, work involved flowsheet analyses to discern the economic viability of ethane-ethylene MPT distillation and develop strategies for maximizing its impact on the economics of the process. This study confirmed that through modification to standard operating processes, MPT can enable net energy savings in excess of 20%. This advantage was used by ABB Lumus to determine the potential impact of MPT distillation on the ethane-ethylene market. The study indicated that a substantial market exists if the energy saving could be realized and if installed capital cost of MPT distillation was on par or less than conventional technology. Unfortunately, it was determined that the large number of MPT distillation units needed to perform ethane-ethylene separation for world-scale ethylene facilities, makes the targeted separation a poor fit for the technology in this application at the current state of manufacturing costs. Over the course of the project, distillation experiments were performed with the targeted mixture, ethane-ethylene, as well as with analogous low relative volatility systems: cyclohexane-hexane and cyclopentane-pentane. Devices and test stands were specifically designed for these efforts. Development progressed from experiments and models considering sections of a full scale device to the design, fabrication, and operation of a single-channel distillation unit with integrated heat transfer. Throughout the project, analytical and numerical models and Computational Fluid Dynamics (CFD) simulations were validated with experiments in the process of developing this platform technology. Experimental trials demonstrated steady and controllable distillation for a variety of process conditions. Values of Height-to-an-Equivalent Theoretical Plate (HETP) ranging from less than 0.5 inch to a few inches were experimentally proven, demonstrating a ten-fold performance enhancement relative to conventional distillation. This improvement, while substantial, is not sufficient for MPT distillation to displace very large scale distillation trains. Fortunately, parallel efforts in the area of business development have yielded other applications for MPT distillation, including smaller scale separations that benefit from the flowsheet flexibility offered by the technology. Talks with multiple potential partners are underway. Their outcome will also help determine the path ahead for MPT distillation.

  13. Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Marketing Annual 1999 421 Table A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) -...

  14. Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Marketing Annual 1995 467 Table A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) -...

  15. Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    56.9 57.3 73.4 65.7 March ... 105.0 100.6 59.0 59.6 69.0 68.0 April ... 111.4 107.5 66.0 65.3 80.5 75.1 May...

  16. Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    114.6 105.9 57.6 58.1 64.5 57.4 July ... NA 104.7 56.7 56.9 63.1 56.8 August ... 114.6 109.0 59.1 59.1 64.9 60.6...

  17. Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    88.4 45.3 45.9 65.3 47.5 April ... 99.3 92.8 46.6 46.7 56.7 46.1 May ... 101.1 97.3 46.7 47.0 56.0 45.6 June...

  18. Table 45. Refiner Volumes of Aviation Fuels, Kerosene, No. 1...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    November ... 58.5 122.9 10,242.7 4,001.7 129.0 1,736.0 W 75.6 92.0 3,959.8 December ... 49.3 104.6 10,847.5 4,159.8 218.2 2,071.9 4.1...

  19. Table 45. Refiner Volumes of Aviation Fuels, Kerosene, No. 1...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    19.9 367.6 3.5 19.6 W 1,073.2 1997 Average ... 6.4 5.6 1,243.6 312.9 12.0 207.5 1.4 7.1 3.0 732.8 See footnotes at end of table. Energy Information...

  20. Table 45. Refiner Volumes of Aviation Fuels, Kerosene, No. 1...

    Gasoline and Diesel Fuel Update (EIA)

    W 2.5 NA NA - W - W - 14.9 September ... W 2.5 156.3 22.2 W W - W W 22.0 October ... W 2.4 NA NA - W - W W W November...

  1. Table 45. Refiner Volumes of Aviation Fuels, Kerosene, No. 1...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 151.1 456.7 46,811.8 13,168.9 661.0 5,865.0 639.0 3,498.4 4,030.8 40,811.0 March ... 155.1 534.1 47,764.0 11,796.0 685.4...

  2. Prime Supplier Sales Volumes of Kerosene-Type Jet Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    57,919.6 58,355.5 58,987.8 54,710.2 1983-2016 East Coast (PADD 1) 15,477.9 14,467.8 14,394.6 14,389.9 14,686.9 13,927.3 1983-2016 New England (PADD 1A) 1,248.2 1,094.1 1,064.9 ...

  3. Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    99.6 92.9 52.3 52.2 67.4 56.6 February ... 99.8 93.2 52.2 52.0 62.8 55.2 March ... 99.0 93.1 50.5 50.1 59.4 52.8 April...

  4. Table 45. Refiner Volumes of Aviation Fuels, Kerosene, No. 1...

    U.S. Energy Information Administration (EIA) Indexed Site

    54.8 419.0 45,096.6 8,762.5 604.1 4,549.2 615.6 3,730.7 3,926.0 38,286.0 February ... 179.4 498.6 44,645.3 9,079.3 849.8 4,868.6 600.3 2,983.7 4,000.8...

  5. Prime Supplier Sales Volumes of Kerosene-Type Jet Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    East Coast (PADD 1) 15,898.2 15,821.2 15,588.0 15,512.9 16,022.8 15,637.3 1983-2014 New England (PADD 1A) 1,132.7 1,146.9 1,177.7 1,153.8 1,142.7 1,073.9 1983-2014...

  6. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Separate streams of gasoline, kerosene, and diesel fuel may also be obtained, either via selective condensation of each type of fuel, or via later distillation of the combined ...

  7. Air-pollutant emissions from kerosene space heaters

    SciTech Connect (OSTI)

    Leaderer, B.P.

    1982-12-10

    Air pollutant emissions from portable convective and radiant kerosene space heaters were measured in an environmental chamber. Emission factors for nitrogen oxides, sulfur dioxide, carbon monoxide, carbon dioxide, and oxygen depletion are presented. The data suggest that the use of such heaters in residences can result in exposures to air pollutants in excess of ambient air quality standards and in some cases in excess of occupational health standards.

  8. West Coast (PADD 5) Total Crude Oil and Products Imports

    Gasoline and Diesel Fuel Update (EIA)

    Reformulated Gasoline Blend. Comp. Conventional Gasoline Blend. Comp. MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas

  9. West Coast (PADD 5) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Reformulated Gasoline Blend. Comp. Conventional Gasoline Blend. Comp. MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas

  10. Evaluation of Biodiesel Fuels from Supercritical Fluid Processing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processing with the Advanced Distillation Curve Method Evaluation of Biodiesel Fuels from Supercritical Fluid Processing with the Advanced Distillation Curve Method Supercritical ...

  11. Connecticut Prices, Sales Volumes & Stocks

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    - - - - - - 1986-2015 Kerosene-Type Jet Fuel (Refiner Sales) W W W W W W 1984-2015 Kerosene (Refiner Sales) - - - - - - 1984-2015 No. 1 Distillate (Refiner Sales) - - - - - -...

  12. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil Liquefied Petroleum Gases Propane/Propylene Normal Butane/Butylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending Components Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm Sulfur and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Sulfur

  13. Atmospheric Crude Oil Distillation Operable Capacity

    Gasoline and Diesel Fuel Update (EIA)

    (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum

  14. Distributive Distillation Enabled by Microchannel Process Technology...

    Office of Scientific and Technical Information (OSTI)

    distillation for new plants. A design concept for a modular microchannel distillation unit was developed in Task 3. In Task 4, Ultrasonic Additive Machining (UAM) was evaluated...

  15. American Distillation Inc | Open Energy Information

    Open Energy Info (EERE)

    Distillation Inc Jump to: navigation, search Name: American Distillation Inc. Place: Leland, North Carolina Zip: 28451 Product: Biodiesel producer in North Carolina. References:...

  16. Pollutant emissions from portable kerosene-fired space heaters

    SciTech Connect (OSTI)

    Traynor, G.W.; Allen, J.R.; Apte, M.G.; Girman, J.R.; Hollowell, C.D.

    1983-06-01

    Indoor use of unvented combustion appliances is known to cause an increase in indoor air pollutants. We conducted laboratory tests on two radiant and two convective portable kerosene-fired space heaters to identify the pollutants they emit and to determine their emission rates. Results show that carbon dioxide, carbon monoxide, nitric oxide, nitrogen dioxide, and formaldehyde were emitted by both types of heaters and that the radiant heaters and one of the convective heaters also emitted trace amounts of fine particles. When such heaters are operated for 1 h in a 27-m/sup 3/ chamber with 0.4 air changes per hour, the resultant CO/sub 2/ concentrations are well above the U.S. occupational standard, and NO/sub 2/ concentrations are well above California's short-term outdoor standard.

  17. U.S. Sales to End Users Refiner Sales Volumes of Aviation Fuels...

    U.S. Energy Information Administration (EIA) Indexed Site

    Kerosene-Type Jet Fuel 37,954.6 34,775.2 33,272.0 32,545.7 31,445.0 31,339.6 1983-2014 Propane (Consumer Grade) 3,671.1 3,871.2 4,457.3 5,556.4 5,266.8 4,854.1 1983-2014 Kerosene...

  18. Distillation Column Flooding Predictor

    SciTech Connect (OSTI)

    George E. Dzyacky

    2010-11-23

    The Flooding Predictor™ is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictor™ works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillation columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the column’s approach to flood. But column delta-pressure is more an inference of the column’s approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much “left on the table” when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictor™, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid/vapor traffic that produce increased contact area and lead to substantial increases in separation efficiency – which translates to a 10% increase in energy efficiency on a BTU/bbl basis. The Flooding Predictor™ operates on the principle that between five to sixty minutes in advance of a flooding event, certain column variables experience an oscillation, a pre-flood pattern. The pattern recognition system of the Flooding Predictor™ utilizes the mathematical first derivative of certain column variables to identify the column’s pre-flood pattern(s). This pattern is a very brief, highly repeatable, simultaneous movement among the derivative values of certain column variables. While all column variables experience negligible random noise generated from the natural frequency of the process, subtle pre-flood patterns are revealed among sub-sets of the derivative values of column variables as the column approaches its hydraulic limit. The sub-set of column variables that comprise the pre-flood pattern is identified empirically through in a two-step process. First, 2ndpoint’s proprietary off-line analysis tool is used to mine historical data for pre-flood patterns. Second, the column is flood-tested to fine-tune the pattern recognition for commissioning. Then the Flooding Predictor™ is implemented as closed-loop advanced control strategy on the plant’s distributed control system (DCS), thus automating control of the column at its hydraulic limit.

  19. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil Liquefied Petroleum Gases Propane/Propylene Normal Butane/Butylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending Components Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm Sulfur and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Sulfur

  20. Distillate Fuel Oil Days of Supply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weekly Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 01/29/16 02/05/16 02/12/16 02/19/16 02/26/16 03/04/16 View History U.S. 45.5 44.8 45.8 46.3 47.7 45.6 1991

  1. Product Supplied for Distillate Fuel Oil

    Gasoline and Diesel Fuel Update (EIA)

    3,162 3,482 3,704 3,364 3,706 3,870 1991

  2. Total Adjusted Sales of Distillate Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 55,664,448 58,258,830 59,769,444 57,512,994 58,675,008 61,890,990 1984-2014 East Coast (PADD 1) 18,219,180 17,965,794 17,864,868 16,754,388

  3. Total Sales of Distillate Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 54,100,092 56,093,645 57,082,558 57,020,840 58,107,155 60,827,930 1984-2014 East Coast (PADD 1) 17,821,973 18,136,965 17,757,005 17,382,566

  4. Distillate Fuel Oil Sales for Residential Use

    U.S. Energy Information Administration (EIA) Indexed Site

    4,103,881 3,930,517 3,625,747 3,473,310 3,536,111 3,802,848 1984-2014 East Coast (PADD 1) 3,670,994 3,545,676 3,274,963 3,183,878 3,240,215 3,501,957 1984-2014 New England (PADD...

  5. Distillate Fuel Oil Sales for Farm Use

    U.S. Energy Information Administration (EIA) Indexed Site

    660,024 2,928,175 2,942,436 3,031,878 3,026,611 3,209,391 1984-2014 East Coast (PADD 1) 333,748 454,160 375,262 382,639 404,799 401,686 1984-2014 New England (PADD 1A) 13,909...

  6. Distillate Fuel Oil Sales for Railroad Use

    U.S. Energy Information Administration (EIA) Indexed Site

    2,759,140 2,974,641 3,121,150 3,118,150 3,369,781 3,670,338 1984-2014 East Coast (PADD 1) 459,324 482,929 514,418 492,156 460,066 480,024 1984-2014 New England (PADD 1A) 43,763...

  7. Distillate Fuel Oil Sales for Industrial Use

    U.S. Energy Information Administration (EIA) Indexed Site

    2,159,428 2,045,164 2,179,953 2,325,503 2,271,056 2,417,898 1984-2014 East Coast (PADD 1) 597,048 560,403 568,024 568,997 559,886 600,949 1984-2014 New England (PADD 1A) 60,994...

  8. Distillate Fuel Oil Sales for Military Use

    U.S. Energy Information Administration (EIA) Indexed Site

    43,728 243,242 246,243 142,696 146,356 220,601 1984-2014 East Coast (PADD 1) 71,878 63,847 74,030 44,821 42,646 50,277 1984-2014 New England (PADD 1A) 5,915 5,174 6,420 3,359 2,775...

  9. Distillate Fuel Oil Sales for Commercial Use

    U.S. Energy Information Administration (EIA) Indexed Site

    785,246 2,738,304 2,715,335 2,557,543 2,471,897 2,543,778 1984-2014 East Coast (PADD 1) 1,565,353 1,528,778 1,433,828 1,286,053 1,295,125 1,348,704 1984-2014 New England (PADD 1A)...

  10. Distillation process using microchannel technology

    DOE Patents [OSTI]

    Tonkovich, Anna Lee (Dublin, OH); Simmons, Wayne W. (Dublin, OH); Silva, Laura J. (Dublin, OH); Qiu, Dongming (Carbondale, IL); Perry, Steven T. (Galloway, OH); Yuschak, Thomas (Dublin, OH); Hickey, Thomas P. (Dublin, OH); Arora, Ravi (Dublin, OH); Smith, Amanda (Galloway, OH); Litt, Robert Dwayne (Westerville, OH); Neagle, Paul (Westerville, OH)

    2009-11-03

    The disclosed invention relates to a distillation process for separating two or more components having different volatilities from a liquid mixture containing the components. The process employs microchannel technology for effecting the distillation and is particularly suitable for conducting difficult separations, such as the separation of ethane from ethylene, wherein the individual components are characterized by having volatilities that are very close to one another.

  11. Effects on carbon monoxide levels in mobile homes using unvented kerosene heaters for residential heating

    SciTech Connect (OSTI)

    Williams, R.; Walsh, D.; White, J.; Jackson, M.; Mumford, J.

    1992-01-01

    Carbon monoxide (CO) emission levels were continuously monitored in 8 mobile trailer homes less than 10 years old. These homes were monitored in an US EPA study on indoor air quality as affected by unvented portable kerosene heaters. Respondents were asked to operate their heaters in a normal fashion. CO, air exchange and temperature values were measured during the study in each home. Results indicate that consumers using unvented kerosene heaters may be unknowingly exposed to high CO levels without taking proper precautions.

  12. A two-step chemical scheme for kerosene-air premixed flames

    SciTech Connect (OSTI)

    Franzelli, B.; Riber, E.; Sanjose, M. [CERFACS, CFD Team, 42 Avenue G. Coriolis, 31057 Toulouse Cedex 01 (France); Poinsot, T. [IMFT-UMR 5502, allee du Professeur Camille Soula, 31400 Toulouse (France)

    2010-07-15

    A reduced two-step scheme (called 2S-KERO-BFER) for kerosene-air premixed flames is presented in the context of Large Eddy Simulation of reacting turbulent flows in industrial applications. The chemical mechanism is composed of two reactions corresponding to the fuel oxidation into CO and H{sub 2}O, and the CO - CO{sub 2} equilibrium. To ensure the validity of the scheme for rich combustion, the pre-exponential constants of the two reactions are tabulated versus the local equivalence ratio. The fuel and oxidizer exponents are chosen to guarantee the correct dependence of laminar flame speed with pressure. Due to a lack of experimental results, the detailed mechanism of Dagaut composed of 209 species and 1673 reactions, and the skeletal mechanism of Luche composed of 91 species and 991 reactions have been used to validate the reduced scheme. Computations of one-dimensional laminar flames have been performed with the 2S{sub K}ERO{sub B}FER scheme using the CANTERA and COSILAB softwares for a wide range of pressure ([1; 12] atm), fresh gas temperature ([300; 700] K), and equivalence ratio ([0.6; 2.0]). Results show that the flame speed is correctly predicted for the whole range of parameters, showing a maximum for stoichiometric flames, a decrease for rich combustion and a satisfactory pressure dependence. The burnt gas temperature and the dilution by Exhaust Gas Recirculation are also well reproduced. Moreover, the results for ignition delay time are in good agreement with the experiments. (author)

  13. Evaluation of Exxon donor solvent full-range distillate as a utility boiler

    Office of Scientific and Technical Information (OSTI)

    fuel. Final report (Technical Report) | SciTech Connect Technical Report: Evaluation of Exxon donor solvent full-range distillate as a utility boiler fuel. Final report Citation Details In-Document Search Title: Evaluation of Exxon donor solvent full-range distillate as a utility boiler fuel. Final report The use of Exxon Donor Solvent (EDS) as a utility boiler fuel was evaluated at Southern California Edison Company's Highgrove Unit 4, a Combustion Engineering 44.5 net Mw wall-fired boiler.

  14. Corrosion inhibition for distillation apparatus

    DOE Patents [OSTI]

    Baumert, Kenneth L. (Emmaus, PA); Sagues, Alberto A. (Lexington, KY); Davis, Burtron H. (Georgetown, KY); Schweighardt, Frank K. (Upper Macungie, PA)

    1985-01-01

    Tower material corrosion in an atmospheric or sub-atmospheric distillation tower in a coal liquefaction process is reduced or eliminated by subjecting chloride-containing tray contents to an appropriate ion-exchange resin to remove chloride from such tray contents materials.

  15. Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...

    Gasoline and Diesel Fuel Update (EIA)

    - W 73.5 See footnotes at end of table. A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present Energy Information Administration ...

  16. untitled

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) Geographic Area Month Kerosene No. 1 Distillate No. 2 Distillate Total Distillate and Kerosene No. 2 Fuel Oil No. 2 Diesel Fuel No. 2 Distillate Ultra Low-Sulfur Low-Sulfur High-Sulfur United States January ............................... 2,354.4 3,157.1 29,853.1 103,450.6 21,755.5 2,492.0 157,551.2 164,090.7 February ............................. 1,814.0 2,018.0 25,136.2

  17. Distributive Distillation Enabled by Microchannel Process Technology

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Distributive Distillation Enabled by Microchannel Process Technology Citation Details In-Document Search Title: Distributive Distillation Enabled by Microchannel Process Technology The application of microchannel technology for distributive distillation was studied to achieve the Grand Challenge goals of 25% energy savings and 10% return on investment. In Task 1, a detailed study was conducted and two distillation systems were identified

  18. Midwest (PADD 2) Total Crude Oil and Products Imports

    Gasoline and Diesel Fuel Update (EIA)

    Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur

  19. Midwest (PADD 2) Total Crude Oil and Products Imports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur

  20. ITP Chemicals: Hybripd Separations/Distillation Technology. Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybripd SeparationsDistillation Technology. Research Opportunities for Energy and Emissions Reduction ITP Chemicals: Hybripd SeparationsDistillation Technology. Research ...

  1. Effect of Narrow Cut Oil Shale Distillates on HCCI Engine Performance

    SciTech Connect (OSTI)

    Eaton, Scott J; Bunting, Bruce G; Lewis Sr, Samuel Arthur; Fairbridge, Craig

    2009-01-01

    In this investigation, oil shale crude obtained from the Green River Formation in Colorado using Paraho Direct retorting was mildly hydrotreated and distilled to produce 7 narrow boiling point fuels of equal volumes. The resulting derived cetane numbers ranged between 38.3 and 43.9. Fuel chemistry and bulk properties strongly correlated with boiling point.

  2. untitled

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Refiner Volumes of Aviation Fuels, Kerosene, No. 1 Distillate, and Propane (Consumer Grade) by PAD District and State (Thousand Gallons per Day) Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene No. 1 Distillate Propane (Consumer Grade) Sales to End Users Sales for Resale Sales to End Users Sales for Resale Sales to End Users Sales for Resale Sales to End Users Sales for Resale Sales to End Users Sales for Resale United States January ........................... 125.5 284.1

  3. Gulf Coast (PADD 3) Total Crude Oil and Products Imports

    Gasoline and Diesel Fuel Update (EIA)

    MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31

  4. Gulf Coast (PADD 3) Total Crude Oil and Products Imports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31

  5. Rocky Mountain (PADD 4) Total Crude Oil and Products Imports

    Gasoline and Diesel Fuel Update (EIA)

    Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha

  6. Total Crude Oil and Products Imports from All Countries

    U.S. Energy Information Administration (EIA) Indexed Site

    Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other

  7. Rocky Mountain (PADD 4) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha

  8. Absorption and scattering of laser radiation by the diffusion flame of aviation kerosene

    SciTech Connect (OSTI)

    Gvozdev, S V; Glova, A F; Dubrovskii, V Yu; Durmanov, S T; Krasyukov, A G; Lysikov, A Yu; Smirnov, G V; Solomakhin, V B

    2012-04-30

    The absorption coefficient of the radiation of a repetitively pulsed Nd : YAG laser with an average output power up to 6 W and of a cw ytterbium optical fibre laser with an output power up to 3 kW was measured in the diffusion flame of aviation kerosene burning on a free surface in the atmospheric air. The absorption coefficient as a function of flame length, radiation power, and radiation intensity, which was varied in the {approx}10{sup 3} - 5 Multiplication-Sign 10{sup 4} W cm{sup -2} range, was obtained for two distances (1 and 2 cm) between the laser beam axis and the surface. The coefficient of radiation absorption by kerosene flame was compared with that in ethanol and kerosene - ethanol mixture flames. The radiation power scattered by a small segment of the kerosene flame irradiated by Nd : YAG laser radiation was measured as a function of longitudinal and azimuthal coordinates. An estimate was made of the total scattered radiation power.

  9. The Northeast heating fuel market: Assessment and options

    SciTech Connect (OSTI)

    2000-07-01

    In response to a Presidential request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of tie energy markets in the Northeast. In addition, this report explores the potential for nonresidential users to move away from distillate fuel oil and how this might impact future prices, and discusses conversion of distillate fuel oil users to other fuels over the next 5 years. Because the President's and Secretary's request focused on converting factories and other large-volume users of mostly high-sulfur distillate fuel oil to other fuels, transportation sector use of low-sulfur distillate fuel oil is not examined here.

  10. Distributive Distillation Enabled by Microchannel Process Technology...

    Office of Scientific and Technical Information (OSTI)

    A design concept for a modular microchannel distillation unit was developed in Task 3. In Task 4, Ultrasonic Additive Machining (UAM) was evaluated as a manufacturing method for ...

  11. Distributive Distillation Enabled by Microchannel Process Technology...

    Office of Scientific and Technical Information (OSTI)

    Both manufacturing approaches were experimentally tested to confirm their validity. The conceptual design of the microchannel distillation unit (Task 3) was combined with the ...

  12. Reactive Distillation for Esterification of Bio-based Organic Acids

    SciTech Connect (OSTI)

    Fields, Nathan; Miller, Dennis J.; Asthana, Navinchandra S.; Kolah, Aspi K.; Vu, Dung; Lira, Carl T.

    2008-09-23

    The following is the final report of the three year research program to convert organic acids to their ethyl esters using reactive distillation. This report details the complete technical activities of research completed at Michigan State University for the period of October 1, 2003 to September 30, 2006, covering both reactive distillation research and development and the underlying thermodynamic and kinetic data required for successful and rigorous design of reactive distillation esterification processes. Specifically, this project has led to the development of economical, technically viable processes for ethyl lactate, triethyl citrate and diethyl succinate production, and on a larger scale has added to the overall body of knowledge on applying fermentation based organic acids as platform chemicals in the emerging biorefinery. Organic acid esters constitute an attractive class of biorenewable chemicals that are made from corn or other renewable biomass carbohydrate feedstocks and replace analogous petroleum-based compounds, thus lessening U.S. dependence on foreign petroleum and enhancing overall biorefinery viability through production of value-added chemicals in parallel with biofuels production. Further, many of these ester products are candidates for fuel (particularly biodiesel) components, and thus will serve dual roles as both industrial chemicals and fuel enhancers in the emerging bioeconomy. The technical report from MSU is organized around the ethyl esters of four important biorenewables-based acids: lactic acid, citric acid, succinic acid, and propionic acid. Literature background on esterification and reactive distillation has been provided in Section One. Work on lactic acid is covered in Sections Two through Five, citric acid esterification in Sections Six and Seven, succinic acid in Section Eight, and propionic acid in Section Nine. Section Ten covers modeling of ester and organic acid vapor pressure properties using the SPEAD (Step Potential Equilibrium and Dynamics) method.

  13. Evaluation of Biodiesel Fuels from Supercritical Fluid Processing with the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Distillation Curve Method | Department of Energy Biodiesel Fuels from Supercritical Fluid Processing with the Advanced Distillation Curve Method Evaluation of Biodiesel Fuels from Supercritical Fluid Processing with the Advanced Distillation Curve Method Supercritical transesterification processing permits efficient fuel system and combustion chamber designs to optimize fuel utilization in diesel engines., PDF icon p-01_anitescu.pdf More Documents & Publications Preparation,

  14. "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b...

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Relative Standard Errors for Table 5.6;" " Unit: Percents." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG...

  15. "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Relative Standard Errors for Table 5.4;" " Unit: Percents." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net Demand","Residual","and",,"LPG...

  16. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  17. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  18. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels Research Team Members Key Contacts Fuels Gasification will likely be the cornerstone of future energy and chemical processes due to its flexibility to accommodate numerous feedstocks such as coal, biomass, and natural gas, and to produce a variety of products, including heat and specialty chemicals. Advanced integrated gasification combined cycle schemes require the production of clean hydrogen to fuel innovative combustion turbines and fuel cells. This research will focus on development

  19. Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Appendix A. Comparison of fuel detail for the State Energy Data System and the annual series appearing in the Monthly Energy Review data system Energy Source State Energy Data System Monthly Energy Review Consumption Sector Category Fuel Detail Fuel Detail Residential Coal Coal Coal Residential Natural Gas Natural Gas Natural Gas Residential Petroleum Distillate Fuel Distillate Fuel Residential Petroleum Kerosene Kerosene Residential Petroleum LPG LPG Commercial Coal Coal Coal Commercial

  20. New Design Methods and Algorithms for Multi-component Distillation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Methods and Algorithms for Multi-component Distillation Processes New Design Methods and Algorithms for Multi-component Distillation Processes PDF icon multicomponent.pdf ...

  1. Prices of Refiner Kerosene-Type Jet Fuel Sales to End Users

    Gasoline and Diesel Fuel Update (EIA)

    694 1.516 1.465 1.473 1.424 1.233 1975-2015 East Coast (PADD 1) 1.670 1.498 1.476 1.476 1.429 1.231 1983-2015 New England (PADD 1A) W W 1.550 1.584 W W 1983-2015 Connecticut W W W NA NA W 1984-2015 Maine W W W W W W 1984-2015 Massachusetts W W W W W W 1984-2015 New Hampshire W W W W W W 1984-2015 Rhode Island W W W W W W 1984-2015 Vermont W W W W W W 1984-2015 Central Atlantic (PADD 1B) 1.658 1.487 1.468 1.466 1.419 1.222 1983-2015 Delaware - - - - - - 1984-2015 District of Columbia - - - - - -

  2. Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    36,092.6 34,767.7 33,201.0 32,608.3 32,500.6 32,936.1 1983-2015 East Coast (PADD 1) 6,571.5 6,468.9 5,771.2 5,551.7 5,717.9 6,223.6 1983-2015 New England (PADD 1A) W W 150.1 160.1 W W 1983-2015 Connecticut W W W NA NA W 1984-2015 Maine W W W W W W 1984-2015 Massachusetts W W W W W W 1984-2015 New Hampshire W W W W W W 1984-2015 Rhode Island W W W W W W 1984-2015 Vermont W W W W W W 1984-2015 Central Atlantic (PADD 1B) 4,566.5 4,599.5 4,379.6 4,132.3 4,165.5 3,921.0 1983-2015 Delaware - - - - - -

  3. Prices of Refiner Kerosene-Type Jet Fuel Sales to End Users

    U.S. Energy Information Administration (EIA) Indexed Site

    2009 2010 2011 2012 2013 2014 View History U.S. 1.704 2.201 3.054 3.104 2.979 2.772 1978-2014 East Coast (PADD 1) 1.707 2.201 3.064 3.126 2.993 2.803 1983-2014 New England (PADD...

  4. Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    1983-2014 East Coast (PADD 1) 9,041.1 8,730.4 7,785.9 6,813.2 6,853.9 5,933.9 1983-2014 New England (PADD 1A) 766.0 790.7 679.4 373.7 284.8 W 1983-2014 Connecticut W W W W W W...

  5. Minimizing corrosion in coal liquid distillation

    DOE Patents [OSTI]

    Baumert, Kenneth L.; Sagues, Alberto A.; Davis, Burtron H.

    1985-01-01

    In an atmospheric distillation tower of a coal liquefaction process, tower materials corrosion is reduced or eliminated by introduction of boiling point differentiated streams to boiling point differentiated tower regions.

  6. Distributive Distillation Enabled by Microchannel Process Technology

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Distributive Distillation Enabled by Microchannel Process Technology Citation Details In-Document Search Title: Distributive Distillation Enabled by Microchannel Process Technology × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information

  7. Emergency fuels utilization guidebook. Alternative Fuels Utilization Program

    SciTech Connect (OSTI)

    Not Available

    1980-08-01

    The basic concept of an emergency fuel is to safely and effectively use blends of specification fuels and hydrocarbon liquids which are free in the sense that they have been commandeered or volunteered from lower priority uses to provide critical transportation services for short-duration emergencies on the order of weeks, or perhaps months. A wide variety of liquid hydrocarbons not normally used as fuels for internal combustion engines have been categorized generically, including limited information on physical characteristics and chemical composition which might prove useful and instructive to fleet operators. Fuels covered are: gasoline and diesel fuel; alcohols; solvents; jet fuels; kerosene; heating oils; residual fuels; crude oils; vegetable oils; gaseous fuels.

  8. Volatility of Gasoline and Diesel Fuel Blends for Supercritical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preparation, Injection and Combustion of Supercritical Fluids Evaluation of Biodiesel Fuels from Supercritical Fluid Processing with the Advanced Distillation Curve Method Diesel ...

  9. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    5 Fuel Oil and Kerosene Sales, 1984-2010 Total by Fuel Distillate Fuel Oil by Selected End Use Residual Fuel Oil by Major End Use Kerosene by Major End Use 154 U.S. Energy Information Administration / Annual Energy Review 2011 Source: Table 5.15. On-Highway Diesel Commercial Railroad 1985 1990 1995 2000 2005 2010 0 1 2 3 4 5 Million Barrels per Day Residential Distillate Fuel Oil 1985 1990 1995 2000 2005 2010 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Million Barrels per Day Kerosene Residual Fuel Oil Vessel

  10. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  11. Word Pro - S3

    Gasoline and Diesel Fuel Update (EIA)

    0 U.S. Energy Information Administration / Monthly Energy Review February 2016 Table 3.8a Heat Content of Petroleum Consumption: Residential and Commercial Sectors (Trillion Btu) Residential Sector Commercial Sector a Distillate Fuel Oil Kerosene Liquefied Petroleum Gases Total Distillate Fuel Oil Kerosene Liquefied Petroleum Gases Motor Gasoline b Petroleum Coke Residual Fuel Oil Total 1950 Total ........................ 829 347 146 1,322 262 47 39 100 NA 424 872 1955 Total

  12. U.S. Total No. 2 Distillate Prices by Sales Type

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History No. 2 Distillate Sales to End Users, Average - - - - - - 1983-2015 Residential - - - - - - 1983-2015 Commercial/Institutional - - - - - - 1983-2015 Industrial - - - - - - 1983-2015 Through Retail Outlets - - - - - - 1983-2015 Other End Users - - - - - - 1983-2015 Sales for Resale - - - - - - 1983-2015 No. 2 Diesel Fuel Sales to End Users, Average - - - - - - 1994-2015 Commercial/Institutional - - - - - - 1994-2015 Industrial - - - - - -

  13. Studies on the stripping of cerium from the loaded tbp-kerosene solution

    SciTech Connect (OSTI)

    Rizk, S.E.; Abdel Rahman, N.; Daoud, J.A.; Aly, H.F.

    2008-07-01

    The reductive stripping of Ce(IV) from the loaded organic phase (30% TBP in kerosene) was investigated, using two stripping agents, EDTA and H{sub 2}O{sub 2}, in nitric acid. The results are compared to determine the optimum conditions for the reduction of Ce(IV) in the organic phase to Ce(III) in the aqueous phase. For each of the two stripping agents, the effect of different parameters affecting the reduction process was investigated: stripping-agent concentration, nitric acid concentration, phase ratio, shaking time, and temperature. The results are compared and discussed in terms of the conditions required for maximum reductive stripping of Ce(IV). (authors)

  14. Winters fuels report

    SciTech Connect (OSTI)

    1995-10-27

    The outlook for distillate fuel oil this winter is for increased demand and a return to normal inventory patterns, assuming a resumption of normal, cooler weather than last winter. With industrial production expected to grow slightly from last winter`s pace, overall consumption is projected to increase 3 percent from last winter, to 3.4 million barrels per day during the heating season (October 1, 1995-March 31, 1996). Much of the supply win come from stock drawdowns and refinery production. Estimates for the winter are from the Energy Information Administration`s (EIA) 4th Quarter 1995 Short-Tenn Energy Outlook (STEO) Mid-World Oil Price Case forecast. Inventories in place on September 30, 1995, of 132 million barrels were 9 percent below the unusually high year-earlier level. Inventories of high-sulfur distillate fuel oil, the principal type used for heating, were 13 percent lower than a year earlier. Supply problems are not anticipated because refinery production and the ready availability of imports should be adequate to meet demand. Residential heating off prices are expected to be somewhat higher than last winter`s, as the effects of lower crude oil prices are offset by lower distillate inventories. Heating oil is forecast to average $0.92 per gallon, the highest price since the winter of 1992-93. Diesel fuel (including tax) is predicted to be slightly higher than last year at $1.13 per gallon. This article focuses on the winter assessment for distillate fuel oil, how well last year`s STEO winter outlook compared to actual events, and expectations for the coming winter. Additional analyses include regional low-sulfur and high-sulfur distillate supply, demand, and prices, and recent trends in distillate fuel oil inventories.

  15. New Mexico Sales of Distillate Fuel Oil by End Use

    Gasoline and Diesel Fuel Update (EIA)

    09,709 554,352 574,557 608,490 621,430 669,923 1984-2014 Residential 55 46 37 27 72 53 1984-2014 Commercial 11,030 9,435 9,609 9,145 9,112 12,114 1984-2014 Industrial 33,804 24,429 27,110 31,316 32,029 32,917 1984-2014 Oil Company 9,871 1,705 2,127 5,857 11,218 27,016 1984-2014 Farm 11,278 14,821 10,955 12,816 15,784 11,752 1984-2014 Electric Power 4,321 4,000 1,689 5,155 4,816 3,826 1984-2014 Railroad 245 1,780 1,707 19,123 38,543 45,446 1984-2014 Vessel Bunkering 0 0 0 0 0 0 1984-2014

  16. East Coast (PADD 1) Distillate Fuel Oil Imports

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History All Countries 104 104 76 92 133 130 1981-2015 Persian Gulf 1995-2015 OPEC* 10 1993-2015 Algeria 1994-2010 Angola 1995-2003 Kuwait 1995-2012 Libya 2013-2013 Nigeria 10 1993-2015 Qatar 1995-2015 Saudi Arabia 1995-2015 United Arab Emirates 1995-2014 Venezuela 1993-2014 Non OPEC* 104 104 76 92 133 120 1993-2015 Argentina 1995-2015 Aruba 2005-2012 Bahamas 1994-2014 Bahrain 1995-2007 Belarus 2006-2009 Belgium 1995-2015 Brazil 1994-2014 Cameroon

  17. Alabama Sales of Distillate Fuel Oil by End Use

    Gasoline and Diesel Fuel Update (EIA)

    987,571 1,038,133 1,094,359 1,132,711 1,047,981 1,027,777 1984-2014 Residential 3,971 4,895 432 750 639 722 1984-2014 Commercial 39,802 46,009 48,475 46,654 30,536 27,874 1984-2014 Industrial 90,659 77,542 81,120 120,347 77,119 65,322 1984-2014 Oil Company 0 328 1,035 2,640 2,929 2,985 1984-2014 Farm 17,882 19,881 24,518 24,503 24,651 20,459 1984-2014 Electric Power 8,276 10,372 22,490 9,375 6,514 10,071 1984-2014 Railroad 44,546 42,465 97,177 125,439 63,570 56,873 1984-2014 Vessel Bunkering

  18. Texas Sales of Distillate Fuel Oil by End Use

    Gasoline and Diesel Fuel Update (EIA)

    ,329,790 5,693,270 6,373,078 6,688,629 6,914,481 7,837,118 1984-2014 Residential 67 28 127 102 16 59 1984-2014 Commercial 136,419 100,886 184,312 173,303 142,268 132,601 1984-2014 Industrial 189,981 197,024 233,292 241,601 240,179 270,760 1984-2014 Oil Company 210,865 316,523 541,640 736,186 679,737 886,957 1984-2014 Farm 201,769 207,183 243,170 216,915 190,572 222,849 1984-2014 Electric Power 19,495 15,646 23,156 20,022 20,706 24,700 1984-2014 Railroad 429,026 467,128 498,006 483,096 504,823

  19. Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...

    U.S. Energy Information Administration (EIA) Indexed Site

    3,856.4 26,071.0 56,502.9 1,351.8 60,057.4 April ... 1,030.8 157.5 20,855.8 21,528.9 3,655.2 25,184.0 46,039.8 817.2 48,045.3 May...

  20. Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...

    U.S. Energy Information Administration (EIA) Indexed Site

    December ... 3,872.6 4,684.1 35,790.4 88,601.0 20,217.6 108,818.6 144,609.0 1,089.2 154,255.0 1998 Average ... 2,643.4 1,854.8...

  1. Florida Sales of Distillate Fuel Oil by End Use

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    840,100 2,027,012 1,914,621 1,918,039 2,023,650 2,038,923 1984-2014 Residential 1,551 1,820 1,085 572 451 728 1984-2014 Commercial 126,292 113,313 100,791 104,860 113,873 110,082 1984-2014 Industrial 36,512 43,088 35,652 32,087 31,458 42,894 1984-2014 Oil Company 236 2,255 4,038 4,359 4,427 3,802 1984-2014 Farm 86,642 204,866 109,177 103,325 122,563 98,418 1984-2014 Electric Power 31,161 43,675 35,577 16,137 16,244 12,182 1984-2014 Railroad 33,651 42,353 46,461 66,711 93,844 92,435 1984-2014

  2. Refiner and Blender Net Production of Distillate Fuel Oil

    Gasoline and Diesel Fuel Update (EIA)

    4,357 4,663 4,438 4,801 4,744 4,781 1982-2016 PADD 1 285 296 299 317 304 239 1990-2016 PADD 2 1,067 1,050 993 1,123 1,050 1,000 1990-2016 PADD 3 2,342 2,575 2,404 2,568 2,568 2,710 1990-2016 PADD 4 142 175 183 205 204 215 1990-2016 PADD 5 522 566 558 588 618 617 1990

  3. Louisiana Sales of Distillate Fuel Oil by End Use

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    514,474 1,744,771 1,873,769 1,488,986 1,405,392 1,375,580 1984-2014 Residential 1,036 140 34 53 84 89 1984-2014 Commercial 59,689 38,695 39,659 36,840 17,590 21,197 1984-2014 Industrial 21,826 26,063 20,770 33,052 31,744 33,670 1984-2014 Oil Company 243,789 319,394 364,261 245,303 183,801 178,810 1984-2014 Farm 42,624 44,027 49,985 48,462 40,785 46,134 1984-2014 Electric Power 4,321 4,775 5,464 2,733 4,610 4,826 1984-2014 Railroad 18,345 25,425 32,515 28,110 39,578 45,790 1984-2014 Vessel

  4. Distillate Fuel Oil Refinery, Bulk Terminal, and Natural Gas...

    Gasoline and Diesel Fuel Update (EIA)

    07,750 111,024 120,511 117,143 111,235 123,812 1993-2015 PAD District 1 35,684 41,109 47,692 48,247 50,887 55,286 1993-2015 Connecticut 1,693 1,981 2,714 3,388 3,960 4,509...

  5. Stocks of Distillate Fuel Oil 15 ppm Sulfur and Under

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    128,930 135,683 2004-2016 PADD 1 48,011 47,644 49,624 47,947 48,127 49,490 2004-2016 New England 3,841 4,379 4,534 4,438 5,029 5,888 2004-2016 Central Atlantic 31,859 30,793...

  6. Stocks of Distillate Fuel Oil Greater Than 500 ppm Sulfur

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15,747 15,675 15,436 1993-2016 PADD 1 9,594 10,156 10,022 10,045 9,893 9,629 1993-2016 New England 3,108 3,131 2,948 3,290 3,055 3,284 1993-2016 Central Atlantic 5,474 5,933...

  7. Mississippi Sales of Distillate Fuel Oil by End Use

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    835,855 800,065 771,577 830,756 806,396 819,763 1984-2014 Residential 5 5 4 7 7 8 1984-2014 Commercial 26,641 23,713 26,383 26,386 24,019 28,803 1984-2014 Industrial 21,853 18,362 15,450 20,153 21,186 19,595 1984-2014 Oil Company 3,955 4,262 4,058 6,226 7,450 6,419 1984-2014 Farm 41,080 57,087 52,559 81,878 84,753 79,443 1984-2014 Electric Power 3,796 3,393 2,019 1,674 2,223 1,921 1984-2014 Railroad 24,727 17,936 37,741 29,848 32,550 35,578 1984-2014 Vessel Bunkering 141,302 93,384 58,285 58,505

  8. Distillate Fuel Oil Sales for All Other Uses

    U.S. Energy Information Administration (EIA) Indexed Site

    0 0 0 0 0 0 1984-2014 East Coast (PADD 1) 0 0 0 0 0 0 1984-2014 New England (PADD 1A) 0 0 0 0 0 0 1984-2014 Connecticut 0 0 0 0 0 0 1984-2014 Maine 0 0 0 0 0 0 1984-2014...

  9. Distillate Fuel Oil Sales for Oil Company Use

    U.S. Energy Information Administration (EIA) Indexed Site

    760,877 951,322 1,381,127 1,710,513 1,751,162 2,105,058 1984-2014 East Coast (PADD 1) 58,098 27,778 44,556 101,246 161,426 188,010 1984-2014 New England (PADD 1A) 12 2,369 1,203...

  10. Distillate Fuel Oil Sales for Off-Highway Use

    U.S. Energy Information Administration (EIA) Indexed Site

    1,985,592 2,148,677 2,070,260 2,088,157 2,063,319 2,014,184 1984-2014 East Coast (PADD 1) 605,884 615,812 634,470 621,261 584,856 604,093 1984-2014 New England (PADD 1A) 81,453...

  11. Distillate Fuel Oil Sales for Vessel Bunkering Use

    U.S. Energy Information Administration (EIA) Indexed Site

    1,912,984 2,002,834 2,133,395 1,768,324 1,675,521 1,593,398 1984-2014 East Coast (PADD 1) 276,013 259,319 296,947 283,254 274,142 289,674 1984-2014 New England (PADD 1A) 45,147...

  12. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, E.M. Jr.

    1985-08-20

    A method and apparatus are disclosed for conducting catalytic chemical reactions and fractionation of the reaction mixture, comprising and feeding reactants into a distillation column reactor contracting said reactant in a liquid phase with a fixed bed catalyst in the form of a contact catalyst structure, consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.

  13. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, E.M. Jr.

    1984-03-27

    A method is described for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor, contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.

  14. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, Jr., Edward M. (Friendswood, TX)

    1985-01-01

    A method and apparatus for conducting catalytic chemical reactions and fractionation of the reaction mixture, comprising and feeding reactants into a distillation column reactor contracting said reactant in a liquid phase with a fixed bed catalyst in the form of a contact catalyst structure, consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.

  15. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, Jr., Edward M. (Friendswood, TX)

    1984-01-01

    A method for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catatlyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.

  16. "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel...

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Relative Standard Errors for Table 5.2;" " Unit: Percents." ,,,,,"Distillate" ,,,,,"Fuel Oil",,,"Coal" "NAICS",,,"Net","Residual","and",,"LPG and","(excluding Coal"...

  17. Apparatus for distilling shale oil from oil shale

    SciTech Connect (OSTI)

    Shishido, T.; Sato, Y.

    1984-02-14

    An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

  18. SRC Residual fuel oils

    DOE Patents [OSTI]

    Tewari, Krishna C. (Whitehall, PA); Foster, Edward P. (Macungie, PA)

    1985-01-01

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  19. SRC residual fuel oils

    SciTech Connect (OSTI)

    Tewari, K.C.; Foster, E.P.

    1985-10-15

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  20. U.S. Sales for Resale Refiner Sales Volumes of Aviation Fuels...

    U.S. Energy Information Administration (EIA) Indexed Site

    361.0 398.7 375.3 398.2 421.0 447.9 1983-2014 Kerosene-Type Jet Fuel 15,183.3 20,282.0 22,950.4 23,464.1 26,384.3 27,497.7 1983-2014 Propane (Consumer Grade) 31,811.3 28,266.2...

  1. ,"for Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion"...

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Relative Standard Errors for Table 5.7;" " Unit: Percents." ,,,"Distillate",,,"Coal" ,,,"Fuel Oil",,,"(excluding Coal" ,"Net Demand","Residual","and","Natural Gas(c)","LPG...

  2. "End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Relative Standard Errors for Table 5.8;" " Unit: Percents." ,,,"Distillate" ,,,"Fuel Oil",,,"Coal" ,"Net Demand","Residual","and",,"LPG and","(excluding Coal" "End Use","for...

  3. Characterization of population and usage of unvented kerosene space heaters. Final report, May 1988-January 1989

    SciTech Connect (OSTI)

    Barnes, J.; Holland, P.; Mihlmester, P.

    1990-01-01

    The report gives results of a study of the market penetration of unvented kerosene space heaters (UKSHs) in the residential sector. The study was aimed at gathering baseline information to help assess the magnitude and potential severity of a problem involving emissions from unvented appliances, one of a number of synergistic factors affecting indoor air quality. UKSHs can be a significant source of such emissions. UKSH usage patterns were also investigated. Annual sales of UKSHs are estimated at 825,000 units. Leading brands include convective units marketed by Toyotomi USA (kero-Sun) and Corona USA. Some units contain built-in catalytic filters for odor control. Add-on catalytic filters are available from at least one manufacturer. It is believed that 15-17 million portable UKSHs have been sold in the U.S. since the early 1970s. However, it is estimated that, in the 1986-87 heating season, there were only about 7 million units in use. About half of these units are in the South. Depending on whether UKSHs are used as primary or secondary heating sources, they may be used anywhere from 1 to 17 hours a day. Eighty percent of UKSHs are used in multi-family dwellings and mobile homes.

  4. Comparison of Selected EIA-782 Data With Other Data Sources

    Reports and Publications (EIA)

    2012-01-01

    This article compares annual average prices reported from the EIA-782 survey series for residential No. 2 distillate, on-highway diesel fuel, retail regular motor gasoline, refiner No. 2 fuel oil for resale, refiner No. 2 diesel fuel for resale, refiner regular motor gasoline for resale, and refiner kerosene-type jet fuel for resale with annual average prices reported by other sources. In terms of volume, it compares EIA-782C Prime Supplier annual volumes for motor gasoline (all grades), distillate fuel oil, kerosene-type jet fuel and residual fuel oil with annual volumes from other sources.

  5. New Design Methods and Algorithms for Multi-component Distillation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processes | Department of Energy Design Methods and Algorithms for Multi-component Distillation Processes New Design Methods and Algorithms for Multi-component Distillation Processes PDF icon multicomponent.pdf More Documents & Publications CX-100137 Categorical Exclusion Determination ITP Chemicals: Hybripd Separations/Distillation Technology. Research Opportunities for Energy and Emissions Reduction ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key

  6. Increasing Distillate Production at U.S. Refineries

    Reports and Publications (EIA)

    2010-01-01

    Paper explores the potential for U.S. refiners to create more distillate and less gasoline without major additional investments beyond those already planned.

  7. Methods of producing transportation fuel

    DOE Patents [OSTI]

    Nair, Vijay; Roes, Augustinus Wilhelmus Maria; Cherrillo, Ralph Anthony; Bauldreay, Joanna M.

    2011-12-27

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing transportation fuel is described herein. The method for producing transportation fuel may include providing formation fluid having a boiling range distribution between -5.degree. C. and 350.degree. C. from a subsurface in situ heat treatment process to a subsurface treatment facility. A liquid stream may be separated from the formation fluid. The separated liquid stream may be hydrotreated and then distilled to produce a distilled stream having a boiling range distribution between 150.degree. C. and 350.degree. C. The distilled liquid stream may be combined with one or more additives to produce transportation fuel.

  8. Use of extractive distillation to produce concentrated nitric acid

    SciTech Connect (OSTI)

    Campbell, P.C.; Griffin, T.P.; Irwin, C.F.

    1981-04-01

    Concentrated nitric acid (> 95 wt %) is needed for the treatment of off-gases from a fuels-reprocessing plant. The production of concentrated nitric acid by means of extractive distillation in the two-pot apparatus was studied to determine the steady-state behavior of the system. Four parameters, EDP volume (V/sub EDP/) and temperature (T/sub EDP/), acid feed rate, and solvent recycle, were independently varied. The major response factors were percent recovery (CPRR) and product purity (CCP). Stage efficiencies also provided information about the system response. Correlations developed for the response parameters are: CPRR = 0.02(V/sub EDP/ - 800 cc) + 53.5; CCP = -0.87 (T/sub EDP/ - 140/sup 0/C) + 81; eta/sub V,EDP/ = 9.1(F/sub feed/ - 11.5 cc/min) - 0.047(V/sub EDP/ - 800 cc) - 2.8(F/sub Mg(NO/sub 3/)/sub 2// - 50 cc/min) + 390; and eta/sub L,EDP/ = 1.9(T/sub EDP/ - 140/sup 0/C) + 79. A computer simulation of the process capable of predicting steady-state conditions was developed, but it requires further work.

  9. Omniphobic Membrane for Robust Membrane Distillation

    SciTech Connect (OSTI)

    Lin, SH; Nejati, S; Boo, C; Hu, YX; Osuji, CO; Ehmelech, M

    2014-11-01

    In this work, we fabricate an omniphobic microporous membrane for membrane distillation (MD) by modifying a hydrophilic glass fiber membrane with silica nanoparticles followed by surface fluorination and polymer coating. The modified glass fiber membrane exhibits an anti-wetting property not only against water but also against low surface tension organic solvents that easily wet a hydrophobic polytetrafluoroethylene (PTFE) membrane that is commonly used in MD applications. By comparing the performance of the PTFE and omniphobic membranes in direct contact MD experiments in the presence of a surfactant (sodium dodecyl sulfate, SDS), we show that SDS wets the hydrophobic PTFE membrane but not the omniphobic membrane. Our results suggest that omniphobic membranes are critical for MD applications with feed waters containing surface active species, such as oil and gas produced water, to prevent membrane pore wetting.

  10. Decontamination performance of selected in situ technologies for jet fuel contamination. Master's thesis

    SciTech Connect (OSTI)

    Chesley, G.D.

    1993-01-01

    Specific study of jet fuel is warranted because of the quantitive and qualitative component differences between jet fuel and other hydrocarbon fuels. Quantitatively, jet fuel contains a larger aliphatic or saturate fraction and a smaller aromatic fraction than other fuels (i.e. heating oil and diesel oil) in the medium-boiling-point-distillate class of fuels. Since the aliphatic and aromatic fractions of fuel are not equally susceptible to biodegradation, jet fuel decontamination using biodegradation may be different from other fuels.

  11. ITP Chemicals: Hybripd Separations/Distillation Technology. Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities for Energy and Emissions Reduction | Department of Energy Hybripd Separations/Distillation Technology. Research Opportunities for Energy and Emissions Reduction ITP Chemicals: Hybripd Separations/Distillation Technology. Research Opportunities for Energy and Emissions Reduction PDF icon hybrid_separation.pdf More Documents & Publications Review of Historical Membrane Workshop Results Membrane Technology Workshop Summary Report, November 2012 Membrane Technology Workshop

  12. APPLICATION OF VACUUM SALT DISTILLATION TECHNOLOGY FOR THE REMOVAL OF FLUORIDE

    SciTech Connect (OSTI)

    Pierce, R.; Pak, D.

    2011-08-10

    Vacuum distillation of chloride salts from plutonium oxide (PuO{sub 2}) and simulant PuO{sub 2} has been previously demonstrated at Department of Energy (DOE) sites using kilogram quantities of chloride salt. The apparatus for vacuum distillation contains a zone heated using a furnace and a zone actively cooled using either recirculated water or compressed air. During a vacuum distillation operation, a sample boat containing the feed material is placed into the apparatus while it is cool, and the system is sealed. The system is evacuated using a vacuum pump. Once a sufficient vacuum is attained, heating begins. Volatile salts distill from the heated zone to the cooled zone where they condense, leaving behind the non-volatile materials in the feed boat. The application of vacuum salt distillation (VSD) is of interest to the HB-Line Facility and the MOX Fuel Fabrication Facility (MFFF) at the Savannah River Site (SRS). Both facilities are involved in efforts to disposition excess fissile materials. Many of these materials contain chloride and fluoride salt concentrations which make them unsuitable for dissolution without prior removal of the chloride and fluoride salts. Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and HB-Line designed, developed, tested, and successfully deployed a system for the distillation of chloride salts. Subsequent efforts are attempting to adapt the technology for the removal of fluoride. Fluoride salts of interest are less-volatile than the corresponding chloride salts. Consequently, an alternate approach is required for the removal of fluoride without significantly increasing the operating temperature. HB-Line Engineering requested SRNL to evaluate and demonstrate the feasibility of an alternate approach using both non-radioactive simulants and plutonium-bearing materials. Whereas the earlier developments targeted the removal of sodium chloride (NaCl) and potassium chloride (KCl), the current activities are concerned with the removal of the halide ions associated with plutonium trifluoride (PuF{sub 3}), plutonium tetrafluoride (PuF{sub 4}), calcium fluoride (CaF{sub 2}), and calcium chloride (CaCl{sub 2}). This report discusses non-radioactive testing of small-scale and pilot-scale systems and radioactive testing of a small-scale system. Experiments focused on demonstrating the chemistry for halide removal and addressing the primary engineering questions associated with a change in the process chemistry.

  13. U.S. Total No. 2 Distillate Prices by Sales Type

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 2010 2011 2012 2013 2014 View History No. 2 Distillate Sales to End Users, Average 1.964 2.449 - - - - 1983-2014 Residential 2.386 2.798 - - - - 1978-2014 Commercial/Institutional 1.878 2.358 - - - - 1983-2014 Industrial 1.914 2.409 - - - - 1983-2014 Through Retail Outlets 1.953 2.467 - - - - 1983-2014 Other End Users 1.911 2.382 - - - - 1983-2014 Sales for Resale 1.727 2.216 - - - - 1983-2014 No. 2 Diesel Fuel Sales to End Users, Average 1.918 2.415 - - - - 1994-2014

  14. Refinery Yield of Liquefied Refinery Gases

    U.S. Energy Information Administration (EIA) Indexed Site

    Refinery Yield (Percent) Product: Liquefied Refinery Gases Finished Motor Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Residual Fuel Oil Naphtha for Petrochemical Feedstock Use Other Oils for Petrochemical Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Still Gas Miscellaneous Products Processing Gain(-) or Loss(+) Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes

  15. Nonresidential buildings energy consumption survey: 1979 consumption and expenditures. Part 2. Steam, fuel oil, LPG, and all fuels

    SciTech Connect (OSTI)

    Patinkin, L.

    1983-12-01

    This report presents data on square footage and on total energy consumption and expenditures for commercial buildings in the contiguous United States. Also included are detailed consumption and expenditures tables for fuel oil or kerosene, liquid petroleum gas (LPG), and purchased steam. Commercial buildings include all nonresidential buildings with the exception of those where industrial activities occupy more of the total square footage than any other type of activity. 7 figures, 23 tables.

  16. RECS Fuel Oil Usage Form_v1 (Draft).xps

    Gasoline and Diesel Fuel Update (EIA)

    fuel oil usage for this delivery address between September 2008 and April 2010. Delivery Number Enter the Delivery Date for each delivery 1 2 3 4 5 6 7 8 9 10 Enter the Total Dollar Amount including taxes [Exclude late fees, merchandise, repairs, and service charges] 11 12 13 14 15 16 17 18 19 20 Form EIA 457G OMB No. 1905-0092 Expires 1/31/13 2009 RECS Fuel Oil and Kerosene Usage Form Delivery Address: Account Number: $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ / / / / / / / / / / / / / / / / / / /

  17. Northeast Heating Fuel Market The, Assessment and Options

    Reports and Publications (EIA)

    2000-01-01

    In response to the President's request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of the energy markets in the Northeast

  18. Heat Integrated Distillation through Use of Microchannel Technology

    Broader source: Energy.gov [DOE]

    This factsheet describes a research project whose goal is to develop a breakthrough distillation process using Microchannel Process Technology to integrate heat transfer and separation into a single unit operation.

  19. Membrane augmented distillation to separate solvents from water

    DOE Patents [OSTI]

    Huang, Yu; Baker, Richard W.; Daniels, Rami; Aldajani, Tiem; Ly, Jennifer H.; Alvarez, Franklin R.; Vane, Leland M.

    2012-09-11

    Processes for removing water from organic solvents, such as ethanol. The processes include distillation to form a rectified overhead vapor, compression of the rectified vapor, and treatment of the compressed vapor by two sequential membrane separation steps.

  20. Correlations estimate volume distilled using gravity, boiling point

    SciTech Connect (OSTI)

    Moreno, A.; Consuelo Perez de Alba, M. del; Manriquez, L.; Guardia Mendoz, P. de la

    1995-10-23

    Mathematical nd graphic correlations have been developed for estimating cumulative volume distilled as a function of crude API gravity and true boiling point (TBP). The correlations can be used for crudes with gravities of 21--34{degree} API and boiling points of 150--540 C. In distillation predictions for several mexican and Iraqi crude oils, the correlations have exhibited accuracy comparable to that of laboratory measurements. The paper discusses the need for such a correlation and the testing of the correlation.

  1. Distillation process using microchannel technology (Patent) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Distillation process using microchannel technology Citation Details In-Document Search Title: Distillation process using microchannel technology × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is also

  2. Weekly Petroleum Status Report

    Gasoline and Diesel Fuel Update (EIA)

    0 Figure 4. Stocks of Kerosene-Type Jet Fuel

  3. untitled

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    of Aviation Fuels and Kerosene by PAD District and State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene...

  4. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Kerosene by End Use Definitions Key Terms Definition Adjusted Sales Distillate fuel oil sales estimates have been adjusted at the PADD district level to equal published EIA volume estimates of petroleum products supplied in the U.S. marketplace. The kerosene and residual fuel oil sales estimates have been adjusted at the national level. The products supplied estimates can be found in the Petroleum Supply Annual for the appropriate year. In addition, electric power generation data and on-highway

  5. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    U.S. Energy Information Administration (EIA) Indexed Site

    October ... 14,752.6 69,758.6 7,217.1 15,271.7 21,969.7 85,030.3 3,137.2 25,623.2 25,106.9 110,653.4 November ... 14,904.2...

  6. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    25,794.3 125,232.3 November ... 14,453.5 66,101.3 8,392.5 14,607.4 22,846.0 80,708.7 3,071.6 38,342.1 25,917.7 119,050.8 December ......

  7. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    I January ... 3,767.8 15,166.2 1,271.9 3,441.5 5,039.7 18,607.8 1,103.3 23,611.9 6,143.0 42,219.7 February ... 4,023.0 15,858.8...

  8. Winter Heating Fuels - Energy Information Administration

    Gasoline and Diesel Fuel Update (EIA)

    Winter Heating Fuels Click on the map to view state specific heating fuels data below | click to reset to U.S. values Click on map above to view state-specific heating fuel data Propane Heating oil Natural gas Electricity For more data on: Heating oil and propane prices - Heating Oil and Propane Update Propane stocks - Weekly Petroleum Status Report Heating oil/distillate stocks - Weekly Petroleum Status Report Natural gas storage - Weekly Natural Gas Storage Report Natural gas prices - Natural

  9. Winter Heating Fuels - Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Winter Heating Fuels Click on the map to view state specific heating fuels data below | click to reset to U.S. values Click on map above to view state-specific heating fuel data Propane Heating oil Natural gas Electricity For more data on: Heating oil and propane prices - Heating Oil and Propane Update Propane stocks - Weekly Petroleum Status Report Heating oil/distillate stocks - Weekly Petroleum Status Report Natural gas storage - Weekly Natural Gas Storage Report Natural gas prices - Natural

  10. TABLE28.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    8. Exports of Crude Oil and Petroleum Products by Destination, (Thousand Barrels) Destination Liquefied Finished Crude Pentanes Petroleum Motor Distillate Fuel Residual Oil a Plus Gases Gasoline Jet Fuel Kerosene Oil Fuel Oil January 1998 Argentina .............................................. 0 0 0 1 0 0 1 1 Australia ............................................... 0 0 (s) (s) 0 0 1 0 Bahama Islands ................................... 0 0 21 1 1 (s) 54 (s) Bahrain

  11. U.S. Aviation Gasoline Refiner Sales Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Aviation Gasoline Kerosene-Type Jet Fuel Propane (Consumer Grade) Kerosene No. 1 Distillate No. 2 Distillate No. 2 Diesel Fuel No. 2 Diesel, Ultra Low-Sulfur No. 2 Diesel, Low-Sulfur No. 2 Diesel, High-Sulfur No. 2 Fuel Oil Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Sales Type Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Sales to End Users W W W W W W 1983-2015 Sales for Resale

  12. New Design Methods and Algorithms for Multi-component Distillation Processes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Methods and Algorithms for Multi-component Distillation Processes Improved Energy Efficiency through the Determination of Optimal Distillation Configuration The ability to apply low-energy distillation confgurations can allow chemical manufacturers to reduce energy consumption of both existing and grassroots plants. However, the determina- tion of an appropriate confguration is limited by an incomplete knowledge of the 'search space' for a proper distillation network. Currently, no

  13. Fuel flexible fuel injector

    DOE Patents [OSTI]

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  14. Proceedings of the 6. international conference on stability and handling of liquid fuels. Volume 2

    SciTech Connect (OSTI)

    Giles, H.N.

    1998-12-01

    Volume 2 of these proceedings contain 42 papers arranged under the following topical sections: Fuel blending and compatibility; Middle distillates; Microbiology; Alternative fuels; General topics (analytical methods, tank remediation, fuel additives, storage stability); and Poster presentations (analysis methods, oxidation kinetics, health problems).

  15. Enhanced Separation Efficiency in Olefin/Paraffin Distillation

    Broader source: Energy.gov [DOE]

    This factsheet describes a research project whose main objective is to develop technologies to enhance separation efficiencies by replacing the conventional packing materials with hollow fiber membranes, which have a high specific area and separated channels for both liquid and vapor phases. The use of hollow fibers in distillation columns can help refineries decrease operating costs, reduce greenhouse gas emissions through reduced heating costs, and help expand U.S. refining capacity through improvements to existing sites, without large scale capital investment.

  16. Integrated process of distillation with side reactors for synthesis of organic acid esters

    DOE Patents [OSTI]

    Panchal, Chandrakant B; Prindle, John C; Kolah, Aspri; Miller, Dennis J; Lira, Carl T

    2015-11-04

    An integrated process and system for synthesis of organic-acid esters is provided. The method of synthesizing combines reaction and distillation where an organic acid and alcohol composition are passed through a distillation chamber having a plurality of zones. Side reactors are used for drawing off portions of the composition and then recycling them to the distillation column for further purification. Water is removed from a pre-reactor prior to insertion into the distillation column. An integrated heat integration system is contained within the distillation column for further purification and optimizing efficiency in the obtaining of the final product.

  17. Table 5.2 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    2 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Residual and LPG and (excluding Coal Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Other(f) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 14,228 2,437 79 130 5,211 69 868 5,435 Indirect Uses-Boiler Fuel -- 27

  18. Table 5.4 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    4 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Demand Residual and LPG and (excluding Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 2,886 79 130 5,211 69 868 Indirect Uses-Boiler Fuel 44 46 19

  19. Table 5.6 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    6 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Residual and LPG and (excluding Coal End Use Total Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Other(e) Total United States TOTAL FUEL CONSUMPTION 14,228 2,437 79 130 5,211 69 868 5,435 Indirect Uses-Boiler Fuel -- 27 46 19 2,134 10 572 -- Conventional Boiler Use -- 27 20 4 733

  20. Table 5.8 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    8 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Demand Residual and LPG and (excluding Coal End Use for Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Total United States TOTAL FUEL CONSUMPTION 2,886 79 130 5,211 69 868 Indirect Uses-Boiler Fuel 44 46 19 2,134 10 572 Conventional Boiler Use 44 20 4 733 3 72 CHP

  1. Emissions characteristics of Military Helicopter Engines Fueled with JP-8 and a Fischer-Tropsch Fuel

    SciTech Connect (OSTI)

    Corporan, E.; DeWitt, M.; Klingshirn, Christopher D; Striebich, Richard; Cheng, Mengdawn

    2010-01-01

    The rapid growth in aviation activities and more stringent U.S. Environmental Protection Agency regulations have increased concerns regarding aircraft emissions, due to their harmful health and environmental impacts, especially in the vicinity of airports and military bases. In this study, the gaseous and particulate-matter emissions of two General Electric T701C engines and one T700 engine were evaluated. The T700 series engines power the U.S. Army's Black Hawk and Apache helicopters. The engines were fueled with standard military JP-8 fuel and were tested at three power settings. In addition, one of the T701C engines was operated on a natural-gas-derived Fischer-Tropsch synthetic paraffinic kerosene jet fuel. Test results show that the T701C engine emits significantly lower particulate-matter emissions than the T700 for all conditions tested. Particulate-matter mass emission indices ranged from 0.2-1.4 g/kg fuel for the T700 and 0.2-0.6 g/kg fuel for the T701C. Slightly higher NOx and lower CO emissions were observed for the T701C compared with the T700. Operation of the T701C with the Fischer-Tropsch fuel rendered dramatic reductions in soot emissions relative to operation on JP-8, due primarily to the lack of aromatic compounds in the alternative fuel. The Fischer-Tropsch fuel also produced smaller particles and slight reductions in CO emissions.

  2. A Method to Distill Hydrogen Isotopes from Lithium | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Lab to Distill Hydrogen Isotopes from Lithium This white paper outlines a method for the removal of tritium and deuterium from liquid lithium. The method is based on rapid or flash vaporization of a lithium jet, using high power electron beam heating. The quantity of lithium to be processed is taken to be 2 metric tonnes (the inventory postulated for the conceptual reactor design outlined in Lithium walls for fusion, also by this author), every 2 days, in order to limit the in-vessel

  3. Winter fuels report

    SciTech Connect (OSTI)

    Not Available

    1995-02-17

    The Winter Fuels Report is intended to provide consise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; Natural gas supply and disposition and underground storage for the US and consumption for all PADD`s as well as selected National average prices; Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; Crude oil and petroleum price comparisons for the US and selected cities; and A 6-10 Day and 30-Day outlook for temperature and precipitation and US total heating degree days by city.

  4. Winter fuels report

    SciTech Connect (OSTI)

    Not Available

    1995-02-03

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city.

  5. Fractional distillation of C/sub 2//C/sub 3/ hydrocarbons at optimum pressures

    SciTech Connect (OSTI)

    Tedder, D.W.

    1984-08-07

    A method of recovering by distillation the separate components of a hydrocarbon gas mixture comprising ethylene, ethane, propylene and propane which comprises separating the ethylene and ethane as an overhead from a propylene and propane bottom in a first distillation tower at from about 400 to about 600 psia, separating ethylene and ethane as an ethylene overhead and an ethane bottom in a second distillation tower at from about 600 to about 700 psia, and separating propylene as an overhead from a propane bottom in a third distillation tower at from about 280 to about 300 psia is disclosed.

  6. T-534: Vulnerability in the PDF distiller of the BlackBerry Attachment...

    Broader source: Energy.gov (indexed) [DOE]

    PROBLEM: Vulnerability in the PDF distiller of the BlackBerry Attachment Service for the BlackBerry Enterprise Server. PLATFORM: * BlackBerry Enterprise Server Express version...

  7. Total Sales of Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 269,010 305,508 187,656 81,102 79,674 137,928 1984-2014 East Coast (PADD 1) 198,762 237,397 142,189 63,075 61,327 106,995 1984-2014 New England (PADD 1A) 56,661 53,363 38,448 15,983 15,991 27,500 1984-2014 Connecticut 8,800 7,437

  8. Hydrogen as a fuel for fuel cell vehicles: A technical and economic comparison

    SciTech Connect (OSTI)

    Ogden, J.; Steinbugler, M.; Kreutz, T.

    1997-12-31

    All fuel cells currently being developed for near term use in vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, ethanol or hydrocarbon fuels derived from crude oil (e.g., Diesel, gasoline or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, the authors compare three leading options for fuel storage onboard fuel cell vehicles: compressed gas hydrogen storage; onboard steam reforming of methanol; onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. Equilibrium, kinetic and heat integrated system (ASPEN) models have been developed to estimate the performance of onboard steam reforming and POX fuel processors. These results have been incorporated into a fuel cell vehicle model, allowing us to compare the vehicle performance, fuel economy, weight, and cost for various fuel storage choices and driving cycles. A range of technical and economic parameters were considered. The infrastructure requirements are also compared for gaseous hydrogen, methanol and hydrocarbon fuels from crude oil, including the added costs of fuel production, storage, distribution and refueling stations. Considering both vehicle and infrastructure issues, the authors compare hydrogen to other fuel cell vehicle fuels. Technical and economic goals for fuel cell vehicle and hydrogen technologies are discussed. Potential roles for hydrogen in the commercialization of fuel cell vehicles are sketched.

  9. Table 3.1 Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,158 75,407 2 4 563 1 8 * 99

  10. Table 3.2 Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. NAICS Net Residual Distillate LPG and Coke Code(a) Subsector and Industry Total Electricity(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal and Breeze Other(f) Total United States 311 Food 1,158 257 12 22 579 6 182 2 99 3112 Grain and Oilseed Milling 350 56 * 1 121 * 126 0 45 311221 Wet Corn Milling 214 25 * * 53 * 110 0 25 31131 Sugar Manufacturing 107 4 1 1 15 * 49 2 36

  11. Table 3.3 Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Fuel Consumption, 2010; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: Trillion Btu. Economic Net Residual Distillate LPG and Coke and Characteristic(a) Total Electricity(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal Breeze Other(f) Total United States Value of Shipments and Receipts (million dollars) Under 20 1,148 314 6 53 446 14 25 Q 291 20-49 1,018 297 13 22 381 18 97 5 185 50-99 1,095 305 7 13 440 6 130 9 186 100-249

  12. Table 5.5 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    5 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(c) LPG and Coke and Breeze) Total Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million Other(e) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States TOTAL FUEL CONSUMPTION

  13. Table 5.7 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    7 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 845,727 13 22 5,064 18

  14. Low capital implementation of distributed distillation in ethylene recovery

    DOE Patents [OSTI]

    Reyneke, Rian; Foral, Michael J.; Lee, Guang-Chung

    2006-10-31

    An apparatus for recovering ethylene from a hydrocarbon feed stream, where the apparatus is a single distillation column pressure shell encasing an upper region and a lower region. The upper region houses an ethylene distributor rectifying section and the lower region houses a C2 distributor section and an ethylene distributor stripping section. Vapor passes from the lower region into the upper region, and liquid passes from the upper region to the lower region. The process for recovering the ethylene is also disclosed. The hydrocarbon feed stream is introduced into the C2 distributor section, and after a series of stripping and refluxing steps, distinct hydrocarbon products are recovered from the C2 distributor section, the ethylene distributor stripping section, and the ethylene distributor rectifying section, respectively.

  15. Comparison of advanced distillation control methods. Third annual report

    SciTech Connect (OSTI)

    Riggs, J.B.

    1997-07-01

    Detailed dynamic simulations of three industrial distillation columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to study the issue of configuration selection for diagonal PI dual composition controls, feedforward from a feed composition analyzer, and decouplers. Auto Tune Variation (ATV) identification with on-line detuning for setpoint changes was used for tuning the diagonal proportional integral (PI) composition controls. In addition, robustness tests were conducted by inducting reboiler duty upsets. For single composition control, the (L, V) configuration was found to be best. For dual composition control, the optimum configuration changes from one column to another. Moreover, the use of analysis tools, such as RGA, appears to be of little value in identifying the optimum configuration for dual composition control. Using feedforward from a feed composition analyzer and using decouplers are shown to offer significant advantages for certain specific cases.

  16. Petroleum marketing monthly with data for October 1996

    SciTech Connect (OSTI)

    1997-01-01

    This publication presents statistical data on crude oil costs and refined petroleum products sales. Data on petroleum include the domestic first purchase price, landed cost of imported crude oil, and the refiner`s acquisition cost of crude oil. Sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane.

  17. U.S. Sales of Distillate Fuel Oil by End Use

    Gasoline and Diesel Fuel Update (EIA)

    54,100,092 56,093,645 57,082,558 57,020,840 58,107,155 60,827,930 1984-2014 Residential 4,103,881 3,930,517 3,625,747 3,473,310 3,536,111 3,802,848 1984-2014 Commercial 2,785,246 2,738,304 2,715,335 2,557,543 2,471,897 2,543,778 1984-2014 Industrial 2,159,428 2,045,164 2,179,953 2,325,503 2,271,056 2,417,898 1984-2014 Oil Company 760,877 951,322 1,381,127 1,710,513 1,751,162 2,105,058 1984-2014 Farm 2,660,024 2,928,175 2,942,436 3,031,878 3,026,611 3,209,391 1984-2014 Electric Power 581,386

  18. Refiner and Blender Net Production of Distillate Fuel Oil 15 ppm Sulfur and

    Gasoline and Diesel Fuel Update (EIA)

    Under 4,014 4,288 4,076 4,381 4,467 4,454 2004-2016 PADD 1 202 188 181 219 271 235 2004-2016 PADD 2 1,073 1,042 1,003 1,114 1,034 957 2004-2016 PADD 3 2,111 2,343 2,212 2,315 2,361 2,478 2004-2016 PADD 4 140 168 187 206 208 211 2004-2016 PADD 5 488 547 493 528 592 573 2004

  19. Refiner and Blender Net Production of Distillate Fuel Oil > 15 pmm to 500

    Gasoline and Diesel Fuel Update (EIA)

    ppm Sulfur 123 157 137 142 148 149 1993-2016 PADD 1 25 31 21 16 31 15 1993-2016 PADD 2 0 13 5 -4 7 3 1993-2016 PADD 3 86 93 66 96 93 101 1993-2016 PADD 4 0 8 -4 0 -4 5 1993-2016 PADD 5 12 13 50 34 21 25 1993

  20. Refiner and Blender Net Production of Distillate Fuel Oil > 500 ppm Sulfur

    Gasoline and Diesel Fuel Update (EIA)

    Weekly 4-Week Average Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 02/05/16 02/12/16 02/19/16 02/26/16 03/04/16 03/11/16 View History U.S. 220 217 225 279 129 178 1993-2016 PADD 1 57 77 98 83 2 -11 1993-2016 PADD 2 -7 -5 -14 13 8 40 1993-2016 PADD 3 146 140 125 158 114 132 1993-2016 PADD 4 1 0 0 -1 0 -1 1993-2016 PADD 5 22 5 15 26 5 18 1993

  1. U.S. Adjusted Sales of Distillate Fuel Oil by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia Maryland New Jersey New York Pennsylvania Lower Atlantic (PADD 1C) Florida Georgia North Carolina South Carolina Virginia West Virginia Midwest (PADD 2) Illinois Indiana Iowa Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma South Dakota Tennessee Wisconsin Gulf Coast (PADD 3) Alabama

  2. Stocks of Distillate Fuel Oil Greater Than 15 ppm to 500 ppm...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7,736 8,385 8,505 8,299 1993-2016 PADD 1 5,695 5,241 5,102 5,162 5,289 5,069 1993-2016 New England 3,839 3,354 3,250 3,424 3,460 3,335 1993-2016 Central Atlantic 1,426 1,524...

  3. Analysis of Oxygenated Compounds in Hydrotreated Biomass Fast Pyrolysis Oil Distillate Fractions

    SciTech Connect (OSTI)

    Christensen, Earl D.; Chupka, Gina; Luecke, Jon; Smurthwaite, Tricia D.; Alleman, Teresa L.; Iisa, Kristiina; Franz, James A.; Elliott, Douglas C.; McCormick, Robert L.

    2011-10-06

    Three hydrotreated bio-oils with different oxygen contents (8.2, 4.9, and 0.4 w/w) were distilled to produce Light, Naphtha, Jet, Diesel, and Gasoil boiling range fractions that were characterized for oxygen containing species by a variety of analytical methods. The bio-oils were originally generated from lignocellulosic biomass in an entrained-flow fast pyrolysis reactor. Analyses included elemental composition, carbon type distribution by {sup 13}C NMR, acid number, GC-MS, volatile organic acids by LC, and carbonyl compounds by DNPH derivatization and LC. Acid number titrations employed an improved titrant-electrode combination with faster response that allowed detection of multiple endpoints in many samples and for acid values attributable to carboxylic acids and to phenols to be distinguished. Results of these analyses showed that the highest oxygen content bio-oil fractions contained oxygen as carboxylic acids, carbonyls, aryl ethers, phenols, and alcohols. Carboxylic acids and carbonyl compounds detected in this sample were concentrated in the Light, Naphtha, and Jet fractions (<260 C boiling point). Carboxylic acid content of all of the high oxygen content fractions was likely too high for these materials to be considered as fuel blendstocks although potential for blending with crude oil or refinery intermediate streams may exist for the Diesel and Gasoil fractions. The 4.9 % oxygen sample contained almost exclusively phenolic compounds found to be present throughout the boiling range of this sample, but imparting measurable acidity primarily in the Light, Naphtha and Jet fractions. Additional study is required to understand what levels of the weakly acidic phenols could be tolerated in a refinery feedstock. The Diesel and Gasoil fractions from this upgraded oil had low acidity but still contained 3 to 4 wt% oxygen present as phenols that could not be specifically identified. These materials appear to have excellent potential as refinery feedstocks and some potential for blending into finished fuels. Fractions from the lowest oxygen content oil exhibited some phenolic acidity, but generally contained very low levels of oxygen functional groups. These materials would likely be suitable as refinery feedstocks and potentially as fuel blend components. PIONA analysis of the Light and Naphtha fractions shows benzene content of 0.5 and 0.4 vol%, and predicted (RON + MON)/2 of 63 and 70, respectively.

  4. Table 5.1 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    5.1 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States

  5. Table 5.3 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS for Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Code(a) End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States 311 - 339 ALL

  6. Fuel Tables.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    F8: Distillate Fuel Oil Price and Expenditure Estimates, 2014 State Prices Expenditures Residential Commercial Industrial Transportation Electric Power Total Residential Commercial Industrial Transportation Electric Power Total Dollars per Million Btu Million Dollars Alabama 24.81 21.48 22.59 26.62 20.94 25.88 2.5 83.9 449.3 3,161.2 21.4 3,718.3 Alaska 26.84 26.40 28.75 29.67 22.98 28.53 178.9 192.8 666.2 983.0 67.3 2,088.2 Arizona 28.33 23.47 23.91 27.94 22.60 26.89 0.3 139.0 717.9 2,976.8 14.1

  7. Fuel Tables.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    F7: Distillate Fuel Oil Consumption Estimates, 2014 State Residential Commercial Industrial Transportation Electric Power Total Residential Commercial Industrial Transportation Electric Power Total Thousand Barrels Trillion Btu Alabama 18 677 3,447 20,567 177 24,885 0.1 3.9 19.9 118.8 1.0 143.7 Alaska 1,155 1,264 4,022 5,738 507 12,686 6.7 7.3 23.2 33.1 2.9 73.2 Arizona 2 1,025 5,201 18,452 108 24,789 (s) 5.9 30.0 106.5 0.6 143.1 Arkansas 5 570 5,157 15,448 45 21,225 (s) 3.3 29.8 89.2 0.3 122.6

  8. Fossil fuels -- future fuels

    SciTech Connect (OSTI)

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  9. Distillation sequence for the purification and recovery of hydrocarbons

    DOE Patents [OSTI]

    Reyneke, Rian (Katy, TX); Foral, Michael (Aurora, IL); Papadopoulos, Christos G. (Naperville, IL); Logsdon, Jeffrey S. (Naperville, IL); Eng, Wayne W. Y. (League City, TX); Lee, Guang-Chung (Houston, TX); Sinclair, Ian (Warrington, GB)

    2007-12-25

    This invention is an improved distillation sequence for the separation and purification of ethylene from a cracked gas. A hydrocarbon feed enters a C2 distributor column. The top of the C2 distributor column is thermally coupled to an ethylene distributor column, and the bottoms liquid of a C2 distributor column feeds a deethanizer column. The C2 distributor column utilizes a conventional reboiler. The top of the ethylene distributor is thermally coupled with a demethanizer column, and the bottoms liquid of the ethylene distributor feeds a C2 splitter column. The ethylene distributor column utilizes a conventional reboiler. The deethanizer and C2 splitter columns are also thermally coupled and operated at a substantially lower pressure than the C2 distributor column, the ethylene distributor column, and the demethanizer column. Alternatively, a hydrocarbon feed enters a deethanizer column. The top of the deethanizer is thermally coupled to an ethylene distributor column, and the ethylene distributor column utilizes a conventional reboiler. The top of the ethylene distributor column is thermally coupled with a demethanizer column, and the bottoms liquid of the ethylene distributor column feeds a C2 splitter column. The C2 splitter column operates at a pressure substantially lower than the ethylene distributor column, the demethanizer column, and the deethanizer column.

  10. Kinetic and reactor models for HDT of middle distillates

    SciTech Connect (OSTI)

    Cotta, R.M.; Filho, R.M.

    1996-12-31

    Hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) of middle distillates over a commercial Ni-Mo/y-Al{sub 2}O{sub 3} has been studied under wide operating conditions just as 340 to 380{degrees}C and 38 to 98 atm. A Power Law model was presented to each one of those reactions. The parameters of kinetic equations were estimated solving the ordinary differential equations by the 4 order Runge-Kutta-Gill algorithm and Marquardt method for searching of set of kinetic parameters (kinetic constants as well as the orders of reactions). An adiabatic diesel hydrotreating trickle-bed reactor packed with the same catalyst was simulated numerically in order to check up the behavior of this specific reaction system. One dimensional pseudo-homogeneous model was used in this work. For each feed, the mass and energy balance equations were integrated along the length of the catalytic bed using the 4th Runge-Kutta-Gill method. The performance of two industrial reactors was checked. 5 refs., 2 tabs.

  11. Simple rules help select best hydrocarbon distillation scheme

    SciTech Connect (OSTI)

    Sanchezllanes, M.T.; Perez, A.L.; Martinez, M.P.; Aguilar-Rodriguez, E.; Rosal, R. del )

    1993-12-06

    Separation economics depend mainly on investment for major equipment and energy consumption. This relationship, together with the fact that, in most cases, many alternative schemes will be proposed, make it essential to find an optimum scheme that minimizes overall costs. Practical solutions are found by applying heuristics -- exploratory problem-solving techniques that eliminate alternatives without applying rigorous mathematical procedures. These techniques have been applied to a case study. In the case study, a hydrocarbon mixture will be transported through a pipeline to a fractionation plant, where it will be separated into commercial products for distribution. The fractionation will consist of a simple train of distillation columns, the sequence of which will be defined by applying heuristic rules and determining the required thermal duties for each column. The facility must separate ethane, propane and mixed butanes, natural gasoline (light straight-run, or LSR, gasoline), and condensate (heavy naphtha). The ethane will be delivered to an ethylene plant as a gaseous stream, the propane and butanes will be stored in cryogenic tanks, and the gasoline and heavy naphtha also will be stored.

  12. Comparison of advanced distillation control methods. Second annual report

    SciTech Connect (OSTI)

    1996-11-01

    Detailed dynamic simulations of three industrial distillation columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to study the issue of configuration selection for diagonal PI dual composition controls. ATV identification with on-line detuning was used for tuning the diagonal PI composition controllers. Each configuration was evaluated with respect to steady-state RGA values, sensitivity to feed composition changes, and open loop dynamic performance. Each configuration was tuned using setpoint changes over a wider range of operation for robustness and tested for feed composition upsets. Overall, configuration selection was shown to have a dominant effect upon control performance. Configuration analysis tools (e.g., RGA, condition number, disturbance sensitivity), were found to reject configuration choices that are obviously poor choices, but were unable to critically differentiate between the remaining viable choices. Configuration selection guidelines are given although it is demonstrated that the most reliable configuration selection approach is based upon testing the viable configurations using dynamic column simulators.

  13. Comparison of advanced distillation control methods. Second annual report

    SciTech Connect (OSTI)

    Riggs, J.B.

    1996-11-01

    Detailed dynamic simulations of two industrial distillation columns (a propylene/propane splitter and a xylene/toluene column) have been used to study the issue of configuration selection for diagonal PI dual composition controls. Auto Tune Variation (ATV) identification with on-line detuning was used for tuning the diagonal proportional integral (PI) composition controls. Each configuration was evaluated with respect to steady-state relative gain array (RGA) values, sensitivity to feed composition changes, and open loop dynamic performance. Each configuration was tuned using setpoint changes over a wider range of operation for robustness and tested for feed composition upsets. Overall, configuration selection was shown to have a dominant effect upon control performance. Configuration analysis tools (e.g., RGA, condition number, disturbance sensitivity) were found to reject configuration choices that are obviously poor choices, but were unable to critically differentiate between the remaining viable choices. Configuration selection guidelines are given although it is demonstrated that the most reliable configuration selection approach is based upon testing the viable configurations using dynamic column simulators.

  14. Opportunity fuels

    SciTech Connect (OSTI)

    Lutwen, R.C.

    1994-12-31

    Opportunity fuels - fuels that can be converted to other forms of energy at lower cost than standard fossil fuels - are discussed in outline form. The type and source of fuels, types of fuels, combustability, methods of combustion, refinery wastes, petroleum coke, garbage fuels, wood wastes, tires, and economics are discussed.

  15. Fractional distillation as a strategy for reducing the genotoxic potential of SRC-II coal liquids: a status report

    SciTech Connect (OSTI)

    Pelroy, R.A.; Wilson, B.W.

    1981-09-01

    This report presents results of studies on the effects of fractional distillation on the genotoxic potential of Solvent Refined Coal (SRC-II) liquids. SRC-II source materials and distilled liquids were provided by Pittsburg and Midway Coal Mining Co. Fractional distillations were conducted on products from the P-99 process development unit operating under conditions approximating those anticipated at the SRC-II demonstration facility. Distillation cuts were subjected to chemical fractionation, in vitro bioassay and initial chemical analysis. Findings are discussed as they relate to the temperature at which various distillate cuts were produced. This document is the first of two status reports scheduled for 1981 describing these studies.

  16. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Residual Fuel Oil by End Use Definitions Key Terms Definition Adjusted Sales Distillate fuel oil sales estimates have been adjusted at the PADD district level to equal published EIA volume estimates of petroleum products supplied in the U.S. marketplace. The kerosene and residual fuel oil sales estimates have been adjusted at the national level. The products supplied estimates can be found in the Petroleum Supply Annual for the appropriate year. In addition, electric power generation data and

  17. U.S. Energy Information Administration | State Energy Data 2013: Consumption

    Gasoline and Diesel Fuel Update (EIA)

    9 Petroleum Overview The 25 petroleum products included in the State Energy Data System (SEDS) are explained in this section. For 10 of these products, the means of estimating their consumption by state is described in individual sections. The 10 petroleum products are: * asphalt and road oil (AR) * aviation gasoline (AV) * distillate fuel oil (DF) * jet fuel (JF) * kerosene (KS) * liquefied petroleum gases (LG) * lubricants (LU) * motor gasoline (MG) * petroleum coke (PC) * residual fuel oil

  18. U.S. Energy Information Administration | State Energy Data 2013: Prices and Expenditures

    Gasoline and Diesel Fuel Update (EIA)

    1 Petroleum Overview The 25 petroleum products included in the State Energy Data System (SEDS) are explained in this section. For 10 of these products, the method of estimating their prices by state is described in individual sections. The 10 petroleum products are: * Asphalt and road oil (AR) * Aviation gasoline (AV) * Distillate fuel oil (DF) * Jet fuel (JF) * Kerosene (KS) * Liquefied petroleum gases (LG) * Lubricants (LU) * Motor gasoline (MG) * Petroleum coke (PC) * Residual fuel oil (RF)

  19. U.S. Energy Information Administration | State Energy Data 2014: Consumption

    Gasoline and Diesel Fuel Update (EIA)

    9 Petroleum Overview The 25 petroleum products included in the State Energy Data System (SEDS) are explained in this section. For 10 of these products, the means of estimating their consumption by state is described in individual sections. The 10 petroleum products are: * asphalt and road oil (AR) * aviation gasoline (AV) * distillate fuel oil (DF) * jet fuel (JF) * kerosene (KS) * liquefied petroleum gases (LG) * lubricants (LU) * motor gasoline (MG) * petroleum coke (PC) * residual fuel oil

  20. U.S. Energy Information Administration | State Energy Data 2014: Prices and Expenditures

    Gasoline and Diesel Fuel Update (EIA)

    31 Petroleum Overview The 25 petroleum products included in the State Energy Data System (SEDS) are explained in this section. For 10 of these products, the method of estimating their prices by state is described in individual sections. The 10 petroleum products are: * Asphalt and road oil (AR) * Aviation gasoline (AV) * Distillate fuel oil (DF) * Jet fuel (JF) * Kerosene (KS) * Liquefied petroleum gases (LG) * Lubricants (LU) * Motor gasoline (MG) * Petroleum coke (PC) * Residual fuel oil (RF)

  1. New Design Methods and Algorithms for Multi-component Distillation Processes

    SciTech Connect (OSTI)

    2009-02-01

    This factsheet describes a research project whose main goal is to develop methods and software tools for the identification and analysis of optimal multi-component distillation configurations for reduced energy consumption in industrial processes.

  2. A heat & mass integration approach to reduce capital and operating costs of a distillation configuration

    SciTech Connect (OSTI)

    Madenoor Ramapriya, Gautham; Jiang, Zheyu; Tawarmalani, Mohit; Agrawal, Rakesh

    2015-11-11

    We propose a general method to consolidate distillation columns of a distillation configuration using heat and mass integration. The proposed method encompasses all heat and mass integrations known till date, and includes many more. Each heat and mass integration eliminates a distillation column, a condenser, a reboiler and the heat duty associated with a reboiler. Thus, heat and mass integration can potentially offer significant capital and operating cost benefits. In this talk, we will study the various possible heat and mass integrations in detail, and demonstrate their benefits using case studies. This work will lay out a framework to synthesize an entire new class of useful configurations based on heat and mass integration of distillation columns.

  3. Outlook for Light-Duty-Vehicle Fuel Demand | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outlook for Light-Duty-Vehicle Fuel Demand Outlook for Light-Duty-Vehicle Fuel Demand Gasoline and distillate demand impact of the Energy Independance and Security Act of 2007 PDF icon deer08_shore.pdf More Documents & Publications Before the Subcommittee on Energy and Power - Committee on Energy and Commerce Drop In Fuels: Where the Road Leads Before the House Energy and Commerce Subcommittee on Energy and Power

  4. Comparison of Advanced Distillation Control Methods, Final Technical Report

    SciTech Connect (OSTI)

    Dr. James B. Riggs

    2000-11-30

    Detailed dynamic simulations of three industrial distillation columns (a propylene/propane splitter, a xylene/toluene column, and a depropanizer) have been used to evaluate configuration selections for single-ended and dual-composition control, as well as to compare conventional and advanced control approaches. In addition, a simulator of a main fractionator was used to compare the control performance of conventional and advanced control. For each case considered, the controllers were tuned by using setpoint changes and tested using feed composition upsets. Proportional Integral (PI) control performance was used to evaluate the configuration selection problem. For single ended control, the energy balance configuration was found to yield the best performance. For dual composition control, nine configurations were considered. It was determined that the use of dynamic simulations is required in order to identify the optimum configuration from among the nine possible choices. The optimum configurations were used to evaluate the relative control performance of conventional PI controllers, MPC (Model Predictive Control), PMBC (Process Model-Based Control), and ANN (Artificial Neural Networks) control. It was determined that MPC works best when one product is much more important than the other, while PI was superior when both products were equally important. PMBC and ANN were not found to offer significant advantages over PI and MPC. MPC was found to outperform conventional PI control for the main fractionator. MPC was applied to three industrial columns: one at Phillips Petroleum and two at Union Carbide. In each case, MPC was found to significantly outperform PI controls. The major advantage of the MPC controller is its ability to effectively handle a complex set of constraints and control objectives.

  5. Literature search for the non-aqueous separation of zinc from fuel rod cladding. [After dissolution in liquid metal

    SciTech Connect (OSTI)

    Sandvig, R. L.; Dyer, S. J.; Lambert, G. A.; Baldwin, C. E.

    1980-06-21

    This report reviews the literature of processes for the nonaqueous separation of zinc from dissolved fuel assembly cladding. The processes considered were distillation, pyrochemical processing, and electrorefining. The last two techniques were only qualitatively surveyed while the first, distillation, was surveyed in detail. A survey of available literature from 1908 through 1978 on the distillation of zinc was performed. The literature search indicated that a zinc recovery rate in excess of 95% is possible; however, technical problems exist because of the high temperatures required and the corrosive nature of liquid zinc. The report includes a bibliography of the surveyed literature and a computer simulation of vapor pressures in binary systems. 129 references.

  6. untitled

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2. U.S. Refiner Prices of Petroleum Products to End Users (Cents per Gallon Excluding Taxes) Year Month Motor Gasoline Aviation Gasoline Kerosene- Type Jet Fuel Propane (Consumer Grade) Kerosene No. 1 Distillate No. 2 Distillate No. 4 Fuel a Residual Fuel Oil No. 2 Diesel Fuel No. 2 Fuel Oil Average 1983 ................................. 95.4 125.5 87.8 70.9 96.1 96.2 82.6 91.6 83.9 76.6 65.1 1984 ................................. 90.7 123.4 84.2 73.7 103.6 92.7 82.3 91.6 83.7 79.6 68.7 1985

  7. untitled

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3. U.S. Refiner Volumes of Petroleum Products to End Users (Million Gallons per Day) Year Month Motor Gasoline Aviation Gasoline Kerosene- Type Jet Fuel Propane (Consumer Grade) Kerosene No. 1 Distillate No. 2 Distillate No. 4 Fuel a Residual Fuel Oil No. 2 Diesel Fuel No. 2 Fuel Oil Total 1983 ................................. 51.1 0.4 30.8 3.1 0.2 0.5 23.3 3.7 27.0 0.7 28.3 1984 ................................. 57.6 0.3 32.9 3.3 0.3 0.5 26.3 4.9 31.2 0.7 32.9 1985

  8. untitled

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4. U.S. Refiner Prices of Petroleum Products for Resale (Cents per Gallon Excluding Taxes) Year Month Motor Gasoline Aviation Gasoline Kerosene- Type Jet Fuel Propane (Consumer Grade) Kerosene No. 1 Distillate No. 2 Distillate No. 4 Fuel a Residual Fuel Oil No. 2 Diesel Fuel No. 2 Fuel Oil Average 1983 ................................. 88.2 117.8 85.4 48.4 89.2 89.6 80.8 81.5 81.2 72.6 60.9 1984 ................................. 83.2 116.5 83.0 45.0 91.6 89.2 80.3 82.1 81.3 70.7 65.4 1985

  9. untitled

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5. U.S. Refiner Volumes of Petroleum Products for Resale (Million Gallons per Day) Year Month Motor Gasoline Aviation Gasoline Kerosene- Type Jet Fuel Propane (Consumer Grade) Kerosene No. 1 Distillate No. 2 Distillate No. 4 Fuel a Residual Fuel Oil No. 2 Diesel Fuel No. 2 Fuel Oil Total 1983 ................................. 242.5 0.7 5.4 26.0 2.5 2.4 38.1 47.3 85.5 0.9 20.2 1984 ................................. 246.3 0.8 6.6 26.7 2.2 2.6 42.8 51.4 94.2 1.7 21.3 1985

  10. PILOT-SCALE REMOVAL OF FLUORIDE FROM LEGACY PLUTONIUM MATERIALS USING VACUUM SALT DISTILLATION

    SciTech Connect (OSTI)

    Pierce, R. A.; Pak, D. J.

    2012-09-11

    Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and HB-Line designed, developed, tested, and successfully deployed a system for the distillation of chloride salts. In 2011, SRNL adapted the technology for the removal of fluoride from fluoride-bearing salts. The method involved an in situ reaction between potassium hydroxide (KOH) and the fluoride salt to yield potassium fluoride (KF) and the corresponding oxide. The KF and excess KOH can be distilled below 1000{deg}C using vacuum salt distillation (VSD). The apparatus for vacuum distillation contains a zone heated by a furnace and a zone actively cooled using either recirculated water or compressed air. During a vacuum distillation operation, a sample boat containing the feed material is placed into the apparatus while it is cool, and the system is sealed. The system is evacuated using a vacuum pump. Once a sufficient vacuum is attaned, heating begins. Volatile salts distill from the heated zone to the cooled zone where they condense, leaving behind the non-volatile material in the feed boat. Studies discussed in this report were performed involving the use of non-radioactive simulants in small-scale and pilot-scale systems as well as radioactive testing of a small-scale system with plutonium-bearing materials. Aspects of interest include removable liner design considerations, boat materials, in-line moisture absorption, and salt deposition.

  11. Pyroprocessing of fast flux test facility nuclear fuel

    SciTech Connect (OSTI)

    Westphal, B.R.; Wurth, L.A.; Fredrickson, G.L.; Galbreth, G.G.; Vaden, D.; Elliott, M.D.; Price, J.C.; Honeyfield, E.M.; Patterson, M.N. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID, 83415 (United States)

    2013-07-01

    Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primary fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electro-refined uranium products exceeded 99%. (authors)

  12. Pyroprocessing of Fast Flux Test Facility Nuclear Fuel

    SciTech Connect (OSTI)

    B.R. Westphal; G.L. Fredrickson; G.G. Galbreth; D. Vaden; M.D. Elliott; J.C. Price; E.M. Honeyfield; M.N. Patterson; L. A. Wurth

    2013-10-01

    Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primary fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electrorefined uranium products exceeded 99%.

  13. Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis of Physical and Chemical Properties

    SciTech Connect (OSTI)

    Gallant, Tom; Franz, Jim; Alnajjar, Mikhail; Storey, John Morse; Lewis Sr, Samuel Arthur; Sluder, Scott; Cannella, William C; Fairbridge, Craig; Hager, Darcy; Dettman, Heather; Luecke, Jon; Ratcliff, Matthew A.; Zigler, Brad

    2009-01-01

    The CRC Fuels for Advanced Combustion Engines working group has worked to identify a matrix of research diesel fuels for use in advanced combustion research applications. Nine fuels were specified and formulated to investigate the effects of cetane number aromatic content and 90% distillation fraction. Standard ASTM analyses were performed on the fuels as well as GC/MS and /u1H//u1/u3C NMR analyses and thermodynamic characterizations. Details of the actual results of the fuel formulations compared with the design values are presented, as well as results from standard analyses, such as heating value, viscosity and density. Cetane number characterizations were accomplished by using both the engine method and the Ignition Quality Tester (IQT/sT) apparatus.

  14. California Fuel Cell Partnership: Alternative Fuels Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California Fuel Cell Partnership: Alternative Fuels Research California Fuel Cell Partnership: Alternative Fuels Research This presentation by Chris White of the California Fuel ...

  15. Single-Step Syngas-to-Distillates (S2D) Synthesis via Methanol and Dimethyl Ether Intermediates: Final Report

    SciTech Connect (OSTI)

    Dagle, Robert A.; Lebarbier, Vanessa MC; Lizarazo Adarme, Jair A.; King, David L.; Zhu, Yunhua; Gray, Michel J.; Jones, Susanne B.; Biddy, Mary J.; Hallen, Richard T.; Wang, Yong; White, James F.; Holladay, Johnathan E.; Palo, Daniel R.

    2013-11-26

    The objective of the work was to enhance price-competitive, synthesis gas (syngas)-based production of transportation fuels that are directly compatible with the existing vehicle fleet (i.e., vehicles fueled by gasoline, diesel, jet fuel, etc.). To accomplish this, modifications to the traditional methanol-to-gasoline (MTG) process were investigated. In this study, we investigated direct conversion of syngas to distillates using methanol and dimethyl ether intermediates. For this application, a Pd/ZnO/Al2O3 (PdZnAl) catalyst previously developed for methanol steam reforming was evaluated. The PdZnAl catalyst was shown to be far superior to a conventional copper-based methanol catalyst when operated at relatively high temperatures (i.e., >300°C), which is necessary for MTG-type applications. Catalytic performance was evaluated through parametric studies. Process conditions such as temperature, pressure, gas-hour-space velocity, and syngas feed ratio (i.e., hydrogen:carbon monoxide) were investigated. PdZnAl catalyst formulation also was optimized to maximize conversion and selectivity to methanol and dimethyl ether while suppressing methane formation. Thus, a PdZn/Al2O3 catalyst optimized for methanol and dimethyl ether formation was developed through combined catalytic material and process parameter exploration. However, even after compositional optimization, a significant amount of undesirable carbon dioxide was produced (formed via the water-gas-shift reaction), and some degree of methane formation could not be completely avoided. Pd/ZnO/Al2O3 used in combination with ZSM-5 was investigated for direct syngas-to-distillates conversion. High conversion was achieved as thermodynamic constraints are alleviated when methanol and dimethyl are intermediates for hydrocarbon formation. When methanol and/or dimethyl ether are products formed separately, equilibrium restrictions occur. Thermodynamic relaxation also enables the use of lower operating pressures than what would be allowed for methanol synthesis alone. Aromatic-rich hydrocarbon liquid (C5+), containing a significant amount of methylated benzenes, was produced under these conditions. However, selectivity control to liquid hydrocarbons was difficult to achieve. Carbon dioxide and methane formation was problematic. Furthermore, saturation of the olefinic intermediates formed in the zeolite, and necessary for gasoline production, occurred over PdZnAl. Thus, yield to desirable hydrocarbon liquid product was limited. Evaluation of other oxygenate-producing catalysts could possibly lead to future advances. Potential exists with discovery of other types of catalysts that suppress carbon dioxide and light hydrocarbon formation. Comparative techno-economics for a single-step syngas-to-distillates process and a more conventional MTG-type process were investigated. Results suggest operating and capital cost savings could only modestly be achieved, given future improvements to catalyst performance. Sensitivity analysis indicated that increased single-pass yield to hydrocarbon liquid is a primary need for this process to achieve cost competiveness.

  16. Fuel pin

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA); Karnesky, Richard A. (Richland, WA); Leggett, Robert D. (Richland, WA); Baker, Ronald B. (Richland, WA)

    1989-01-01

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  17. Fuel pin

    DOE Patents [OSTI]

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  18. Table 4.1 Offsite-Produced Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Offsite-Produced Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,113 75,673 2 4

  19. Table 4.2 Offsite-Produced Fuel Consumption, 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 Offsite-Produced Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. NAICS Residual Distillate LPG and Coke Code(a) Subsector and Industry Total Electricity(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal and Breeze Other(f) Total United States 311 Food 1,113 258 12 22 579 5 182 2 54 3112 Grain and Oilseed Milling 346 57 * 1 121 * 126 0 41 311221 Wet Corn Milling 214 26 * * 53 * 110 0 25 31131 Sugar Manufacturing 72 4 1

  20. Table 4.3 Offsite-Produced Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Offsite-Produced Fuel Consumption, 2010; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: Trillion Btu. Economic Residual Distillate Natural LPG and Coke and Characteristic(a) Total Electricity(b) Fuel Oil Fuel Oil(c) Gas(d) NGL(e) Coal Breeze Other(f) Total United States Value of Shipments and Receipts (million dollars) Under 20 1,038 314 6 53 445 14 25 Q 181 20-49 918 296 11 19 381 10 97 5 97 50-99 1,018 308 7 13 440 5 130 6 110

  1. Winter fuels report

    SciTech Connect (OSTI)

    Not Available

    1995-01-27

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysis, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s, as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day, 30-Day and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  2. Winter fuels report

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  3. Winter fuels report

    SciTech Connect (OSTI)

    Not Available

    1995-01-13

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s, as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  4. Winter fuels report

    SciTech Connect (OSTI)

    Not Available

    1990-10-04

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition, underground storage, and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil price comparisons for the United States and selected cities; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. The data will also be available electronically after 5:00 p.m. on Thursday during the heating season through the EIA Electronic Publication System (EPUB). 12 tabs.

  5. Alternative Fuels Data Center: Fuel Prices

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Prices to someone by E-mail Share Alternative Fuels Data Center: Fuel Prices on Facebook Tweet about Alternative Fuels Data Center: Fuel Prices on Twitter Bookmark Alternative Fuels Data Center: Fuel Prices on Google Bookmark Alternative Fuels Data Center: Fuel Prices on Delicious Rank Alternative Fuels Data Center: Fuel Prices on Digg Find More places to share Alternative Fuels Data Center: Fuel

  6. Experimental investigation on hydrogen cryogenic distillation equipped with package made by ICIT

    SciTech Connect (OSTI)

    Bornea, A.; Zamfirache, M.; Stefan, L.; Stefanescu, I.; Preda, A.

    2015-03-15

    ICIT (Institute for Cryogenics and Isotopic Technologies) has used its experience in cryogenic water distillation process to propose a similar process for hydrogen distillation that can be used in detritiation technologies. This process relies on the same packages but a stainless filling is tested instead of the phosphorous bronze filling used for water distillation. This paper presents two types of packages developed for hydrogen distillation, both have a stainless filling but it differs in terms of density, exchange surface and specific volume. Performance data have been obtained on laboratory scale. In order to determine the characteristics of the package, the installation was operated in the total reflux mode, for different flow rate for the liquid. There were made several experiments considering different operating conditions. Samples extracted at the top and bottom of cryogenic distillation column allowed mathematical processing to determine the separation performance. The experiments show a better efficiency for the package whose exchange surface was higher and there were no relevant differences between both packages as the operating pressure of the cryogenic column was increasing. For a complete characterization of the packages, future experiments will be considered to determine performance at various velocities in the column and their correlation with the pressure in the column. We plan further experiments to separate tritium from the mixture of isotopes DT, having in view that our goal is to apply this results to a detritiation plant.

  7. The cough response to ultrasonically nebulized distilled water in heart-lung transplantation patients

    SciTech Connect (OSTI)

    Higenbottam, T.; Jackson, M.; Woolman, P.; Lowry, R.; Wallwork, J.

    1989-07-01

    As a result of clinical heart-lung transplantation, the lungs are denervated below the level of the tracheal anastomosis. It has been questioned whether afferent vagal reinnervation occurs after surgery. Here we report the cough frequency, during inhalation of ultrasonically nebulized distilled water, of 15 heart-lung transplant patients studied 6 wk to 36 months after surgery. They were compared with 15 normal subjects of a similar age and sex. The distribution of the aerosol was studied in five normal subjects using /sup 99m/technetium diethylene triamine pentaacetate (/sup 99m/Tc-DTPA) in saline. In seven patients, the sensitivity of the laryngeal mucosa to instilled distilled water (0.2 ml) was tested at the time of fiberoptic bronchoscopy by recording the cough response. Ten percent of the aerosol was deposited onto the larynx and trachea, 56% on the central airways, and 34% in the periphery of the lung. The cough response to the aerosol was strikingly diminished in the patients compared with normal subjects (p less than 0.001), but all seven patients coughed when distilled water was instilled onto the larynx. As expected, the laryngeal mucosa of heart-lung transplant patients remains sensitive to distilled water. However, the diminished coughing when the distilled water is distributed by aerosol to the central airways supports the view that vagal afferent nerves do not reinnervate the lungs after heart-lung transplantation, up to 36 months after surgery.

  8. Word Pro - S3

    Gasoline and Diesel Fuel Update (EIA)

    66 U.S. Energy Information Administration / Monthly Energy Review February 2016 Table 3.7b Petroleum Consumption: Industrial Sector (Thousand Barrels per Day) Industrial Sector a Asphalt and Road Oil Distillate Fuel Oil Kerosene Liquefied Petroleum Gases Lubricants Motor Gasoline b Petroleum Coke Residual Fuel Oil Other c Total 1950 Average .................... 180 328 132 100 43 131 41 617 250 1,822 1955 Average .................... 254 466 116 212 47 173 67 686 366 2,387 1960 Average

  9. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    0 Commercial Buildings Energy Consumption and Expenditure Indicators, Selected Years, 1979-2003 Buildings by Energy Source Used Consumption Consumption per Square Foot Square Footage per Building by Expenditures Expenditures Per Square Foot Energy Source Used 62 U.S. Energy Information Administration / Annual Energy Review 2011 1 Electricity only; excludes electrical system energy losses. 2 Distillate fuel oil, residual fuel oil, and kerosene. 3 Prices are not adjusted for inflation. See

  10. Transportation Fuel Supply | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SheetsTransportation Fuel Supply content top Transportation Fuel Supply

  11. Global optimization of multicomponent distillation configurations: 2. Enumeration based global minimization algorithm

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nallasivam, Ulaganathan; Shah, Vishesh H.; Shenvi, Anirudh A.; Huff, Joshua; Tawarmalani, Mohit; Agrawal, Rakesh

    2016-02-10

    We present a general Global Minimization Algorithm (GMA) to identify basic or thermally coupled distillation configurations that require the least vapor duty under minimum reflux conditions for separating any ideal or near-ideal multicomponent mixture into a desired number of product streams. In this algorithm, global optimality is guaranteed by modeling the system using Underwood equations and reformulating the resulting constraints to bilinear inequalities. The speed of convergence to the globally optimal solution is increased by using appropriate feasibility and optimality based variable-range reduction techniques and by developing valid inequalities. As a result, the GMA can be coupled with already developedmore » techniques that enumerate basic and thermally coupled distillation configurations, to provide for the first time, a global optimization based rank-list of distillation configurations.« less

  12. Alternative Fuels Data Center: Emerging Fuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Emerging Fuels to someone by E-mail Share Alternative Fuels Data Center: Emerging Fuels on Facebook Tweet about Alternative Fuels Data Center: Emerging Fuels on Twitter Bookmark Alternative Fuels Data Center: Emerging Fuels on Google Bookmark Alternative Fuels Data Center: Emerging Fuels on Delicious Rank Alternative Fuels Data Center: Emerging Fuels on Digg Find More places to share Alternative

  13. Alternative Fuels Data Center: Biodiesel Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Basics on AddThis.com... More in

  14. Alternative Fuels Data Center: Biodiesel Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fueling

  15. Alternative Fuels Data Center: Electricity Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on

  16. Alternative Fuels Data Center: Ethanol Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this

  17. Alternative Fuels Data Center: Ethanol Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on

  18. Alternative Fuels Data Center: Hydrogen Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations

  19. Alternative Fuels Data Center: Propane Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on

  20. New Design Methods And Algorithms For High Energy-Efficient And Low-cost Distillation Processes

    SciTech Connect (OSTI)

    Agrawal, Rakesh

    2013-11-21

    This project sought and successfully answered two big challenges facing the creation of low-energy, cost-effective, zeotropic multi-component distillation processes: first, identification of an efficient search space that includes all the useful distillation configurations and no undesired configurations; second, development of an algorithm to search the space efficiently and generate an array of low-energy options for industrial multi-component mixtures. Such mixtures are found in large-scale chemical and petroleum plants. Commercialization of our results was addressed by building a user interface allowing practical application of our methods for industrial problems by anyone with basic knowledge of distillation for a given problem. We also provided our algorithm to a major U.S. Chemical Company for use by the practitioners. The successful execution of this program has provided methods and algorithms at the disposal of process engineers to readily generate low-energy solutions for a large class of multicomponent distillation problems in a typical chemical and petrochemical plant. In a petrochemical complex, the distillation trains within crude oil processing, hydrotreating units containing alkylation, isomerization, reformer, LPG (liquefied petroleum gas) and NGL (natural gas liquids) processing units can benefit from our results. Effluents from naphtha crackers and ethane-propane crackers typically contain mixtures of methane, ethylene, ethane, propylene, propane, butane and heavier hydrocarbons. We have shown that our systematic search method with a more complete search space, along with the optimization algorithm, has a potential to yield low-energy distillation configurations for all such applications with energy savings up to 50%.

  1. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  2. Systems and methods for reactive distillation with recirculation of light components

    DOE Patents [OSTI]

    Stickney, Michael J. (Nassau Bay, TX); Jones, Jr., Edward M. (Friendswood, TX)

    2011-07-26

    Systems and methods for producing gas-to-liquids products using reactive distillation are provided. The method for producing gas-to-liquids products can include reacting a feedstock in a column having a distillation zone and a reaction zone to provide a bottoms stream and an overhead stream. A first portion of the overhead stream can be recycled to the column at the top of the reaction zone and second portion of the overhead stream can be recycled to the column at the bottom of the reaction zone.

  3. Process for converting heavy oil deposited on coal to distillable oil in a low severity process

    DOE Patents [OSTI]

    Ignasiak, Teresa (417 Heffernan Drive, Edmonton, Alberta, CA); Strausz, Otto (13119 Grand View Drive, Edmonton, Alberta, CA); Ignasiak, Boleslaw (417 heffernan Drive, Edmonton, Alberta, CA); Janiak, Jerzy (17820 - 76 Ave., Edmonton, Alberta, CA); Pawlak, Wanda (3046 - 11465 - 41 Avenue, Edmonton, Alberta, CA); Szymocha, Kazimierz (3125 - 109 Street, Edmonton, Alberta, CA); Turak, Ali A. (Edmonton, CA)

    1994-01-01

    A process for removing oil from coal fines that have been agglomerated or blended with heavy oil comprises the steps of heating the coal fines to temperatures over 350.degree. C. up to 450.degree. C. in an inert atmosphere, such as steam or nitrogen, to convert some of the heavy oil to lighter, and distilling and collecting the lighter oils. The pressure at which the process is carried out can be from atmospheric to 100 atmospheres. A hydrogen donor can be added to the oil prior to deposition on the coal surface to increase the yield of distillable oil.

  4. Alternative Fuels Data Center: Flexible Fuel Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Flexible Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicles on Digg

  5. State Energy Price System: 1982 update

    SciTech Connect (OSTI)

    Imhoff, K.L.; Fang, J.M.

    1984-10-01

    The State Energy Price System (STEPS) contains estimates of energy prices for ten major fuels (electricity, natural gas, metallurgical coal, steam coal, distillate, motor gasoline, diesel, kerosene/jet fuel, residual fuel, and liquefied petroleum gas), by major end-use sectors (residential, commercial, industrial, transportation, and electric utility), and by state through 1982. Both physical unit prices and prices per million Btu are included in STEPS. Major changes in STEPS data base for 1981 and 1982 are described. The most significant changes in procedures for the updates occur in the residential sector distillate series and the residential sector kerosene series. All physical unit and Btu prices are shown with three significant digits instead of with four significant digits as shown in the original documentation. Details of these and other changes are contained in this report, along with the updated data files. 31 references, 65 tables.

  6. Fuel Cells and Renewable Gaseous Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Technologies Office | 1 7142015 Fuel Cells and Renewable Gaseous Fuels Bioenergy 2015: Renewable Gaseous Fuels Breakout Session Sarah Studer, PhD ORISE Fellow Fuel Cell...

  7. Opportunity fuels

    SciTech Connect (OSTI)

    Lutwen, R.C.

    1996-12-31

    The paper consists of viewgraphs from a conference presentation. A comparison is made of opportunity fuels, defined as fuels that can be converted to other forms of energy at lower cost than standard fossil fuels. Types of fuels for which some limited technical data is provided include petroleum coke, garbage, wood waste, and tires. Power plant economics and pollution concerns are listed for each fuel, and compared to coal and natural gas power plant costs. A detailed cost breakdown for different plant types is provided for use in base fuel pricing.

  8. Hybrid Separations/Distillation Technology. Research Opportunities for Energy and Emissions Reduction

    SciTech Connect (OSTI)

    Eldridge, R. Bruce; Seibert, A. Frank; Robinson, Sharon; Rogers, Jo

    2005-04-01

    This report focuses on improving the existing separations systems for the two largest energy-consuming sectors: the chemicals and petroleum refining industries. It identifies the technical challenges and research needs for improving the efficiency of distillation systems. Areas of growth are also highlighted.

  9. Method of Generating Hydrocarbon Reagents from Diesel, Natural Gas and Other Logistical Fuels

    DOE Patents [OSTI]

    Herling, Darrell R (Richland, WA) [Richland, WA; Aardahl, Chris L. (Richland, WA) [Richland, WA; Rozmiarek, Robert T. (Middleton, WI) [Middleton, WI; Rappe, Kenneth G. (Richland, WA) [Richland, WA; Wang, Yong (Richland, WA) [Richland, WA; Holladay, Jamelyn D. (Kennewick, WA) [Kennewick, WA

    2008-10-14

    The present invention provides a process for producing reagents for a chemical reaction by introducing a fuel containing hydrocarbons into a flash distillation process wherein the fuel is separated into a first component having a lower average molecular weight and a second component having a higher average molecular weight. The first component is then reformed to produce synthesis gas wherein the synthesis gas is reacted catalytically to produce the desire reagent.

  10. Method of generating hydrocarbon reagents from diesel, natural gas and other logistical fuels

    DOE Patents [OSTI]

    Herling, Darrell R. (Richland, WA); Aardahl, Chris L. (Richland, WA); Rozmiarek, Robert T. (Middleton, WI); Rappe, Kenneth G. (Richland, WA); Wang, Yong (Richland, WA); Holladay, Jamelyn D. (Kennewick, WA)

    2010-06-29

    The present invention provides a process for producing reagents for a chemical reaction by introducing a fuel containing hydrocarbons into a flash distillation process wherein the fuel is separated into a first component having a lower average molecular weight and a second component having a higher average molecular weight. The first component is then reformed to produce synthesis gas wherein the synthesis gas is reacted catalytically to produce the desire reagent.

  11. U.S. Fuel Consumed at Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels, Except Where Noted) Area: U.S. East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2009 2010 2011 2012 2013 2014 View History Crude Oil 0 0 0 0 0 0 1986-2014 Liquefied Petroleum Gases 2,866 2,404 1,291 1,521 1,311 2,305 1986-2014 Distillate Fuel Oil 339 440 483 539 475 309 1986-2014

  12. Performance and emissions of non-petroleum fuels in a direct-injection stratified charge Sl engine

    SciTech Connect (OSTI)

    Freeman, L.E.; Chui, G.K.; Roby, R.J.

    1982-10-01

    Seven fuels derived from coal and shale resources were evaluated using a direct-injection stratified charge engine. The fuels were refined to different degrees which ranged from those typical of gasoline blending components to those similar to current gasoline. Results showed that fuels refined to have properties similar to gasoline performed like gasoline. The less refined fuels were limited in performance. The total carbon monoxide and the hydrocarbon emissions varied with the volatility of the fuels. Most fuels with a higher overall distillation curve generally gave higher hydrocarbon and carbon monoxide emissions. The NOx emissions increased with the percent aromatics in the fuels. The hydrocarbon emissions were found to increase with fuel viscosity. Within the range of engine operation, nearly all the fuels evaluated gave satisfactory performance. With some modifications, even the less refined fuels can be potentially suitable for use in this engine.

  13. Synthetic Fuel

    ScienceCinema (OSTI)

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2010-01-08

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  14. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuels, Propane, and Kerosene, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) - Continued ...

  15. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    | | | | | | | | | | | | Geographic Area | Aviation | Kerosene- | No. 4 | Propane Month | Gasoline | Type | Fuel | (Consumer | | Jet...

  16. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    | | | | | | | | | | | | Geographic Area | Aviation | Kerosene- | No. 4 | Propane Month | Gasoline | Type | Fuel(1) | (Consumer | |...

  17. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    | | | | | | | | | Geographic Area | Aviation | Kerosene- | Propane Month | Gasoline | Type | (Consumer | | Jet Fuel | Grade) |...

  18. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    6-Present (Cents per Gallon Excluding Taxes) | | | Aviation Gasoline | Kerosene-Type Jet Fuel | |...

  19. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    4-Present (Cents per Gallon Excluding Taxes) | | | Aviation Gasoline | Kerosene-Type Jet Fuel | |...

  20. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    5-Present (Cents per Gallon Excluding Taxes) | | | Aviation Gasoline | Kerosene-Type Jet Fuel | |...

  1. Fuel Economy

    Broader source: Energy.gov [DOE]

    The Energy Department is investing in groundbreaking research that will make cars weigh less, drive further and consume less fuel.

  2. Fuels Technologies

    Office of Environmental Management (EM)

    Fuels Technologies Program Mission To develop more energy efficient and environmentally friendly highway transportation technologies that enable America to use less petroleum. --EERE Strategic Plan, October 2002-- Kevin Stork, Team Leader Fuel Technologies & Technology Deployment Vehicle Technologies Program Energy Efficiency and Renewable Energy U.S. Department of Energy DEER 2008 August 6, 2008 Presentation Outline n Fuel Technologies Research Goals Fuels as enablers for advanced engine

  3. untitled

    U.S. Energy Information Administration (EIA) Indexed Site

    District and State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Sales to End Users Sales for Resale...

  4. X:\\Data_Publication\\Pma\\current\\ventura\\pma00.vp

    U.S. Energy Information Administration (EIA) Indexed Site

    District and State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Sales to End Users Sales for Resale...

  5. X:\\L6046\\Data_Publication\\Pma\\current\\ventura\\pma.vp

    U.S. Energy Information Administration (EIA) Indexed Site

    District and State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Sales to End Users Sales for Resale...

  6. Future perspectives of using hollow fibers as structured packings in light hydrocarbon distillation

    SciTech Connect (OSTI)

    Yang, Dali; Orler, Bruce; Tornga, Stephanie; Welch, Cindy

    2011-01-26

    Olefin and paraffin are the largest chemical commodities. Furthermore, they are major building blocks for the petrochemical industry. Each year, petroleum refining, consumes 4,500 TBtu/yr in separation energy, making it one of the most energy-intensive industries in the United States). Just considering liquefied petroleum gas (ethane/propane/butane) and olefins (ethylene and propylene) alone, the distillation energy consumption is about 400 TBtu/yr in the US. Since petroleum distillation is a mature technology, incremental improvements in column/tray design will only provide a few percent improvements in the performance. However, each percent saving in net energy use amounts to savings of 10 TBtu/yr and reduces CO{sub 2} emissions by 0.2 MTon/yr. In practice, distillation columns require 100 to 200 trays to achieve the desired separation. The height of a transfer unit (HTU) of conventional packings is typical in the range of 36-60 inch. Since 2006, we had explored using several non-selective membranes as the structured packings to replace the conventional packing materials used in propane and propylene distillation. We obtained the lowest HTU of < 8 inch for the hollow fiber column, which was >5 times shorter than that of the conventional packing materials. In 2008, we also investigated this type of packing materials in iso-/n-butane distillation. Because of a slightly larger relative volatility of iso-/n-butane than that of propane/propylene, a wider and a more stable operational range was obtained for the iso-/n-butane pair. However, all of the experiments were conducted on a small scale with flowrate of < 25 gram/min. Recently, we demonstrated this technology on a larger scale (<250 gram/min). Within the loading range of F-factor < 2.2 Pa{sup 0.5}, a pressure drop on the vapor side is below 50 mbar/m, which suggests that the pressure drop of hollow fibers packings is not an engineering barrier for the applications in distillations. The thermal stability study suggests that polypropylene hollow fibers are stable after a long time exposure to C{sub 2} - C{sub 4} mixtures. The effects of packing density on the separation efficiency will be discussed.

  7. Total Adjusted Sales of Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 269,010 305,508 187,656 81,102 79,674 137,928 1984-2014 East Coast (PADD 1) 198,762 237,397 142,189 63,075 61,327 106,995 1984-2014 New England (PADD 1A) 56,661 53,363 38,448 15,983 15,991 27,500 1984-2014 Connecticut 8,800 7,437

  8. Kerosene Sales for Industrial Use

    U.S. Energy Information Administration (EIA) Indexed Site

    5,536 45,145 22,557 12,920 9,374 17,941 1984-2014 East Coast (PADD 1) 15,113 36,274 15,732 9,177 5,556 11,440 1984-2014 New England (PADD 1A) 6,700 5,785 5,752 2,148 1,417 3,887...

  9. Kerosene Sales for Commercial Use

    U.S. Energy Information Administration (EIA) Indexed Site

    31,291 35,716 23,648 8,909 7,542 15,116 1984-2014 East Coast (PADD 1) 22,239 26,146 17,166 5,928 4,854 10,440 1984-2014 New England (PADD 1A) 4,792 5,266 3,051 1,310 1,306 2,972...

  10. Kerosene Sales for Residential Use

    U.S. Energy Information Administration (EIA) Indexed Site

    05,136 215,587 137,232 57,316 61,188 101,852 1984-2014 East Coast (PADD 1) 159,414 172,303 107,007 47,028 50,267 83,749 1984-2014 New England (PADD 1A) 44,681 41,961 29,375 12,315...

  11. Kerosene Sales for Farm Use

    U.S. Energy Information Administration (EIA) Indexed Site

    ,414 6,763 3,410 1,712 1,415 2,597 1984-2014 East Coast (PADD 1) 1,660 1,564 1,726 822 565 1,103 1984-2014 New England (PADD 1A) 457 341 164 161 130 247 1984-2014 Connecticut 1 2 2...

  12. New Design Methods and Algorithms for Energy Efficient Multicomponent Distillation Column Trains

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rakesh Agrawal, School of Chemical Engineering, Purdue University U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. May 28-29, 2015 This presentation does not contain any proprietary, confidential, or otherwise restricted information. ï‚— Multicomponent Distillation is Ubiquitous in all Chemical/Petrochemical/Biochemical plants * Separations contributes 40-70% of capital/operating cost of a typical processing plant. * 90-95% of all separations in a plant are done by

  13. Winter fuels report. Week ending, January 26, 1996

    SciTech Connect (OSTI)

    1996-01-23

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers analysts, and State and local governments on the following topics: (1) distillate fuel oil net production, imports and stocks on a U.S. level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a U.S. level; (2) propane net production, imports and stocks on a U.S. level and for PADD`s I, II, and III; (3) natural gas supply and disposition and underground storage for the U.S. and consumption for all PADD`s; as well as selected National average prices; (4) residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; (5) crude oil and petroleum price comparisons for the U.S. and selected cities; and (6) a 6-10 Day and 30-Day outlook for temperature and precipitation and U.S. total heating degree-days by city. The distillate fuel oil and propane supply data are collected and published weekly. The data are based on company submissions for the week ending 7:00 a.m. for the preceding Friday. Weekly data for distillate fuel oil are also published in the Weekly Petroleum Status Report. Monthly data for distillate fuel oil and propane are published in the Petroleum Supply Monthly. The residential pricing information is collected by the EIA and the State Energy Offices on a semimonthly basis for the EIA/State Heating Oil and Propane Program. The wholesale price comparison data are collected daily and are published weekly. Residential heating fuel prices are derived from price quotes for home delivery of No. 2 fuel oil and propane. As such, they reflect prices in effect on the dates shown. Wholesale heating oil and propane prices are estimates using a sample of terminal quotes to represent average State prices on the dates given.

  14. Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cells Fact Sheets Research Team Members Key Contacts Fuel Cells The Solid State Energy Conversion Alliance (SECA) program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust solid oxide fuel cell (SOFC) system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of $175 per kW, and demonstrating lifetime performance degradation of less than 0.2 percent per 1000 hours over a

  15. Fuel Model | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels Model This model informs analyses of the availability of transportation fuel in the event the fuel supply chain is disrupted. The portion of the fuel supply system...

  16. Petroleum marketing monthly, December 1995

    SciTech Connect (OSTI)

    1995-12-05

    This publication provides information and statistical data on a variety of crude oils and refined petroleum products. It presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include domestic first purchase price, f.o.b. and landed cost of imported crude, and refiners` acquisition cost of crude. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane.

  17. Petroleum marketing monthly with data for April 1997

    SciTech Connect (OSTI)

    1997-07-01

    This publication provides information and statistical data on a variety of crude oil costs and refined petroleum products sales. Data on crude oil include the domestic first purchase price, the free on board price and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. The data provided are compiled from six Energy Information Administration survey forms. 50 tabs.

  18. Word Pro - S12

    Gasoline and Diesel Fuel Update (EIA)

    7 Table 12.2 Carbon Dioxide Emissions From Energy Consumption: Residential Sector (Million Metric Tons of Carbon Dioxide a ) Coal Natural Gas b Petroleum Retail Electricity e Total f Distillate Fuel Oil c Kerosene LPG d Total 1973 Total .......................... 9 264 147 16 36 199 435 907 1975 Total .......................... 6 266 132 12 32 176 419 867 1980 Total .......................... 3 256 96 8 20 124 529 911 1985 Total .......................... 4 241 80 11 20 111 553 909 1990 Total

  19. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    Household Energy Consumption Household Energy Consumpton by Census Region, Selected Years, 1978-2009¹ Household Energy Consumption by Source, 2009 Energy Consumption per Household, Selected Years, 1978-2009¹ Energy Consumption per Household, by Census Region, 2009 50 U.S. Energy Information Administration / Annual Energy Review 2011 1 For years not shown, there are no data available. 2 Liquefied petroleum gases. Notes: * Data include natural gas, electricity, distillate fuel oil, kerosene,

  20. "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Relative Standard Errors for Table 7.5;" " Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate",,"LPG and" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal

  1. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Presented at the DOE-DOD Shipboard APU Workshop on March 29, 2011. PDF icon apu2011_6_roychoudhury.pdf More Documents & Publications System Design - Lessons Learned, Generic Concepts, Characteristics & Impacts Fuel Cells For Transportation - 1999 Annual Progress Report Energy Conversion Team Fuel Cell Systems Annual Progress Report

  2. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot...

  3. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Fuel Oil Consumption and Expenditure Intensities, 1999" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot (gallons)","per Worker...

  4. Process for producing low-sulfur boiler fuel by hydrotreatment of solvent deashed SRC

    DOE Patents [OSTI]

    Roberts, George W.; Tao, John C.

    1985-01-01

    In this invention, a process is disclosed characterized by heating a slurry of coal in the presence of a process-derived recycle solvent and passing same to a dissolver zone, separating the resultant gases and liquid/solid products therefrom, vacuum distilling the liquid/solids products, separating the portions of the liquid/solids vacuum distillation effluent into a solid ash, unconverted coal particles and SRC material having a boiling point above 850.degree. F. and subjecting same to a critical solvent deashing step to provide an ash-free SRC product. The lighter liquid products from the vacuum distillation possess a boiling point below 850.degree. F. and are passed through a distillation tower, from which recycled solvent is recovered in addition to light distillate boiling below 400.degree. F. (overhead). The ash-free SRC product in accompanyment with at least a portion of the process derived solvent is passed in combination to a hydrotreating zone containing a hydrogenation catalyst and in the presence of hydrogen is hydroprocessed to produce a desulfurized and denitrogenized low-sulfur, low-ash boiler fuel and a process derived recycle solvent which is recycled to slurry the coal in the beginning of the process before heating.

  5. Surrogate Model Development for Fuels for Advanced Combustion Engines

    SciTech Connect (OSTI)

    Anand, Krishnasamy; Ra, youngchul; Reitz, Rolf; Bunting, Bruce G

    2011-01-01

    The fuels used in internal-combustion engines are complex mixtures of a multitude of different types of hydrocarbon species. Attempting numerical simulations of combustion of real fuels with all of the hydrocarbon species included is highly unrealistic. Thus, a surrogate model approach is generally adopted, which involves choosing a few representative hydrocarbon species whose overall behavior mimics the characteristics of the target fuel. The present study proposes surrogate models for the nine fuels for advanced combustion engines (FACE) that have been developed for studying low-emission, high-efficiency advanced diesel engine concepts. The surrogate compositions for the fuels are arrived at by simulating their distillation profiles to within a maximum absolute error of 4% using a discrete multi-component (DMC) fuel model that has been incorporated in the multi-dimensional computational fluid dynamics (CFD) code, KIVA-ERC-CHEMKIN. The simulated surrogate compositions cover the range and measured concentrations of the various hydrocarbon classes present in the fuels. The fidelity of the surrogate fuel models is judged on the basis of matching their specific gravity, lower heating value, hydrogen/carbon (H/C) ratio, cetane number, and cetane index with the measured data for all nine FACE fuels.

  6. I.N

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    heating or water heating. Fuel 011, LPG, and Kerosene. Expenditures of 11 Fuel Oil. Consumption of 1.0 quadrillion Btu of fuel billion for fuel oil, LPG, and kerosene...

  7. Table 1.1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and Shipments Net Residual Distillate Natural Gas(e) LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) (billion NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million

  8. Table 1.2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Trillion Btu. Shipments NAICS Net Residual Distillate LPG and Coke and of Energy Sources Code(a) Subsector and Industry Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Total United States 311 Food 1,162 257 12 23 583 8 182 2 96 * 3112 Grain and Oilseed Milling 355 56 * 1 123 Q

  9. Table 1.3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    1.3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources and Shipments; Unit: Trillion Btu. Shipments Economic Net Residual Distillate LPG and Coke and of Energy Sources Characteristic(a) Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Total United States Value of Shipments and Receipts (million dollars) Under 20 1,169 314 6

  10. Method and apparatus for converting and removing organosulfur and other oxidizable compounds from distillate fuels, and compositions obtained thereby

    DOE Patents [OSTI]

    D'Alessandro, Robert N. (Spanish Fort, AL); Tarabocchia, John (Parsippany, NJ); Jones, Jerald Andrew (Frankfurt am Main, DE); Bonde, Steven E. (West Richard, WA); Leininger, Stefan (Langenselbold, DE)

    2010-10-26

    The present disclosure is directed to a multi-stage system and a process utilizing said system with the design of reducing the sulfur-content in a liquid comprising hydrocarbons and organosulfur compounds. The process comprising at least one of the following states: (1) an oxidation stage; (2) an extraction state; (3) a raffinate washing stage; (4) a raffinate polishing stage; (5) a solvent recovery stage; (6) a solvent purification stage; and (7) a hydrocarbon recovery stage. The process for removing sulfur-containing hydrocarbons from gas oil, which comprises oxidizing gas oil comprising hydrocarbons and organosulfur compounds to obtain a product gas oil.

  11. Design of a reconfigurable liquid hydrogen fuel tank for use in the Genii unmanned aerial vehicle

    SciTech Connect (OSTI)

    Adam, Patrick; Leachman, Jacob

    2014-01-29

    Long endurance flight, on the order of days, is a leading flight performance characteristic for Unmanned Aerial Vehicles (UAVs). Liquid hydrogen (LH2) is well suited to providing multi-day flight times with a specific energy 2.8 times that of conventional kerosene based fuels. However, no such system of LH2 storage, delivery, and use is currently available for commercial UAVs. In this paper, we develop a light weight LH2 dewar for integration and testing in the proton exchange membrane (PEM) fuel cell powered, student designed and constructed, Genii UAV. The fuel tank design is general for scaling to suit various UAV platforms. A cylindrical vacuum-jacketed design with removable end caps was chosen to incorporate various fuel level gauging, pressurizing, and slosh mitigation systems. Heat and mechanical loadings were modeled to compare with experimental results. Mass performance of the fuel tank is characterized by the fraction of liquid hydrogen to full tank mass, and the insulation performance was characterized by effective thermal conductivity and boil-off rate.

  12. Fuel cell-fuel cell hybrid system

    DOE Patents [OSTI]

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  13. California Fuel Cell Partnership: Alternative Fuels Research

    Broader source: Energy.gov [DOE]

    This presentation by Chris White of the California Fuel Cell Partnership provides information about alternative fuels research.

  14. Apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOE Patents [OSTI]

    Clawson, Lawrence G. (Dover, MA); Mitchell, William L. (Belmont, MA); Bentley, Jeffrey M. (Westford, MA); Thijssen, Johannes H. J. (Cambridge, MA)

    2001-01-01

    A hydrocarbon fuel reformer (200) is disclosed suitable for producing synthesis hydrogen gas from reactions with hydrocarbons fuels, oxygen, and steam. The reformer (200) comprises first and second tubes (208,218). The first tube (208) includes a first catalyst (214) and receives a first mixture of steam and a first fuel. The second tube (218) is annularly disposed about the first tube (208) and receives a second mixture of an oxygen-containing gas and a second fuel. In one embodiment, a third tube (224) is annularly disposed about the second tube (218) and receives a first reaction reformate from the first tube (208) and a second reaction reformate from the second tube (218). A catalyst reforming zone (260) annularly disposed about the third tube (224) may be provided to subject reformate constituents to a shift reaction. In another embodiment, a fractionator is provided to distill first and second fuels from a fuel supply source.

  15. Molten salt extraction of transuranic and reactive fission products from used uranium oxide fuel

    DOE Patents [OSTI]

    Herrmann, Steven Douglas

    2014-05-27

    Used uranium oxide fuel is detoxified by extracting transuranic and reactive fission products into molten salt. By contacting declad and crushed used uranium oxide fuel with a molten halide salt containing a minor fraction of the respective uranium trihalide, transuranic and reactive fission products partition from the fuel to the molten salt phase, while uranium oxide and non-reactive, or noble metal, fission products remain in an insoluble solid phase. The salt is then separated from the fuel via draining and distillation. By this method, the bulk of the decay heat, fission poisoning capacity, and radiotoxicity are removed from the used fuel. The remaining radioactivity from the noble metal fission products in the detoxified fuel is primarily limited to soft beta emitters. The extracted transuranic and reactive fission products are amenable to existing technologies for group uranium/transuranic product recovery and fission product immobilization in engineered waste forms.

  16. High Efficiency Direct Carbon and Hydrogen Fuel Cells for Fossil Fuel Power Generation

    SciTech Connect (OSTI)

    Steinberg, M; Cooper, J F; Cherepy, N

    2002-01-02

    Hydrogen he1 cells have been under development for a number of years and are now nearing commercial applications. Direct carbon fuel cells, heretofore, have not reached practical stages of development because of problems in fuel reactivity and cell configuration. The carbon/air fuel cell reaction (C + O{sub 2} = CO{sub 2}) has the advantage of having a nearly zero entropy change. This allows a theoretical efficiency of 100 % at 700-800 C. The activities of the C fuel and CO{sub 2} product do not change during consumption of the fuel. Consequently, the EMF is invariant; this raises the possibility of 100% fuel utilization in a single pass. (In contrast, the high-temperature hydrogen fuel cell has a theoretical efficiency of and changes in fuel activity limit practical utilizations to 75-85%.) A direct carbon fuel cell is currently being developed that utilizes reactive carbon particulates wetted by a molten carbonate electrolyte. Pure COZ is evolved at the anode and oxygen from air is consumed at the cathode. Electrochemical data is reported here for the carbon/air cell utilizing carbons derived from he1 oil pyrolysis, purified coal, purified bio-char and petroleum coke. At 800 O C, a voltage efficiency of 80% was measured at power densities of 0.5-1 kW/m2. Carbon and hydrogen fuels may be produced simultaneously at lugh efficiency from: (1) natural gas, by thermal decomposition, (2) petroleum, by coking or pyrolysis of distillates, (3) coal, by sequential hydrogasification to methane and thermal pyrolysis of the methane, with recycle of the hydrogen, and (4) biomass, similarly by sequential hydrogenation and thermal pyrolysis. Fuel production data may be combined with direct C and H2 fuel cell operating data for power cycle estimates. Thermal to electric efficiencies indicate 80% HHV [85% LHV] for petroleum, 75.5% HHV [83.4% LHV] for natural gas and 68.3% HHV [70.8% LHV] for lignite coal. Possible benefits of integrated carbon and hydrogen fuel cell power generation cycles are: (1) increased efficiency by a factor of up to 2 over many conventional fossil fuel steam plants, (2) reduced power generation cost, especially for increasing fossil fuel cost, (3) reduced CO2 emission per kWh, and (4) direct sequestration or reuse (e.g., in enhanced oil or NG recovery) of the CO{sub 2} product.

  17. Design, start up, and three years operating experience of an ammonia scrubbing, distillation, and destruction plant

    SciTech Connect (OSTI)

    Gambert, G.

    1996-12-31

    When the rebuilt Coke Plant started operations in November of 1992, it featured a completely new closed circuit secondary cooler, ammonia scrubbing, ammonia distillation, and ammonia destruction plants. This is the second plant of this type to be built in North America. To remove the ammonia from the gas, it is scrubbed with three liquids: Approximately 185 gallons/minute of cooled stripped liquor from the ammonia stills; Light oil plant condensate; and Optionally, excess flushing liquor. These scrubbers typically reduce ammonia content in the gas from 270 Grains/100 standard cubic feet to 0.2 Grains/100 standard cubic feet.

  18. ,"No. 2 Distillate Sales to End Users Refiner Sales Volumes"

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales to End Users Refiner Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","No. 2 Distillate Sales to End Users Refiner Sales Volumes",60,"Monthly","12/2015","1/15/1983" ,"Release Date:","3/1/2016" ,"Next Release Date:","4/1/2016"

  19. Comparison of Water-Hydrogen Catalytic Exchange Processes vs. Water Distillation for Water Detritiation

    Office of Environmental Management (EM)

    at Tritium Focus Group Meeting, April 22-24, 2014, Aiken, SC COMPARISON OF WATER-HYDROGEN CATALYTIC EXCHANGE PROCESSES VERSUS WATER DISTILLATION FOR WATER DETRITIATION A. Busigin, Ph.D., P.Eng. April 22, 2014 NITEK USA, Inc. 8439 Leeward Air Ranch CIR Ocala, FL 34472-9261 U.S.A. Tel: (352) 537-0864 Email: abusigin@nitek.com Presentation Objectives Presented at Tritium Focus Group Meeting, April 22-24, 2014, Aiken, SC 2 * Principles of operation - Elementary separation factors * Historical

  20. Fuel economizer

    SciTech Connect (OSTI)

    Zwierzelewski, V.F.

    1984-06-26

    A fuel economizer device for use with an internal combustion engine fitted with a carburetor is disclosed. The fuel economizer includes a plate member which is mounted between the carburetor and the intake portion of the intake manifold. The plate member further has at least one aperture formed therein. One tube is inserted through the at least one aperture in the plate member. The one tube extends longitudinally in the passage of the intake manifold from the intake portion toward the exit portion thereof. The one tube concentrates the mixture of fuel and air from the carburetor and conveys the mixture of fuel and air to a point adjacent but spaced away from the inlet port of the internal combustion engine.

  1. Fuel Tables.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1: Kerosene Consumption, Price, and Expenditure Estimates, 2014 State Consumption Prices Expenditures Residential Commercial Industrial Total Residential Commercial Industrial Total Residential and Commercial Industrial Total Residential Commercial Industrial Total Thousand Barrels Trillion Btu Dollars per Million Btu Million Dollars Alabama 4 3 4 11 (s) (s) (s) 0.1 25.33 20.88 23.77 0.6 0.4 0.4 1.4 Alaska 6 3 (s) 9 (s) (s) (s) 0.1 31.05 25.59 30.88 1.0 0.5 (s) 1.6 Arizona (s) (s) (s) (s) (s)

  2. Synthetic fuel aromaticity and staged combustion

    SciTech Connect (OSTI)

    Longanbach, J. R.; Chan, L. K.; Levy, A.

    1982-11-15

    Samples of middle and heavy SRC-II distillates were distilled into 50 C boiling point range fractions. These were characterized by measurements of their molecular weight, elemental analysis and basic nitrogen content and calculation of average molecular structures. The structures typically consisted of 1 to 3 aromatic rings fused to alicyclic rings with short, 1 to 3 carbon aliphatic side chains. The lower boiling fractions contained significant amounts (1 atom/molecule) of oxygen while the heavier fractions contained so few heteroatoms that they were essentially hydrocarbons. Laboratory scale oxidative-pyrolysis experiments were carried out at pyrolysis temperatures of 500 to 1100 C and oxygen concentrations from 0 to 100 percent of stoichiometry. Analysis of liquid products, collected in condensers cooled with liquid nitrogen showed that aromatization is a major reaction in the absence of oxygen. The oxygen-containing materials (phenolics) seem to be more resistant to thermal pyrolysis than unsubstituted aromatics. Nitrogen converts from basic to nonbasic forms at about 500 C. The nonbasic nitrogen is more stable and survives up to 700 C after which it is slowly removed. A recently constructed 50,000 Btu/hr staged combustor was used to study the chemistry of the nitrogen and aromatics. SRC II combustion was studied under fuel-rich, first-stage conditions at air/fuel ratios from 0.6 to 1.0 times stoichiometric. The chemistry of the fuel during combustion calls for further investigation in order to examine the mechanism by which HCN is evolved as a common intermediate for the formation of the nitrogen-containing gaseous combustion products. 25 references, 45 figures, 25 tables.

  3. Synthesis of zeolite from Italian coal fly ash: Differences in crystallization temperature using seawater instead of distilled water

    SciTech Connect (OSTI)

    Belviso, Claudia; Cavalcante, Francesco; Fiore, Saverio

    2010-05-15

    In this study Italian coal fly ash was converted into several types of zeolite in laboratory experiments with temperatures of crystallization ranging from 35 up to 90 deg. C. Distilled and seawater were used during the hydrothermal synthesis process in separate experiments, after a pre-treatment fusion with NaOH. The results indicate that zeolites could be formed from different kind of Italian coal fly ash at low temperature of crystallization using both distilled and seawater. SEM data and the powder patterns of X-ray diffraction analysis show that faujasite, zeolite ZK-5 and sodalite were synthesized when using both distilled and seawater; zeolite A crystallized only using distilled water. In particular the experiments indicate that the synthesis of zeolite X and zeolite ZK-5 takes place at lower temperatures when using seawater (35 and 45 deg. C, respectively). The formation of sodalite is always competitive with zeolite X which shows a metastable behaviour at higher temperatures (70-90 deg. C). The chemical composition of the fly ash source could be responsible of the differences on the starting time of synthesized zeolite with distilled water, in any case our data show that the formation of specific zeolites takes place always at lower temperatures when using seawater.

  4. Advanced Multi-Effect Distillation System for Desalination Using Waste Heat fromGas Brayton Cycles

    SciTech Connect (OSTI)

    Haihua Zhao; Per F. Peterson

    2012-10-01

    Generation IV high temperature reactor systems use closed gas Brayton Cycles to realize high thermal efficiency in the range of 40% to 60%. The waste heat is removed through coolers by water at substantially greater average temperature than in conventional Rankine steam cycles. This paper introduces an innovative Advanced Multi-Effect Distillation (AMED) design that can enable the production of substantial quantities of low-cost desalinated water using waste heat from closed gas Brayton cycles. A reference AMED design configuration, optimization models, and simplified economics analysis are presented. By using an AMED distillation system the waste heat from closed gas Brayton cycles can be fully utilized to desalinate brackish water and seawater without affecting the cycle thermal efficiency. Analysis shows that cogeneration of electricity and desalinated water can increase net revenues for several Brayton cycles while generating large quantities of potable water. The AMED combining with closed gas Brayton cycles could significantly improve the sustainability and economics of Generation IV high temperature reactors.

  5. Conceptual design and optimization for JET water detritiation system cryo-distillation facility

    SciTech Connect (OSTI)

    Lefebvre, X.; Hollingsworth, A.; Parracho, A.; Dalgliesh, P.; Butler, B.; Smith, R.

    2015-03-15

    The aim of the Exhaust Detritiation System (EDS) of the JET Active Gas Handling System (AGHS) is to convert all Q-based species (Q{sub 2}, Q-hydrocarbons) into Q{sub 2}O (Q being indifferently H, D or T) which is then trapped on molecular sieve beds (MSB). Regenerating the saturated MSBs leads to the production of tritiated water which is stored in Briggs drums. An alternative disposal solution to offsite shipping, is to process the tritiated water onsite via the implementation of a Water Detritiation System (WDS) based, in part, on the combination of an electrolyser and a cryo-distillation (CD) facility. The CD system will separate a Q{sub 2} mixture into a de-tritiated hydrogen stream for safe release and a tritiated stream for further processing on existing AGHS subsystems. A sensitivity study of the Souers' model using the simulation program ProSimPlus (edited by ProSim S.A.) has then been undertaken in order to perform an optimised dimensioning of the cryo-distillation system in terms of available cooling technologies, cost of investment, cost of operations, process performance and safety. (authors)

  6. An assessment of energy and environmental issues related to the use of gas-to-liquid fuels in transportation

    SciTech Connect (OSTI)

    Greene, D.L.

    1999-11-01

    Recent technological advances in processes for converting natural gas into liquid fuels, combined with a growing need for cleaner, low-sulfur distillate fuel to mitigate the environmental impacts of diesel engines have raised the possibility of a substantial global gas-to-liquids (G-T-L) industry. This report examines the implications of G-T-L supply for U.S. energy security and the environment. It appears that a G-T-L industry would increase competitiveness in world liquid fuels markets, even if OPEC states are major producers of G-T-L's. Cleaner G-T-L distillates would help reduce air pollution from diesel engines. Implications for greenhouse gas (GHG) emissions could be positive or negative, depending on the sources of natural gas, their alternative uses, and the degree of sequestration that can be achieved for CO{sub 2} emissions produced during the conversion process.

  7. Transportation fuels from biomass via fast pyrolysis and hydroprocessing

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2013-09-21

    Biomass is a renewable source of carbon, which could provide a means to reduce the greenhouse gas impact from fossil fuels in the transportation sector. Biomass is the only renewable source of liquid fuels, which could displace petroleum-derived products. Fast pyrolysis is a method of direct thermochemical conversion (non-bioconversion) of biomass to a liquid product. Although the direct conversion product, called bio-oil, is liquid; it is not compatible with the fuel handling systems currently used for transportation. Upgrading the product via catalytic processing with hydrogen gas, hydroprocessing, is a means that has been demonstrated in the laboratory. By this processing the bio-oil can be deoxygenated to hydrocarbons, which can be useful replacements of the hydrocarbon distillates in petroleum. While the fast pyrolysis of biomass is presently commercial, the upgrading of the liquid product by hydroprocessing remains in development, although it is moving out of the laboratory into scaled-up process demonstration systems.

  8. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Fact sheet produced by the Fuel Cell...

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Fuel Properties Search Fuel Properties Comparison Create a custom chart

  10. ,,,"Residual Fuel Oil(b)",,,," Alternative Energy Sources(c)"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Relative Standard Errors for Table 10.5;" " Unit: Percents." ,,,"Residual Fuel Oil(b)",,,," Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate",,,"and" "Code(a)","Subsector and

  11. Winter fuels report, week ending: March 25, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-03-31

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; Propane net production, imports and stocks on a US level and for PADD`s I, II, and III; Natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; Crude oil and petroleum price comparisons for the US and selected cities; and A 6-10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city. The distillate fuel oil and propane supply data are collected and published weekly.

  12. Reforming of fuel inside fuel cell generator

    DOE Patents [OSTI]

    Grimble, Ralph E. (Finleyville, PA)

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  13. Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling

  14. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  15. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  16. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  17. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  18. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  19. Process for converting cellulosic materials into fuels and chemicals

    DOE Patents [OSTI]

    Scott, Charles D. (Oak Ridge, TN); Faison, Brendlyn D. (Knoxville, TN); Davison, Brian H. (Knoxville, TN); Woodward, Jonathan (Oak Ridge, TN)

    1994-01-01

    A process for converting cellulosic materials, such as waste paper, into fuels and chemicals utilizing enzymatic hydrolysis of the major constituent of paper, cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. The cellulase is produced from a continuous, columnar, fluidized-bed bioreactor utilizing immobilized microorganisms. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. The cellulase is recycled by an adsorption process. The resulting crude sugars are converted to dilute product in a fluidized-bed bioreactor utilizing microorganisms. The dilute product is concentrated and purified by utilizing distillation and/or a biparticle fluidized-bed bioreactor system.

  20. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    6 U.S. Energy Information Administration / Annual Energy Review 2011 Table 11.2b Carbon Dioxide Emissions From Energy Consumption: Commercial Sector, Selected Years, 1949-2011 (Million Metric Tons of Carbon Dioxide 1 ) Year Coal Natural Gas 3 Petroleum Retail Electricity 7 Total 2 Biomass 2 Distillate Fuel Oil 4 Kerosene LPG 5 Motor Gasoline 6 Petroleum Coke Residual Fuel Oil Total Wood 8 Waste 9 Fuel Ethanol 10 Total 1949 148 19 16 3 2 7 NA 28 55 58 280 2 NA NA 2 1950 147 21 19 3 2 7 NA 33 66

  1. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    7 Type of Heating in Occupied Housing Units, 1950 and 2009 By Fuel Type By Fuel Type, Share of Total 56 U.S. Energy Information Administration / Annual Energy Review 2011 1 Sum of components do not equal total due to independent rounding. 2 Liquefied petroleum gases. 3 Includes coal coke. 4 Kerosene, solar, and other. (s)=Less than 0.5. Source: Table 2.7. 57 38 8 6 2 (s) 1 11 (s) 9 1 4 14 2 Natural Gas Electricity Distillate Fuel Oil LPG² Wood Coal³ Other and None 0 20 40 60 Million Occupied

  2. Regulatory impact analysis for the petroleum refineries neshap. Draft report

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    The report analyzes the regulatory impacts of the Petroleum Refinery National Emission Standard for Hazardous Air Pollutants (NESHAP), which is being promulgated under Section 112 of the Clean Air Act Amendments of 1990 (CCA). This emission standard would regulate the emissions of certain hazardous air pollutants (HAPs) from petroleum refineries. The petroleum refineries industry group includes any facility engaged in the production of motor gasoline, naphthas, kerosene, jet fuels, distillate fuel oils, residual fuel oils, lubricants, or other products made from crude oil or unfinished petroleum derivatives. The report analyzes the impact that regulatory action is likely to have on the petroleum refining industry.

  3. Distillation efficiencies of an industrial-scale i-butane/n-butane fractionator

    SciTech Connect (OSTI)

    Klemola, K.T.; Ilme, J.K.

    1996-12-01

    Rarely published industrial-scale distillation efficiency data are presented. The Murphree tray efficiencies are determined from the i-butane/n-butane fractionator performance data. Point efficiencies, numbers of overall vapor phase transfer units, numbers of vapor and liquid phase transfer units, and liquid phase resistances of mass transfer are backcalculated from the Murphree tray efficiencies. Various efficiency prediction and scale-up methods have been tested against experimental results. A new model for the prediction of the numbers of vapor and liquid phase transfer units has been developed. The model can be applied to hydrocarbon systems at high pressure. The influence of the mass-transfer coefficients, the interfacial area, and the vapor and liquid residence times on mass transfer has been analyzed separately, and as a result the NTU correlations for vapor and liquid phases are obtained. The constants of the model can be obtained by fitting the model to experimental efficiency data from a similar system.

  4. Fuel Cell Buses

    Broader source: Energy.gov [DOE]

    Presentation slides from the Fuel Cell Technologies Office webinar Fuel Cell Buses Development held September 12, 2013.

  5. Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling

  6. Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Infrastructure

  7. Alternative Fuels Data Center: Propane Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Propane Fueling Infrastructure

  8. Alternative Fuels Data Center: Filling CNG Fuel Tanks

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Filling CNG Fuel Tanks to someone by E-mail Share Alternative Fuels Data Center: Filling CNG Fuel Tanks on Facebook Tweet about Alternative Fuels Data Center: Filling CNG Fuel Tanks on Twitter Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Google Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Delicious Rank Alternative Fuels Data Center: Filling CNG Fuel Tanks on Digg Find More places to share Alternative Fuels Data Center: Filling CNG Fuel Tanks on

  9. Alternative Fuels Data Center: Natural Gas Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fuel Basics on Google Bookmark Alternative Fuels Data Center: Natural Gas Fuel Basics on Delicious Rank Alternative Fuels Data Center: Natural Gas Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fuel Basics on

  10. Alternative Fuels Data Center: Natural Gas Fuel Safety

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Safety to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fuel Safety on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fuel Safety on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fuel Safety on Google Bookmark Alternative Fuels Data Center: Natural Gas Fuel Safety on Delicious Rank Alternative Fuels Data Center: Natural Gas Fuel Safety on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fuel Safety on

  11. Synthetic fuels

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    In January 1982, the Department of Energy guaranteed a loan for the construction and startup of the Great Plains project. On August 1, 1985, the partnership defaulted on the $1.54 billion loan, and DOE acquired control of, and then title to, the project. DOE continued to operate the plant, through the ANG Coal Gasification Company, and sell synthetic fuel. The DOE's ownership and divestiture of the plant is discussed.

  12. Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cells - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  13. Engineered fuel: Renewable fuel of the future?

    SciTech Connect (OSTI)

    Tomczyk, L.

    1997-01-01

    The power generation and municipal solid waste management industries share an interest in the use of process engineered fuel (PEF) comprised mainly of paper and plastics as a supplement to conventional fuels. PEF is often burned in existing boilers, making PEF an alternative to traditional refuse derived fuels (RDF). This paper describes PEF facilities and makes a comparison of PEF and RDF fuels.

  14. Alternative Fuels Data Center: Fuel Cell Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Cell Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Fuel

  15. Alternative Fuels Data Center: Strategies to Conserve Fuel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Strategies to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Strategies to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Strategies to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Strategies to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Strategies to Conserve Fuel on Delicious Rank Alternative Fuels Data Center: Strategies to Conserve Fuel on Digg Find More places to share Alternative Fuels Data Center:

  16. Alternative Fuels Data Center: Natural Gas Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Stations on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Stations on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Stations on Digg Find More places to share Alternative Fuels Data

  17. Alternative Fuels Data Center: Test Your Alternative Fuel IQ

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Test Your Alternative Fuel IQ to someone by E-mail Share Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Facebook Tweet about Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Twitter Bookmark Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Google Bookmark Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Delicious Rank Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Digg Find More places to share Alternative Fuels Data

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Local Examples Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Search Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Definition The following fuels are defined as alternative fuels by the Energy Policy Act (EPAct) of 1992: pure methanol, ethanol, and other alcohols; blends of 85% or more of alcohol with gasoline; natural gas and liquid fuels domestically produced from natural gas; liquefied petroleum gas (propane); coal-derived liquid fuels; hydrogen; electricity; pure biodiesel (B100); fuels, other than alcohol, derived from biological materials; and P-Series fuels. In addition, the U.S.

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Labeling Requirements Alternative fuel dispensers must be labeled with information to help consumers make informed decisions about fueling a vehicle, including the name of the fuel and the minimum percentage of the main component of the fuel. Labels may also list the percentage of other fuel components. This requirement applies to, but is not limited to, the following fuel types: methanol, denatured ethanol, and/or other alcohols; mixtures containing 85% or more by volume of

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    About the Data Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Summary Tables Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Federal Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Truckstop Electrification Truck Stop Electrification Locator Locate

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Vehicle and Infrastructure Cash-Flow Evaluation Model VICE 2.0: Vehicle

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) Decal The state motor fuel tax does not apply to passenger vehicles, certain buses, or commercial vehicles that are powered by an alternative fuel, if they obtain an AFV decal. Owners or operators of such vehicles that also own or operate their own personal fueling stations are required to pay an annual alternative fuel decal fee, as listed below. Motor vehicles licensed as historic vehicles that are powered by alternative fuels are exempt from the motor fuels tax

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Definition and Specifications Alternative fuels include biofuel, ethanol, methanol, hydrogen, coal-derived liquid fuels, electricity, natural gas, propane gas, or a synthetic transportation fuel. Biofuel is defined as a renewable, biodegradable, combustible liquid or gaseous fuel derived from biomass or other renewable resources that can be used as transportation fuel, combustion fuel, or refinery feedstock and that meets ASTM specifications and federal quality requirements for

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives » Federal Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  15. Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Breakout Session 2: Frontiers and Horizons Session 2-B:...

  16. Fuel Station of the Future- Innovative Approach to Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Station of the Future- Innovative Approach to Fuel Cell Technology Unveiled in California Fuel Station of the Future- Innovative Approach to Fuel Cell Technology Unveiled in ...

  17. DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office: 2013 Fuel Cell Seminar and Energy Exposition DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and Energy Exposition Overview of DOE's Fuel Cell Technologies Office...

  18. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Download the webinar slides from the U.S. Department ...

  19. Patent: Microbial fuel cell treatment of fuel process wastewater |

    Office of Scientific and Technical Information (OSTI)

    DOEpatents Microbial fuel cell treatment of fuel process wastewater Citation Details Title: Microbial fuel cell treatment of fuel process wastewater

  20. Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructu...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase...

  1. Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Update: 2010 Fuel Cell Seminar and Exposition Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar and Exposition Presentation by Sunita Satyapal at the 2010 Fuel...

  2. Winter fuels report, week ending April 30, 1993. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1993-05-06

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for afl Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD's I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD's; as well as selected National average prices. Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  3. Winter fuels report. Week ending, October 21, 1994

    SciTech Connect (OSTI)

    Zitomer, M.; Griffith, A.; Zyren, J.

    1994-10-01

    Demand for distillate fuel oil is expected to show a slight decline this winter (October 1, 1994-March 31, 1995) from last, according to the Energy Information Administration`s (EIA) 4th Quarter 1994 Short-Term Energy Outlook (STEO) Mid-World Oil Price Case forecast. EIA projects winter demand to decline one percent to 3.3 million barrels per day, assuming normal weather conditions. The effects of expected moderate growth in the economy and industrial production will likely be offset by much warmer temperatures than those a year ago. EIA projects prices for both residential heating oil and diesel fuel to be moderately higher than prices last winter. Increases are likely, primarily because crude oil prices are expected to be higher than they were a year earlier (Table FE5).

  4. Winter fuels report, week ending January 4, 1991. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1991-01-10

    The Winter Fuels Report is intended to provide concise, timely information on the following: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD), I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. 34 figs., 12 tabs.

  5. Winter fuels report, week ending October 12, 1990

    SciTech Connect (OSTI)

    Not Available

    1990-10-18

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city.

  6. Winter fuels report, week ending December 1, 1995

    SciTech Connect (OSTI)

    1995-12-07

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices. Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city.

  7. Winter fuels report, week ending October 29, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-04

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices. Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  8. Winter Fuels Report week ending: November 8, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-11-14

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks for PADD's 1, 2, and 3; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city.

  9. Winter fuels report, week ending December 16, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-12-22

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local Governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s 1, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD, as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  10. Winter fuels report week ending: November 17, 1995

    SciTech Connect (OSTI)

    1995-12-01

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city.

  11. Winter fuels report, week ending October 6, 1995

    SciTech Connect (OSTI)

    1995-10-06

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topcs: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s, I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Informatoin Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city.

  12. Winter fuels reports, week ending: November 24, 1995

    SciTech Connect (OSTI)

    1995-11-30

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices. Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city.

  13. Winter Fuels Report: Week ending November 10, 1995

    SciTech Connect (OSTI)

    1995-11-01

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on: distillate fuel oil net production, imports and stocks on a US level and for all PADD and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and, a 6-10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city.

  14. Winter fuels report, week ending January 11, 1991. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1991-01-17

    The Winter Fuels Report is intended to provide concise, timely information on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those States participating in the joint Energy Information Administration (EIA)/ State Heating Oil and Propane Program; crude oil petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. 34 figs., 12 tabs.

  15. Winter fuels report, week ending November 30, 1990. [Contains Glossary

    SciTech Connect (OSTI)

    Not Available

    1990-12-06

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cites; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. 27 figs., 12 tabs.

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tax Exemptions and Reductions Propane, natural gas, electricity, and hydrogen, also known as special fuel, used to operate motor vehicles are exempt from state fuel taxes, but subject to a special fuel tax at the rate of three-nineteenths of the conventional motor fuel tax. A reduction in special fuel tax is permissible if the fuel is already taxed by the Navajo Nation. Retailers, wholesalers, and suppliers of special fuel are eligible for a refund of the special fuel tax if dyed diesel fuel is

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Fuel Specifications The California Department of Food and Agriculture, Division of Measurement Standards (DMS) requires that hydrogen fuel used in internal combustion engines and fuel cells must meet the SAE International J2719 standard for hydrogen fuel quality. For more information, see the DMS Hydrogen Fuel News website. (Reference California Code of Regulations Title 4, Section 4180-4181

  18. Optima: Low Greenhouse Gas Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OPTIMA: Low Greenhouse Gas Fuels Blake Simmons Bioenergy 2015 June 24, 2015 2 Defining and Developing New Fuels * Workflow - Survey what fuels are available today - Provide fuel...

  19. Alternative Fuels Data Center: CNG Vehicle Fueling Animation

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: CNG Vehicle Fueling Animation to someone by E-mail Share Alternative Fuels Data Center: CNG Vehicle Fueling Animation on Facebook Tweet about Alternative Fuels Data Center: CNG Vehicle Fueling Animation on Twitter Bookmark Alternative Fuels Data Center: CNG Vehicle Fueling Animation on Google Bookmark Alternative Fuels Data Center: CNG Vehicle Fueling Animation on Delicious Rank Alternative Fuels Data

  20. Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Maintenance to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on Delicious Rank Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on Digg Find

  1. Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    CNG Fuel System and Cylinder Maintenance to someone by E-mail Share Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance on Facebook Tweet about Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance on Twitter Bookmark Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance on Google Bookmark Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance on Delicious Rank Alternative Fuels Data Center: CNG Fuel System and Cylinder

  2. Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Conversions to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Digg Find More places to share Alternative Fuels

  3. Alternative Fuels Data Center: Staples Delivers on Fuel Efficiency

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Staples Delivers on Fuel Efficiency to someone by E-mail Share Alternative Fuels Data Center: Staples Delivers on Fuel Efficiency on Facebook Tweet about Alternative Fuels Data Center: Staples Delivers on Fuel Efficiency on Twitter Bookmark Alternative Fuels Data Center: Staples Delivers on Fuel Efficiency on Google Bookmark Alternative Fuels Data Center: Staples Delivers on Fuel Efficiency on Delicious Rank Alternative Fuels Data Center: Staples Delivers on Fuel Efficiency on Digg Find More

  4. Alternative Fuels Data Center: Alternative Fuels Save Money in Indy

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuels Save Money in Indy to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Save Money in Indy on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Save Money in Indy on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Save Money in Indy on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Save Money in Indy on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Save Money in Indy on Digg Find

  5. Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Fuels Education in Alabama to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Digg Find

  6. Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Flexible Fuel Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Ethanol Flexible Fuel

  7. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Fuel Oil Consumption and Expenditures for Non-Mall Buildings, 2003" ,"All Buildings* Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  8. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  9. Fuel Quality/Processing Study. Volume II. Appendix, Task I, literature survey

    SciTech Connect (OSTI)

    O'Hara, J B; Bela, A; Jentz, N E; Klumpe, H W; Kessler, R E; Kotzot, H T; Loran, B I

    1981-04-01

    This activity was begun with the assembly of information from Parsons' files and from contacts in the development and commercial fields. A further more extensive literature search was carried out using the Energy Data Base and the American Petroleum Institute Data Base. These are part of the DOE/RECON system. Approximately 6000 references and abstracts were obtained from the EDB search. These were reviewed and the especially pertinent documents, approximately 300, were acquired in the form of paper copy or microfiche. A Fuel Properties form was developed for listing information pertinent to gas turbine liquid fuel properties specifications. Fuel properties data for liquid fuels from selected synfuel processes, deemed to be successful candidates for near future commercial plants were tabulated on the forms. The processes selected consisted of H-Coal, SRC-II and Exxon Donor Solvent (EDS) coal liquefaction processes plus Paraho and Tosco shale oil processes. Fuel properties analyses for crude and distillate syncrude process products are contained in Section 2. Analyses representing synthetic fuels given refinery treatments, mostly bench scale hydrotreating, are contained in Section 3. Section 4 discusses gas turbine fuel specifications based on petroleum source fuels as developed by the major gas turbine manufacturers. Section 5 presents the on-site gas turbine fuel treatments applicable to petroleum base fuels impurities content in order to prevent adverse contaminant effects. Section 7 relates the environmental aspects of gas turbine fuel usage and combustion performance. It appears that the near future stationary industrial gas turbine fuel market will require that some of the synthetic fuels be refined to the point that they resemble petroleum based fuels.

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels Road Tax Alternative fuels including, but not limited to, natural gas or propane sold by a licensed alternative fuel dealer and used in on-road vehicles is subject to a...

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Dispenser Labeling Requirement All equipment used to dispense motor fuel containing at least 1% ethanol or methanol must be clearly labeled to inform customers that the fuel contains ethanol or methanol. (Reference Texas Statutes, Agriculture Code 17.051

  12. Word Pro - S12

    Gasoline and Diesel Fuel Update (EIA)

    78 U.S. Energy Information Administration / Monthly Energy Review February 2016 Table 12.3 Carbon Dioxide Emissions From Energy Consumption: Commercial Sector (Million Metric Tons of Carbon Dioxide a ) Coal Natural Gas b Petroleum Retail Electricity f Total g Distillate Fuel Oil c Kerosene LPG d Motor Gasoline e Petroleum Coke Residual Fuel Oil Total 1973 Total ........................ 15 141 47 5 9 6 NA 52 120 334 609 1975 Total ........................ 14 136 43 4 8 6 NA 39 100 333 583 1980

  13. Word Pro - S3

    Gasoline and Diesel Fuel Update (EIA)

    a Heat Content of Petroleum Consumption by End-Use Sector, 1949-2014 (Quadrillion Btu) Residential and Commercial a Sectors, Selected Products Industrial a Sector, Selected Products Transportation Sector, Selected Products 68 U.S. Energy Information Administration / Monthly Energy Review February 2016 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 1 2 3 Distillate Fuel Oil LPG b Kerosene Residual Fuel Oil LPG b 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

  14. Word Pro - S3

    Gasoline and Diesel Fuel Update (EIA)

    1 Table 3.8b Heat Content of Petroleum Consumption: Industrial Sector (Trillion Btu) Industrial Sector a Asphalt and Road Oil Distillate Fuel Oil Kerosene Liquefied Petroleum Gases Lubricants Motor Gasoline b Petroleum Coke Residual Fuel Oil Other c Total 1950 Total ........................ 435 698 274 156 94 251 90 1,416 546 3,960 1955 Total ........................ 615 991 241 323 103 332 147 1,573 798 5,123 1960 Total ........................ 734 1,016 161 507 107 381 328 1,584 947 5,766 1965

  15. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    9 Commercial Buildings Consumption by Energy Source By Survey Year, 1979-2003 By Census Region, 2003 60 U.S. Energy Information Administration / Annual Energy Review 2011 1 Electricity only; excludes electrical system energy losses. 2 Distillate fuel oil, residual fuel oil, and kerosene. (s)=Less than 0.05 quadrillion Btu. Q=Data withheld because either the relative standard error was greater than 50 percent or fewer than 20 buildings were sampled. Note: See Appendix C for map of Census regions.

  16. Buildings Energy Data Book: 1.4 Environmental Data

    Buildings Energy Data Book [EERE]

    8 2010 Carbon Dioxide Emission Coefficients for Buildings (MMT CO2 per Quadrillion Btu) (1) All Residential Commercial Buildings Buildings Buildings Coal Average (2) 95.35 95.35 95.35 Natural Gas Average (2) 53.06 53.06 53.06 Petroleum Products Distillate Fuel Oil/Diesel 73.15 - - Kerosene 72.31 - - Motor Gasoline 70.88 - - Liquefied Petroleum Gas 62.97 - - Residual Fuel Oil 78.80 - - Average (2) 69.62 68.45 71.62 Electricity Consumption (3) Average - Primary (4) 57.43 57.43 57.43 Average - Site

  17. Ohio Fuel Cell Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Top 5 Fuel Cell States: Why Local Policies Mean Green Growth Jun 21 st , 2011 2 * Ohio Fuel Cell Initiative * Ohio Fuel Cell Coalition * Accomplishments * Ohio Successes Discussion Areas 3 Ohio's Fuel Cell Initiative * Announced on 5/9/02 * Part of Ohio Third Frontier Initiative * $85 million investment to date * Core focus areas: 1) Expand the state's research capabilities; 2) Participate in demonstration projects; and 3) Expand the fuel cell industry in Ohio 4 OHIO'S FUEL CELL INITIATIVE

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary Tables Key Federal Legislation The information below includes a brief chronology and

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Renewable Fuel Standard RFS Volumes by Year Enlarge illustration The Renewable Fuel Standard (RFS) is a federal program that requires transportation fuel sold in the United States to contain a minimum volume of renewable fuels. The RFS originated with the Energy Policy Act of 2005 and was expanded and extended by the Energy Independence and Security Act of 2007 (EISA). The RFS requires renewable fuel to be blended into transportation fuel in increasing amounts each year, escalating to 36 billion

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels Tax Exemption and Refund for Government Fleet Vehicles State excise tax does not apply to special fuels, including gaseous special fuels, when used in state or federal government owned vehicles. Special fuels include compressed and liquefied natural gas, liquefied petroleum gas (propane), hydrogen, and fuel suitable for use in diesel engines. In addition, state excise tax paid on special fuels used in state or federal government vehicles is subject to a refund, as long as the tax was

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Use and Fuel-Efficient Vehicle Requirements State-owned vehicle fleets must implement petroleum displacement plans to increase the use of alternative fuels and fuel-efficient vehicles. Reductions may be met by petroleum displaced through the use of biodiesel, ethanol, other alternative fuels, the use of hybrid electric vehicles, other fuel-efficient or low emission vehicles, or additional methods the North Carolina Division of Energy, Mineral and Land Resources approves.

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Transportation Fuel Standards The Oregon Department of Environmental Quality (DEQ) administers the Oregon Clean Fuels Program (Program), which requires fuel producers and importers to register and keep records of and report the volumes and carbon intensities of the fuels they provide in Oregon. DEQ adopted rules for the next phase of the Program, effective February 1, 2015, requiring fuel suppliers to reduce the carbon content of transportation fuels. For more information, see the DEQ

  3. Fuel processor for fuel cell power system

    DOE Patents [OSTI]

    Vanderborgh, Nicholas E.; Springer, Thomas E.; Huff, James R.

    1987-01-01

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  4. Table 8.5c Consumption of Combustible Fuels for Electricity Generation: Electric Power Sector by Plant Type, 1989-2011 (Breakout of Table 8.5b)

    U.S. Energy Information Administration (EIA) Indexed Site

    5c Consumption of Combustible Fuels for Electricity Generation: Electric Power Sector by Plant Type, 1989-2011 (Breakout of Table 8.5b) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu Electricity-Only Plants 11<//td> 1989 767,378,330 25,574,094 241,960,194 3,460 517,385 270,124,673

  5. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    License Fee Effective July 1, 2015, each alternative fuel supplier, refiner, distributor, terminal operator, importer or exporter of alternative fuel used in motor vehicles must...

  6. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alternative fuels are defined as methanol, ethanol, natural gas, liquefied petroleum gas (propane), coal-derived liquid fuels, hydrogen, electricity, biodiesel, renewable diesel,...

  7. Residential Energy Consumption Survey:

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... ...*...,,.<,<,...,,.,,.,,. 97 Table 6. Residential Fuel Oil and Kerosene Consumption and Expenditures April 1979 Through March 1980 Northeast...

  8. Internal reforming fuel cell assembly with simplified fuel feed

    DOE Patents [OSTI]

    Farooque, Mohammad (Huntington, CT); Novacco, Lawrence J. (Brookfield, CT); Allen, Jeffrey P. (Naugatuck, CT)

    2001-01-01

    A fuel cell assembly in which fuel cells adapted to internally reform fuel and fuel reformers for reforming fuel are arranged in a fuel cell stack. The fuel inlet ports of the fuel cells and the fuel inlet ports and reformed fuel outlet ports of the fuel reformers are arranged on one face of the fuel cell stack. A manifold sealing encloses this face of the stack and a reformer fuel delivery system is arranged entirely within the region between the manifold and the one face of the stack. The fuel reformer has a foil wrapping and a cover member forming with the foil wrapping an enclosed structure.

  9. Update of distillers grains displacement ratios for corn ethanol life-cycle analysis.

    SciTech Connect (OSTI)

    Arora, S.; Wu, M.; Wang, M.; Energy Systems

    2011-02-01

    Production of corn-based ethanol (either by wet milling or by dry milling) yields the following coproducts: distillers grains with solubles (DGS), corn gluten meal (CGM), corn gluten feed (CGF), and corn oil. Of these coproducts, all except corn oil can replace conventional animal feeds, such as corn, soybean meal, and urea. Displacement ratios of corn-ethanol coproducts including DGS, CGM, and CGF were last updated in 1998 at a workshop at Argonne National Laboratory on the basis of input from a group of experts on animal feeds, including Prof. Klopfenstein (University of Nebraska, Lincoln), Prof. Berger (University of Illinois, Urbana-Champaign), Mr. Madson (Rapheal Katzen International Associates, Inc.), and Prof. Trenkle (Iowa State University) (Wang 1999). Table 1 presents current dry milling coproduct displacement ratios being used in the GREET model. The current effort focuses on updating displacement ratios of dry milling corn-ethanol coproducts used in the animal feed industry. Because of the increased availability and use of these coproducts as animal feeds, more information is available on how these coproducts replace conventional animal feeds. To glean this information, it is also important to understand how industry selects feed. Because of the wide variety of available feeds, animal nutritionists use commercial software (such as Brill Formulation{trademark}) for feed formulation. The software recommends feed for the animal on the basis of the nutritional characteristics, availability, and price of various animal feeds, as well as on the nutritional requirements of the animal (Corn Refiners Association 2006). Therefore, feed formulation considers both the economic and the nutritional characteristics of feed products.

  10. Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 Fuel Cell Seminar Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar Presentation by Sunita Satyapal at the Fuel Cell Seminar on November 1, 2011. PDF icon Fuel Cell...

  11. "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Relative Standard Errors for Table 7.4;" " Unit: Percents." " ",," "," ",," "," " ,,"Residual","Distillate",,"LPG and" "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal" "Characteristic(a)","(kWh)","(gallons)","(gallons)","(1000 cu

  12. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Fact sheet produced by the Fuel Cell Technologies Program describing hydrogen fuel cell technology. PDF icon Fuel Cells Fact Sheet More Documents & Publications Comparison of Fuel Cell Technologies: Fact Sheet Fuel Cells Fact Sheet 2011 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies

  13. Fuel Cells and Renewable Gaseous Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells and Renewable Gaseous Fuels Fuel Cells and Renewable Gaseous Fuels Breakout Session 3-C: Renewable Gaseous Fuels Fuel Cells and Renewable Gaseous Fuels Sarah Studer, ORISE Fellow-Fuel Cell Technologies Office, U.S. Department of Energy PDF icon studer_bioenergy_2015.pdf More Documents & Publications U.S Department of Energy Fuel Cell Technologies Office Overview: 2015 Smithsonian Science Education Academies for Teachers Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and

  14. Tips: Buying and Driving Fuel Efficient and Alternative Fuel Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Electricity & Fuel » Vehicles & Fuels » Tips: Buying and Driving Fuel Efficient and Alternative Fuel Vehicles Tips: Buying and Driving Fuel Efficient and Alternative Fuel Vehicles Electric vehicles are just one option for buyers interested in fuel efficient or alternative fuel vehicles. | Photo courtesy of Dennis Schroeder, NREL. Electric vehicles are just one option for buyers interested in fuel efficient or alternative fuel vehicles. | Photo courtesy of

  15. Alternative Fuels Data Center: About the Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    About Printable Version Share this resource Send a link to Alternative Fuels Data Center: About the Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center: About the Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center: About the Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center: About the Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center: About the Alternative Fuels Data

  16. Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles on Google Bookmark Alternative Fuels Data Center: Alternative Fuels and Advanced

  17. Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Efficient Driving Behaviors to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Delicious Rank Alternative Fuels Data Center: Efficient

  18. Alternative Fuels Data Center: Flexible Fuel Vehicle Availability

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Availability to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Digg Find More places to share Alternative

  19. Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle

  20. Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on

  1. Alternative Fuels Data Center: Techniques for Drivers to Conserve Fuel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Techniques for Drivers to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Techniques for Drivers to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Techniques for Drivers to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Techniques for Drivers to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Techniques for Drivers to Conserve Fuel on Delicious Rank Alternative Fuels Data Center: Techniques for Drivers to Conserve

  2. Alternative Fuels Data Center: Biodiesel Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Station Locations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Digg Find More places to share

  3. Alternative Fuels Data Center: Boulder Commits to Alternative Fuel Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Boulder Commits to Alternative Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Boulder Commits to Alternative Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Boulder Commits to Alternative Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Boulder Commits to Alternative Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Boulder Commits to Alternative Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Boulder

  4. Alternative Fuels Data Center: Ethanol Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Station Locations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Station Locations on Digg Find More places to share Alternative

  5. Alternative Fuels Data Center: Hydrogen Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Delicious Rank

  6. Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Maryland Conserves Fuel With Hybrid Trucks to someone by E-mail Share Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Facebook Tweet about Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Twitter Bookmark Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Google Bookmark Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Delicious Rank Alternative Fuels Data Center: Maryland Conserves

  7. Alternative Fuels Data Center: Natural Gas Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Station Locations to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Digg Find More places to

  8. Alternative Fuels Data Center: Propane Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Station Locations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Station Locations on Digg Find More places to share Alternative

  9. Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    EVs Reynolds Logistics Reduces Fuel Costs With EVs to someone by E-mail Share Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With EVs on Facebook Tweet about Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With EVs on Twitter Bookmark Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With EVs on Google Bookmark Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With EVs on Delicious Rank Alternative Fuels Data

  10. Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas Fueling

  11. Fuel dissipater for pressurized fuel cell generators

    DOE Patents [OSTI]

    Basel, Richard A.; King, John E.

    2003-11-04

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a pressurized fuel cell generator (10) when the electrical power output of the fuel cell generator is terminated during transient operation, such as a shutdown; where, two electrically resistive elements (two of 28, 53, 54, 55) at least one of which is connected in parallel, in association with contactors (26, 57, 58, 59), a multi-point settable sensor relay (23) and a circuit breaker (24), are automatically connected across the fuel cell generator terminals (21, 22) at two or more contact points, in order to draw current, thereby depleting the fuel inventory in the generator.

  12. Table 2.6 Household End Uses: Fuel Types, Appliances, and Electronics, Selected Years, 1978-2009

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Household End Uses: Fuel Types, Appliances, and Electronics, Selected Years, 1978-2009 Appliance Year Change 1978 1979 1980 1981 1982 1984 1987 1990 1993 1997 2001 2005 2009 1980 to 2009 Total Households (millions) 77 78 82 83 84 86 91 94 97 101 107 111 114 32 Percent of Households<//td> Space Heating - Main Fuel 1 Natural Gas 55 55 55 56 57 55 55 55 53 52 55 52 50 -5 Electricity 2 16 17 18 17 16 17 20 23 26 29 29 30 35 17 Liquefied Petroleum Gases 4 5 5 4 5 5 5 5 5 5 5 5 5 0 Distillate

  13. Hydrous pyrolysis/oxidation process for in situ destruction of chlorinated hydrocarbon and fuel hydrocarbon contaminants in water and soil

    DOE Patents [OSTI]

    Knauss, Kevin G. (Livermore, CA); Copenhaver, Sally C. (Livermore, CA); Aines, Roger D. (Livermore, CA)

    2000-01-01

    In situ hydrous pyrolysis/oxidation process is useful for in situ degradation of hydrocarbon water and soil contaminants. Fuel hydrocarbons, chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, petroleum distillates and other organic contaminants present in the soil and water are degraded by the process involving hydrous pyrolysis/oxidation into non-toxic products of the degradation. The process uses heat which is distributed through soils and water, optionally combined with oxygen and/or hydrocarbon degradation catalysts, and is particularly useful for remediation of solvent, fuel or other industrially contaminated sites.

  14. Fuel Oil Use in Manufacturing

    U.S. Energy Information Administration (EIA) Indexed Site

    logo Return to: Manufacturing Home Page Fuel Oil Facts Oil Price Effect Fuel Switching Actual Fuel Switching Storage Capacity Fuel Oil Use in Manufacturing Why Look at Fuel Oil?...

  15. Advanced nuclear fuel

    SciTech Connect (OSTI)

    Terrani, Kurt

    2014-07-14

    Kurt Terrani uses his expertise in materials science to develop safer fuel for nuclear power plants.

  16. Advanced nuclear fuel

    ScienceCinema (OSTI)

    Terrani, Kurt

    2014-07-15

    Kurt Terrani uses his expertise in materials science to develop safer fuel for nuclear power plants.

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Diesel Fuel Blend Tax Exemption The biodiesel or ethanol portion of blended fuel containing taxable diesel is exempt from the diesel fuel tax. The biodiesel or ethanol fuel blend must be clearly identified on the retail pump, storage tank, and sales invoice in order to be eligible for the exemption. (Reference Texas Statutes, Tax Code 162.2

  18. Fuel transfer system

    DOE Patents [OSTI]

    Townsend, Harold E. (Campbell, CA); Barbanti, Giancarlo (Cupertino, CA)

    1994-01-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool.

  19. Fuel transfer system

    DOE Patents [OSTI]

    Townsend, H.E.; Barbanti, G.

    1994-03-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool. 6 figures.

  20. Qualification of Alternative Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Qualification of Alternative Fuels May 8, 2012 Pyrolysis Oil Workshop Thomas Butcher Sustainable Energy Technologies Department Applications Baseline - Residential and Light Commercial Pressure-atomized burners with 100-150 psi fuel pressure, no fuel heating; Cyclic operation - to 12,000 cycles per year; Fuel filtration to 90 microns or finer; Storage for periods of 1 year, possibly longer; Storage temperature varied; Visible range flame detection for safety; Nitrile seal materials common; Fuels