Sample records for kentucky total louisiana

  1. Kentucky Natural Gas % of Total Residential Deliveries (Percent)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProved Reserves (Billion Cubic Feet) Decade Year-0Foot)% of Total

  2. ,"Louisiana Natural Gas Gross Withdrawals Total Offshore (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated Natural Gas, Wet AfterCrude Oil +Total

  3. Louisiana Water Control Law (Louisiana)

    Broader source: Energy.gov [DOE]

    The Louisiana Department of Environmental Quality administers the proper protection and maintenance of the state's waters, and regulate the discharges of waste materials, pollutants, and other...

  4. Louisiana Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant NameTotal Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  5. Kentucky Department of Agriculture

    Broader source: Energy.gov [DOE]

    At the August 7, 2008 quarterly joint Web conference of DOE's Biomass and Clean Cities programs, Wilbur Frye (Office of Consumer & Environmental Protection, Kentucky Department of Agriculture) described Biofuel Quality Testing in Kentucky.

  6. Microenterprise Loan Program (Kentucky)

    Broader source: Energy.gov [DOE]

    In partnership with Community Ventures Corporation, a non-profit community based lender, the Kentucky Cabinet for Economic Development has expanded the Kentucky Micro-Enterprise Loan (KMEL) program...

  7. Natural Gas Regulations (Kentucky)

    Broader source: Energy.gov [DOE]

    Kentucky Administrative Regulation title 805 promulgates the rules and regulations pertaining to natural gas production in Kentucky. In addition to KAR title 405, chapter 30, which pertains to any...

  8. Louisiana Hazardous Waste Control Law (Louisiana)

    Broader source: Energy.gov [DOE]

    The Louisiana Department of Environmental Quality is responsible for administering the Louisiana Hazardous Waste Control Law and the regulations created under that law.

  9. Kentucky Economic Opportunity Zone Program (KEOZ) (Kentucky)

    Broader source: Energy.gov [DOE]

    The Kentucky Economic Opportunity Zone Program (KEOZ) focuses on the development of areas with high unemployment and poverty levels. The program provides an income tax credit of up to 100% of the...

  10. Recovery Act State Memos Kentucky

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * KENTUCKY RECOVERY ACT SNAPSHOT Kentucky has substantial natural resources, including coal, oil, gas, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA)...

  11. Coal Mining Regulations (Kentucky)

    Broader source: Energy.gov [DOE]

    Kentucky Administrative Regulation Title 405 chapters 1, 2, 3, 5, 7, 8, 10, 12, 16, 18 and 20 establish the laws governing coal mining in the state.

  12. Forestry Policies (Kentucky)

    Broader source: Energy.gov [DOE]

    Kentucky's forests are managed by the State Energy and Environment Cabinet, Department of Natural Resources, Division of Forestry. In 2010 the Division completed its Statewide Assessment of Forest...

  13. Forestry Policies (Louisiana)

    Broader source: Energy.gov [DOE]

    Louisiana's Forests are managed by the Louisiana Department of Agriculture and Forestry. In 2010 the Department issued the Statewide Forest Resource Assessment and Strategy. The report identifies...

  14. Natural Gas Rules (Louisiana)

    Broader source: Energy.gov [DOE]

    The Louisiana Department of Natural Resources administers the rules that govern natural gas exploration and extraction in the state. DNR works with the Louisiana Department of Environmental...

  15. Louisiana Transportation Research Center

    E-Print Network [OSTI]

    Harms, Kyle E.

    Louisiana Transportation Research Center LTRC www.ltrc.lsu.edu 2012-13 ANNUALREPORT #12;The Louisiana Transportation Research Center (LTRC) is a research, technology transfer, and training center administered jointly by the Louisiana Department of Transportation and Development (DOTD) and Louisiana State

  16. Ruston, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:Roscommon County,Vermont:Kentucky: Energy ResourcesNewLouisiana:

  17. Rural Innovation Fund (Kentucky)

    Broader source: Energy.gov [DOE]

    This fund provides capital to early-stage technology companies located in rural areas of Kentucky. Companies may apply for a $30,000 grant or an investment up to $100,000.

  18. OHIO RIVER SHORELINE, PADUCAH, KENTUCKY, (PADUCAH, KENTUCKY LFPP)

    E-Print Network [OSTI]

    US Army Corps of Engineers

    1 OHIO RIVER SHORELINE, PADUCAH, KENTUCKY, (PADUCAH, KENTUCKY LFPP) RECONSTRUCTION PROJECT 22 June and private infrastructure to Paducah, Kentucky, from flooding by the Ohio River through reconstruction of an existing Corps of Engineers floodwall and levee system. The city of Paducah is the non-Federal sponsor

  19. Petrographic characterization of Kentucky coals. Final report. Part VI. The nature of pseudovitrinites in Kentucky coals

    SciTech Connect (OSTI)

    Trinkle, E.J.; Hower, J.C.

    1984-02-01T23:59:59.000Z

    Overall average pseudovitrinite content for 1055 eastern Kentucky coal samples is nearly 9% while average percentage of pseudovitrinite for 551 western Kentucky coals is approximately 4%. Examination of variation in pseudovitrinite content relative to rank changes shows uniformity in pseudovitrinite percentages within the 4 to 7 V-type interval for eastern Kentucky coals but a gradual increase in pseudovitrinite content for western Kentucky coals over the same rank interval. Coals from both coal fields show similar, distinct increases in pseudovitrinite percentage in the highest V-type categories. However, it is suggested here that these supposed increases in pseudovitrinite percentages are not real but rather, indicate distinct increase in the brightness of nitrinite resulting from increased alteration of vitrinite beginning at this stage of coalification and continuing into the higher rank stages. This conclusion is reached when it is found that differences between pseudovitrinite and vitrinite reflectance are least in coals at these high rank intervals of Kentucky and, also, when vitrinite particles are often visually observed having brightness equal to that of pseudovitrinite particles. Relation of pseudovitrinite to other sulfur forms and total sulfur in general shows no significant trends, although the relatively high pyritic sulfur content in western Kentucky coals, coupled with relatively low inert percentages suggest the existence of predominantly reducing, or at least non-oxidizing conditions in the Pennsylvanian peat swamps of western Kentucky. Initial work involving Vicker's microhardness testing of coals indicates that microhardness values for pseudovitrinite are higher than those for vitrinite within the same sample regardless of coal rank or coal field from which the sample was collected. 15 references, 9 figures, 9 tables.

  20. Coastal Management (Louisiana)

    Broader source: Energy.gov [DOE]

    The Coastal Use Permit (CUP) process is part of the Louisiana Coastal Resources Program (LCRP), which is an effort among Louisiana citizens, as well as state, federal and local advisory and...

  1. Columbia Gas of Kentucky- Home Savings Rebate Program (Kentucky)

    Broader source: Energy.gov [DOE]

    Columbia Gas of Kentucky offers rebates to residential customers for the purchase and installation of energy efficient appliances and equipment. Water heaters, furnaces and space heating equipment...

  2. Louisiana Nuclear Energy and Radiation Control Law (Louisiana)

    Broader source: Energy.gov [DOE]

    The Louisiana Department of Environmental Quality is responsible for the regulation of nuclear energy safety, permitting and radiation safety and control in Louisiana. The Department operates...

  3. Kentucky Save Energy Now Program

    Broader source: Energy.gov [DOE]

    This fact sheet contains details regarding a Save Energy Now industrial energy efficiency project that the U.S. Department of Energy funded in Kentucky.

  4. CO2 Geologic Storage (Kentucky)

    Broader source: Energy.gov [DOE]

    Division staff, in partnership with the Kentucky Geological Survey (KGS), continued to support projects to investigate and demonstrate the technical feasibility of geologic storage of carbon...

  5. Water Permits (Louisiana)

    Broader source: Energy.gov [DOE]

    The Water Permits Division authorizes permits administered under the Water Quality Regulations. Louisiana's Water Quality Regulations require permits for the discharge of pollutants from any point...

  6. Solid Waste Permits (Louisiana)

    Broader source: Energy.gov [DOE]

    The Louisiana Department of Environmental Quality administers the rules and regulations governing the storage, collection, processing, recovery, and reuse of solid waste protect the air,...

  7. Environmental Quality: Air (Louisiana)

    Broader source: Energy.gov [DOE]

    The Department of Environmental Quality regulates air quality in Louisiana. The Department has an established a fee system for funding the monitoring, investigation and other activities required...

  8. Options for Kentucky's Energy Future

    SciTech Connect (OSTI)

    Larry Demick

    2012-11-01T23:59:59.000Z

    Three important imperatives are being pursued by the Commonwealth of Kentucky: ? Developing a viable economic future for the highly trained and experienced workforce and for the Paducah area that today supports, and is supported by, the operations of the US Department of Energy’s (DOE’s) Paducah Gaseous Diffusion Plant (PGDP). Currently, the PGDP is scheduled to be taken out of service in May, 2013. ? Restructuring the economic future for Kentucky’s most abundant indigenous resource and an important industry – the extraction and utilization of coal. The future of coal is being challenged by evolving and increasing requirements for its extraction and use, primarily from the perspective of environmental restrictions. Further, it is important that the economic value derived from this important resource for the Commonwealth, its people and its economy is commensurate with the risks involved. Over 70% of the extracted coal is exported from the Commonwealth and hence not used to directly expand the Commonwealth’s economy beyond the severance taxes on coal production. ? Ensuring a viable energy future for Kentucky to guarantee a continued reliable and affordable source of energy for its industries and people. Today, over 90% of Kentucky’s electricity is generated by burning coal with a delivered electric power price that is among the lowest in the United States. Anticipated increased environmental requirements necessitate looking at alternative forms of energy production, and in particular electricity generation.

  9. Louisiana Solid Waste Management and Resource Recovery Law (Louisiana)

    Broader source: Energy.gov [DOE]

    The Louisiana Department of Environmental Quality manages solid waste for the state of Louisiana under the authority of the Solid Waste Management and Resource Recover Law. The Department makes...

  10. Louisiana: Louisiana's Clean Energy Resources and Economy (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01T23:59:59.000Z

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Louisiana.

  11. Petrography of the Herrin (No. 11) coal in western Kentucky

    SciTech Connect (OSTI)

    Hower, J.C.; Wild, G.D.

    1981-06-01T23:59:59.000Z

    The Herrin (No.11) coal in western Kentucky is in the upper part of the Pennsylvanian (Des Moinesian) Carbondale Formation. Samples were obtained from 13 mines in Kentucky and one mine in Illinois in three equal benches from two to three channels for a total of 93 samples. The rank of the coal (as vitrinite reflectance) is high volatile C bituminous in the Moorman Syncline and high volatile A bituminous in the Webster Syncline. Reflectance does not vary between mines in the Moorman Syncline. The percentage of total vitrinite macerals for each mine is over 85% and the percentage of total vitrinite plus liptinite macerals is over 89% (average over 90%) (both on dry, mineral-free basis). 37 refs.

  12. EIS-0318: Kentucky Pioneer Integrated Gasification Combined Cycle (IGCC) Demonstration Project, Trapp, Kentucky (Clark County)

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to provide cost-shared financial support for The Kentucky Pioneer IGCC Demonstration Project, an electrical power station demonstrating use of a Clean Coal Technology in Clark County, Kentucky.

  13. albany shale kentucky: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Bakken, Dobson, Patrick 2014-01-01 9 Kentucky Annual Economic Report Computer Technologies and Information Sciences Websites Summary: 2014 Kentucky Annual Economic Report...

  14. South Kentucky RECC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    South Kentucky Rural Electric Cooperative Corporation (RECC) provides service to more than 60,000 customers in southeastern Kentucky. To promote energy efficiency to residential customers, South...

  15. Qualifying RPS State Export Markets (Kentucky)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Kentucky as eligible sources towards their RPS targets or goals. For specific...

  16. State Energy Program: Kentucky Implementation Model Resources

    Broader source: Energy.gov [DOE]

    Below are resources associated with the U.S. Department of Energy's Weatherization and Intergovernmental Programs Office State Energy Program Kentucky Implementation Model.

  17. Chapter 63 General Standards of Performance (Kentucky)

    Broader source: Energy.gov [DOE]

    Kentucky Administrative Regulation Chapter 63, entitled Air Quality: General Standards of Performance, is promulgated under the authority of the Division of Air Quality within the Energy and...

  18. A PROFILE OF KENTUCKY MEDICAID MENTAL HEALTH

    E-Print Network [OSTI]

    Hayes, Jane E.

    can be advanced--among patients, health care providers, and the community at large. This workA PROFILE OF KENTUCKY MEDICAID MENTAL HEALTH DIAGNOSES, 2000-2010 #12; #12; i A Profile of Kentucky Medicaid Mental Health Diagnoses, 20002010 BY Michael T. Childress

  19. Louisiana STEP Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking5investsLouis Baker, 1973Louisiana

  20. Chapter 53 Ambient Air Quality (Kentucky)

    Broader source: Energy.gov [DOE]

    Kentucky Administrative Regulation Chapter 53, entitled Ambient Air Quality, is promulgated under the authority of the Division of Air Quality within the Energy and Environment Cabinet’s Department...

  1. Alternative Fuels Data Center: Kentucky Information

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    production facilities in Kentucky, use the TransAtlas interactive mapping tool or use BioFuels Atlas to show the use and potential production of biofuels throughout the U.S. and...

  2. Kentucky WRI Pilot Test Universal ID

    E-Print Network [OSTI]

    screening deployment experience · Significant cost savings to FMCSA ·Enabling technology already deployedKentucky WRI Pilot Test ­ Universal ID Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 #12;·Utilizes existing automated screening system ·Uses assorted

  3. Kentucky Power- Residential Efficient HVAC Rebate Program

    Broader source: Energy.gov [DOE]

    Kentucky Power's High Efficiency Heat Pump Program offers a $400 rebate to residential customers living in existing (site-built) homes who upgrade electric resistance heating systems with a new,...

  4. Kentucky

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarketsNov-14 Dec-14Has|Issues inU

  5. Stimulating Energy Efficiency in Kentucky: An Implementation Model for States

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on Stimulating Energy Efficiency in Kentucky.

  6. Louisiana NGL: A new era

    SciTech Connect (OSTI)

    Spaulding, S.R.; Stevens, T. [Texaco Natural Gas Inc., Tulsa, OK (United States)

    1998-12-31T23:59:59.000Z

    Deepwater exploration and production activity in the Gulf of Mexico has given new life to the natural gas business in South Louisiana. Natural gas liquids (NGL) supply is expected to dramatically increase in South Louisiana with these deepwater discoveries. The natural gas and natural gas liquids industry is responding to these forecasts of substantially higher volumes of liquids with expansions, new construction and speculation to the effects on the NGL market. Texaco`s solution for the forecasted changes in the NGL business is the TENDS project. This project expands Texaco`s Bridgeline NGL distribution system into a pipeline network to distribute natural gas liquids from supply sources to markets across South Louisiana.

  7. Kentucky Natural Gas % of Total Residential - Sales (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) Kenai, AKExtensionsNov-14 Dec-14 Jan-154

  8. Kentucky Natural Gas % of Total Residential - Sales (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) Kenai, AKExtensionsNov-14 Dec-14

  9. Kentucky Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) Kenai,Feet)Year Jan Feb Mar

  10. Pilot oil atlas for Louisiana

    SciTech Connect (OSTI)

    Bourgoyne, A.T. Jr.; Kimbrell, C.; Gao, Weigang.

    1993-01-01T23:59:59.000Z

    An interdisciplinary research team of engineers, geologists, and computer scientists was assembled at LSU to develop unproved methods for prospecting for bypassed oil and to support oil and gas producers in Louisiana. The overall objective of the project was to develop methods for extending the producing life of several types of reservoirs by reducing the amount of oil being bypassed and abandoned. As part of this work, the team collected information available from public sources for several example reservoirs. One task of the project was to develop a format for the compilation of the extensive but cumbersome Louisiana reservoir data so that it could be used by government and industry to evaluate the resource and plan future activities. The existing information system maintained by Louisiana is a Production Audit Reporting System (PARS). It was designed to allow auditing of oil and gas production and severance taxes associated with this production. It was not intended to be used as a database for determining reservoir recovery efficiency or prospecting for oil and gas. Its use for these purposes, however, has been increasing. The database format suggested in this report would allow production information to be easily displayed by reservoir as well as by lease, unit, or well. The data collected as part of the bypassed-oil study was used to illustrate the proposed new format. This pilot database, or atlas, contains information available for 15 reservoirs. It is recommended that LSU continue to compile and publish database information on the potential for bypassed oil in Louisiana's active reservoirs. This technology-transfer activity should focus each year on those active reservoirs involved in hearings of the Louisiana Office of Conservation. It should also focus on reservoirs being screened by LSU for EOR.

  11. EIS-0488: Cameron Liquefaction Project, Cameron Parish, Louisiana...

    Office of Environmental Management (EM)

    Louisiana, with modifications in Cameron Parish), and expand an existing liquefied natural gas (LNG) import terminal in Cameron Parish, Louisiana, to enable the terminal to...

  12. Coal rank trends in eastern Kentucky

    SciTech Connect (OSTI)

    Hower, J.C.; Trinkle, E.J.

    1984-12-01T23:59:59.000Z

    Examination of coal rank (by vitrinite maximum reflectance) for eastern Kentucky coals has revealed several regional trends. Coal rank varies from high volatile C (0.5% R/sub max/) to medium volatile bituminous (1.1% R/sub max/), and generally increases to the southeast. One east-west-trending rank high and at least four north-south-trending rank highs interrupt the regional increase. The east-west-trending rank high is associated with the Kentucky River faults in northeastern Kentucky. It is the only rank high clearly associated with a fault zone. The four north-south-trending rank highs are parallel with portions of major tectonic features such as the Eastern Kentucky syncline. Overall, though, the association of north-south-trending rank highs with tectonic expression is not as marked as that with the anomaly associated with the Kentucky River faults. It is possible that the rank trends are related to basement features with subdued surface expression. Rank generally increases with depth, and regional trends observed in one coal are also seen in overlying and underlying coals. The cause of the regional southeastward increase in rank is likely to be the combined influence of greater depth of burial and proximity to late Paleozoic orogenic activity. The anomalous trends could be due to increased depth of burial, but are more likely to have resulted from tectonic activity along faults and basement discontinuities. The thermal disturbances necessary to increase the coal rank need not have been great, perhaps on the order of 10-20/sup 0/C (18-36/sup 0/F) above the metamorphic temperatures of the lower rank coals.

  13. Qualifying RPS State Export Markets (Louisiana)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Louisiana as eligible sources towards their RPS targets or goals. For specific...

  14. General Order Ensuring Reliable Electric Service (Louisiana)

    Broader source: Energy.gov [DOE]

    The standards set forth herein have been developed to provide consumers, the Louisiana Public Service Commission, and jurisdictional electric utilities with a uniform method of ensuring reliable...

  15. Comparisons of pyrite variability from selected western Kentucky and western Pennsylvania coals

    SciTech Connect (OSTI)

    Frankie, K.A.; Hower, J.C.

    1983-03-01T23:59:59.000Z

    Pyrite (and marcasite) variation in the lower Kittanning coal of western Pennsylvania has been petrographically characterized using three parameters of size (categories rather than absolute size), morphology (framboidal, euhedral, dendritic, massive, and cleat), and microlithotype (organic) association. The purpose of this study is to evaluate what influence paleo-environments have on the nature of variation of pyrite in coal. Comparison of coals has been done using the percentages of pyrite in the microlithotypes vitrite and clarite. In the lower Kittanning coal, framboidal pyrite is generally less abundant and dendritic pyrite was not observed at all. Euhedral pyrite exhibited no clear variation between the two environments. Massive pyrite was more abundant in the set of samples from the mine with the highest average pyritic sulfur but otherwise exhibited no variation. In contrast, a larger percentage of pyrite in the western Kentucky coals examined is framboidal and dendritic. Mines examined in the Moorman syncline of western Kentucky do have a framboidal pyrite percentage comparable to the lower Kittanning samples, but the percentage of dendritic pyrite (particularly in the Western Kentucky No. 9 coal) is significantly higher for the western Kentucky coals. Bulk petrography of the coals is similar with all having greater than 80% total vitrinite. The association of the pyritic sulfur does, however, change significantly between the various coals studied and particularly between the coals of western Kentucky and among the marine lower Kittanning samples and the fresh water lower Kittanning samples. Among the pyrite in the fresh water coals, massive (perhaps epigenetic) pyrite dominates the associations.

  16. Petrographic characterization of Kentucky coals. Final report. Part V. Pyrite size/form/microlithotype distribution in western Kentucky prepared coals and in channel samples from western Kentucky and western Pennsylvania

    SciTech Connect (OSTI)

    Frankle, K.A.; Hower, J.C.

    1983-01-01T23:59:59.000Z

    Pyrite and marcasite distribution has been characterized in several western Kentucky coals, western Pennsylvania coals, and coals from western Kentucky preparation plants using three parameters of size, morphology, and microlithotype association. A classification system was developed to provide a consistent method for recording different pyrite/marcasite types. Sulfides were microscopically measured and placed in one of six size divisions (<5, 5 to 10, 10 to 40, 40 to 75, 75 to 100, or >150..mu..m) rather than absolute size. Five categories (euhedral, framboidal, dendritic, massive, or cleat) describe pyrite/marcasite morphology. The third parameter identifies the microlithotype (vitrite, clarite, inertite, liptite, durite, vitrinertite, trimacerite, or carbominerite) in which the pyrite occurs (not including the measured sulfide). Carbominerite is a mineral/organic association dominated by mineral matter. The percentage of each variable represents the total number of counts per sample and not the volume of pyrite. Throughout the studies, both sulfides are collectively referred to as pyrite unless otherwise specified. This paper describes the different studies which were undertaken to test the usefulness of this pyrite classification system. Systematic trends in pyrite variability were determined for the Springfield coal and Herrin of western Kentucky. Pyrite characterization of the Lower Kittanning coal from western Pennsylvania shows that certain pyrite morphologies can be an expression of the environments deposition of coal bodies. Studies of western Kentucky prepared coals demonstrate that pyrite characterization apparently can provide a method for predicting pyrite behavior and the extent of pyrite removal for specific coals. 77 references, 15 figures, 19 tables.

  17. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-01-01T23:59:59.000Z

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  18. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-04-01T23:59:59.000Z

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 percent (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  19. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-10-29T23:59:59.000Z

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  20. A Guidance Document for Kentucky's Oil and Gas Operators

    SciTech Connect (OSTI)

    Bender, Rick

    2002-03-18T23:59:59.000Z

    The accompanying report, manual and assimilated data represent the initial preparation for submission of an Application for Primacy under the Class II Underground Injection Control (UIC) program on behalf of the Commonwealth of Kentucky. The purpose of this study was to identify deficiencies in Kentucky law and regulation that would prevent the Kentucky Division of Oil and Gas from receiving approval of primacy of the UIC program, currently under control of the United States Environmental Protection Agency (EPA) in Atlanta, Georgia.

  1. Chapter 52 Permits, Registrations, and Prohibitory Rules (Kentucky)

    Broader source: Energy.gov [DOE]

    Kentucky Administrative Regulation Chapter 52, entitled Air Quality: Permits, Registrations, and Prohibitory Rules, is promulgated under the authority of the Division of Air Quality within the...

  2. Ethanol Production Tax Credit (Kentucky) | Open Energy Information

    Open Energy Info (EERE)

    Credit (Kentucky) Policy Category Financial Incentive Policy Type Corporate Tax Incentive Affected Technologies BiomassBiogas Active Policy Yes Implementing Sector StateProvince...

  3. Kentucky Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act State Memo Kentucky has substantial natural resources, including coal, oil, gas, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is...

  4. LOUISIANA STATE UNIVERSITY HOTELPLANNER PROGRAM PORTAL INSTRUCTIONS

    E-Print Network [OSTI]

    Harms, Kyle E.

    Planner portal is available on the AP & Travel website under Travel at: http://www.fas.lsu.edu/AcctServices/acctpay/or directly at: http://louisiana.hotelplanner.com/?sc=Louisiana_LSU. Please be advised that it is always a relationship with the University. Request a search for one (1) room at a time, as some hotels may have a very

  5. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-07-28T23:59:59.000Z

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  6. Petrographic characterization of Kentucky coals. Annual report

    SciTech Connect (OSTI)

    Hower, J.C.; Ferm, J.C.; Cobb, J.C.; Trinkle, E.J.; Frankie, K.A.; Poe, S.H.

    1981-09-29T23:59:59.000Z

    The study of the petrography of Kentucky coals sponsored by the US Department of Energy currently involves three projects as described below: semi-inert macerals, spectral fluorescence of liptinites, and pyrite size/form/microlithotype distribution. Progress to date has varied due to requirements for training personnel and due to equipment problems. With the two-year continuation of the grant further study will apply results from the above projects to stratigraphic problems.

  7. Kentucky DOE EPSCoR Program

    SciTech Connect (OSTI)

    Grulke, Eric; Stencel, John [no longer with UK

    2011-09-13T23:59:59.000Z

    The KY DOE EPSCoR Program supports two research clusters. The Materials Cluster uses unique equipment and computational methods that involve research expertise at the University of Kentucky and University of Louisville. This team determines the physical, chemical and mechanical properties of nanostructured materials and examines the dominant mechanisms involved in the formation of new self-assembled nanostructures. State-of-the-art parallel computational methods and algorithms are used to overcome current limitations of processing that otherwise are restricted to small system sizes and short times. The team also focuses on developing and applying advanced microtechnology fabrication techniques and the application of microelectrornechanical systems (MEMS) for creating new materials, novel microdevices, and integrated microsensors. The second research cluster concentrates on High Energy and Nuclear Physics. lt connects research and educational activities at the University of Kentucky, Eastern Kentucky University and national DOE research laboratories. Its vision is to establish world-class research status dedicated to experimental and theoretical investigations in strong interaction physics. The research provides a forum, facilities, and support for scientists to interact and collaborate in subatomic physics research. The program enables increased student involvement in fundamental physics research through the establishment of graduate fellowships and collaborative work.

  8. Ethanol Production Tax Credit (Kentucky)

    Broader source: Energy.gov [DOE]

    Qualified ethanol producers are eligible for an income tax credit of $1 per gallon of corn- or cellulosic-based ethanol that meets ASTM standard D4806. The total credit amount available for all...

  9. Kentucky Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    development for pH, nutrients, and pathogens in several Kentucky streams, 2) Evaluation of the impacts of Environmental Health (NIEH), and east Kentucky PRIDE (Personal Responsibility in a Desirable Environment): 1) Environmental Protection Scholarship (NREPC), 2) Technical support for the Maxey Flats Nuclear Disposal Site

  10. Kentucky Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    of environmental assessment and cleanup activities at the Paducah Gaseous Diffusion Plant. Six student research involving radiation and other contaminants at the Maxey Flats Nuclear Disposal Site and the Paducah Gaseous Diffusion Plant. The Kentucky River Authority supported watershed management services in the Kentucky River

  11. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-04-26T23:59:59.000Z

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  12. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-07-29T23:59:59.000Z

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  13. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-01-28T23:59:59.000Z

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  14. EA-0952: The Louisiana State University Waste-to Energy Incinerator, Baton Rouge, Louisiana

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal for incinerating combustible, non-recyclable office wastes from Louisiana State University (LSU) administrative/academic areas and...

  15. Kentucky Natural Gas Plant Liquids Production Extracted in Kentucky

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal2009Year Jan Feband PlantFuel(Million Cubic

  16. Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total DeliveredPrincipalNumber ofTexas-Louisiana-

  17. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-08-01T23:59:59.000Z

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library are being sampled to collect CO{sub 2} adsorption isotherms. Sidewall core samples have been acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log has been acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 4.62 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 19 scf/ton in less organic-rich zones to more than 86 scf/ton in the Lower Huron Member of the shale. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  18. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-01-01T23:59:59.000Z

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  19. Energy Incentive Programs, Kentucky | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal RegisterHydrogenDistributionFactIowa Energy IncentiveKentucky

  20. Adairville, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta Clara, CaliforniaI Jump to:Adairville, Kentucky:

  1. Categorical Exclusion Determinations: Kentucky | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments EnergyFebruary3 CategoricalIdaho CategoricalKentucky Categorical

  2. Kentucky Power Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa:Washington: Energy Resources Jump to: navigation,Kentucky

  3. Hickman, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation, search Name: Hi-GtelTennessee: EnergyKentucky:

  4. Hopkinsville, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania: EnergyHopkinsville, Kentucky: Energy Resources

  5. Kentucky Utilities Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou New EnergyKenosistec Srl Jump to:Kentucky Utilities

  6. Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou New EnergyKenosistec Srl Jump to:Kentucky

  7. Columbia, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew York:Governor s EnergyColquittWashington:RiverKentucky:

  8. Coal seam natural gas producing areas (Louisiana)

    Broader source: Energy.gov [DOE]

    In order to prevent waste and to avoid the drilling of unnecessary wells and to encourage the development of coal seam natural gas producing areas in Louisiana, the commissioner of conservation is...

  9. Alternative Fuels Data Center: Louisiana Information

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    facilities in Louisiana, use the TransAtlas interactive mapping tool or use BioFuels Atlas to show the use and potential production of biofuels throughout the U.S. and...

  10. Implementing CHP in Louisiana: A Case Study

    E-Print Network [OSTI]

    Kozman, T. A.; Carriere, J. L.; Lee, J.

    researching current Federal and Louisiana state policies that regulate the air permitting and utility regulation for CHP systems. After the appropriate air permits and qualification for grid connection are identified, the next step in the process of solving...

  11. Louisiana Natural Gas % of Total Residential - Sales (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0 1569 0 0 0Sales (Billion99

  12. Louisiana Natural Gas % of Total Residential - Sales (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0 1569 0 0 0Sales (Billion99Year Jan

  13. Louisiana Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0 1569 02,208,9204.49

  14. Louisiana Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan Next MECS willProvedExpected FutureCubicCubic%

  15. Louisiana Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan Next MECS willProvedExpectedFeet)

  16. Water resources data, Kentucky. Water year 1991

    SciTech Connect (OSTI)

    McClain, D.L.; Byrd, F.D.; Brown, A.C.

    1991-12-31T23:59:59.000Z

    Water resources data for the 1991 water year for Kentucky consist of records of stage, discharge, and water quality of streams and lakes; and water-levels of wells. This report includes daily discharge records for 115 stream-gaging stations. It also includes water-quality data for 38 stations sampled at regular intervals. Also published are 13 daily temperature and 8 specific conductance records, and 85 miscellaneous temperature and specific conductance determinations for the gaging stations. Suspended-sediment data for 12 stations (of which 5 are daily) are also published. Ground-water levels are published for 23 recording and 117 partial sites. Precipitation data at a regular interval is published for 1 site. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurement and analyses. These data represent that part of the National Water Data System operated by the US Geological Survey and cooperation State and Federal agencies in Kentucky.

  17. Louisiana

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarketsNov-14Biomass feedstocks and

  18. DOE West Kentucky Regional Science Bowl | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and Technical College, 4810 Alben Barkley Dr, Paducah, KY 42001 DOE West Kentucky Regional Science Bowl Contact Regional Co-Coordinator - Buz Smith, DOE Public Affairs 270-441-6821...

  19. SEP Success Story: Kentucky Launches State-Wide School Energy...

    Energy Savers [EERE]

    In what could potentially be the first program of its scale, Kentucky has hired a new green team of 35 energy managers. Learn more. Addthis Related Articles Energy efficiency...

  20. EECBG Success Story: Software Helps Kentucky County Gauge Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Kentucky invested 140,000 of a 2.7 million Energy Efficiency and Conservation Block Grant (EECBG) to purchase EnergyCAP software. The energy management software will allow the...

  1. Kentucky Utilities Company- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Kentucky Utilities Company (KU) offers rebates to all commercial customers who pay a DSM charge on monthly bills. Rebates are available on lighting measures, sensors, air conditioners, heat pumps,...

  2. Transitioning Kentucky Off Oil: An Interview with Clean Cities...

    Broader source: Energy.gov (indexed) [DOE]

    fuel, and we're very proud of that. Also, Kentucky has the largest fleet of hybrid electric school buses in the nation and that's given our coalition a lot of credibility....

  3. Greater Cincinnati Energy Alliance- Residential Loan Program (Kentucky)

    Broader source: Energy.gov [DOE]

    The Greater Cincinnati Energy Alliance provides loans for single family residencies and owner occupied duplexes in Hamilton county in Ohio and Boone, Kenton, and Campbell counties in Kentucky. To...

  4. Kentucky Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    and the Paducah Gaseous Diffusion Plant), the Kentucky Deparmtnet of Military Affairs (Technical Support and cleanup at the Paducah Gaseous Diffusion Plant over the next several years. Five research projects were

  5. Kentucky Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    contaminants at the Maxey Flats Nuclear Disposal Site and at the Paducah Gaseous Diffusion Plant). The Kentucky at the Paducah Gaseous Diffusion Plant. Seven student research enhancement projects were selected for support

  6. Kentucky Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    ), and the Kentucky River Authority (KRA): 1) Technical Support for the Paducah Gaseous Diffusion Plant (CHS) 2 capability of wetland soils and paleowetland sediments in the vicinity of the Paducah Gaseous Diffusion Plant

  7. Coal quality trends and distribution of Title III trace elements in Eastern Kentucky coals

    SciTech Connect (OSTI)

    Eble, C.F. [Kentucky Geological Survey, Lexington, KY (United States); Hower, J.C. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1995-12-31T23:59:59.000Z

    The quality characteristics of eastern Kentucky coal beds vary both spatially and stratigraphically. Average total sulfur contents are lowest, and calorific values highest, in the Big Sandy and Upper Cumberland Reserve Districts. Average coal thickness is greatest in these two districts as well. Conversely, the thinnest coal with the highest total sulfur content, and lowest calorific value, on average, occurs in the Princess and Southwest Reserve Districts. Several Title III trace elements, notably arsenic, cadmium, lead, mercury, and nickel, mirror this distribution (lower average concentrations in the Big Sandy and Upper Cumberland Districts, higher average concentrations in the Princess and Southwest Districts), probably because these elements are primarily associated with sulfide minerals in coal. Ash yields and total sulfur contents are observed to increase in a stratigraphically older to younger direction. Several Title III elements, notably cadmium, chromium, lead, and selenium follow this trend, with average concentrations being higher in younger coals. Average chlorine concentration shows a reciprocal distribution, being more abundant in older coals. Some elements, such as arsenic, manganese, mercury, cobalt, and, to a lesser extent, phosphorus show concentration spikes in coal beds directly above, or below, major marine zones. With a few exceptions, average Title III trace element concentrations for eastern Kentucky coals are comparable with element distributions in other Appalachian coal-producing states.

  8. Sedimentary parameters of upper Barataria Bay, Louisiana

    E-Print Network [OSTI]

    Siegert, Rudolf B

    1961-01-01T23:59:59.000Z

    SEDIMENTARY PARAMETERS OF UPPER BARATARIA BAY, LOUISIANA A Thesis Rudolf Bernhardt Siegert Submitted to the Graduate School of the Agricultural snd Mechanical College of Texas in partial fulfillment of the reGulremente for the d. agree... of MASTER OF SCIENCE August 1961 Ma)or Sub)ect GeologP SEDYIKNTARY PARAI'ZTEHS OF DT'PBR BARATARIA BAY, LOUISIANA A Thesis By Rudolf Bernhardt Siegert Approved as to style and content by: Chairman of C 'tice Bea of Department or Student Advisor...

  9. Louisiana Tech University Continuing Education & Distance Learning

    E-Print Network [OSTI]

    Selmic, Sandra

    1 Louisiana Tech University Continuing Education & Distance Learning 720 West Railroad Avenue, PO training. ENERGY CONSERVATION - BASIC ELECTRICAL CONCEPTS - 8 Hours - $119 The purpose of this course is to acquaint you with the basic concepts of electricity and how to use those concepts to maximize efficiency

  10. Making a Big Splash with Louisiana Fishes

    E-Print Network [OSTI]

    Stephens, Jacqueline

    .S.A. All Rights Reserved. #12;#12;Table of Contents Preface Table of Contents Overview of the LSU MNS Fish Chapter IV. The Gulf of Mexico Section IV.A. The Louisiana Pancake Batfish Section IV.B. Tripod Fish and the SERPENT Project Section IV.C. The 2010 Oil Spill Chapter V. The Mississippi River Section V.A Background

  11. Louisiana Regional Science Bowl | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Louisiana Regions Louisiana Regional Science Bowl National Science Bowl (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High...

  12. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-04-28T23:59:59.000Z

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  13. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-02-11T23:59:59.000Z

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  14. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-02-10T23:59:59.000Z

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  15. President Louisiana State Building and Construction Trades Council

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Robert "Tiger" Hammond President Louisiana State Building and Construction Trades Council Panel Discussion: "Workforce Issues as a Vulnerability to Energy Development" U.S....

  16. Gulf of Mexico",,"Louisiana",,"New Mexico",,"Oklahoma",,"Texas...

    U.S. Energy Information Administration (EIA) Indexed Site

    EIA-914 Gross Withdrawals1 by Area by Month, Bcfd" "Area","Federal Offshore Gulf of Mexico",,"Louisiana",,"New Mexico",,"Oklahoma",,"Texas",,"Wyoming",,"Other States...

  17. Louisiana Company Makes Switch to CNG, Helps Transform Local...

    Energy Savers [EERE]

    heavy duty CNG fueling station officially opened on Earth Day. | Photo courtesy of Ivan Smith Furniture Shreveport, Louisiana's first public heavy duty CNG fueling station...

  18. SEP Success Story: Louisiana Company Makes Switch to CNG, Helps...

    Broader source: Energy.gov (indexed) [DOE]

    heavy duty CNG fueling station officially opened on Earth Day. | Photo courtesy of Ivan Smith Furniture Shreveport, Louisiana's first public heavy duty CNG fueling station...

  19. Louisiana Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act State Memo Louisiana has substantial natural resources, including abundant oil, gas, coal, biomass, and hydroelectric power. The American Recovery & Reinvestment Act...

  20. Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana (Presentation)

    SciTech Connect (OSTI)

    Esposito, A.; Augustine, C.

    2012-04-01T23:59:59.000Z

    Geopressured geothermal reservoirs are characterized by high temperatures and high pressures with correspondingly large quantities of dissolved methane. Due to these characteristics, the reservoirs provide two sources of energy: chemical energy from the recovered methane, and thermal energy from the recovered fluid at temperatures high enough to operate a binary power plant for electricity production. Formations with the greatest potential for recoverable energy are located in the gulf coastal region of Texas and Louisiana where significantly overpressured and hot formations are abundant. This study estimates the total recoverable onshore geopressured geothermal resource for identified sites in Texas and Louisiana. In this study a geopressured geothermal resource is defined as a brine reservoir with fluid temperature greater than 212 degrees F and a pressure gradient greater than 0.7 psi/ft.

  1. Kentucky Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    contaminants at the Maxey Flats Nuclear Disposal Site and the Paducah Gaseous Diffusion Plant). The Kentucky Diffusion Plant. Over 20 technical projects supported through the consortium presented results during 2007 with efforts supporting a variety of environmental assessment and cleanup activities at the Paducah Gasous

  2. Kentucky Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    on environmental assessment and cleanup evaluation at the Paducah Gaseous Diffusion Plant over the next several for Health Services (Technical Support for the Maxey Flats Nuclear Disposal Site and the Paducah Gaseous Diffusion Plant Federal Facilities Agreement and Agreement in Principle), the Kentucky Department

  3. Kentucky Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    Flats Disposal Site (CHS) 2) Technical support for the Paducah Gaseous Diffusion Plant (CHS) 3 soils and paleowetland sediments in the vicinity of the Paducah Gaseous Diffusion Plant (PGDP) to bind Attenuation of a Trichloroethene-Contaminated Aquifer System, Paducah, Kentucky, MS Thesis, Department

  4. Petrographic investigation of River Gem Coal, Whitley County, eastern Kentucky Coal Field

    SciTech Connect (OSTI)

    Pollock, J.D.; Hower, J.C.

    1987-09-01T23:59:59.000Z

    The River Gem coal of the Breathitt Formation (Middle Pennsylvanian) was studied at three sites in a surface mine in the Holly Hill quadrangle, Whitley County, Kentucky. The River Gem coal is correlative with the Lily and Manchester coals in neighboring Knox, Laurel, and Clay Counties, Kentucky, and the Clintwood coal in Pike County, Kentucky. At the northern site, a 14-cm rider is separated from the 92.5-cm seam by 22 cm of shale. At the two southern sites, the rider is missing. At the latter sites, the 10 cm thick top bench of the seam is separated from the lower 63 cm of the seam by a 14-cm bony lithotype not found at the northern site. The lower 63 cm of the seam in the south and the main seam in the north are characterized by moderate ash and sulfur percentages (4.4-6.8% ash, 1.4-2.3% total sulfur, 0.6-1.1% pyritic sulfur, 74-81% vitrinite, 23-32% Fe/sub 2/O/sub 3/, and 2.3-4.5% CaO). In contrast, the upper bench in the south and the rider have 18.7-27.0% ash, 8.8-11.4% total sulfur, 5.1-6.4% pyritic sulfur, 92.3-93.6% vitrinite, 45.7-57.8% Fe/sub 2/O/sub 3/ and 0.13-0.20% CaO. The bone has over 26% ash, 5.5% total sulfur, 3.2% pyritic sulfur, and 93.1% vitrinite. The overall similarity of the seam and rider characteristics between the north and south suggests that the southern bone is the lateral equivalent of the northern shale. The sulfide in the upper bench or rider and in the bone consists of fine (generally less than 10 ..mu..m), euhedral and framboidal pyrite with common massive pyrite. Massive pyrite appears as an overgrowth of fine pyrite in some places. Massive forms of marcasite, less abundant than pyrite, exhibit some evidence of developing later than the massive pyrite. A variety of < 2-..mu..m pyrite occurs as abundant, but isolated, unidimensional to tabular grains within corpocollinite, some of which is transitional to resinite.

  5. Louisiana oyster CuLtCh ProjeCt General Project DescriPtion

    E-Print Network [OSTI]

    throughout coastal Louisiana, including 3-Mile Bay, Drum Bay, Lake Fortuna, South Black Bay, Hackberry Bay

  6. A New Framework for Planning the Future of Coastal Louisiana after

    E-Print Network [OSTI]

    . Streever, BP Corporation R. Bruce Taylor, Taylor Engineering Robert R. Twilley, Louisiana State University

  7. Training Needs in Louisiana's Value-Added Forest Products Industry

    E-Print Network [OSTI]

    Training Needs in Louisiana's Value-Added Forest Products Industry Richard VloskyRichard Vlosky-Added Training in Other States · The Need for Training in Louisiana-Past Research #12;Industry Development & Adding Value #12;Value-Added Industry Development is Multi-Faceted Marketing Workforce Training Strategic

  8. Louisiana Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    adjacent to the Gulf of Mexico. History of the Institute Louisiana has an abundance of water resources of pollution are estimated to account for approximately one-half of Louisiana's pollution. Because of the potential impact of this pollution and the need to mitigate its effects while maintaining the state

  9. Louisiana Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    adjacent to the Gulf of Mexico. Louisiana has an abundance of water resources, and while reaping are also subsets of the southeastern/island region priorities: Nonpoint sources of pollution are estimated to account for approximately one-half of Louisiana's pollution. Because of the potential impact

  10. NOTICE OF INTENT Board of Supervisors of Louisiana State University

    E-Print Network [OSTI]

    Stephens, Jacqueline

    and business practices to the procurement of goods and services and to structure other business arrangementsNOTICE OF INTENT Board of Supervisors of Louisiana State University and Agricultural and Mechanical:3139.5(5)(c)(i), notice is given that the Board of Supervisors of Louisiana State University and Agricultural

  11. Louisiana Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    involved with water resource issues. The oil and gas industry, the chemical industry, port activitiesLouisiana Water Resources Research Institute Annual Technical Report FY 2004 Introduction This report presents a description of the activities of the Louisiana Water Resources Research Institute

  12. Louisiana Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    cultural and economic life involved with water resource issues. The oil and gas industry, the chemicalLouisiana Water Resources Research Institute Annual Technical Report FY 2002 Introduction This report presents a description of the activities of the Louisiana Water Resources Research Institute

  13. Louisiana Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    involved with water resource issues. The oil and gas industry, the chemical industry, port activitiesLouisiana Water Resources Research Institute Annual Technical Report FY 2003 Introduction This report presents a description of the activities of the Louisiana Water Resources Research Institute

  14. Louisiana Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    involved with water resource issues. The oil and gas industry, the chemical industry, port activitiesLouisiana Water Resources Research Institute Annual Technical Report FY 2001 Introduction This report presents a description of the activities of the Louisiana Water Resources Research Institute

  15. Biomedical Engineering Bionanosystems Research at Louisiana Tech University

    SciTech Connect (OSTI)

    Palmer, James; Lvov, Yuri; Hegab, Hisham; Snow, Dale; Wilson, Chester; McDonald, John; Walker, Lynn; Pratt, Jon; Davis, Despina; Agarwal, Mangilal; DeCoster, Mark; Feng, June; Que, Long; O'Neal, Chad; Guilbeau, Eric; Zivanovic, Sandra; Dobbins, Tabbetha; Gold, Scott; Mainardi, Daniela; Gowda, Shathabish; Napper, Stan

    2010-03-25T23:59:59.000Z

    The nature of this project is to equip and support research in nanoengineered systems for biomedical, bioenvironmental, and bioenergy applications. Funds provided by the Department of Energy (DoE) under this Congressional Directive were used to support two ongoing research projects at Louisiana Tech University in biomedical, bioenvironmental, and bioenergy applications. Two major projects (Enzyme Immobilization for Large Scale Reactors to Reduce Cellulosic Ethanol Costs, and Nanocatalysts for Coal and Biomass Conversion to Diesel Fuel) and to fund three to five additional seed projects were funded using the project budget. The project funds also allowed the purchase and repair of sophisticated research equipment that will support continued research in these areas for many years to come. Project funds also supported faculty, graduate students, and undergraduate students, contributing to the development of a technically sophisticated work force in the region and the State. Descriptions of the technical accomplishments for each funded project are provided. Biofuels are an important part of the solution for sustainable transportation fuel and energy production for the future. Unfortunately, the country's appetite for fuel cannot be satisfied with traditional sugar crops such as sugar cane or corn. Emerging technologies are allowing cellulosic biomass (wood, grass, stalks, etc.) to also be converted into ethanol. Cellulosic ethanol does not compete with food production and it has the potential to decrease greenhouse gas (GHG) emissions by 86% versus current fossil fuels (current techniques for corn ethanol only reduce greenhouse gases by 19%). Because of these advantages, the federal government has made cellulosic ethanol a high priority. The Energy Independence and Security Act of 2007 (EISA) requires a minimum production of at least 16 billion gallons of cellulosic ethanol by 2022. Indeed, the Obama administration has signaled an ambitious commitment of achieving 2 billion gallons of cellulosic ethanol by 2013. Louisiana is well positioned to become a national contributor in cellulosic ethanol, with an excellent growing season, a strong pulp/paper industry, and one of the nation's first cellulosic ethanol demonstration plants. Dr. Palmer in Chemical Engineering at Louisiana Tech University is collaborating with Drs. Lvov and Snow in Chemistry and Dr. Hegab in Mechanical Engineering to capitalize on these advantages by applying nanotechnology to improve the cellulosic ethanol processes. In many of these processes, expensive enzymes are used to convert the cellulose to sugars. The nanotechnology processes developed at Louisiana Tech University can immobilize these enzymes and therefore significantly reduce the overall costs of the process. Estimates of savings range from approximately $32 million at each cellulosic ethanol plant, to $7.5 billion total if the 16 billion gallons of cellulosic ethanol is achieved. This process has the advantage of being easy to apply in a large-scale commercial environment and can immobilize a wide variety or mixture of enzymes for production. Two primary objectives with any immobilization technique are to demonstrate reusability and catalytic activity (both reuse of the immobilized enzyme and reuse of the polymer substrate). The scale-up of the layering-by-layering process has been a focus this past year as some interesting challenges in the surface chemistry have become evident. Catalytic activity of cellulase is highly dependent upon how the feed material is pretreated to enhance digestion. Therefore, efforts this year have been performed this year to characterize our process on a few of the more prevalent pretreatment methods.

  16. Petrographic characterization of Kentucky coals. Quarterly progress report, March 1982-May 1982

    SciTech Connect (OSTI)

    Hower, J.C.; Ferm, J.C.; Cobb, J.C.; Trinkle, E.J.; Frankie, K.A.; Poe, S.H.; Baynard, D.N.; Graese, A.M.; Raione, R.P.

    1982-01-01T23:59:59.000Z

    The project Petrographic characterization of Kentucky coals consists of three specific areas of coal petrology: spectral fluorescence of liptinite macerals, properties of semi-inert macerals, and size/form/microlithotype association of pyrite/marcasite. Additional research on the Mannington and Dunbar coals in western Kentucky and the Alma coal zone in eastern Kentucky will apply techniques developed in the first three areas. Suites of coals from other states will also be studied to expand the variability in the sample set.

  17. Petrographic characterization of Kentucky coals. Quarterly progress report, June 1982-August 1982

    SciTech Connect (OSTI)

    Hower, J.C.; Ferm, J.C.; Cobb, J.C.; Trinkle, E.J.; Frankie, K.A.; Poe, S.H.; Baynard, D.N.; Graese, A.M.; Raione, R.P.

    1982-01-01T23:59:59.000Z

    The project Petrographic Characterization of Kentucky Coals consists of three specific areas of coal petrology: spectral fluorescence of liptinite macerals, properties of semi-inert macerals, and size/form/microlithotype association of pyrite/marcasite. Additional research on the Mannington and Dunbar coals in western Kentucky and the Alma coal zone in eastern Kentucky will apply techniques developed in the first three areas. Suites of coals from other states will also be studied to expand the variability in the sample set.

  18. Chapter 51 Attainment and Maintenance of the National Ambient Air Quality Standards (Kentucky)

    Broader source: Energy.gov [DOE]

    Kentucky Administrative Regulation Chapter 51, entitled Attainment and Maintenance of the National Ambient Air Quality Standards, is promulgated under the authority of the Division of Air Quality...

  19. High Energy Physics Research at Louisiana Tech

    SciTech Connect (OSTI)

    Sawyer, Lee; Greenwood, Zeno; Wobisch, Marcus

    2013-06-28T23:59:59.000Z

    The goal of this project was to create, maintain, and strengthen a world-class, nationally and internationally recognized experimental high energy physics group at Louisiana Tech University, focusing on research at the energy frontier of collider-based particle physics, first on the D? experiment and then with the ATLAS experiment, and providing leadership within the US high energy physics community in the areas of jet physics, top quark and charged Higgs decays involving tau leptons, as well as developing leadership in high performance computing.

  20. Diagenesis of Miocene sandstones, South Louisiana

    E-Print Network [OSTI]

    Smith, Richard Lee

    1983-01-01T23:59:59.000Z

    . The iona in this water may become part of an authigenic constituent of the sandstone (Boles and Franks, 1979). Drilling History Weeks Island Field. ? This field is located in Township 14 South, Ranges 6 and 7 East in Iberia Parish, Louisiana..., following water injection. Tertiary recovery was planned for this high-temperature, high-pre. . sure reservoir ro extract the residual oil (Perry, 1978). East Ba ou Postillion Field. ? This field i located in Townships 12 and 13 South, Ranges 11 and 12...

  1. Luling, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners andLodgepole,Lotsee,EnergyAlabama:Ludlow Falls,Luling, Louisiana:

  2. Waggaman, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpage Jump to:Wachapreague,Waggaman, Louisiana: Energy

  3. Shreveport, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York: EnergySumoncleShidaMinnesota:Shreveport, Louisiana:

  4. Plaquemine, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratini Energia S A JumpPiutePlanarPlaquemine, Louisiana:

  5. Empire, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,Energy InformationEmily, Minnesota:EmmonsLouisiana: Energy

  6. Maurice, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy Resources JumpMastic,Maud,Maurice, Louisiana: Energy

  7. Morse, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill, California:Morse, Louisiana: Energy Resources

  8. Baker, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to:Bahamas:Georgia:Baker, Louisiana:

  9. Basile, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIMBarnard,Barrow County,Kansas:BartowBasile, Louisiana:

  10. Tennessee Valley and Eastern Kentucky Wind Working Group

    SciTech Connect (OSTI)

    Katie Stokes

    2012-05-03T23:59:59.000Z

    In December 2009, the Southern Alliance for Clean Energy (SACE), through a partnership with the Appalachian Regional Commission, EKPC, Kentucky's Department for Energy Development and Independence, SACE, Tennessee's Department of Environment and Conservation, and TVA, and through a contract with the Department of Energy, established the Tennessee Valley and Eastern Kentucky Wind Working Group (TVEKWWG). TVEKWWG consists of a strong network of people and organizations. Working together, they provide information to various organizations and stakeholders regarding the responsible development of wind power in the state. Members include representatives from utility interests, state and federal agencies, economic development organizations, non-government organizations, local decision makers, educational institutions, and wind industry representatives. The working group is facilitated by the Southern Alliance for Clean Energy. TVEKWWG supports the Department of Energy by helping educate and inform key stakeholders about wind energy in the state of Tennessee.

  11. LOCAL CLIMATOLOGICAL DATA COMMERCE/NOAA/NOAA PUBLISHED STATIONS c/o INFORMATION MANUFACTURING CORPORATION

    E-Print Network [OSTI]

    __ WICHITA KENTUCKY C __ JACKSON C __ LEXINGTON C __ LOUISVILLE C __ PADUCAH LOUISIANA C __ BATON ROUGE C

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    3, Tennessee joined Arkansas, Colorado, Kentucky, Louisiana, Maine, Mississippi, New Mexico, Ohio, Oklahoma, Pennsylvania, Texas...

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    1, Utah joined Arkansas, Colorado, Kentucky, Louisiana, Maine, Mississippi, New Mexico, Ohio, Oklahoma, Pennsylvania, Tennessee, Texas...

  14. Influence of coal quality parameters on utilization of high-sulfur coals: Examples from Springfield (western Kentucky No. 9) coal bed

    SciTech Connect (OSTI)

    Griswold, T.B.; Hower, J.C.; Cobb, J.C. (Kentucky Energy Cabinet, Lexington (USA))

    1989-08-01T23:59:59.000Z

    The Springfield (Western Kentucky No. 9) coal bed is the most important energy resource in the Western Kentucky coalfield (Eastern Interior coalfield), accounting for over 30 million tons of annual production from remaining resources of over 9 billion tons. For many coal quality parameters, the quality of the coal bed is relatively consistent throughout the region. For example, the Springfield has about 80-85% vitrinite, 10% ash, and 3.5-4.5% total sulfur at most sites in the coalfield. However, coal quality variation is more than just the changes in ash and sulfur. As demonstrated by the Springfield coal bed, it is a complex interaction of related and unrelated variables many of which directly affect utilization of the coal. Significant, though generally predictable, changes are observed in other parameters. Comparison of data from the Millport (Muhlenberg and Hopkins Countries), Providence (Hopkins and Webster Counties), and Waverly (Union County) 7{1/2} Quadrangles illustrated such variations.

  15. Intra- and inter-unit variation in fly ash petrography: Examples from a western Kentucky power station

    SciTech Connect (OSTI)

    Hower, J.C.; Rathbone, R.F. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Goodman, J. [Prestonburg High School, KY (United States)

    1998-12-31T23:59:59.000Z

    Fly ash was collected from eight mechanical and ten baghouse hoppers at each of twin 150-MW wall-fired units in a western Kentucky power station. The fuel burned at that time was a blend of low-sulfur, high volatile bituminous Central Appalachian coals. The baghouse ash showed less variation between units than the mechanical units. The coarser mechanical fly ash showed significant differences in the amount of total carbon and in the ratio of isotropic coke to both total carbons and total coke; the latter excluding inertinite and other unburned, uncoked coal. There was no significant variation in ratios of inorganic fly ash constituents. The inter-unit differences in the amount and forms of mechanical fly ash carbon appear to be related to differences in pulverizer efficiency, leading to greater amounts of coarse coal, therefore unburned carbon, in one of the units.

  16. Nature of petrographic variation in Taylor-Copland Coal of middle Pennsylvanian Breathitt Formation of eastern Kentucky

    SciTech Connect (OSTI)

    Trinkle, E.J.; Hower, J.C.; Tully, D.G.; Helfrich, C.T.

    1984-12-01T23:59:59.000Z

    The Taylor-Copland Coal is petrographically distinctive in that it has lowest average vitrinite content (63%) and concomitant highest inertinite (25%) and exinite (12%) of all eastern Kentucky coals. Additionally, average total sulfur is 3.4%, or nearly twice the 1.8% figure determined for all eastern Kentucky samples. Deviations from the maceral averages are equally distinctive. Particularly interesting is an areally extensive, though discontinuous, sample sequence showing significantly lower vitrinites (commonly 40%), very high inertinites (40%), and high exinite content (15-20%). The high-inertinite and high total-sulfur trends and variations for each were presumed to be related to proximity to the coal of marine lithologic units of the overlying Magoffin Member. However, it was found that maceral and possible sulfur trends are probably unrelated to roof rock variation, but are related to existence or absence of a thick durain coal lithotype toward the middle of some coal beds. Palynology reveals that spores in the durain-rich samples are poorly preserved (micrinitized), but assemblages and relative percentages of genera forming the assemblages remained unchanged from those found in high-vitrinite (durain-free) samples. Unchanged spore assemblages possibly indicate that unchanging plant communities existed through the durain-forming episode of the Taylor-Copland swamp. Rather, the effect of the durain phase on the Taylor-Copland swamp was to accelerate degradation (oxidation) of peat deposits associated with the surrounding plant community.

  17. Electromagnetic Pulse (EMP) survey of the Louisiana State Emergency Operating Center, Baton Rouge, Louisiana

    SciTech Connect (OSTI)

    Crutcher, R.I.; Buchanan, M.E.; Jones, R.W.

    1989-08-01T23:59:59.000Z

    The purpose of this report is to develop an engineering design package to protect the federal Emergency Management Agency (FEMA) National Radio System (FNARS) facilities from the effects of high-altitude electromagnetic pulses (HEMP). This report refers to the Louisiana State Emergency Operating Center (EOC) in Baton Rouge, Louisiana. This report addresses electromagnetic pulse (EMP) effects only, and disregards any condition in which radiation effects may be a factor. It has been established that, except for the source region of a surface burst, EMP effects of high-altitude bursts are more severe than comparable detonations in either air or surface regions. Any system hardened to withstand the more extreme EMP environment will survive the less severe conditions. The threatening environment will therefore be limited to HEMP situations. 76 figs., 2 tabs.

  18. 276 Drug-FreePolicy University of Kentucky 2008-2009 Undergraduate Bulletin

    E-Print Network [OSTI]

    MacAdam, Keith

    276 Drug-FreePolicy University of Kentucky 2008-2009 Undergraduate Bulletin Drug-Free Policy Policy Statement as a Drug-Free Institution The University of Kentucky is committed to providing a healthy and safe to the unlawful possession, use, dispensa- tion, distribution or manufacture of alcohol or illicit drugs. Conduct

  19. An Overview of the Louisiana Secondary Wood Products Industry

    E-Print Network [OSTI]

    the State of Louisiana. In addition, because the origin of material purchased from in-state suppliers cannot of the development of buying or manufacturing cooperatives that could create purchasing and sales/marketing leverage

  20. LOUISIANA TECH UNIVERSITY REGAL BLUES DANCE CLINIC MARCH 22, 2014

    E-Print Network [OSTI]

    Selmic, Sandra

    LOUISIANA TECH UNIVERSITY REGAL BLUES DANCE CLINIC MARCH 22, 2014 WHO CAN ATTEND? The clinic is for all dancers grades 7-12 who are interested in learning dance routines from the Regal Blues. This clinic will also help any

  1. Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana)

    Broader source: Energy.gov [DOE]

    The Incentive Cost Recovery Rule for Nuclear Power Generation establishes guidelines for any utility seeking to develop a nuclear power plant in Louisiana. The rule clarifies, as well as...

  2. Petrographic characterization of Kentucky coals. Quarterly progress report, March-May 1983

    SciTech Connect (OSTI)

    Hower, J.C.; Ferm, J.C.; Cobb, J.C.; Trinkle, E.J.; Frankie, K.A.; Poe, S.H.; Baynard, D.N.; Graese, A.M.; Raione, R.P.

    1983-01-01T23:59:59.000Z

    This project consists of three specific areas of coal petrology: spectral fluorescence of liptinite macerals; properties of semi-inert macerals; and size/form/microlithotype association of pyrite/marcasite. Techniques developed in the first three areas were used in additional research on Mannington and Dunbar coals in western Kentucky and the Alma coal zone in eastern Kentucky. Some of the findings are: percent variations (pseudovitrinite-vitrinite/vitrinite X100) indicate greater dispersions in Vicker's microhardness values, MH(v), of vitrinite and pseudovitrinite from eastern Kentucky coals than those of western Kentucky coals; reflectance data confirm a previously suspected rank increase from eastern Knott and Magoffin Counties to eastern Pike County; microhardness investigation of Upper Elkhorn 2 coal in eastern Kentucky indicates that pseudovitrinite is consistently harder than vitrinite; and of the western coals studied, Dunbar and Lead Creek, there appears to be some correlations between vitrinite, ash, sulfur, and thickness. 6 tables.

  3. Petrographic characterization of Kentucky coals: relationship between sporinite spectral fluorescence and coal rank of selected western Kentucky coals. Final report, Part I. [Vitrinite

    SciTech Connect (OSTI)

    Poe, S.H.; Hower, J.C.

    1983-01-01T23:59:59.000Z

    A total of 43 coal samples were analyzed - the majority from western Kentucky, with a few from Pennsylvania for comparative purposes - using quantitative fluorescence microscopy of sporinite to determine if coal rank as determined by vitrinite maximum reflectance could be predicted by data gathered from selected fluorescence parameters. All eight parameters (wavelength of highest intensity, area under curve to the left of the peak, area in the blue wavelengths (400 to 500 nm), green (500 to 570 nm), yellow (570 to 630 nm), blue-red ratio, and red-green ratio were found to statistically predict coal rank. The general research hypothesis, which included all the variables, had a R/sup 2/ = 0.354. The results of the step-wise regression yielded red and yellow (collective R/sup 2/ = 0.341) as the best predictor variables of coal rank. The individual parameters of area of red wavelength and blue-red ratio accounted for the greatest variance in predicting coal rank, while the parameter yellow area was the least predictive of coal rank. 31 references, 7 figures, 5 tables.

  4. Lawrence County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind Energy DevelopmentLaurentianIllinois: EnergyKentucky:

  5. Leslie County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana:New York:New York:Leslie County, Kentucky:

  6. Lincoln County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and WindLighting Control DesignKentucky: Energy Resources Jump to:

  7. Franklin County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information HydroFontana,datasetWind FarmKentucky: Energy

  8. Adair County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta Clara, California Sector:NewKentucky: Energy

  9. Butler County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda,Burke County,InformationBushyhead,Iowa:Kentucky:

  10. Campbell County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermits Manual Jump to:(RECP)Point,Kentucky: Energy

  11. Christian County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPower International NewOklahoma: EnergyChowanKentucky: Energy

  12. Scott County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformation Evaluation,SchmidNorth Carolina:94934°,Iowa:Kentucky:

  13. Jackson County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar EnergyEnergyKansas: Energy Resources Jump to:Kentucky:

  14. Knox County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermalKnowlton, Wisconsin:Kentucky:

  15. Kentucky DNR Oil and Gas Division | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii |Island,Kas Farms WindKemp,KenstonKentucky DNR

  16. Kentucky's 2nd congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii |Island,Kas Farms WindKemp,KenstonKentucky

  17. Hart County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| OpenInformation HandbookOhio: EnergyWestOhio:RhodeKentucky:

  18. Henderson County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|InformationInformation Station -Yinge IndustrialKentucky:

  19. Pendleton County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian,Parle BiscuitsPemery Corporation JumpKentucky: Energy

  20. Pike County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy ResourcesPicket Lake,Hampshire:Illinois: EnergyKentucky:

  1. City of Fulton, Kentucky (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCity ofCity ofCity of Fulton, Kentucky

  2. City of Princeton, Kentucky (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity of Okolona,Plummer, IdahoCity of Princeton, Kentucky

  3. Grant County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGove County,Texas:InformationIndiana:Kentucky:

  4. Marion County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez PuebloManteca,Marana,MariesWave)Georgia:Iowa:Kentucky:

  5. Marshall County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,JemezMissouri: EnergyMarlboro, New9972934°,Iowa:Kentucky:

  6. Martin County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,JemezMissouri:Marshfield Hills,Kentucky: Energy Resources

  7. McLean County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy8429°, -88.864698° Show Map Loading map...Kentucky:

  8. Mercer County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee Falls, Wisconsin: EnergyKentucky: Energy Resources Jump

  9. Crittenden County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCp Holdings LlcCrenshawCrete,Crisp County,Kentucky:

  10. TVA - Solar Solutions Initiative (Kentucky) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:Holdings Co08.0 -TEEMP Jump to:TIAX LLCTSNergy JumpKentucky)

  11. Taylor County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:Holdings Co08.0InformationBP SolarKentucky: Energy

  12. Kentucky Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionalsResearchIdahoKansas Regions NationalKentucky

  13. Monroe County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast Asia | OpenMonona1851445°,Kentucky: Energy

  14. Montgomery County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,Monterey County, California: Energy879°,Kentucky: Energy

  15. Bath County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIMBarnard,BarrowBastrop County, Texas:Missouri:Kentucky:

  16. Bell County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County,SouthCityStrategy | OpenCounty, Kentucky: Energy

  17. Pulaski County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:ThisPublic PowerKentucky: Energy Resources Jump to:

  18. Russell County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:Roscommon County,Vermont:Kentucky: Energy Resources Jump to:

  19. Fort Knox, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs ValleyCity,ForkedAddDevens,Knox, Kentucky:

  20. Kentucky National Guard Radiation Specialist Course | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approvedof6, 1945: Trinity TestKarenKentucky National Guard

  1. Kentucky - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15 Feb-15BOEJim Turnure,FieldsKentucky

  2. Kentucky Share of Total U.S. Natural Gas Delivered to Consumers

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0 1 1996-2013 Lease20 55 10 41 34

  3. Atmospheric fluidized-bed combustion testing of western Kentucky limestones

    SciTech Connect (OSTI)

    Zimmerman, G.P.; Holcomb, R.S.; Guymon, R.H.

    1982-09-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) is studying and testing the burning of coal in an atmospheric fluidized-bed combustor (AFBC) as a means of generating electricity and/or process heat in an environmentally acceptable manner. The abundant, high-sulfur coal resources in this country can be utilized effectively in such a system. The ORNL test program supporting the 20-MW(e) AFBC pilot plant planned for operation by the Tennessee Valley Authority (TVA) in 1982 is described. During the test program 625 hours of coal combustion were accumulated in a 25-cm-diam bench scale AFBC. The fuel was Kentucky No. 9 coal with about 4% sulfur. Five different limestones from the Western Kentucky area were tested for their ability to reduce sulfur dioxide emissions. The bench scale combustor was operated under a variety of conditions including changes in bed temperature, bed height and superficial velocity. At a superficial velocity of 1.2 m/s, four of the five limestones achieved 90% sulfur retention with weight ratios of limestone feed to coal feed near 0.40:1 under no recycle (once through) operation. Carbon utilization (based on carbon loss data) averaged 84% for these tests. Two of the more promising stones were tested by recycling the material elutriated from the combustor. The amount of fresh limestone required for 90% sulfur retention was reduced by up to 50%. Carbon utilization approaching 98% was obtained under these conditions.

  4. Testing Kentucky Coal to Set Design Criteria for a Lurgi Gasification Plant 

    E-Print Network [OSTI]

    Roeger, A., III; Jones, J. E., Jr.

    1983-01-01T23:59:59.000Z

    Tri-State Synfuels Company, in cooperation with the Commonwealth of Kentucky, undertook a comprehensive coal testing program to support the development of an indirect coal liquefaction project. One of the major elements of the program was a...

  5. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Kentucky

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01T23:59:59.000Z

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Kentucky.

  6. Building on Success: Educational Diversity and Equity in Kentucky Higher Education

    E-Print Network [OSTI]

    The Civil Rights Project/ Proyecto Derechos Civiles

    2008-01-01T23:59:59.000Z

    moving toward graduation. A pilot project will begin thisGraduation Rate Crisis, Cambridge: Harvard Education Press, 2004. The Civil Rights ProjectProjects in Education Research Center, the research arm of Education Week. Kentucky reported a graduation

  7. Testing of Western Kentucky No. 9 coal in an atmospheric fluidized-bed combustor. Technical report

    SciTech Connect (OSTI)

    Pettit, R.

    1984-05-01T23:59:59.000Z

    This report deals with the characterization of a western Kentucky No. 9 coal as an atmospheric fluidized-bed combustor (AFBC) feedstock. It is the first of a series of four reports, each dealing with a different Kentucky coal. All of the coal tests were conducted using an Oregon dolomite from the central Kentucky region. The tests were conducted in a 2 ft. 8 in. x 2 ft. 5 in. atmospheric fluidized bed combustor. The Western Kentucky No. 9 coal tested had a heating value of 12200 Btu/lb. The Oregon dolomite used contained 61% CaCO3 and 31% MgCO3. Detailed feedstock analyses are presented in Appendix E. Seven steady-state test runs were conducted over a two-week period. The runs were at one of 100%, 85%, or 70% loads. The air flowrate, bed temperature, and stack sulfur dioxide emissions rate were kept approximately constant during these tests to facilitate comparison.

  8. Restructuring the urban neighborhood : the dialogue between image and ideology in Phoenix Hill, Louisville, Kentucky

    E-Print Network [OSTI]

    Isaacs, Mark Andrew

    1980-01-01T23:59:59.000Z

    This thesis addresses the problems of restructuring the urban neighborhood as specifically applied to the Phoenix Hill community in Louisville, Kentucky. Theory and concepts are briefly presented as a basis for design ...

  9. Overview of Mississippi River - Louisiana State Study

    SciTech Connect (OSTI)

    Rosselli, A.T.

    1983-11-01T23:59:59.000Z

    There are significant benefits to be obtained from providing deepdraft vessel access to the lower Mississippi River including savings in vessel transportation costs, increased export tonnage and consequent improvements of the U.S. balance of payments, increases in employment, and the opportunity for creation of marshlands and land reclamation in the river's eroding delta. The most effective course of action for the State of Louisiana to take is to plan and seek authorization to further deepen the channel in stages to 55 feet should actual increases in commerce equal the high level of commerce, but to dredge the present 40-foot channel to 45 feet initially from the Gulf via Southwest Pass to Mile 172 AHP to provide for two-way navigation of vessels. In addition, the State should encourage private interests to put into operation as soon as possible, facilities for loading and topping-off grain ships midstream and topping-off coal carriers in the Gulf in order to attract and establish patterns of trade in large ships.

  10. Testing Kentucky Coal to Set Design Criteria for a Lurgi Gasification Plant

    E-Print Network [OSTI]

    Roeger, A., III; Jones, J. E., Jr.

    1983-01-01T23:59:59.000Z

    's subcontractors, the Commonwealth of Kentucky or any agency thereof, or the United States Government or any agency thereof. INTRODUCTION Tri-State Synfuels Project Tri-State Synfuels Company, a partnershi of Texas Eastern Corporation and Texas Gas Transmis...Eion Corporat ion affiliates, proposes to produce li~Uid transportation fuels and substitute natural gas rom coal using the indirect liquefaction appr ach (Reference 1). The proj ect is sited in Hende son County, Kentucky and will, if built, use COIer...

  11. Health-hazard evaluation report No. HETA-88-377-2120, Armco Coke Oven, Ashland Kentucky

    SciTech Connect (OSTI)

    Kinnes, G.M.; Fleeger, A.K.; Baron, S.L.

    1991-06-01T23:59:59.000Z

    In response to a request from the Oil, Chemical and Atomic Workers International Union, a study was made of possible hazardous working conditions at ARMCO Coke Oven (SIC-3312), Ashland, Kentucky. The facility produces about 1,000,000 tons of coke annually. Of the approximately 400 total employees at the coke oven site, 55 work in the by products area. Air quality sampling results indicated overexposure to both benzene (71432) and coal tar pitch volatiles (CTPVs). Airborne levels of benzene ranged as high as 117 parts per million (ppm) with three of 17 samples being above the OSHA limit of 1ppm. Airborne concentrations of CTPVs ranged as high as 0.38mg/cu m with two of six readings being above OSHA limit of 0.2mg/cu m. Several polynuclear aromatic hydrocarbons were also detected. The authors conclude that by products area workers are potentially overexposed to carcinogens, including benzene, CTPVs, and polynuclear aromatic hydrocarbons. An epidemiologic study is considered unlikely to yield meaningful information at this time, due to the small number of workers and the short follow up period. The authors recommend specific measures for reducing potential employee exposures, including an environmental sampling program, a preventive maintenance program, improved housekeeping procedures, and reducing exposure in operators' booths.

  12. Kentucky, Tennessee: corniferous potential may be worth exploring

    SciTech Connect (OSTI)

    Currie, M.T.

    1982-05-01T23:59:59.000Z

    The driller's term, corniferous, refers to all carbonate and clastic strata, regardless of geologic age, underlying the regional unconformity below the late Devonian-early Mississippian New Albany shale and overlying the middle Silurian Clinton shale in the study area. From oldest to youngest, the formations that constitute the corniferous are the middle Silurian Keefer formation, the middle Silurian Lockport dolomite, the upper Silurian Salina formation, the lower Devonian Helderberg limestone, the lower Devonian Oriskanysandstone, the lower Devonian Onondaga limestone, and in the extreme western portion of the study area, the middle Devonian Boyle dolomite. The overlying New Albany shale also is termed Ohio shale or Chattanooga shale in the Appalachian Basin. To drillers, it is known simply as the black shale. The study area is located in E. Kentucky on the western flank of the Appalachian Basin and covers all or parts of 32 counties.

  13. State DOT: Louisiana State Report Questions on NDT Testing

    E-Print Network [OSTI]

    State DOT: Louisiana State Report Questions on NDT Testing 1. What NDT testing methods for concrete materials, concrete pavements, and overlays are you trying? LADOTD does not test concrete pavements or overlays non-destructively. We do use the surface resistivity meter for non-destructive testing

  14. Louisiana Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    adjacent to the Gulf of Mexico. The Hurricane season of 2005 which included the devastating storms of pollution are estimated to account for approximately one-half of Louisiana's pollution. Because of the potential impact of this pollution and the need to mitigate its effects while maintaining the state

  15. NOTICE OF INTENT Board of Supervisors of Louisiana State University

    E-Print Network [OSTI]

    Harms, Kyle E.

    of the university by applying best methods and business practices to the procurement of goods and servicesNOTICE OF INTENT Board of Supervisors of Louisiana State University and Agricultural and Mechanical and Agricultural and Mechanical College (LSU) proposes to adopt rules comprising the University Pilot Procurement

  16. Stewart T. Gordon, MD, FAAP President, Louisiana Chapter

    E-Print Network [OSTI]

    priorities include: Implementing Early Brain and Child Development Special Health Care Needs ­ Foster Care AAP website for advocacy · The status of Medicaid reform in Louisiana 3 #12;MISSION "The mission of the American Academy of Pediatrics is to attain optimal physical, mental, and social health and well

  17. EIS-0497: CE FLNG Project, Plaquemines Parish, Louisiana

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) is preparing, with DOE as a cooperating agency, an EIS to analyze the potential environmental impacts of a proposal to construct and operate a liquefied natural gas terminal in Plaquemines Parish, Louisiana, and approximately 37 miles of 42-inch diameter natural gas transmission pipeline to connect the terminal to natural gas infrastructure facilities.

  18. A Radiation Laboratory Curriculum Development at Western Kentucky University

    SciTech Connect (OSTI)

    Barzilov, Alexander P.; Novikov, Ivan S.; Womble, Phil C. [Department of Physics and Astronomy, Western Kentucky University, 1906 College Heights Blvd, 11077, Bowling Green KY 42101 (United States)

    2009-03-10T23:59:59.000Z

    We present the latest developments for the radiation laboratory curriculum at the Department of Physics and Astronomy of Western Kentucky University. During the last decade, the Applied Physics Institute (API) at WKU accumulated various equipment for radiation experimentation. This includes various neutron sources (computer controlled d-t and d-d neutron generators, and isotopic 252 Cf and PuBe sources), the set of gamma sources with various intensities, gamma detectors with various energy resolutions (NaI, BGO, GSO, LaBr and HPGe) and the 2.5-MeV Van de Graaff particle accelerator. XRF and XRD apparatuses are also available for students and members at the API. This equipment is currently used in numerous scientific and teaching activities. Members of the API also developed a set of laboratory activities for undergraduate students taking classes from the physics curriculum (Nuclear Physics, Atomic Physics, and Radiation Biophysics). Our goal is to develop a set of radiation laboratories, which will strengthen the curriculum of physics, chemistry, geology, biology, and environmental science at WKU. The teaching and research activities are integrated into real-world projects and hands-on activities to engage students. The proposed experiments and their relevance to the modern status of physical science are discussed.

  19. Petrographic characterization of Kentucky coals. Quarterly progress report, December 1982 to February 1983

    SciTech Connect (OSTI)

    Hower, J.C.; Ferm, J.C.; Cobb, J.C.; Trinkle, E.J.; Frankie, K.A.; Poe, S.H.; Baynard, D.N.; Graese, A.M.; Raione, R.P.

    1983-01-01T23:59:59.000Z

    The project Petrographic characterization of Kentucky coals consists of three specific areas of coal petrology: spectral fluorescence of liptinite macerals, properties of semi-inert macerals, and size/form/microlithotype association of pyrite/marcasite. Additional research on the Mannington and Dunbar coals in western Kentucky and the Alma coal zone in eastern Kentucky will apply techniques developed in the first three areas. Suites of coals from other states will also be studied to expand the variability in the sample set. Due to the discrete nature of the projects, the final reports will be submitted in several parts. The first report on spectral fluorescence is in development and should be submitted prior to the end of the project. The other reports will be submitted shortly after the end of the project.

  20. Petrography and chemistry of high-carbon fly ash from the Shawnee Power Station, Kentucky

    SciTech Connect (OSTI)

    Hower, J.C.; Thomas, G.A.; Robertson, J.D.; Wong, A.S. [Univ. of Kentucky, Lexington, KY (United States); Clifford, D.S.; Eady, J.D. [Tennessee Valley Authority, Chattanooga, TN (United States)

    1996-01-01T23:59:59.000Z

    The Shawnee power station in western Kentucky consists of ten 150-MW units, eight of which burn low-sulfur (< 1 wt %) eastern Kentucky and central West Virginia coal. The other units burn medium- and high-sulfur (> 1 wt %) coal in an atmospheric fluidized-bed combustion unit and in a research unit. The eight low-sulfur coal units were sampled in a 1992 survey of Kentucky utilities. Little between-unit variation is seen in the ash-basis major oxide and minor element chemistry. The carbon content of the fly ashes varies from 5 to 25 wt %. Similarly, the isotropic and anisotropic coke in the fly ash varies from 6% to 42% (volume basis). Much of the anisotropic coke is a thin-walled macroporous variety, but there is a portion that is a thick-walled variety similar to a petroleum coke.

  1. Petrography and chemistry of fly ash from the Shawnee Power Station, Kentucky

    SciTech Connect (OSTI)

    Hower, J.C.; Thomas, G.A.; Wild, G.D. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Clifford, D.S.; Eady, J.D. [Tennessee Valley Authority, Chattanooga, TN (United States)

    1994-12-31T23:59:59.000Z

    The Shawnee Power Station in western Kentucky consists of ten 150 MW units, eight of which burn low-sulfur eastern Kentucky and central West Virginia coal. The other units bum medium and high-sulfur coal in an AFBC unit and in a research unit. The eight low-sulfur coal units were sampled in a 1992 survey of Kentucky utilities. Little between-unit variation is seen in the ash-basis major oxide and minor element chemistry. The carbon content of the fly ashes varies from 5 to 25%. Similarly, the isotropic and anisotropic coke in the fly ash varies from 6 to 42% (volume basis). Much of the anisotropic coke is a thin-walled macroporous variety but there is a portion which is a thick-walled variety similar to a petroleum coke.

  2. Testing of Oregon dolomite from central Kentucky in an atmospheric fluidized-bed combustor. Technical report

    SciTech Connect (OSTI)

    Not Available

    1984-12-01T23:59:59.000Z

    This report is the first in a series of six limestone reports, and describes the results of testing of an Oregon dolomite from central Kentucky (1/8 in. x 0, 63% CaCO/sub 3/, 31% MgCO/sub 3/) in a 2 ft/ 8 in. x 2 ft. 5 in., 0.75-MW AFBC. All six limestones (or dolomites) were tested using the same coal, a washed Western Kentucky No. 9 coal (1/4 in. x 0, 3.1% sulfur, 9% ash, 13230 Btu/lb.). Operating problems encountered are described. On the basis of numbers, it was concluded that an economic re-evaluation of low-superficial-velocity fluidized beds is warranted, and that it is feasible to burn high-sulfur coals efficiently in an AFBC when Oregon dolomite from central Kentucky is used as the sulfur sorbent.

  3. Late-Middle to Late Devonian (Givetian-Famennian) tectonic and stratigraphic history of central Kentucky

    SciTech Connect (OSTI)

    Ettensohn, F.R. (Univ. of Kentucky, Lexington, KY (United States). Dept. of Geological Sciences); Barnett, S.F. (Bryan Coll., Dayton, TN (United States)); Norby, R.D. (Illinois State Geological Survey, Champaign, IL (United States))

    1994-04-01T23:59:59.000Z

    Earliest Givetian deposition in central Kentucky is represented in upper parts of the Boyle and Sellersburg formations and reflects marginal-marine to shallow-marine carbonate deposition at the end of the second tectophase of the Acadian orogeny. Inception of the third tectophase of the Acadian orogeny in the area is reflected by a disconformity or angular unconformity between the Boyle and New Albany formations, by reactivation of faults on the Kentucky river and related fault zones, and by concurrent graben formation. Succeeding late Givetian deposition is represented by the equivalent Portwood and Blocher members of the New Albany. The Portwood represents localized deposition of dolomitic breccias and black shales in grabens and half grabens, paleogeographically manifest as a series of restricted coastal lagoons and estuaries in central and east-central Kentucky. In contrast, dolomitic, Blocher black shales in west-central kentucky, beyond the effects of faulting, reflect more open, platform-lagoonal conditions. Both units are carbonate rick, contain a sparse benthic fauna, and had local sources of sediment. By latest Givetian or earliest Frasnian, local basins were largely filed, and when local sediment sources were inundated by transgression, sediment starvation, represented by a major lag zone or bone bed, ensued throughout central Kentucky, while black- and gray-shale deposition continued in deeper parts of the Illinois and Appalachian basins. During the Frasnian and early Famennian, as subsidence and transgression continued, deeper water gray- and black-shale units from the Appalachian and Illinois basins slowly onlapped the Cincinnati Arch area of central Kentucky; black shales in these units are fissile and lack both carbonates and benthic fauna. At the Devonian-Mississippian transition, however, a locally developed unconformity and structurally related erosion probably reflect inception of the fourth and final tectophase of the Acadian orogeny.

  4. EIS-0488: Cameron Liquefaction Project, Cameron Parish, Louisiana

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) prepared an EIS for a proposal to expand the existing Cameron Pipeline by 21 miles (from Calcasieu to Beauregard Parishes, Louisiana, with modifications in Cameron Parish), and expand an existing liquefied natural gas (LNG) import terminal in Cameron Parish, Louisiana, to enable the terminal to liquefy and export LNG. DOE, a cooperating agency, adopted the EIS. DOE, Office of Fossil Energy, has an obligation under Section 3 of the Natural Gas Act to authorize the import and export of natural gas, including LNG, unless it finds that the import or export is not consistent with the public interest. Additional information is available at http://energy.gov/fe/services/natural-gas-regulation.

  5. Louisiana Share of Total U.S. Natural Gas Delivered to Consumers

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0 1569Decade886,0845,02044 1498580.8

  6. EIS-0509: Mississippi River LNG Project, Plaquemines Parish, Louisiana

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) is preparing an EIS that analyzes the potential environmental impacts of proposed liquefied natural gas (LNG) export terminal facilities in Plaquemines Parish, Louisiana. DOE is a cooperating agency in preparing the EIS. DOE, Office of Fossil Energy, has an obligation under Section 3 of the Natural Gas Act to authorize the import and export of natural gas, including LNG, unless it finds that the import or export is not consistent with the public interest.

  7. TOTAL M F Total M F Total M F Total M F Total M F Total M F Total M F Total M F Total M F Total M F Total M F Total M F Total Spring 2010

    E-Print Network [OSTI]

    Hayes, Jane E.

    202 51 *total new freshmen 684: 636 Lexington campus, 48 Paducah campus MS Total 216 12 5 17 2 0 2 40 248 247 648 45 210 14 *total new freshmen 647: 595 Lexington campus, 52 Paducah campus MS Total 192 14

  8. Total thermoelectric-power withdrawals Freshwater thermoelectric-power withdrawals Saline-water thermoelectric-power withdrawals

    E-Print Network [OSTI]

    Total thermoelectric-power withdrawals Freshwater thermoelectric-power withdrawals Saline-water thermoelectric-power withdrawals Louisiana New Hampshire Florida Idaho Washington Oregon Nevada California New,000 9,000 to 13,000 Thermoelectric-power withdrawals by water quality and State, 2005. Estimated Use

  9. Petrographic characterization of Kentucky coals. Final report. Part II. Depositional settings of the coal bearing, upper Tradewater Formation in western Kentucky with emphasis on the Mannington (No. 4) coal zone

    SciTech Connect (OSTI)

    Baynard, D.N.; Hower, J.C.

    1983-01-01T23:59:59.000Z

    Depositional settings were determined in the coal bearing, Middle Pennsylvanian, upper Tradewater Formation in western Kentucky with emphasis on the Mannington (No. 4) coal zone. The coals have been analyzed for maceral contents, lithotypes, dry sulfur/ash percentages, vitrinite reflectance values, pyrite/marcasite contents, and associated lithologies at different vertical and lateral scales. This study concludes that: (1) the thin coarsening - or fining upward sequences, under the Mannington (No. 4) coal zone are possibly shallow bayfill and channel-fill deposits that provided an environment that has slight differences in topography, (2) rapid vertical and lateral change in total vitrinite, dry sulfur/ash percentages and lithotypes at different scales in the Mannington (No. 4) coal zone are indicative of wideranging Eh and pH values and possibly result from slight changes in paleotopography, and (3) the Davis (No. 6) coal was deposited after a period of thick coarsening - or fining upward sequences, possibly providing a relatively flat-stable surface for peat development. The consistent total vitrinite, dry sulfur/ash values, and thickness trends indicate a more restricted environment (pH and Eh) in the Davis (No. 6) swamp. 41 references, 25 figures, 3 tables.

  10. High-sulfur coals in the eastern Kentucky coal field

    SciTech Connect (OSTI)

    Hower, J.C.; Graham, U.M. (Univ. of Kentucky Center for Applied Energy Research, Lexington, KY (United States)); Eble, C.F. (Kentucky Geological Survey, Lexington, KY (United States))

    1993-08-01T23:59:59.000Z

    The Eastern Kentucky coal field is notable for relatively low-sulfur, [open quotes]compliance[close quotes] coals. Virtually all of the major coals in this area do have regions in which higher sulfur lithotypes are common, if not dominant, within the lithologic profile. Three Middle Pennsylvanian coals, each representing a major resource, exemplify this. The Clintwood coal bed is the stratigraphically lowest coal bed mined throughout the coal field. In Whitley County, the sulfur content increase from 0.6% at the base to nearly 12% in the top lithotype. Pyrite in the high-sulfur lithotype is a complex mixture of sub- to few-micron syngenetic forms and massive epigenetic growths. The stratigraphically higher Pond Creek coal bed is extensively mined in portions of the coal field. Although generally low in sulfur, in northern Pike and southern Martin counties the top one-third can have up to 6% sulfur. Uniformly low-sulfur profiles can occur within a few hundred meters of high-sulfur coal. Pyrite occurs as 10-50 [mu]m euhedra and coarser massive forms. In this case, sulfur distribution may have been controlled by sandstone channels in the overlying sediments. High-sulfur zones in the lower bench of the Fire Clay coal bed, the stratigraphically highest coal bed considered here, are more problematical. The lower bench, which is of highly variable thickness and quality, generally is overlain by a kaolinitic flint clay, the consequence of a volcanic ash fall into the peat swamp. In southern Perry and Letcher counties, a black, illite-chlorite clay directly overlies the lower bench. General lack of lateral continuity of lithotypes in the lower bench suggests that the precursor swamp consisted of discontinuous peat-forming environments that were spatially variable and regularly inundated by sediments. Some of the peat-forming areas may have been marshlike in character.

  11. Survey of Ice Plants in Louisiana, Mississippi, and Alabama, 1980-81

    E-Print Network [OSTI]

    Survey of Ice Plants in Louisiana, Mississippi, and Alabama, 1980-81 JOHN M. WARD and JOHN R. POFFENBERGER Introduction Reports of ice shortages during the shrimp fishing season prompted a Na- tional closure regulation on ice plant production and sales. Like Texas, Louisiana controls the opening

  12. Director of PERTT Lab The Craft and Hawkins Department of Petroleum Engineering at Louisiana State University,

    E-Print Network [OSTI]

    Harms, Kyle E.

    Director of PERTT Lab The Craft and Hawkins Department of Petroleum Engineering at Louisiana State University, Baton Rouge, Louisiana, invites applications for director of the Petroleum Engineering Research, and more. Also on site is the Donald and Gayle Keller Building, which is a new state

  13. Prototype Passive Solar Buildings in Louisiana - A Hot-Humid Climate 

    E-Print Network [OSTI]

    Shih, J. C.

    1986-01-01T23:59:59.000Z

    This paper on prototype passive solar buildings in Louisiana presents state of the art passive solar design. According to U.S. Department of Energy report, the annual energy consumption for a single family detached dwelling in Louisiana is from 31...

  14. Prototype Passive Solar Buildings in Louisiana - A Hot-Humid Climate

    E-Print Network [OSTI]

    Shih, J. C.

    1986-01-01T23:59:59.000Z

    This paper on prototype passive solar buildings in Louisiana presents state of the art passive solar design. According to U.S. Department of Energy report, the annual energy consumption for a single family detached dwelling in Louisiana is from 31...

  15. EIS-0073: Solvent Refined Coal-I Demonstration Project, Daviess County, Kentucky

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to assess the potential environmental, economic and social impacts associated with construction and operation of a 6,000 tons per stream day capacity coal liquefaction facility in Newman, Kentucky, and the potential impacts of a future expansion of the proposed facility to an approximately 30,000 tons per stream day capacity.

  16. Ohio-Kentucky-Indiana Regional Council of Governments Go Solar Ready – Solar Map

    Broader source: Energy.gov [DOE]

    The Ohio-Kentucky-Indiana Regional Council of Governments Go Solar Ready Map provides general information about the estimated annual solar energy potential on building rooftops in the OKI region. The intention of this tool is to provide the user a general understanding of the solar energy available on rooftops in the OKI tristate region.

  17. Reservoir characterization using oil-production-induced microseismicity, Clinton County, Kentucky

    E-Print Network [OSTI]

    -1- Reservoir characterization using oil-production-induced microseismicity, Clinton County;-2- Abstract Microseismic monitoring tests were conducted from 1993 to 1995 in the Seventy-Six oil field, Clinton County, Kentucky. Oil is produced from low-porosity, fractured carbonate rocks at

  18. Drug-FreePolicy University of Kentucky 2012-2013 Undergraduate Bulletin 304

    E-Print Network [OSTI]

    MacAdam, Keith

    Drug-FreePolicy University of Kentucky 2012-2013 Undergraduate Bulletin 304 Policy Statement as a Drug-Free Institution TheUniversityofKentuckyiscommittedtoprovidingahealthyandsafe environment for its, dispensation, distribu- tion or manufacture of alcohol or illicit drugs. Conduct which is violative

  19. Drug-FreePolicy University of Kentucky 2013-2014 Undergraduate Bulletin 318

    E-Print Network [OSTI]

    MacAdam, Keith

    Drug-FreePolicy University of Kentucky 2013-2014 Undergraduate Bulletin 318 Policy Statement as a Drug-Free Institution TheUniversityofKentuckyiscommittedtoprovidingahealthyandsafe environment for its, dispensation, distribu- tion or manufacture of alcohol or illicit drugs. Conduct which is violative

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Virginia joined Arkansas, Colorado, Kentucky, Louisiana, Maine, Mississippi, New Mexico, Ohio, Oklahoma, Pennsylvania, Tennessee, Texas, Utah, West...

  1. Crown Zellerbach Well No. 2, Livingston Parish, Louisiana. Volume I. Completion and testing. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    The Crown Zellerbach Well No. 2, approximately 23 miles east of Baton Rouge, Louisiana, is the eighth successful test of a geopressured-geothermal aquifer under the DOE Wells of Opportunity program. The well was tested through the annulus between 7-inch casing and 2-3/8 inch tubing. Two flow tests and one reservoir pressure buildup test were conducted on the lower zone during a 13-day period. A total of 12,489 barrels of water was produced. The highest flow rate achieved was about 3887 BWPD. One flow test followed by a buildup period was conducted on the combined upper and lower zones during a 3-day period. A total of 4739 barrels of water was produced. The highest flow rate achieved was about 3000 BWPD. The gas/water ratio measured during testing was about 32.0 SCF/BBL for the lower zone. The extrapolated latoratory data indicates that the solubility of the gas is 55.7 SCF/BBL. It appears that the reservoir brine is considerably undersaturated. The methane content of the flare line gas averaged 71.0 mole percent. Crown Zellerbach Company carefully studied the commercial feasibility of using the well to produce energy for a wood-drying facility and decided against the project.

  2. Information resources: How they are utilized by Louisiana

    SciTech Connect (OSTI)

    Gardner, S. [Louisiana Department of Environmental Quality, Baton Rouge (United States)

    1990-12-31T23:59:59.000Z

    Louisiana, now in a developmental stage of policy and planning, has completed a project aimed at reducing hazardous releases of air toxics in thee state. The state is also conducting a Comparative Risk Project and is using risk assessment practices to develop its waste quality standards. In developing an air toxic list, Louisiana incorporated four major criteria into the ranking: emission levels, human health effects, potential population exposure, and persistence or accumulation in the environment. For the human health effects criterion, data for each substance was gathered from numerous sources, although the Integrated Risk Information System (IRIS) database was used as a primary source for toxicological information. Following guidelines established by the Environmental Protection Agency (EPA), the Office of Water Resources, Water Pollution Control Division, has developed numerical criteria for human health protection based on risk assessment procedures in the 1989 Water Quality Standards Revision. Currently over 30 toxic substances have risk-based criteria for th protection of human health in the standards. Numerical criteria were calculated for carcinogenic substances having an EPA Classification of A, B1, B2, or C. Cancer class designations along with cancer potency slopes and reference doses were extracted from the IRIS database, with the exception of those chemicals that had not been assessed in IRIS as of December 1, 1988. The parameters necessary for calculating human health criteria for the missing chemicals were taken from 1980, 1984, and 1985 ambient water quality criteria documents: data on bioconcentration factors were included. Currently, Louisiana is working on a Comparative Risk Project, a ranking of the environmental issues in the state relative to potential risk to the public, which is the basis for a widespread 1991 public outreach effort.

  3. EIS-0510: Calcasieu Pass Project, Cameron Parish, Louisiana

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) is preparing an EIS that analyzes the potential environmental impacts of the Calcasieu Pass Project, a proposed liquefied natural gas (LNG) export terminal in Cameron Parish, Louisiana. DOE is a cooperating agency in preparing the EIS. DOE, Office of Fossil Energy, has an obligation under Section 3 of the Natural Gas Act to authorize the import and export of natural gas, including LNG, unless it finds that the import or export is not consistent with the public interest.

  4. EA-1983: Sabine Pass Liquefaction Expansion Project, Cameron Parish, Louisiana

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) is preparing an EA for a proposal to expand the existing Sabine Pass Liquefied Natural Gas Terminal in Cameron Parish, and to extend an associated existing pipeline system in Cameron, Calcasieu, Beauregard, Allen, and Evangeline Parishes in Louisiana. DOE is a cooperating agency in preparing the EA. DOE, Office of Fossil Energy, has an obligation under Section 3 of the Natural Gas Act to authorize the import and export of natural gas, including LNG, unless it finds that the import or export is not consistent with the public interest.

  5. Geological oceanography of the Atchafalaya Bay area, Louisiana

    E-Print Network [OSTI]

    Thompson, Warren Charles

    1953-01-01T23:59:59.000Z

    off the river mouth, and 2. Mud-flat sediments on the coast west of Atchafalaya Bay to form the 7-mile-wide stretch of marshland which extends for 60 miles (Figure 3, p. 14). B. The contemporary rapid increase in discharge of the Atchafalaya River... area of the recently formed Atchafalaya River, and the site at which a great new river delta will eventually form. Engineering operations undertaken near the head of the Atchafalaya River in central Louisiana in the mid-19th century to open a...

  6. Louisiana Onshore Natural Gas Plant Liquids Production Extracted in

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0 1569Decade886,084 889,570Louisiana

  7. Lincoln Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and WindLighting ControlWyoming: Energy ResourcesParish, Louisiana:

  8. Louisiana Energy & Power Auth | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners andLodgepole,Lotsee, Oklahoma: Energy Resources JumpLouisaLouisiana

  9. Louisiana's 7th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners andLodgepole,Lotsee, Oklahoma: EnergyInformation Louisiana's

  10. Clean Cities: Southeast Louisiana Clean Fuels Partnership coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12DenverNorthernSouth Shore CleanLouisiana

  11. Jackson Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar EnergyEnergyKansas: EnergySouthEnergyParish, Louisiana:

  12. Krotz Springs, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation, search GEOTHERMALTexas: EnergyKosovo:KrannichSprings, Louisiana:

  13. Lafayette Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groups <Lackawanna County,0299573°,Parish, Louisiana:

  14. City of Lafayette, Louisiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCityCity ofCity ofCity ofLaCity ofLouisiana

  15. Assumption Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrimArkansasAshford,Asotin County,ResourceSpain JumpLouisiana:

  16. Natchitoches Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: Energy ResourcesOceanNanostellarNatchitoches Parish, Louisiana:

  17. New Iberia, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: EnergyEnergyPPCR)Nevis EngineCity,NewJump to:Iberia, Louisiana:

  18. Town of Vinton, Louisiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, Indiana (Utility Company) Jump to:Town ofTownVinton, Louisiana

  19. City of Jonesville, Louisiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCityJonesville, Louisiana (Utility Company) Jump to:

  20. City of Kaplan, Louisiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCityJonesville, Louisiana (Utility Company) JumpKaplan,

  1. City of Rayne, Louisiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation Smyrna Beach, FloridaCity ofCity of Rayne, Louisiana

  2. City of Ruston, Louisiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation Smyrna Beach, FloridaCityRuston, Louisiana (Utility

  3. City of Ruston, Louisiana Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation Smyrna Beach, FloridaCityRuston, Louisiana (UtilityRuston,

  4. Louisiana - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15Liquid Fuels and Natural Gas inLouisiana

  5. Louisiana - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15Liquid Fuels and Natural GasLouisiana

  6. EIS-0010: Strategic Petroleum Reserves, Sulphur Mines Salt Dome, Calcasieu Parish, Louisiana

    Broader source: Energy.gov [DOE]

    The Strategic Petroleum Reserves prepared this EIS to assess the environmental impacts of the proposed storage of 24 million barrels of crude oil at the Sulphur Mines salt dome located in Calcasieu Parish, Louisiana, including construction and operation impacts.

  7. Parallax Enterprises (NOLA) LLC (Formerly Louisiana LNG Energy LLC) – FE Dkt. No. 14-29-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on February 18, 2014, by Louisiana LNG Energy LLC (LLNG) requesting long-term authorization to export two million metric...

  8. Parallax Enterprises (NOLA) LLC- (Formerly Louisiana LNG Energy LLC) – FE Dkt. No. 14-19-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on February 5, 2014, by Louisiana LNG Energy LLC (LLNG) requesting long-term multi-contract authorization to export...

  9. Underground storage of natural gas, liquid hydrocarbons, and carbon dioxide (Louisiana)

    Broader source: Energy.gov [DOE]

    The Louisiana Department of Environmental Quality regulates the underground storage of natural gas or liquid hydrocarbons and carbon dioxide. Prior to the use of any underground reservoir for the...

  10. Interpretation of side-scan sonar images from hydrocarbon seep areas of the Louisiana continental slope

    E-Print Network [OSTI]

    Hou, Rusheng

    2001-01-01T23:59:59.000Z

    Side-scan sonar images from the Louisiana continental slope were examined to study hydrocarbon seepage and related surficial geologic seafloor features. Three study areas are located in the Green Canyon area and the Garden Bank area. Hydrocarbon...

  11. Compositional characteristics of the Fire Clay coal bed in a portion of eastern Kentucky

    SciTech Connect (OSTI)

    Hower, J.C.; Andrews, W.M. Jr.; Rimmer, S.M. (Univ. of Kentucky, Lexington (United States)); Eble, C.F. (Kentucky Geological Survey, Lexington (United States))

    1991-08-01T23:59:59.000Z

    The Fire Clay (Hazard No. 4) coal bed (Middle Pennsylvanian Breathitt Formation) is one of the most extensively mined coal in eastern Kentucky. The coal is used for metallurgical and steam end uses and, with its low sulfur content, should continue to be a prime steam coal. This study focuses on the petrology, mineralogy, ash geochemistry, and palynology of the coal in an eight 7.5-min quadrangle area of Leslie, Perry, Knott, and Letcher counties.

  12. Influence of penecontemporaneous tectonism on development of Breathitt Formation coals, eastern Kentucky

    SciTech Connect (OSTI)

    Hower, J.C.; Trinkle, E.J.; Pollock, J.D.

    1988-08-01T23:59:59.000Z

    The Middle Pennsylvanian Breathitt Formation coals beds in the central portion of the Eastern Kentucky coal field exhibit changes in lithology, petrology, and chemistry that can be attributed to temporal continuity in the depositional systems. The study interval within northern Perry and Knott Counties includes coals from the Taylor coal bed at the base of the Magoffin marine member upward through the Hazard No. 8 (Francis) coal bed.

  13. Current stand characteristics of Louisiana Timberland Harvested between 1975 and 1991. Forest Service research paper

    SciTech Connect (OSTI)

    Rosson, J.F.

    1994-01-01T23:59:59.000Z

    A study population, using 1,216 forest survey continuous forest inventory (C.F.I.) plots, was constructed to analyze the current stocking trends and performance of timberland harvested in Louisiana between 1975 and 1991. A total of 6,888,000 acres was harvested; 4,011,600 acres by partial harvest, 219,900 acres by seed tree and shelterwood methods, 2,562,000 acres by clearcut, and 94,500 acres by salvage cut. Of the 2,454,700 acres of clearcut upland forest types, 640,500 acres converted to the oak-hickory type. It is taking 6 to 7 years, after harvesting, for softwoods to reach the 3.0-inch diameter threshold. Additionally, softwood stand volume 13 to 17 years after clearcut harvest is below that expected for normal sites. Low softwood stocking levels and lengthy regeneration lag time are cited as two possible reasons for low yields at this stage of stand development.

  14. Testing of Eastern Kentucky Amburgy coal in an atmospheric fluidized-bed combustor

    SciTech Connect (OSTI)

    Not Available

    1985-01-01T23:59:59.000Z

    This report is the third in a series of four coal reports, and describes the results of testing of an Eastern Kentucky Amburgy coal (1/4 in. x 0, 3.3% sulfur, 11% ash, 12920 Btu/lb.) in a 2 ft. 8 in. x 2 ft. 5 in., 0.75-MW AFBC. All 4 coal tests were conducted using Oregon dolomite from central Kentucky (1/8 in. x 0, 62% CaCO/sub 3/, 31% MgCO/sub 3/) as the sulfur sorbent. Results obtained from eight steady-state test runs at three different loads at a constant superficial velocity of 5.4 ft./s are presented. Operating problems encountered are described. On the basis of numbers, it was concluded that an economic re-evaluation of low-superficial-velocity fluidized beds is warranted, and that it is feasible to burn eastern Kentucky Amburgy coal efficiently in an AFBC while keeping emissions below EPA limits.

  15. Testing of Western Kentucky No. 11 coal in an atmospheric fluidized bed combustor

    SciTech Connect (OSTI)

    Not Available

    1985-01-01T23:59:59.000Z

    This report is the second of a series of four coal reports, and describes the results of testing of a Western Kentucky No. 11 coal (1/4 in. x 0, 3.8% sulfur, 33% ash, 83/50 Btu/lb.) in a 2 ft. 8 in. x 2 ft. 5 in., 0.75-MW AFBC. All four coal tests were conducted using Oregon dolomite from central Kentucky (1/8 in. x 0, 62% CaCO/sub 3/, 31% MgCO/sub 3/) as the sulfur sorbent. Results obtained from eight steady-state test runs at three different loads at a constant superficial velocity of 5 ft./s are presented. Operating problems encountered are described, and include problems with large variations in coal ash and Btu contents, cyclone downleg blockage, moisture in feed material, and fouling of heat-transfer surfaces caused by high carryover rates. On the basis of numbers, it was concluded that an economic re-evaluation of low-superficial-velocity fluidized beds is warranted, and that it is feasible to burn Western Kentucky No. 11 coal efficiently in an AFBC provided that the boiler control system is designed to handle large variations in coal ash and Btu contents.

  16. Testing of Eastern Kentucky Hazard coal in an atmospheric fluidized-bed combustor

    SciTech Connect (OSTI)

    Not Available

    1985-01-01T23:59:59.000Z

    This report is the fourth in a series of four coal reports, and describes the results of testing of an Eastern Kentucky Hazard No. 9 coal (1/4 in. x 0, 3.4% sulfur, 11% ash, 12640 Btu/lb.) in a 2 ft. 8 in. x 2 ft. 5 in., 0.75-MW AFBC. All four coal tests were conducted using Oregon dolomite from central Kentucky (1/8 in. x 0, 62% C-CO/sub 2/, 31% MgCO/sub 2/) as the sulfur sorbent. Results obtained from eight steady-state test runs at three different loads at a constant superficial velocity of 5.4 ft./s are presented. Operating problems encountered are described. On the basis of numbers, it was concluded that an economic re-evaluation of low-superficial velocity fluidized beds is warranted, and that it is feasible to burn Eastern Kentucky Hazard No. 9 coal efficiently in an AFBC while keeping emissions below EPA limits.

  17. Seasonal occurrence and distribution of stranded sea turtles along the Texas and southwest Louisiana coasts

    E-Print Network [OSTI]

    Heinly, Robert Wayne

    1990-01-01T23:59:59.000Z

    SEASONAL OCCURRENCE AND DISTRIBUTION OF STRANDED SEA TURTLES ALONG THE TEXAS AND SOUTHWEST LOUISIANA COASTS A Thesis by ROBERT WAYNE HEINLY Submitted to the Office of Graduate Studies Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 1990 Major Subject: Wildlife and Fisheries Sciences SEASONAL OCCURRENCE AND DISTRIBUTION OF STRANDED SEA TURTLES ALONG THE TEXAS AND SOUTHWEST LOUISIANA COASTS A Thesis by ROBERT WAYNE HEINLY...

  18. The Low-Income Housing Program in the Louisiana and Mississippi Gulf Opportunity Zones

    E-Print Network [OSTI]

    Christman, Casey; Johnson, David; Rho, Eunju; Stein, Eric; Taylor, Beth

    2008-01-01T23:59:59.000Z

    1 Texas A&M University The Bush School of Government and Public Service The Low-Income Housing Program in the Louisiana and Mississippi Gulf Opportunity Zone For The Congressional Research Service Contract... ............................................. 40? Table 24: Variance in Estimates - LIHTC Projects in Louisiana .......................... 40? 6 Table 25: Variance in Estimates - LIHTC Units in Selected Parishes ................. 42? Table 26: Proposed Block Counting (e.g. District Level...

  19. Task 16 -- Sampling and analysis at the Vortec vitrification facility in Paducah, Kentucky. Semi-annual report, April 1--September 30, 1997

    SciTech Connect (OSTI)

    Laudal, D.L.; Lilemoen, C.M.; Hurley, J.P.; Ness, S.R.; Stepan, D.J.; Thompson, J.S.

    1997-05-01T23:59:59.000Z

    The Vortec Cyclone Melting System (CMS{reg_sign}) facility, to be located at the US Department of Energy (DOE) Paducah Gaseous Diffusion Plant, is designed to treat soil contaminated with low levels of heavy metals and radioactive elements, as well as organic waste. To assure that costs of sampling and analysis are contained, Vortec and the DOE Federal Energy Technology Center (FETC) have decided that initially the primary focus of the sampling activities will be on meeting permitting requirements of the state of Kentucky. Therefore, sampling will be limited to the feedstock entering the system, and the glass, flue gas, and water leaving the system. The authors provide suggestions for optional sampling points and procedures in case there is later interest in operations or mass balance data. The permits do not require speciation of the materials in the effluents, only opacity, total radioactivity, total particulate, and total HCl emissions for the gaseous emissions and total radioactivity in the water and solid products. In case future testing to support operations or mass balances is required, the authors include in this document additional information on the analyses of some species of interest. They include heavy metals (RCRA [Resource Conservation and Recovery Act] and Cu and Ni), radionuclides (Th{sub 230}, U{sub 235}, Tc{sup 99}, Cs{sup 137}, and Pu{sup 239}), and dioxins/furans.

  20. Petrographic characterization of Kentucky coal. Final report. Part III. Petrographic characterization of the Upper Elkhorn No. 2 coal zone of eastern Kentucky

    SciTech Connect (OSTI)

    Raione, R.P.; Hower, J.C.

    1984-01-01T23:59:59.000Z

    This report presents the study of the Upper Elkhorn No. 2 coal zone in the Big Sandy Reserve District and the surrounding area of eastern Kentucky. The seams were analyzed using megascopic and microscopic petrography and chemical methods. The Upper Elkhorn No. 2 consists predominantly of clarain. A fair degree of correlation of fusain bands and clay partings between data sites is apparent. Microscopically, the vitrinite group of macerals are dominant. A rank increase from high volatile B to high volatile A bituminous to the southwest was noted. Pseudovitrinite is associated negatively with vitrinite and has a higher reflectance and microhardness than vitrinite. Both factors may indicate source material and/or environmental differences in the respective origins of the maceral. High inertinite and lipinite areas, low ash and sulfur contents, and the distribution of thin coals may be indicative of paleotopographic highs. 62 references, 26 figures, 8 tables.

  1. 11 September 2014 SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER -FOREST SECTOR / FORESTY PRODUCTS INTEREST GROUP

    E-Print Network [OSTI]

    supply. Biomass Power Secure is ensuring their wood supply is of high quality and environmentally the biomass is #12;11 September 2014 SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER11 September 2014 SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER - FOREST SECTOR

  2. Kentucky Natural Gas Plant Liquids Production Extracted in West Virginia

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal2009Year Jan Feband PlantFuel(Million

  3. Petrographic characterization of Kentucky coals. Quarterly progress report, September-November 1981

    SciTech Connect (OSTI)

    Hower, J.C.; Ferm, J.C.; Cobb, J.C.; Trinkle, E.J.; Frankie, K.A.; Poe, S.H.; Baynard, D.N.

    1981-01-01T23:59:59.000Z

    The project Petrographic Characterization of Kentucky Coals consists of research in three specific areas of coal petrology: spectral fluorescence of liptinite macerals, properties of semi-inert macerals, and size/form/microlithotype association of pyrite/marcasite. Additional research on the Mannington (No. 4, also known as Mining City and Lewisport) coal will apply techniques developed in the first three areas. Certain suits of coals from other states will also be studied to expand the variability in the samples. Preliminary results are reported.

  4. Air Force program tests production of aviation turbine fuels from Utah and Kentucky bitumens

    SciTech Connect (OSTI)

    Not Available

    1986-09-01T23:59:59.000Z

    Ashland Petroleum Company and Sun Refining and Marketing participated in a US Air Force program to determine the costs, yields, physical characteristics, and chemical properties of aviation turbine fuels, Grades JP-4 and JP-8, produced from Kentucky and Utah bitumens. The processes used by both are summarized; Ashland used a different approach for each bitumen; Sun's processing was the same for both, but different from Ashland's. Chemical and physical properties are tabulated for the two raw bitumens. Properties of the eight fuels produced are compared with specification for similar type aviation turbine fuels.

  5. Fire protection review revisit No. 2, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    Dobson, P.H.; Keller, D.R.; Treece, S.D.

    1990-02-01T23:59:59.000Z

    A fire protection survey was conducted for the Department of Energy at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, from October 30--November 4, November 6--10, and December 4--8, 1989. The purpose of the survey was to review the facility fire protection program and to make recommendations. Surveys of other facilities resulted in a classification system for buildings which provide an indication of the importance of the building to the fulfillment of the mission of the facility. Recommendations in this report reflect to some degree the relative importance of the facility and the time to restore it to useful condition in the event a loss were to occur.

  6. Prairie Canal Well No. 1, Calcasieu Parish, Louisiana. Volume 1. Completion and testing. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    The Prairie Canal Company, Inc. Well No. 1, approximately 8 miles south of the city of Lake Charles, Louisiana, was tested through the annulus between 5-1/2 inch casing and 2-3/8 inch tubing. The interval tested was from 14,782 to 14,820 feet. The geological section was the Hackberry Sand, a member of the Oligocene Frio formation. Produced water was injected into a disposal well which was perforated in several Miocene Sands from 3070 to 4600 feet. Original plans were to test a section of the Hackberry sand from 14,976 to 15,024 feet. This primary zone, however, produced a large amount of sand, shale, gravel, and rocks during early flow periods and was abandoned in favor of the secondary zone. Four pressure drawdown flow tests and three pressure buildup tests were conducted during a 12-day period. A total of 36,505 barrels of water was produced. The highest sustained flow rate was approximately 7100 BWPD. The gas-to-water ratio, measured during testing, ranged from 41 to 50 SCF/BBL. There is disagreement as to the saturation value of the reservoir brine, which may be between 43.3 and 49.7 SCF/BBL. The methane content of the flare line gas averaged 88.4 mole percent. The CO/sub 2/ content averaged 8.4 mole percent. Measured values of H/sub 2/S in the gas were between 12 and 24 ppM.

  7. Developments in Louisiana Gulf Coast offshore in 1979. [Tabular data and map

    SciTech Connect (OSTI)

    Johnson, A.H.; Boutte, C.B.

    1980-09-01T23:59:59.000Z

    In offshore Louisiana in 1979, 923 wells were drilled, a decrease of 25 from 1978. The overall success rate increased 3.5% from 1978; 40 more wildcat wells drilled, with an increase in success of 3.3% (to 19.3%). Exploratory wells increased from 52 in 1978 to 98. The success rate decreased 1.8% (to 58.2%) with 57 new-pool and outpost discoveries. In Federal OCS Sale 58, held in July 1979, 55 tracts in offshore Louisiana were leased for an average per acre bonus of $3385 on 253,507 acres. In Sale 58A, held in November 1979, 75 tracts in offshore Louisiana were leased for an average per acre bonus of $4831 on 345,711 acres. Geophysical activity increased sharply from 303 crew-weeks reported in 1978 to 583 crew-weeks in 1979.

  8. Petrographic characterization of Kentucky coals. Quarterly progress report, December 1981-February 1982

    SciTech Connect (OSTI)

    Hower, J.C.; Ferm, J.C.; Cobb, J.C.; Trinkle, E.J.; Frankie, K.A.; Poe, S.H.; Baynard, D.N.

    1982-01-01T23:59:59.000Z

    The project involves three specific areas of coal petrology: spectral fluorescence of liptinite macerals; properties of semi-inert macerals; and size/form/microlithotype association of pyrite/marcasite. Additional research on the Mannington and Dunbar coals in western Kentucky will apply techniques developed in the first three areas. Suites of coals from other states will also be studied to expand the variability for the project which involves the determination of coal rank through the use of fluorescence measurements on sporinite, all samples have been studied and data analysis is still incomplete. Interpretation of results will be presented in future reports. The actual developments of pseudovitrinites are being investigated. Two possible mechanisms for the origin of pseudovitrinites have been suggested. The first mechanism is differential coalification of similar materials. The second factor for influencing the development of pseudovitrinite is an actual difference in original plant composition. Pyrite analysis of western Kentucky coals has been completed, however data reduction is still incomplete. Changes in the petrography of western coals may be related to depositional environments of the coal.

  9. College of Agriculture and School of Human Environmental Sciences University of Kentucky 2011-2012 Undergraduate Bulletin 90

    E-Print Network [OSTI]

    MacAdam, Keith

    College of Agriculture and School of Human Environmental Sciences University of Kentucky 2011-2012 Undergraduate Bulletin 90 M. Scott Smith, Ph.D., is Dean and Director of the College of Agriculture; Nancy M,teaching,extension,andregula- tory functions of the College of Agriculture are combined into a coordinated, mutually support

  10. 85College of Agriculture and School of Human Environmental Sciences University of Kentucky 2008-2009 Undergraduate Bulletin

    E-Print Network [OSTI]

    MacAdam, Keith

    85College of Agriculture and School of Human Environmental Sciences University of Kentucky 2008-2009 Undergraduate Bulletin M. Scott Smith, Ph.D., is Dean and Director of the College of Agriculture; Nancy M. Cox of Agriculture are combined into a coordinated, mutually supporting program of undergraduate

  11. Green River Locks and Dams 3, 4, 5, 6 and Barren River Lock and Dam 1 Disposition, Kentucky

    E-Print Network [OSTI]

    US Army Corps of Engineers

    until 1981 when it was closed due to declining boat traffic. Since the failure of Green River Dam 4 by the dams and the impacts if the pool were to be lost, either by demolition or failure of the lock andGreen River Locks and Dams 3, 4, 5, 6 and Barren River Lock and Dam 1 Disposition, Kentucky 16

  12. Microbial abundance and biomass in sediments of the Texas-Louisiana shelf

    E-Print Network [OSTI]

    Cruz-Kaegi, Marta Elizabeth

    1992-01-01T23:59:59.000Z

    MICROBIAL ABUNDANCF. AND BIOMASS IN SEDIMENTS OF THF. TEXAS-LOUISIANA SHELF A Thesis by MARTA ELIZABETH CRUZ-KAEGI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfiument of the requirements for the degree... of MASTER OF SCIENCE December 1992 Major Subject: Oceanography MICROBIAL ABUNDANCE AND BIOMASS IN SEDIMENTS OF THE TEXAS-LOUISIANA SHELF A Thesis by MARTA ELIZABETH CRUZ-KAEGI Approved as to style and content by: I $7& Gilberl T. Rowe (Chair...

  13. Assessment of intensive silvicultural practices and livestock grazing on watershed parameters, Kisatchie National Forest, Louisiana

    E-Print Network [OSTI]

    Hunter, Thomas Kenneth

    1985-01-01T23:59:59.000Z

    SERIES DESCRIPTION VITA Page 67 69 BO 84 87 LIST OF TABLES TABLE PAGE Monthly and normal precipitat1on 48 km northwest of the study area at Leesville, Louisiana, 1982-1983 . Annual averages of animal units and hectares per animal unit... dates and all treatments combined, 1982-1983, Kisatchie National Forest, Lou1siana 64 In Appendix A 19 Mean infiltration rate (cm/hr) after treatment and sample date, Kisatchie Louisiana. . . . . 5 minutes for Nat1onal Forest, 81 20 21 Mean...

  14. Land Cover Change of Louisiana and Mississippi produced by Hurricane Katrina

    E-Print Network [OSTI]

    Gilbes, Fernando

    Land Cover Change of Louisiana and Mississippi produced by Hurricane Katrina WILMA N. PABÓN RAMÍREZ of the strongest and most devastating hurricanes in the history of the United States: the hurricane Katrina. INTRODUCTION Hurricane Katrina is the sixth strongest Atlantic hurricane ever recorded and is the third

  15. Coastal Trapped Waves Generated By Hurricane Andrew on the Texas-Louisiana Shelf

    E-Print Network [OSTI]

    Pearce, Stuart

    2012-02-14T23:59:59.000Z

    The Texas-Louisiana Shelf Circulation and Transport Study featured moorings that covered the shelf during 1992 to 1994, and captured the oceanic response on the shelf to category 4 Hurricane Andrew in August of 1992. Eighty-one current meters...

  16. Wind- and Buoyancy-modulated Along-shore Circulation over the Texas-Louisiana Shelf 

    E-Print Network [OSTI]

    Zhang, Zhaoru

    2013-07-22T23:59:59.000Z

    Numerical experiments are used to study the wind- and buoyancy-modulated along-shore circulation over the Texas-Louisiana continental shelf inshore of 50-m water depth. Most attention is given to circulation in the non-summer flow regime. A major...

  17. School of Renewable Natural Resources, LSU AgCenter School of Forestry, Louisiana Tech University

    E-Print Network [OSTI]

    Composites Biomass/Biofuels Wood Durability Safety Certification Nanotechnology ValueAdded Products #12 America 3% Europe 3%Asia 1%Oceania Louisiana Forest Industries Website www.lsuagcenter.com/forest industries #12;4 United Nations: Economic Commission for Europe/Food and Agriculture Organization (UNECE

  18. Summary of Carbon Storage Project Public Information Meeting and Open House, Hawesville, Kentucky, October 28, 2010

    SciTech Connect (OSTI)

    David Harris; David Williams; J. Richard Bowersox; Hannes Leetaru

    2012-06-01T23:59:59.000Z

    The Kentucky Geological Survey (KGS) completed a second phase of carbon dioxide (CO{sub 2}) injection and seismic imaging in the Knox Group, a Cambrianâ?Ordovician dolomite and sandstone sequence in September 2010. This work completed 2 years of activity at the KGS No. 1 Marvin Blan well in Hancock County, Kentucky. The well was drilled in 2009 by a consortium of State and industry partners (Kentucky Consortium for Carbon Storage). An initial phase of CO{sub 2} injection occurred immediately after completion of the well in 2009. The second phase of injection and seismic work was completed in September 2010 as part of a U.S. DOEâ??funded project, after which the Blan well was plugged and abandoned. Following completion of research at the Blan well, a final public meeting and open house was held in Hancock County on October 28, 2010. This meeting followed one public meeting held prior to drilling of the well, and two onâ?site visits during drilling (one for news media, and one for school teachers). The goal of the final public meeting was to present the results of the project to the public, answer questions, and address any concerns. Despite diligent efforts to publicize the final meeting, it was poorly attended by the general public. Several local county officials and members of the news media attended, but only one person from the general public showed up. We attribute the lack of interest in the results of the project to several factors. First, the project went as planned, with no problems or incidents that affected the local residents. The fact that KGS fulfilled the promises it made at the beginning of the project satisfied residents, and they felt no need to attend the meeting. Second, Hancock County is largely rural, and the technical details of carbon sequestration were not of interest to many people. The county officials attending were an exception; they clearly realized the importance of the project in future economic development for the county.

  19. Characterization of feed coal and coal combustion products from power plants in Indiana and Kentucky

    SciTech Connect (OSTI)

    Brownfield, M.E.; Affolter, R.H.; Cathcart, J.D.; O'Connor, J.T.; Brownfield, I.K.

    1999-07-01T23:59:59.000Z

    The US Geological Survey, Kentucky Geological Survey, and the University of Kentucky Center for Applied Energy Research are collaborating with Indiana and Kentucky utilities to determine the physical and chemical properties of feed coal and coal combustion products (CCP) from three coal-fired power plants. These three plants are designated as Units K1, K2, and I1 and burn high-, moderate-, and low-sulfur coals, respectively. Over 200 samples of feed coal and CCP were analyzed by various chemical and mineralogical methods to determine mode of occurrence and distribution of trace elements in the CCP. Generally, feed coals from all 3 Units contain mostly well-crystallized kaolinite and quartz. Comparatively, Unit K1 feed coals have higher amounts of carbonates, pyrite and sphalerite. Unit K2 feed coals contain higher kaolinite and illite/muscovite when compared to Unit K1 coals. Unit I1 feed coals contain beta-form quartz and alumino-phosphates with minor amounts of calcite, micas, anatase, and zircon when compared to K1 and K2 feed coals. Mineralogy of feed coals indicate that the coal sources for Units K1 and K2 are highly variable, with Unit K1 displaying the greatest mineralogic variability; Unit I1 feed coal however, displayed little mineralogic variation supporting a single source. Similarly, element contents of Units K1 and K2 feed coals show more variability than those of Unit I1. Fly ash samples from Units K1 and K2 consist mostly of glass, mullite, quartz, and spines group minerals. Minor amounts of illite/muscovite, sulfates, hematite, and corundum are also present. Spinel group minerals identified include magnetite, franklinite, magnesioferrite, trevorite, jacobisite, and zincochromite. Scanning Electron Microscope analysis reveals that most of the spinel minerals are dendritic intergrowths within aluminum silicate glass. Unit I1 fly ash samples contain glass, quartz, perovskite, lime, gehlenite, and apatite with minor amounts of periclase, anhydrite, carbonates, pyroxenes, and spinels. The abundant Ca mineral phases in the Unit I1 fly ashes are attributed to the presence of carbonate, clay and phosphate minerals in the coal.

  20. Dose Modeling Evaluations and Technical Support Document For the Authorized Limits Request for the DOE-Owned Property Outside the Limited Area, Paducah Gaseous Diffusion Plant Paducah, Kentucky

    SciTech Connect (OSTI)

    Boerner, A. J. [Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States). Independent Environmental Assessment and Verification Program; Maldonado, D. G. [Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States). Independent Environmental Assessment and Verification Program; Hansen, Tom [Ameriphysics, LLC (United States)

    2012-09-01T23:59:59.000Z

    Environmental assessments and remediation activities are being conducted by the U.S. Department of Energy (DOE) at the Paducah Gaseous Diffusion Plant (PGDP), Paducah, Kentucky. The Oak Ridge Institute for Science and Education (ORISE), a DOE prime contractor, was contracted by the DOE Portsmouth/Paducah Project Office (DOE-PPPO) to conduct radiation dose modeling analyses and derive single radionuclide soil guidelines (soil guidelines) in support of the derivation of Authorized Limits (ALs) for 'DOE-Owned Property Outside the Limited Area' ('Property') at the PGDP. The ORISE evaluation specifically included the area identified by DOE restricted area postings (public use access restrictions) and areas licensed by DOE to the West Kentucky Wildlife Management Area (WKWMA). The licensed areas are available without restriction to the general public for a variety of (primarily) recreational uses. Relevant receptors impacting current and reasonably anticipated future use activities were evaluated. In support of soil guideline derivation, a Conceptual Site Model (CSM) was developed. The CSM listed radiation and contamination sources, release mechanisms, transport media, representative exposure pathways from residual radioactivity, and a total of three receptors (under present and future use scenarios). Plausible receptors included a Resident Farmer, Recreational User, and Wildlife Worker. single radionuclide soil guidelines (outputs specified by the software modeling code) were generated for three receptors and thirteen targeted radionuclides. These soil guidelines were based on satisfying the project dose constraints. For comparison, soil guidelines applicable to the basic radiation public dose limit of 100 mrem/yr were generated. Single radionuclide soil guidelines from the most limiting (restrictive) receptor based on a target dose constraint of 25 mrem/yr were then rounded and identified as the derived soil guidelines. An additional evaluation using the derived soil guidelines as inputs into the code was also performed to determine the maximum (peak) dose for all receptors. This report contains the technical basis in support of the DOE?s derivation of ALs for the 'Property.' A complete description of the methodology, including an assessment of the input parameters, model inputs, and results is provided in this report. This report also provides initial recommendations on applying the derived soil guidelines.

  1. Dual wall reverse circulation drilling with multi-level groundwater sampling for groundwater contaminant plume delineation at Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    Smuin, D.R.; Morti, E.E.; Zutman, J.L.; Pickering, D.A.

    1995-08-01T23:59:59.000Z

    Dual wall reverse circulation (DWRC) drilling was used to drill 48 borings during a groundwater contaminant investigation at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky. This method was selected as an alternative to conventional hollow stem auger drilling for a number of reasons, including the expectation of minimizing waste, increasing the drilling rate, and reducing the potential for cross contamination of aquifers. Groundwater samples were collected from several water-bearing zones during drilling of each borehole. The samples were analyzed for volatile organic compounds using a field gas chromatograph. This approach allowed the investigation to be directed using near-real-time data. Use of downhole geophysical logging, in conjunction with lithologic descriptions of borehole cuttings, resulted in excellent correlation of the geology in the vicinity of the contaminant plume. The total volume of cuttings generated using the DWRC drilling method was less than half of what would have been produced by hollow stem augering; however, the cuttings were recovered in slurry form and had to be dewatered prior to disposal. The drilling rate was very rapid, often approaching 10 ft/min; however, frequent breaks to perform groundwater sampling resulted in an average drilling rate of < 1 ft/min. The time required for groundwater sampling could be shortened by changing the sampling methodology. Analytical results indicated that the drilling method successfully isolated the various water bearing zones and no cross contamination resulted from the investigation.

  2. Pond Creek coal seam in eastern Kentucky - new look at an old resource

    SciTech Connect (OSTI)

    Hower, J.C.; Pollock, J.D.; Klapheke, J.G.

    1986-05-01T23:59:59.000Z

    The Middle Pennsylvania/Westphalian B Pond Creek Coal is an important low-sulfur resource in Pike and Martin Counties, Kentucky. The Breathitt Formation seam, also known as the lower Elkhorn coal, accounted for nearly 40% of Pike County's 1983 production of 22 million tons. Although the coal is nearly mined out through central Pike County, substantial reserves still exist in the northern part of the county. Past studies of the seam by the US Bureau of Mines concentrated on the utility of the seam as a coking blend, with additional consideration of the megascopic and microscopic coal petrology. The authors research has focused on the regional variations in the Pond Creek seam, with emphasis on the petrographic variations.

  3. Coal metamorphism in the upper portion of the Pennsylvanian Sturgis Formation in Western Kentucky

    SciTech Connect (OSTI)

    Hower, J.C.

    1983-12-01T23:59:59.000Z

    Coals from the Pennsylvanian upper Sturgis Formation (Mississippian and Virginian) were sampled from a borehole in Union County, western Kentucky. The coals exhibited two discrete levels of metamorphism. The lower rank coals of high-volatile C bituminous rank were assumed to represent the normal level of metamorphism. A second set of coals of high-volatile A bituminous rank was found to be associated with sphalerite, chlorite, and twinned calcite. The latter mineral assemblages indicate that hydrothermal metamorphism was responsible for the anomalous high rank. Consideration of the sphalerite fluid-inclusion temperatures from nearby ores and coals and the time - temperature aspects of the coal metamorphism suggests that the hydrothermal metamorphic event was in the 150 to 200 C range for a brief time (10/sup 5/-10/sup 5/and yr), as opposed to the longer term (25-50m yr) 60 to 75 C ambient metamorphism.

  4. Petrographic and geochemical anatomy of lithotypes from the Blue Gem coal bed, Southeastern Kentucky

    SciTech Connect (OSTI)

    Hower, J.C.; Taulbee, D.N.; Morrell, L.G. [Univ. of Kentucky, Lexington, KY (United States)] [and others

    1994-12-31T23:59:59.000Z

    The nature of the association of major, minor, and trace elements with coal has been the subject of intensive research by coal scientists (Swaine; and references cited therein). Density gradient centrifugation (DGC) offers a technique with which ultrafine coal particles can be partitioned into a density spectrum, portions of which represent nearly pure monomaceral concentrates. DGC has been typically conducted on demineralized coals assuring, particularly at lower specific gravities, that the resulting DGC fractions would have very low ash contents. In order to determine trends in elemental composition, particularly with a view towards maceral vs. mineral association, it is necessary to avoid demineralization. To this end the low-ash, low-sulfur Blue Gem coal bed (Middle Pennsylvanian Breathitt Formation) from Knox County, Kentucky, was selected for study. The objective of this study was to determine the petrography and chemistry, with particular emphasis on the ash geochemistry, of DGC separates of lithotypes of the Blue Gem coal bed.

  5. Stress, seismicity and structure of shallow oil reservoirs of Clinton County, Kentucky. Final report

    SciTech Connect (OSTI)

    Hamilton-Smith, T. [Kentucky Geological Survey, Lexington, KY (United States)

    1995-12-12T23:59:59.000Z

    Between 1993 and 1995 geophysicists of the Los Alamos National Laboratory, in a project funded by the US Department of Energy, conducted extensive microseismic monitoring of oil production in the recently discovered High Bridge pools of Clinton County and were able to acquire abundant, high-quality data in the northern of the two pools. This investigation provided both three-dimensional spatial and kinetic data relating to the High Bridge fracture system that previously had not been available. Funded in part by the Los Alamos National Laboratory, the Kentucky Geological Survey committed to develop a geological interpretation of these geophysical results, that would be of practical benefit to future oils exploration. This publication is a summary of the results of that project. Contents include the following: introduction; discovery and development; regional geology; fractured reservoir geology; oil migration and entrapment; subsurface stress; induced seismicity; structural geology; references; and appendices.

  6. Palynologic and petrographic cycles in the McLeansboro Group, Western Kentucky

    SciTech Connect (OSTI)

    Hower, J.C. (Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research); Helfrich, C.T. (Eastern Kentucky Univ., Richmond, KY (United States)); Williams, D.A. (Kentucky Geological Survey, Henderson, KY (United States))

    1992-01-01T23:59:59.000Z

    The McLeansboro Group in the Western Kentucky coal field spans the upper Desmoinesian and the Missourian and Virgilian series. Extensive drilling has demonstrated the lateral continuity of major and minor beds in the group, making it possible to study vertical and lateral changes in palynology and petrology. The Desmoinesian (Westphalian D) Baker (No. 13) and Wheatcroft (No. 13a) coal beds were included in the study but the primary emphasis is on the Missourian and Virgilian (Stephanian) coals. Patoka fm (lower Missourian) coals are dominated by tree fern spores with lesser sphenopsids, ferns, and cordaites. This is in marked contrast to the arborescent lycopod-dominated Desmoinesian coals. Only the No. 15 coal bed exceeds 80% vitrinite with the No. 16 coal bed vitrinite content of < 72% being the lowest of any Western Kentucky humic coal. The Bond Fm. (upper Missourian) represents a distinct floristic cycle with a greater diversity of plant groups including herbaceous lycopods, relatively minor contributors to the Patoka coals. The coals generally exceed 80% vitrinite. The Mattoon Fm. (Virgilian) coals have a variety of polynomorph assemblages. The low-sulfur Geiger Lake coal bed is dominated by tree ferns with important contributions from ferns and sphenopsids. Similar to the underlying tree fern interval, vitrinite contents are <80%. The uppermost Mattoon coals are dominated by ferns and are notable in being the only >1 m thick coals in the Stephanian portion of the section, with the top coal being 4.3 m thick. The uppermost coals are generally > 80% vitrinite. The palynologic/petrographic cycles appear to represent fluctuating dry (low vitrinite) and wet intervals within the Missourian/Virgilian which itself was drier than the Desmoinesian.

  7. The Louisiana State Museum Vessel: a historical and archaeological analysis of an American Civil War-era submersible boat

    E-Print Network [OSTI]

    Wills, Richard Keith

    2000-01-01T23:59:59.000Z

    During the spring of 1992, and again in the winter of 1993, seven graduate students from Texas A&M University's Nautical Archaeology Program participated in a project to document the Louisiana State Museum Vessel, an American Civil War...

  8. Habitat use and occurrence of the bull shark (Carcharhinus leucas) near the Sabine Pass inlet of Texas and Louisiana

    E-Print Network [OSTI]

    Shipley, Jennifer Brooke

    2000-01-01T23:59:59.000Z

    The role of nearshore Gulf of Mexico habitats adjacent to Sabine Pass, a tidal inlet forming the southernmost border between Texas and Louisiana, in bull shark (Carcharhinus leucas) life history as well as the impact of selected environmental...

  9. The Louisiana State Museum Vessel: a historical and archaeological analysis of an American Civil War-era submersible boat 

    E-Print Network [OSTI]

    Wills, Richard Keith

    2000-01-01T23:59:59.000Z

    During the spring of 1992, and again in the winter of 1993, seven graduate students from Texas A&M University's Nautical Archaeology Program participated in a project to document the Louisiana State Museum Vessel, an ...

  10. The Results (Lessons Learned) of More than 110 Energy Audits for Manufacturers by the Louisiana Industrial Assessment Center

    E-Print Network [OSTI]

    Kozman, T.; Davies, T.; Reynolds, C.; O'Quin, R.; DaCosta, J.; Galti, T.; Pechon, C.; Stutes, K.

    2005-01-01T23:59:59.000Z

    This paper and discussion presents the summary and results of energy audits or assessments conducted by the University of Louisiana Lafayette Industrial Assessment Center, which is sponsored by the US Department of Energy, for the first four years...

  11. Miocene sand distribution of the South Marsh Island and the Vermillion area, offshore Louisiana, Gulf of Mexico

    E-Print Network [OSTI]

    Kim, Jingoo

    1997-01-01T23:59:59.000Z

    This study investigates the Miocene sand distribution of offihore central Louisiana, Gulf of Mexico. Investigating the distribution of this sand, which plays an important role as a reservoir for oil and gas, contributes to petroleum exploration...

  12. Phytoplankton distributions and species composition across the Texas-Louisiana continental shelf during two flow regimes of the Mississippi River 

    E-Print Network [OSTI]

    Bontempi, Paula Susan

    1995-01-01T23:59:59.000Z

    Phytoplankton abundance and species composition were examined over the Texas-Louisiana continental shelf during May 1992 and May 1993, as part of a phytoplankton diversity study funded by the Office of Naval Research. ...

  13. Technical support for geopressured-geothermal well activities in Louisiana. Final report, 1 November 1983-31 October 1984

    SciTech Connect (OSTI)

    Not Available

    1985-12-01T23:59:59.000Z

    This report describes environmental monitoring of microseismic activity, land-surface subsidence, and surface and ground-water quality at three designed geopressured-geothermal test well sites in Louisiana. Separate abstracts have been prepared for individual sections. (ACR)

  14. What comes next? : employment opportunities for Vietnamese American fisherfolk affected by the BP gulf oil spill in Louisiana

    E-Print Network [OSTI]

    Dang, Mai T. (Mai Thuy Tran)

    2011-01-01T23:59:59.000Z

    This thesis explores potential employment opportunities in energy efficiency construction and aquaculture for Vietnamese American fisherfolk significantly impacted by the BP oil spill in Louisiana. First, the thesis explains ...

  15. Total Light Management

    Broader source: Energy.gov [DOE]

    Presentation covers total light management, and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  16. Total Space Heat-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  17. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  18. Instruments of Empire: Colonial Elites and U.S. Governance in Early National Louisiana, 1803-1820

    E-Print Network [OSTI]

    Beauchamp, Michael Kelly

    2011-02-22T23:59:59.000Z

    ) Michael Kelly Beauchamp, B.A., The University of Dallas; M.A., Texas A&M University Chair of Advisory Committee: Dr. April Hatfield The United States confronted new problems of territorial expansion with the Louisiana Purchase, as it involved...- 8 Grace King wrote numerous short stories and novels, in addition to historical works like Creole Families of New Orleans, (New York: Macmillan, 1921). 9 Joseph G. Tregle Jr. Louisiana in the Age of Jackson: A Clash of Cultures...

  19. The Results of More Than 250 Industrial Assessments for Manufacturing by the Louisiana Industrial Assessment Center for the Past Ten Years

    E-Print Network [OSTI]

    Kozman, T.; Lee, J.

    2010-01-01T23:59:59.000Z

    The Results (Lessons Learned) of more than 250 E nergy Audits (Industrial Assessments) for Manufacturers by the Louisiana Industrial Assessment Center for the past Ten Years Theodore Kozman Jim Lee Director Deputy Director... Industrial Assessment Center University of Louisiana Lafayette Abstrac t This paper and discussion presents the summary and results of energy audits or assessments conducted by the University of Louisiana Lafayette Industrial Assessment Center...

  20. Program in Functional Genomics of Autoimmunity and Immunology of yhe University of Kentucky and the University of Alabama

    SciTech Connect (OSTI)

    Alan M Kaplan

    2012-10-12T23:59:59.000Z

    This grant will be used to augment the equipment infrastructure and core support at the University of Kentucky and the University of Alabama particularly in the areas of genomics/informatics, molecular analysis and cell separation. In addition, we will promote collaborative research interactions through scientific workshops and exchange of scientists, as well as joint exploration of the role of immune receptors as targets in autoimmunity and host defense, innate and adaptive immune responses, and mucosal immunity in host defense.

  1. Total Synthesis of (?)-Himandrine

    E-Print Network [OSTI]

    Movassaghi, Mohammad

    We describe the first total synthesis of (?)-himandrine, a member of the class II galbulimima alkaloids. Noteworthy features of this chemistry include a diastereoselective Diels?Alder reaction in the rapid synthesis of the ...

  2. New Orleans, Louisiana: Solar in Action (Brochure), Solar America...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    investment-will eventually total in the tens of billions of dollars. Improving response time relating to all of the city's many recovery activities was a top priority for...

  3. Innovative Approach to Chiller Replacement at Lafayette General Medical Center Located in Lafayette, Louisiana 

    E-Print Network [OSTI]

    Poche', J. M.; Broussard, J. P.

    1998-01-01T23:59:59.000Z

    converted to a gas-fired chiller in their chiller replacement program The analysis phase also included negotiating rates with the electric and gas companies servicing the Hospital. The utility history and equipment inventory was pesformed utilizing a...INNOVATIVE APPROACH TO CHILLER REPLACEMENT AT LAFAYETl'E GENERAL MEDICAL CENTER LOCATED IN LAFAYElTE, LOUISIANA James M. Pocbe*, P.E Mechanical EngineerIPresident Poche* Associates, Ltd. ABSTRACI' The rafavette General Medical Center is a 332...

  4. Burial diagenesis and timing of reservoir development, North Haynesville Field, Louisiana

    E-Print Network [OSTI]

    Hull, Harris Benjamin

    1982-01-01T23:59:59.000Z

    of MASTER OF SCIENCE December 1982 Major Subject: Geology BURIAL DIAGENESIS AND TIMING OF RESERVOIR DEVELOPMENT, NORTH HAYNESVILLE FIELD, LOUISIANA A Thesis by HARRIS BENJAMIN HULL Approved as to style and content by: syne M. Ahr (Chairman...'s encouragement and support also was greatly appreciated. TABLE OF CONTFNTS Page INTRODUCTION Reg'onal Geology Present Status Methods SMACKOVER ROCK PROPERTIES 13 Composition Sedimentary Structures Microfacies 13 28 29 DEPOSITIONAL ENVIRONMENTS 38...

  5. Methodology for the evaluation of a 4000-home geothermal heat pump retrofit at Fort Polk, Louisiana

    SciTech Connect (OSTI)

    Hughes, P.J.; Shonder, J.A.; White, D.L.; Huang, H.L.

    1998-03-01T23:59:59.000Z

    The US Army and a private energy service company are developing a comprehensive energy efficiency project to upgrade the family housing at Fort Polk, Louisiana. The project includes converting the space conditioning systems of more than 4,000 housing units to geothermal (or ground-source) heat pumps (GHPs). This interim report describes the methodology of the evaluation associated with this project, including the field monitoring that has been conducted at the base.

  6. Measurement and analysis of hypoxia in Texas-Louisiana coastal waters

    E-Print Network [OSTI]

    Pokryfki, Lynn Brigid

    1985-01-01T23:59:59.000Z

    , temperature, sigma-t, bottom dissolved oxygen, and river discharge, off Cameron, Louisiana are described and statistically analyzed using four years (1981-1984) of data obtained from the Strategic Petroleum Reserve Program (SPR). A special cruise... the controllir g processes so hypoxic occurrences can be predicted. Hydrographic Data Bank In 1975, the U. S. Department of Energy implemented the Straregi" Petroleum Reserve Program (SPR), mandated by an Act of Congress. This program involves the storage...

  7. COMBINED GEOPHYSICAL INVESTIGATION TECHNIQUES TO IDENTIFY BURIED WASTE IN AN UNCONTROLLED LANDFILL AT THE PADUCAH GASEOUS DIFFUSION PLANT, KENTUCKY

    SciTech Connect (OSTI)

    Miller, Peter T.; Starmer, R. John

    2003-02-27T23:59:59.000Z

    The primary objective of the investigation was to confirm the presence and determine the location of a cache of 30 to 60 buried 55-gallon drums that were allegedly dumped along the course of the pre-existing, northsouth diversion ditch (NSDD) adjacent to permitted landfills at the Paducah Gaseous Diffusion Plant, Kentucky. The ditch had been rerouted and was being filled and re-graded at the time of the alleged dumping. Historic information and interviews with individuals associated with alleged dumping activities indicated that the drums were dumped prior to the addition of other fill materials. In addition, materials alleged to have been dumped in the ditch, such as buried roofing materials, roof flashing, metal pins, tar substances, fly ash, and concrete rubble complicated data interpretation. Some clean fill materials have been placed over the site and graded. This is an environment that is extremely complicated in terms of past waste dumping activities, construction practices and miscellaneous landfill operations. The combination of site knowledge gained from interviews and research of existing site maps, variable frequency EM data, classical total magnetic field data and optimized GPR lead to success where a simpler less focused approach by other investigators using EM-31 and EM-61 electromagnetic methods and unfocused ground penetrating radar (GPR)did not produce results and defined no real anomalies. A variable frequency electromagnetic conductivity unit was used to collect the EM data at 3,030 Hz, 5,070 Hz, 8,430 Hz, and 14,010 Hz. Both in-phase and quadrature components were recorded at each station point. These results provided depth estimates for targets and some information on the subsurface conditions. A standard magnetometer was used to conduct the magnetic survey that showed the locations and extent of buried metal, the approximate volume of ferrous metal present within a particular area, and allowed estimation of approximate target depths. The GPR survey used a 200 megahertz (MHz) antenna to provide the maximum depth penetration and subsurface detail yielding usable signals to a depth of about 6 to 10 feet in this environment and allowed discrimination of objects that were deeper, particularly useful in the southern area of the site where shallow depth metallic debris (primarily roof flashing) complicated interpretation of the EM and magnetic data. Several geophysical anomalies were defined on the contour plots that indicated the presence of buried metal. During the first phase of the project, nine anomalies or anomalous areas were detected. The sizes, shapes, and magnitudes of the anomalies varied considerably, but given the anticipated size of the primary target of the investigation, only the most prominent anomalies were considered as potential caches of 30 to 60 buried drums. After completion of a second phase investigation, only two of the anomalies were of sufficient magnitude, not identifiable with existing known metallic objects such as monitoring wells, and in positions that corresponded to the location of alleged dumping activities and were recommended for further, intrusive investigation. Other important findings, based on the variable frequency EM method and its combination with total field magnetic and GPR data, included the confirmation of the position of the old NSDD, the ability to differentiate between ferrous and non-ferrous anomalies, and the detection of what may be plumes emanating from the landfill cell.

  8. Total Energy Monitor

    SciTech Connect (OSTI)

    Friedrich, S

    2008-08-11T23:59:59.000Z

    The total energy monitor (TE) is a thermal sensor that determines the total energy of each FEL pulse based on the temperature rise induced in a silicon wafer upon absorption of the FEL. The TE provides a destructive measurement of the FEL pulse energy in real-time on a pulse-by-pulse basis. As a thermal detector, the TE is expected to suffer least from ultra-fast non-linear effects and to be easy to calibrate. It will therefore primarily be used to cross-calibrate other detectors such as the Gas Detector or the Direct Imager during LCLS commissioning. This document describes the design of the TE and summarizes the considerations and calculations that have led to it. This document summarizes the physics behind the operation of the Total Energy Monitor at LCLS and derives associated engineering specifications.

  9. Development of Energy Balances for the State of California

    E-Print Network [OSTI]

    Murtishaw, Scott; Price, Lynn; de la Rue du Can, Stephane; Masanet, Eric; Worrell, Ernst; Sahtaye, Jayant

    2005-01-01T23:59:59.000Z

    of imported coal from Colorado, Kentucky, New Mexico, Utah,New Mexico Utah West Virginia Wyoming Kentucky Total Source: Coal

  10. Southeast Regional Clean Energy Policy Analysis

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report covers the states that largely fall into the Southeastern Reliability Corporation (SERC) region: Alabama, Arkansas, Georgia, Louisiana, Kentucky, Missouri, Mississippi, North Carolina, South Carolina, and Tennessee.

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Vehicle (NGV) Production Support and Procurement In 2011, Wyoming joined Arkansas, Colorado, Kentucky, Louisiana, Maine, Mississippi, New Mexico, Ohio, Oklahoma,...

  12. Total Precipitable Water

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    The simulation was performed on 64K cores of Intrepid, running at 0.25 simulated-years-per-day and taking 25 million core-hours. This is the first simulation using both the CAM5 physics and the highly scalable spectral element dynamical core. The animation of Total Precipitable Water clearly shows hurricanes developing in the Atlantic and Pacific.

  13. Geologic controls on sulfur content of the Blue Gem coal seam, southeastern Kentucky

    SciTech Connect (OSTI)

    Rimmer, S.M.; Moore, T.A.; Esterle, J.S.; Hower, J.C.

    1985-01-01T23:59:59.000Z

    Detailed petrographic and lithologic data on the Blue Gem coal seam for a local area in Knox County, Kentucky, suggest that a relationship may exist between overlying roof lithology, petrographic composition of the coal, and sulfur content. In the western part of the area, where thick (20-40 feet) shale sequences overlie the coal, sulfur contents are low (less than 1%). In isolated areas where discontinuous sandstones occur within 6 feet of the coal, sulfur contents range from 1% to over 3%. In the east, a sandstone body usually overlies and frequently scours out the coal, yet sulfur content varies independently of roof lithology. Towards the east, there is an increase in abundance, thickness and variability of fusain bands within the coal and an increase in pyrite and siderite either as cell fillings in fusinite or as masses within vitrinite; early emplacement of these minerals is indicated by compaction features. Data suggest the importance of depositional environment of the peat and overlying sediments as a control on sulfur occurrence. High sulfur contents in the west are related to sandstone bodies which may have allowed sulfate-bearing waters to permeate into the peat. In the east, where increases in pyrite, siderite and fusain content of the coal and coarsening of the overlying sediments suggest a change in environment, the presence or absence of pyrite-containing fusain bands may account for sulfur variability. Siderite occurrence may reflect local fluctuations in sulfate supply to the peat swamp.

  14. Project plan for the background soils project for the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The Background Soils Project for the Paducah Gaseous Diffusion Plant (BSPP) will determine the background concentration levels of selected naturally occurring metals, other inorganics, and radionuclides in soils from uncontaminated areas in proximity to the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. The data will be used for comparison with characterization and compliance data for soils, with significant differences being indicative of contamination. All data collected as part of this project will be in addition to other background databases established for the PGDP. The BSPP will address the variability of surface and near-surface concentration levels with respect to (1) soil taxonomical types (series) and (2) soil sampling depths within a specific soil profile. The BSPP will also address the variability of concentration levels in deeper geologic formations by collecting samples of geologic materials. The BSPP will establish a database, with recommendations on how to use the data for contaminated site assessment, and provide data to estimate the potential human and health and ecological risk associated with background level concentrations of potentially hazardous constituents. BSPP data will be used or applied as follows.

  15. An aerial radiological survey of the Paducah Gaseous Diffusion Plant and surrounding area, Paducah, Kentucky

    SciTech Connect (OSTI)

    Not Available

    1992-11-01T23:59:59.000Z

    An aerial radiological survey of the Paducah Gaseous Diffusion Plant (PGDP) and surrounding area in Paducah, Kentucky, was conducted during May 15--25, 1990. The purpose of the survey was to measure and document the terrestrial radiological environment at the PGDP and surrounding area for use in effective environmental management and emergency response planning. The aerial survey was flown at an altitude of 61 meters (200 feet) along a series of parallel lines 107 meters (350 feet) apart. The survey encompassed an area of 62 square kilometers (24 square miles), bordered on the north by the Ohio River. The results of the aerial survey are reported as inferred exposure rates at 1 meter above ground level in the form of a gamma radiation contour map. Typical background exposure rates were found to vary from 5 to 12 microroentgens per hour ([mu]R/h). Protactinium-234m, a radioisotope indicative of uranium-238, was detected at several facilities at the PGDR. In support of the aerial survey, ground-based exposure rate and soil sample measurements were obtained at several sites within the survey perimeter. The results of the aerial and ground-based measurements were found to agree within [plus minus]15%.

  16. New industrial heat pump applications to a synthetic rubber production, Louisville, Kentucky

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    The site selected for this study is the American Synthetic Rubber Corporation's polybutadiene plant in Louisville, Kentucky. The objective of this study is to further identify the energy savings potential through advanced heat pumps and other energy conservation methods developed in the context of pinch technology. The process studied involves a solution polymerization of butadiene monomer in the presence of toluene, which acts as a solvent. The results indicate that there is an excellent prospect for heat integration and heat pump application. The heat integration option requires an investment of about 8900 sq. ft. in additional area, to save about one third of the present steam consumption. Two process streams were identified for potential heat pump application. One of them is the combined overhead vapor stream from the stripping section, composed of steam and toluene mixture. The other stream is the overhead vapor from the concentration section, composed mainly of toluene. Economic analysis were performed, both for closed cycle and semi open cycle heat pumps. The potential for semi-open cycle (MVR) hear pumps looks extremely good. 15 figs., 11 tabs.

  17. Community Energy Systems and the Law of Public Utilities. Volume Nineteen. Kentucky

    SciTech Connect (OSTI)

    Feurer, D A; Weaver, C L

    1981-01-01T23:59:59.000Z

    A detailed description is given of the laws and programs of the State of Kentucky governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  18. Evaluation of the Berea sandstone formation in eastern Pike County, Kentucky

    SciTech Connect (OSTI)

    Frantz, J.H. Jr. (S.A. Holditch Associates, Inc., Pittsburgh, PA (United States)); Luffel, D. (ResTech Houston, Inc., Houston, TX (United States)); Kubik, W. (K A Energy Consultants, Tulsa, OK (United States))

    1993-08-01T23:59:59.000Z

    The Gas Research Institute (GRI) has been sponsoring a cooperative well program with Ashland Exploration, Inc., (AEI) during the past two years targeting the Devonian Shale and Berea sandstone formations in Pike County of eastern Kentucky. Operators typically complete both the shales and Berea in one well bore in this area. This presentation summarizes the research results of the Berea cooperative well, the COOP 2 (Ashland FMC 80). The specific objectives of the Berea evaluation in the COOP 2 were to develop an integrated reservoir description for stimulation design and predicting long-term well performance, identify geologic production controls, determine the in-situ stress profile, and develop Berea log interpretation models for gas porosity and stress. To satisfy these objectives, data were collected and analyzed from 146 ft of whole core, open-hole geophysical logs, including formation microscanner and digital sonic, in-situ stress measurements, and prefracture production and pressure transient tests. In addition, data from a minifracture, a fracture stimulation treatment, and postfracture performance tests were analyzed. The authors determined the integrated reservoir/hydraulic fracture descriptions from analyzing the data collected in the open- and cased-hole, in addition to the log interpretation models developed to accurately predict gas porosity and stress profiles. Results can be applied by operators to better understand the Berea reservoir in the study area, predict well performance, and design completion procedures and stimulation treatments. The methodology can also be applied to other tight-gas sand formations.

  19. Review of earthquake hazard assessments of plant sites at Paducah, Kentucky, and Portsmouth, Ohio

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    Members of the US Geological Survey staff in Golden, Colorado, have reviewed the submissions of Lawrence Livermore National Laboratory (LLNL) staff and of Risk Engineering, Inc. (REI) (Golden, Colorado) for seismic hazard estimates for Department of Energy facilities at Portsmouth, Ohio, and Paducah, Kentucky. We reviewed the historical seismicity and seismotectonics near the two sites, and general features of the LLNL and EPRI/SOG methodologies used by LLNL and Risk Engineering respectively, and also the separate Risk Engineering methodology used at Paducah. We discussed generic issues that affect the modeling of both sites, and performed alternative calculations to determine sensitivities of seismic hazard results to various assumptions and models in an attempt to assign reasonable bounding values of the hazard. In our studies we find that peak acceleration values of 0.08 g for Portsmouth and 0.32 g for Paducah represent central values of the ground motions obtained at 1000-year return periods. Peak accelerations obtained in the LLNL and Risk Engineering studies have medians near these values (results obtained using the EPRI/SOG methodology appear low at both sites), and we believe that these medians are appropriate values for use in the evaluation of systems, structures, and components for seismic structural integrity and for the seismic design of new and improved systems, structures, and components at Portsmouth and Paducah.

  20. Site-specific earthquake response analysis for Paducah Gaseous Diffusion Plant, Paducah, Kentucky. Final report

    SciTech Connect (OSTI)

    Sykora, D.W.; Davis, J.J.

    1993-08-01T23:59:59.000Z

    The Paducah Gaseous Diffusion Plant (PGDP), owned by the US Department of Energy (DOE) and operated under contract by Martin Marietta Energy systems, Inc., is located southwest of Paducah, Kentucky. An aerial photograph and an oblique sketch of the plant are shown in Figures 1 and 2, respectively. The fenced portion of the plant consists of 748 acres. This plant was constructed in the 1950`s and is one of only two gaseous diffusion plants in operation in the United States; the other is located near Portsmouth, Ohio. The facilities at PGDP are currently being evaluated for safety in response to natural seismic hazards. Design and evaluation guidelines to evaluate the effects of earthquakes and other natural hazards on DOE facilities follow probabilistic hazard models that have been outlined by Kennedy et al. (1990). Criteria also established by Kennedy et al. (1990) classify diffusion plants as ``moderate hazard`` facilities. The US Army Engineer Waterways Experiment Station (WES) was tasked to calculate the site response using site-specific design earthquake records developed by others and the results of previous geotechnical investigations. In all, six earthquake records at three hazard levels and four individual and one average soil columns were used.

  1. Review of earthquake hazard assessments of plant sites at Paducah, Kentucky and Portsmouth, Ohio

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    Members of the US Geological Survey staff in Golden, Colorado, have reviewed the submissions of Lawrence Livermore National Laboratory (LLNL) staff and of Risk Engineering, Inc. (REI) (Golden, Colorado) for seismic hazard estimates for Department of Energy facilities at Portsmouth, Ohio, and Paducah, Kentucky. We reviewed the historical seismicity and seismotectonics near the two sites, and general features of the LLNL and EPRI/SOG methodologies used by LLNL and Risk Engineering respectively, and also the separate Risk Engineering methodology used at Paducah. We discussed generic issues that affect the modeling of both sites, and performed alternative calculations to determine sensitivities of seismic hazard results to various assumptions and models in an attempt to assign reasonable bounding values of the hazard. In our studies we find that peak acceleration values of 0.08 g for Portsmouth and 0.32 g for Paducah represent central values of the, ground motions obtained at 1000-year return periods. Peak accelerations obtained in the LLNL and Risk Engineering studies have medians near these values (results obtained using the EPRI/SOG methodology appear low at both sites), and we believe that these medians are appropriate values for use in the evaluation of systems, structures, and components for seismic structural integrity and for the seismic design of new and improved systems, structures, and components at Portsmouth and Paducah.

  2. Environmental investigations at the Paducah Gaseous Diffusion Plant and surrounding area, McCracken County, Kentucky: Volume 1 -- Executive summary. Final report

    SciTech Connect (OSTI)

    NONE

    1994-05-01T23:59:59.000Z

    This report details the results of four studies into environmental and cultural resources on and near the Department of Energy`s (DOE) Paducah Gaseous Diffusion Plant (PGDP) located in Western Kentucky in McCracken County, approximately 10 miles west of Paducah, KY. The area investigated includes the PGDP facility proper, additional area owned by DOE under use permit to the Western Kentucky Wildlife Management Area (WKWMA), area owned by the Commonwealth of Kentucky that is administered by the WKWMA, area owned by the Tennessee Valley Authority (TVA), the Metropolis Lake State Nature preserve and some privately held land. DOE requested the assistance and support of the US Army Engineer District, Nashville (CEORN) in conducting various environmental investigations of the area. The US Army Engineer Waterways Experiment Station (WES) provided technical support to the CEORN for environmental investigations of (1) wetland resources, (2) threatened or endangered species and habitats, and (3) cultural resources. A floodplain investigation was conducted by CEORN.

  3. TotalView Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesisAppliances » Top InnovativeTopoisomeraseTotalView

  4. Ground penetrating radar surveys over an alluvial DNAPL site, Paducah Gaseous Diffusion Plant, Kentucky

    SciTech Connect (OSTI)

    Carpenter, P.J. [Northern Illinois Univ., DeKalb, IL (United States). Dept. of Geology]|[Oak Ridge National Lab., TN (United States); Doll, W.E. [Oak Ridge National Lab., TN (United States); Phillips, B.E. [Paducah Gaseous Diffusion Plant, KY (United States)

    1994-09-01T23:59:59.000Z

    Ground penetrating radar (GPR) surveys were used to map shallow sands and gravels which are DNAPL migration pathways at the Paducah Gaseous Diffusion Plant in western Kentucky. The sands and gravels occur as paleochannel deposits, at depths of 17-25 ft, embedded in Pleistocene lacustrine clays. More than 30 GPR profiles were completed over the Drop Test Area (DTA) to map the top and base of the paleochannel deposits, and to assess their lateral continuity. A bistatic radar system was used with antenna frequencies of 25 and 50 MHz. An average velocity of 0.25 ft/ns for silty and clayey materials above the paleochannel deposits was established from radar walkaway tests, profiles over culverts of known depth, and comparison of radar sections with borings. In the south portion of the DTA, strong reflections corresponded to the water table at approximately 9-10 ft, the top of the paleochannel deposits at approximately 18 ft, and to gravel horizons within these deposits. The base of these deposits was not visible on the radar sections. Depth estimates for the top of the paleochannel deposits (from 50 records) were accurate to within 2 ft across the southern portion of the DTA. Continuity of these sands and gravels could not be assessed due to interference from air-wave reflections and lateral changes in signal penetration depth. However, the sands and gravels appear to extend across the entire southern portion of the DTA, at depths as shallow as 17 ft. Ringing, air-wave reflections and diffractions from powerlines, vehicles, well casings, and metal equipment severly degraded GPR profiles in the northern portion of the DTA; depths computed from reflection times (where visible) were accurate to within 4 ft in this area. The paleochannel deposits are deeper to the north and northeast where DNAPL has apparently pooled (DNAPL was not directly imaged by the GPR, however). Existing hydrogeological models of the DTA will be revised.

  5. Relative risk site evaluation for buildings 7740 and 7741 Fort Campbell, Kentucky

    SciTech Connect (OSTI)

    Last, G.V.; Gilmore, T.J.; Bronson, F.J.

    1998-01-01T23:59:59.000Z

    Buildings 7740 and 7741 are a part of a former nuclear weapon`s storage and maintenance facility located in the southeastern portion of Fort Campbell, Kentucky. This underground tunnel complex was originally used as a classified storage area beginning in 1949 and continuing until 1969. Staff from the Pacific Northwest National Laboratory recently completed a detailed Relative Risk Site Evaluation of the facility. This evaluation included (1) obtaining engineering drawings of the facility and associated structures, (2) conducting detailed radiological surveys, (3) air sampling, (4) sampling drainage systems, and (5) sampling the underground wastewater storage tank. Ten samples were submitted for laboratory analysis of radionuclides and priority pollutant metals, and two samples submitted for analysis of volatile organic compounds. No volatile organic contaminants were detected using field instruments or laboratory analyses. However, several radionuclides and metals were detected in water and/or soil/sediment samples collected from this facility. Of the radionuclides detected, only {sup 226}Ra may have come from facility operations; however, its concentration is at least one order of magnitude below the relative-risk comparison value. Several metals (arsenic, beryllium, cadmium, copper, mercury, lead, and antimony) were found to exceed the relative-risk comparison values for water, while only arsenic, cadmium, and lead were found to exceed the relative risk comparison values for soil. Of these constituents, it is believed that only arsenic, beryllium, mercury, and lead may have come from facility operations. Other significant hazards posed by the tunnel complex include radon exposure and potentially low oxygen concentrations (<19.5% in atmosphere) if the tunnel complex is not allowed to vent to the outside air. Asbestos-wrapped pipes, lead-based paint, rat poison, and possibly a selenium rectifier are also present within the tunnel complex.

  6. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series HistoryKansas"Kentucky"Louisiana"

  7. A study of temperature inversions over selected stations in Texas and Louisiana

    E-Print Network [OSTI]

    Parker, Truman

    1967-01-01T23:59:59.000Z

    . J I"'erii = r ) May Io6j A Study of Temperature Inversions Over Selected Stations in Texs, s and Louisiana (May 1967) Truman Parker, B. A. , Texas AEcM University B. S. , University of Washington Directed by: Prof. J. F. Griffiths..., but are also si gnificantly more requent and persistent. From the standpo' nt of stability, the coastal area, seems to have the greatest potential for air pollution. ACFJviOWLEDGNEiUTS Sincere appreci atio. . is expressed o Professor John F. Griffiths...

  8. Geopressured geothermal resource of the Texas and Louisiana Gulf Coast: a technology characterization and environmental assessment

    SciTech Connect (OSTI)

    Usibelli, A.; Deibler, P.; Sathaye, J.

    1980-12-01T23:59:59.000Z

    Two aspects of the Texas and Louisiana Gulf Coast geopressured geothermal resource: (1) the technological requirements for well drilling, completion, and energy conversion, and, (2) the environmental impacts of resource exploitation are examined. The information comes from the literature on geopressured geothermal research and from interviews and discussions with experts. The technology characterization section emphasizes those areas in which uncertainty exists and in which further research and development is needed. The environmental assessment section discusses all anticipated environmental impacts and focuses on the two largest potential problems: (a) subsidence and (b) brine disposal.

  9. Innovative Approach to Chiller Replacement at Lafayette General Medical Center Located in Lafayette, Louisiana

    E-Print Network [OSTI]

    Poche', J. M.; Broussard, J. P.

    1998-01-01T23:59:59.000Z

    INNOVATIVE APPROACH TO CHILLER REPLACEMENT AT LAFAYETl'E GENERAL MEDICAL CENTER LOCATED IN LAFAYElTE, LOUISIANA James M. Pocbe*, P.E Mechanical EngineerIPresident Poche* Associates, Ltd. ABSTRACI' The rafavette General Medical Center is a 332... chillers. The Hospital had been monitoring the CFC issue for the past several years, and felt it was time to begin replacing its 30 year old machines. The Hospital's original plan at the time of budgeting was a one-forane replacement of chillers...

  10. Depositional environment of Upper Cretaceous deep Tuscaloosa Sandstones, Profit Island field, east Baton Rouge Parish, Louisiana

    E-Print Network [OSTI]

    Roth, Susan Viola

    1981-01-01T23:59:59.000Z

    in thickness from 12 ft to 17 ft (4 m to 5 m). Finally, thin-bedded, distinctly parallel-laminated and ripple-laminated sandstones represent overbank deposits which range in thickness from 4 ft to 9 ft (1 m to 3 m) ~ Black marine shales with thinly... Island field is in the lower Tuscaloosa sandstones. The exact age of the Tuscaloosa has recently been the subj ect of many stratigraphic studies. It has generally been assumed that the 11 deep Tuscaloosa of Louisiana and the Woodbine of East Texas...

  11. Comparison of estimated and background subsidence rates in Texas-Louisiana geopressured geothermal areas

    SciTech Connect (OSTI)

    Lee, L.M.; Clayton, M.; Everingham, J.; Harding, R.C.; Massa, A.

    1982-06-01T23:59:59.000Z

    A comparison of background and potential geopressured geothermal development-related subsidence rates is given. Estimated potential geopressured-related rates at six prospects are presented. The effect of subsidence on the Texas-Louisiana Gulf Coast is examined including the various associated ground movements and the possible effects of these ground movements on surficial processes. The relationships between ecosystems and subsidence, including the capability of geologic and biologic systems to adapt to subsidence, are analyzed. The actual potential for environmental impact caused by potential geopressured-related subsidence at each of four prospects is addressed. (MHR)

  12. Data report: Illinois, Indiana, Kentucky, Tennessee, and Ohio. National Uranium Resource Evaluation Program. Hydrogeochemical and stream sediment reconnaissance

    SciTech Connect (OSTI)

    Sargent, K A; Cook, J R; Fay, W M

    1982-02-01T23:59:59.000Z

    This report presents the results of ground water, stream water, and stream sediment reconnaissance in Illinois, Indiana, Kentucky, Tennessee, and Ohio. The following sample types were collected in each state: Illinois - 716 stream sediment, 1046 ground water, 337 stream water; Indiana - 126 stream sediment, 443 ground water, 111 stream water; Kentucky - 4901 stream sediment, 6408 ground water, 3966 stream water; Tennessee - 3309 stream sediment, 3574 ground water, 1584 stream water; Ohio - 1214 stream sediment, 2049 ground water, 1205 stream water. Neutron activation analyses are given for U, Br, Cl, F, Mn, Na, Al, V, and Dy in ground water and stream water, and for U, Th, Hf, Ce, Fe, Mn, Na, Sc, Ti, V, Al, Dy, Eu, La, Sm, Yb, and Lu in sediments. Supplementary analyses by other techniques are reported for U (extractable), Ag, As, Ba, Be, Ca, Co, Cr, Cu, K, Li, Mg, Mo, Nb, Ni, P, Pb, Se, Sn, Sr, W, Y, and Zn. These analyses were made on 248 sediment samples from Tennessee. Field measurements and observations are reported for each site. Oak Ridge National Laboratory analyzed sediment samples which were not analyzed by Savannah River Laboratory neutron activation.

  13. Association of the sites of heavy metals with nanoscale carbon in a Kentucky electrostatic precipitator fly ash

    SciTech Connect (OSTI)

    James C. Hower; Uschi M. Graham; Alan Dozier; Michael T. Tseng; Rajesh A. Khatri [University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    2008-11-15T23:59:59.000Z

    A combination of high-resolution transmission electron microscopy, scanning transmission electron microscopy, and electron energy-loss spectroscopy (HRTEM-STEM-EELS) was used to study fly ashes produced from the combustion of an eastern Kentucky coal at a southeastern-Kentucky wall-fired pulverized coal utility boiler retrofitted for low-NOx combustion. Fly ash was collected from individual hoppers in each row of the electrostatic precipitators (ESP) pollution-control system, with multiple hoppers sampled within each of the three rows. Temperatures within the ESP array range from about 200 {degree}C at the entry to the first row to <150{degree}C at the exit of the third row. HRTEM-STEM-EELS study demonstrated the presence of nanoscale (10 s nm) C agglomerates with typical soot-like appearance and others with graphitic fullerene-like nanocarbon structures. The minute carbon agglomerates are typically juxtaposed and intergrown with slightly larger aluminosilicate spheres and often form an ultrathin halo or deposit on the fly ash particles. The STEM-EELS analyses revealed that the nanocarbon agglomerates host even finer (<3 nm) metal and metal oxide particles. Elemental analysis indicated an association of Hg with the nanocarbon. Arsenic, Se, Pb, Co, and traces of Ti and Ba are often associated with Fe-rich particles within the nanocarbon deposits. 57 refs., 5 figs.

  14. Environmental assessment for the construction, operation, and closure of the solid waste landfill at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    DOE has prepared an environmental assessment (EA) for the proposed construction, operation, and closure of a Solid Waste Landfill (SWL) that would be designed in accordance with Commonwealth of Kentucky landfill regulations (401 Kentucky Administrative Regulations Chapters 47 and 48 and Kentucky Revised Statutes 224.855). PGDP produces approximately 7,200 cubic yards per year of non-hazardous, non-radioactive solid waste currently being disposed of in a transitional contained (residential) landfill cell (Cell No. 3). New Kentucky landfill regulations mandate that all existing landfills be upgraded to meet the requirements of the new regulations or stop receiving wastes by June 30, 1995. Cell No. 3 must stop receiving wastes at that time and be closed and capped within 180 days after final receipt of wastes. The proposed SWL would occupy 25 acres of a 60-acre site immediately north of the existing PGDP landfill (Cell No. 3). The EA evaluated the potential environmental consequences of the proposed action and reasonable alternative actions. Based on the analysis in the EA, DOE has determined that the proposed action does not constitute a major Federal action which will significantly affect the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA), 42 USC 4321 et seq. Therefore, it is determined that an environmental impact statement will not be prepared, and DOE is issuing this FONSI.

  15. International Symposium on Gaseous and Odour Emissions from Animal Production Facilities, Horsens, Jutland, Denmark 1-4 June, 2003 Ammonia Emissions from Broiler Houses in Kentucky during Winter

    E-Print Network [OSTI]

    Kentucky, University of

    International Symposium on Gaseous and Odour Emissions from Animal Production Facilities, Horsens, Jutland, Denmark 1-4 June, 2003 Ammonia Emissions from Broiler Houses in Kentucky during Winter Kenneth D a comprehensive database of ammonia emission rates (ER) from US poultry facilities. The influence of common

  16. 3 October 2014 SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER -FOREST SECTOR / FORESTY PRODUCTS INTEREST GROUP

    E-Print Network [OSTI]

    PRODUCTS INTEREST GROUP AN OUTDOOR LIFE Green is undaunted. The youngest of seven children, he scored a 4 / FORESTY PRODUCTS INTEREST GROUP Idaho lumberjack clings to family business as jobs fade America once had/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER - FOREST SECTOR / FORESTY PRODUCTS INTEREST GROUP When he shows up

  17. 31 October 2014 SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER -FOREST SECTOR / FORESTY PRODUCTS INTEREST GROUP

    E-Print Network [OSTI]

    of the materials from the forests through the supply chain. Brian Condon, the wood procurement manager for Bio pointed out they have foresters working every day making sure the biomass plant is maintaining31 October 2014 SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER - FOREST SECTOR

  18. 26 February 2014 SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER -FOREST SECTOR / FORESTY PRODUCTS INTEREST GROUP

    E-Print Network [OSTI]

    / FORESTY PRODUCTS INTEREST GROUP 1 Rothschild Biomass Plant Only Getting 10 Percent of Fuel from Forest26 February 2014 SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER - FOREST SECTOR 10 percent of its fuel from logging waste, which originally was supposed to supply nearly all

  19. [ ]June 2013 Due to the soft nature of subsurface soils in southern Louisiana, roads often have to

    E-Print Network [OSTI]

    Harms, Kyle E.

    have to be constructed on very weak subgrade soils with high in-situ moisture contents that do not have of stabilizer type and content for treating in-situ weak subgrade layer (under in-situ moisture/density, and the environmental conditions. The common practice in Louisiana is to treat/stabilize in-situ weak subgrade soils

  20. Different Time and Energy Budgets of Lesser Snow Geese in Rice-Prairies and Coastal Marshes in Southwest Louisiana

    E-Print Network [OSTI]

    Afton, Alan D.

    are consistent with recent trends in Snow Goose numbers, which increased in rice-prairies but remained stable451 Different Time and Energy Budgets of Lesser Snow Geese in Rice-Prairies and Coastal Marshes in Southwest Louisiana JÓN EINAR JÓNSSON 1,2 AND ALAN D. AFTON 3 1 School of Renewable Natural Resources

  1. MOVEMENT OF SEA TURTLES CAPTURED NEAR HOPPER-DREDGED CHANNELS IN TEXAS AND LOUISIANA: 1993-1994

    E-Print Network [OSTI]

    #12;MOVEMENT OF SEA TURTLES CAPTURED NEAR HOPPER-DREDGED CHANNELS IN TEXAS AND LOUISIANA: 1993's ridley (Lepidochelys kempii) and 4 loggerhead (Caretta caretta) turtles were tracked near hopper dredged. Tracking data will determine short term fidelity to jettied passes, use of hopper dredged channels and long

  2. 24 September 2014 SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER -FOREST SECTOR / FORESTY PRODUCTS INTEREST GROUP

    E-Print Network [OSTI]

    for profitable, large-scale production have failed. The second-largest U.S. oil company by market value spent24 September 2014 SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER - FOREST SECTOR / FORESTY PRODUCTS INTEREST GROUP 1 Chevron's Search for Plant-Based Alternative Fuels Flounders Joe Carroll

  3. Industrial-hygiene walk-through survey report of Firestone Synthetic Rubber and Latex Company, Lake Charles, Louisiana

    SciTech Connect (OSTI)

    Fajen, J.M.; Ungers, L.J.

    1986-03-01T23:59:59.000Z

    A walk-through survey was conducted at the Firestone Synthetic Rubber and Latex Company, Lake Charles, Louisiana in July, 1985. The purpose of the survey was to obtain information on the 1,3-butadiene polymer manufacturing process and evaluate exposure potential. Bulk samples of vinylpyridine latex, styrene/butadiene rubber, and polybutadiene rubber were analyzed for residual 1,3-butadiene.

  4. 10 February 2014 SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER -FOREST SECTOR / FORESTY PRODUCTS INTEREST GROUP

    E-Print Network [OSTI]

    CENTER - FOREST SECTOR / FORESTY PRODUCTS INTEREST GROUP 2 Wood Pellets Out of 80.9 MGT of wood expected to be consumed by viable projects, wood pellet production is expected to hold the largest share at 34.2 MGT, most10 February 2014 SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER - FOREST SECTOR

  5. 2 March 2014 SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER -FOREST SECTOR / FORESTY PRODUCTS INTEREST GROUP

    E-Print Network [OSTI]

    / FORESTY PRODUCTS INTEREST GROUP 1 Webinar Archive The Transatlantic Trade in Wood for Energy Slides complex sustainability issues related to the growing trade in wood pellets between the U.S. and Europe2 March 2014 SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER - FOREST SECTOR

  6. 22 January 2014 SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER -FOREST SECTOR / FORESTY PRODUCTS INTEREST GROUP

    E-Print Network [OSTI]

    destination. After being packed into containers the wood is shipped to Europe, where power companies will burn-cut Atchafalaya woodlands. He and his fellow Louisiana activists pressured the companies to stop selling the mulch and solar. But for coal-fired power p

  7. 5 February 2014 SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER -FOREST SECTOR / FORESTY PRODUCTS INTEREST GROUP

    E-Print Network [OSTI]

    MONROE, LA ­ New words like wood pellets and biomass are providing a ray of hope for forest landowners to Europe to generate electricity. Buck Vandersteen, executive director of the Louisiana Forestry discussed Drax Biomass, the electric generating industry in the United Kingdom. "They have decided to look

  8. Safety Evaluation Report for the Claiborne Enrichment Center, Homer, Louisiana (Docket No. 70-3070)

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    This report documents the US Nuclear Regulatory Commission (NRC) staff review and safety evaluation of the Louisiana Energy Services, L.P. (LES, the applicant) application for a license to possess and use byproduct, source, and special nuclear material and to enrich natural uranium to a maximum of 5 percent U-235 by the gas centrifuge process. The plant, to be known as the Claiborne Enrichment Center (CEC), would be constructed near the town of Homer in Claiborne Parish, Louisiana. At full production in a given year, the plant will receive approximately 4,700 tonnes of feed UF{sub 6} and produce 870 tonnes of low-enriched UF{sub 6}, and 3,830 tonnes of depleted UF{sub 6} tails. Facility construction, operation, and decommissioning are expected to last 5, 30, and 7 years, respectively. The objective of the review is to evaluate the potential adverse impacts of operation of the facility on worker and public health and safety under both normal operating and accident conditions. The review also considers the management organization, administrative programs, and financial qualifications provided to assure safe design and operation of the facility. The NRC staff concludes that the applicant`s descriptions, specifications, and analyses provide an adequate basis for safety review of facility operations and that construction and operation of the facility does not pose an undue risk to public health and safety.

  9. Sinkhole progression at the Weeks Island, Louisiana, Strategic Petroleum Reserve (SPR) site

    SciTech Connect (OSTI)

    Neal, J.T.; Bauer, S.J.; Ehgartner, B.L. [Sandia National Labs., Albuquerque, NM (United States). Underground Storage Technology Dept.

    1995-11-01T23:59:59.000Z

    A sinkhole measuring 11 m (36 ft) across and 9 m (30 ft) deep was first observed in alluvium overlying the Weeks Island, Louisiana, salt dome in May 1992, but it was about a year old, based on initial surface appearance and subsequent reverse extrapolation of growth rates. A second and much smaller sinkhole was identified in early 1995, nearly three years later. Their position directly over the edges of the SPR oil storage chamber, a former room-and-pillar salt mine, caused apprehension. The association of sinkholes over mines is well established and this occurrence suggested that groundwater influx undoubtedly was causing salt dissolution at shallow depth, and associated collapse of soil at the surface. Leaks of groundwater into other salt mines in Louisiana and elsewhere led to flooding and eventual abandonment (Coates et al., 1981). Consequently, much attention has been and continues to be given to characterizing these sinkholes, and to mitigation. This paper summarizes current engineering geologic concepts, and briefly describes diagnostic and risk mitigation efforts being conducted by the US Department of Energy, operator of the Strategic Petroleum Reserve (Bauer et al., 1994).

  10. Audit Report on "Management Controls over the Department of Energy's American Recovery and Reinvestment Act - Louisiana State Energy Program"

    SciTech Connect (OSTI)

    None

    2010-05-01T23:59:59.000Z

    The Department of Energy's (Department) Office of Energy Efficiency and Renewable Energy (EERE) provides grants to states, territories and the District of Columbia (states) to support their energy priorities through the State Energy Program (SEP). Federal funding is based on a grant formula that considers the population and energy consumption in each state, and amounted to $25 million for Fiscal Year (FY) 2009. The American Recovery and Reinvestment Act of 2009 (Recovery Act) expanded the SEP by authorizing an additional $3.1 billion to states using the existing grant formula. EERE made grant awards to states after reviewing plans that summarize the activities states will undertake to achieve SEP Recovery Act objectives, including preserving and creating jobs; saving energy; increasing renewable energy sources; and, reducing greenhouse gas emissions. EERE program guidance emphasizes that states are responsible for administering SEP within each state, and requires each state to implement internal controls over the use of Recovery Act funds. The State of Louisiana received $71.6 million in SEP Recovery Act funds; a 164-fold increase over its FY 2009 SEP grant of $437,000. As part of the Office of Inspector General's strategy for reviewing the Department's implementation of the Recovery Act, we initiated this review to determine whether the Louisiana State Energy Office had internal controls in place to efficiently and effectively administer Recovery Act funds provided for its SEP program. Louisiana developed a strategy for SEP Recovery Act funding that focused on improving energy efficiency in state buildings, housing and small businesses; increasing Energy Star appliance rebates; and, expanding the use of alternative fuels and renewable energy. Due to a statewide hiring freeze, Louisiana outsourced management of the majority of its projects ($63.3 million) to one general contractor. Louisiana plans to internally manage one project, Education and Outreach ($2.6 million). The remaining funds are allocated to program specific management expenses, including the contractor's fee, a monitoring contract, and Louisiana's payroll expenses ($5.7 million). Louisiana formally approved the general contractor in February 2010. State officials plan to initiate a separate consulting contract for monitoring, verifying and auditing expenditures, energy savings and other metrics as required by EERE for Recovery Act funding.

  11. Geologic, geophysical, and geochemical aspects of site-specific studies of the geopressured-geothermal energy resource of southern Louisiana. Final report

    SciTech Connect (OSTI)

    Pilger, R.H. Jr. (ed.)

    1985-01-01T23:59:59.000Z

    The report consists of four sections dealing with progress in evaluating geologic, geochemical, and geophysical aspects of geopressured-geothermal energy resources in Louisiana. Separate abstracts have been prepared for the individual sections. (ACR)

  12. Kentucky Department for Natural Resources and Environmental Protection permit application for air contaminant source: SRC-I demonstration plant, Newman, Kentucky. Supplement I. [Additional information on 38 items requested by KY/DNREP

    SciTech Connect (OSTI)

    Pearson, Jr., John F.

    1981-02-13T23:59:59.000Z

    In response to a letter from KY/DNREP, January 19, 1981, ICRC and DOE have prepared the enclosed supplement to the Kentucky Department for Natural Resources and Environmental Protection Permit Application for Air Contaminant Source for the SRC-I Demonstration Plant. Each of the 38 comments contained in the letter has been addressed in accordance with the discussions held in Frankfort on January 28, 1981, among representatives of KY/DNREP, EPA Region IV, US DOE, and ICRC. The questions raised involve requests for detailed information on the performance and reliability of proprietary equipment, back-up methods, monitoring plans for various pollutants, composition of wastes to flares, emissions estimates from particular operations, origin of baseline information, mathematical models, storage tanks, dusts, etc. (LTN)

  13. The sublethal effects of the non volatile water soluble fraction of Southern Louisiana crude oil on the growth of Skeletonema costatum (Greve.) Cleve

    E-Print Network [OSTI]

    Schauffler, Sue Myhre

    1979-01-01T23:59:59.000Z

    THE SUBLETHAL EFFECTS OF THE NON VOLATILE WATER SOLUBLE FRACTION OF SOUTHERN LOUISIANA CRUDE OIL ON THE GROWTH OF Skeletonema costatum (GREVE. ) CLEVE A Thesis by SUE MYHRE SCHAUFFLER Submitted to the Graduate College of Texas ~I University... in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1979 Major Subject: Oceanography THE SUBLETHAL EFFECTS OF THE NON VOLATILE WATER SOLUBLE FRACTION OF SOUTHERN LOUISIANA CRUDE OIL ON THE GROWTH OF Skeletonema...

  14. MUJERES TOTAL BIOLOGIA 16 27

    E-Print Network [OSTI]

    Autonoma de Madrid, Universidad

    , PLASTICA Y VISUAL 2 2 EDUCACION FISICA, DEPORTE Y MOTRICIDAD HUMANA 1 1 6 11 TOTAL CIENCIAS Nº DE TESIS

  15. MUJERES ( * ) TOTAL BIOLOGA 16 22

    E-Print Network [OSTI]

    Autonoma de Madrid, Universidad

    , DEPORTE Y MOTRICIDAD HUMANA 0 4 TOTAL FORMACIÓN DE PROFESORADO Y EDUCACIÓN 0 6 ANATOMÍA PATOLÓGICA 2 5

  16. The Total RNA Story Introduction

    E-Print Network [OSTI]

    Goldman, Steven A.

    The Total RNA Story Introduction Assessing RNA sample quality as a routine part of the gene about RNA sample quality. Data from a high quality total RNA preparation Although a wide variety RNA data interpretation and identify features from total RNA electropherograms that reveal information

  17. Final Environmental Assessment and Finding of No Significant Impact: Waste Disposition Activities at the Paducah Site Paducah, Kentucky

    SciTech Connect (OSTI)

    N /A

    2002-11-05T23:59:59.000Z

    The U.S. Department of Energy (DOE) has completed an environmental assessment (DOE/EA-1339), which is incorporated herein by reference, for proposed disposition of polychlorinated biphenyl (PCB) wastes, low-level radioactive waste (LLW), mixed low-level radioactive waste (MLLW), and transuranic (TRU) waste from the Paducah Gaseous Diffusion Plant Site (Paducah Site) in Paducah, Kentucky. All of the wastes would be transported for disposal at various locations in the United States. Based on the results of the impact analysis reported in the EA, DOE has determined that the proposed action is not a major federal action that would significantly affect the quality of the human environment with in the context of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an environmental impact statement is not necessary, and DOE is issuing this Finding of No Significant Impact (FONSI).

  18. Fast Track Reservoir Modeling of Shale Formations in the Appalachian Basin. Application to Lower Huron Shale in Eastern Kentucky

    SciTech Connect (OSTI)

    Grujic, Ognjen; Mohaghegh, Shahab; Bromhal, Grant

    2010-07-01T23:59:59.000Z

    In this paper a fast track reservoir modeling and analysis of the Lower Huron Shale in Eastern Kentucky is presented. Unlike conventional reservoir simulation and modeling which is a bottom up approach (geo-cellular model to history matching) this new approach starts by attempting to build a reservoir realization from well production history (Top to Bottom), augmented by core, well-log, well-test and seismic data in order to increase accuracy. This approach requires creation of a large spatial-temporal database that is efficiently handled with state of the art Artificial Intelligence and Data Mining techniques (AI & DM), and therefore it represents an elegant integration of reservoir engineering techniques with Artificial Intelligence and Data Mining. Advantages of this new technique are a) ease of development, b) limited data requirement (as compared to reservoir simulation), and c) speed of analysis. All of the 77 wells used in this study are completed in the Lower Huron Shale and are a part of the Big Sandy Gas field in Eastern Kentucky. Most of the wells have production profiles for more than twenty years. Porosity and thickness data was acquired from the available well logs, while permeability, natural fracture network properties, and fracture aperture data was acquired through a single well history matching process that uses the FRACGEN/NFFLOW simulator package. This technology, known as Top-Down Intelligent Reservoir Modeling, starts with performing conventional reservoir engineering analysis on individual wells such as decline curve analysis and volumetric reserves estimation. Statistical techniques along with information generated from the reservoir engineering analysis contribute to an extensive spatio-temporal database of reservoir behavior. The database is used to develop a cohesive model of the field using fuzzy pattern recognition or similar techniques. The reservoir model is calibrated (history matched) with production history from the most recently drilled wells. The calibrated model is then further used for field development strategies to improve and enhance gas recovery.

  19. Project Project HQ City HQ State ARRA Funding Total Value Additional

    Open Energy Info (EERE)

    Inc Smart Grid Project Entergy Services Inc Smart Grid Project New Orleans Louisiana ISO New England Incorporated Smart Grid Project ISO New England Incorporated Smart Grid...

  20. EIS-0501: Golden Pass LNG Export and Pipeline Project, Texas and Louisiana

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) is analyzing the potential environmental impacts of a proposal to construct and operate natural gas liquefaction and export facilities at the existing Golden Pass liquefied natural gas terminal in Jefferson County, Texas. The proposal includes three new compressor stations in Jefferson and Orange Counties, Texas, and Calcasieu Parish, Louisiana; a new 3-mile long pipeline in Calcasieu Parish; and modifications to 11 existing interconnections with other pipeline systems. In 2013, FERC announced its intent to prepare an EA and conducted public scoping. (See DOE/EA-1971.) In June 2014, FERC announced that, due to changes in the project location and scope, it would prepare an EIS. DOE, Office of Fossil Energy – a cooperating agency in preparing the EIS – has an obligation under Section 3 of the Natural Gas Act to authorize the import and export of natural gas, including LNG, unless it finds that the import or export is not consistent with the public interest.

  1. Community energy systems and the law of public utilities. Volume 20. Louisiana

    SciTech Connect (OSTI)

    Feurer, D A; Weaver, C L

    1981-01-01T23:59:59.000Z

    A detailed description is given of the laws and programs of the State of Louisiana governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities--Volume One: An overview. This report also contains a summary of a strategy described in Volume One--An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enchance the likelihood of ICES implementation.

  2. Petrographic, stratigraphic, and structural study of the Smackover gray sand (Jurassic) in north Louisiana

    SciTech Connect (OSTI)

    Miciotto, S.A.

    1980-01-01T23:59:59.000Z

    The gas-producing gray sand, a dark gray to black, very fine-grained sand, occurs as 3 sand tongues in the lower member of the Smackover Formation in the subsurface of Bossier, Webster, Claiborne, and Lincoln parishes, Louisiana. A Flaser-bedded silty shale facies indicates deposition on a mid-tidal flat environment. Smackover deposition during the Jurassic in the study area was located on the gently dipping slope between a broad coastal shelf to the north and a basin to the south. The gray sand was deposited over the Norphlet formation and Louann salt before flowage and swelling of the Louann salt began. Uplift and swelling of the Louann salt later in the Jurassic created growing anticlines; sediment slumped off the structural highs of the growing salt anticlines into basinal muds and silts. The Smackover gray sand continues to challenge exploration geologists because of the lateral pinch out of its sand tongues. 11 references.

  3. Identification of organic-rich lower tertiary shakles as petroleum source rock, southern Louisiana

    SciTech Connect (OSTI)

    McDade, E.C. (Texaco Inc., New orleans, LA (United States)); Sassen, R. (Texas A M Univ., College Station, TX (United States)); Wenger, L. (Exxon Production Research, Houston, TX (United States)); Cole, G.A. (Saudi Aramco Laboratories Department, Dhahran (Saudi Arabia))

    1993-09-01T23:59:59.000Z

    Comprehensive organic geochemical evidence of organic-rich, marine shales in the lower part of the middle eocene Claiborne Group and the lower Eocene-Paleocene Wilcox Group of southern Louisiana is now available. The evidence influences models for Gulf Coast petroleum origin. The shales are the only post-Cretaceous sediments in the northern Gulf of Mexico that meet recognized criteria for oil source rocks. Many of organic-rich Paleogene shales contain terrestrially derived, amorphous kerogen altered by microbial activity, and display pyrolysis results consistent with type II/III kerogen. Shelf-edge depositional environments favored preservation of hydrogen-rich kerogen. Seismic and sedimentologic interpretations suggest that marine character and thickness increase on the Paleogene continental slope to the south. The shales at burial depths in the 3050-4600 m depth range, at present, are thermally immature to late mature with respect to oil generation. Detailed geochemical analyses of extractable organic matter and kerogen isolates suggest an oil-source correlation with Tertiary-reservoired oils in southern Louisiana and offshore in the adjacent Gulf of Mexico. Biomarkers of selected samples display high concentrations of C[sub 28]-bisnorhopane and 18[alpha]-oleanane biomarker is absent or not reported in Gulf crude oils from Cretaceous and Jurassic source rocks. Burial and thermal history models suggest the timing of oil migration from Paleogene source rocks is consistent with emplacement of oils in Tertiary reservoirs. The lower Tertiary source rocks described here could offer new insight to understanding the origin of oil in other Tertiary deltas.

  4. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Q 0.4 3 or More Units... 5.4 0.3 Q Q Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  5. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 1.9 1.1 Q Q 0.3 Q Do Not Use Central Air-Conditioning... 45.2 24.6 3.6 5.0 8.8 3.2 Use a Programmable...

  6. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Q 0.6 3 or More Units... 5.4 3.8 2.9 0.4 Q N 0.2 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  7. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1.3 Q 3 or More Units... 5.4 1.6 0.8 Q 0.3 0.3 Q Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  8. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 or More Units... 5.4 2.4 1.4 0.7 0.9 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  9. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 or More Units... 5.4 2.3 1.7 0.6 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  10. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8.6 Have Equipment But Do Not Use it... 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System......

  11. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 or More Units... 5.4 2.1 0.9 0.2 1.0 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  12. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30.3 Have Equipment But Do Not Use it... 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System......

  13. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.3 3 or More Units... 5.4 0.7 0.5 Q Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  14. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 or More Units... 5.4 2.3 0.7 2.1 0.3 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  15. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......

  16. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......

  17. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    Personal Computers Do Not Use a Personal Computer... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer... 75.6...

  18. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer... 35.5 8.1 5.6 2.5 Use a Personal Computer......

  19. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer... 35.5 6.4 2.2 4.2 Use a Personal Computer......

  20. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer......

  1. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......

  2. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    1.3 0.8 0.5 Once a Day... 19.2 4.6 3.0 1.6 Between Once a Day and Once a Week... 32.0 8.9 6.3 2.6 Once a...

  3. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    AppliancesTools.... 56.2 11.6 3.3 8.2 Other Appliances Used Auto BlockEngineBattery Heater... 0.8 0.2 Q 0.1 Hot Tub or Spa......

  4. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Tools... 56.2 20.5 10.8 3.6 6.1 Other Appliances Used Auto BlockEngineBattery Heater... 0.8 N N N N Hot Tub or Spa......

  5. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Tools... 56.2 27.2 10.6 9.3 9.2 Other Appliances Used Auto BlockEngineBattery Heater... 0.8 Q Q Q 0.4 Hot Tub or Spa......

  6. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    AppliancesTools.... 56.2 12.2 9.4 2.8 Other Appliances Used Auto BlockEngineBattery Heater... 0.8 Q Q Q Hot Tub or Spa......

  7. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    1.3 3.8 Table HC7.10 Home Appliances Usage Indicators by Household Income, 2005 Below Poverty Line Eligible for Federal Assistance 1 40,000 to 59,999 60,000 to 79,999 80,000...

  8. Total..............................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6 2,720

  9. Total................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6 2,720..

  10. Total........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6 2,720..

  11. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6

  12. Total...........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6Q Table

  13. Total...........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6Q TableQ

  14. Total...........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6Q

  15. Total...........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6Q26.7

  16. Total............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1

  17. Total............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1

  18. Total.............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.7 28.8 20.6

  19. Total..............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.7 28.8

  20. Total..............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.7 28.8,171

  1. Total...............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.7

  2. Total...............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.70.7 21.7

  3. Total...............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.70.7

  4. Total...............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.70.747.1

  5. Total...............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.70.747.1Do

  6. Total................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.70.747.1Do

  7. Total.................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.

  8. Total.................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4 12.5 12.5

  9. Total.................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4 12.5

  10. Total..................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4 12.578.1

  11. Total..................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4

  12. Total..................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4. 111.1 14.7

  13. Total...................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4. 111.1

  14. Total...................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4. 111.115.2

  15. Total...................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4.

  16. Total...................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7

  17. Total...................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,033 1,618

  18. Total....................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,033 1,61814.7

  19. Total.......................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,033

  20. Total.......................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,0335.6 17.7

  1. Total.......................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,0335.6 17.74.2

  2. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,0335.6

  3. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,0335.615.1 5.5

  4. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,0335.615.1

  5. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,0335.615.10.7

  6. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:

  7. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do Not Have

  8. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do Not Have7.1

  9. Total.........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do Not

  10. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do Not25.6 40.7

  11. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do Not25.6

  12. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do Not25.65.6

  13. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do

  14. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.2 7.6 16.6

  15. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.2 7.6

  16. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.2 7.67.1

  17. Total...........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.2 7.67.10.6

  18. Total...........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.2

  19. Total...........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.24.2 7.6

  20. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.24.2

  1. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.24.2Cooking

  2. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1

  3. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do Not Have

  4. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do Not HaveDo

  5. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do Not HaveDoDo

  6. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do Not

  7. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo Not

  8. Total..............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo Not

  9. Total..............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo Not20.6

  10. Total..............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo

  11. Total..............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo7.1 19.0

  12. Total.................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo7.1

  13. Total.................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo7.1...

  14. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do

  15. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1DoCooking

  16. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1DoCooking25.6

  17. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1DoCooking25.65.6

  18. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0

  19. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.04.2 7.6 16.6 Personal

  20. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.04.2 7.6 16.6 Personal

  1. Total.........................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.04.2 7.6 16.6

  2. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr May(MillionFeet)July 23,

  3. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr May(MillionFeet)July 23,Product:

  4. Total..............................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720 1,970

  5. Total................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720

  6. Total........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720 111.1

  7. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720

  8. Total...........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720Q Table

  9. Total...........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720Q

  10. Total...........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720Q14.7

  11. Total...........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6

  12. Total............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1

  13. Total............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1

  14. Total.............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7 28.8 20.6

  15. Total..............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7 28.8 20.6,171

  16. Total..............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7 28.8

  17. Total...............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7 28.820.6 25.6

  18. Total...............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7 28.820.6

  19. Total...............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7 28.820.626.7

  20. Total...............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7