Powered by Deep Web Technologies
Note: This page contains sample records for the topic "kentucky pioneer igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EIS-0318: Kentucky Pioneer Integrated Gasification Combined Cycle (IGCC) Demonstration Project, Trapp, Kentucky (Clark County)  

Energy.gov (U.S. Department of Energy (DOE))

This EIS analyzes DOE's decision to provide cost-shared financial support for The Kentucky Pioneer IGCC Demonstration Project, an electrical power station demonstrating use of a Clean Coal Technology in Clark County, Kentucky.

2

Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A-1 A-1 APPENDIX A CONSULTATION LETTERS This appendix includes consultation/approval letters between the U.S. Department of Energy and the U.S. Fish and Wildlife Service regarding threatened and endangered species, and between other state and Federal agencies as needed. Consultation Letters A-2 Kentucky Pioneer IGCC Demonstration Project Final Environmental Impact Statement A-3 Consultation Letters A-4 Kentucky Pioneer IGCC Demonstration Project Final Environmental Impact Statement A-5 Consultation Letters A-6 Kentucky Pioneer IGCC Demonstration Project Final Environmental Impact Statement A-7 Consultation Letters A-8 Kentucky Pioneer IGCC Demonstration Project Final Environmental Impact Statement B-1 APPENDIX B NOTICE OF INTENT TO PREPARE AN ENVIRONMENTAL IMPACT STATEMENT FOR THE

3

Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 U.S. Department of Energy Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project Final Environmental Impact Statement November 2002 U.S. Department of Energy National Energy Technology Laboratory COVER SHEET Responsible Agency: U.S. Department of Energy (DOE) Title: Kentucky Pioneer Integrated Gasification Combined Cycle (IGCC) Demonstration Project Final Environmental Impact Statement (EIS) (DOE/EIS-0318) Location: Clark County, Kentucky Contacts: For further information on this environmental For further information on the DOE National impact statement (EIS), call: Environmental Policy Act (NEPA) process, call: 1-800-432-8330 ext. 5460 1-800-472-2756 or contact: or contact: Mr. Roy Spears Ms. Carol Borgstrom

4

Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

S-1 S-1 SUMMARY The U.S. Department of Energy (DOE) prepared this environmental impact statement (EIS) on the proposed Kentucky Pioneer Integrated Gasification Combined Cycle (IGCC) Demonstration Project in compliance with the National Environmental Policy Act (NEPA). The National Environmental Policy Act Process NEPA is a federal law that serves as the basic national charter for protection of the environment. For major federal actions that may significantly affect the quality of the environment, NEPA requires federal agencies to prepare a detailed statement that includes the potential environmental impacts of the Proposed Action and reasonable alternatives. A fundamental objective of NEPA is to foster better decisionmaking by ensuring that high quality environmental information is available to public officials and members of the

5

Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Comments Comments Kentucky Pioneer IGCC Demonstration Project Final Environmental Impact Statement Clark County Public Library Winchester, KY Page 1 of 5 D-1 Comment No. 1 Issue Code: 11 Gasification is different from incineration. It is a better, more environmentally responsible approach to generating energy from the use of fossil fuels and refuse derived fuel (RDF). Incineration produces criteria pollutants, semi-volatile and volatile organic compounds and dioxin/furan compounds. Ash from hazardous waste incinerators is considered a hazardous waste under the Resource Conservation and Recovery Act (RCRA). In contrast, gasification, which occurs at high temperatures and pressures, produces no air emissions, only small amounts of wastewater containing salts. Synthesis gas (syngas)

6

IGCC+S Financing  

NLE Websites -- All DOE Office Websites (Extended Search)

II II William G. Rosenberg, Dwight C. Alpern, Michael R. Walker Energy Technology Innovation Project a joint project of the Science, Technology and Public Policy Program and the Environment and Natural Resources Program Belfer Center for Science and International Affairs 2 0 0 4 - 0 8 J U LY 2 0 0 4 Deploying IGCC in this Decade with 3Party Covenant Financing VOLUME II William G. Rosenberg, Dwight C. Alpern, and Michael R. Walker Energy Technology Innovation Project a joint project of the Science, Technology and Public Policy Program and the Environment and Natural Resources Program Belfer Center for Science and International Affairs and Center for Business and Government John F. Kennedy School of Government Harvard University July 2004 Financing IGCC - 3Party Covenant ii

7

Could IGCC swing  

SciTech Connect

A few big-name utilities are looking to make big-time power from gasified coal. AEP has utility-scale integrated gasification combined cycle (IGCC) plants in the works for Ohio and West Virginia. Duke Energy Indiana plans to build a 630 MW IGCC plant at Edwardsport to replace the existing 160 MW coal-fired unit there. NRG hopes to build utility-scale IGCC plants in New York and Delaware. Tampa Electric has announced plans to build a 630 MW IGCC at its Polk site, already the location of a 260 MW IGCC. In Taylorville, IL, another power-oriented IGCC is under development, owned by individuals from original developer ERORA and Omaha-based Tenaska. And yet another power producing IGCC is being proposed by Tondu Corporation at Corpus Christi, Texas to be fired by petroleum coke, also known as petcoke. The article gives an overview of these developments and moves on to discuss the popular question of the economic viability of IGCC making marketable byproducts in addition to power. Several projects are under way to make synthetic natural gas for coal. These are reported. Although the versatility of gasification may well give the ability to swing from various levels of power production to various levels of co-producing one or more products, for the time being it appears the IGCCs being built will produce power only, along with elemental sulphur and slag.

Blankinship, S.

2007-06-15T23:59:59.000Z

8

igcc config | netl.doe.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Configuration Major Commercial Examples of IGCC Plants While there are many coal gasification plants in the world producing electricity, chemicals andor steam, the following...

9

IGCC Dynamic Simulator and Training Center  

SciTech Connect

Integrated Gasification Combined Cycle (IGCC) is emerging as the technology of choice for providing clean, low-cost electricity for the next generation of coal-fired power plants and will play a central role in the development of high-efficiency, zero-emissions power plants such as FutureGen. Several major utilities and developers recently announced plans to build IGCC plants and other major utilities are evaluating IGCCĺs suitability for base-load capacity additions. This recent surge of attention to IGCC power generation is creating a growing demand for experience with the analysis, operation, and control of commercial-scale IGCC plants. To meet this need, the National Energy Technology Laboratory (NETL) has launched a project to develop a generic, full-scope, IGCC dynamic plant simulator for use in establishing a state-of-the-art simulator training center at West Virginia Universityĺs (WVU) National Research Center for Coal and Energy (NRCCE). The IGCC Dynamic Simulator & Training (DS&T) Center will be established under the auspices of the Collaboratory for Process & Dynamic Systems Modeling (ôCollaboratoryö) organized between NETL, WVU, the University of Pittsburgh, and Carnegie Mellon University.

Zitney, S.E.; Erbes, M.R. (Enginomix, LLC)

2006-10-01T23:59:59.000Z

10

Filter systems for IGCC applications  

SciTech Connect

The objectives of this program were to identify metallic filter medium to be utilized in the Integrated Gasification Combined Cycle process (IGCC). In IGCC processes utilizing high efficiency desulfurizing technology, the traditional corrosion attack, sulfidation, is minimized so that metallic filters are viable alternatives over ceramic filters. Tampa Electric Company`s Polk Power Station is being developed to demonstrate Integrated Gasification Combined Cycle technology. The Pall Gas Solid Separation (GSS) System is a self cleaning filtration system designed to remove virtually all particulate matter from gas streams. The heart of the system is the filter medium used to collect the particles on the filter surface. The medium`s filtration efficiency, uniformity, permeability, voids volume, and surface characteristics are all important to establishing a permeable permanent cake. In-house laboratory blowback tests, using representative full scale system particulate, were used to confirm the medium selection for this project. Test elements constructed from six alloys were supplied for exposure tests: PSS 310SC (modified 310S alloy); PSS 310SC heat treated; PSS 310SC-high Cr; PSS 310SC-high Cr heat treated; PSS Hastelloy X; and PSS Hastelloy X heat treated.

Bevan, S.; Gieger, R.; Sobel, N.; Johnson, D.

1995-11-01T23:59:59.000Z

11

Kentucky Department of Agriculture  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Kentucky Department Kentucky Department of Agriculture of Agriculture Motor Fuel and Pesticide Motor Fuel and Pesticide Testing Laboratory Testing Laboratory Introduction...

12

CURRENT AND FUTURE IGCC TECHNOLOGIES:  

NLE Websites -- All DOE Office Websites (Extended Search)

16, 2008 16, 2008 DOE/NETL-2008/1337 A Pathway Study Focused on Non-Carbon Capture Advanced Power Systems R&D Using Bituminous Coal - Volume 1 Current and Future IGCC Technologies Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or

13

baepgig-clean | netl.doe.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Industrial Carbon Capture and Storage Clean Coal Power Initiative Power Plant Improvement Initiative Clean Coal Technology Demonstration Program FutureGen Kentucky Pioneer IGCC...

14

Avestar┬« - Integrated Gasification Combined Cycle (IGCC) Dynamic Simulator  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Gasification Combined Cycle (IGCC) Dynamic Simulator Integrated Gasification Combined Cycle (IGCC) Dynamic Simulator The AVESTAR® center offers courses using the Integrated Gasification Combined Cycle (IGCC) Dynamic Simulator. The IGCC simulator builds on and reaches beyond existing combined-cycle and conventional-coal power plant simulators to combine--for the first time--a Gasification with CO2 Capture process simulator with a Combined-Cycle power simulator together in a single dynamic simulation framework. The AVESTAR® center IGCC courses provide unique, comprehensive training on all aspects of an IGCC plant, illustrating the high-efficiency aspects of the gasifier, gas turbine, and steam turbine integration. IGCC Operator training station HMI display for overview of IGCC Plant - Train A Reference:

15

,"Kentucky Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050KY3","N3010KY3","N3020KY3","N3035KY3","N3045KY3" "Date","Natural Gas Citygate Price in Kentucky (Dollars per Thousand Cubic Feet)","Kentucky Price...

16

Kentucky State Regulations  

NLE Websites -- All DOE Office Websites (Extended Search)

Kentucky Kentucky State Regulations: Kentucky State of Kentucky The Division of Oil and Gas (DOG) in the Department of Natural Resources (DNR) fosters conservation of all mineral resources, encourages exploration of such resources, protects the correlative rights of land and mineral owners, prohibits waste and unnecessary surface loss and damage, and encourages the maximum recovery of oil and gas from all deposits. The Energy and Environment Cabinet brings together various Kentucky agencies. It is tasked with protecting and enhancing Kentucky's natural resources. The Department for Environmental Protection (DEP) administers the major environmental protection laws. The U.S. Environmental Protection Agency (EPA) Region 4 administers Class II underground injection control (UIC) programs in Kentucky in direct implementation.

17

COST OF MERCURY REMOVAL IN IGCC PLANTS  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost of Mercury Removal Cost of Mercury Removal in an IGCC Plant Final Report September 2002 Prepared for: The United States Department of Energy National Energy Technology Laboratory By: Parsons Infrastructure and Technology Group Inc. Reading, Pennsylvania Pittsburgh, Pennsylvania DOE Product Manager: Gary J. Stiegel DOE Task Manager: James R. Longanbach Principal Investigators: Michael G. Klett Russell C. Maxwell Michael D. Rutkowski PARSONS The Cost of Mercury Removal in an IGCC Plant Final Report i September 2002 TABLE OF CONTENTS Section Title Page 1 Summary 1 2 Introduction 3 3 Background 4 3.1 Regulatory Initiatives 4 3.2 Mercury Removal for Conventional Coal-Fired Plants 4 3.3 Mercury Removal Experience in Gasification 5 3.4 Variability of Mercury Content in Coal 6 4 Design Considerations 7 4.1 Carbon Bed Location

18

IGCC: Current Status and Future Potential  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact of Developing Technologies on the Impact of Developing Technologies on the Economics and Performance of Future IGCC Power Plants John Plunkett, Noblis David Gray, Noblis Charles White, Noblis Julianne Klara, NETL Copyright ┬ę 2008 Noblis, Inc. 2 Acknowledgement This work is sponsored by the U.S. Department of Energy, National Energy Technology Laboratory 3 Study Objective Starting with present-day baseline, evaluate improved IGCC performance and cost resulting from DOE-funded R&D over the next 18 years. Examine both with and without CO 2 capture. Study results will help to prioritize technology development based on relative impact. Results will also help to assess the impact of future potential CO 2 emissions restrictions. 4 Methodology * Use Aspen Plus simulator to provide model "transparency"

19

Kentucky Economic Opportunity Zone Program (KEOZ) (Kentucky) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Economic Opportunity Zone Program (KEOZ) (Kentucky) Economic Opportunity Zone Program (KEOZ) (Kentucky) Kentucky Economic Opportunity Zone Program (KEOZ) (Kentucky) < Back Eligibility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kentucky Program Type Corporate Tax Incentive Provider Kentucky Cabinet for Economic Development Department of Financial Incentives The Kentucky Economic Opportunity Zone Program (KEOZ) focuses on the development of areas with high unemployment and poverty levels. The program provides an income tax credit of up to 100% of the Kentucky income tax liability on income generated by or arising out of the project. The approved company may require each qualified statewide employee, as

20

Comparison of Pratt and Whitney Rocketdyne IGCC and commercial IGCC performance  

SciTech Connect

This report compares the performance and cost of commercial Integrated Gasification Combined Cycle (IGCC) plants using General Electric Energy (GEE) and Shell gasifiers with conceptual IGCC plant designs using the Pratt and Whitney Rocketdyne (PWR) compact gasifier. the PWR gasifier is also compared with the GEEE gasifier in hydrogen production and carbon capture mode. With the exception of the PWR gasifier, the plants are designed with commercially available equipment to be operational in approximately 2010. All results should be considered preliminary and dictated in large part by the selected design basis. 10 refs., 54 exhibits

Jeffrey Hoffmann; Jenny Tennant; Gary J. Stiegel [Office of Systems Analysis and Planning (United States)

2006-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "kentucky pioneer igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

,"Kentucky Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

3","N3050KY3","N3010KY3","N3020KY3","N3035KY3","NA1570SKY3","N3045KY3" "Date","Kentucky Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Kentucky Natural Gas...

22

Kentucky Power Co (Kentucky) | Open Energy Information  

Open Energy Info (EERE)

Kentucky Power Co Kentucky Power Co Place Kentucky Utility Id 22053 References EIA Form EIA-861 Final Data File for 2010 - File2_2010[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png LGS - Large General Service Secondary Commercial LGS-TOD - Large General Service Time of Day Commercial MGS - Medium General Service Secondary Commercial MGSTOD - Medium General Service Time of Day Commercial QP - Quantity Power Secondary Commercial RS - Residential Service Residential RS-LM-TOD - Residential Service Load management Time of Day Residential RS-TOD - Residential Service Time of Day Residential RS-TOD2 - Residential Service Time of Day 2 Residential

23

Dynamic modeling of IGCC power plants  

Science Journals Connector (OSTI)

Integrated Gasification Combined Cycle (IGCC) power plants are an effective option to reduce emissions and implement carbon-dioxide sequestration. The combination of a very complex fuel-processing plant and a combined cycle power station leads to challenging problems as far as dynamic operation is concerned. Dynamic performance is extremely relevant because recent developments in the electricity market push toward an ever more flexible and varying operation of power plants. A dynamic model of the entire system and models of its sub-systems are indispensable tools in order to perform computer simulations aimed at process and control design. This paper presents the development of the lumped-parameters dynamic model of an entrained-flow gasifier, with special emphasis on the modeling approach. The model is implemented into software by means of the Modelica language and validated by comparison with one set of data related to the steady operation of the gasifier of the Buggenum power station in the Netherlands. Furthermore, in order to demonstrate the potential of the proposed modeling approach and the use of simulation for control design purposes, a complete model of an exemplary IGCC power plant, including its control system, has been developed, by re-using existing models of combined cycle plant components; the results of a load dispatch ramp simulation are presented and shortly discussed.

F. Casella; P. Colonna

2012-01-01T23:59:59.000Z

24

Columbia Gas of Kentucky - Home Savings Rebate Program (Kentucky) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Columbia Gas of Kentucky - Home Savings Rebate Program (Kentucky) Columbia Gas of Kentucky - Home Savings Rebate Program (Kentucky) Columbia Gas of Kentucky - Home Savings Rebate Program (Kentucky) < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Home Energy Audit: Free Forced Air Furnace: $400 Dual Fuel Furnace: $300 Tankless Water Heater: $300 Tank Water Heater: $200 Power Vent Water Heater: $250 Space Heater: $100 Provider Columbia Gas of Kentucky Columbia Gas of Kentucky offers rebates to residential customers for the purchase and installation of energy efficient appliances and equipment. Water heaters, furnaces and space heating equipment are available for cash

25

Comparison of Pratt and Whitney Rocketdyne IGCC and Commercial IGCC Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparison of Comparison of Pratt and Whitney Rocketdyne IGCC and Commercial IGCC Performance DOE/NETL-401/062006 Final Report June 2006 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States

26

Mesaba next-generation IGCC plant  

SciTech Connect

Through a US Department of Energy (DOE) cooperative agreement awarded in June 2006, MEP-I LLC plans to demonstrate a next generation integrated gasification-combined cycle (IGCC) electric power generating plant, the Mesaba Energy Project. The 606-MWe plant (the first of two similarly sized plants envisioned by project sponsors) will feature next-generation ConocoPhillips E-Gas{trademark} technology first tested on the DOE-funded Wabash River Coal Gasification Repowering project. Mesaba will benefit from recommendations of an industry panel applying the Value Improving Practices process to Wabash cost and performance results. The project will be twice the size of Wabash, while demonstrating better efficient, reliability and pollutant control. The $2.16 billion project ($36 million federal cost share) will be located in the Iron Range region north of Duluth, Minnesota. Mesaba is one of four projects selected under Round II of the Clean Coal Power Initiative. 1 fig.

NONE

2006-01-01T23:59:59.000Z

27

Kentucky.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Kentucky Kentucky www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

28

PINON PINE: An advanced IGCC demonstration  

SciTech Connect

The Pinon Pine Power Project is a second generation integrated gasification combined cycle (IGCC) power plant, located at Sierra Pacific Power Company`s (SPPC) Tracy Station, 17 miles east of Reno, Nevada. The project is being partially funded under the Department of Energy`s (DOE`s) Clean Coal Technology Program (CCT). SPPC intends to operate the plant in base-load mode to supply approximately 100 megawatts electric (MWe) to the transmission grid. This plant will be the first full-scale integration of several advanced technologies: an air-blown KRW gasifier; full-stream hot gas desulfurization using a transport reactor system with a zinc-based sorbent; full-stream, high-temperature ceramic filters for particulate removal; the General Electric Model MS6001FA (617A) Gas Turbine Engine/generator, and a 950 pound per square inch absolute (psia), 950{degrees}F steam turbine generator. This paper reviews the overall configuration and integration of the gasification and power islands components, which yield the plant`s high efficiency. Current status of the project is addressed.

Freier, M.D.; Jewell, D.M. [Morgantown Energy Technology Center, WV (United States); Motter, J.W. [Sierra Pacific Power Co., Reno, NV (United States)

1996-04-01T23:59:59.000Z

29

Kentucky | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Kentucky Kentucky Last updated on 2013-08-02 Current News Kentucky moves forward with the 2009 IECC by reference in their updated 2007 Kentucky Building Code. 2009 IECC is effective 3/6/2011 with mandatory compliance beginning 6/1/2011. Kentucky residential code was also updated to the 2009 IECC. The code is effective 7/1/2012 with an enforcement date of 10/1/2012. Commercial Residential Code Change Current Code 2009 IECC with Amendments Amendments / Additional State Code Information Amendments are contained in the latest update to the 2007 Kentucky Building Code. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Kentucky (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC

30

Feature - Government of Kentucky Visit  

NLE Websites -- All DOE Office Websites (Extended Search)

Kentucky Government Officials View Argonne Battery, Transportation Technology Projects Kentucky Government Officials View Argonne Battery, Transportation Technology Projects Glenn Keller (ES), section leader for vehicle systems (right), takes Kentucky Governor Steve Beshear on a tour of Argonne's Advanced Powertrain Research Facility. Photo by George Joch. Governor Steve Beshear of Kentucky, members of the Kentucky government, and Kentucky university officials visited Argonne's battery materials and vehicle systems groups, among others, on November 5, 2008. The visitors explored collaborative opportunities with Argonne during their stay. Vehicle Systems Manager Glenn Keller said of the visit, "The State of Kentucky has the third highest concentration of U.S. automobile production and represents a perfect synergistic partner for Argonne in terms of collaboration on advanced technologies for sustainable transportation."

31

Kentucky Power - Commercial Energy Efficiency Rebate Program (Kentucky) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kentucky Power - Commercial Energy Efficiency Rebate Program Kentucky Power - Commercial Energy Efficiency Rebate Program (Kentucky) Kentucky Power - Commercial Energy Efficiency Rebate Program (Kentucky) < Back Eligibility Commercial Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount T5 Fixtures (T12 Replacement): $3 - $12 T5 HO High-Bay Fixtures: $15 - $74 T8 Fixtures: $1 - $16 T8 High-Bay Fixtures: $21 - $34 CFL Fixtures: $4 - $35 CFL/LED Bulbs: $2 LED Pole Light Replacement: $30 - $88 LED Interior/Exterior Lights: $5 - $30 Pulse Start Metal Halide: $12 - $24 Tubular Skylight: $121

32

DOE-Sponsored IGCC Project Could Lead to Lower-Cost Carbon Capture...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IGCC Project Could Lead to Lower-Cost Carbon Capture Technologies DOE-Sponsored IGCC Project Could Lead to Lower-Cost Carbon Capture Technologies May 9, 2012 - 1:00pm Addthis...

33

Process Engineering Division Texaco Gasifier IGCC Base Cases  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Division Engineering Division Texaco Gasifier IGCC Base Cases PED-IGCC-98-001 July 1998 Latest Revision June 2000 PREFACE This report presents the results of an analysis of three Texaco Gasifier IGCC Base Cases. The analyses were performed by W. Shelton and J. Lyons of EG&G. EXECUTIVE SUMMARY 1. Process Descriptions 1.1 Texaco Gasifier 1.2 Air Separation Plant (ASU) 1.3 Gas Cooling/Heat Recovery/Hydrolysis/Gas Saturation (Case 1 and Case 2) 1.4 Cold Gas Cleanup Unit (CGCU) (Case 1 and Case 2) 1.5 Fine Particulate Removal/ Chloride Guard Bed - Case 3 1.6 Transport Desulfurization HGCU - Case 3 1.7 Sulfuric Acid Plant - Case 3 1.8 Gas Turbine 1.9 Steam Cycle 1.10 Power Production 2. Simulation Development 3. Cost of Electricity Analysis

34

DOE/NETL IGCC Dynamic Simulator Research and Training Center  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL IGCC Dynamic Simulator NETL IGCC Dynamic Simulator Research and Training Center 01 Aug 2008 Volume 2: IGCC Process Descriptions DOE/NETL-2008/1324 NETL Collaboratory for Process & Dynamic Systems Research Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

35

Filter system cost comparison for IGCC and PFBC power systems  

SciTech Connect

A cost comparison was conducted between the filter systems for two advanced coal-based power plants. The results from this study are presented. The filter system is based on a Westinghouse advanced particulate filter concept, which is designed to operate with ceramic candle filters. The Foster Wheeler second-generation 453 MWe (net) pressurized fluidized-bed combustor (PFBC) and the KRW 458 MWe (net) integrated gasification combined cycle (IGCC) power plants are used for the comparison. The comparison presents the general differences of the two power plants and the process-related filtration conditions for PFBC and IGCC systems. The results present the conceptual designs for the PFBC and IGCC filter systems as well as a cost summary comparison. The cost summary comparison includes the total plant cost, the fixed operating and maintenance cost, the variable operating and maintenance cost, and the effect on the cost of electricity (COE) for the two filter systems.

Dennis, R.A.; McDaniel, H.M.; Buchanan, T. [and others

1995-12-01T23:59:59.000Z

36

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

This quarterly technical progress report will summarize work accomplished for Phase 2 Program during the quarter April to June 2004. In task 7, reactor cost analysis was performed to determine whether OTM technology when integrated with IGCC provides a commercially attractive process. In task 9, discussions with DOE regarding restructuring the program continued. The objectives of the second year of phase 2 of the program are to construct and operate an engineering pilot reactor for OTM oxygen. Work to support this objective is being undertaken in the following areas in this quarter: IGCC process analysis and economics.

John Sirman

2005-01-01T23:59:59.000Z

37

Kentucky Save Energy Now Program  

Energy.gov (U.S. Department of Energy (DOE))

This fact sheet contains details regarding a Save Energy Now industrial energy efficiency project that the U.S. Department of Energy funded in Kentucky.

38

Kentucky/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Kentucky/Geothermal Kentucky/Geothermal < Kentucky Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Kentucky Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Kentucky No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Kentucky No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Kentucky No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Kentucky Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

39

IGCC demonstration plant at Nakoso Power Station, Japan  

SciTech Connect

The 250 MW IGCC demonstration plant at Nakoso Power Station is based on technology form Mitsubishi Heavy Industries (MHI) Ltd that uses a pressurized, air blown, two-stage, entrained-bed coal gasifier with a dry coal feed system. 5 figs., 1 tab.

Peltier, R.

2007-10-15T23:59:59.000Z

40

Microsoft Word - kentucky.doc  

Gasoline and Diesel Fuel Update (EIA)

Kentucky Kentucky NERC Region(s) ....................................................................................................... RFC/SERC Primary Energy Source........................................................................................... Coal Net Summer Capacity (megawatts) ....................................................................... 20,453 21 Electric Utilities ...................................................................................................... 18,945 16 Independent Power Producers & Combined Heat and Power ................................ 1,507 38 Net Generation (megawatthours) ........................................................................... 98,217,658 17

Note: This page contains sample records for the topic "kentucky pioneer igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Climate Action Plan (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kentucky) Kentucky) Climate Action Plan (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kentucky Program Type Climate Policies Provider Kentucky Department for Energy Development and Independence The Commonwealth of Kentucky established the Kentucky Climate Action Plan

42

Kentucky/Incentives | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon ┬╗ Kentucky/Incentives < Kentucky Jump to: navigation, search Contents 1 Financial Incentive Programs for Kentucky 2 Rules, Regulations and Policies for Kentucky Download All Financial Incentives and Policies for Kentucky CSV (rows 1 - 125) Financial Incentive Programs for Kentucky Download Financial Incentives for Kentucky CSV (rows 1 - 70) Incentive Incentive Type Active Atmos Energy - Natural Gas and Weatherization Efficiency Program (Kentucky) Utility Rebate Program Yes Biomass Energy Grants (Kentucky) State Grant Program No Blue Grass Energy - Heating System Tune-Up Discount (Kentucky) Utility Rebate Program No

43

Alternative Fuels Data Center: Kentucky Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Kentucky Information Kentucky Information to someone by E-mail Share Alternative Fuels Data Center: Kentucky Information on Facebook Tweet about Alternative Fuels Data Center: Kentucky Information on Twitter Bookmark Alternative Fuels Data Center: Kentucky Information on Google Bookmark Alternative Fuels Data Center: Kentucky Information on Delicious Rank Alternative Fuels Data Center: Kentucky Information on Digg Find More places to share Alternative Fuels Data Center: Kentucky Information on AddThis.com... Kentucky Information This state page compiles information related to alternative fuels and advanced vehicles in Kentucky and includes new incentives and laws, alternative fueling station locations, truck stop electrification sites, fuel prices, and local points of contact. Select a new state Select a State Alabama Alaska Arizona Arkansas

44

PinonPine IGCC Power Project: A DOE Assesment  

NLE Websites -- All DOE Office Websites (Extended Search)

Pi├▒on Pine IGCC Power Project Pi├▒on Pine IGCC Power Project A DOE Assessment DOE/NETL-2003/1183 December 2002 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 West Third Street, Suite 1400 Tulsa, OK 74103-3519 website: www.netl.doe.gov 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

45

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

This quarterly technical progress report will summarize work accomplished for Phase 2 Program during the quarter April to June 2004. In task 1, long term testing of OTM elements at different temperatures and process conditions continued. In task 2, OTM elements were manufactured as necessary for task 1. In task 7, advanced OTM and cryogenic IGCC cases for near-term integration were developed, leading to cost requirements for commercial viability. In task 9, discussion with DOE regarding restructuring the program for subsequent phases were initiated. The objectives of the second year of phase 2 of the program are to construct and operate an engineering pilot reactor for OTM oxygen. Work to support this objective is being undertaken in the following areas in this quarter: Element reliability; Element fabrication; and IGCC process analysis and economics. The major accomplishments this quarter were: Long term life test of OTM element passed nine months at different testing conditions.

Ravi Prasad

2004-09-01T23:59:59.000Z

46

Hydrogen Production from Hydrogen Sulfide in IGCC Power Plants  

SciTech Connect

IGCC power plants are the cleanest coal-based power generation facilities in the world. Technical improvements are needed to help make them cost competitive. Sulfur recovery is one procedure in which improvement is possible. This project has developed and demonstrated an electrochemical process that could provide such an improvement. IGCC power plants now in operation extract the sulfur from the synthesis gas as hydrogen sulfide. In this project H{sub 2}S has been electrolyzed to yield sulfur and hydrogen (instead of sulfur and water as is the present practice). The value of the byproduct hydrogen makes this process more cost effective. The electrolysis has exploited some recent developments in solid state electrolytes. The proof of principal for the project concept has been accomplished.

Elias Stefanakos; Burton Krakow; Jonathan Mbah

2007-07-31T23:59:59.000Z

47

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

The objectives of the first year of phase 2 of the program are to construct and operate an engineering pilot reactor for OTM oxygen. Work to support this objective is being undertaken in the following areas in this quarter: Element reliability; Element fabrication; Systems technology; Power recovery; and IGCC process analysis and economics. The major accomplishments this quarter were Preferred OTM architectures have been identified through stress analysis; and The 01 reactor was operated at target flux and target purity for 1000 hours.

Ravi Prasad

2003-04-30T23:59:59.000Z

48

CERAMIC MEMBRANE ENABLING TECHNOLGOY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

This quarterly technical progress report will summarize work accomplished for Phase 2 Program during the quarter April to June 2003. In task 1 OTM development has led to improved flux and strength performance. In task 2, robust PSO1d elements have been fabricated for testing in the pilot reactor. In task 3, the lab-scale pilot reactor has been operated for 1000 hours with improved success. In task 7, economic models substantial benefit of OTM IGCC over CRYO based oxygen production.

Ravi Prasad

2003-07-01T23:59:59.000Z

49

Improved System Integration for Integrated Gasification Combined Cycle (IGCC) Systems  

Science Journals Connector (OSTI)

Improved System Integration for Integrated Gasification Combined Cycle (IGCC) Systems ... The model is applied to evaluate integration schemes involving nitrogen injection, air extraction, and combinations of both, as well as different ASU pressure levels. ... The optimal nitrogen injection only case in combination with an elevated pressure ASU had the highest efficiency and power output and approximately the lowest emissions per unit output of all cases considered, and thus is a recommended design option. ...

H. Christopher Frey; Yunhua Zhu

2006-02-02T23:59:59.000Z

50

A High Pressure Carbon Dioxide Separation Process for IGCC Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

High Pressure Carbon Dioxide Separation Process for IGCC Plants High Pressure Carbon Dioxide Separation Process for IGCC Plants 1 A High Pressure Carbon Dioxide Separation Process for IGCC Plants S.S. Tam 1 , M.E. Stanton 1 , S. Ghose 1 , G. Deppe 1 , D.F. Spencer 2 , R.P. Currier 3 , J.S. Young 3 , G.K. Anderson 3 , L.A. Le 3 , and D.J. Devlin 3 1 Nexant, Inc. (A Bechtel Technology & Consulting Company) 45 Fremont St., 7 th Fl., San Francisco, CA 94506 2 SIMTECHE 13474 Tierra Heights Road, Redding, CA 96003 3 Los Alamos National Laboratory P.O. Box 1663 (MS J567), Los Alamos, NM 87545 1.0 INTRODUCTION Under separate contracts from the U.S. Department of Energy, Office of Fossil Energy (DOE- FE), Los Alamos National Laboratory, and a team of SIMTECHE and Nexant (a Bechtel Technology and Consulting Company) are jointly working to develop the proprietary process for

51

Options for Kentucky's Energy Future  

SciTech Connect

Three important imperatives are being pursued by the Commonwealth of Kentucky: ? Developing a viable economic future for the highly trained and experienced workforce and for the Paducah area that today supports, and is supported by, the operations of the US Department of Energyĺs (DOEĺs) Paducah Gaseous Diffusion Plant (PGDP). Currently, the PGDP is scheduled to be taken out of service in May, 2013. ? Restructuring the economic future for Kentuckyĺs most abundant indigenous resource and an important industry ľ the extraction and utilization of coal. The future of coal is being challenged by evolving and increasing requirements for its extraction and use, primarily from the perspective of environmental restrictions. Further, it is important that the economic value derived from this important resource for the Commonwealth, its people and its economy is commensurate with the risks involved. Over 70% of the extracted coal is exported from the Commonwealth and hence not used to directly expand the Commonwealthĺs economy beyond the severance taxes on coal production. ? Ensuring a viable energy future for Kentucky to guarantee a continued reliable and affordable source of energy for its industries and people. Today, over 90% of Kentuckyĺs electricity is generated by burning coal with a delivered electric power price that is among the lowest in the United States. Anticipated increased environmental requirements necessitate looking at alternative forms of energy production, and in particular electricity generation.

Larry Demick

2012-11-01T23:59:59.000Z

52

Clean coal technology using process integration : a focus on the IGCC.  

E-Print Network (OSTI)

?? The integrated gasification combined cycle (IGCC) is the most environmentally friendly coal-fired power generation technology that offers near zero green house gas emissions. Thisů (more)

Madzivhandila, Vhutshilo

2011-01-01T23:59:59.000Z

53

Rural Innovation Fund (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovation Fund (Kentucky) Innovation Fund (Kentucky) Rural Innovation Fund (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Low-Income Residential Multi-Family Residential Nonprofit Residential Retail Supplier Systems Integrator Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kentucky Program Type Equity Investment Grant Program Provider Kentucky Science and Technology Corp. This fund provides capital to early-stage technology companies located in rural areas of Kentucky. Companies may apply for a $30,000 grant or an investment up to $100,000.

54

Coal Mining Regulations (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Mining Regulations (Kentucky) Coal Mining Regulations (Kentucky) Coal Mining Regulations (Kentucky) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Retail Supplier Program Info State Kentucky Program Type Environmental Regulations Siting and Permitting Provider Kentucky Department for Energy Development and Independence Kentucky Administrative Regulation Title 405 chapters 1, 2, 3, 5, 7, 8, 10, 12, 16, 18 and 20 establish the laws governing coal mining in the state. The Department of Natural Resources under the authority of the Energy and Environment Cabinet is responsible for enforcing these laws and assuring compliance with the 1977 Federal Surface Mining Control Act (SMCRA). The Division of Mine Reclamation and Enforcement is responsible for inspecting

55

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 5  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Advanced Electric Power Generation - Integrated Gasification Combined Cycle Kentucky Pioneer IGCC Demonstration Project - Project Brief [PDF-80KB] Kentucky Pioneer Energy, L.L.C.; Trapp, Clark County, KY PROGRAM PUBLICATIONS Final Report Kentucky Pioneer Energy LLC Integrated Gasification Combined Cycle Project: 2 MW Fuel Cell Demonstration [PDF-3.2MB] (Apr 2006) Design Reports Kentucky Pioneer Energy IGCC CCT Demonstration Project, 2 MW Fuel Cell Demonstration, Basis of Design [PDF-696KB] (May 2002) Environmental Reports Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project: Final Environmental Impact Statement, [PDF-5.7MB] (Nov 2002) Appendices A-C and E [PDF-965KB] Appendix D, Pages 1-40 [PDF-5.2MB] Appendix D, Pages 41-71 [PDF-4.3MB]

56

Clean Cities: Kentucky Clean Cities Partnership coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Kentucky Clean Cities Partnership Coalition Kentucky Clean Cities Partnership Coalition The Kentucky Clean Cities Partnership coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Kentucky Clean Cities Partnership coalition Contact Information Melissa M. Howell 502-452-9152 or 502-593-3846 mhowell@kentuckycleanfuels.org Coalition Website Clean Cities Coordinator Melissa M. Howell Photo of Melissa M. Howell Melissa Howell has served as the executive director of the Kentucky Clean Cities Partnership (KCCP) since 1993. The Kentucky Clean Fuels Coalition, a nonprofit organization, houses the Kentucky Clean Cities Partnership. The Clean Cities program in Kentucky is one of the original 20 coalitions designated in 1994. The 1999 Clean Cities National Conference was hosted in Louisville, and the

57

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

The objective of this program is to conduct a technology development program to advance the state-of-the-art in ceramic Oxygen Transport Membranes (OTM) to the level required to produce step change improvements in process economics, efficiency, and environmental benefits for commercial IGCC systems and other applications. The IGCC program is focused on addressing key issues in materials, processing, manufacturing, engineering and system development that will make the OTM a commercial reality. The objective of the OTM materials development task is to identify a suitable material that can be formed into a thin film to produce the target oxygen flux. This requires that the material have an adequate permeation rate, and thermo-mechanical and thermo-chemical properties such that the material is able to be supported on the desired substrate and sufficient mechanical strength to survive the stresses involved in operation. The objective of the composite OTM development task is to develop the architecture and fabrication techniques necessary to construct stable, high performance, thin film OTMs supported on suitable porous, load bearing substrates. The objective of the process development task of this program to demonstrate the program objectives on a single OTM tube under test conditions simulating those of the optimum process cycle for the power plant. Good progress has been made towards achieving the DOE-IGCC program objectives. Two promising candidates for OTM materials have been identified and extensive characterization will continue. New compositions are being produced and tested which will determine if the material can be further improved in terms of flux, thermo-mechanical and thermo-chemical properties. Process protocols for the composite OTM development of high quality films on porous supports continues to be optimized. Dense and uniform PSO1 films were successfully applied on porous disc and tubular substrates with good bonding between the films and substrates, and no damage to the substrates or films.

Ravi Prasad

2000-04-01T23:59:59.000Z

58

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

This quarterly technical progress report will summarize work accomplished for Phase 2 Program during the quarter January to March 2004. In task 1 OTM development has led to improved strength and composite design for lower temperatures. In task 2, the measurement system of OTM element dimensions was improved. In task 3, a 10-cycle test of a three-tube submodule was reproduced successfully. In task 5, sizing of several potential heat recovery systems was initiated. In task 7, advanced OTM and cryogenic IGCC cases for near-term integration were developed.

Ravi Prasad

2004-03-31T23:59:59.000Z

59

Forestry Policies (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home ┬╗ Forestry Policies (Kentucky) Forestry Policies (Kentucky) < Back Eligibility Agricultural Commercial Developer Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Kentucky Program Type Environmental Regulations Provider Kentucky Department of Natural Resources Kentucky's forests are managed by the State Energy and Environment Cabinet, Department of Natural Resources, Division of Forestry. In 2010 the Division completed its Statewide Assessment of Forest Resources and Strategy: http://forestry.ky.gov/landownerservices/pages/forestlandassessment.aspx The document identifies several goals with respect to forest biomass for energy. The document does not directly create legislation in that regard,

60

Microenterprise Loan Program (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Microenterprise Loan Program (Kentucky) Microenterprise Loan Program (Kentucky) Microenterprise Loan Program (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Low-Income Residential Multi-Family Residential Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kentucky Program Type Loan Program Provider Cabinet for Economic Development In partnership with Community Ventures Corporation, a non-profit community based lender, the Kentucky Cabinet for Economic Development has expanded

Note: This page contains sample records for the topic "kentucky pioneer igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

This quarterly technical progress report will summarize work accomplished for Phase 2 Program during the quarter July to September 2003. In task 1 OTM development has led to improved strength and composite design. In task 2, the manufacture of robust PSO1d elements has been scaled up. In task 3, operational improvements in the lab-scale pilot reactor have reduced turn-around time and increased product purity. In task 7, economic models show substantial benefit of OTM IGCC over CRYO based oxygen production. The objectives of the first year of phase 2 of the program are to construct and operate an engineering pilot reactor for OTM oxygen. Work to support this objective is being undertaken in the following areas in this quarter: Element reliability; Element fabrication; Systems technology; Power recovery; and IGCC process analysis and economics. The major accomplishments this quarter were Element production at Praxair's manufacturing facility is being scaled up and Substantial improvements to the OTM high temperature strength have been made.

Ravi Prasad

2003-11-01T23:59:59.000Z

62

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

The objective of this program is to conduct a technology development program to advance the state-of-the-art in ceramic Oxygen Transport Membranes (OTM) to the level required to produce step change improvements in process economics, efficiency, and environmental benefits for commercial IGCC systems and other applications. The IGCC program is focused on addressing key issues in materials, processing, manufacturing, engineering and system development that will make the OTM a commercial reality. The objective of the OTM materials development task is to identify a suitable material that can be formed into a thin film to produce the target oxygen flux. This requires that the material have an adequate permeation rate, and thermo-mechanical and thermo-chemical properties such that the material is able to be supported on the desired substrate and sufficient mechanical strength to survive the stresses involved in operation. The objective of the composite OTM development task is to develop the architecture and fabrication techniques necessary to construct stable, high performance, thin film OTMs supported on suitable porous, load bearing substrates. The objective of the process development task of this program to demonstrate the program objectives on a single OTM tube under test conditions simulating those of the optimum process cycle for the power plant.

Ravi Prasad

2000-04-01T23:59:59.000Z

63

Improved Refractory Materials for Slagging Gasifiers in IGCC Power Systems  

SciTech Connect

Gasifiers are the heart of Integrated Gasification Combined Cycle (IGCC) power system currently being developed as part of the DOE's Vision 21 Fossil Fuel Power Plant. A gasification chamber is a high pressure/high temperature reaction vessel used to contain a mixture of O2, H2O, and coal (or other carbon containing materials) while it is converted into thermal energy and chemicals (H2, CO, and CH4). IGCC systems are expected to play a dominant role in meeting the Nation's future energy needs. Gasifiers are also used to produce chemicals that serve as feedstock for other industrial processes, and are considered a potential source of H2 in applications such as fuel cells. A distinct advantage of gasifiers is their ability to meet or exceed current and anticipated future environmental emission regulations. Also, because gasification systems are part of a closed circuit, gasifiers are considered process ready to capture CO2 emissions for reuse or processing should that become necessary or economically feasible in the future. The service life of refractory liners for gasifiers has been identified by users as a critical barrier to IGC

Bennett, James P.; Kwong, Kyei-Sing; Powell, Cynthia A.; Krabbe, Rick; Thomas, Hugh

2005-01-01T23:59:59.000Z

64

ConocoPhillips Sweeny IGCC/CCS Project  

SciTech Connect

Under its Industrial Carbon Capture and Sequestration (ICCS) Program, the United States (U.S.) Department of Energy (DOE) selected ConocoPhillips Company (ConocoPhillips) to receive funding through the American Recovery and Reinvestment Act (ARRA) of 2009 for the proposed Sweeny Integrated Gasification Combined Cycle (IGCC)/Carbon Capture and Storage (CCS) Project (Project) to be located in Brazoria County, Texas. Under the program, the DOE is partnering with industry to demonstrate the commercial viability and operational readiness of technologies that would capture carbon dioxide (CO{sub 2}) emissions from industrial sources and either sequester those emissions, or beneficially reuse them. The primary objective of the proposed Project was to demonstrate the efficacy of advanced technologies that capture CO{sub 2} from a large industrial source and store the CO{sub 2} in underground formations, while achieving a successful business venture for the entity (entities) involved. The Project would capture 85% of the CO{sub 2} produced from a petroleum coke (petcoke) fed, 703 MWnet (1,000 MWgross) IGCC power plant, using the ConocoPhillips (COP) proprietary and commercially proven E-Gas{trademark} gasification technology, at the existing 247,000 barrel per day COP Sweeny Refinery. In addition, a number of other commercially available technologies would be integrated into a conventional IGCC Plant in a unique, efficient, and reliable design that would capture CO{sub 2}. The primary destination for the CO{sub 2} would be a depleted natural gas field suitable for CO{sub 2} storage ('Storage Facility'). COP would also develop commercial options to sell a portion of the IGCC Plant's CO{sub 2} output to the growing Gulf Coast enhanced oil recovery (EOR) market. The IGCC Plant would produce electric power for sale in the Electric Reliability Council of Texas Houston Zone. The existing refinery effluent water would be treated and reused to fulfill all process water needs. The DOE ICCS program adopts a two-phase approach. During the 7-month Phase 1 period, ConocoPhillips further defined the Project by advancing the preliminary design, permits, and contracts. In addition, ConocoPhillips was developing a Phase 2 renewal application to seek continued DOE funding for the Project's design, construction, and early operations. The DOE and ConocoPhillips entered into a Phase1 Cooperative Agreement (DOE Award Number DE-FE0001859) on November 16, 2009, agreeing to share cost on a 50/50 basis during the Phase 1 period, with a DOE budget of $2,989,174. On April 7, 2010, ConocoPhillips informed the DOE that it would not participate in Phase 2 of the DOE ICCS program. The company believes that enabling legislation and regulations at both the federal and state levels will not be approved and implemented in time to make a final investment decision such that the Project would be substantially constructed by September 30, 2015, the end of the AARA funding period. Considering current price assumptions, the Project would not generate investment level returns. ConocoPhillips elected not to submit a Phase 2 renewal application, which was due on April 16, 2010. This Final Scientific/Technical Report provides an overview of the Project, including highlights and benefits of the proposed carbon capture and storage project scope, sites, and technologies. It also summarizes the work accomplishments during the Phase 1 period from November 16, 2009 to June 16, 2010. Due to ConocoPhillips decision not to submit the Phase 2 renewal application and not to enter into related agreements, certain information regarding the proposed CO{sub 2} storage facility cannot be publicly reported due to confidentiality agreements.

Paul Talarico; Charles Sugg; Thomas Hren; Lauri Branch; Joseph Garcia; Alan Rezigh; Michelle Pittenger; Kathleen Bower; Jonathan Philley; Michael Culligan; Jeremy Maslen; Michele Woods; Kevin Elm

2010-06-16T23:59:59.000Z

65

Life Cycle Analysis: Integrated Gasification Combined Cycle (IGCC) Power Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Life Cycle Analysis: Integrated Life Cycle Analysis: Integrated Gasification Combined Cycle (IGCC) Power Plant Revision 2, March 2012 DOE/NETL-2012/1551 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or

66

Microsoft Word - CurrentFutureIGCC2Revisionfinal.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

M M T R - 2 0 0 4 - 0 5 Mitretek Technical Report Current and Future IGCC Technologies: Bituminous Coal to Power AUGUST 2004 David Gray Salvatore Salerno Glen Tomlinson Customer: Concurrent Technology Corporation Customer Name Contract No.:001000045 Dept. No.: H050 H050 Project No.:0601CTC4 ┬ęYear Mitretek Systems ┬ęM Falls Church, Virginia ii Disclaimer This report was prepared as an account of work sponsored by an agency of the United States (U.S.) Government. Neither the U.S., nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process

67

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

This quarterly technical progress report will summarize work accomplished for Phase 1 Program during the quarter January to March 2002. In task 1 improvements to the membrane material have shown increased flux, and high temperature mechanical properties are being measured. In task 2, composite development has shown that alternative fabrication routes of the substrate can improve membrane performance under certain conditions. In task 3, scale-up issues associated with manufacturing large tubes have been identified and are being addressed. The work in task 4 has demonstrated that composite OTM elements can produce oxygen at greater than 95% purity for more than 1000 hours of the target flux under simulated IGCC operating conditions. In task 5 the multi-tube OTM reactor has been operated and produced oxygen.

Ravi Prasad

2002-05-01T23:59:59.000Z

68

Pioneer Hall 615 Fulton Street SE  

E-Print Network (OSTI)

Pioneer Hall 615 Fulton Street SE Minneapolis, MN 55455 Office: 612.626.3333 pioneer if documented for violating a housing policy if their finals are completed. Turn off all lights and unplug

Janssen, Michel

69

Systems Study for Improving Gas Turbine Performance for Coal/IGCC Application  

SciTech Connect

This study identifies vital gas turbine (GT) parameters and quantifies their influence in meeting the DOE Turbine Program overall Integrated Gasification Combined Cycle (IGCC) plant goals of 50% net HHV efficiency, $1000/kW capital cost, and low emissions. The project analytically evaluates GE advanced F class air cooled technology level gas turbine conceptual cycle designs and determines their influence on IGCC plant level performance including impact of Carbon capture. This report summarizes the work accomplished in each of the following six Tasks. Task 1.0--Overall IGCC Plant Level Requirements Identification: Plant level requirements were identified, and compared with DOE's IGCC Goal of achieving 50% Net HHV Efficiency and $1000/KW by the Year 2008, through use of a Six Sigma Quality Functional Deployment (QFD) Tool. This analysis resulted in 7 GT System Level Parameters as the most significant. Task 2.0--Requirements Prioritization/Flow-Down to GT Subsystem Level: GT requirements were identified, analyzed and prioritized relative to achieving plant level goals, and compared with the flow down of power island goals through use of a Six Sigma QFD Tool. This analysis resulted in 11 GT Cycle Design Parameters being selected as the most significant. Task 3.0--IGCC Conceptual System Analysis: A Baseline IGCC Plant configuration was chosen, and an IGCC simulation analysis model was constructed, validated against published performance data and then optimized by including air extraction heat recovery and GE steam turbine model. Baseline IGCC based on GE 207FA+e gas turbine combined cycle has net HHV efficiency of 40.5% and net output nominally of 526 Megawatts at NOx emission level of 15 ppmvd{at}15% corrected O2. 18 advanced F technology GT cycle design options were developed to provide performance targets with increased output and/or efficiency with low NOx emissions. Task 4.0--Gas Turbine Cycle Options vs. Requirements Evaluation: Influence coefficients on 4 key IGCC plant level parameters (IGCC Net Efficiency, IGCC Net Output, GT Output, NOx Emissions) of 11 GT identified cycle parameters were determined. Results indicate that IGCC net efficiency HHV gains up to 2.8 pts (40.5% to 43.3%) and IGCC net output gains up to 35% are possible due to improvements in GT technology alone with single digit NOx emission levels. Task 5.0--Recommendations for GT Technical Improvements: A trade off analysis was conducted utilizing the performance results of 18 gas turbine (GT) conceptual designs, and three most promising GT candidates are recommended. A roadmap for turbine technology development is proposed for future coal based IGCC power plants. Task 6.0--Determine Carbon Capture Impact on IGCC Plant Level Performance: A gas turbine performance model for high Hydrogen fuel gas turbine was created and integrated to an IGCC system performance model, which also included newly created models for moisturized syngas, gas shift and CO2 removal subsystems. This performance model was analyzed for two gas turbine technology based subsystems each with two Carbon removal design options of 85% and 88% respectively. The results show larger IGCC performance penalty for gas turbine designs with higher firing temperature and higher Carbon removal.

Ashok K. Anand

2005-12-16T23:59:59.000Z

70

Natural Gas Regulations (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Regulations (Kentucky) Natural Gas Regulations (Kentucky) Natural Gas Regulations (Kentucky) < Back Eligibility Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Utility Program Info State Kentucky Program Type Environmental Regulations Siting and Permitting Provider Department For Natural Resources Kentucky Administrative Regulation title 805 promulgates the rules and regulations pertaining to natural gas production in Kentucky. In addition to KAR title 405, chapter 30, which pertains to any oil shale operation, these regulations govern natural gas operations throughout the state. The following information is found in KAR title 404 chapter 30: Oil shale operations or related activity require a valid permit covering

71

Categorical Exclusion Determinations: Kentucky | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kentucky Kentucky Categorical Exclusion Determinations: Kentucky Location Categorical Exclusion Determinations issued for actions in Kentucky. DOCUMENTS AVAILABLE FOR DOWNLOAD September 23, 2013 CX-010919: Categorical Exclusion Determination Advanced Catalytic Solvent for Carbon Dioxide (CO2) Capture CX(s) Applied: B3.6 Date: 09/23/2013 Location(s): Kentucky Offices(s): National Energy Technology Laboratory September 23, 2013 CX-010921: Categorical Exclusion Determination Advanced Catalytic Solvent for Carbon Dioxide (CO2) Capture CX(s) Applied: A9 Date: 09/23/2013 Location(s): Kentucky Offices(s): National Energy Technology Laboratory July 25, 2013 CX-010606: Categorical Exclusion Determination Development of Subsurface Brine Disposal Framework in the Northern Appalachian Basin

72

Secretary Chu Announces $14 Million for Six New Projects to Advance IGCC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 Million for Six New Projects to Advance 4 Million for Six New Projects to Advance IGCC Technology Secretary Chu Announces $14 Million for Six New Projects to Advance IGCC Technology September 9, 2011 - 6:16pm Addthis Washington, D.C. -U.S. Department of Energy Secretary Steven Chu announced today the selection of six projects aimed at developing technologies to lower the cost of producing electricity in integrated gasification combined cycle (IGCC) power plants using carbon capture, while maintaining the highest environmental standards. Supported with up to $14 million in total funding, the selected projects will improve the economics of IGCC plants and promote the use of the Nation's abundant coal resources to produce clean, secure, and affordable energy. The successful development of advanced technologies and innovative concepts

73

DOE-Sponsored IGCC Project in Texas Takes Important Step Forward |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-Sponsored IGCC Project in Texas Takes Important Step Forward DOE-Sponsored IGCC Project in Texas Takes Important Step Forward DOE-Sponsored IGCC Project in Texas Takes Important Step Forward June 20, 2011 - 1:00pm Addthis Washington, DC - A newly signed memorandum of understanding (MOU) for the purchase of electricity produced by the Texas Clean Energy Project (TCEP) is an important step forward for what will be one of the world's most advanced and cleanest coal-based power plants, funded in part by the U.S. Department of Energy (DOE). Under the MOU, CPS Energy - a municipally owned utility serving San Antonio, Texas - will purchase electricity generated by the first-of-a-kind commercial clean coal power plant, starting in mid 2014. TCEP, a 400-megawatt integrated gasification combined cycle (IGCC) facility located

74

Life Cycle Results from the IGCC LCI&C Study  

NLE Websites -- All DOE Office Websites (Extended Search)

Results from the IGCC LCI&C Study Results from the IGCC LCI&C Study Robert E. James III, Timothy J. Skone Office of Systems, Analyses and Planning National Energy Technology Laboratory (NETL), U.S. DOE Revision 2, June 2013 DOE/NETL-2012/1551 ÔÇ╣#ÔÇ║ Conceptual Study Boundary Integrated Gasification Combined Cycle (IGCC) ÔÇ╣#ÔÇ║ LCA's Expanded Boundary for IGCC Mine Construction Train & Rail Manufacturing Plant Construction/ Installation Coal Extraction/ Operation Train Operation Mine Decommissioning Stage #1 Raw Material Acquisition Stage #2 Raw Material Transport Plant Operation Carbon Capture (CC), Operation CO 2 Pipeline, Operation CO 2 Sequestration, Operation Plant Decommissioning Construction & Installation Deinstallation Transmission & Distribution, Operation

75

Investigation of adsorbent-based warm carbon dioxide capture technology for IGCC system  

E-Print Network (OSTI)

Integrated gasification combined cycle with CO? capture and sequestration (IGCC-CCS) emerges as one of the most promising technologies for reducing CO? emission from coal power plant without reducing thermal efficiency ...

Liu, Zan, Ph. D. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

76

Techno-economic assessment of pulverized coal boilers and IGCC power plants with CO2 capture  

Science Journals Connector (OSTI)

The current studies on power plant technologies suggest that Integrated Gasification Combined Cycle (IGCC) systems are an effective and economic CO2 capture technology pathway. In addition, the system in conventi...

Y. Huang; S. Rezvani; D. McIlveen-Wrightů

2010-06-01T23:59:59.000Z

77

Secretary Chu Announces $14 Million for Six New Projects to Advance IGCC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

14 Million for Six New Projects to Advance 14 Million for Six New Projects to Advance IGCC Technology Secretary Chu Announces $14 Million for Six New Projects to Advance IGCC Technology September 9, 2011 - 1:00pm Addthis Washington, DC - U.S. Department of Energy Secretary Steven Chu announced today the selection of six projects aimed at developing technologies to lower the cost of producing electricity in integrated gasification combined cycle (IGCC) power plants using carbon capture, while maintaining the highest environmental standards. Supported with up to $14 million in total funding, the selected projects will improve the economics of IGCC plants and promote the use of the Nation's abundant coal resources to produce clean, secure, and affordable energy. The successful development of advanced technologies and innovative concepts

78

Kenergy- Residential Energy Efficiency Rebate Program (Kentucky)  

Energy.gov (U.S. Department of Energy (DOE))

Kenergy is an electric cooperative that serves 51,000 households and commercial customers in 14 western Kentucky counties. Currently, Kenergy offers three rebate programs for residential customers...

79

Kentucky Department of Agriculture | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Agriculture Kentucky Department of Agriculture At the August 7, 2008 quarterly joint Web conference of DOE's Biomass and Clean Cities programs, Wilbur Frye (Office of Consumer...

80

Kentucky Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New...

Note: This page contains sample records for the topic "kentucky pioneer igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Kentucky Utilities Co (Tennessee) | Open Energy Information  

Open Energy Info (EERE)

Tennessee) Jump to: navigation, search Name: Kentucky Utilities Co (Tennessee) Place: Tennessee References: EIA Form EIA-861 Final Data File for 2010 - File220101 EIA Form 861...

82

State Energy Program: Kentucky Implementation Model Resources  

Energy.gov (U.S. Department of Energy (DOE))

Below are resources associated with the U.S. Department of Energy's Weatherization and Intergovernmental Programs Office State Energy Program Kentucky Implementation Model.

83

Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants  

SciTech Connect

The ''Enabling & Information Technology To Increase RAM for Advanced Powerplants'' program, by DOE request, was re-directed, de-scoped to two tasks, shortened to a 2-year period of performance, and refocused to develop, validate and accelerate the commercial use of enabling materials technologies and sensors for coal/IGCC powerplants. The new program was re-titled ''Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants''. This final report summarizes the work accomplished from March 1, 2003 to March 31, 2004 on the four original tasks, and the work accomplished from April 1, 2004 to July 30, 2005 on the two re-directed tasks. The program Tasks are summarized below: Task 1--IGCC Environmental Impact on high Temperature Materials: The first task was refocused to address IGCC environmental impacts on high temperature materials used in gas turbines. This task screened material performance and quantified the effects of high temperature erosion and corrosion of hot gas path materials in coal/IGCC applications. The materials of interest included those in current service as well as advanced, high-performance alloys and coatings. Task 2--Material In-Service Health Monitoring: The second task was reduced in scope to demonstrate new technologies to determine the inservice health of advanced technology coal/IGCC powerplants. The task focused on two critical sensing needs for advanced coal/IGCC gas turbines: (1) Fuel Quality Sensor to rapidly determine the fuel heating value for more precise control of the gas turbine, and detection of fuel impurities that could lead to rapid component degradation. (2) Infra-Red Pyrometer to continuously measure the temperature of gas turbine buckets, nozzles, and combustor hardware. Task 3--Advanced Methods for Combustion Monitoring and Control: The third task was originally to develop and validate advanced monitoring and control methods for coal/IGCC gas turbine combustion systems. This task was refocused to address pre-mixed combustion phenomenon for IGCC applications. The work effort on this task was shifted to another joint GE Energy/DOE-NETL program investigation, High Hydrogen Pre-mixer Designs, as of April 1, 2004. Task 4--Information Technology (IT) Integration: The fourth task was originally to demonstrate Information Technology (IT) tools for advanced technology coal/IGCC powerplant condition assessment and condition based maintenance. The task focused on development of GateCycle. software to model complete-plant IGCC systems, and the Universal On-Site Monitor (UOSM) to collect and integrate data from multiple condition monitoring applications at a power plant. The work on this task was stopped as of April 1, 2004.

Kenneth A. Yackly

2005-12-01T23:59:59.000Z

84

Sherwin-Williams' Richmond, Kentucky, Facility Achieves 26% Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sherwin-Williams' Richmond, Kentucky, Facility Achieves 26% Energy Intensity Reduction; Leads to Corporate Adoption of Save Energy Now LEADER Sherwin-Williams' Richmond, Kentucky,...

85

Advanced CO2 Capture Technology for Low Rank Coal Integrated Gasification Combined Cycle (IGCC) Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 Capture Technology for Low Rank Coal Integrated Gasification Combined Cycle (IGCC) Systems Background Gasification of coal or other solid feedstocks (wood waste, petroleum coke, etc.) is a clean way to produce electricity and produce or co-produce a variety of commercial products. The major challenge is cost reduction; current integrated gasification combined cycle (IGCC) technology is estimated to produce power at a cost higher than that of pulverized coal combustion. However, the Gasification

86

Pioneer Grove | Open Energy Information  

Open Energy Info (EERE)

Grove Grove Jump to: navigation, search Name Pioneer Grove Facility Pioneer Grove Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Acciona Windpower Developer Acciona Energy Energy Purchaser Central Iowa Power Cooperative Location Mechanicsville IA Coordinates 41.85086289┬░, -91.23407364┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.85086289,"lon":-91.23407364,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

87

Pioneer Trail | Open Energy Information  

Open Energy Info (EERE)

Trail Trail Jump to: navigation, search Name Pioneer Trail Facility Pioneer Trail Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner E.ON Climate & Renewables North America Developer E.ON Climate & Renewables North America Energy Purchaser Prairie Power Inc / Wabash Valley / SIPC Location Paxton IL Coordinates 40.46490704┬░, -88.05434704┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.46490704,"lon":-88.05434704,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

88

A PROFILE OF KENTUCKY MEDICAID MENTAL HEALTH  

E-Print Network (OSTI)

can be advanced--among patients, health care providers, and the community at large. This workA PROFILE OF KENTUCKY MEDICAID MENTAL HEALTH DIAGNOSES, 2000-2010 #12; #12; i A Profile of Kentucky Medicaid Mental Health Diagnoses, 20002010 BY Michael T. Childress

Hayes, Jane E.

89

New Energy Ventures (Kentucky) | Open Energy Information  

Open Energy Info (EERE)

Ventures (Kentucky) Ventures (Kentucky) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on August 29, 2013. EZFeed Policy Place Kentucky Applies to States or Provinces Kentucky Name New Energy Ventures (Kentucky) Policy Category Financial Incentive Policy Type Equity Investment, Grant Program Affected Technologies Biomass/Biogas, Coal with CCS, Concentrating Solar Power, Energy Storage, Fuel Cells, Hydroelectric, Hydroelectric (Small), Natural Gas, Solar Photovoltaics, Wind energy Active Policy Yes Implementing Sector State/Province Primary Website http://startups.kstc.com/index.php/funding-opportunities/kef-funds Information Source http://startups.kstc.com/images/resource_docs/knev%20guidelines%20revision%2020121112.pdf

90

Microenterprise Loan Program (Kentucky) | Open Energy Information  

Open Energy Info (EERE)

Microenterprise Loan Program (Kentucky) Microenterprise Loan Program (Kentucky) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on November 28, 2013. EZFeed Policy Place Kentucky Applies to States or Provinces Kentucky Name Microenterprise Loan Program (Kentucky) Policy Category Financial Incentive Policy Type Loan Program Affected Technologies Biomass/Biogas, Coal with CCS, Concentrating Solar Power, Energy Storage, Fuel Cells, Geothermal Electric, Hydroelectric, Hydroelectric (Small), Natural Gas, Nuclear, Solar Photovoltaics, Wind energy Active Policy Yes Implementing Sector State/Province Primary Website http://thinkkentucky.com/smbd/SMBB.aspx Information Source http://www.thinkkentucky.com/kyedc/pdfs/KMEL%20Fact%20Sheet.pdf

91

Rural Innovation Fund (Kentucky) | Open Energy Information  

Open Energy Info (EERE)

Innovation Fund (Kentucky) Innovation Fund (Kentucky) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on August 29, 2013. EZFeed Policy Place Kentucky Applies to States or Provinces Kentucky Name Rural Innovation Fund (Kentucky) Policy Category Financial Incentive Policy Type Equity Investment, Grant Program Affected Technologies Biomass/Biogas, Coal with CCS, Concentrating Solar Power, Energy Storage, Fuel Cells, Geothermal Electric, Hydroelectric, Hydroelectric (Small), Natural Gas, Nuclear, Solar Photovoltaics, Wind energy Active Policy Yes Implementing Sector State/Province Primary Website http://startups.kstc.com/index.php/funding-opportunities/kef-funds Information Source http://startups.kstc.com/images/resource_docs/rif%20guidelines%2020130131.pdf

92

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

The objectives of the first year of phase 2 of the program are to construct and operate an engineering pilot reactor for OTM oxygen. Work to support this objective is being undertaken in the following areas in this quarter: Element reliability; Element fabrication; Systems technology; Power recovery; and IGCC process analysis and economics. The major accomplishments this quarter were: (1) Methods to improve the strength and stability of PSO1x were identified. (2) The O1 reactor was operated at target flux and target purity for 1000 hours. This quarterly technical progress report will summarize work accomplished for Phase 2 Program during the quarter October to December 2002. In task 1 improvements to PSO1x have shown increased performance in strength and stability. In task 2, PSO1d and PSO1x elements have been fabricated for testing in the pilot reactor. In task 3, the lab-scale pilot reactor has been operated for 1000 hours. In task 6 initial power recovery simulation has begun. In task 7, HYSIS models have been developed to optimize the process for a future demonstration unit.

Ravi Prasad

2003-03-01T23:59:59.000Z

93

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

The objectives of the second year of the program are to define a material composition and composite architecture that enable the oxygen flux and stability targets to be obtained in high-pressure flux tests. Composite technology will be developed to enable the production of high-quality, defect free membranes of a thickness that allows the oxygen flux target to be obtained. The fabrication technology will be scaled up to produce three feet composite tubes with the desired leak rate. A laboratory scale, multi-tube pilot reactor will be designed and constructed to produce oxygen. In the third quarter of the second year of the program, work has focused on materials optimization, composite and manufacturing development and oxygen flux testing at high pressures. This work has led to several major achievements, summarized by the following statements: Oxygen has been produced under conditions similar to IGCC operation using composite OTM elements at a flux greater than the 2001 target. Under conditions with a greater driving force the commercial target flux has been met. Methods to significantly increase the oxygen flux without compromise to its mechanical integrity have been identified. Composite OTM elements have demonstrated stable operation at {Delta}P > 250 psi Design of the pilot plant is complete and construction will begin next quarter.

Ravi Prasad

2001-08-01T23:59:59.000Z

94

Analysis of Inlet Air Cooling for IGCC Power Augmentation  

Science Journals Connector (OSTI)

Abstract Integrated Gasification Combined Cycles are energy systems mainly composed of a gasifier and a combined cycle power plant. Since the gasification process usually requires oxygen as an oxidant, an air separation unit is also part of the plant. Moreover, a producer gas cleaner unit is always present between the gasifier and the gas turbine. With respect to Natural Gas Combined Cycles, \\{IGCCs\\} are characterized by a consistent loss in the overall plant efficiency due to the conversion of the raw fuel in the gasifier and the electrical power parasitized for fuel production which considerably reduce the plant net electric power. Moreover, since these plants are based on gas-steam combined cycle power plants they suffer from a reduction in performance (a further net power decrease) when ambient temperature increases. Regarding this latter topic, different systems are currently used in gas turbine and combined cycle power plants in order to reduce gas turbine inlet air temperature, and, therefore, the impact of ambient conditions on performances. In this paper, a review of these systems is presented. Both systems based on water evaporative cooling and on refrigeration by means of absorption or mechanical/electrical chillers are described. Thermodynamic models of the systems are built within the framework of a commercial code for the simulation of energy conversion systems. A sensitivity analysis on the main parameters is presented. Finally, the models are applied to study the capabilities of the different systems by imposing the real temperature profiles of different sites for a whole year.

Andrea De Pascale; Francesco Melino; Mirko Morini

2014-01-01T23:59:59.000Z

95

Analysis of Biomass/Coal Co-Gasification for Integrated Gasification Combined Cycle (IGCC) Systems with Carbon Capture.  

E-Print Network (OSTI)

?? In recent years, Integrated Gasification Combined Cycle Technology (IGCC) has become more common in clean coal power operations with carbon capture and sequestration (CCS).ů (more)

Long, Henry A, III

2011-01-01T23:59:59.000Z

96

Recovery Act State Memos Kentucky  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 $5.9 billion $78.8 million $28.6 million $13 million Ford Motor Company closed a $5.9 billion loan arrangement under the Department of Energy's Advanced Technology Vehicles Manufacturing program to transform factories across Illinois, Kentucky, Michigan, Missouri, and Ohio to produce 13 more fuel efficient models. The company estimates the project will transform nearly 35,000 employees to green engineering and manufacturing jobs. Paducah Remediation Services, LLC was awarded $78.8 million to accelerate the complete demolition of three facilities at the Paducah Gaseous Diffusion Plant. ZF Steering Systems, LLC in Florence was awarded a clean energy

97

Recovery Act State Memos Kentucky  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 $5.9 billion $78.8 million $28.6 million $13 million Ford Motor Company closed a $5.9 billion loan arrangement under the Department of Energy's Advanced Technology Vehicles Manufacturing program to transform factories across Illinois, Kentucky, Michigan, Missouri, and Ohio to produce 13 more fuel efficient models. The company estimates the project will transform nearly 35,000 employees to green engineering and manufacturing jobs. Paducah Remediation Services, LLC was awarded $78.8 million to accelerate the complete demolition of three facilities at the Paducah Gaseous Diffusion Plant. ZF Steering Systems, LLC in Florence was awarded a clean energy

98

CoalFleet RD&D augmentation plan for integrated gasification combined cycle (IGCC) power plants  

SciTech Connect

To help accelerate the development, demonstration, and market introduction of integrated gasification combined cycle (IGCC) and other clean coal technologies, EPRI formed the CoalFleet for Tomorrow initiative, which facilitates collaborative research by more than 50 organizations from around the world representing power generators, equipment suppliers and engineering design and construction firms, the U.S. Department of Energy, and others. This group advised EPRI as it evaluated more than 120 coal-gasification-related research projects worldwide to identify gaps or critical-path activities where additional resources and expertise could hasten the market introduction of IGCC advances. The resulting 'IGCC RD&D Augmentation Plan' describes such opportunities and how they could be addressed, for both IGCC plants to be built in the near term (by 2012-15) and over the longer term (2015-25), when demand for new electric generating capacity is expected to soar. For the near term, EPRI recommends 19 projects that could reduce the levelized cost-of-electricity for IGCC to the level of today's conventional pulverized-coal power plants with supercritical steam conditions and state-of-the-art environmental controls. For the long term, EPRI's recommended projects could reduce the levelized cost of an IGCC plant capturing 90% of the CO{sub 2} produced from the carbon in coal (for safe storage away from the atmosphere) to the level of today's IGCC plants without CO{sub 2} capture. EPRI's CoalFleet for Tomorrow program is also preparing a companion RD&D augmentation plan for advanced-combustion-based (i.e., non-gasification) clean coal technologies (Report 1013221). 7 refs., 30 figs., 29 tabs., 4 apps.

NONE

2007-01-15T23:59:59.000Z

99

Alternative Fuels Data Center: Kentucky Points of Contact  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Kentucky Points of Kentucky Points of Contact to someone by E-mail Share Alternative Fuels Data Center: Kentucky Points of Contact on Facebook Tweet about Alternative Fuels Data Center: Kentucky Points of Contact on Twitter Bookmark Alternative Fuels Data Center: Kentucky Points of Contact on Google Bookmark Alternative Fuels Data Center: Kentucky Points of Contact on Delicious Rank Alternative Fuels Data Center: Kentucky Points of Contact on Digg Find More places to share Alternative Fuels Data Center: Kentucky Points of Contact on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Points of Contact The following people or agencies can help you find more information about Kentucky's clean transportation laws, incentives, and funding

100

Alternative Fuels Data Center: Kentucky Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Kentucky Laws and Kentucky Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Kentucky. Your Clean Cities coordinator at

Note: This page contains sample records for the topic "kentucky pioneer igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Pioneer Global Renewables | Open Energy Information  

Open Energy Info (EERE)

Global Renewables Place: San Rafael, California Zip: 94901 Sector: Renewable Energy Product: Pioneer develops, finances and manages renewable energy projects in Latin America and...

102

Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kentucky: Energy Resources Kentucky: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.8393332,"lon":-84.2700179,"alt":0,"address":"Kentucky","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

103

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants July 13, 2009 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) announces a collaborative project with Research Triangle Institute (RTI) International to design, build, and test a warm gas cleanup system to remove multiple contaminants from coal-derived syngas. The 50-MWe system will include technologies to remove trace elements such as mercury and arsenic, capture the greenhouse gas carbon dioxide (CO2), and extract more than 99.9 percent of the sulfur from the syngas. A novel process to convert the extracted sulfur to a pure elemental sulfur product will also be tested. This project supports DOE's vision of coal power plants with near-zero

104

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants July 13, 2009 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) announces a collaborative project with Research Triangle Institute (RTI) International to design, build, and test a warm gas cleanup system to remove multiple contaminants from coal-derived syngas. The 50-MWe system will include technologies to remove trace elements such as mercury and arsenic, capture the greenhouse gas carbon dioxide (CO2), and extract more than 99.9 percent of the sulfur from the syngas. A novel process to convert the extracted sulfur to a pure elemental sulfur product will also be tested. This project supports DOE's vision of coal power plants with near-zero

105

Enhanced IGCC regulatory control and coordinated plant-wide control strategies for improving power ramp rates  

SciTech Connect

As part of ongoing R&D activities at the National Energy Technology Laboratoryĺs (NETL) Advanced Virtual Energy Simulation Training & Research (AVESTARÖ) Center, this paper highlights strategies for enhancing low-level regulatory control and system-wide coordinated control strategies implemented in a high-fidelity dynamic simulator for an Integrated Gasification Combined Cycle (IGCC) power plant with carbon capture. The underlying IGCC plant dynamic model contains 20 major process areas, each of which is tightly integrated with the rest of the power plant, making individual functionally-independent processes prone to routine disturbances. Single-loop feedback control although adequate to meet the primary control objective for most processes, does not take into account in advance the effect of these disturbances, making the entire power plant undergo large offshoots and/or oscillations before the feedback action has an opportunity to impact control performance. In this paper, controller enhancements ranging from retuning feedback control loops, multiplicative feed-forward control and other control techniques such as split-range control, feedback trim and dynamic compensation, applicable on various subsections of the integrated IGCC plant, have been highlighted and improvements in control responses have been given. Compared to using classical feedback-based control structure, the enhanced IGCC regulatory control architecture reduces plant settling time and peak offshoots, achieves faster disturbance rejection, and promotes higher power ramp-rates. In addition, improvements in IGCC coordinated plant-wide control strategies for ôGasifier-Leadö, ôGT-Leadö and ôPlantwideö operation modes have been proposed and their responses compared. The paper is concluded with a brief discussion on the potential IGCC controller improvements resulting from using advanced process control, including model predictive control (MPC), as a supervisory control layer.

Mahapatra, P.; Zitney, S.

2012-01-01T23:59:59.000Z

106

Categorical Exclusion Determinations: Kentucky | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 11, 2011 April 11, 2011 CX-005602: Categorical Exclusion Determination Jet Drilling With Energized Fluids CX(s) Applied: B3.6, B3.7 Date: 04/11/2011 Location(s): Bowling Green, Kentucky Office(s): Fossil Energy, National Energy Technology Laboratory March 25, 2011 CX-005559: Categorical Exclusion Determination Heating, Ventilation, and Air Conditioning Efficiency and Replacement Project CX(s) Applied: B1.4, B2.2, B2.5, B5.1 Date: 03/25/2011 Location(s): Oldham County, Kentucky Office(s): Civilian Radioactive Waste Management, Energy Efficiency and Renewable Energy February 10, 2011 CX-005220: Categorical Exclusion Determination Kentucky Farm Energy Efficiency and Renewable Energy Partnership Market Title CX(s) Applied: B5.1 Date: 02/10/2011 Location(s): Goshen, Kentucky Office(s): Energy Efficiency and Renewable Energy, National Energy

107

Categorical Exclusion Determinations: Kentucky | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 2, 2010 June 2, 2010 CX-002501: Categorical Exclusion Determination Beneficiation of Fine Size Powder River Basin Coal CX(s) Applied: B3.6 Date: 06/02/2010 Location(s): Lexington, Kentucky Office(s): Fossil Energy, National Energy Technology Laboratory June 2, 2010 CX-003128: Categorical Exclusion Determination University of Kentucky Research Foundation -A Solvent/Membrane Hybrid Post-combustion Carbon Dioxide Capture Process CX(s) Applied: B3.6 Date: 06/02/2010 Location(s): Kentucky Office(s): Advanced Research Projects Agency - Energy May 27, 2010 CX-002516: Categorical Exclusion Determination Industrial Facility Retrofit Showcase - Arch Chemicals, Inc. CX(s) Applied: B5.1 Date: 05/27/2010 Location(s): Brandenburg, Kentucky Office(s): Energy Efficiency and Renewable Energy, National Energy

108

Carbon Capture Pilots (Kentucky) | Open Energy Information  

Open Energy Info (EERE)

Pilots (Kentucky) Pilots (Kentucky) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 12, 2013. EZFeed Policy Place Kentucky Name Carbon Capture Pilots (Kentucky) Policy Category Other Policy Policy Type Industry Recruitment/Support Affected Technologies Coal with CCS Active Policy Yes Implementing Sector State/Province Primary Website http://energy.ky.gov/carbon/Pages/default.aspx Summary Support for the Carbon Management Research Group (CMRG), a public/private partnership consisting of most of the Commonwealth's utilities, the Electric Power Research Institute, the Center for Applied Energy Research (CAER), and the Department for Energy Development and Independence (DEDI),

109

Energy Incentive Programs, Kentucky | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kentucky Kentucky Energy Incentive Programs, Kentucky October 29, 2013 - 11:29am Addthis Updated December 2012 What public-purpose-funded energy efficiency programs are available in my state? Kentucky has no public-purpose-funded energy efficiency programs. The state's utilities budgeted over $50 million for energy efficiency and load management programs in 2011. What utility energy efficiency programs are available to me? Duke Energy offers the Smart Saver Incentive Program for rebates on high efficiency lighting, VFDs, pumps, HVAC equipment (including chillers), industrial processes, and food service equipment. Beside the prescriptive offerings, there is also a new Custom Incentive Program to cover measures outside of the prescriptive program's scope. Incentives are based on the

110

Kentucky/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Kentucky/Wind Resources Kentucky/Wind Resources < Kentucky Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Kentucky Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

111

Chapter 52 Permits, Registrations, and Prohibitory Rules (Kentucky) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chapter 52 Permits, Registrations, and Prohibitory Rules (Kentucky) Chapter 52 Permits, Registrations, and Prohibitory Rules (Kentucky) Chapter 52 Permits, Registrations, and Prohibitory Rules (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Kentucky Program Type Environmental Regulations Siting and Permitting Provider Kentucky Department for Environmental Protection Kentucky Administrative Regulation Chapter 52, entitled Air Quality: Permits, Registrations, and Prohibitory Rules, is promulgated under the authority of the Division of Air Quality within the Energy and Environment Cabinet's Department for Environmental Protection. Chapter 52 outlines the permitting requirements for all air pollution sources within the state;

112

Chapter 53 Ambient Air Quality (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 Ambient Air Quality (Kentucky) 3 Ambient Air Quality (Kentucky) Chapter 53 Ambient Air Quality (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Kentucky Program Type Environmental Regulations Safety and Operational Guidelines Provider Kentucky Department for Environmental Protection Kentucky Administrative Regulation Chapter 53, entitled Ambient Air Quality, is promulgated under the authority of the Division of Air Quality within the Energy and Environment Cabinet's Department for Environmental Protection. Chapter 53 sets the air quality standards for pollutants regulated under the federally mandated Clean Air Act. The purpose of the

113

Co-gasification of coalľpetcoke and biomass in the Puertollano IGCC power plant  

Science Journals Connector (OSTI)

Abstract Integrated Gasification Combined Cycle plants (IGCC) are efficient power generation systems with low pollutants emissions. Moreover, the entrained flow gasifier of IGCC plants allows the combined use of other lower cost fuels (biomass and waste) together with coal. Co-firing with biomass is beneficial for the reduction of CO2 emissions of fossil source. In this paper the results of co-gasification tests with two types of biomass deriving from agricultural residues, namely 2% and 4% by weight of olive husk and grape seed meal, in the 335áMWeISO IGCC power plant of ELCOGAS in Puertollano (Spain) are reported. No significant change in the composition of both the raw syngas and the clean syngas was observed. Furthermore, a process simulation model of the IGCC plant of Puertollano was developed and validated with available industrial data. The model was used to assess the technical and economic feasibility of the process co-fired with higher biomass contents up to 60% by weight. The results indicate that a 54% decrease of fossil CO2 emissions implies an energy penalty (a loss of net power) of about 20% while does not cause significant change of the net efficiency of the plant. The mitigation cost (the additional cost of electricity per avoided ton of CO2) is significantly dependent on the price of the biomass cost compared to the price of the fossil fuel.

Daniele Sofia; Pilar Coca Llano; Aristide Giuliano; Mariola Iborra Hernßndez; Francisco GarcÝa Pe˝a; Diego Barletta

2014-01-01T23:59:59.000Z

114

Uncertainty analysis of an IGCC system with single-stage entrained-flow gasifier  

SciTech Connect

Integrated Gasification Combined Cycle (IGCC) systems using coal gasification is an attractive option for future energy plants. Consequenty, understanding the system operation and optimizing gasifier performance in the presence of uncertain operating conditions is essential to extract the maximum benefits from the system. This work focuses on conducting such a study using an IGCC process simulation and a high-fidelity gasifier simulation coupled with stochastic simulation and multi-objective optimization capabilities. Coal gasifiers are the necessary basis of IGCC systems, and hence effective modeling and uncertainty analysis of the gasification process constitutes an important element of overall IGCC process design and operation. In this work, an Aspen Plus{reg_sign} steady-state process model of an IGCC system with carbon capture enables us to conduct simulation studies so that the effect of gasification variability on the whole process can be understood. The IGCC plant design consists of an single-stage entrained-flow gasifier, a physical solvent-based acid gas removal process for carbon capture, two model-7FB combustion turbine generators, two heat recovery steam generators, and one steam turbine generator in a multi-shaft 2x2x1 configuration. In the Aspen Plus process simulation, the gasifier is represented as a simplified lumped-parameter, restricted-equilibrium reactor model. In this work, we also make use of a distributed-parameter FLUENT{reg_sign} computational fluid dynamics (CFD) model to characterize the uncertainty for the entrained-flow gasifier. The CFD-based gasifer model is much more comprehensive, predictive, and hence better suited to understand the effects of uncertainty. The possible uncertain parameters of the gasifier model are identified. This includes input coal composition as well as mass flow rates of coal, slurry water, and oxidant. Using a selected number of random (Monte Carlo) samples for the different parameters, the CFD model is simulated to observe the variations in the output variables (such as syngas composition, gas and ash flow rates etc.). The same samples are then used to conduct simulations using the Aspen Plus IGCC model. The simulation results for the high-fidelity CFD-based gasifier model and the Aspen Plus equilibrium reactor model for selected uncertain parameters are then used to perform the estimation. Defining the ratio of CFD based results to the Aspen Plus result as the uncertainty factor (UF), the work quantifies the extent of uncertainty and then uses uniform* distribution to characterize the uncertainty factor distribution. The characterization and quantification of uncertainty is then used to conduct stochastic simulation of the IGCC system in Aspen Plus. The CAPE-OPEN compliant stochastic simulation capability allows one to conduct a rigorous analysis and generate the feasible space for the operation of the IGCC system. The stochastic simulation results can later be used to conduct multi-objective optimization of the gasifier using a set of identified decision variables. The CAPE-OPEN compliant multi-objective capability in Aspen Plus can be used to conduct the analysis. Since the analysis is based on the uncertainty modeling studies of the gasifier, the optimization accounts for possible uncertainties in the operation of the system. The results for the optimized IGCC system and the gasifier, obtained from the stochastic simulation results, are expected to be more rigorous and hence closer to those obtained from CFD-based rigorous modeling.

Shastri, Y.; Diwekar, U.; Zitney, S.

2008-01-01T23:59:59.000Z

115

Alternative Fuels Data Center: Kentucky Laws and Incentives for Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Grants to someone by E-mail Grants to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Grants on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Grants on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Grants on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Grants on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Grants on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Laws and Incentives for Grants The list below contains summaries of all Kentucky laws and incentives

116

Alternative Fuels Data Center: Kentucky Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

to someone by E-mail to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Laws and Incentives Listed below are the summaries of all current Kentucky laws, incentives, regulations, funding opportunities, and other initiatives related to

117

Alternative Fuels Data Center: Kentucky Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Laws and Incentives for Ethanol The list below contains summaries of all Kentucky laws and incentives

118

Kentucky Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kentucky Recovery Act State Memo Kentucky Recovery Act State Memo Kentucky Recovery Act State Memo Kentucky has substantial natural resources, including coal, oil, gas, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Kentucky are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to environmental cleanup and alternative fuels and vehicles. Through these investments, Kentucky's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Kentucky to play an important role in the new energy economy of the future. Kentucky Recovery Act State Memo More Documents & Publications

119

Kentucky Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kentucky Recovery Act State Memo Kentucky Recovery Act State Memo Kentucky Recovery Act State Memo Kentucky has substantial natural resources, including coal, oil, gas, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Kentucky are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to environmental cleanup and alternative fuels and vehicles. Through these investments, Kentucky's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Kentucky to play an important role in the new energy economy of the future. Kentucky Recovery Act State Memo More Documents & Publications

120

Alternative Fuels Data Center: Kentucky Laws and Incentives for Biodiesel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel to someone by E-mail Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Biodiesel on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Biodiesel on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Biodiesel on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Biodiesel on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Laws and Incentives for Biodiesel The list below contains summaries of all Kentucky laws and incentives

Note: This page contains sample records for the topic "kentucky pioneer igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Alternative Fuels Data Center: Kentucky Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Laws and Incentives for Other The list below contains summaries of all Kentucky laws and incentives

122

Alternative Fuels Data Center: Kentucky Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Laws and Incentives for Other The list below contains summaries of all Kentucky laws and incentives

123

Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Horsepower for Kentucky Schools to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Digg Find More places to share Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on AddThis.com... April 7, 2011 Hybrid Electric Horsepower for Kentucky Schools " The hybrid school bus project not only serves as a means to improve

124

Alternative Fuels Data Center: Kentucky Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Laws and Incentives for EVs The list below contains summaries of all Kentucky laws and incentives

125

Alternative Fuels Data Center: Kentucky Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Laws and Incentives for Other The list below contains summaries of all Kentucky laws and incentives

126

Categorical Exclusion Determinations: Kentucky | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 10, 2009 December 10, 2009 CX-000342: Categorical Exclusion Determination Kentucky Hybrid School Bus Project CX(s) Applied: A1, A9 Date: 12/10/2009 Location(s): Frankfort, Kentucky Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 4, 2009 CX-000332: Categorical Exclusion Determination Kentucky Revision 2 - Industrial Facility Retrofit Showcase CX(s) Applied: B1.4, B1.15, B1.22, B1.23, B1.24, B1.31, B2.1, B2.2, B2.5, B5.1 Date: 12/04/2009 Location(s): Kentucky Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 3, 2009 CX-000331: Categorical Exclusion Determination Kentucky Revision 2 - Commercial Office Building Retrofit Showcase CX(s) Applied: B1.4, B1.5, B1.15, B1.23, B1.24, B1.31, B2.1, B2.2, B2.5,

127

Technically recoverable Devonian shale gas in Kentucky  

SciTech Connect

This report evaluates the natural gas potential of the Devonian Age shales of Kentucky. For this, the study: (1) compiles the latest geologic and reservoir data to establish the gas in-place; (2) analyzes and models the dominant gas production mechanisms; and (3) examines alternative well stimulation and production strategies for most efficiently recovering the in-place gas. The major findings of the study include the following: (1) The technically recoverable gas from Devonian shale (Lower and Upper Huron, Rhinestreet, and Cleveland intervals) in Kentucky is estimated to range from 9 to 23 trillion cubic feet (Tcf). (2) The gas in-place for the Devonian shales in eastern Kentucky is 82 Tcf. About one half of this amount is found in the Big Sandy gas field and its immediate extensions. The remainder is located in the less naturally fractured, but organically rich area to the west of the Big Sandy. (3) The highly fractured shales in the Big Sandy area in southeast Kentucky and the more shallow shales of eastern Kentucky respond well to small-scale stimulation. New, larger-scale stimulation technology will be required for the less fractured, anisotropic Devonian shales in the rest of the state. 44 refs., 49 figs., 24 tabs.

Kuuskraa, V.A.; Sedwick, K.B.; Thompson, K.B.; Wicks, D.E.

1985-05-01T23:59:59.000Z

128

Stimulating Energy Efficiency in Kentucky: An Implementation Model for States  

Energy.gov (U.S. Department of Energy (DOE))

This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on Stimulating Energy Efficiency in Kentucky.

129

HSS Helps Pioneer ôRobotö Patrol Technology MDARS- December 11, 2005  

Energy.gov (U.S. Department of Energy (DOE))

HSS Helps Pioneer ôRobotö Patrol Technology: Deployment of the DOE Mobile Detection Assessment Response System (MDARS)

130

Pesticide use in Kentucky reservoir watershed  

SciTech Connect

This report summarizes information on the types, uses, and amounts of pesticides applied to Kentucky Reservoir and its immediate watershed. Estimates for the quantities and types of the various pesticides used are based primarily on the land uses in the watershed. A listing of commonly used pesticides is included describing their uses, mode of action, and potential toxicological effects. This report will inform the the public and the Kentucky Reservoir Water Resources Task Force of the general extent of pesticide usage and is not an assessment of pesticide impacts. 10 refs., 5 figs., 9 tabs.

Butkus, S.R.

1988-06-01T23:59:59.000Z

131

Microsoft Word - 41889_GE_IGCC System Study_Factsheet_Rev01_07-20-04.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Fact Sheet: Fact Sheet: "System Study For Improved Gas Turbine Performance For Coal IGCC Application" DOE Contract No: DE-FC26-03NT41889 I Project Description: A. Objective: This study will identify improvements in gas turbine performance for coal Integrated Gasification Combined Cycle (IGCC) application. The study will identify vital gas turbine parameters and quantify their influence in meeting the DOE Turbine Program overall IGCC plant goals of 50% net HHV efficiency, $1000/kW capital cost, and low emissions. Focus will be on air-cooled gas turbines for near-term operation in coal fed oxygen blown IGCC power plants with commercially demonstrated gasification, gas cleaning, & air separation technologies. A roadmap towards achieving DOE's goals for

132

Stochastic Modeling for Uncertainty Analysis and Multiobjective Optimization of IGCC System with Single-Stage Coal Gasification  

Science Journals Connector (OSTI)

The work initially focuses on developing a computational fluid dynamics (CFD) model for the single-stage coal gasifier, which is a part of the IGCC system. ... Medium pressure (MP) steam is produced from the heat liberated from this reaction. ...

Yogendra Shastri; Urmila Diwekar

2010-11-22T23:59:59.000Z

133

Chapter 47 Solid Waste Facilities (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chapter 47 Solid Waste Facilities (Kentucky) Chapter 47 Solid Waste Facilities (Kentucky) Chapter 47 Solid Waste Facilities (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Kentucky Program Type Environmental Regulations Fees Siting and Permitting Provider Kentucky Division of Waste Management This chapter establishes the permitting standards for solid waste sites or facilities, the standards applicable to all solid waste sites or

134

KRS Chapter 278: Electric Generation and Transmission Siting (Kentucky) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

KRS Chapter 278: Electric Generation and Transmission Siting KRS Chapter 278: Electric Generation and Transmission Siting (Kentucky) KRS Chapter 278: Electric Generation and Transmission Siting (Kentucky) < Back Eligibility Commercial Developer Investor-Owned Utility Municipal/Public Utility Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kentucky Program Type Environmental Regulations Provider Kentucky Public Service Commission No person shall commence to construct a merchant electric generating facility until that person has applied for and obtained a construction certificate for the facility from the Kentucky State Board on Electric Generation and Transmission. The construction certificate shall be valid

135

Small Business Tax Credit (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Business Tax Credit (Kentucky) Small Business Tax Credit (Kentucky) Small Business Tax Credit (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Low-Income Residential Multi-Family Residential Retail Supplier Rural Electric Cooperative Systems Integrator Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kentucky Program Type Corporate Tax Incentive Personal Tax Incentives Provider Cabinet for Economic Development The Kentucky Small Business Tax Credit (KSBTC) program is designed to encourage small business growth and job creation by providing a nonrefundable state income tax credit to eligible small businesses hiring

136

Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Laws and Incentives for Propane (LPG)

137

CO2 Geologic Storage (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CO2 Geologic Storage (Kentucky) CO2 Geologic Storage (Kentucky) CO2 Geologic Storage (Kentucky) < Back Eligibility Industrial Program Info State Kentucky Program Type Industry Recruitment/Support Provider Consultant, Division of Carbon Management Division staff, in partnership with the Kentucky Geological Survey (KGS), continued to support projects to investigate and demonstrate the technical feasibility of geologic storage of carbon dioxide (CO2) in Kentucky. In 2012, KGS conducted a test of carbon dioxide enhanced natural gas recovery in the Devonian Ohio Shale, Johnson County, east Kentucky. During the test, 87 tons of CO2 were injected through perforations in a cased, shut-in shale gas well. Industry partners for this research included Crossrock Drilling, Advanced Resources International, Schlumberger, Ferus Industries, and

138

Alternative Fuels Data Center: Kentucky Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Laws and Incentives for Driving / Idling

139

Alternative Fuels Data Center: Kentucky Laws and Incentives for Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tax Incentives to someone by E-mail Tax Incentives to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Tax Incentives on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Tax Incentives on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Tax Incentives on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Tax Incentives on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Tax Incentives on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Tax Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Laws and Incentives for Tax Incentives

140

IGCC Immersive Training System Deploys at NETL AVESTAR(tm) Center  

NLE Websites -- All DOE Office Websites (Extended Search)

2, Issue 27 2, Issue 27 IGCC Immersive Training System Deploys at NETL AVESTAR(tm) Center page 3 NETL Report Series Assesses Primary Sources of U.S. Electricity page 2 Nanostructured Copper Catalysts Show Promise for CO 2 Reuse Applications page 7 the ENERGY lab NATIONAL ENERGY TECHNOLOGY LABORATORY 2 NETL Report Series Assesses the Current Role, Life Cycle Environmental Footprint, and Cost for Primary Sources of U.S. Electricity _________________________________2 IGCC Immersive Training System Deploys at NETL AVESTAR(tm) Center ________________________________3 Computational Modeling Software Applied to a Discrete Chemistry Model ________________________________3 Novel Sensor Provides Insight to Flow of Solids __________4 NETL Laser Spark Plug Featured in Photonics Spectra ______4

Note: This page contains sample records for the topic "kentucky pioneer igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Microsoft Word - 42651_UCI_ IGCC System Studies_rev060701.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

1_UCI_ IGCC System Studies_rev060701.doc, Revised 7/06 1_UCI_ IGCC System Studies_rev060701.doc, Revised 7/06 Regents of the University of California, DE-FC26-05NT42652 (University of California Irvine, UCI) FACT SHEET I. PROJECT PARTICIPANTS A. Prime Participant: UCI, 300 University Tower, Irvine, CA 92697-7600 B. Sub-Award Participants: None II. PROJECT DESCRIPTION A. Objectives. Characterize advanced Brayton Cycles for coal derived fuels to be candidates for executing conceptual designs (systems studies). Develop conceptual plant designs for near term technologies followed by conceptual designs that integrate advanced technologies. In these studies identify key variables for purpose of sensitivity analysis used in a quest for establishing optimal cycles. Some examples of variables are firing temperature, pressure ratio, combustion

142

IGCC and PFBC By-Products: Generation, Characteristics, and Management Practices  

SciTech Connect

The following report is a compilation of data on by-products/wastes from clean coal technologies, specifically integrated gasification combined cycle (IGCC) and pressurized fluidized-bed combustion (PFBC). DOE had two objectives in providing this information to EPA: (1) to familiarize EPA with the DOE CCT program, CCT by-products, and the associated efforts by DOE contractors in the area of CCT by-product management and (2) to provide information that will facilitate EPA's effort by complementing similar reports from industry groups, including CIBO (Council of Industrial Boiler Owners) and EEI USWAG (Edison Electric Institute Utility Solid Waste Activities Group). The EERC cooperated and coordinated with DOE CCT contractors and industry groups to provide the most accurate and complete data on IGCC and PFBC by-products, although these technologies are only now being demonstrated on the commercial scale through the DOE CCT program.

Pflughoeft-Hassett, D.F.

1997-09-01T23:59:59.000Z

143

The University of Kentucky Web Homework System  

E-Print Network (OSTI)

WHS: The University of Kentucky Web Homework System WHS is a web-based instructional support system materials such as web pages and streaming video, and the hosting of sets of homework assignments account. In either case the first step is to select the "Web Homework" link on the mathclass.com main page

Lee, Carl

144

Model-Based Optimal Sensor Network Design for Condition Monitoring in an IGCC Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimal Sensor Network Optimal Sensor Network Design for Condition Monitoring in an IGCC Plant Background The U.S. Department of Energy's National Energy Technology Laboratory (NETL) develops affordable and clean energy from coal and other fossil fuels to secure a sustainable energy economy. To further this mission, NETL funds research and development of advanced sensor and control technologies that can function under the extreme operating conditions often found in advanced power systems,

145

Pioneering Gasification Plants | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gasification ┬╗ Pioneering Gasification ┬╗ Pioneering Gasification Plants Pioneering Gasification Plants In the 1800s, lamplighters made their rounds in the streets of many of America's largest cities lighting street lights fueled by "town gas," frequently the product of early forms of coal gasification. Gasification of fuel also provided fuel for steel mills, and toward the end of the 19th Century, electric power. These early gasifiers were called "gas producers," and the gas that they generated was called "producer gas." During the early 20th Century, improvements in the availability of petroleum and natural gas products, along with the extension of the infrastructure associated with these products, led to their widespread use, which replaced coal-based producer gas in the energy market.

146

Pioneer Green Energy | Open Energy Information  

Open Energy Info (EERE)

Pioneer Green Energy Pioneer Green Energy Place Austin, Texas Sector Renewable Energy, Solar, Wind energy Product String representation "Pioneer Green E ... f September 12." is too long. Coordinates 30.267605┬░, -97.742984┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.267605,"lon":-97.742984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

147

NETL: News Release - DOE-Sponsored IGCC Project in Texas Takes Important  

NLE Websites -- All DOE Office Websites (Extended Search)

1, 2011 1, 2011 DOE-Sponsored IGCC Project in Texas Takes Important Step Forward MOU Provides for Electricity Purchase from First-of-a-Kind Commercial IGCC Power Plant Washington, DC - A newly signed memorandum of understanding (MOU) for the purchase of electricity produced by the Texas Clean Energy Project (TCEP) is an important step forward for what will be one of the world's most advanced and cleanest coal-based power plants, funded in part by the U.S. Department of Energy (DOE). Under the MOU, CPS Energy - a municipally owned utility serving San Antonio, Texas - will purchase electricity generated by the first-of-a-kind commercial clean coal power plant, starting in mid 2014. TCEP, a 400-megawatt integrated gasification combined cycle (IGCC) facility located about 15 miles west of Odessa, will capture 90 percent of its carbon dioxide (CO2) - approximately 3 million tons annually - more than any power plant of commercial scale operating anywhere in the world.

148

Vehicle Technologies Office: Transit Buses: Today's Pioneers in Fuel Cell  

NLE Websites -- All DOE Office Websites (Extended Search)

Transit Buses: Today's Transit Buses: Today's Pioneers in Fuel Cell Transportation to someone by E-mail Share Vehicle Technologies Office: Transit Buses: Today's Pioneers in Fuel Cell Transportation on Facebook Tweet about Vehicle Technologies Office: Transit Buses: Today's Pioneers in Fuel Cell Transportation on Twitter Bookmark Vehicle Technologies Office: Transit Buses: Today's Pioneers in Fuel Cell Transportation on Google Bookmark Vehicle Technologies Office: Transit Buses: Today's Pioneers in Fuel Cell Transportation on Delicious Rank Vehicle Technologies Office: Transit Buses: Today's Pioneers in Fuel Cell Transportation on Digg Find More places to share Vehicle Technologies Office: Transit Buses: Today's Pioneers in Fuel Cell Transportation on AddThis.com... Transit Buses: Today's Pioneers in Fuel Cell Transportation

149

EIS-0318: Final Environmental Impact Statement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Environmental Impact Statement Final Environmental Impact Statement EIS-0318: Final Environmental Impact Statement Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project The Kentucky Pioneer IGCC Demonstration Project Final EIS assesses the potential environmental impacts that would result from a proposed DOE action to provide cost-shared financial support for construction and operation of an electrical power station demonstrating use of a Clean Coal Technology in Clark County, Kentucky. Under the Proposed Action, DOE would provide financial assistance, through a Cooperative Agreement with Kentucky Pioneer Energy, LLC, for design, construction, and operation of a 540 megawatt demonstration power station comprised of two synthesis gas-fired combined cycle units in Clark County, Kentucky. The station would also be

150

CO2 Geologic Storage (Kentucky) | Open Energy Information  

Open Energy Info (EERE)

CO2 Geologic Storage (Kentucky) CO2 Geologic Storage (Kentucky) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 12, 2013. EZFeed Policy Place Kentucky Name CO2 Geologic Storage (Kentucky) Policy Category Other Policy Policy Type Industry Recruitment/Support , Technical Feasibility Projects Affected Technologies Coal with CCS Active Policy Yes Implementing Sector State/Province Program Administrator Brandon Nutall, Division of Carbon Management Primary Website http://energy.ky.gov/carbon/Pages/default.aspx Summary Division staff, in partnership with the Kentucky Geological Survey (KGS), continued to support projects to investigate and demonstrate the technical feasibility of geologic storage of carbon dioxide (CO2) in Kentucky. In

151

Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Producer to someone by E-mail Producer to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative Fuel Producer on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative Fuel Producer on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative Fuel Producer on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative Fuel Producer on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative Fuel Producer on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative Fuel Producer on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

152

Alternative Fuels Data Center: Kentucky Laws and Incentives for Aftermarket  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Aftermarket Conversions to someone by E-mail Aftermarket Conversions to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Aftermarket Conversions on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Aftermarket Conversions on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Aftermarket Conversions on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Aftermarket Conversions on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Aftermarket Conversions on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Aftermarket Conversions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

153

Alternative Fuels Data Center: Kentucky Laws and Incentives for Hydrogen  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Fuel Cells to someone by E-mail Hydrogen Fuel Cells to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Hydrogen Fuel Cells on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Hydrogen Fuel Cells on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Hydrogen Fuel Cells on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Hydrogen Fuel Cells on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Hydrogen Fuel Cells on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Hydrogen Fuel Cells on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

154

Kentucky Utilities Company - Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kentucky Utilities Company - Residential Energy Efficiency Rebate Kentucky Utilities Company - Residential Energy Efficiency Rebate Program (Kentucky) Kentucky Utilities Company - Residential Energy Efficiency Rebate Program (Kentucky) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Home Weatherization Construction Commercial Weatherization Design & Remodeling Heat Pumps Water Heating Windows, Doors, & Skylights Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Heat Pump Water Heater: $300 Refrigerator: $100 Freezer: $50 Clothes Washer: $75 Dishwasher: $50 Window Film: 50% of material cost, up to $200 Central AC: $100, plus $100 for each SEER above minimum federal high efficiency standard Air-Source Heat Pump: $100, plus $100 for each SEER above minimum federal

155

Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Purchaser to someone by E-mail Alternative Fuel Purchaser to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative Fuel Purchaser on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative Fuel Purchaser on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative Fuel Purchaser on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative Fuel Purchaser on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative Fuel Purchaser on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative Fuel Purchaser on AddThis.com... More in this section... Federal State

156

Alternative Fuels Data Center: Kentucky Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Production / Quality to someone by E-mail Fuel Production / Quality to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Fuel Production / Quality on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Fuel Production / Quality on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Fuel Production / Quality on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Fuel Production / Quality on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Fuel Production / Quality on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Fuel Production / Quality on AddThis.com... More in this section... Federal State Advanced Search

157

Small Business Credit Initiative (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Credit Initiative (Kentucky) Credit Initiative (Kentucky) Small Business Credit Initiative (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Local Government Low-Income Residential Multi-Family Residential Nonprofit Retail Supplier Rural Electric Cooperative Schools Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info Funding Source State Small Business Credit Initiative legislation, 12 U.S.C. ┬ž┬ž5701-5710 State Kentucky Program Type Loan Program Provider Kentucky Cabinet for Economic Development The Kentucky Cabinet for Economic Development has been approved by the United States Department of Treasury to receive the Commonwealth of

158

Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Dealer to someone by E-mail Dealer to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative Fuel Dealer on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative Fuel Dealer on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative Fuel Dealer on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative Fuel Dealer on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative Fuel Dealer on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Alternative Fuel Dealer on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

159

Alternative Fuels Data Center: Kentucky Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

160

Alternative Fuels Data Center: Kentucky Laws and Incentives for Acquisition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Acquisition / Fuel Use to someone by E-mail Acquisition / Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Acquisition / Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Acquisition / Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Acquisition / Fuel Use on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Acquisition / Fuel Use on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Acquisition / Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Acquisition / Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

Note: This page contains sample records for the topic "kentucky pioneer igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Alternative Fuels Data Center: Kentucky Laws and Incentives for AFV  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

AFV Manufacturer/Retrofitter to someone by E-mail AFV Manufacturer/Retrofitter to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for AFV Manufacturer/Retrofitter on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for AFV Manufacturer/Retrofitter on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for AFV Manufacturer/Retrofitter on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for AFV Manufacturer/Retrofitter on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for AFV Manufacturer/Retrofitter on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for AFV Manufacturer/Retrofitter on AddThis.com... More in this section...

162

DOE Headquarters Review Focuses on Improved LATA Kentucky Worker Safety |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Headquarters Review Focuses on Improved LATA Kentucky Worker Headquarters Review Focuses on Improved LATA Kentucky Worker Safety DOE Headquarters Review Focuses on Improved LATA Kentucky Worker Safety July 1, 2012 - 12:00pm Addthis Kevin Dressman, director of the DOE Office of Worker Safety and Health Enforcement, addresses LATA Kentucky employees during a training session. The June regulatory assistance review was aimed at ensuring worker safety. Kevin Dressman, director of the DOE Office of Worker Safety and Health Enforcement, addresses LATA Kentucky employees during a training session. The June regulatory assistance review was aimed at ensuring worker safety. PADUCAH, Ky. - DOE Office of Health, Safety and Security headquarters representatives recently spent three days at the Paducah site helping EM cleanup contractor LATA Kentucky better identify and correct issues before

163

Alternative Fuels Data Center: Kentucky Laws and Incentives for Fueling /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling / TSE Infrastructure Owner to someone by E-mail Fueling / TSE Infrastructure Owner to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Fueling / TSE Infrastructure Owner on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Fueling / TSE Infrastructure Owner on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Fueling / TSE Infrastructure Owner on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Fueling / TSE Infrastructure Owner on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Fueling / TSE Infrastructure Owner on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Fueling / TSE Infrastructure Owner on

164

Alternative Fuels Data Center: Kentucky Laws and Incentives for Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Owner/Driver to someone by E-mail Vehicle Owner/Driver to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Vehicle Owner/Driver on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Vehicle Owner/Driver on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Vehicle Owner/Driver on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Vehicle Owner/Driver on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Vehicle Owner/Driver on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Vehicle Owner/Driver on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

165

Radcliff, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Radcliff, Kentucky: Energy Resources Radcliff, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.8403456┬░, -85.9491298┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.8403456,"lon":-85.9491298,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

166

Kentucky Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

167

Hickman, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kentucky: Energy Resources Kentucky: Energy Resources (Redirected from Hickman, KY) Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.5711721┬░, -89.1861791┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.5711721,"lon":-89.1861791,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

168

Somerset, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kentucky: Energy Resources Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.0920222┬░, -84.6041084┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.0920222,"lon":-84.6041084,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

169

Kentucky Natural Gas Gross Withdrawals and Production  

Gasoline and Diesel Fuel Update (EIA)

Alaska Federal Offshore Gulf of Mexico Louisiana New Mexico Oklahoma Texas Wyoming Other States Total Alabama Arizona Arkansas California Colorado Florida Illinois Indiana Kansas Kentucky Maryland Michigan Mississippi Missouri Montana Nebraska Nevada New York North Dakota Ohio Oregon Pennsylvania South Dakota Tennessee Utah Virginia West Virginia Period: Monthly Annual Alaska Federal Offshore Gulf of Mexico Louisiana New Mexico Oklahoma Texas Wyoming Other States Total Alabama Arizona Arkansas California Colorado Florida Illinois Indiana Kansas Kentucky Maryland Michigan Mississippi Missouri Montana Nebraska Nevada New York North Dakota Ohio Oregon Pennsylvania South Dakota Tennessee Utah Virginia West Virginia Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Gross Withdrawals NA NA NA NA NA NA 1991-2013 From Gas Wells NA NA NA NA NA NA 1991-2013

170

Kentucky Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

171

Kentucky Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 220,359 220,359 220,368 221,751 221,751 221,751 1988-2012

172

Kentucky Utilities Co | Open Energy Information  

Open Energy Info (EERE)

Kentucky Kentucky Utility Id 10171 Utility Location Yes Ownership I NERC SERC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GS (General Service) 3 phase Commercial PS (Power Service Secondary) Commercial RS Residential TODS (Time-Of-Day-Secondary Service) Commercial Average Rates Residential: $0.0754/kWh Commercial: $0.0731/kWh Industrial: $0.0557/kWh

173

Kentucky Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 165,997 174,089 181,856 187,293 192,663 201,374 1990-2013

174

Upton, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Upton, Kentucky: Energy Resources Upton, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.4650577┬░, -85.8932982┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.4650577,"lon":-85.8932982,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

175

Tennessee Valley Authority (Kentucky) | Open Energy Information  

Open Energy Info (EERE)

Tennessee Valley Authority Tennessee Valley Authority Place Kentucky Utility Id 18642 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Industrial: $0.0455/kWh The following table contains monthly sales and revenue data for Tennessee Valley Authority (Kentucky). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 68,976 1,670,768 22 68,976 1,670,768 22

176

Adairville, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Adairville, Kentucky: Energy Resources Adairville, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.6675425┬░, -86.8519417┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.6675425,"lon":-86.8519417,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

177

Kentucky Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Volumes Delivered to Consumers

178

Utica, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Utica, Kentucky: Energy Resources Utica, Kentucky: Energy Resources (Redirected from Utica, KY) Jump to: navigation, search GeoNames ID 4311915 Coordinates 37.60227┬░, -87.11305┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.60227,"lon":-87.11305,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

179

Elizabethtown, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Elizabethtown, Kentucky: Energy Resources Elizabethtown, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.693952┬░, -85.8591285┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.693952,"lon":-85.8591285,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

180

Kentucky Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

Note: This page contains sample records for the topic "kentucky pioneer igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Muldraugh, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Muldraugh, Kentucky: Energy Resources Muldraugh, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.9370158┬░, -85.9916308┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9370158,"lon":-85.9916308,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

182

Kentucky Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes

183

Columbus, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Columbus, Kentucky: Energy Resources Columbus, Kentucky: Energy Resources (Redirected from Columbus, KY) Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.7597791┬░, -89.1033998┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.7597791,"lon":-89.1033998,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

184

Sonora, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sonora, Kentucky: Energy Resources Sonora, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.524226┬░, -85.8930192┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.524226,"lon":-85.8930192,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

185

Hopkinsville, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kentucky: Energy Resources Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.8656008┬░, -87.4886186┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.8656008,"lon":-87.4886186,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

186

Chapter 38 Hazardous Waste Permitting Process (Kentucky) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 Hazardous Waste Permitting Process (Kentucky) 8 Hazardous Waste Permitting Process (Kentucky) Chapter 38 Hazardous Waste Permitting Process (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Schools State/Provincial Govt Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Kentucky Program Type Environmental Regulations Provider Department for Environmental Protection This administrative regulation establishes the general provisions for storage, treatment, recycling, or disposal of hazardous waste. It provides information about permits and specific requirements for containers, tanks,

187

Chapter 10 Water Quality Standards (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 Water Quality Standards (Kentucky) 10 Water Quality Standards (Kentucky) Chapter 10 Water Quality Standards (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kentucky Program Type Environmental Regulations Provider Department for Environmental Protection This administrative regulation establishes procedures to protect the

188

,"Kentucky Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2012,"6302007"...

189

DOE Awards Grant to the Commonwealth of Kentucky, Energy and...  

Office of Environmental Management (EM)

the duty of enforcing the environmental lawsregulations of Kentucky relating to waste management, water and air quality, and protection of human health and environment that are...

190

Advanced virtual energy simulation training and research: IGCC with CO2 capture power plant  

SciTech Connect

In this presentation, we highlight the deployment of a real-time dynamic simulator of an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture at the Department of Energy's (DOE) National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training and Research (AVESTARTM) Center. The Center was established as part of the DOE's accelerating initiative to advance new clean coal technology for power generation. IGCC systems are an attractive technology option, generating low-cost electricity by converting coal and/or other fuels into a clean synthesis gas mixture in a process that is efficient and environmentally superior to conventional power plants. The IGCC dynamic simulator builds on, and reaches beyond, conventional power plant simulators to merge, for the first time, a 'gasification with CO{sub 2} capture' process simulator with a 'combined-cycle' power simulator. Fueled with coal, petroleum coke, and/or biomass, the gasification island of the simulated IGCC plant consists of two oxygen-blown, downward-fired, entrained-flow, slagging gasifiers with radiant syngas coolers and two-stage sour shift reactors, followed by a dual-stage acid gas removal process for CO{sub 2} capture. The combined cycle island consists of two F-class gas turbines, steam turbine, and a heat recovery steam generator with three-pressure levels. The dynamic simulator can be used for normal base-load operation, as well as plant start-up and shut down. The real-time dynamic simulator also responds satisfactorily to process disturbances, feedstock blending and switchovers, fluctuations in ambient conditions, and power demand load shedding. In addition, the full-scope simulator handles a wide range of abnormal situations, including equipment malfunctions and failures, together with changes initiated through actions from plant field operators. By providing a comprehensive IGCC operator training system, the AVESTAR Center is poised to develop a workforce well-prepared to operate and control commercial-scale gasification-based power plants capable of 90% pre-combustion CO{sub 2} capture and compression, as well as low sulfur, mercury, and NOx emissions. With additional support from the NETL-Regional University Alliance (NETL-RUA), the Center will educate and train engineering students and researchers by providing hands-on 'learning by operating' experience The AVESTAR Center also offers unique collaborative R&D opportunities in high-fidelity dynamic modeling, advanced process control, real-time optimization, and virtual plant simulation. Objectives and goals are aimed at safe and effective management of power generation systems for optimal efficiency, while protecting the environment. To add another dimension of realism to the AVESTAR experience, NETL will introduce an immersive training system with innovative three-dimensional virtual reality technology. Wearing a stereoscopic headset or eyewear, trainees will enter an interactive virtual environment that will allow them to move freely throughout the simulated 3-D facility to study and learn various aspects of IGCC plant operation, control, and safety. Such combined operator and immersive training systems go beyond traditional simulation and include more realistic scenarios, improved communication, and collaboration among co-workers.

Zitney, S.; Liese, E.; Mahapatra, P.; Bhattacharyya, D.; Provost, G.

2011-01-01T23:59:59.000Z

191

Pioneer Asia Wind Turbines | Open Energy Information  

Open Energy Info (EERE)

Turbines Turbines Jump to: navigation, search Name Pioneer Asia Wind Turbines Place Madurai, Tamil Nadu, India Zip 625 002 Sector Wind energy Product Madurai-based wind energy division of the Pioneer Group. Coordinates 9.92544┬░, 78.1192┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":9.92544,"lon":78.1192,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

192

Pioneer Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Pioneer Electric Coop, Inc Pioneer Electric Coop, Inc Place Kansas Utility Id 15073 Utility Location Yes Ownership C NERC Location SPP NERC SPP Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png SCHEDULE A-12 SINGLE PHASE SERVICE Residential SCHEDULE A-2-12 ALL ELECTRIC SERVICE Single Phase-City Commercial SCHEDULE A-2-12 ALL ELECTRIC SERVICE Single Phase-Rural Residential SCHEDULE A-2-12 ALL ELECTRIC SERVICE Three Phase-City Commercial SCHEDULE A-2-12 ALL ELECTRIC SERVICE Three Phase-Rural Residential SCHEDULE B-12 THREE PHASE SERVICE Commercial

193

AVESTAR Center for operational excellence of IGCC power plants with CO2 capture  

SciTech Connect

This presentation begins with a description of U.S. Energy Challenges, particularly Power Generation Capacity and Clean Energy Plant Operations. It goes on to describe the missions and goals of the Advanced Virtual Energy Simulation Training And Research (AVESTARTM). It moves on to the subject of Integrated Gasification Combined Cycle (IGCC) with CO{sub 2} Capture, particularly a Process/Project Overview, Dynamic Simulator/Operator Training System (OTS), 3D Virtual Immersive Training System (ITS), Facilities, Training, Education, and R&D, and Future Simulators/Directions

Provost, G,

2012-01-01T23:59:59.000Z

194

AVESTAR Center for operational excellence of IGCC power plants with CO2 capture  

SciTech Connect

This slideshow presentation begins by outlining US energy challenges, particularly with respect to power generation capacity and clean energy plant operations. It goes on to describe the Advanced Virtual Energy Simulation Training And Research (AVESTAR{sup TM}). Its mission and goals are given, followed by an overview of integrated gasification combined cycle (IGCC) with CO{sub 2} capture. The Dynamic Simulator/Operator Training System (OTS) and 3D Virtual Immersive Training System (ITS) are then presented. Facilities, training, education, and R&D are covered, followed by future simulators and directions.

Provost, G,

2012-01-01T23:59:59.000Z

195

Top 10 Considerations of 2012 IECC and IgCC in Dallas  

E-Print Network (OSTI)

Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 ? ASHRAE 90.1 - 2010 similar path ? LEED 2009 or V4; ASHRAE 189.1 similar paths IECC 2012 Energy Code IgCC 2012 Green Code Energy and Green Top 10 #7 ESL-KT-13-12-31 CATEE 2013: Clean...CATEE CONFERENCE SAN ANTONIO, TX December 18, 2013 ESL-KT-13-12-31 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 This presentation is protected by US and International copyright laws. Reproduction...

Basora, Z.

2013-01-01T23:59:59.000Z

196

Advanced regulatory control and coordinated plant-wide control strategies for IGCC targeted towards improving power ramp-rates  

SciTech Connect

As part of ongoing R&D activities at the National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training & Research (AVESTARÖ) Center, this paper highlights strategies for enhancing low-level regulatory control and system-wide coordinated control strategies implemented in a high-fidelity dynamic simulator for an Integrated Gasification Combined Cycle (IGCC) power plant with carbon capture. The underlying IGCC plant dynamic model contains 20 major process areas, each of which is tightly integrated with the rest of the power plant, making individual functionally-independent processes prone to routine disturbances. Single-loop feedback control although adequate to meet the primary control objective for most processes, does not take into account in advance the effect of these disturbances, making the entire power plant undergo large offshoots and/or oscillations before the feedback action has an opportunity to impact control performance. In this paper, controller enhancements ranging from retuning feedback control loops, multiplicative feed-forward control and other control techniques such as split-range control, feedback trim and dynamic compensation, applicable on various subsections of the integrated IGCC plant, have been highlighted and improvements in control responses have been given. Compared to using classical feedback-based control structure, the enhanced IGCC regulatory control architecture reduces plant settling time and peak offshoots, achieves faster disturbance rejection, and promotes higher power ramp-rates. In addition, improvements in IGCC coordinated plant-wide control strategies for ôGasifier-Leadö, ôGT-Leadö and ôPlantwideö operation modes have been proposed and their responses compared. The paper is concluded with a brief discussion on the potential IGCC controller improvements resulting from using advanced process control, including model predictive control (MPC), as a supervisory control layer.

Mahapatra, P.; Zitney, S.

2012-01-01T23:59:59.000Z

197

Kentucky Water Resources Research Institute Annual Technical Report  

E-Print Network (OSTI)

). In addition, the Kentucky Consortium for Energy and the Environment, headed by Lindell Ormsbee (Director for the Maxey Flats Nuclear Disposal Site and the Paducah Gaseous Diffusion Plant - Federal Facilities Agreement have a commanding effect on the modern surface and near-surface hydrology of Kentucky. Previous

198

Assessment of modular IGCC plants based on entrained flow coal gasification supplemental studies  

SciTech Connect

In a previous study (1), Foster Wheeler made an assessment of modular IGCC power systems employing Texaco entrained flow gasification of Illinois No. 6 coal. In that study, five case studies were developed in order to compare the relative performance and economics of air vs. oxygen blown gasification and high temperature vs. low temperature gas cleanup. As a supplemental study, two additional IGCC design cases were developed as alternate to the original Case 2 and Case 3 configurations. The objective of the Case 2 alternate study was to assess the potential of zinc titanate in place of zinc ferrite. Compared to zinc ferrite, the zinc titanate system offered the following potential advantages: Does not require steam conditioning of the feed gas to avoid carbon formation; does not require reductive regeneration and the corresponding use of fuel gas; operates at higher temperature, about 1350{degree}F; and has a longer projected sorbent life. The objective of the alternate Case 3 study was to determine the economic impact of producing sulfuric acid, instead of elemental sulfur, as the by-product from high temperature desulfurization using zinc ferrite. Sulfur recovery as by-product sulfuric acid therefore offered the potential for reducing both the capital and operating costs. 6 refs., 5 figs., 15 tabs.

Fu, R.K.

1989-10-01T23:59:59.000Z

199

South Kentucky Rural Electric Coop Corp | Open Energy Information  

Open Energy Info (EERE)

South Kentucky Rural Electric Cooperative Corporation) South Kentucky Rural Electric Cooperative Corporation) Jump to: navigation, search Name South Kentucky Rural Electric Coop Corp Place Somerset, Kentucky Utility Id 17564 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. South Kentucky Rural Electric Cooperative Corporation Smart Grid Project was awarded $9,538,234 Recovery Act Funding with a total project value of $19,636,295. Utility Rate Schedules Grid-background.png Commercial and Large Power Commercial Directional Flood Lights 250 watt Metal Halide (unmetered) Lighting

200

Clean Coal Incentive Tax Credit (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Coal Incentive Tax Credit (Kentucky) Clean Coal Incentive Tax Credit (Kentucky) Clean Coal Incentive Tax Credit (Kentucky) < Back Eligibility Developer Investor-Owned Utility Municipal/Public Utility Utility Program Info State Kentucky Program Type Property Tax Incentive Provider Kentucky Cabinet for Economic Development Clean Coal Incentive Tax Credit provides for a property tax credit for new clean coal facilities constructed at a cost exceeding $150 million and used for the purposes of generating electricity. Before the credit is given, the Environmental and Public Protection Cabinet must certify that a facility is reducing emissions of pollutants released during electric generation through the use of clean coal equipment and technologies. The amount of the allowable credit is $2 per ton of eligible coal purchased that is used to

Note: This page contains sample records for the topic "kentucky pioneer igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

KRS Chapter 278: Nuclear Power Facilities (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

KRS Chapter 278: Nuclear Power Facilities (Kentucky) KRS Chapter 278: Nuclear Power Facilities (Kentucky) KRS Chapter 278: Nuclear Power Facilities (Kentucky) < Back Eligibility Commercial Construction Developer Investor-Owned Utility Municipal/Public Utility Utility Program Info State Kentucky Program Type Environmental Regulations Safety and Operational Guidelines Provider Kentucky Public Service Commission No construction shall commence on a nuclear power facility in the Commonwealth until the Public Service Commission finds that the United States government, through its authorized agency, has identified and approved a demonstrable technology or means for the disposal of high-level nuclear waste. The provisions of this section shall not be construed as applying to or precluding the following nuclear-based technologies,

202

Small Business Loan Program (Kentucky) | Open Energy Information  

Open Energy Info (EERE)

Small Business Loan Program (Kentucky) Small Business Loan Program (Kentucky) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on August 28, 2013. EZFeed Policy Place Kentucky Applies to States or Provinces Kentucky Name Small Business Loan Program (Kentucky) Policy Category Financial Incentive Policy Type Loan Program Affected Technologies Biomass/Biogas, Coal with CCS, Concentrating Solar Power, Energy Storage, Fuel Cells, Geothermal Electric, Hydroelectric, Hydroelectric (Small), Natural Gas, Nuclear, Solar Photovoltaics, Wind energy Active Policy Yes Implementing Sector State/Province Primary Website http://www.thinkkentucky.com/kyedc/pdfs/SmallBusinessLoanProgram.pdf Summary The purpose of the program is to help small businesses acquire funding

203

Qualifying RPS State Export Markets (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kentucky) Kentucky) Qualifying RPS State Export Markets (Kentucky) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kentucky Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Kentucky as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance

204

Ethanol Production Tax Credit (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ethanol Production Tax Credit (Kentucky) Ethanol Production Tax Credit (Kentucky) Ethanol Production Tax Credit (Kentucky) < Back Eligibility Agricultural Program Info State Kentucky Program Type Corporate Tax Incentive Qualified ethanol producers are eligible for an income tax credit of $1 per gallon of corn- or cellulosic-based ethanol that meets ASTM standard D4806. The total credit amount available for all corn and cellulosic ethanol producers is $5 million for each taxable year. Unused ethanol credits from one ethanol-based cap, such as corn, may be applied to another ethanol-based cap, such as cellulosic, in the same taxable year. Unused credits may not be carried forward. Kentucky statute information regarding alternative fuel producer tax credits can be found within KRS Chapters 141.422-141.430

205

Transitioning Kentucky Off Oil: An Interview with Clean Cities Coordinator  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transitioning Kentucky Off Oil: An Interview with Clean Cities Transitioning Kentucky Off Oil: An Interview with Clean Cities Coordinator Melissa Howell Transitioning Kentucky Off Oil: An Interview with Clean Cities Coordinator Melissa Howell June 18, 2013 - 4:12pm Addthis With the help of Kentucky Clean Fuels Coalition, Mammoth Cave National Park was the first National Park fleet to use 100 percent alternative fuel. The Global Electric Motorcar (pictured above) is used by park rangers who need to travel between the Mammoth Cave Campground and the Visitor Center area. | Photo courtesy of Victor Peek Photography. With the help of Kentucky Clean Fuels Coalition, Mammoth Cave National Park was the first National Park fleet to use 100 percent alternative fuel. The Global Electric Motorcar (pictured above) is used by park rangers who need

206

KRS Chapter 278: Natural Gas (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

KRS Chapter 278: Natural Gas (Kentucky) KRS Chapter 278: Natural Gas (Kentucky) KRS Chapter 278: Natural Gas (Kentucky) < Back Eligibility Commercial Investor-Owned Utility Municipal/Public Utility Transportation Utility Program Info State Kentucky Program Type Safety and Operational Guidelines Provider Kentucky Public Service Commission The Public Service Commission may, by rule or order, authorize and require the transportation of natural gas in intrastate commerce by intrastate pipelines, or by local distribution companies with unused or excess capacity not needed to meet existing obligations of the pipeline or distribution company, for any person for one (1) or more uses, as defined by the commission by rule, in the case of:(a) Natural gas sold by a producer, pipeline or other seller to such person; or(b) Natural gas

207

South Kentucky Rural Electric Coop Corp | Open Energy Information  

Open Energy Info (EERE)

Kentucky Rural Electric Coop Corp Kentucky Rural Electric Coop Corp Jump to: navigation, search Name South Kentucky Rural Electric Coop Corp Place Somerset, Kentucky Utility Id 17564 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. South Kentucky Rural Electric Cooperative Corporation Smart Grid Project was awarded $9,538,234 Recovery Act Funding with a total project value of $19,636,295. Utility Rate Schedules Grid-background.png Commercial and Large Power Commercial Directional Flood Lights 250 watt Metal Halide (unmetered) Lighting

208

Alternative Fuel Production Facility Incentives (Kentucky) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternative Fuel Production Facility Incentives (Kentucky) Alternative Fuel Production Facility Incentives (Kentucky) Alternative Fuel Production Facility Incentives (Kentucky) < Back Eligibility Commercial Developer Utility Program Info State Kentucky Program Type Corporate Tax Incentive The Kentucky Economic Development and Finance Authority (KEDFA) provides tax incentives to construct, retrofit, or upgrade an alternative fuel production or gasification facility that uses coal or biomass as a feedstock. Beginning Aug. 1, 2010, tax incentives are also available for energy-efficient alternative fuel production facilities and up to five alternative fuel production facilities that use natural gas or natural gas liquids as a feedstock. Energy-efficient alternative fuels are defined as homogeneous fuels that are produced from processes designed to densify

209

Water resources data, Kentucky. Water year 1991  

SciTech Connect

Water resources data for the 1991 water year for Kentucky consist of records of stage, discharge, and water quality of streams and lakes; and water-levels of wells. This report includes daily discharge records for 115 stream-gaging stations. It also includes water-quality data for 38 stations sampled at regular intervals. Also published are 13 daily temperature and 8 specific conductance records, and 85 miscellaneous temperature and specific conductance determinations for the gaging stations. Suspended-sediment data for 12 stations (of which 5 are daily) are also published. Ground-water levels are published for 23 recording and 117 partial sites. Precipitation data at a regular interval is published for 1 site. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurement and analyses. These data represent that part of the National Water Data System operated by the US Geological Survey and cooperation State and Federal agencies in Kentucky.

McClain, D.L.; Byrd, F.D.; Brown, A.C.

1991-12-31T23:59:59.000Z

210

PIONEER: A Robot for Structural Assessment of the Chornobyl Shelter  

SciTech Connect

The U.S. Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA) sponsored the design and fabrication of a radiation-hardened mobile diagnostic robot dubbed Pioneer. Pioneer was designed to operate in the most hazardous locations within the Chornobyl Shelter. Pioneer was delivered to the Ukraine in the spring of 1999. Initial system training and cold testing was performed after delivery.

Catalan, Michael A. (BATTELLE (PACIFIC NW LAB)); Thompson, Bruce R. (VISITORS); Dan G. Cacuci

2001-06-30T23:59:59.000Z

211

Record of Decision for the Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project, (DOE/EIS-0318) (February 4, 2003)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 Federal Register / Vol. 68, No. 23 / Tuesday, February 4, 2003 / Notices DEPARTMENT OF ENERGY Energy Information Administration Agency Information Collection Activities: Submission for OMB Review; Comment Request AGENCY: Energy Information Administration (EIA), Department of Energy (DOE). ACTION: Agency information collection activities: Submission for OMB review; comment request. SUMMARY: The EIA has submitted the energy information collections listed at the end of this notice to the Office of Management and Budget (OMB) for review and a three-year extension under section 3507(h)(1) of the Paperwork Reduction Act of 1995 (Pub. L. 104-13) (44 U.S.C. 3501 et seq). DATES: Comments must be filed on or before March 6, 2003. If you anticipate that you will be submitting comments

212

MagLab - Pioneers in Electricity and Magnetism: Peter Debye  

NLE Websites -- All DOE Office Websites (Extended Search)

Peter Debye (1884-1966) Peter Debye Peter Debye carried out pioneering studies of molecular dipole moments, formulated theories of magnetic cooling and of electrolytic...

213

MagLab - Pioneers in Electricity and Magnetism: Siegmund Loewe  

NLE Websites -- All DOE Office Websites (Extended Search)

Siegmund Loewe (1885-1962) Siegmund Loewe Siegmund Loewe was a German engineer and businessman who developed vacuum tube forerunners of the modern integrated circuit. He pioneered...

214

MagLab - Pioneers in Electricity and Magnetism: Paul Lauterbur  

NLE Websites -- All DOE Office Websites (Extended Search)

Paul Lauterbur (1929-2007) Paul Lauterbur Chemist Paul Lauterbur pioneered the use of nuclear magnetic resonance (NMR) for medical imaging. Lauterbur developed a technique, now...

215

MagLab - Pioneers in Electricity and Magnetism: Carl Friedrich...  

NLE Websites -- All DOE Office Websites (Extended Search)

mathematicians of all time, Carl Friedrich Gauss was also a pioneer in the study of magnetism and electricity. For an extensive survey of terrestrial magnetism, he invented an...

216

COLLOQUIUM: Spitzer's 100th: Founding PPPL & Pioneering Work...  

NLE Websites -- All DOE Office Websites (Extended Search)

5:30pm Colloquia MBG Auditorium COLLOQUIUM: Spitzer's 100th: Founding PPPL & Pioneering Work in Fusion Energy Dr. Greg Hammett Princeton University Professor Russell Kulsrud...

217

Chapter 32 Standards Applicable to Generators of Hazardous Waste (Kentucky)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 Standards Applicable to Generators of Hazardous Waste 2 Standards Applicable to Generators of Hazardous Waste (Kentucky) Chapter 32 Standards Applicable to Generators of Hazardous Waste (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Kentucky Program Type Environmental Regulations Provider Department for Environmental Protection This administrative regulation establishes procedures to establish the applicable general provisions for generators of hazardous waste. It also

218

Chapter 30 Waste Management: General Administrative Procedures (Kentucky) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chapter 30 Waste Management: General Administrative Procedures Chapter 30 Waste Management: General Administrative Procedures (Kentucky) Chapter 30 Waste Management: General Administrative Procedures (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Retail Supplier Rural Electric Cooperative State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Wind Program Info State Kentucky Program Type Environmental Regulations Provider Department for Environmental Protection The waste management administrative regulations apply to the disposal of solid waste and the management of all liquid, semisolid, solid, or gaseous

219

Greater Cincinnati Energy Alliance - Residential Rebate Program (Kentucky)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rebate Program Rebate Program (Kentucky) Greater Cincinnati Energy Alliance - Residential Rebate Program (Kentucky) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Appliances & Electronics Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Ventilation Manufacturing Heat Pumps Commercial Lighting Lighting Water Heating Buying & Making Electricity Program Info State Kentucky Program Type Local Rebate Program Rebate Amount Home energy assessment: $100 (for homes under 3000 sq/ft) Rebates up to 50% for improvements specified in your energy assessment report The Greater Cincinnati Energy Alliance provides rebate incentives for homeowners in Hamilton, Boone, Kenton, and Campbell counties. To qualify

220

Method and system to estimate variables in an integrated gasification combined cycle (IGCC) plant  

DOE Patents (OSTI)

System and method to estimate variables in an integrated gasification combined cycle (IGCC) plant are provided. The system includes a sensor suite to measure respective plant input and output variables. An extended Kalman filter (EKF) receives sensed plant input variables and includes a dynamic model to generate a plurality of plant state estimates and a covariance matrix for the state estimates. A preemptive-constraining processor is configured to preemptively constrain the state estimates and covariance matrix to be free of constraint violations. A measurement-correction processor may be configured to correct constrained state estimates and a constrained covariance matrix based on processing of sensed plant output variables. The measurement-correction processor is coupled to update the dynamic model with corrected state estimates and a corrected covariance matrix. The updated dynamic model may be configured to estimate values for at least one plant variable not originally sensed by the sensor suite.

Kumar, Aditya; Shi, Ruijie; Dokucu, Mustafa

2013-09-17T23:59:59.000Z

Note: This page contains sample records for the topic "kentucky pioneer igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Kentucky Power Co | Open Energy Information  

Open Energy Info (EERE)

Ohio Ohio Service Territory Kentucky Website www.kentuckypower.com Green Button Reference Page www.aep.com/newsroom/news Green Button Committed Yes Utility Id 22053 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png RS Residential

222

Pioneer Materials Inc PMI | Open Energy Information  

Open Energy Info (EERE)

Inc PMI Inc PMI Jump to: navigation, search Name Pioneer Materials Inc (PMI) Place Torrance, California Zip 90505 Product US-based manufacturer of non-silicon feedstock material for thin-film PV products such as zinc-oxide and indium-tin-oxide. Coordinates 40.417285┬░, -79.223959┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.417285,"lon":-79.223959,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

223

City of Berea Municipal Utility, Kentucky | Open Energy Information  

Open Energy Info (EERE)

Berea Municipal Utility, Kentucky Berea Municipal Utility, Kentucky (Redirected from City of Berea Municipal Utilities, Kentucky) Jump to: navigation, search Name City of Berea Municipal Utility Place Kentucky Utility Id 49998 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Rate Commercial Industrial and Large Commercial Electric Rate Industrial Large Commercial Electric Rate Commercial Net Metering Rate Commercial Primary Metering Customer Owned/Leased Transformers Industrial

224

Kentucky Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Kentucky Regions Kentucky Regions National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov High School Regionals Kentucky Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Kentucky Coaches can review the high school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your school's state, county, city, or district.

225

Software Helps Kentucky County Gauge Energy Use | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Software Helps Kentucky County Gauge Energy Use Software Helps Kentucky County Gauge Energy Use Software Helps Kentucky County Gauge Energy Use July 27, 2010 - 1:00pm Addthis How does it work? Software tracks energy usage, greenhouse gas levels and analyzes utility bills. County could see savings and cost recoveries of $100,000 to $200,000. Information allows county to make energy usage changes and identify retrofit needs. For county officials conscious of energy efficiency, deciphering complex utility bills and identifying both municipal energy-use trends and potential savings opportunities can be complex without sophisticated software. "We knew we needed a better system," says James Bush, energy manager for Lexington-Fayette Urban County, Kentucky. Last month, the county invested $140,000 of a $2.7 million Energy

226

City of Olive Hill, Kentucky (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Olive Hill, Kentucky (Utility Company) Olive Hill, Kentucky (Utility Company) Jump to: navigation, search Name Olive Hill City of Place Kentucky Utility Id 14103 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Industrial Industrial Residential Average Rates Residential: $0.0920/kWh Commercial: $0.1090/kWh References ÔćĹ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Olive_Hill,_Kentucky_(Utility_Company)&oldid=410054

227

City of Bardwell, Kentucky (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Bardwell, Kentucky (Utility Company) Bardwell, Kentucky (Utility Company) Jump to: navigation, search Name City of Bardwell Place Kentucky Utility Id 1205 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Transmission Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Residential Residential Residential- All Electric Residential Three Phase Church Commercial Three Phase Power Commercial Average Rates Residential: $0.0904/kWh Commercial: $0.1110/kWh References ÔćĹ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Bardwell,_Kentucky_(Utility_Company)&oldid=409312

228

Kentucky Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Kentucky Regions Kentucky Regions National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Middle School Regionals Kentucky Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Kentucky Coaches can review the middle school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your

229

South Kentucky RECC - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

South Kentucky RECC - Residential Energy Efficiency Rebate Program South Kentucky RECC - Residential Energy Efficiency Rebate Program South Kentucky RECC - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Ventilation Heat Pumps Maximum Rebate Button Up (weatherization): $400 Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Caulking: Free Button Up (weatherization): $20 for every 1,000 BTU reduced in heating load Geothermal Heat Pump with Touchstone Energy Home: $500 Air-Source Heat Pump with Touchstone Energy Home: $300 Touchstone Energy Manufactured Home: $250 Geothermal Heat Pump: $200 Heat Pump/Furnace Tune-Up: $75

230

Kentucky/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Kentucky/Wind Resources/Full Version Kentucky/Wind Resources/Full Version < KentuckyÔÇÄ | Wind Resources Jump to: navigation, search Print PDF Kentucky Wind Resources KentuckyMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

231

City of Benham, Kentucky (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Benham, Kentucky (Utility Company) Benham, Kentucky (Utility Company) Jump to: navigation, search Name City of Benham Place Kentucky Utility Id 1387 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Single Phase Residential Residential Average Rates Residential: $0.0715/kWh Commercial: $0.0727/kWh Industrial: $0.0405/kWh References ÔćĹ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Benham,_Kentucky_(Utility_Company)&oldid=40933

232

Ethanol Production Tax Credit (Kentucky) | Open Energy Information  

Open Energy Info (EERE)

Production Tax Credit (Kentucky) Production Tax Credit (Kentucky) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 13, 2013. EZFeed Policy Place Kentucky Name Ethanol Production Tax Credit (Kentucky) Policy Category Financial Incentive Policy Type Corporate Tax Incentive Affected Technologies Biomass/Biogas Active Policy Yes Implementing Sector State/Province Primary Website http://energy.ky.gov/biofuels/Pages/biofuelsIncentives.aspx Summary Qualified ethanol producers are eligible for an income tax credit of $1 per gallon of corn- or cellulosic-based ethanol that meets ASTM standard D4806. The total credit amount available for all corn and cellulosic ethanol producers is $5 million for each taxable year. Unused ethanol credits from

233

Biodiesel Production and Blending Tax Credit (Kentucky) | Open Energy  

Open Energy Info (EERE)

Production and Blending Tax Credit (Kentucky) Production and Blending Tax Credit (Kentucky) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 12, 2013. EZFeed Policy Place Kentucky Name Biodiesel Production and Blending Tax Credit (Kentucky) Policy Category Financial Incentive Policy Type Corporate Tax Incentive Affected Technologies Biomass/Biogas Active Policy Yes Implementing Sector State/Province Primary Website http://energy.ky.gov/biofuels/Pages/biofuelsIncentives.aspx Summary blended biodiesel does not qualify. The biodiesel tax credit is applied against the corporation income tax imposed under KRS 141.040 and/or the limited liability entity tax (LLET) imposed under KRS 141.0401. The amount

234

City of Franklin, Kentucky (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Kentucky (Utility Company) Kentucky (Utility Company) Jump to: navigation, search Name City of Franklin Place Kentucky Utility Id 6718 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0869/kWh Commercial: $0.0938/kWh Industrial: $0.0724/kWh References ÔćĹ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Franklin,_Kentucky_(Utility_Company)&oldid=409617"

235

Kentucky Utilities Company - Commercial Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kentucky Utilities Company - Commercial Energy Efficiency Rebate Kentucky Utilities Company - Commercial Energy Efficiency Rebate Program Kentucky Utilities Company - Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate $50,000 per facility per calendar year Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount T5 Fixtures (T12 Replacement): $3 - $12 T5 HO High-Bay Fixtures: $15 - $74 T8 Fixtures: $1 - $16 T8 High-Bay Fixtures: $21 - $34 CFL Hardwired Fixture/Bulb: $4 CFL/LED Bulbs: $2 CFL Highbay Fixture: $35 LED Refrigerated Display Light: $6 LED Interior Lights: $5 - $10 LED Exterior Lights: $10 - $30 LED Pole Light Replacement: $30 - $88

236

Inter-County Energy Efficiency Program (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inter-County Energy Efficiency Program (Kentucky) Inter-County Energy Efficiency Program (Kentucky) Inter-County Energy Efficiency Program (Kentucky) < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Heating & Cooling Commercial Heating & Cooling Heating Heat Pumps Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Heat Pump Retrofit: $500-$1,000 Weatherization: $520-$1,370 Electric Thermal Storage: 40% discounted rate on energy usage of installed ETS heater Provider Inter-County Energy Cooperative Inter-County Energy Cooperative offers several energy efficiency and demand-side management programs for residential customers. Incentives are available for heat pumps (including geothermal, air source, and mini-split

237

SEP Success Story: Kentucky Launches State-Wide School Energy...  

Energy Savers (EERE)

In what could potentially be the first program of its scale, Kentucky has hired a new green team of 35 energy managers. Learn more. Addthis Related Articles Energy efficiency...

238

East Kentucky Power Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Kentucky Power Coop, Inc Kentucky Power Coop, Inc Jump to: navigation, search Name East Kentucky Power Coop, Inc Place Kentucky Utility Id 5580 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes ISO Other Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cogeneration and Small Power Production Power Purchase Rate Schedule,Less Than 100 kW Cogeneration and Small Power Production Power Purchase Rate Schedule,over 100 kW Section A

239

Greater Cincinnati Energy Alliance- Residential Loan Program (Kentucky)  

Energy.gov (U.S. Department of Energy (DOE))

The Greater Cincinnati Energy Alliance provides loans for single family residencies and owner occupied duplexes in Hamilton county in Ohio and Boone, Kenton, and Campbell counties in Kentucky. To...

240

Kentucky Launches State-Wide School Energy Manager Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kentucky Launches State-Wide School Energy Manager Program Kentucky Launches State-Wide School Energy Manager Program Kentucky Launches State-Wide School Energy Manager Program August 17, 2010 - 2:00pm Addthis Kentucky's School Energy Managers pose for a photo during an orientation session. | Photo courtesy of Chris Wooten, Kentucky Pollution Prevention Center Kentucky's School Energy Managers pose for a photo during an orientation session. | Photo courtesy of Chris Wooten, Kentucky Pollution Prevention Center Paul Lester Communications Specialist for the Office of Energy Efficiency and Renewable Energy In what could potentially be the first program of its scale, Kentucky has hired a new green team of 35 energy managers. Kentucky's School Energy Managers Project (SEMP) will implement energy solutions for 1,000 schools throughout 130 districts in the Bluegrass State

Note: This page contains sample records for the topic "kentucky pioneer igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Pioneer Valley Photovoltaics Cooperative aka PV Squared | Open Energy  

Open Energy Info (EERE)

Photovoltaics Cooperative aka PV Squared Photovoltaics Cooperative aka PV Squared Jump to: navigation, search Name Pioneer Valley Photovoltaics Cooperative (aka PV Squared) Place New Britain, Connecticut Zip 6051 Sector Solar Product Solar PV system installer. References Pioneer Valley Photovoltaics Cooperative (aka PV Squared)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Pioneer Valley Photovoltaics Cooperative (aka PV Squared) is a company located in New Britain, Connecticut . References ÔćĹ "Pioneer Valley Photovoltaics Cooperative (aka PV Squared)" Retrieved from "http://en.openei.org/w/index.php?title=Pioneer_Valley_Photovoltaics_Cooperative_aka_PV_Squared&oldid=349764"

242

Impacts of Standard 90.1-2007 for Commercial Buildings at State Level - Kentucky  

NLE Websites -- All DOE Office Websites (Extended Search)

Kentucky Kentucky September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF STANDARD 90.1-2007 FOR COMMERCIAL BUILDINGS IN KENTUCKY BUILDING ENERGY CODES PROGRAM IMPACTS OF STANDARD 90.1-2007 FOR COMMERCIAL BUILDINGS IN KENTUCKY Kentucky Summary Standard 90.1-2007 contains improvements in energy efficiency over the current state code, the 2006 International Energy Conservation Code (IECC). Standard 90.1-2007 would improve energy efficiency in commercial buildings in Kentucky. The analysis of the impact of Standard 90.1-2007 resulted in energy and

243

The United States of America and the People`s Republic of China experts report on integrated gasification combined-cycle technology (IGCC)  

SciTech Connect

A report written by the leading US and Chinese experts in Integrated Gasification Combined Cycle (IGCC) power plants, intended for high level decision makers, may greatly accelerate the development of an IGCC demonstration project in the People`s Republic of China (PRC). The potential market for IGCC systems in China and the competitiveness of IGCC technology with other clean coal options for China have been analyzed in the report. Such information will be useful not only to the Chinese government but also to US vendors and companies. The goal of this report is to analyze the energy supply structure of China, China`s energy and environmental protection demand, and the potential market in China in order to make a justified and reasonable assessment on feasibility of the transfer of US Clean Coal Technologies to China. The Expert Report was developed and written by the joint US/PRC IGCC experts and will be presented to the State Planning Commission (SPC) by the President of the CAS to ensure consideration of the importance of IGCC for future PRC power production.

NONE

1996-12-01T23:59:59.000Z

244

Model Based Optimal Sensor Network Design for Condition Monitoring in an IGCC Plant  

SciTech Connect

This report summarizes the achievements and final results of this program. The objective of this program is to develop a general model-based sensor network design methodology and tools to address key issues in the design of an optimal sensor network configuration: the type, location and number of sensors used in a network, for online condition monitoring. In particular, the focus in this work is to develop software tools for optimal sensor placement (OSP) and use these tools to design optimal sensor network configuration for online condition monitoring of gasifier refractory wear and radiant syngas cooler (RSC) fouling. The methodology developed will be applicable to sensing system design for online condition monitoring for broad range of applications. The overall approach consists of (i) defining condition monitoring requirement in terms of OSP and mapping these requirements in mathematical terms for OSP algorithm, (ii) analyzing trade-off of alternate OSP algorithms, down selecting the most relevant ones and developing them for IGCC applications (iii) enhancing the gasifier and RSC models as required by OSP algorithms, (iv) applying the developed OSP algorithm to design the optimal sensor network required for the condition monitoring of an IGCC gasifier refractory and RSC fouling. Two key requirements for OSP for condition monitoring are desired precision for the monitoring variables (e.g. refractory wear) and reliability of the proposed sensor network in the presence of expected sensor failures. The OSP problem is naturally posed within a Kalman filtering approach as an integer programming problem where the key requirements of precision and reliability are imposed as constraints. The optimization is performed over the overall network cost. Based on extensive literature survey two formulations were identified as being relevant to OSP for condition monitoring; one based on LMI formulation and the other being standard INLP formulation. Various algorithms to solve these two formulations were developed and validated. For a given OSP problem the computation efficiency largely depends on the ôsizeö of the problem. Initially a simplified 1-D gasifier model assuming axial and azimuthal symmetry was used to test out various OSP algorithms. Finally these algorithms were used to design the optimal sensor network for condition monitoring of IGCC gasifier refractory wear and RSC fouling. The sensors type and locations obtained as solution to the OSP problem were validated using model based sensing approach. The OSP algorithm has been developed in a modular form and has been packaged as a software tool for OSP design where a designer can explore various OSP design algorithm is a user friendly way. The OSP software tool is implemented in Matlab/Simulinkę in-house. The tool also uses few optimization routines that are freely available on World Wide Web. In addition a modular Extended Kalman Filter (EKF) block has also been developed in Matlab/Simulinkę which can be utilized for model based sensing of important process variables that are not directly measured through combining the online sensors with model based estimation once the hardware sensor and their locations has been finalized. The OSP algorithm details and the results of applying these algorithms to obtain optimal sensor location for condition monitoring of gasifier refractory wear and RSC fouling profile are summarized in this final report.

Kumar, Rajeeva; Kumar, Aditya; Dai, Dan; Seenumani, Gayathri; Down, John; Lopez, Rodrigo

2012-12-31T23:59:59.000Z

245

Proceedings of the coal-fired power systems 94: Advances in IGCC and PFBC review meeting. Volume 1  

SciTech Connect

The Coal-Fired Power Systems 94 -- Advances in IGCC and PFBC Review Meeting was held June 21--23, 1994, at the Morgantown Energy Center (METC) in Morgantown, West Virginia. This Meeting was sponsored and hosted by METC, the Office of Fossil Energy, and the US Department of Energy (DOE). METC annually sponsors this conference for energy executives, engineers, scientists, and other interested parties to review the results of research and development projects; to discuss the status of advanced coal-fired power systems and future plans with the industrial contractors; and to discuss cooperative industrial-government research opportunities with METC`s in-house engineers and scientists. Presentations included industrial contractor and METC in-house technology developments related to the production of power via coal-fired Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) systems, the summary status of clean coal technologies, and developments and advancements in advanced technology subsystems, such as hot gas cleanup. A keynote speaker and other representatives from the electric power industry also gave their assessment of advanced power systems. This meeting contained 11 formal sessions and one poster session, and included 52 presentations and 24 poster presentations. Volume I contains papers presented at the following sessions: opening commentaries; changes in the market and technology drivers; advanced IGCC systems; advanced PFBC systems; advanced filter systems; desulfurization system; turbine systems; and poster session. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

McDaniel, H.M.; Staubly, R.K.; Venkataraman, V.K. [eds.

1994-06-01T23:59:59.000Z

246

Retired lab physicist and computational pioneer, Lawrence Livermore  

National Nuclear Security Administration (NNSA)

Retired lab physicist and computational pioneer, Lawrence Livermore Retired lab physicist and computational pioneer, Lawrence Livermore National Laboratory | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Berni Alder Retired lab physicist and computational pioneer, Lawrence Livermore National Laboratory

247

Alternative Fuels Data Center: Kentucky Laws and Incentives for Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas to someone by E-mail Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Natural Gas on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Natural Gas on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Natural Gas on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Laws and Incentives for Natural Gas The list below contains summaries of all Kentucky laws and incentives

248

Schools Near EM Sites in Kentucky, Ohio Advance to DOE's National...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Schools Near EM Sites in Kentucky, Ohio Advance to DOE's National Science Bowl Schools Near EM Sites in Kentucky, Ohio Advance to DOE's National Science Bowl March 31, 2014 -...

249

Natures and wars : neoliberal discourse and the contested future of east Kentucky.  

E-Print Network (OSTI)

??M.A. Coal mining has been Appalachian Kentuckyĺs keystone industry for over a century. However, in 2012 and 2013 coal production plummeted, driving industry employment toů (more)

Biesel, Shelly Annette, 1986-

2014-01-01T23:59:59.000Z

250

[Tampa Electric Company IGCC project]. 1996 DOE annual technical report, January--December 1996  

SciTech Connect

Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project uses a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,000 tons per day of coal to syngas. The gasification plant is coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 BTUs/cf (HHV). The syngas then flows through a high temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product. Approximately 10% of the raw, hot syngas at 900 F is designed to pass through an intermittently moving bed of metal-oxide sorbent which removes sulfur-bearing compounds from the syngas. PPS-1 will be the first unit in the world to demonstrate this advanced metal oxide hot gas desulfurization technology on a commercial unit. The emphasis during 1996 centered around start-up activities.

NONE

1997-12-31T23:59:59.000Z

251

Load-following control of an IGCC plant with CO2 capture  

SciTech Connect

In this paper, a decentralized control strategy is considered for load-following control of an integrated gasification combined cycle (IGCC) plant with CO2 capture without flaring the syngas. The control strategy considered is gas turbine (GT) lead with gasifier follow. In this strategy, the GT controls the power load by manipulating its firing rate while the slurry feed flow to the gasifier is manipulated to control the syngas pressure at the GT inlet. However, the syngas pressure control is an integrating process with significant timedelay. In this work, a modified proportional-integral-derivative (PID) control is considered for syngas pressure control given that conventional PID controllers show poor control performance for integrating processes with large time delays. The conventional PID control is augmented with an internal feedback loop. The P-controller used in this internal loop converts the integrating process to an open-loop stable process. The resulting secondorder plus time delay model uses a PID controller where the tuning parameters are found by minimizing the integral time-weighted absolute error (ITAE) for disturbance rejection. A plant model with single integrator and time delay is identified by a P-control method. When a ramp change is introduced in the set-point of the load controller, the performance of both the load and pressure controllers with the modified PID control strategy is found to be superior to that using a traditional PID controller. Key

Bhattacharyya, D.; Turton, R.; Zitney, S.

2011-01-01T23:59:59.000Z

252

Polygeneration-IGCC concepts for the production of hydrogen rich fuels based on lignite  

Science Journals Connector (OSTI)

This paper presents three IGCC-power plant concepts for central production of a hydrogen-rich fuel (methanol, hydrogen, synthetic natural gas Ô?? SNG) from lignite. Each concept contains a CO2-separation, which produces a sequestration-ready CO2-rich stream. Thus, CO2-emissions caused by use of lignite are considerably reduced. Furthermore, the produced low-carbon fuels are converted in decentralised Combined Heat and Power Plants (CHPP). CHPP leads to high efficiencies of fuel utilisation between 54 and 62%, which exceed the efficiencies of single power generation. Regarding to the CO2-emissions of a natural gas fired CHPP, heat and power can be generated by lignite as clean as by natural gas. The specific CO2-emissions are even much lower in the case of hydrogen production. Costs for the centrally produced methanol and hydrogen are with 29 and 19 EUR/MWh(LHV) already within an economic range. Synthetic natural gas can be produced for 23 EUR/MWh(LHV).

Bernd Meyer; Katrin Ogriseck

2007-01-01T23:59:59.000Z

253

Preparation of Metal Filter Element for Fail Safety in IGCC Filter Unit  

SciTech Connect

Metal filter elements as the fail safety filter are fabricated by the methods using cold isostatic pressure (compress method) and binder (binder method) to form the filter element and tested in a experimental and bench units. The fail safety filter on the filtration system is mounted additionally in order to intercept the particle leak when the main filter element is broken. So it should have two contrary functions of a high permeability and being plugged easily. The filter element having high porosity and high plugging property was fabricated by the bind method. It has the porosity more than 50%, showed very small pressure drop less than 10mmH2O at the face velocity of 0.15m/s, and plugged within 5 minutes with the inhibition of the particle leak larger than 4 {micro}m. The test result of corrosion tendency in IGCC gas stream at 500 C shows SUS310L material is very reasonable among SUS310, SUS316, Inconel 600, and Hastelloy X.

Choi, J-H.; Ahn, I-S.; Bak, Y-C.; Bae, S-Y.; Ha, S-J.; Jang, H-J.

2002-09-18T23:59:59.000Z

254

Pioneer Valley Resource Recovery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Pioneer Valley Resource Recovery Biomass Facility Pioneer Valley Resource Recovery Biomass Facility Jump to: navigation, search Name Pioneer Valley Resource Recovery Biomass Facility Facility Pioneer Valley Resource Recovery Sector Biomass Facility Type Municipal Solid Waste Location Hampden County, Massachusetts Coordinates 42.1172314┬░, -72.6624209┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.1172314,"lon":-72.6624209,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

255

"Rip" Perkins, pioneering PPPL physicist and a design leader...  

NLE Websites -- All DOE Office Websites (Extended Search)

"Rip" Perkins, pioneering PPPL physicist and a design leader for ITER, dies at 80 By John Greenwald August 11, 2014 Tweet Widget Google Plus One Share on Facebook Francis "Rip"...

256

Europe Ś A pioneer in greenhouse gas emissions trading  

Science Journals Connector (OSTI)

The decision on the EU directive for emissions trading in June 2003 makes Europe a pioneer ... . The timetable for the enforcement of the emissions trading directive at the national level seems very...

Sonja Butzengeiger; Axel Michaelowa

257

City of Vanceburg, Kentucky (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Vanceburg, Kentucky (Utility Company) Vanceburg, Kentucky (Utility Company) Jump to: navigation, search Name City of Vanceburg Place Kentucky Utility Id 19716 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate EL-04 Commercial Fixed Load Rate EL-07 Residential Industrial Demand DE-08 Industrial Industrial Rate EL-05 Industrial Outside Lighting EL-2A (150W) Lighting Outside Lighting EL-2B (150W with Pole) Lighting Outside Lighting EL-2C (400W) Lighting Outside Lighting EL-2D (400W with Pole) Lighting

258

DOE Solar Decathlon: News Blog ┬╗ Kentucky/Indiana  

NLE Websites -- All DOE Office Websites (Extended Search)

Kentucky/Indiana Kentucky/Indiana Below you will find Solar Decathlon news from the Kentucky/Indiana archive, sorted by date. Affordability and Market Appeal Contest Winners Announced! Thursday, October 10, 2013 Solar Decathlon At an awards ceremony this morning, winners of the U.S. Department of Energy Solar Decathlon 2013 Affordability and Market Appeal contests took center stage by demonstrating that innovative, energy-efficient houses can be cost-effective and appealing to a variety of target markets. Photo of Richard Anderson and Robert Best at a desk looking at paperwork. The Affordability Contest juror, Richard Anderson, left, speaks with Robert Best from Stanford University during the Affordability Contest walkthrough. (Credit: Eric Grigorian/U.S. Department of Energy Solar Decathlon)

259

Tri-County Elec Member Corp (Kentucky) | Open Energy Information  

Open Energy Info (EERE)

Corp (Kentucky) Corp (Kentucky) Jump to: navigation, search Name Tri-County Elec Member Corp Place Kentucky Utility Id 19162 References EIA Form EIA-861 Final Data File for 2010 - File2_2010[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 Watt HPS Lighting 100 Watt Induction Lighting 1000 Watt MH Lighting 103 Watt LED Lighting 175 Watt MV Lighting 200 Watt HPS Lighting 250 Watt HPS Lighting 400 Watt HPS Lighting 400 Watt MH Lighting 400 Watt MV Lighting 51 Watt LED Lighting 85 Watt Induction Lighting GSA-Part 1 Commercial GSA-Part 2 Commercial GSA-Part 3 Industrial Residential Residential Average Rates Residential: $0.0941/kWh Commercial: $0.1050/kWh

260

City of Bardstown, Kentucky (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Bardstown, Kentucky (Utility Company) Bardstown, Kentucky (Utility Company) Jump to: navigation, search Name City of Bardstown Place Kentucky Utility Id 690 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png E-1 Residential Customers Residential E-2 Commercial Customers Commercial E-3 Large Power Customers Commercial E-4 Industrial Customer (City Owned Distribution Facilities) Industrial E-5 Industrial Customer (Customer Owned Distribution Facilities) Industrial SECURITY LIGHTS 175 W Lighting Average Rates Residential: $0.0748/kWh

Note: This page contains sample records for the topic "kentucky pioneer igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

South Kentucky Rural Electric Cooperative Corporation Smart Grid Project |  

Open Energy Info (EERE)

Corporation Smart Grid Project Corporation Smart Grid Project Jump to: navigation, search Project Lead South Kentucky Rural Electric Cooperative Corporation Country United States Headquarters Location Somerset, Kentucky Recovery Act Funding $9538234 Total Project Value $19636295 Coverage Area Coverage Map: South Kentucky Rural Electric Cooperative Corporation Smart Grid Project Coordinates 37.0920222┬░, -84.6041084┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

262

City of Nicholasville, Kentucky (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Nicholasville, Kentucky (Utility Company) Nicholasville, Kentucky (Utility Company) Jump to: navigation, search Name City of Nicholasville Place Kentucky Utility Id 13577 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Large Commercial Large Commercial(Primary Metering) Residential Residential Security Lighting- 100W Lighting Security Lighting- 250W Lighting Security Lighting- 400W Lighting Average Rates Residential: $0.0695/kWh Commercial: $0.0765/kWh Industrial: $0.0581/kWh References ÔćĹ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

263

City of Murray, Kentucky (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Murray, Kentucky (Utility Company) Murray, Kentucky (Utility Company) Jump to: navigation, search Name City of Murray Place Kentucky Utility Id 13138 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Commercial- Demand Commercial Commercial- Large Demand General Power Rate- Schedule SGSB Commercial General Power Rate- Schedule SMSB Commercial Outdoor Lighting- 1000W High Pressure Sodium Lighting Outdoor Lighting- 1000W Incandescent Lighting Outdoor Lighting- 1000W Mercury Vapor Lighting

264

City of Mayfield Plant Board, Kentucky (Utility Company) | Open Energy  

Open Energy Info (EERE)

Plant Board, Kentucky (Utility Company) Plant Board, Kentucky (Utility Company) Jump to: navigation, search Name City of Mayfield Plant Board Place Kentucky Utility Id 11871 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Power Rate Schedule - GSA 1-Customers<50 KW &/OR <15,000 KWH Commercial General Power Rate Schedule - GSA 2-Customers 51 - 1000 KW OR <50 KW & >15,000 KWH Industrial General Power Rate Schedule - GSA 3-Customers >1000 KW Industrial Residential Rate Residential

265

Kentucky - Seds - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Kentucky - Seds - U.S. Energy Information Administration (EIA) Kentucky - Seds - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming The page does not exist for . To view this page, please select a state: Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida

266

City of Owensboro, Kentucky (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Owensboro, Kentucky (Utility Company) Owensboro, Kentucky (Utility Company) Jump to: navigation, search Name City of Owensboro Place Kentucky Utility Id 14268 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes ISO Other Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate-Single Phase Commercial Commercial Rate-Three Phase Commercial General Service-GSP Industrial General Service-GSS A Industrial General Service-GSS B Industrial

267

Brighter Future for Kentucky Manufacturing Plants | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brighter Future for Kentucky Manufacturing Plants Brighter Future for Kentucky Manufacturing Plants Brighter Future for Kentucky Manufacturing Plants May 28, 2010 - 3:04pm Addthis Montaplast North America, Inc. is replacing almost 1,200 halide lights with high-efficiency fluorescent fixtures at its Frankfort, KY, facility. | Photo Courtesy of Montaplast | Montaplast North America, Inc. is replacing almost 1,200 halide lights with high-efficiency fluorescent fixtures at its Frankfort, KY, facility. | Photo Courtesy of Montaplast | Stephen Graff Former Writer & editor for Energy Empowers, EERE Consider This: Saving $90,000 a year by curbing energy use is about equal to the salaries of three operators at a typical manufacturing plant in the Bluegrass State, according to wages listed from the U.S. Bureau of Labor

268

City of Berea Municipal Utility, Kentucky | Open Energy Information  

Open Energy Info (EERE)

Berea Municipal Utility, Kentucky Berea Municipal Utility, Kentucky Jump to: navigation, search Name City of Berea Municipal Utility Place Kentucky Utility Id 49998 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Rate Commercial Industrial and Large Commercial Electric Rate Industrial Large Commercial Electric Rate Commercial Net Metering Rate Commercial Primary Metering Customer Owned/Leased Transformers Industrial Primary Metering Non-Owned/Leased Transformers Industrial

269

City of Hopkinsville, Kentucky (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Kentucky (Utility Company) Kentucky (Utility Company) Jump to: navigation, search Name City of Hopkinsville Place Kentucky Utility Id 8846 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rates GSA-1 (less than 50 kW) Commercial Commercial Rates GSA-2 (50-1000 kW) Industrial Commercial Rates GSA-3 (1001-5000 kW) Industrial Residential Rate Residential Security Lighting Flood Light HPS 250 W Lighting Security Lighting Floodlight HPS 400 W Lighting Security Lighting HPS 100 W Lighting Security Lighting HPS 250 W Lighting

270

City of Paducah, Kentucky (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Paducah, Kentucky (Utility Company) Paducah, Kentucky (Utility Company) Jump to: navigation, search Name City of Paducah Place Kentucky Utility Id 14371 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Industrial (over 1,000 KW with an industrial SIC code) Industrial Large Commercial (over 1,000 KW) Commercial Mid-Size Commercial (less than 1000 KW) Commercial Residential Rate Residential Security Lights - HPS 100W Lighting Security Lights - HPS 200W Lighting

271

City of Glasgow, Kentucky (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Glasgow, Kentucky (Utility Company) Glasgow, Kentucky (Utility Company) Jump to: navigation, search Name City of Glasgow Place Kentucky Utility Id 7270 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Rate- Schedule GSA Commercial Outdoor Light- 100W High Pressure Sodium Lighting Outdoor Light- 250W High Pressure Sodium Lighting Outdoor Light- 400W High Pressure Sodium Lighting Outdoor Lighting- Street Lights Lighting Residential Residential Average Rates Residential: $0.0965/kWh Commercial: $0.0993/kWh

272

DOE Solar Decathlon: University of Kentucky: Constructing a 3D Textbook  

NLE Websites -- All DOE Office Websites (Extended Search)

s*ky blue and the Administration Building on the University of Kentucky campus. s*ky blue and the Administration Building on the University of Kentucky campus. Enlarge image s*ky blue returned to the University of Kentucky for further research and monitoring. (Courtesy of Stephen Patton) Who: University of Kentucky What: s*ky blue House Where: The University of Kentucky Administration Drive Lexington, KY 40506 Map This House Public tours: Visit the s*ky blue Web site for updates on public tours. Solar Decathlon 2009 University of Kentucky: Constructing a 3D Textbook After competing in the U.S. Department of Energy Solar Decathlon 2009, s*ky blue returned home to the University of Kentucky (UK). It was reconstructed in front of the Administration Building on the campus' main lawn-a location that juxtaposes the university's oldest building with one

273

CE IGCC Repowering Project: Use of the Lockheed Kinetic Extruder for coal feeding; Topical report, June 1993  

SciTech Connect

ABB CE is evaluating alternate methods of coal feed across a pressure barrier for its pressurized coal gasification process. The Lockheed Kinetic Extruder has shown to be one of the most promising such developments. In essence, the Kinetic Extruder consists of a rotor in a pressure vessel. Coal enters the rotor and is forced outward to the surrounding pressure vessel by centrifugal force. The force on the coal passing across the rotor serves as a pressure barrier. Should this technology be successfully developed and tested, it could reduce the cost of IGCC technology by replacing the large lockhoppers conventionally used with a much smaller system. This will significantly decrease the size of the gasifier island. Kinetic Extruder technology needs testing over an extended period of time to develop and prove the long term reliability and performance needed in a commercial application. Major issues to be investigated in this program are component design for high temperatures, turn-down, scale-up factors, and cost. Such a test would only be economically feasible if it could be conducted on an existing plant. This would defray the cost of power and feedstock. Such an installation was planned for the CE IGCC Repowering Project in Springfield, Illinois. Due to budgetary constraints, however, this provision was dropped from the present plant design. It is believed that, with minor design changes, a small scale test version of the Kinetic Extruder could be installed parallel to an existing lockhopper system without prior space allocation. Kinetic Extruder technology represents significant potential cost savings to the IGCC process. For this reason, a test program similar to that specified for the Springfield project would be a worthwhile endeavor.

NONE

1994-02-01T23:59:59.000Z

274

AVESTAR Center: Dynamic simulation-based collaboration toward achieving opertional excellence for IGCC plants with crbon capture  

SciTech Connect

To address challenges in attaining operational excellence for clean energy plants, the National Energy Technology Laboratory has launched a world-class facility for Advanced Virtual Energy Simulation Training And Research (AVESTAR(TM)). The AVESTAR Center brings together state-of-the-art, real-time, high-fidelity dynamic simulators with operator training systems and 3D virtual immersive training systems into an integrated energy plant and control room environment. This paper will highlight the AVESTAR Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of an integrated gasification combined cycle power plant (IGCC) with carbon dioxide capture.

Zitney, Strphen E. [U.S. DOE; Liese, Eric A. [U.S. DOE; Mahapatra, Priyadarshi [URS; Turton, Richard [WVU; Bhattacharyya, Debangsu [WVU; Provost, Graham [Fossil Consulting Services

2012-01-01T23:59:59.000Z

275

Ada Yonath: Another Pioneering Woman in Science | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ada Yonath: Another Pioneering Woman in Science Ada Yonath: Another Pioneering Woman in Science Ada Yonath: Another Pioneering Woman in Science March 25, 2011 - 4:51pm Addthis Nobel Prize winner in Chemistry, Ada Yonath | Credit nobelprize.org Nobel Prize winner in Chemistry, Ada Yonath | Credit nobelprize.org April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs In honor of Women's History Month, we've told you about a few great women in science and technology. Today we are highlighting another woman of present-day science, Ada Yonath, whose studies of the structure and function of the ribosome won her a Nobel Prize in Chemistry in 2009.{C}{C} According to the autobiography provided on NobelPrize.org, Yonath was born in Jerusalem in 1939 to a poor family that shared a small apartment with

276

West Kentucky Regional Middle School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

Kentucky Regions » West Kentucky Regional Kentucky Regions » West Kentucky Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Kentucky Regions West Kentucky Regional Middle School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Robert Smith Email: robert.smith@lex.doe.gov Additional Contact: Name: Donald Dihel Email: don.dihel@lex.doe.gov

277

West Kentucky Regional High School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

Kentucky Regions » West Kentucky Regional High Kentucky Regions » West Kentucky Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Kentucky Regions West Kentucky Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Robert Smith Email: robert.smith@lex.doe.gov Additional Contact: Name: Donald Dihel Email: don.dihel@lex.doe.gov

278

Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

UC Davis Pioneers UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles on AddThis.com...

279

West Point, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Point, Kentucky: Energy Resources Point, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.9995164┬░, -85.9435746┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9995164,"lon":-85.9435746,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

280

Larue County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Larue County, Kentucky: Energy Resources Larue County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.5189552┬░, -85.7256372┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.5189552,"lon":-85.7256372,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "kentucky pioneer igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Vine Grove, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Vine Grove, Kentucky: Energy Resources Vine Grove, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.8100674┬░, -85.9813524┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.8100674,"lon":-85.9813524,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

282

Greenup County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Greenup County, Kentucky: Energy Resources Greenup County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.5665695┬░, -82.9501558┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.5665695,"lon":-82.9501558,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

283

Jessamine County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Jessamine County, Kentucky: Energy Resources Jessamine County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.895573┬░, -84.564147┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.895573,"lon":-84.564147,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

284

Pendleton County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Pendleton County, Kentucky: Energy Resources Pendleton County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.7283386┬░, -84.3962535┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.7283386,"lon":-84.3962535,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

285

Menifee County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Menifee County, Kentucky: Energy Resources Menifee County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.9335368┬░, -83.634843┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9335368,"lon":-83.634843,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

286

Leslie County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Leslie County, Kentucky: Energy Resources Leslie County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.0698286┬░, -83.3789389┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.0698286,"lon":-83.3789389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

287

Breckinridge County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Breckinridge County, Kentucky: Energy Resources Breckinridge County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.7982002┬░, -86.4592091┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7982002,"lon":-86.4592091,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

288

McCreary County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

McCreary County, Kentucky: Energy Resources McCreary County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.6973499┬░, -84.4802606┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.6973499,"lon":-84.4802606,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

289

City of Hickman, Kentucky (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Hickman Hickman Place Kentucky Utility Id 8548 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Power - Commercial / Industrial, Class 40 Commercial General Power - Commercial / Industrial, Class 50 Residential Service - RS Residential Average Rates Residential: $0.1090/kWh Commercial: $0.1320/kWh References ÔćĹ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Hickman,_Kentucky_(Utility_Company)&oldid=409725

290

Muhlenberg County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Muhlenberg County, Kentucky: Energy Resources Muhlenberg County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.1772501┬░, -87.1422895┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.1772501,"lon":-87.1422895,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

291

Rockcastle County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rockcastle County, Kentucky: Energy Resources Rockcastle County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.3743065┬░, -84.3121264┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.3743065,"lon":-84.3121264,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

292

McCracken County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

McCracken County, Kentucky: Energy Resources McCracken County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.0330607┬░, -88.7108964┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.0330607,"lon":-88.7108964,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

293

DOE Solar Decathlon: News Blog ┬╗ Kentucky/Indiana  

NLE Websites -- All DOE Office Websites (Extended Search)

'Kentucky/Indiana' 'Kentucky/Indiana' Affordability and Market Appeal Contest Winners Announced! Thursday, October 10, 2013 Solar Decathlon At an awards ceremony this morning, winners of the U.S. Department of Energy Solar Decathlon 2013 Affordability and Market Appeal contests took center stage by demonstrating that innovative, energy-efficient houses can be cost-effective and appealing to a variety of target markets. Photo of Richard Anderson and Robert Best at a desk looking at paperwork. The Affordability Contest juror, Richard Anderson, left, speaks with Robert Best from Stanford University during the Affordability Contest walkthrough. (Credit: Eric Grigorian/U.S. Department of Energy Solar Decathlon) Three teams tied for first place in the Affordability Contest by earning

294

Carlisle County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Carlisle County, Kentucky: Energy Resources Carlisle County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.8206685┬░, -88.9796776┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.8206685,"lon":-88.9796776,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

295

Casey County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Casey County, Kentucky: Energy Resources Casey County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.3157449┬░, -84.8984775┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.3157449,"lon":-84.8984775,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

296

Edmonson County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Edmonson County, Kentucky: Energy Resources Edmonson County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.1941682┬░, -86.2158497┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.1941682,"lon":-86.2158497,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

297

Wolfe County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wolfe County, Kentucky: Energy Resources Wolfe County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.7550869┬░, -83.4643551┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7550869,"lon":-83.4643551,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

298

Fort Knox, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Knox, Kentucky: Energy Resources Knox, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.890736┬░, -85.963174┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.890736,"lon":-85.963174,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

299

Clinton County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

County, Kentucky: Energy Resources County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.7263899┬░, -85.1479364┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.7263899,"lon":-85.1479364,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

300

Owsley County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Owsley County, Kentucky: Energy Resources Owsley County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.4294933┬░, -83.7199136┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.4294933,"lon":-83.7199136,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "kentucky pioneer igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Estill County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Estill County, Kentucky: Energy Resources Estill County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.6975384┬░, -83.9744262┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.6975384,"lon":-83.9744262,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

302

Metcalfe County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Metcalfe County, Kentucky: Energy Resources Metcalfe County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.0032438┬░, -85.643487┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.0032438,"lon":-85.643487,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

303

City of Fulton, Kentucky (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Fulton Fulton Place Kentucky Utility Id 6840 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Power Service 1 Commercial General Power Service 2 Commercial General Power Service 3 Commercial Outdoor Light Lighting Residential Residential Average Rates Residential: $0.1000/kWh Commercial: $0.0934/kWh Industrial: $0.0838/kWh References ÔćĹ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Fulton,_Kentucky_(Utility_Company)&oldid=409628

304

Morgan County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kentucky: Energy Resources Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.9145713┬░, -83.2934086┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9145713,"lon":-83.2934086,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

305

Letcher County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Letcher County, Kentucky: Energy Resources Letcher County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.125351┬░, -82.8640623┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.125351,"lon":-82.8640623,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

306

Kenton County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kenton County, Kentucky: Energy Resources Kenton County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.9863872┬░, -84.564147┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9863872,"lon":-84.564147,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

307

Bullitt County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bullitt County, Kentucky: Energy Resources Bullitt County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.9842107┬░, -85.684578┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9842107,"lon":-85.684578,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

308

Barren County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Barren County, Kentucky: Energy Resources Barren County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.9676836┬░, -85.8486236┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.9676836,"lon":-85.8486236,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

309

Knott County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Knott County, Kentucky: Energy Resources Knott County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.3461117┬░, -82.9931607┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.3461117,"lon":-82.9931607,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

310

Fleming County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Fleming County, Kentucky: Energy Resources Fleming County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.3987633┬░, -83.6773928┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.3987633,"lon":-83.6773928,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

311

City of Bowling Green, Kentucky (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Green Green Place Kentucky Utility Id 2056 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Large Industrial Industrial Outdoor Lights Lighting Residential Residential Security Lights Lighting Small Industrial Industrial Average Rates Residential: $0.0894/kWh Commercial: $0.1010/kWh Industrial: $0.0600/kWh References ÔćĹ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Bowling_Green,_Kentucky_(Utility_Company)&oldid=40936

312

Calloway County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Calloway County, Kentucky: Energy Resources Calloway County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.6402766┬░, -88.285042┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.6402766,"lon":-88.285042,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

313

Trigg County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Trigg County, Kentucky: Energy Resources Trigg County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.8473642┬░, -87.7763333┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.8473642,"lon":-87.7763333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

314

Kentucky DNR Oil and Gas Division | Open Energy Information  

Open Energy Info (EERE)

DNR Oil and Gas Division DNR Oil and Gas Division Jump to: navigation, search State Kentucky Name Kentucky DNR Oil and Gas Division Address 1025 Capital Center Drive City, State Frankfort, KY Zip 40601 Website http://oilandgas.ky.gov/Pages/ Coordinates 38.1819649┬░, -84.8153457┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.1819649,"lon":-84.8153457,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

315

Bracken County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bracken County, Kentucky: Energy Resources Bracken County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.7117016┬░, -84.059029┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.7117016,"lon":-84.059029,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

316

Christian County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Christian County, Kentucky: Energy Resources Christian County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.8410586┬░, -87.460397┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.8410586,"lon":-87.460397,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

317

EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

59: Uranium Hexafluoride Conversion Facility at the Paducah, 59: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky Site EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky Site Summary This site-specific EIS considers the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three locations within the Paducah site; transportation of depleted uranium conversion products and waste materials to a disposal facility; transportation and sale of the hydrogen fluoride (HF) produced as a conversion co-product; and neutralization of HF to calcium fluoride and its sale or disposal in the event that the HF product is not sold. This EIS also considers a no action alternative that assumes continued storage of DUF6 at the Paducah site. A

318

Breathitt County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Breathitt County, Kentucky: Energy Resources Breathitt County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.5359616┬░, -83.336188┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.5359616,"lon":-83.336188,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

319

Boyle County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Boyle County, Kentucky: Energy Resources Boyle County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.6526034┬░, -84.8150781┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.6526034,"lon":-84.8150781,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

320

City of Benton, Kentucky (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Benton Benton Place Kentucky Utility Id 1582 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service 1 Commercial General Service 2 Commercial General Service 3 Commercial Residential Residential Average Rates Residential: $0.1030/kWh Commercial: $0.1000/kWh Industrial: $0.0928/kWh References ÔćĹ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Benton,_Kentucky_(Utility_Company)&oldid=409336

Note: This page contains sample records for the topic "kentucky pioneer igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Graves County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Graves County, Kentucky: Energy Resources Graves County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.6887728┬░, -88.7108964┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.6887728,"lon":-88.7108964,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

322

Henry County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kentucky: Energy Resources Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.4268385┬░, -85.1479364┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.4268385,"lon":-85.1479364,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

323

Elliott County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Elliott County, Kentucky: Energy Resources Elliott County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.1575088┬░, -83.1220074┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.1575088,"lon":-83.1220074,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

324

Simpson County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Simpson County, Kentucky: Energy Resources Simpson County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.7772014┬░, -86.6207943┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.7772014,"lon":-86.6207943,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

325

Magoffin County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Magoffin County, Kentucky: Energy Resources Magoffin County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.730555┬░, -83.0361376┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.730555,"lon":-83.0361376,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

326

Optimal control system design of an acid gas removal unit for an IGCC power plants with CO2 capture  

SciTech Connect

Future IGCC plants with CO{sub 2} capture should be operated optimally in the face of disturbances without violating operational and environmental constraints. To achieve this goal, a systematic approach is taken in this work to design the control system of a selective, dual-stage Selexol-based acid gas removal (AGR) unit for a commercial-scale integrated gasification combined cycle (IGCC) power plant with pre-combustion CO{sub 2} capture. The control system design is performed in two stages with the objective of minimizing the auxiliary power while satisfying operational and environmental constraints in the presence of measured and unmeasured disturbances. In the first stage of the control system design, a top-down analysis is used to analyze degrees of freedom, define an operational objective, identify important disturbances and operational/environmental constraints, and select the control variables. With the degrees of freedom, the process is optimized with relation to the operational objective at nominal operation as well as under the disturbances identified. Operational and environmental constraints active at all operations are chosen as control variables. From the results of the optimization studies, self-optimizing control variables are identified for further examination. Several methods are explored in this work for the selection of these self-optimizing control variables. Modifications made to the existing methods will be discussed in this presentation. Due to the very large number of candidate sets available for control variables and due to the complexity of the underlying optimization problem, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS«) and the Parallel Computing« toolbox from Mathworks«. The second stage is a bottom-up design of the control layers used for the operation of the process. First, the regulatory control layer is designed followed by the supervisory control layer. Finally, an optimization layer is designed. In this paper, the proposed two-stage control system design approach is applied to the AGR unit for an IGCC power plant with CO{sub 2} capture. Aspen Plus Dynamics« is used to develop the dynamic AGR process model while MATLAB is used to perform the control system design and for implementation of model predictive control (MPC).

Jones, D.; Bhattacharyya, D.; Turton, R.; Zitney, S.

2012-01-01T23:59:59.000Z

327

West Kentucky Rural E C C | Open Energy Information  

Open Energy Info (EERE)

C C C C Jump to: navigation, search Name West Kentucky Rural E C C Place Kentucky Utility Id 20377 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Power Commercial General Power - 50-1000 kW Industrial General Power - Greater than 1000 kW Industrial Residential Residential Average Rates Residential: $0.1110/kWh Commercial: $0.1280/kWh Industrial: $0.0689/kWh References ÔćĹ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=West_Kentucky_Rural_E_C_C&oldid=412165

328

Chapter 51 Attainment and Maintenance of the National Ambient Air Quality Standards (Kentucky)  

Energy.gov (U.S. Department of Energy (DOE))

Kentucky Administrative Regulation Chapter 51, entitled Attainment and Maintenance of the National Ambient Air Quality Standards, is promulgated under the authority of the Division of Air Quality...

329

Integrated Gasification Combined Cycle (IGCC) demonstration project, Polk Power Station -- Unit No. 1. Annual report, October 1993--September 1994  

SciTech Connect

This describes the Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project which will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,300 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 Btu/scf (LHV). The syngas then flows through a high temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product.

NONE

1995-05-01T23:59:59.000Z

330

Pioneer Prairie II (09) Wind Farm | Open Energy Information  

Open Energy Info (EERE)

09) Wind Farm 09) Wind Farm Jump to: navigation, search Name Pioneer Prairie II (09) Wind Farm Facility Pioneer Prairie II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon Wind Energy Developer Horizon Wind Energy Energy Purchaser Ameren Location Northeastern IA IA Coordinates 43.450321┬░, -92.551074┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.450321,"lon":-92.551074,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

331

System expectations for Pioneer I foil implosion experiments  

SciTech Connect

Prior to the beginning of the Pioneer I shot of the Los Alamos National Laboratory TRAIL-MASTER project, numerous computational simulations were run to provide ball-park estimates for the electrical currents and voltages in the circuit, the timing of the implosion, the kinetic energy, temperature, and radiation output of the load. The purpose of these calculations was to provide guidance in setting the timings of the various switches within the circuit and to establish operating ranges for the various diagnostics.

Greene, A.E.; Brownell, J.H.; Caird, R.S.; Erickson, D.J.; Goforth, J.H.; Lindemuth, I.R.; Oliphant, T.A.; Weiss, D.L.

1985-01-01T23:59:59.000Z

332

Pioneer Power and Light Co | Open Energy Information  

Open Energy Info (EERE)

Pioneer Power and Light Co Pioneer Power and Light Co Place Wisconsin Utility Id 15086 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1300/kWh Commercial: $0.1280/kWh Industrial: $0.1190/kWh The following table contains monthly sales and revenue data for Pioneer Power and Light Co (Wisconsin). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

333

Construction Begins on DOE-Sponsored Carbon-Capture Project at Kentucky Power Plant  

Energy.gov (U.S. Department of Energy (DOE))

Today, construction began on an innovative $19.5 million carbon-capture pilot, funded in part by the U.S. Department of Energy, at Kentucky Utilitiesĺ E.W. Brown Generating Station near Harrodsburg, Kentucky. The 2 megawatt thermal system will be the first megawatt-scale carbon-capture pilot unit in the Commonwealth.

334

Health Care: What the Poor People Didn't Get from Kentucky Project  

Science Journals Connector (OSTI)

...Program" for the poor people of this coal mining county in Appalachian Kentucky...eastern Kentucky and other parts of Appalachia, the poor in Floyd County are afflicted...filled with garbage and sewage. Coal no longer provides jobs for everyone...

Robert J. Bazell

1971-04-30T23:59:59.000Z

335

Kentucky Energy and Cost Savings for New Single- and Multifamily Homes  

NLE Websites -- All DOE Office Websites (Extended Search)

Kentucky Kentucky Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC BUILDING TECHNOLOGIES PROGRAM 2 2012 IECC AS COMPARED TO THE 2009 IECC Kentucky Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC The 2012 International Energy Conservation Code (IECC) yields positive benefits for Kentucky homeowners. Moving to the 2012 IECC from the 2009 IECC is cost-effective over a 30-year life cycle. On average, Kentucky homeowners will save $5,321 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows

336

Kentucky Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Kentucky Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.33 0.27 0.23 1970's 0.20 0.22 0.24 0.25 0.29 0.37 0.48 0.60 0.57 1.26 1980's 1.67 2.18 2.85 3.05 2.93 2.89 2.44 1.97 1.77 2.00 1990's 2.12 2.35 2.51 2.67 1.95 1.83 2.63 2.51 2.45 2.11 2000's 3.27 3.96 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Kentucky Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

337

Kentucky Dry Natural Gas Proved Reserves (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Proved Reserves (Billion Cubic Feet) Proved Reserves (Billion Cubic Feet) Kentucky Dry Natural Gas Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 451 545 468 1980's 508 530 551 554 613 766 841 909 923 992 1990's 1,016 1,155 1,084 1,003 969 1,044 983 1,364 1,222 1,435 2000's 1,760 1,860 1,907 1,889 1,880 2,151 2,227 2,469 2,714 2,782 2010's 2,613 2,006 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Dry Natural Gas Proved Reserves as of Dec. 31 Kentucky Dry Natural Gas Proved Reserves Dry Natural Gas Proved Reserves as of 12/31

338

Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 11 14 12 19 17 13 17 19 19 22 1990's 8 10 8 6 47 27 24 26 20 29 2000's 27 25 25 25 19 30 36 34 34 32 2010's 111 98 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Kentucky Associated-Dissolved Natural Gas Proved Reserves, Wet After

339

Kentucky Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Wellhead Price (Dollars per Thousand Cubic Feet) Wellhead Price (Dollars per Thousand Cubic Feet) Kentucky Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.24 0.25 0.25 1970's 0.25 0.25 0.25 0.35 0.50 0.54 0.55 0.55 0.58 0.95 1980's 0.89 1.01 1.52 1.51 1.70 2.39 1.88 1.82 2.56 2.13 1990's 2.24 2.03 1.92 2.28 2.24 1.64 2.55 2.66 2.39 2.07 2000's 3.16 4.78 3.01 4.54 5.26 6.84 8.83 7.35 8.42 NA 2010's 4.47 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Wellhead Price Kentucky Natural Gas Prices

340

Kentucky Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Kentucky Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 504 1980's 536 561 592 600 647 806 883 940 957 1,015 1990's 1,047 1,187 1,126 1,036 1,025 1,102 1,046 1,429 1,295 1,530 2000's 1,837 1,950 1,999 1,971 1,982 2,240 2,369 2,588 2,846 2,919 2010's 2,785 2,128 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Kentucky Natural Gas Reserves Summary as of Dec. 31

Note: This page contains sample records for the topic "kentucky pioneer igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Notice of Availability for the Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project Final Environmental Impact Statement (12/13/02)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

740 740 Federal Register / Vol. 67, No. 240 / Friday, December 13, 2002 / Notices [FR Doc. 02-31431 Filed 12-12-02; 8:45 am] BILLING CODE 6450-01-C ENVIRONMENTAL PROTECTION AGENCY [ER-FRL-6635-7] Environmental Impact Statments; Notice of Availability Responsible Agency: Office of Federal Activities, General Information (202) 564-7167 or http://www.epa.gov/ compliance/nepa/. Weekly receipt of Environmental Impact Statements filed December 2, 2002, through December 6, 2002. Pursuant to 40 CFR 1506.9. EIS No. 020498, Draft EIS, SFW, WA, Daybreak Mine Expansion and Habitat Enhancement Project, Habitat Conservation Plan, Issuance of a Multiple Species Permit for Incidental Take, Implementation, Clark County, WA , Comment Period Ends: February 21, 2003. Contact: Tim Romanski

342

E-Print Network 3.0 - american sturgeon pioneers Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sample search results for: american sturgeon pioneers Page: << < 1 2 3 4 5 > >> 1 Green Sturgeon General Questions & Answers North American green sturgeon Summary: Green...

343

Heat Integration of the Water-Gas Shift Reaction System for Carbon Sequestration Ready IGCC Process with Chemical Looping  

SciTech Connect

Integrated gasification combined cycle (IGCC) technology has been considered as an important alternative for efficient power systems that can reduce fuel consumption and CO2 emissions. One of the technological schemes combines water-gas shift reaction and chemical-looping combustion as post gasification techniques in order to produce sequestration-ready CO2 and potentially reduce the size of the gas turbine. However, these schemes have not been energetically integrated and process synthesis techniques can be applied to obtain an optimal flowsheet. This work studies the heat exchange network synthesis (HENS) for the water-gas shift reaction train employing a set of alternative designs provided by Aspen energy analyzer (AEA) and combined in a process superstructure that was simulated in Aspen Plus (AP). This approach allows a rigorous evaluation of the alternative designs and their combinations avoiding all the AEA simplifications (linearized models of heat exchangers). A CAPE-OPEN compliant capability which makes use of a MINLP algorithm for sequential modular simulators was employed to obtain a heat exchange network that provided a cost of energy that was 27% lower than the base case. Highly influential parameters for the pos gasification technologies (i.e. CO/steam ratio, gasifier temperature and pressure) were calculated to obtain the minimum cost of energy while chemical looping parameters (oxidation and reduction temperature) were ensured to be satisfied.

Juan M. Salazara; Stephen E. Zitney; Urmila M. Diwekara

2010-01-01T23:59:59.000Z

344

A commercial project for private investments. Update of the 280 MW api Energia IGCC plant construction in central Italy.  

SciTech Connect

This paper has the aim to give a general overview of the api Energia IGCC project starting from the project background in 1992 and ending with the progress of construction. api Energia S.p.A., a joint VENTURE between api anonima petroli italiana S.p.A., Roma, Italy (51%), ABB Sae Sadelmi S.p.A., Milano, Italy (25%) and Texaco Development Corporation (24%), is building a 280 MW Integrated Gasification Combined Cycle plant in the api refinery at Falconara Marittima, on Italy' s Adriatic coast, using heavy oil residues. The plant is based on the modern concept of employing a highly efficient combined cycle power plant fed with a low heating value fuel gas produced by gasifying heavy refinery residues. This scheme provides consistent advantages in terms of efficiency and environmental impact over alternative applications of the refinery residues. The electric power produced will feed the national grid. The project has been financed using the ``project financing'' scheme: over 1,000 billion Lira, representing 75% of the overall capital requirement, have been provided by a pool of international banks. In November 1996 the project reached financial closure and immediately after the detailed design and procurement activities started. Engineering, Procurement and Construction activities, carried out by a Consortium of companies of the ABB group, are totally in line with the schedule. Commercial operation of the plant, is scheduled for November 1999.

Del Bravo, R.; Pinacci, P.; Trifilo, R.

1998-07-01T23:59:59.000Z

345

City of Russellville, Kentucky (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Russellville City of Russellville City of Place Kentucky Utility Id 16459 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 1000W Metal Halide Lighting 100W High Pressure Sodium Lighting 250W High Pressure Sodium Lighting 400W High Pressure Sodium Lighting 400W Mercury Vapor Lighting 400W Wide Light- Metal Halide Lighting Commercial Class 40 Commercial Commercial Class 50 Commercial Commercial Class 54/55 Commercial Residential Class 22 Residential Average Rates Residential: $0.0921/kWh Commercial: $0.0982/kWh

346

Studies of New Albany shale in western Kentucky. Final report  

SciTech Connect

The New Albany (Upper Devonian) Shale in western Kentucky can be zoned by using correlative characteristics distinguishable on wire-line logs. Wells drilled through the shale which were logged by various methods provided a basis for zonation of the subsurface members and units of the Grassy Creek, Sweetland Creek, and Blocher. Structure and isopach maps and cross sections were prepared. The Hannibal Shale and Rockford Limestone were found in limited areas; isopach maps were not made for these members. Samples of cuttings from selected wells were studied in order to identify the contact of the shale with underlying and overlying rock units. A well-site examination of cuttings through the shale section was conducted, and the presence of natural gas was observed in the field. The New Albany Shale has the potential for additional commercially marketable natural gas production. Exploratory drilling is needed to evaluate the reservoir characteristics of the New Albany Shale.

Schwalb, H.R.; Norris, R.L.

1980-02-01T23:59:59.000Z

347

Kentucky, Tennessee: corniferous potential may be worth exploring  

SciTech Connect

The driller's term, corniferous, refers to all carbonate and clastic strata, regardless of geologic age, underlying the regional unconformity below the late Devonian-early Mississippian New Albany shale and overlying the middle Silurian Clinton shale in the study area. From oldest to youngest, the formations that constitute the corniferous are the middle Silurian Keefer formation, the middle Silurian Lockport dolomite, the upper Silurian Salina formation, the lower Devonian Helderberg limestone, the lower Devonian Oriskanysandstone, the lower Devonian Onondaga limestone, and in the extreme western portion of the study area, the middle Devonian Boyle dolomite. The overlying New Albany shale also is termed Ohio shale or Chattanooga shale in the Appalachian Basin. To drillers, it is known simply as the black shale. The study area is located in E. Kentucky on the western flank of the Appalachian Basin and covers all or parts of 32 counties.

Currie, M.T.

1982-05-01T23:59:59.000Z

348

Evaluation of Devonian shale potential in Eastern Kentucky/Tennessee  

SciTech Connect

To evaluate the potential of the Devonian shale as a source of natural gas, the US Department of Energy (DOE) has undertaken the Eastern Gas Shales Project (EGSP). The EGSP is designed not only to identify the resource, but also to test improved methods of inducing permeability to facilitate gas drainage, collection, and production. The ultimate goal of this project is to increase the production of gas from the eastern shales through advanced exploration and exploitation techniques. The purpose of this report is to inform the general public and interested oil and gas operators about EGSP results as they pertain to the Devonian gas shales of the Appalachian basin in eastern Kentucky and Tennessee. Geologic data and interpretations are summarized, and areas where the accumulation of gas may be large enough to justify commercial production are outlined.

Not Available

1981-01-01T23:59:59.000Z

349

City of Frankfort, Kentucky (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Frankfort City of Frankfort City of Place Kentucky Utility Id 6708 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lighting- (1000W MH With 35' Metal Pole) Lighting Area Lighting- (1000W MH With 35' Wood Pole) Lighting Area Lighting- (1000W MH With 45' Metal Pole) Lighting Area Lighting- (250W MH With 35' Metal Pole) Lighting Area Lighting- (250W MH With 35' Wood Pole) Lighting Area Lighting- (320W MH With 35' Metal Pole) Lighting

350

Department of Energy Cites LATA Environmental Services of Kentucky, LLC for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LATA Environmental Services of Kentucky, LATA Environmental Services of Kentucky, LLC for Worker Safety and Health and Nuclear Safety Violations Department of Energy Cites LATA Environmental Services of Kentucky, LLC for Worker Safety and Health and Nuclear Safety Violations May 24, 2012 - 3:32pm Addthis News Media Contact (202) 586-4940 WASHINGTON, D.C. - The U.S. Department of Energy (DOE) has issued a Preliminary Notice of Violation (PNOV) to LATA Environmental Services of Kentucky, LLC (LATA KY) for violations of the Department's worker safety and health and nuclear safety regulations at the Paducah Gaseous Diffusion Plant. The violations are associated with a March 9, 2011, heat stress event during which an employee lost consciousness; and a May 22, 2011, event resulting in the release of uranium hexafluoride and its reaction

351

A Program Full of Bright Ideas for Kentucky: Weatherization Assistance Close-Up Fact Sheet  

SciTech Connect

Kentucky demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

D& R International

2001-10-10T23:59:59.000Z

352

Kentucky State Briefing Book for low-level radioactive waste management  

SciTech Connect

The Kentucky State Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist State and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Kentucky. The profile is the result of a survey of NRC licensees in Kentucky. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Kentucky.

Not Available

1981-08-01T23:59:59.000Z

353

Preliminary Notice of Violation, LATA Environmental Services of Kentucky, LLC- WEA-2012-01  

Energy.gov (U.S. Department of Energy (DOE))

Issued to LATA Environmental Services of Kentucky, LLC (WEA-2012-01) related to a Heat Stress Event and a Uranium Hexafluoride Release at the Paducah Gaseous Diffusion Plant.

354

Finding Energy Efficiency and Savings on a Kentucky Farm | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency and Savings on a Kentucky Farm Energy Efficiency and Savings on a Kentucky Farm Finding Energy Efficiency and Savings on a Kentucky Farm September 28, 2010 - 4:00pm Addthis Maya Payne Smart Former Writer for Energy Empowers, EERE What does this project do? The project is expected to create $852,000 worth of energy savings. Alvin Frogue of Frogue Dairy has been in the dairy business for 50 years and until recently one of his top challenges was managing 250 cows with individualized care. Now $80,540 worth of new dairy technology helps the Guthrie, Kentucky-based farmer keep a closer watch on the milk room--and conserve energy and money. Through a $10,000 Recovery Act grant, Frogue installed a variable-speed drive vacuum pump, which offers more accurate control of milking, reduces noise and improves udder health and milking quality. He also added a

355

Pioneer Prairie II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Prairie II Wind Farm Prairie II Wind Farm Facility Pioneer Prairie II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon Wind Energy Developer Horizon Wind Energy Location Northeastern IA IA Coordinates 43.450321┬░, -92.551074┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.450321,"lon":-92.551074,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

356

Pioneer Electric Coop, Inc (Alabama) | Open Energy Information  

Open Energy Info (EERE)

Alabama) Alabama) Jump to: navigation, search Name Pioneer Electric Coop, Inc Place Alabama Utility Id 30517 Utility Location Yes Ownership C NERC Location SPP NERC SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png All Electric Service- Three Phase City Residential All Electric Service-Single Phase Residential All Electric Service-Single Phase City Residential All Electric Service-Three Phase Residential Electric Space Heating Commercial Electric Space Heating in Sept through May Commercial Electric Space Heating with conservation Commercial

357

DOE - Office of Legacy Management -- Bendix Aviation Corp Pioneer Div - IA  

Office of Legacy Management (LM)

Bendix Aviation Corp Pioneer Div - Bendix Aviation Corp Pioneer Div - IA 05 FUSRAP Considered Sites Site: BENDIX AVIATION CORP., PIONEER DIV. (IA.05 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Pioneer Division, Bendix Aviation Corporation Bendix Aviation Corporation Bendix Pioneer Division IA.05-1 IA.05-2 IA.05-3 Location: Davenport , Iowa IA.05-1 Evaluation Year: 1990 IA.05-2 IA.05-4 Site Operations: Conducted studies to investigate the feasibility of using sonic cleaning equipment to decontaminate uranium contaminated drums. IA.05-1 Site Disposition: Eliminated - Potential for contamination considered remote based on limited operations at the site IA.05-2 IA.05-4 IA.05-5 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium IA.05-1

358

DOE/EA-1498: Advanced Coal Utilization Byproduct Beneficiation Processing Plant Ghent Power Station, Carroll County, Kentucky (01/05)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1498 EA-1498 Advanced Coal Utilization Byproduct Beneficiation Processing Plant Ghent Power Station, Carroll County, Kentucky Final Environmental Assessment January 2005 Note: No comments were received during the public comment period from September 25 to October 25, 2004. Therefore, no changes to the Draft Environmental Assessment were necessary. National Environmental Policy Act (NEPA) Compliance Cover Sheet Proposed Action: The proposed Federal action is to provide funding, through a cooperative agreement with the University of Kentucky Research Foundation (UKRF), Center for Applied Energy Research (CAER), for the design, construction, and operation of an advanced coal ash beneficiation processing plant at Kentucky Utilities (KU) Ghent Power Station in Carroll County, Kentucky.

359

Kentucky Natural Gas Plant Liquids Production, Gaseous Equivalent (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Kentucky Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 11,500 8,573 8,579 1970's 6,574 6,133 6,063 5,441 5,557 5,454 5,231 4,764 6,192 3,923 1980's 6,845 5,638 6,854 6,213 6,516 6,334 4,466 2,003 2,142 1,444 1990's 1,899 2,181 2,342 2,252 2,024 2,303 2,385 2,404 2,263 2,287 2000's 1,416 1,558 1,836 1,463 2,413 1,716 2,252 1,957 2,401 3,270 2010's 4,576 4,684 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014

360

Kentucky Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Kentucky Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 167,899 166,624 167,576 172,320 177,680 185,467 192,473 199,674 202,983 198,545 192,581 1991 183,697 180,169 176,535 181,119 183,491 186,795 192,143 195,330 198,776 198,351 191,831 189,130 1992 189,866 188,587 183,694 182,008 180,781 182,342 185,893 187,501 191,689 202,391 200,871 197,857 1993 192,736 181,774 172,140 171,465 177,888 185,725 193,275 198,075 204,437 205,524 199,683 188,970 1994 170,283 157,974 153,378 158,141 167,847 177,200 186,856 193,717 197,308 200,665 200,993 192,700 1995 179,376 166,756 162,223 165,687 178,354 185,982 192,799 196,645 203,357 205,882 196,585 185,704

Note: This page contains sample records for the topic "kentucky pioneer igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Kentucky Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Kentucky Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 502 1980's 525 547 580 581 630 793 866 921 938 993 1990's 1,039 1,177 1,118 1,030 978 1,075 1,022 1,403 1,275 1,501 2000's 1,810 1,925 1,974 1,946 1,963 2,210 2,333 2,554 2,812 2,887 2010's 2,674 2,030 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

362

Cooperative coal marketing arrangement in eastern Kentucky: a feasibility report  

SciTech Connect

The purpose of this study is to assess the feasibility of establishing coal cooperatives in Appalachian Kentucky. To survive in today's coal market, the small independent sector of the coal industry, defined as operators producing no more than two-hundred thousand tons per year, must gain access to long-term contract markets and to economies of scale in coal transportation. In both of these areas, the larger coal producers enjoy a substantial competitive advantage. Also, the small operators must find ways of coping with drastically increased costs of permitting, production and reclamation. In recent years, cooperative marketing and production arrangements have increasingly been seen as possible mechanisms for enabling small operators to remain viable in today's coal market while retaining for the coal industry and the economy in general the independence, efficient production, recovery of coal from marginal deposits, and local orientation and entrepreneurship of the small operator. Although cooperative endeavors in permitting, meeting health and safety requirements, increasing mining efficiency, and joint purchase of materials and equipment can decrease costs for the small operator, the greatest need is for cooperative marketing mechanisms which will enable small operators to amass sufficient reserves and productive capacity to jointly gain large-volume, long-term sales contracts and to command the efficiencies and lower costs of coal shipment by unit train.

Not Available

1981-07-01T23:59:59.000Z

363

Devonian-Mississippian oil shale resources of Kentucky: a summary  

SciTech Connect

Assessment of the oil shale resources in Kentucky has continued with 75 NX cores available where the oil shale crops out or is overlain by relatively thin cover in the area from Estill County westward to Bullitt County. In this 14 county area, the total black shale section thins across the crest of the Cincinnati arch and changes stratigraphically from that characteristic of the Ohio Shale in Estill County to that of the New Albany Shale in Bullitt County. Despite this stratigraphic transition the two high-carbon zones (greater than 8.0% carbon) can be traced across the arch. As the traverse is followed from the east, the intervening low-carbon zones thin such that at the crest of the arch, there are areas where the entire section of black shale contains more than 8% carbon. Then upon leaving the crest the two high-carbon zones separate again with one remaining at the very top of the section and one in the lower part. In the 14 county area, there are approximately 3.8 x 10/sup 5/ acres of oil shale outcrop and approximately 7.8 x 10/sup 5/ acres underlain by oil shale at relatively shallow depths.

Barron, L.S.; Robl, T.L.; Kung, J.; Obley, J.

1985-02-01T23:59:59.000Z

364

Thermal decomposition of Colorado and Kentucky reference oil shales  

SciTech Connect

Isothermal pyrolysis studies have been conducted on a Green River Formation oil shale from Colorado and a New Albany oil shale from Kentucky. The conversion of kerogen to bitumen, oil, gas, and residue products was obtained for different isothermal reaction times in the temperature range of 375/degree/C to 440/degree/C (707/degree/ to 824/degree/F) using a heated sand bath reactor system. Particular attention was paid to the formation of the bitumen intermediate during decomposition of the two shales. The maximum amount of extractable bitumen in the New Albany shale was 14% or less of the original kerogen at any given temperature, indicating that direct conversion of kerogen to oil, gas, and residue products is a major pathway of conversion of this shale during pyrolysis. In contrast, a significant fraction of the Colorado oil shale kerogen was converted to the intermediate bitumen during pyrolysis. The bitumen data imply that the formation of soluble intermediates may depend on original kerogen structure and may be necessary for producing high yields by pyrolysis. 24 refs., 14 figs., 8 tabs.

Miknis, F.P.; Turner, T.F.; Ennen, L.W.; Chong, S.L.; Glaser, R.

1988-06-01T23:59:59.000Z

365

Dendrogeomorphic approach to estimating slope retreat, Maxey Flats, Kentucky  

SciTech Connect

A dendrogeomorphic study of slope retreat was conducted at the Maxey Flats nuclear-waste disposal site in northeastern Kentucky. Tree roots exposed by surface lowering were used as an indicator of ground surface at the time of germination. The amount of lowering was measured and divided by tree-ring-determined tree age. Surface lowering and slope degradation rates were estimated for three slopes below waste-burial trenches and compared with data obtained from sediment troughs and erosion frames at the site. Mean rates of slope retreat ranged from 1.92 to 3.16 mm/yr. Sediment-trough results are two to three orders of magnitude less than dendrogeomorphic and erosion-frame estimates of slope degradation, which suggests that piping and solution-weathering processes may be important in slope degradation. Slope aspect and declivity may be important factors affecting retreat of slopes with a uniform lithology. Dendrogeomorphic techniques provide results comparable to those in the literature and offer a rapid method for estimating slope retreat that integrates slope processes over many years.

Hupp, C.R. (Geological Survey, Reston, VA (USA)); Carey, W.P. (Geological Survey, Lakewood, CO (USA))

1990-07-01T23:59:59.000Z

366

Kentucky Quantity of Production Associated with Reported Wellhead Value  

Gasoline and Diesel Fuel Update (EIA)

Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Kentucky Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 46,720 61,518 73,126 80,195 70,125 44,725 72,417 1990's 75,333 78,904 79,690 86,966 73,081 74,754 81,435 79,547 81,868 76,770 2000's 81,545 81,723 88,259 87,609 94,259 92,795 95,320 95,437 114,116 NA 2010's 135,355 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Quantity of Natural Gas Production Associated with Reported Wellhead

367

Aerodynamics and Heat Transfer Studies of Parameters Specific to the IGCC-Requirements: Endwall Contouring, Leading Edge and Blade Tip Ejection under Rotating Turbine Conditions  

SciTech Connect

This report deals with the specific aerodynamics and heat transfer problematic inherent to high pressure (HP) turbine sections of IGCC-gas turbines. Issues of primary relevance to a turbine stage operating in an IGCC-environment are: (1) decreasing the strength of the secondary flow vortices at the hub and tip regions to reduce (a), the secondary flow losses and (b), the potential for end wall deposition, erosion and corrosion due to secondary flow driven migration of gas flow particles to the hub and tip regions, (2) providing a robust film cooling technology at the hub and that sustains high cooling effectiveness less sensitive to deposition, (3) investigating the impact of blade tip geometry on film cooling effectiveness. The document includes numerical and experimental investigations of above issues. The experimental investigations were performed in the three-stage multi-purpose turbine research facility at the Turbomachinery Performance and Flow Research Laboratory (TPFL), Texas A&M University. For the numerical investigations a commercial Navier-Stokes solver was utilized.

Schobeiri, Meinhard; Han, Je-Chin

2014-09-30T23:59:59.000Z

368

Pioneer acceleration and variation of light speed: experimental situation  

E-Print Network (OSTI)

The situation with respect to the experiments is presented of a recently proposed model that gives an explanation of the Pioneer anomalous acceleration $a_{\\rm P}$. The model is based on an idea already discovered by Einstein in 1907: the light speed depends on the gravitational potential $\\Phi$, so that it is larger the higher if $\\Phi$. The potential due to all the mass and energy in the universe increases in time because of its expansion, which has the consequence that light must be slowly accelerating. Moreover it turns out that the observational effects of a universal adiabatic acceleration of light $a_\\ell =a_{\\rm P}$ and of an extra acceleration towards the Sun $a_{\\rm P}$ of a spaceship would be the same: a blue shift increasing linearly in time, precisely what was observed. The phenomenon would be due to a cosmological acceleration of the proper time of bodies with respect to the coordinate time. It is shown that it agrees with the experimental tests of special relativity and the weak equivalence principle if the cosmological variation of the fine structure constant is zero or very small, as it seems now.

Antonio F. Ranada

2004-02-26T23:59:59.000Z

369

HSS Helps Pioneer "Robot" Patrol Technology MDARS - December 11, 2005 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HSS Helps Pioneer "Robot" Patrol Technology MDARS - December HSS Helps Pioneer "Robot" Patrol Technology MDARS - December 11, 2005 HSS Helps Pioneer "Robot" Patrol Technology MDARS - December 11, 2005 December 11, 2005 HSS Helps Pioneer "Robot" Patrol Technology MDARS - December 11, 2005 The use of patrol robots to cost effectively improve security while reducing health and safety risks at DOE and NNSA nuclear facilities is an HSS advanced technology deployment "first". Over the past 2 years, the HSS Office of Technology has played a key role in working with the Army, the National Nuclear Security Administration (NNSA), the Nevada National Security Site (NNSS) and General Dynamics Robotics Systems to purchase, prototype, test and deploy the first of three MDARS patrol robots at NNSS. In addition to the initial purchase, HSS

370

Nuclear Medicine at Berkeley Lab: From Pioneering Beginnings to Today (LBNL Summer Lecture Series)  

ScienceCinema (OSTI)

Summer Lecture Series 2006: Thomas Budinger, head of Berkeley Lab's Center for Functional Imaging, discusses Berkeley Lab's rich history pioneering the field of nuclear medicine, from radioisotopes to medical imaging.

Budinger, Thomas [LBNL, Center for Functional Imaging

2011-10-04T23:59:59.000Z

371

MagLab - Pioneers in Electricity and Magnetism: Sir Humphry Davy  

NLE Websites -- All DOE Office Websites (Extended Search)

Humphry Davy (1778-1829) Humphry Davy Humphry Davy was a pioneer in the field of electrochemistry who used electrolysis to isolate many elements from the compounds in which they...

372

MagLab - Pioneers in Electricity and Magnetism: Lee De Forest  

NLE Websites -- All DOE Office Websites (Extended Search)

Lee De Forest (1873-1961) Lee De Forest American inventor Lee De Forest was a pioneer of radio and motion pictures. He received more than 300 patents over the course of his...

373

Late-Middle to Late Devonian (Givetian-Famennian) tectonic and stratigraphic history of central Kentucky  

SciTech Connect

Earliest Givetian deposition in central Kentucky is represented in upper parts of the Boyle and Sellersburg formations and reflects marginal-marine to shallow-marine carbonate deposition at the end of the second tectophase of the Acadian orogeny. Inception of the third tectophase of the Acadian orogeny in the area is reflected by a disconformity or angular unconformity between the Boyle and New Albany formations, by reactivation of faults on the Kentucky river and related fault zones, and by concurrent graben formation. Succeeding late Givetian deposition is represented by the equivalent Portwood and Blocher members of the New Albany. The Portwood represents localized deposition of dolomitic breccias and black shales in grabens and half grabens, paleogeographically manifest as a series of restricted coastal lagoons and estuaries in central and east-central Kentucky. In contrast, dolomitic, Blocher black shales in west-central kentucky, beyond the effects of faulting, reflect more open, platform-lagoonal conditions. Both units are carbonate rick, contain a sparse benthic fauna, and had local sources of sediment. By latest Givetian or earliest Frasnian, local basins were largely filed, and when local sediment sources were inundated by transgression, sediment starvation, represented by a major lag zone or bone bed, ensued throughout central Kentucky, while black- and gray-shale deposition continued in deeper parts of the Illinois and Appalachian basins. During the Frasnian and early Famennian, as subsidence and transgression continued, deeper water gray- and black-shale units from the Appalachian and Illinois basins slowly onlapped the Cincinnati Arch area of central Kentucky; black shales in these units are fissile and lack both carbonates and benthic fauna. At the Devonian-Mississippian transition, however, a locally developed unconformity and structurally related erosion probably reflect inception of the fourth and final tectophase of the Acadian orogeny.

Ettensohn, F.R. (Univ. of Kentucky, Lexington, KY (United States). Dept. of Geological Sciences); Barnett, S.F. (Bryan Coll., Dayton, TN (United States)); Norby, R.D. (Illinois State Geological Survey, Champaign, IL (United States))

1994-04-01T23:59:59.000Z

374

Dynamic simulation and load-following control of an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture  

SciTech Connect

Load-following control of future integrated gasification combined cycle (IGCC) plants with pre-combustion CO{sub 2} capture is expected to be far more challenging as electricity produced by renewable energy is connected to the grid and strict environmental limits become mandatory requirements. To study control performance during load following, a plant-wide dynamic simulation of a coal-fed IGCC plant with CO{sub 2} capture has been developed. The slurry-fed gasifier is a single-stage, downward-fired, oxygen-blown, entrained-flow type with a radiant syngas cooler (RSC). The syngas from the outlet of the RSC goes to a scrubber followed by a two-stage sour shift process with inter-stage cooling. The acid gas removal (AGR) process is a dual-stage physical solvent-based process for selective removal of H{sub 2}S in the first stage and CO{sub 2} in the second stage. Sulfur is recovered using a Claus unit with tail gas recycle to the AGR. The recovered CO{sub 2} is compressed by a split-shaft multistage compressor and sent for sequestration after being treated in an absorber with triethylene glycol for dehydration. The clean syngas is sent to two advanced ôFö-class gas turbines (GTs) partially integrated with an elevated-pressure air separation unit. A subcritical steam cycle is used for heat recovery steam generation. A treatment unit for the sour water strips off the acid gases for utilization in the Claus unit. The steady-state model developed in Aspen Plus« is converted to an Aspen Plus Dynamics« simulation and integrated with MATLAB« for control studies. The results from the plant-wide dynamic model are compared qualitatively with the data from a commercial plant having different configuration, operating condition, and feed quality than what has been considered in this work. For load-following control, the GT-lead with gasifier-follow control strategy is considered. A modified proportionalľintegralľderivative (PID) control is considered for the syngas pressure control. For maintaining the desired CO{sub 2} capture rate while load-following, a linear model predictive controller (LMPC) is implemented in MATLAB«. A combined process and disturbance model is identified by considering a number of model forms and choosing the final model based on an information-theoretic criterion. The performance of the LMPC is found to be superior to the conventional PID control for maintaining CO{sub 2} capture rates in an IGCC power plant while load following.

Bhattacharyya, D,; Turton, R.; Zitney, S.

2012-01-01T23:59:59.000Z

375

College of Engineering University of Kentucky 2012-2013 Undergraduate Bulletin 216  

E-Print Network (OSTI)

College of Engineering University of Kentucky 2012-2013 Undergraduate Bulletin 216 John Y. Walz, Ph.D., is Dean of the College of Engineering; Richard J. Sweigard, Ph.D., P.E., is Associate Dean. Walcott, Ph.D., is Associate Dean for Economic Development and Innovations Management; Kaveh A. Tagavi, Ph

MacAdam, Keith

376

College of Engineering University of Kentucky 2011-2012 Undergraduate Bulletin 208  

E-Print Network (OSTI)

College of Engineering University of Kentucky 2011-2012 Undergraduate Bulletin 208 Thomas W. Lester, Ph.D., P.E., is Dean of the College of Engineering; Richard J. Sweigard, Ph.D., P.E., is Associate Programs; Bruce L. Walcott, Ph.D., is Associate Dean for Economic Development and Innovations Management

MacAdam, Keith

377

EIS-0073: Solvent Refined Coal-I Demonstration Project, Daviess County, Kentucky  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy developed this statement to assess the potential environmental, economic and social impacts associated with construction and operation of a 6,000 tons per stream day capacity coal liquefaction facility in Newman, Kentucky, and the potential impacts of a future expansion of the proposed facility to an approximately 30,000 tons per stream day capacity.

378

DOE Awards Grant to the Commonwealth of Kentucky, Energy and Environment Cabinet  

Energy.gov (U.S. Department of Energy (DOE))

Cincinnati ľ The U.S. Department of Energy (DOE) Environmental Management Consolidated Business Center (EMCBC) is awarding a $3.4 Million Grant to the Commonwealth of Kentucky, Energy and Environment Cabinet (EEC) for regulatory oversight of the Paducah Gaseous Diffusion Plant (PGDP) located in Paducah, KY.

379

DOE Awards Grant to the Commonwealth of Kentucky, Energy and Environment Cabinet  

Energy.gov (U.S. Department of Energy (DOE))

Cincinnati ľ The U.S. Department of Energy (DOE) Environmental Management Consolidated Business Center (EMCBC) is awarding a $3.6 Million Grant to the Commonwealth of Kentucky, Energy and Environment Cabinet (EEC) for regulatory oversight of the Paducah Gaseous Diffusion Plant (PGDP) located in Paducah, KY.

380

DOE Awards Grants to the Commonwealth of Kentucky, Energy and Environment Cabinet  

Energy.gov (U.S. Department of Energy (DOE))

Cincinnati ľ The U.S. Department of Energy (DOE) Environmental Management Consolidated Business Center (EMCBC) is awarding two separate grants together totaling about $7 million to the Commonwealth of Kentucky, Energy and Environment Cabinet (EEC) for regulatory oversight of the Paducah Gaseous Diffusion Plant (PGDP) located in Paducah, KY.

Note: This page contains sample records for the topic "kentucky pioneer igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Sustainable Building Pioneer Wins Top Award from Engineering News-Record |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Building Pioneer Wins Top Award from Engineering Sustainable Building Pioneer Wins Top Award from Engineering News-Record Sustainable Building Pioneer Wins Top Award from Engineering News-Record April 8, 2011 - 3:56pm Addthis David Moore Presidential Management Fellow, Office of Energy Efficiency & Renewable Energy The new Research Support Facility (RSF) at the Department's National Renewable Energy Lab has quickly become a landmark accomplishment in the world of architecture and commercial building. The RSF shows firsthand that it is possible to build affordable, ultra-efficient office buildings by combining off-the-shelf technologies with thoughtful design. As a result, the RSF has won more than a dozen awards since it opened in June 2010. This week, the influential trade publication Engineering News-Record added to

382

Pioneering the New Grid: Pole-mounted Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pioneering the New Grid: Pole-mounted Solar Pioneering the New Grid: Pole-mounted Solar Pioneering the New Grid: Pole-mounted Solar May 7, 2010 - 10:54am Addthis SunWave solar power systems are attached to utility poles, where they can gather sun power as well as provide a point of data gathering for utility companies to monitor the grid. | Photo courtesy Petra Solar SunWave solar power systems are attached to utility poles, where they can gather sun power as well as provide a point of data gathering for utility companies to monitor the grid. | Photo courtesy Petra Solar Joshua DeLung What does this mean for me? About 25,000 SunWave panels -- which generate energy for the grid as well as communicate an energy snapshot at that point -- are already in operation, with a further expected 200,000 installations.

383

Pioneering the New Grid: Pole-mounted Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pioneering the New Grid: Pole-mounted Solar Pioneering the New Grid: Pole-mounted Solar Pioneering the New Grid: Pole-mounted Solar May 7, 2010 - 10:54am Addthis SunWave solar power systems are attached to utility poles, where they can gather sun power as well as provide a point of data gathering for utility companies to monitor the grid. | Photo courtesy Petra Solar SunWave solar power systems are attached to utility poles, where they can gather sun power as well as provide a point of data gathering for utility companies to monitor the grid. | Photo courtesy Petra Solar Joshua DeLung What does this mean for me? About 25,000 SunWave panels -- which generate energy for the grid as well as communicate an energy snapshot at that point -- are already in operation, with a further expected 200,000 installations.

384

Energy Savers in the Community: Fuel Cell Vehicle Pioneer | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Savers in the Community: Fuel Cell Vehicle Pioneer Energy Savers in the Community: Fuel Cell Vehicle Pioneer Energy Savers in the Community: Fuel Cell Vehicle Pioneer February 17, 2010 - 10:58am Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program As the communications coordinator for EERE's Clean Cities program, I'm always on the lookout for interesting stories about alternative fuel vehicles. So when my church pastor, Todd Thomas, mentioned that he'd soon be driving a hydrogen fuel cell vehicle, it caught my attention. What a unique opportunity! Luckily, he was more than willing to sit down with me and describe his experiences. From September to October 2009, Todd participated in Project Driveway, a Chevrolet fuel cell vehicle pilot program. Fuel cell vehicles run on hydrogen, the simplest and most abundant element in the universe. The

385

Sustainable Building Pioneer Wins Top Award from Engineering News-Record |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Building Pioneer Wins Top Award from Engineering Sustainable Building Pioneer Wins Top Award from Engineering News-Record Sustainable Building Pioneer Wins Top Award from Engineering News-Record April 8, 2011 - 3:56pm Addthis David Moore Presidential Management Fellow, Office of Energy Efficiency & Renewable Energy The new Research Support Facility (RSF) at the Department's National Renewable Energy Lab has quickly become a landmark accomplishment in the world of architecture and commercial building. The RSF shows firsthand that it is possible to build affordable, ultra-efficient office buildings by combining off-the-shelf technologies with thoughtful design. As a result, the RSF has won more than a dozen awards since it opened in June 2010. This week, the influential trade publication Engineering News-Record added to

386

Energy Department Announces New Investments in Pioneering U.S. Offshore  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pioneering U.S. Pioneering U.S. Offshore Wind Projects Energy Department Announces New Investments in Pioneering U.S. Offshore Wind Projects December 12, 2012 - 2:00pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Underscoring the Obama Administration's all-of-the-above strategy to develop more secure, domestic energy sources and strengthen American competitiveness in the global market, U.S. Energy Secretary Steven Chu today announced seven offshore wind awards for projects in Maine, New Jersey, Ohio, Oregon, Texas and Virginia. As part of the Energy Department's broader efforts to launch an offshore wind industry in the United States, these engineering, design and deployment projects will support innovative offshore installations in state and federal waters for commercial operation by 2017.

387

DOE - Office of Legacy Management -- Eclipse-Pioneer Div of Bendix Aviation  

Office of Legacy Management (LM)

Eclipse-Pioneer Div of Bendix Eclipse-Pioneer Div of Bendix Aviation Corp - NJ 30 FUSRAP Considered Sites Site: Eclipse-Pioneer Div. of Bendix Aviation Corp. (NJ.30 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Allied Bendix Aerospace Corporation Sumitomo Machinery Corporation of America Metpath Incorporated NJ.30-7 Location: Teterboro , New Jersey NJ.30-4 Evaluation Year: Circa 1989 NJ.30-1 NJ.30-2 NJ.30-3 NJ.30-5 Site Operations: Plant #4 built by U.S. Navy on contractor property to cast magnesium-thorium alloy aircraft parts during WWII. Foundry operated till about 1966. Manufactured electronic components for MED 1940s-1950s. Operated under NRC license - closed out 22 October 1981. Property released for unrestricted use. NJ.30-6

388

Sensor placement algorithm development to maximize the efficiency of acid gas removal unit for integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture  

SciTech Connect

Future integrated gasification combined cycle (IGCC) power plants with CO{sub 2} capture will face stricter operational and environmental constraints. Accurate values of relevant states/outputs/disturbances are needed to satisfy these constraints and to maximize the operational efficiency. Unfortunately, a number of these process variables cannot be measured while a number of them can be measured, but have low precision, reliability, or signal-to-noise ratio. In this work, a sensor placement (SP) algorithm is developed for optimal selection of sensor location, number, and type that can maximize the plant efficiency and result in a desired precision of the relevant measured/unmeasured states. In this work, an SP algorithm is developed for an selective, dual-stage Selexol-based acid gas removal (AGR) unit for an IGCC plant with pre-combustion CO{sub 2} capture. A comprehensive nonlinear dynamic model of the AGR unit is developed in Aspen Plus Dynamics« (APD) and used to generate a linear state-space model that is used in the SP algorithm. The SP algorithm is developed with the assumption that an optimal Kalman filter will be implemented in the plant for state and disturbance estimation. The algorithm is developed assuming steady-state Kalman filtering and steady-state operation of the plant. The control system is considered to operate based on the estimated states and thereby, captures the effects of the SP algorithm on the overall plant efficiency. The optimization problem is solved by Genetic Algorithm (GA) considering both linear and nonlinear equality and inequality constraints. Due to the very large number of candidate sets available for sensor placement and because of the long time that it takes to solve the constrained optimization problem that includes more than 1000 states, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS«) and the Parallel Computing« toolbox from Mathworks«. In this presentation, we will share our experience in setting up parallel computing using GA in the MATLAB« environment and present the overall approach for achieving higher computational efficiency in this framework.

Paul, P.; Bhattacharyya, D.; Turton, R.; Zitney, S.

2012-01-01T23:59:59.000Z

389

Sensor placement algorithm development to maximize the efficiency of acid gas removal unit for integrated gasifiction combined sycle (IGCC) power plant with CO2 capture  

SciTech Connect

Future integrated gasification combined cycle (IGCC) power plants with CO{sub 2} capture will face stricter operational and environmental constraints. Accurate values of relevant states/outputs/disturbances are needed to satisfy these constraints and to maximize the operational efficiency. Unfortunately, a number of these process variables cannot be measured while a number of them can be measured, but have low precision, reliability, or signal-to-noise ratio. In this work, a sensor placement (SP) algorithm is developed for optimal selection of sensor location, number, and type that can maximize the plant efficiency and result in a desired precision of the relevant measured/unmeasured states. In this work, an SP algorithm is developed for an selective, dual-stage Selexol-based acid gas removal (AGR) unit for an IGCC plant with pre-combustion CO{sub 2} capture. A comprehensive nonlinear dynamic model of the AGR unit is developed in Aspen Plus Dynamics« (APD) and used to generate a linear state-space model that is used in the SP algorithm. The SP algorithm is developed with the assumption that an optimal Kalman filter will be implemented in the plant for state and disturbance estimation. The algorithm is developed assuming steady-state Kalman filtering and steady-state operation of the plant. The control system is considered to operate based on the estimated states and thereby, captures the effects of the SP algorithm on the overall plant efficiency. The optimization problem is solved by Genetic Algorithm (GA) considering both linear and nonlinear equality and inequality constraints. Due to the very large number of candidate sets available for sensor placement and because of the long time that it takes to solve the constrained optimization problem that includes more than 1000 states, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS«) and the Parallel Computing« toolbox from Mathworks«. In this presentation, we will share our experience in setting up parallel computing using GA in the MATLAB« environment and present the overall approach for achieving higher computational efficiency in this framework.

Paul, P.; Bhattacharyya, D.; Turton, R.; Zitney, S.

2012-01-01T23:59:59.000Z

390

"1. Paradise","Coal","Tennessee Valley Authority",2201 "2. Ghent","Coal","Kentucky Utilities Co",1918  

U.S. Energy Information Administration (EIA) Indexed Site

Kentucky" Kentucky" "1. Paradise","Coal","Tennessee Valley Authority",2201 "2. Ghent","Coal","Kentucky Utilities Co",1918 "3. E W Brown","Coal","Kentucky Utilities Co",1546 "4. Mill Creek","Coal","Louisville Gas & Electric Co",1472 "5. Trimble County","Coal","Louisville Gas & Electric Co",1471 "6. H L Spurlock","Coal","East Kentucky Power Coop, Inc",1346 "7. Shawnee","Coal","Tennessee Valley Authority",1330 "8. Big Sandy","Coal","Kentucky Power Co",1060 "9. Riverside Generating LLC","Gas","Riverside Generating Co LLC",825

391

,"Kentucky Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ngm_epg0_fgs_sky_mmcfm.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_fgs_sky_mmcfm.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:59:25 AM" "Back to Contents","Data 1: Kentucky Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" "Sourcekey","NGM_EPG0_FGS_SKY_MMCF" "Date","Kentucky Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

392

,"Kentucky Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ky2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ky2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:13 PM" "Back to Contents","Data 1: Kentucky Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290KY2" "Date","Kentucky Natural Gas Underground Storage Capacity (MMcf)" 37271,219914 37302,219914 37330,219914 37361,219914

393

,"Kentucky Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","12/2010" Monthly","12/2010" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1160_sky_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1160_sky_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:07 AM" "Back to Contents","Data 1: Kentucky Dry Natural Gas Production (Million Cubic Feet)" "Sourcekey","NA1160_SKY_2" "Date","Kentucky Dry Natural Gas Production (Million Cubic Feet)" 38732,5697 38763,7677 38791,8520

394

Final Environmental Assessment for Waste Disposition Activities at the Paducah Site Paducah, Kentucky  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0-347(doc)/093002 0-347(doc)/093002 1 FINDING OF NO SIGNIFICANT IMPACT WASTE DISPOSITION ACTIVITIES AT THE PADUCAH SITE PADUCAH, KENTUCKY AGENCY: U.S. DEPARTMENT OF ENERGY ACTION: FINDING OF NO SIGNIFICANT IMPACT SUMMARY: The U.S. Department of Energy (DOE) has completed an environmental assessment (DOE/EA-1339), which is incorporated herein by reference, for proposed disposition of polychlorinated biphenyl (PCB) wastes, low-level radioactive waste (LLW), mixed low- level radioactive waste (MLLW), and transuranic (TRU) waste from the Paducah Gaseous Diffusion Plant Site (Paducah Site) in Paducah, Kentucky. All of the wastes would be transported for disposal at various locations in the United States. Based on the results of the impact analysis reported in the EA, DOE has determined that the proposed action is

395

Comprehensive low-level radioactive waste management plan for the Commonwealth of Kentucky  

SciTech Connect

Part I of the Comprehensive Low-Level Radioactive Waste Management Plan for the Commonwealth of Kentucky discusses the alternatives that have been examined to manage the low-level radioactive waste currently generated in the state. Part II includes a history of the commercial operation of the Maxey Flats Nuclear Waste Disposal Site in Fleming County, Kentucky. The reasons for closure of the facility by the Human Resources Cabinet, the licensing agency, are identified. The site stabilization program managed by the Natural Resources and Environmental Protection Cabinet is described in Chapter VI. Future activities to be conducted at the Maxey Flats Disposal Site will include site stabilization activities, routine operations and maintenance, and environmental monitoring programs as described in Chapter VII.

Carr, R.M.; Mills, D.; Perkins, C.; Riddle, R.

1984-03-01T23:59:59.000Z

396

,"Kentucky Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ngm_epg0_fgs_sky_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_fgs_sky_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:59:25 AM" "Back to Contents","Data 1: Kentucky Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" "Sourcekey","NGM_EPG0_FGS_SKY_MMCF" "Date","Kentucky Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

397

University of Louisville, Ball State University and University of Kentucky Solar Decathlon 2011 Menu and Recipes  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. DEPARTMENT OF ENERGY SOLAR DECATHLON 2013 U.S. DEPARTMENT OF ENERGY SOLAR DECATHLON 2013 teamkentuckiana@gmail.com April 25, 2013 DINNER MENUS & RECIPES Dinner Menus & Recipes U.S. D.O.E. Solar Decathlon 2013 - Team Kentuckiana Published 4/25/2013 2 Team K entuckiana www.teamkentuckiana.org Table of Contents CHEF NOTES ........................................................................................................................... 3 DINNER ONE ............................................................................................................................ 5 CHEDDAR CHEESE AND THYME WAFFLES .................................................................................... 6 KENTUCKY-FRIED CHICKEN MORSELS .......................................................................................... 7

398

A Joint Workshop on Promoting the Development and Deployment of IGCC/Co-Production/CCS Technologies in China and the United States. Workshop report  

SciTech Connect

With both China and the United States relying heavily on coal for electricity, senior government officials from both countries have urged immediate action to push forward technology that would reduce carbon dioxide emissions from coal-fired plants. They discussed possible actions at a high-level workshop in April 2009 at the Harvard Kennedy School jointly sponsored by the Belfer Center's Energy Technology Innovation Policy (ETIP) research group, China's Ministry of Science and Technology, and the Chinese Academy of Sciences. The workshop examined issues surrounding Integrated Gasification Combined Cycle (IGCC) coal plants, which turn coal into gas and remove impurities before the coal is combusted, and the related carbon capture and sequestration, in which the carbon dioxide emissions are captured and stored underground to avoid releasing carbon dioxide into the atmosphere. Though promising, advanced coal technologies face steep financial and legal hurdles, and almost certainly will need sustained support from governments to develop the technology and move it to a point where its costs are low enough for widespread use.

Zhao, Lifeng; Ziao, Yunhan; Gallagher, Kelly Sims

2009-06-03T23:59:59.000Z

399

,"Kentucky Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sky_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sky_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:51 AM"

400

,"Kentucky Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Wellhead Price (Dollars per Thousand Cubic Feet)" Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1140_sky_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1140_sky_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

Note: This page contains sample records for the topic "kentucky pioneer igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

,"Kentucky Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sky_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sky_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:49 PM"

402

,"Kentucky Natural Gas Lease Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Lease Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1840_sky_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1840_sky_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:39 PM"

403

,"Kentucky Dry Natural Gas Reserves Sales (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet)" Sales (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Dry Natural Gas Reserves Sales (Billion Cubic Feet)",1,"Annual",2011 ,"Release Date:","8/1/2013" ,"Next Release Date:","8/1/2014" ,"Excel File Name:","rngr15sky_1a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngr15sky_1a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 6:10:20 PM"

404

,"Kentucky Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet)" Acquisitions (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)",1,"Annual",2011 ,"Release Date:","8/1/2013" ,"Next Release Date:","8/1/2014" ,"Excel File Name:","rngr16sky_1a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngr16sky_1a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 6:10:36 PM"

405

,"Kentucky Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet)" New Field Discoveries (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2011 ,"Release Date:","8/1/2013" ,"Next Release Date:","8/1/2014" ,"Excel File Name:","rngr18sky_1a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngr18sky_1a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

406

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect

CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2004-01-01T23:59:59.000Z

407

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect

CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2003-07-28T23:59:59.000Z

408

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect

CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2003-10-29T23:59:59.000Z

409

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect

CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 percent (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2004-04-01T23:59:59.000Z

410

Kentucky Natural Gas Delivered to Commercial Consumers for the Account of  

Gasoline and Diesel Fuel Update (EIA)

Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Kentucky Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,053 1,501 1,828 1990's 1,575 2,035 2,451 2,809 3,171 4,169 3,773 3,860 4,076 4,315 2000's 5,584 6,424 7,590 7,942 7,864 7,488 6,092 6,304 6,673 7,047 2010's 7,163 7,188 6,941 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Delivered to Commercial Consumers for the Account of Others Kentucky Natural Gas Delivered for the Account of Others

411

Kentucky Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Kentucky Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,828 1,992 2,277 1970's 2,317 2,212 1,509 1,238 1,206 1,218 1,040 1,107 1,160 1,214 1980's 989 1,040 9,772 8,361 9,038 9,095 6,335 3,254 2,942 2,345 1990's 3,149 2,432 2,812 3,262 2,773 2,647 2,426 2,457 2,325 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Kentucky Natural Gas Consumption by End Use Lease and Plant

412

Historical geography of economic development in Appalachian Kentucky, 1800-1930  

SciTech Connect

This study hypothesizes that Appalachian Kentucky's nineteenth century commercial economic development was as significant as coal mining in shaping economic patterns which appeared during the depression years of the 1930's. Testing of this hypothesis permits the evaluation of widely-held views of the region's development. The economic landscape of the 1800's has generally been thought of as a rather homogeneous unit, isolated from outside commercial linkages, and almost wholly dominated by subsistence agriculture. This study concludes that the region's nineteenth century economy was: 1) spatially and structurally more complex than has previously been recognized, 2) not by-passed by national economic growth in 1850, as previous research indicates; and 3) characterized by some commercial agriculture rather than the subsistence stereotype presented in other works. Appalachian Kentucky did not develop as a unified economic entity. Complexities of the region's development have been masked by generalization and by stereotypes formed on impressions from limited areas. A clearer understanding of Appalachian economic development may be achieved if conventional assessments of the region are interpreted with caution.

Moore, T.G. Jr.

1984-01-01T23:59:59.000Z

413

College of Agriculture and School of Human Environmental Sciences University of Kentucky 2011-2012 Undergraduate Bulletin 90  

E-Print Network (OSTI)

College of Agriculture and School of Human Environmental Sciences University of Kentucky 2011-2012 Undergraduate Bulletin 90 M. Scott Smith, Ph.D., is Dean and Director of the College of Agriculture; Nancy M,teaching,extension,andregula- tory functions of the College of Agriculture are combined into a coordinated, mutually support

MacAdam, Keith

414

85College of Agriculture and School of Human Environmental Sciences University of Kentucky 2008-2009 Undergraduate Bulletin  

E-Print Network (OSTI)

85College of Agriculture and School of Human Environmental Sciences University of Kentucky 2008-2009 Undergraduate Bulletin M. Scott Smith, Ph.D., is Dean and Director of the College of Agriculture; Nancy M. Cox of Agriculture are combined into a coordinated, mutually supporting program of undergraduate

MacAdam, Keith

415

Green River Locks and Dams 3, 4, 5, 6 and Barren River Lock and Dam 1 Disposition, Kentucky  

E-Print Network (OSTI)

Green River Locks and Dams 3, 4, 5, 6 and Barren River Lock and Dam 1 Disposition, Kentucky 16 September 2014 ABSTRACT: Green River Locks and Dams 3 through 6 and Barren River Lock and Dam 1 were. The Green River Locks and Dams 5 and 6 ceased operations in 1951 due to a marked decline in navigation

US Army Corps of Engineers

416

Sherwin-Williamsĺ Richmond, Kentucky, Facility Achieves 26% Energy Intensity Reduction; Leads to Corporate Adoption of Save Energy Now LEADER  

Energy.gov (U.S. Department of Energy (DOE))

This case study summarizes energy efficiency achievements made by Sherwin-Williams' Richmond, Kentucky, manufacturing facility under the Save Energy Now LEADER program, now known as the Better Plants Program. This includes a variety of steam system and compressed air technology improvements.

417

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect

Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2005-01-01T23:59:59.000Z

418

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect

Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2005-01-28T23:59:59.000Z

419

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect

Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2005-04-26T23:59:59.000Z

420

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect

Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2005-07-29T23:59:59.000Z

Note: This page contains sample records for the topic "kentucky pioneer igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect

Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library are being sampled to collect CO{sub 2} adsorption isotherms. Sidewall core samples have been acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log has been acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 4.62 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 19 scf/ton in less organic-rich zones to more than 86 scf/ton in the Lower Huron Member of the shale. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2004-08-01T23:59:59.000Z

422

Pioneer Prairie I (3Q08) Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Q08) Wind Farm Q08) Wind Farm Jump to: navigation, search Name Pioneer Prairie I (3Q08) Wind Farm Facility Pioneer Prairie I (3Q08) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon Wind Energy Developer Horizon Wind Energy Location Northeastern IA IA Coordinates 43.450321┬░, -92.551074┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.450321,"lon":-92.551074,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

423

Pioneer Prairie I (4Q08) Wind Farm | Open Energy Information  

Open Energy Info (EERE)

4Q08) Wind Farm 4Q08) Wind Farm Jump to: navigation, search Name Pioneer Prairie I (4Q08) Wind Farm Facility Pioneer Prairie I (4Q08) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon Developer Horizon Energy Purchaser N/a Location Northeastern IA IA Coordinates 43.450321┬░, -92.551074┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.450321,"lon":-92.551074,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

424

NASA's astonishing evidence that c is not constant: The pioneer anomaly  

E-Print Network (OSTI)

For over 20 years NASA has struggled to find an explanation to the Pioneer anomaly. Now it becomes clear the solution to the riddle is that they have uncovered evidence that c, the speed of light, is not quite a universal constant. Using J. C. Cure s hypothesis that the index of refraction is a function of the gravitational energy density of space and straightforward Newtonian mechanics, NASA s measurements provide compelling evidence that the speed of light depends on the inverse of the square root of the gravitational energy density of space. The magnitude of the Pioneer anomalous acceleration leads to the value of the primordial energy density of space due to faraway stars and galaxies: 1.0838. x 10^15 Joule/m3. A value which almost miraculously coincides with the same quantity: 1.09429 x 10^15 Joule/m3 derived by J. C. Cure from a completely different phenomenon: the bending of starlight during solar eclipses.

E. D. Greaves

2007-01-11T23:59:59.000Z

425

Long-term persistence of pioneer species in tropical forest soil seed banks  

SciTech Connect

In tropical forests, pioneer species regenerate from seeds dispersed directly into canopy gaps, and from seeds that persisted in soil seed banks before gap formation. However, life-history models suggest that selection for long-term persistence of seeds in soil should be weak, as persistence incurs a fitness cost resulting from prolonged generation time. We use a carbon dating technique to provide the first direct measurements of seed persistence in undisturbed tropical forest seed banks. We show that seeds germinate successfully from surface soil microsites up to 38 years after dispersal. Decades-long persistence may be common in pioneers with relatively large mass, and appears to be unrelated to specific regeneration requirements. In Croton billbergianus, a sub-canopy tree that recruits in abundant small gaps, long-term persistence is associated with short-distance ballistic seed dispersal. In Trema micrantha, a canopy tree with widespread dispersal, persistence is associated with a requirement for large gaps that form infrequently in old-growth forest.

Dalling, J W; Brown, T A

2008-10-05T23:59:59.000Z

426

Summary of Carbon Storage Project Public Information Meeting and Open House, Hawesville, Kentucky, October 28, 2010  

SciTech Connect

The Kentucky Geological Survey (KGS) completed a second phase of carbon dioxide (CO{sub 2}) injection and seismic imaging in the Knox Group, a CambrianÔ?ÉOrdovician dolomite and sandstone sequence in September 2010. This work completed 2 years of activity at the KGS No. 1 Marvin Blan well in Hancock County, Kentucky. The well was drilled in 2009 by a consortium of State and industry partners (Kentucky Consortium for Carbon Storage). An initial phase of CO{sub 2} injection occurred immediately after completion of the well in 2009. The second phase of injection and seismic work was completed in September 2010 as part of a U.S. DOEÔ??funded project, after which the Blan well was plugged and abandoned. Following completion of research at the Blan well, a final public meeting and open house was held in Hancock County on October 28, 2010. This meeting followed one public meeting held prior to drilling of the well, and two onÔ?Ésite visits during drilling (one for news media, and one for school teachers). The goal of the final public meeting was to present the results of the project to the public, answer questions, and address any concerns. Despite diligent efforts to publicize the final meeting, it was poorly attended by the general public. Several local county officials and members of the news media attended, but only one person from the general public showed up. We attribute the lack of interest in the results of the project to several factors. First, the project went as planned, with no problems or incidents that affected the local residents. The fact that KGS fulfilled the promises it made at the beginning of the project satisfied residents, and they felt no need to attend the meeting. Second, Hancock County is largely rural, and the technical details of carbon sequestration were not of interest to many people. The county officials attending were an exception; they clearly realized the importance of the project in future economic development for the county.

David Harris; David Williams; J. Richard Bowersox; Hannes Leetaru

2012-06-01T23:59:59.000Z

427

,"Kentucky Dry Natural Gas Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Proved Reserves (Billion Cubic Feet)" Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Dry Natural Gas Proved Reserves (Billion Cubic Feet)",1,"Annual",2011 ,"Release Date:","8/1/2013" ,"Next Release Date:","8/1/2014" ,"Excel File Name:","rngr11sky_1a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngr11sky_1a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 6:09:15 PM"

428

,"Kentucky Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sky_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sky_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:26 PM"

429

Summary - Building C-400 Thermal Treatment Remedial Design Report and Investigation, Paducah, Kentucky  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Paducah, KY Paducah, KY EM Project: Building C400 Thermal Treatment ETR Report Date: August 2007 ETR-8 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Building C-400 Thermal Treatment 90% Remedial Design Report and Site Investigation, Paducah Kentucky Why DOE-EM Did This Review The groundwater underlying the Paducah Gaseous Diffusion Plant (PGDP) is contaminated by chlorinated solvents, principally trichloroethylene (TCE), as well as other contaminants. TCE was released as a dense nonaqueous phase liquid (DNAPL) to the subsurface soils and groundwater as a result of operations that began in 1952. The Building C-400 area is coincident with the highest TCE concentrations in the groundwater plumes at PGDP. Based on all characterization data

430

Stress, seismicity and structure of shallow oil reservoirs of Clinton County, Kentucky. Final report  

SciTech Connect

Between 1993 and 1995 geophysicists of the Los Alamos National Laboratory, in a project funded by the US Department of Energy, conducted extensive microseismic monitoring of oil production in the recently discovered High Bridge pools of Clinton County and were able to acquire abundant, high-quality data in the northern of the two pools. This investigation provided both three-dimensional spatial and kinetic data relating to the High Bridge fracture system that previously had not been available. Funded in part by the Los Alamos National Laboratory, the Kentucky Geological Survey committed to develop a geological interpretation of these geophysical results, that would be of practical benefit to future oils exploration. This publication is a summary of the results of that project. Contents include the following: introduction; discovery and development; regional geology; fractured reservoir geology; oil migration and entrapment; subsurface stress; induced seismicity; structural geology; references; and appendices.

Hamilton-Smith, T. [Kentucky Geological Survey, Lexington, KY (United States)

1995-12-12T23:59:59.000Z

431

Aerial gamma ray and magnetic survey: Louisville quadrangle, Indiana, Ohio, and Kentucky. Final report  

SciTech Connect

The Louisville quadrangle of Kentucky, Ohio and Indiana covers 7250 square miles of the Midwestern Physiographic Province. Thin Paleozoic strata overlie Precambrian basement over most of the area. Quaternary glacial sediments cover some of the Paleozoic sediments in the northeast and northwest. No known uranium deposits occur in the area. Statistical analysis of the radiometric data revealed 90 anomalies. All appear to have cultural associations, but one well-defined group of anomalies have obviously higher uranium concentrations relative to the balance of anomalies in the quadrangle, and are closely associated with the New Albany Shale. These few anomalies are considered significant and suggest that more detailed local resource studies should concentrate in this area. Magnetic data appear to suggest complexities in the Precambrian. No clear structural relationships with the Paleozoic strata can be seen.

Not Available

1981-03-01T23:59:59.000Z

432

Hillslope erosion at the Maxey Flats radioactive waste disposal site, northeastern Kentucky. Water Resources Investigation  

SciTech Connect

Maxey Flats, a disposal site for low-level radioactive waste, is on a plateau that rises 300 to 400 feet above the surrounding valleys in northeastern Kentucky. Hillslope gradients average 30 to 40 percent on three sides of the plateau. The shortest distance from a hillslope to a burial trench is 140 feet on the west side of the site. The report presents the results of a 2-year study of slope erosion processes at the Maxey Flats disposal site, and comments on the long-term integrity of the burial trenches with respect to slope retreat. Thus, the report is of much broader scope in terms of earth-surface processes than the period of data collection would suggest. As such, the discussion and emphasis is placed on infrequent, large-magnitude events that are known to occur over the time scale of interest but have not been specifically documented at the site.

Carey, W.P.; Lyverse, M.A.; Hupp, C.R.

1990-01-01T23:59:59.000Z

433

Evaluation of Devonian shale potential in Illinois, Indiana, and western Kentucky  

SciTech Connect

Potential natural gas resources in the New Albany Shale of the Illinois basin may be related to five key factors: relative organic content of the shale; relative thickness of the organically-rich shale; thermal maturity as related to depth of burial; presence of natural fractures; and type of organic matter. The shale that is organically richest is in southeastern Illinois and in most of the Indiana and Kentucky portions of the Illinois basin. The shales are thickest (about 400 feet) near the center of the basin in southeastern Illinois, southwestern Indiana, and adjacent parts of Kentucky. The area is deeply buried by younger rocks, and the organic matter has the highest thermal maturity. In addition, natural fault-induced fractures in the shale, which may aid in collecting gas from a larger volume of shale, may be present, since major faults along the Rough Creek Lineament and Wabash Valley Fault System cross the deeper part of the basin. Thus, this area near the basin center where the shale is thickest and rich organically and where fault-induced fractures may be present has the greatest potential for natural-gas resources. The eastern side of the basin, where the shale is organic-rich but thin, may have poor to moderate potential for additional discoveries of small gas fields similar to those found in the past. In western Illinois and the northern part of the basin, the potential is poor, because the organic content of the dominantly greenish-gray shale in this area is low. More exploration will be required to properly evaluate potential resources of natural gas that may exist in the New Albany Shale.

Not Available

1981-01-01T23:59:59.000Z

434

PHENIX (Pioneering High Energy Nuclear Interaction eXperiment): Data Tables and Figures from Published Papers  

DOE Data Explorer (OSTI)

The PHENIX Experiment is the largest of the four experiments currently taking data at the Relativistic Heavy Ion Collider. PHENIX, the Pioneering High Energy Nuclear Interaction eXperiment, is an exploratory experiment for the investigation of high energy collisions of heavy ions and protons. PHENIX is designed specifically to measure direct probes of the collisions such as electrons, muons, and photons. The primary goal of PHENIX is to discover and study a new state of matter called the Quark-Gluon Plasma. More than 60 published papers and preprints are listed here with links to the full text and separate links to the supporting PHENIX data in plain text tables and to EPS and GIF figures from the papers.

435

Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DRAFT ENVIRONMENTAL IMPACT DRAFT ENVIRONMENTAL IMPACT STATEMENT FOR CONSTRUCTION AND OPERATION OF A DEPLETED URANIUM HEXAFLUORIDE CONVERSION FACILITY AT THE PADUCAH, KENTUCKY, SITE DECEMBER 2003 U.S. Department of Energy-Oak Ridge Operations Office of Environmental Management Cover Sheet Paducah DUF 6 DEIS: December 2003 iii COVER SHEET RESPONSIBLE FEDERAL AGENCY: U.S. Department of Energy (DOE) TITLE: Draft Environmental Impact Statement (DEIS) for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site (DOE/EIS-0359) CONTACT: For further information on this environmental impact statement (EIS), contact: Gary S. Hartman DOE-ORO Cultural Resources Management Coordinator U.S. Department of Energy-Oak Ridge Operations P.O. Box 2001 Oak Ridge, TN 37831

436

Abandoned oil fields in Alabama, Florida, Illinois, Indiana, Kentucky, Michigan, Missouri, New York, Tennessee and West Virginia  

SciTech Connect

Data are presented for approximately 240 abandoned oil fields in Alabama, Florida, Illinois, Indiana, Kentucky, Michigan, Missouri, New York, Tennessee, and West Virginia. Production data were not available on a majority of abandoned fields in New York, Missouri, and Kentucky. Consequently, some fields with less than 10,000 barrels cumulative production are included. The following information is presented for each field: county; DOE field code; field name; AAPG geologic province code; discovery date of field; year of last production; discovery well operator; proven acreage; formation thickness; depth of field; gravity of oil production; calendar year; yearly field oil production; yearly field gas production; cumulative oil production; cumulative gas production; number abandoned fields in county; cumulative production of oil from fields; cumulative production of gas from fields. (ATT)

Not Available

1983-04-01T23:59:59.000Z

437

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect

Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

Brandon C. Nuttall

2003-02-10T23:59:59.000Z

438

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect

Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

Brandon C. Nuttall

2003-04-28T23:59:59.000Z

439

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect

Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

Brandon C. Nuttall

2003-02-11T23:59:59.000Z

440

Subcontracted R and D final report: analysis of samples obtained from GKT gasification test of Kentucky coal. Nonproprietary version  

SciTech Connect

A laboratory test program was performed to obtain detailed compositional data on the Gesellshaft fuer Kohle-Technologie (GKT) gasifier feed and effluent streams. GKT performed pilot gasification tests with Kentucky No. 9 coal and collected various samples which were analyzed by GKT and the Radian Corporation, Austin, Texas. The coal chosen had good liquefaction characteristics and a high gasification reactivity. No organic priority pollutants or PAH compounds were detected in the wash water, and solid waste leachates were within RCRA metals limits.

Raman, S.V.

1983-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "kentucky pioneer igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Coordinated study of the Devonian black shale in the Illinois Basin: Illinois, Indiana, and western Kentucky. Final report  

SciTech Connect

An evaluation of the resource potential of the Devonian shales, called the Eastern Gas Shales Project (EGSP) was begun. A study of the stratigraphy, structure, composition, and gas content of the Devonian shale in the Illinois Basin was undertaken by the State Geological Surveys of Illinois, Indiana, and Kentucky, under contract to the U.S. DOE as a part of the EGSP. Certain additional data were also developed by other research organizations (including Monsanto Research Corporation-Mound Facility and Battelle-Columbus Laboratory) on cores taken from the Illinois Basin. This report, an overview of geological data on the Illinois basin and interpretations of this data resulting from the EGSP, highlights areas of potential interest as exploration targets for possible natural gas resources in the Devonian shale of the basin. The information in this report was compiled during the EGSP from open file data available at the three State Geological surveys and from new data developed on cores taken by the DOE from the basin specifically for the EGSP. The organically richest shale is found in southeastern Illinois and in most of the Indiana and Kentucky portions of the Illinois Basin. The organic-rich shales in the New Albany are thickest near the center of the basin in southeastern Illinois, southwestern Indiana, and adjacent parts of Kentucky portions of the Illinois Basin. The organic-rich shales in the New Albany are thickest near the center of the basin in southeastern Illinois, southwestern Indiana, and adjacent parts of Kentucky. Natural fractures in the shale may aid in collecting gas from a large volume of shale. These fractures may be more abundant and interconnected to a greater degree in the vicinity of major faults. Major faults along the Rough Creek Lineament and Wabash Valley Fault System cross the deeper part of the basin.

Lineback, J.A.

1980-12-31T23:59:59.000Z

442

Fourier and autocorrelation analysis of estuarine tidal rhythmites, lower Breathitt Formation (Pennsylvania), eastern Kentucky, USA  

SciTech Connect

Outcrops of the Pennsylvanian Breathitt Formation in eastern Kentucky reveal a rhythmic pattern of siliciclastic sedimentation in a marginal marine coastal setting. A 15-23 m thick stratigraphic interval of thinly interbedded, fine sandstone and shale displays tidally generated features such as flaser and wavy current ripple bedding, bipolar paleocurrents, and cyclic thickening and thinning of mud-draped sandstone layers. A statistical analysis of sand layer thickness was carried out using shale partings as bounding surfaces for the individual sand units. Fourier and autocorrelation analyses were performed on two vertical sequences containing a total of over 2,100 layers. The results reveal the presence of four cycles of thickness variation. First-order cycles consist of alternating thick-thin sand layers. These daily couplets may reflect unequal flood and ebb currents during a single tidal cycle or dominant and subordinate tidal deposits in an ebb or flood dominated semidiurnal or mixed system. Second-order cycles typically consist of 11-14 sand layers and reflect spring-neap variations in tidal range and current velocities. Third-order cycles are usually composed of 24-35 layers and are formed in response to monthly variations in tidal range resulting from the ellipticity of the moon's orbit. Fourth-order cycles generally contain about 150 layers (range, 100-166) and were caused by seasonal maxima in tidal range associated with the solstice (winter, summer) and seasonal minima associated with the equinox (spring, fall).

Martino, R.L.; Sanderson, D.D. (Marshall Univ., Huntington, WV (United States))

1993-01-01T23:59:59.000Z

443

Community Energy Systems and the Law of Public Utilities. Volume Nineteen. Kentucky  

SciTech Connect

A detailed description is given of the laws and programs of the State of Kentucky governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

Feurer, D.A.; Weaver, C.L.

1981-01-01T23:59:59.000Z

444

Occurrence and fate of polycyclic musks in wastewater treatment plants in Kentucky and Georgia, USA  

Science Journals Connector (OSTI)

Wastewater treatment plants (WWTPs) are a potential of source of polycyclic musks in the aquatic environment. In this study, contamination profiles and mass flow of polycyclic musks, 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta[?]-2-benzopyran (HHCB), 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN), and HHCB-lactone (oxidation product of HHCB), in two WWTPs, one located in Kentucky (Plant A, rural area) and the other in Georgia (Plant B, urban), USA, were determined. HHCB, AHTN and HHCB-lactone were detected in the influent, effluent, and sludge samples analyzed. The concentrations in wastewater samples varied widely, from 10 to 7030áng/l, 13 to 5400áng/l, and 66 to 790áng/l, for HHCB, AHTN, and HHCB-lactone, respectively. Sludge samples contained HHCB at Plant A and 31ág/day from Plant B. Mass balance analysis suggested that only 30% of HHCB and AHTN entering the plants was accounted for in the effluent and the sludge. Removal efficiencies of HHCB and AHTN in the two \\{WWTPs\\} ranged from 72% to 98%. In contrast, HHCB-lactone concentrations increased following the treatment. Concentrations of polycyclic musks in sludge were on the order of several parts per million. Incineration of sludge at one plant reduced the concentration of polycyclic musks.

Yuichi Horii; Jessica L. Reiner; Bommanna G. Loganathan; Kurunthachalam Senthil Kumar; Kenneth Sajwan; Kurunthachalam Kannan

2007-01-01T23:59:59.000Z

445

Kentucky Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Base Gas) (Million Cubic Feet) Kentucky Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 105,889 105,889 105,889 105,889 105,889 105,889 105,889 105,889 105,889 105,889 105,889 105,889 1991 103,881 103,881 103,881 103,881 103,881 103,881 103,881 103,881 103,881 103,881 103,881 103,881 1992 105,481 105,481 105,481 105,481 105,481 105,481 105,481 105,481 105,481 105,481 105,481 105,481 1993 105,430 105,394 105,392 105,446 105,481 105,481 105,481 105,481 105,481 105,481 105,481 105,481 1994 105,433 105,433 105,383 105,383 105,433 105,433 105,433 105,433 105,433 105,433 105,433 105,433 1995 105,433 105,433 105,433 105,433 105,433 105,433 105,433 105,433 105,433 105,433 105,433 105,987

446

Mountaintop removal mining reduces stream salamander occupancy and richness in southeastern Kentucky (USA)  

Science Journals Connector (OSTI)

Abstract Mountaintop removal mining with valley fills (MTR/VF) is a ubiquitous form of land conversion in central Appalachia, USA and threatens the integrity of stream ecosystems. We investigated the effects of MTR/VF on stream salamander occupancy and overall community composition in southeastern Kentucky by conducting area constrained active searches for salamanders within first-order streams located in mature forest (i.e., control streams) and those impacted by MTR/VF. We found high mean species occupancy across 5 species at control streams, ranging from 0.73 (95% CI 0.41 to 0.96) to 0.90 (95% CI 0.77 to 0.98). Occupancy was lower at MTR/VF streams, with mean estimated occupancy probability ranging from 0.23 (95% CI 0.04 to 0.51) to 0.62 (95% CI 0.36 to 0.86). Additionally, the mean species richness for MTR/VF streams was 2.27 (▒1.27 SD) whereas richness was 4.67 (▒0.65 SD) for control streams. Numerous mechanisms may be responsible for decreased occupancy and species richness at MTR/VF streams, although water chemistry may be particularly important. Indeed, mean specific conductance was 30 times greater, sulfate (SO4) levels were 70 times greater, and concentrations of dissolved ions (Ca, Mg, K, Na) were greater in MTR/VF streams than in control streams. Our results indicate that MTR/VF operations lead to significant decreases in salamander occupancy and species richness.

Breneeĺ L. Muncy; Steven J. Price; Simon J. Bonner; Christopher D. Barton

2014-01-01T23:59:59.000Z

447

Organic-matter preservation in Chattanooga Shale: revised Late Devonian correlations, Kentucky and Tennessee  

SciTech Connect

Continued interest in the carbon-rich shale of Devonian and Mississippian age in Kentucky is reflected by intensive leasing and drilling to evaluate the potential reserves of oil shale. Thicker accumulations of shale suitable for surface extraction lie along the flanks of the Cincinnati arch in both the Illinois and Appalachian basins. The shale tends to thin across the Cincinnati arch by an order of magnitude (100 versus 10 m, 330 versus 33 ft), and individual units disappear entirely. Key beds have been used with mixed success in tracing these changes. Recognition of these key beds in cores provided by a recently completed 70-core drilling program in and near the outcrop is the basis for revising earlier suggested correlations. One key bed, marked by the occurrence of the alga. Foerstia (Protosalvinia), occurs in the lower part of the lower (Huron) member of the Ohio Shale in the Appalachian basin. The Huron Member is overlain by a lithostratigraphic marker, the Three Lick Bed. The Foerstia Zone has been traced in core and outcrop to the upper part of the uppermost (Clegg Creek) member of the New Albany Shale in the Illinois basin. Discovery in this widespread continuous biostratigraphic marker at the top of the upper (Gassaway) member of the Chattanooga Shale near the designated reference section in Dekalb County, Tennessee, suggests that the Three Lick Bed of the Ohio Shales does not correlate with the unit of the Gassaway Member of the Chattanooga Shale as thought. Field relations indicate that the Three Lick Bed is absent by nondeposition, and starved-basin conditions prevailed into Early Mississippian time in this part of Tennessee.

Kepferle, R.C.; Pollock, J.D.; Barron, L.S.

1983-03-01T23:59:59.000Z

448

Relative risk site evaluation for buildings 7740 and 7741 Fort Campbell, Kentucky  

SciTech Connect

Buildings 7740 and 7741 are a part of a former nuclear weapon`s storage and maintenance facility located in the southeastern portion of Fort Campbell, Kentucky. This underground tunnel complex was originally used as a classified storage area beginning in 1949 and continuing until 1969. Staff from the Pacific Northwest National Laboratory recently completed a detailed Relative Risk Site Evaluation of the facility. This evaluation included (1) obtaining engineering drawings of the facility and associated structures, (2) conducting detailed radiological surveys, (3) air sampling, (4) sampling drainage systems, and (5) sampling the underground wastewater storage tank. Ten samples were submitted for laboratory analysis of radionuclides and priority pollutant metals, and two samples submitted for analysis of volatile organic compounds. No volatile organic contaminants were detected using field instruments or laboratory analyses. However, several radionuclides and metals were detected in water and/or soil/sediment samples collected from this facility. Of the radionuclides detected, only {sup 226}Ra may have come from facility operations; however, its concentration is at least one order of magnitude below the relative-risk comparison value. Several metals (arsenic, beryllium, cadmium, copper, mercury, lead, and antimony) were found to exceed the relative-risk comparison values for water, while only arsenic, cadmium, and lead were found to exceed the relative risk comparison values for soil. Of these constituents, it is believed that only arsenic, beryllium, mercury, and lead may have come from facility operations. Other significant hazards posed by the tunnel complex include radon exposure and potentially low oxygen concentrations (<19.5% in atmosphere) if the tunnel complex is not allowed to vent to the outside air. Asbestos-wrapped pipes, lead-based paint, rat poison, and possibly a selenium rectifier are also present within the tunnel complex.

Last, G.V.; Gilmore, T.J.; Bronson, F.J.

1998-01-01T23:59:59.000Z

449

Hillslope erosion at the Maxey Flats Radioactive Waste Disposal Site, northeastern Kentucky  

SciTech Connect

Maxey Flats, a disposal site for low level radioactive waste, is on a plateau that rises 300 to 400 ft above the surrounding valleys in northeastern Kentucky. Rates of hillslope retreat were determined through a combination of direct erosion measurements during the 2-year study and through dendrogeomorphic techniques. Rates of hillslope retreats were determined through a combination of direction erosion measurements during the 2-year study and through dendrogeomorphic techniques. Rates of hillslope retreat determined from dendrogeomorphic evidence rate from 3.8 to 9.1 in/century, so that time to exposure of the trenches ranges from 35,000 to 65,000 years. The minimum estimate of 35,000 years is for the most actively eroding southern slope. Throughout tens of thousands of years, the rate of hillslope retreat is determined more by the occurrence of infrequent extreme events such as slope failure than by the continuous processes of slope wash observed in this study. These slope failures cause as much erosion in one event as hundreds or even thousands of years of slope wash. Periods of tens of thousands of years are also sufficiently long for significant changes in climate and tectonic activity to occur. Rates of erosion observed during this 2-year study are highly unlikely to be indicative of rates averaged over periods of tens of thousands of years during which many extreme events can occur. Thus, the long-term geomorphic stability of the Maxey Flats disposal site will be highly dependent upon the magnitude and frequency of extreme erosive events and upon trends in climate change and tectonic activity.

Carey, W.P., Lyverse, M.A.; Hupp, C.R.

1990-01-01T23:59:59.000Z

450

Kentucky Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Kentucky Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 36.3 23.0 19.6 25.2 19.8 15.5 10.9 5.6 1.2 -2.7 -5.1 -1.7 1992 5.7 8.9 7.7 -0.9 -5.4 -7.3 -8.9 -10.3 -9.2 2.6 8.5 8.4 1993 3.5 -8.1 -14.7 -13.7 -3.8 4.4 9.2 12.9 14.8 3.2 -1.2 -9.6 1994 -25.7 -31.2 -28.1 -20.1 -13.8 -10.6 -7.3 -4.7 -7.2 -4.8 1.4 4.5 1995 14.0 16.7 18.3 14.2 16.8 12.2 7.3 3.3 6.6 5.5 -4.6 -8.7 1996 -14.5 -16.8 -24.3 -29.4 -33.2 -22.0 -13.0 -5.9 -3.8 -3.6 0.9 5.3 1997 5.8 15.5 27.1 28.5 28.0 13.5 3.6 -0.7 -1.1 -0.7 0.2 -3.1 1998 7.5 5.2 -1.0 3.5 9.7 9.1 12.7 12.8 7.3 9.4 12.3 14.5

451

Geologic remote sensing of the Moorman Syncline, Kentucky, region. Final report, August 1, 1979-November 30, 1980  

SciTech Connect

Remote sensing imagery of a region in western Kentucky extending into Indiana, Illinois, and Tennessee was geologically interpreted for eastern shale gas exploration. The region is one Landsat frame enclosing the Moorman syncline, including the Wabash, Rough Creek and Pennyrile fault systems, and many oil and gas fields. Geologists with regional experience found unmapped lineaments in the imagery which were similar to those corresponding to the mapped faults. On the basis of some of these lineaments and other favorable geology, two sites for further exploration were selected. The interpreters concluded that the imagery, partiularly the Landsat MSS, showed potential for use in shale gas exploration.

Jackson, P.L.

1980-11-01T23:59:59.000Z

452

Ground-penetrating radar survey of the Maxey Flats Low-Level Nuclear Waste Disposal Site, Fleming County, Kentucky  

SciTech Connect

A ground-penetrating radar survey was conducted at the Maxey Flats Low-Level Nuclear Waste Disposal Site, Kentucky, to more accurately determine the location of burial trenches and pits, and to identify locations and depths of any prominent subsurface features. A geologic/electromagnetic model of the site was developed and utilized for analysis of the acquired data. Depths of penetration derived from radar records correlate well with those calculated from the model. A final interpretation of the radar data is presented.

Horton, K.A.; Morey, R.M.

1982-06-01T23:59:59.000Z

453

Data report: Illinois, Indiana, Kentucky, Tennessee, and Ohio. National Uranium Resource Evaluation Program. Hydrogeochemical and stream sediment reconnaissance  

SciTech Connect

This report presents the results of ground water, stream water, and stream sediment reconnaissance in Illinois, Indiana, Kentucky, Tennessee, and Ohio. The following sample types were collected in each state: Illinois - 716 stream sediment, 1046 ground water, 337 stream water; Indiana - 126 stream sediment, 443 ground water, 111 stream water; Kentucky - 4901 stream sediment, 6408 ground water, 3966 stream water; Tennessee - 3309 stream sediment, 3574 ground water, 1584 stream water; Ohio - 1214 stream sediment, 2049 ground water, 1205 stream water. Neutron activation analyses are given for U, Br, Cl, F, Mn, Na, Al, V, and Dy in ground water and stream water, and for U, Th, Hf, Ce, Fe, Mn, Na, Sc, Ti, V, Al, Dy, Eu, La, Sm, Yb, and Lu in sediments. Supplementary analyses by other techniques are reported for U (extractable), Ag, As, Ba, Be, Ca, Co, Cr, Cu, K, Li, Mg, Mo, Nb, Ni, P, Pb, Se, Sn, Sr, W, Y, and Zn. These analyses were made on 248 sediment samples from Tennessee. Field measurements and observations are reported for each site. Oak Ridge National Laboratory analyzed sediment samples which were not analyzed by Savannah River Laboratory neutron activation.

Sargent, K A; Cook, J R; Fay, W M

1982-02-01T23:59:59.000Z

454

Tectonic and flexural significance of Middle Devonian graben-fill sequence in new Albany shale, central Kentucky  

SciTech Connect

The third tectonic phase of the Acadian orogeny began in the late Middle Devonian, and the sedimentary record of that event is largely restricted to the deeper, more proximal portions of the Appalachian foreland and Illinois intercratonic basins. Much of the intervening area, on and near the Cincinnati arch, was uplifted and subjected to erosion by movement on the peripheral bulge accompanying the initiation of the third tectonic phase. However, bulge movement also reactivated basement fault systems in Kentucky and created a series of grabens that were filled with eroded sediments and debris flows from adjacent horsts. Although rarely preserved, a buried Devonian graben along Carpenter Fork in Boyle County, central Kentucky, reveals such a sequence. The graben is bounded by upthrown blocks of Middle Devonian Boyle Dolomite, which also floors the graben. Within the graben a black-shale unit, apparently absent elsewhere, conformably overlies the Boyle and grades upward into debris-flow deposits represented by the Duffin breccia facies of the New Albany Shale. The Duffin contains clasts of the shale, as well as of chert, silicified fossils, and fine to boulder-size dolostone clasts eroded from the Boyle high on the flanks of the graben. The underlying shale also exhibits evidence of penecontemporaneous soft-sediment deformation related to the debris-flow emplacement of Boyle residue in the graben and due to later loading by the Duffin.

Barnett, S.F.; Ettensohn, F.R.; Mellon, C. (Univ. of Kentucky, Lexington (USA))

1989-08-01T23:59:59.000Z

455

Kentucky Department for Natural Resources and Environmental Protection permit application for air contaminant source: SRC-I demonstration plant, Newman, Kentucky. Supplement I. [Additional information on 38 items requested by KY/DNREP  

SciTech Connect

In response to a letter from KY/DNREP, January 19, 1981, ICRC and DOE have prepared the enclosed supplement to the Kentucky Department for Natural Resources and Environmental Protection Permit Application for Air Contaminant Source for the SRC-I Demonstration Plant. Each of the 38 comments contained in the letter has been addressed in accordance with the discussions held in Frankfort on January 28, 1981, among representatives of KY/DNREP, EPA Region IV, US DOE, and ICRC. The questions raised involve requests for detailed information on the performance and reliability of proprietary equipment, back-up methods, monitoring plans for various pollutants, composition of wastes to flares, emissions estimates from particular operations, origin of baseline information, mathematical models, storage tanks, dusts, etc. (LTN)

none,

1981-02-13T23:59:59.000Z

456

Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Paducah DUF Paducah DUF 6 Conversion Final EIS FIGURE S-1 Regional Map of the Paducah, Kentucky, Site Vicinity Summary S-18 Paducah DUF 6 Conversion Final EIS FIGURE S-3 Three Alternative Conversion Facility Locations within the Paducah Site, with Location A Being the Preferred Alternative (A representative conversion facility footprint is shown within each location.) Summary S-20 Paducah DUF 6 Conversion Final EIS FIGURE S-4 Conceptual Overall Material Flow Diagram for the Paducah Conversion Facility Summary S-21 Paducah DUF 6 Conversion Final EIS FIGURE S-5 Conceptual Conversion Facility Site Layout for Paducah Summary S-28 Paducah DUF 6 Conversion Final EIS FIGURE S-6 Areas of Potential Impact Evaluated for Each Alternative Alternatives 2-7 Paducah DUF 6 Conversion Final EIS

457

Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 Paducah DUF 6 DEIS: December 2003 SUMMARY S.1 INTRODUCTION This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF 6 ) conversion facility at the U.S. Department of Energy (DOE) Paducah site in northwestern Kentucky (Figure S-1). The proposed facility would convert the DUF 6 stored at Paducah to a more stable chemical form suitable for use or disposal. In a Notice of Intent (NOI) published in the Federal Register (FR) on September 18, 2001 (Federal Register, Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF 6 conversion facilities at Portsmouth,

458

Sorption measurements performed under site-specific conditions Ś maxey flats, Kentucky, and west valley, new york, disposal sites  

Science Journals Connector (OSTI)

Sorption coefficients have been determined using site-specific sediments and trench waters, collected from the Maxey Flats, Kentucky, and West Valley, New York, low-level radioactive waste disposal sites. Experimental apparatus and procedures are described to preserve the anoxic character of the liquid phases during experiments. Experiments using anoxic and oxidized trench waters were performed as functions of solution pH, soil/solution ratio, water and soil composition. The lowest sorption was observed with the combination of anoxic waters and untreated soilŚthe combination most closely resembling the immediate trench environment. For best results in predictive applications, sorption data should be determined under conditions which simulate those in the field as closely as possible. The total radionuclide retention capacity of reducing geochemical environments is the sum of sorption processes on solid phases, as well as precicipation, and coprecipitation reactions involving iron mineral phases (sulfides and oxyhydroxides).

R.F. Pietrzak; K.S. Czyscinski; A.J. Weiss

1981-01-01T23:59:59.000Z

459

Health assessment for Maxey Flats Disposal Site, Morehouse, Fleming County, Kentucky, Region 4. CERCLIS No. KYD0980729107. Final report  

SciTech Connect

The National Priorities List Maxey Flats Disposal Site is located approximately 10 miles northwest of Morehouse, Kentucky, in Fleming County. The site was initially approved for the disposal of low level radioactive waste in 1963, and by 1977, an estimated maximum of 6 million cubic feet of wastes had been buried. In 1977, radionuclides were found in soil being excavated for additional trenches resulting in the site being closed in December of 1977. In addition to radioactive material, chemical wastes were disposed of in violation of the site license. Furthermore, water has infiltrated these trenches which now require pumping to prevent overflow. Monitoring wells on-site have detected numerous radionuclides, or