National Library of Energy BETA

Sample records for kentucky great lakes

  1. GREAT LAKES ENVIRONMENTAL RESEARCH

    E-Print Network [OSTI]

    #12;#12;GREAT LAKES ENVIRONMENTAL RESEARCH LABORATORY YEARLY REPORT FY 1992 Director Alfred M and Atmospheric Research Environmental Research Laboratories Great Lakes Environmental Research Laboratory 2205 adjacent to GLERL Muskegon Vessel Operations Facility. Photo courtesy of Mark Ford. ii #12;Contents

  2. GREAT LAKES ENVIRONMENTAL RESEARCH LABORATORY

    E-Print Network [OSTI]

    #12;GREAT LAKES ENVIRONMENTAL RESEARCH LABORATORY ANNUAL REPORT FY 1977 October 1977 Eugene J Research Laboratories Great Lakes Environmental Research Laboratory 2300 Washtenaw Avenue Ann Arbor, Michigan 48104. #12;NOTICE The NOAA Environmental Research Laboratories do not approve, recommend

  3. GREAT LAKES ENVIRONMENTAL RESEARCH LABORATORY

    E-Print Network [OSTI]

    #12;GREAT LAKES ENVIRONMENTAL RESEARCH LABORATORY ANNUAL REPORT FY 1978 October 1978 Eugene J of Research and Development Environmental Research Laboratories Great Lakes Environmental Research Laboratory 2300 Washtenaw Avenue Ann Arbor, Michigan 48104 #12;NOTICE The NOAA Environmental Research Laboratories

  4. GREAT LAKES ENVIRONMENTAL RESEARCH LABORATORY

    E-Print Network [OSTI]

    GREAT LAKES ENVIRONMENTAL RESEARCH LABORATORY ANNUAL REPORT FY 1981 December 1981 Eugene J . Aubert and Development Environmental Research Laboratories Great Lakes Environmental Research Laboratory 2300 Washtenaw Avenue Ann Arbor, Michigan 48104 #12;NOTICE The NOAA Environmental Research Laboratories do not approve

  5. GREAT LAKES ENVIRONMENTAL RESEARCH LABORATORY

    E-Print Network [OSTI]

    #12;GREAT LAKES ENVIRONMENTAL RESEARCH LABORATORY ANNUAL REPORT FY 1980 December I980 Eugene J of Research and Development Environmental Research Laboratories Great Lakes Environmental Research Laboratory 2300 Washtenaw Avenue Ann Arbor, Michigan 48104 #12;NOTICE The NOAA Environmental Research Laboratories

  6. Obama Administration Hosts Great Lakes Offshore Wind Workshop...

    Energy Savers [EERE]

    Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes Wind Collaborative Obama Administration Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes...

  7. Great Lakes Steel -- PCI facility

    SciTech Connect (OSTI)

    Eichinger, F.T. [BMH Claudius Peters AG, Buxtehude (Germany); Dake, S.H.; Wagner, E.D.; Brown, G.S. [Raytheon Engineers and Constructors, Pittsburgh, PA (United States)

    1997-12-31

    This paper discusses the planning, design, and start-up of the 90 tph PCI facility for National Steel`s Great Lakes Steel Division in River Rouge, MI. This project is owned and operated by Edison Energy Services, and was implemented on a fast-track basis by Raytheon Engineers and Constructors, Babcock Material Handling, and Babcock and Wilcox. This paper presents important process issues, basic design criteria, an the challenges of engineering and building a state-of-the-art PCI facility in two existing plants. Pulverized coal is prepared at the River Rouge Power Plant of Detroit Edison, is pneumatically conveyed 6,000 feet to a storage silo at Great Lakes Steel, and is injected into three blast furnaces.

  8. Obama Administration Hosts Great Lakes Offshore Wind Workshop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Obama Administration Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes Wind Collaborative Obama Administration Hosts Great Lakes Offshore Wind Workshop in...

  9. Great Salt Lake Basin Hydrologic Observatory

    E-Print Network [OSTI]

    Tarboton, David

    Great Salt Lake Basin Hydrologic Observatory Contact Information David Tarboton Utah State University of Utah 135 South 1460 East Rm 719 Salt Lake City, Utah (801) 581-5033 wjohnson. The Great Salt Lake Basin Hydrologic Observatory development team is highly committed to this concept

  10. GREAT LAKES ENVIRONMENTAL RESEARCH LABORATORY

    E-Print Network [OSTI]

    generation. Studiesof the lakes' physics i m p m understandingand predictionof the circulation, the thermal; numericalforecasttools result in productsapplicable to pollution transportand dispersion. Researchon physical phenomena

  11. J. Great Lakes Res. 28(3):451465 Internat. Assoc. Great Lakes Res., 2002

    E-Print Network [OSTI]

    boating, and hydropower, due to lake regulation. The Great Lakes system, shown in Figure 1, en- compasses regulation has the potential to modify seasonal water level fluctuations as well as the interannual vari

  12. Obama Administration and Great Lakes States Announce Agreement...

    Energy Savers [EERE]

    Obama Administration and Great Lakes States Announce Agreement to Spur Development of Offshore Wind Projects Obama Administration and Great Lakes States Announce Agreement to Spur...

  13. News on Aquatic Invasions Great Lakes Commission

    E-Print Network [OSTI]

    to as "NOBOBs" (no- ballast-on-board). Research on NOBOB ships as vectors for ANS introductions to the Great), and Philip T. Jenkins and Associates Ltd. Results of the Great Lakes NOBOB Research Program ("NOBOB Assessment") were sum- marized in a 2005 Final Report showing that NOBOB vessels carry live invertebrates

  14. Energy and water in the Great Lakes.

    SciTech Connect (OSTI)

    Tidwell, Vincent Carroll

    2011-11-01

    The nexus between thermoelectric power production and water use is not uniform across the U.S., but rather differs according to regional physiography, demography, power plant fleet composition, and the transmission network. That is, in some regions water demand for thermoelectric production is relatively small while in other regions it represents the dominate use. The later is the case for the Great Lakes region, which has important implications for the water resources and aquatic ecology of the Great Lakes watershed. This is today, but what about the future? Projected demographic trends, shifting lifestyles, and economic growth coupled with the threat of global climate change and mounting pressure for greater U.S. energy security could have profound effects on the region's energy future. Planning for such an uncertain future is further complicated by the fact that energy and environmental planning and regulatory decisionmaking is largely bifurcated in the region, with environmental and water resource concerns generally taken into account after new energy facilities and technologies have been proposed, or practices are already in place. Based on these confounding needs, the objective of this effort is to develop Great Lakes-specific methods and tools to integrate energy and water resource planning and thereby support the dual goals of smarter energy planning and development, and protection of Great Lakes water resources. Guiding policies for this planning are the Great Lakes and St. Lawrence River Basin Water Resources Compact and the Great Lakes Water Quality Agreement. The desired outcome of integrated energy-water-aquatic resource planning is a more sustainable regional energy mix for the Great Lakes basin ecosystem.

  15. J. Great Lakes Res. 31:520534 Internat. Assoc. Great Lakes Res., 2005

    E-Print Network [OSTI]

    J. Great Lakes Res. 31:520­534 Internat. Assoc. Great Lakes Res., 2005 520 Evolution of Sea Level (DBM) to reconstruct temporal changes in the Aral Sea surface and volume. We introduce variations in the aquatic fauna and their possible evolution under con- tinuing desiccation of the Big Aral Sea. Combining

  16. J. Great Lakes Res. 32:2939 Internat. Assoc. Great Lakes Res., 2006

    E-Print Network [OSTI]

    (IJC 2003) and a likely future study to look at water management in the upper Great Lakes. These stud (Cook et al. 1999, Wood- house and Overpeck 1998, Coo

  17. Great Lakes Water Scarcity and Regional Economic Development

    ScienceCinema (OSTI)

    Cameron Davis; Tim Eder; David Ulrich; David Naftzger; Donald J. Wuebbles; Mark C. Petri

    2013-06-06

    Great Lakes Water Scarcity and Regional Economic Development panel at Northwestern University on 10/10/2012

  18. Great Lakes Water Scarcity and Regional Economic Development

    SciTech Connect (OSTI)

    Cameron Davis; Tim Eder; David Ulrich; David Naftzger; Donald J. Wuebbles; Mark C. Petri

    2012-10-10

    Great Lakes Water Scarcity and Regional Economic Development panel at Northwestern University on 10/10/2012

  19. Great Lakes Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County, Georgia:Oregon: EnergyGreat Basin Geothermal AreaGreat Lakes

  20. The Lake Ontario Great Lakes Science Practicum: A Model for Training Limnology Students on

    E-Print Network [OSTI]

    Langen, Tom A.

    COMMENTARY The Lake Ontario Great Lakes Science Practicum: A Model for Training Limnology Students question (Are spatial patterns of Lake Ontario productivity a function of distance from the shoreline: Inquiry teaching, education, limnology, Lake Ontario. J. Great Lakes Res. 31:236­242 Internat. Assoc

  1. Great Lakes Energy Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEniaElectricHydro Electric Co PGrayson Logo: Great Lakes

  2. J. Great Lakes Res. 29(4):545557 Internat. Assoc. Great Lakes Res., 2003

    E-Print Network [OSTI]

    into the Laurentian Great Lakes from NOBOB (no ballast on board) vessels. To evaluate biocide effectiveness present in NOBOB vessels may have a significant impact on biocide efficacy. Exper- iments using material from actual NOBOB vessels generally corroborated data from the water-sediment experiments and suggest

  3. Obama Administration and Great Lakes States Announce Agreement...

    Broader source: Energy.gov (indexed) [DOE]

    of Understanding (MOU) that will streamline the efficient and responsible development of offshore wind resources in the Great Lakes. This effort underscores the President's...

  4. DESIGN OF THE GREAT LAKES OBSERVING SYSTEM ENTERPRISE ARCHITECTURE

    E-Print Network [OSTI]

    DESIGN OF THE GREAT LAKES OBSERVING SYSTEM ENTERPRISE ARCHITECTURE T.J. Dekker1 , J.V. DePinto1 , S, collaborative, and consensus-based enterprise architecture design process was conducted under the direction that will achieve an integrated, comprehensive, and sustainable observing system enterprise for the Great Lakes

  5. Regional Gravity Survey of the Northern Great Salt Lake Desert...

    Open Energy Info (EERE)

    Regional Gravity Survey of the Northern Great Salt Lake Desert and Adjacent Areas in Utah, Nevada, and Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  6. Changing Weather and Climate in the Great Lakes Region

    Office of Energy Efficiency and Renewable Energy (EERE)

    This 4-week course will feature a new season each week through short lectures and activities covering Great Lakes weather, observed changes in the climate, and societal impacts of climate change....

  7. Ice Cover on the Great Lakes NATIONALOCEANIC

    E-Print Network [OSTI]

    : In the shallow waters where whitefish spawn, ice cover protects their eggs from destructive wind and wave action://coastwatch.glerl.noaa.gov/glsea/cur/glsea_cur.png #12;GLERL Research Forecast capability The capability to forecast and predict ice cover is important for recreational safety and rescue efforts as well as for navigation, weather forecasting, adapting to lake level

  8. Bioenergetics of Lake Whitefish in the Great Lakes Primary Investigator: Steve Pothoven -NOAA GLERL

    E-Print Network [OSTI]

    Bioenergetics of Lake Whitefish in the Great Lakes Primary Investigator: Steve Pothoven - NOAA elicited concern by fishery managers and commercial fishermen. We propose to use bioenergetics modeling that are contributing to declines in fish growth is bioenergetics modeling. We recently evaluated and modified

  9. Changing Weather and Climate in the Great Lakes Region Webinar

    Broader source: Energy.gov [DOE]

    Offered by the University of Wisconsin-Madison through Coursera, this four-week course will feature a new season each week through short lectures and activities covering Great Lakes weather, observed changes in the climate, and societal impacts of climate change.

  10. Proceedings of the Great Lakes Solar Greenhouse Conference V

    SciTech Connect (OSTI)

    Currin, C.G. (ed.)

    1983-01-01

    Proceedings of the Fifth Great Lakes Greenhouse Conference are presented. Topics included are: a review of a greenhouses, greenhouses as integral part of an earth-sheltered home, solar architecture, design criteria, heat contribution for solar greenhouses, and the future of solar greenhouses.

  11. Proceedings of the Great Lakes Solar Greenhouse Conference V

    SciTech Connect (OSTI)

    Currin, C.G. (ed.)

    1983-01-01

    Proceedings of the Fifth Great Lakes Solar Greenhouse Conference are presented. Topics included are a review of greenhouses, greenhouses as integral part of an earth-sheltered house, solar architecture, design criteria, heat contribution from solar greenhouses, and the future for solar greenhouses.

  12. J. Great Lakes Res. 26(4):495505 Internat. Assoc. Great Lakes Res., 2000

    E-Print Network [OSTI]

    Resuspension Near the Keweenaw Peninsula, Lake Superior During the Fall and Winter 1990­1991 Nathan Hawley. The observations show that bottom resuspension occurred several times during the unstratified period. The resuspension is the result of the interaction between high bottom current veloci- ties and surface waves

  13. A SWOT Analysis of the Great Lakes Water Quality Protocol 2012: The Good, the Bad and the Opportunity

    E-Print Network [OSTI]

    Jetoo, Savitri; Krantzberg, Gail

    2014-01-01

    and Anderson, S. (2007). Healthy Waters, Strong Economy: Theof the Great Lakes Water Quality Agreement. Michigan StateBiennial Report on Great Lakes Water Quality. IJC. Windsor,

  14. Water Levels of the Great Lakes Source: Living with the Lakes, U.S. Army COE; Great Lakes Commission, 1999.

    E-Print Network [OSTI]

    and residents, but water that runs off the land carries pesticides and nutrients with it. Water quality affected many residents and businesses located along the rivers that provide water to the lakes and along the shoreline of the lakes themselves. In 1986, the Tittabawassee River basin, which eventually empties

  15. Indiana: the history and archaeology of an early Great Lakes propeller 

    E-Print Network [OSTI]

    Robinson, David Stewart

    1999-01-01

    The early Great Lakes propeller Indiana was built as a combination passenger- and freight- carrying steam vessel in 1848 at Vermilion, Ohio by itinerant Lake Erie shipbuilder Joseph M. Keating. Over the span of its ten-year ...

  16. Anthony Wayne: The History and Archaeology of an Early Great Lakes Steamboat 

    E-Print Network [OSTI]

    Krueger, Bradley Alan

    2012-07-16

    The Great Lakes side-wheel steamboat Anthony Wayne was built in 1837 at Perrysburg, OH and participated in lakes shipping during a time when such vessels were experiencing their heyday. Designed as a passenger and cargo ...

  17. Great Lakes Biomass State and Regional Partnership (GLBSRP)

    SciTech Connect (OSTI)

    Frederic Kuzel

    2009-09-01

    The Council of Great Lakes Governors administered the Great Lakes Biomass State and Regional Partnership (GLBSRP) under contract with the U. S. Department of Energy (DOE). This Partnership grew out of the existing Regional Biomass Energy Program which the Council had administered since 1983. The GLBSRP includes the States of Illinois, Indiana, Iowa, Michigan, Minnesota, Ohio and Wisconsin. The GLBSRPĂ?Â?s overall goal is to facilitate the increased production and use of bioenergy and biobased products throughout the region. The GLBSRP has traditionally addressed its goals and objectives through a three-pronged approach: providing grants to the States; undertaking region-wide education, outreach and technology transfer projects; and, providing in-house management, support and information dissemination. At the direction of US Department of Energy, the primary emphasis of the GLBSRP in recent years has been education and outreach. Therefore, most activities have centered on developing educational materials, hosting workshops and conferences, and providing technical assistance. This report summarizes a selection of activities that were accomplished under this cooperative agreement.

  18. Hands On Science with NOAA TITLE: Fins, Tails and Scales: Identifying Great Lakes Fish

    E-Print Network [OSTI]

    Hands ­ On Science with NOAA TITLE: Fins, Tails and Scales: Identifying Great Lakes Fish OVERVIEW: Working with a set of illustrated Great Lakes fish cards, students identify distinguishing characteristics of fish and learn to identify 10 common fish families and how why dichotomous keys are used. MATERIALS

  19. On the interaction between bathymetry and climate in the system dynamics and preferred levels of the Great Salt Lake

    E-Print Network [OSTI]

    Tarboton, David

    of the Great Salt Lake Ibrahim Nourein Mohammed1 and David G. Tarboton1 Received 21 May 2010; revised 24 October 2010; accepted 19 November 2010; published 17 February 2011. [1] The Great Salt Lake is a terminal bathymetry and climate in the system dynamics and preferred levels of the Great Salt Lake, Water Resour. Res

  20. Great Salt Lake Basin Hydrologic Observatory Prospectus Submitted to CUAHSI for consideration as a CUAHSI Hydrologic Observatory

    E-Print Network [OSTI]

    Tarboton, David

    1 Great Salt Lake Basin Hydrologic Observatory Prospectus Submitted to CUAHSI for consideration.S., the Great Salt Lake Basin provides the opportunity to observe climate and human-induced land-surface changes relationship between people and water across the globe and make the Great Salt Lake Basin a microcosm

  1. Shallow Water Offshore Wind Optimization for the Great Lakes (DE-FOA-0000415) Final Report: A Conceptual Design for Wind Energy in the Great Lakes

    SciTech Connect (OSTI)

    Wissemann, Chris; White, Stanley M

    2014-02-28

    The primary objective of the project was to develop a innovative Gravity Base Foundation (GBF) concepts, including fabrication yards, launching systems and installation equipment, for a 500MW utility scale project in the Great Lakes (Lake Erie). The goal was to lower the LCOE by 25%. The project was the first to investigate an offshore wind project in the Great Lakes and it has furthered the body of knowledge for foundations and installation methods within Lake Erie. The project collected historical geotechnical information for Lake Erie and also used recently obtained data from the LEEDCo Icebreaker Project (FOA DE-EE0005989) geotechnical program to develop the conceptual designs. Using these data-sets, the project developed design wind and wave conditions from actual buoy data in order to develop a concept that would de-risk a project using a GBF. These wind and wave conditions were then utilized to create reference designs for various foundations specific to installation in Lake Erie. A project partner on the project (Weeks Marine) provided input for construction and costing the GBF fabrication and installation. By having a marine contractor with experience with large marine projects as part of the team provides credibility to the LCOE developed by NREL. NREL then utilized the design and construction costing information as part of the LCOE model. The report summarizes the findings of the project. • Developed a cost model and “baseline” LCOE • Documented Site Conditions within Lake Erie • Developed Fabrication, Installation and Foundations Innovative Concept Designs • Evaluated LCOE Impact of Innovations • Developed Assembly line “Rail System” for GBF Construction and Staging • Developed Transit-Inspired Foundation Designs which incorporated: Semi-Floating Transit with Supplemental Pontoons Barge mounted Winch System • Developed GBF with “Penetration Skirt” • Developed Integrated GBF with Turbine Tower • Developed Turbine, Plant Layout and O&M Strategies The report details lowering LCOE by 22.3% and identified additional strategies that could further lower LCOE when building an utility scale wind farm in the Great Lakes.

  2. NOAA Data Report ERL GLERL-24 A COMPUTERIZED ICE CONCENTRATION DATA BASE FOR THE GREAT LAKES

    E-Print Network [OSTI]

    1 NOAA Data Report ERL GLERL-24 A COMPUTERIZED ICE CONCENTRATION DATA BASE FOR THE GREAT LAKES ......................................................................................................... 5 2. Computerized ice concentration data base .............................................................................................................................................. 5 2. BASIC DATAAND DATA REDUCTION

  3. NOAA Technical Memorandum ERL GLERL-66 AN EVALUATION OF GREAT LAKES HYDRAULIC ROUTING MODELS

    E-Print Network [OSTI]

    model and the Great Lakes Environmental Research Laboratory's Hydrologic Response Model (HRM). Although the model solution techniques produce equivalent results, the HRM reduces cpu requirements by 94%. The HRM

  4. Seizing a species : the story of the Great Salt Lake brine shrimp harvest

    E-Print Network [OSTI]

    Wotipka, Samuel Alex

    2014-01-01

    In the early 1950s, C.C. "Sparkplug" Sanders began harvesting brine shrimp from Utah's Great Salt Lake. Sanders built up a small business selling their eggs, called "cysts, to aquarium stores across the country. During the ...

  5. Great Lakes-St. Lawrence River Basin Water Resources Compact (multi-state)

    Broader source: Energy.gov [DOE]

    This Act describes the management of the Great Lakes - St. Lawrence River basin, and regulates water withdrawals, diversions, and consumptive uses from the basin. The Act establishes a Council,...

  6. Combating Invasive Species Projects for the Great Lakes Restoration Initiative

    E-Print Network [OSTI]

    bioenergetics model that indicates Asian carp cannot survive in Lake Michigan given the available food types and bioenergetics modeling are providing information for the first two projects. Bioenergetics is the study

  7. GREAT LAKES FISHERY COMMISSION 2008 Project Completion Report1

    E-Print Network [OSTI]

    Sanitary and Ship Canal or be transferred via bait buckets between these formerly isolated drainages in the Chicago Sanitary and Ship Canal, which connects the upper Illinois River with Lake Michigan; a second

  8. JPL D-26226 GREAT LAKES WINTER EXPERIMENT 2002 (GLAWEX 2002)

    E-Print Network [OSTI]

    Huron, and Lake Erie - have frozen over for the first time in nearly a decade [CNN/Reuters, 2003,000 km2 with a drainage basin extending 1110 km north-south and 1390 km east-west, the ice cover

  9. GREAT LAKES ICE COVER RaymondA. Asset'

    E-Print Network [OSTI]

    to the early fifteenth centllry. in central Japan. southern Germany,and Switzerland." I National Oceanographic hydropower production and cooling water intakes, and damaging shore structures. Ice cover also impacts, and spring energy exchanges between the lake and the planetary boundary layer. Although observations of shore

  10. Water Levels of the Great Lakes Who is Affected by Changing Lake Levels?

    E-Print Network [OSTI]

    to businesses and residents, but water that runs off the land carries pesticides and nutrients with it. Water of 1986 affected many residents and businesses located along the rivers that provide water to the lakes and along the shoreline of the lakes themselves. In 1986, the Tittabawassee River basin, which eventually

  11. RISK ANALYSIS FOR BIOLOGICAL INVASIONS OF THE LAURENTIAN GREAT LAKES AND INLAND AQUATIC ECOSYSTEMS

    E-Print Network [OSTI]

    RISK ANALYSIS FOR BIOLOGICAL INVASIONS OF THE LAURENTIAN GREAT LAKES AND INLAND AQUATIC ECOSYSTEMS Program in Biological Sciences Notre Dame, Indiana April 2004 #12;RISK ANALYSIS FOR BIOLOGICAL INVASIONS by humans. There are few tools for risk analysis of NIS introductions, most of which are insufficiently

  12. JP4.21 GLOBAL WARMING EFFECTS ON GREAT LAKES WATER: MORE PRECIPITATION BUT LESS WATER?

    E-Print Network [OSTI]

    develop. Because of the large thermal capacity of the oceans, the situation in which more energy contrasting results derived from different methods for determining the effect of global warming on Great Lakes is proportional to the net amount of energy they have available to go into the latent heat of evaporation

  13. Evaluation of Potential Impacts on Great Lakes Water Resources Based on Climate Scenarios of Two GCMs

    E-Print Network [OSTI]

    Evaluation of Potential Impacts on Great Lakes Water Resources Based on Climate Scenarios of Two Mete- orological Office's Hadley Centre (model HadCM2) have been used to derive potential impacts in the satisfaction of the interests of commercial navigation, recreational boating, riparians, and hydropower due

  14. NOAA Technical Memorandum ERL GLEU-39 GREAT LAKES BASINS RUNOFF MODELING

    E-Print Network [OSTI]

    Schematic. 2. Analytical Solution Possibilities. 3. Daily Potential Plus Actual Evapotranspiration, W are determined from joint consideration of available energy for actual and potential evapotranspiration with managing the Laurentian Great Lakes water levels for purposes of flood control, navigation, and hydropower

  15. Improving Great Lakes Regional Operational Water Budget and Water Level Forecasting

    E-Print Network [OSTI]

    Laboratory, 2 University Corporation for Atmospheric Research, 3 U.S. Army Corps of Engineers, Detroit Corps of Engineers (USACE, Detroit District). The USACE (in partnership with colleagues from Environment Protocol The USACE (Detroit District) develops operational water level projections for the Great Lakes

  16. Modeling soil respiration based on carbon, nitrogen, and root mass across diverse Great Lake forests

    E-Print Network [OSTI]

    Chen, Jiquan

    . Introduction Linkages between atmospheric carbon dioxide and global thermal properties have forcedModeling soil respiration based on carbon, nitrogen, and root mass across diverse Great Lake the examination of biospheric carbon flows and pools. Variability in carbon storage or the net ecosystem exchange

  17. Energy Budget-Based Simulation of Evapotranspiration from Land in the Great Lakes Basin

    E-Print Network [OSTI]

    Energy Budget-Based Simulation of Evapotranspiration from Land in the Great Lakes Basin Primary-available data for change in net radiative energy for land surfaces in the same region in the same general energy available in this region according to the corresponding GCM. Thus there is a mismatch: While air

  18. Estimating Nonpoint Source Pollution Loadings in the Great Lakes Watersheds Chansheng He

    E-Print Network [OSTI]

    contaminated sediments, urban runoff, storm sewers, and agriculture impairs Great Lakes shoreline waters a physically based, spatially-distributed hydrology model to simulate spatial and temporal NPS distributions in the study watershed. Soil erosion and sediment yield by both wind and water are estimated based

  19. Wind Fields over the Great Lakes Measured by the SeaWinds Scatterometer on the QuikSCAT Satellite

    E-Print Network [OSTI]

    Wind Fields over the Great Lakes Measured by the SeaWinds Scatterometer on the QuikSCAT Satellite for wind retrieval over the Great Lakes on a daily basis. We use data acquired by the SeaWinds Scatterometer on the QuikSCAT (QSCAT) satellite launched in June 1999 to derive wind speeds and directions over

  20. Temporal trends in and influence of wind on PAH concentrations measured near the Great Lakes

    SciTech Connect (OSTI)

    Cortes, D.R.; Basu, I.; Sweet, C.W.; Hites, R.A.

    2000-02-01

    This paper reports on temporal trends in gas- and particle-phase PAH concentrations measured at three sites in the Great Lakes' Integrated Atmospheric Deposition Network: Eagle Harbor, near Lake Superior, Sleeping Bear Dunes, near Lake Michigan, and Sturgeon Point, near Lake Erie. While gas-phase concentrations have been decreasing since 1991 at all sites, particle-phase concentrations have been decreasing only at Sleeping Bear Dunes. To determine whether these results represent trends in background levels or regional emissions, the average concentrations are compared to those found in urban and rural studies. In addition, the influence of local wind direction on PAH concentrations is investigated, with the assumption that dependence on wind direction implies regional sources. Using these two methods, it is found that PAH concentrations at Eagle Harbor and Sleeping Bear Dunes represent regional background levels but that PAH from the Buffalo Region intrude on the background levels measured at the Sturgeon Point site. At this site, wind from over Lake Erie reduces local PAH concentrations.

  1. Potential Economic Impacts from Offshore Wind in the Great Lakes Region (Fact Sheet)

    SciTech Connect (OSTI)

    Tegen, S.; Keyser, D.

    2014-01-01

    Offshore wind is a clean, renewable source of energy and can be an economic driver in the United States. To better understand the employment opportunities and other potential regional economic impacts from offshore wind development, the U.S. Department of Energy (DOE) funded research that focuses on four regions of the country. The studies use multiple scenarios with various local job and domestic manufacturing content assumptions. Each regional study uses the new offshore wind Jobs and Economic Development Impacts (JEDI) model, developed by DOE's National Renewable Energy Laboratory. This fact sheet summarizes the potential economic impacts identified by the study for the Great Lakes region.

  2. Simulation of oil-slick transport in Great Lakes connecting channels. Volume 3. User's manual for the lake-river oil-spill simulation model. Final report

    SciTech Connect (OSTI)

    Shen, H.T.; Yapa, P.D.; Petroski, M.E.

    1986-03-01

    In this study, two computer models named as ROSS and LROSS are developed for simulating oil-slick transport in rivers and lakes, respectively. The oil-slick transformation processes considered in these models include advection, spreading, evaporation, and dissolution. These models can be used for slicks of any shape originated from instantaneous or continuous spills in rivers and lakes with or without ice covers. Although developed for the need of the connecting channels in the upper Great Lakes, including the Detroit RIver, Lake St. Clair, St. Clair River, and St. Marys River, these models are site independent and can be used for others rivers and lakes. The programs are written in FORTRAN language to be compatible with FORTRAN77 compiler. The models are designed to be used on both mainframe and microcomputers.

  3. Simulation of oil-slick transport in Great Lakes connecting channels. Volume 1. Theory and model formulation. Final report

    SciTech Connect (OSTI)

    Shen, H.T.; Yapa, P.D.; Petroski, M.E.

    1986-03-01

    In this study, two computer models named as ROSS and LROSS are developed for simulating oil-slick transport in rivers and lakes, respectively. The oil slick transformation processes considered in these models include advection, spreading, evaporation, and dissolution. These models can be used for slicks of any shape originated from instantaneous or continuous spills in rivers and lakes with or without ice covers. Although developed for the need of the connecting channels in the upper Great Lakes, including the Detroit River, Lake St. Clair, St. Clair River, and St. Marys River, these models are site independent and can be used to other rivers and lakes. The programs are written in FORTRAN programming language to be compatible with FORTRAN77 compiler. The models are designed to be used on both mainframe and microcomputers.

  4. Integration of remote sensing and geographic information systems for Great Lakes water quality monitoring

    SciTech Connect (OSTI)

    Lathrop, R.G. Jr.

    1988-01-01

    The utility of three operational satellite remote sensing systems, namely, the Landsat Thematic Mapper (TM), the SPOT High Resolution Visible (HRV) sensors and the NOAA Advanced Very High Resolution Radiometer (AVHRR), were evaluated as a means of estimating water quality and surface temperature. Empirical calibration through linear regression techniques was used to relate near-simultaneously acquired satellite radiance/reflectance data and water quality observations obtained in Green Bay and the nearshore waters of Lake Michigan. Four dates of TM and one date each of SPOT and AVHRR imagery/surface reference data were acquired and analyzed. Highly significant relationships were identified between the TM and SPOT data and secchi disk depth, nephelometric turbidity, chlorophyll a, total suspended solids (TSS), absorbance, and surface temperature (TM only). The AVHRR data were not analyzed independently but were used for comparison with the TM data. Calibrated water quality image maps were input to a PC-based raster GIS package, EPPL7. Pattern interpretation and spatial analysis techniques were used to document the circulation dynamics and model mixing processes in Green Bay. A GIS facilitates the retrieval, query and spatial analysis of mapped information and provides the framework for an integrated operational monitoring system for the Great Lakes.

  5. Simulation of oil-slick transport in Great Lakes connecting channels. Theory and model formulation

    SciTech Connect (OSTI)

    Shen, H.T.; Yapa, P.D.; Petroski, M.E.

    1990-02-01

    Two-dimensional computer models for simulating oil slick movement in rivers and lakes were developed and then applied to the connecting channels of the upper Great Lakes. In these models the oil slick is considered to be a collection of discrete oil patches. The transformation of an oil slick due to advection, spreading, evaporation and dissolution are considered. In open-water regions the advection of oil patches in the slick are determined by the water current and wind using the drifting factor formulation. Formulas consider the balance of inertia, gravity, viscous and surface tension forces. The oil slick transformation model developed in this study contains as many processes as can be effectively and analytically modeled. The model has several special features, including the ability to model instantaneous and continuous spills, the ability to realistically describe the irregular shapes of an oil slick and the ability to account for the time-dependent variation of the flow conditions. The computer programs are designed so that it will be easy to refine the model elements and expand the model to include additional slick transformation processes.

  6. Housing Archetype Analysis for Home Energy-Efficient Retrofit in the Great Lakes Region

    SciTech Connect (OSTI)

    Kim, S. -K.; Mrozowski, T.; Harrell-Seyburn, A.; Ehrlich, N.; Hembroff, L.; Lieburn, B.; Mazor, M.; McIntyre, A.; Mutton, C.; Parsons, G.; Syal, M. G.; Wilkinson, R.

    2014-09-01

    This project report details activities and results of the "Market Characterization" project undertaken by the Cost Effective Energy Retrofit (CEER) team targeted toward the DOE goal of achieving 30%-50% reduction in existing building energy use. CEER consists of members from the Dow Chemical Company, Michigan State University, Ferris State University, and Habitat for Humanity Kent County. The purpose of this market characterization project was to identify housing archetypes which are dominant within the Great Lakes region and therefore offer significant potential for energy-efficient retrofit research and implementation due to the substantial number of homes possessing similar characteristics. Understanding the characteristics of housing groups referred to as "archetypes" by vintage, style, and construction characteristics can allow research teams to focus their retrofit research and develop prescriptive solutions for those structure types which are prevalent and offer high potential uptake within a region or market.

  7. Advanced Offshore Wind Turbine/Foundation Concept for the Great Lakes

    SciTech Connect (OSTI)

    Afjeh, Abdollah A.; Windpower, Nautica; Marrone, Joseph; Wagner, Thomas

    2013-08-29

    This project investigated a conceptual 2-bladed rotor wind turbine design and assessed its feasibility for installation in the Great Lakes. The levelized cost of energy was used for this purpose. A location in Lake Erie near the coast of Cleveland, Ohio was selected as the application site. The loading environment was defined using wind and wave data collected at a weather station in Lake Erie near Cleveland. In addition, the probability distributions of the annual significant wave height and wind speed were determined. A model of the dependence of the above two quantities was also developed and used in the study of wind turbine system loads. Loads from ice floes and ridges were also included.The NREL 5 MW 3-bladed rotor wind turbine concept was used as the baseline design. The proposed turbine design employs variable pitch blade control with tip-brakes and a teeter mechanism. The rotor diameter, rated power and the tower dimensions were selected to closely match those of the NREL 5 MW wind turbine.A semi-floating gravity base foundation was designed for this project primarily to adapt to regional logistical constraints to transport and install the gravity base foundation. This foundation consists of, from bottom to top, a base plate, a buoyancy chamber, a taper zone, a column (with ice cone), and a service platform. A compound upward-downward ice cone was selected to secure the foundation from moving because of ice impact.The turbine loads analysis was based on International ElectroTechnical Committee (IEC) Standard 61400-1, Class III winds. The NREL software FAST was the primary computational tool used in this study to determine all design load cases. An initial set of studies of the dynamics of wind turbines using Automatic Dynamic Analysis of Mechanical Systems (ADAMS) demonstrated that FAST and ADAMS load predictions were comparable. Because of its relative simplicity and short run times, FAST was selected for this study. For ice load calculations, a method was developed and implemented in FAST to extend its capability for ice load modeling.Both upwind and downwind 2-bladed rotor wind turbine designs were developed and studied. The new rotor blade uses a new twist angle distribution design and a new pitch control algorithm compared with the baseline model. The coning and tilt angles were selected for both the upwind and downwind configurations to maximize the annual energy production. The risk of blade-tower impact is greater for the downwind design, particularly under a power grid fault; however, this risk was effectively reduced by adjusting the tilt angle for the downwind configuration.

  8. Best Practices for Wind Energy Development in the Great Lakes Region

    SciTech Connect (OSTI)

    Pebbles, Victoria; Hummer, John; Haven, Celia

    2011-07-19

    This report offers a menu of 18 different, yet complementary, preferred practices and policies. The best practices cover all phases of the wind energy development process - from the policies that allow for wind development, to the sustainable operation of a wind project, to the best practices for decommissioning a spent turbine - including applications for offshore wind. Each best practice describes the opportunities and challenges (pros and cons), and offers a case example that illustrates how that best practice is being utilized by a particular jurisdiction or wind project. The practices described in this publication were selected by a diverse group of interests from the Great Lakes Wind Collaborative that included environmental groups, industry, academia, and federal, state and local government regulators. The practices were identified through a year-long process that included a literature review, online survey and interviews with individuals from the public, private and non-profit sectors. Optimally, a suite of these best practices would be applied in an appropriate combination to fit the conditions of a particular wind project or a set of wind projects within a given locality or region.

  9. Using Satellite Radar Data to Map and Monitor Variations in Great Lakes Ice Cover

    E-Print Network [OSTI]

    . Many practical applications such as winter navigation, shore structure protection, hydropower generation, lake ecology, and potential flooding caused by ice jams necessitate mapping and monitoring

  10. Supporting Water, Ecological, and Transportation Systems in the Great Lakes Basin Ecosystem

    E-Print Network [OSTI]

    Beck, Judy; Kamke, Sherry; Majerus, Kimberly

    2007-01-01

    at: http://www.bmpdatabase.org/ Keystone Report 1996.Final Report. The Keystone National Policy Dialogue onReport October 1996. Keystone, Colorado. Lake Michigan (MI)

  11. Housing Archetype Analysis for Home Energy-Efficient Retrofit in the Great Lakes Region

    SciTech Connect (OSTI)

    Kim, S. K.; Mrozowski, T.; Harrell-Seyburn, A.; Ehrlich, N.; Hembroff, L.; Bieburn, B.; Mazor, M.; McIntyre, A.; Mutton, C.; Parsons, G.; Syal, M. G.; Wilkinson, R.

    2014-09-01

    This project report details activities and results of the 'Market Characterization' project undertaken by the Cost Effective Energy Retrofit (CEER) team targeted toward the DOE goal of achieving 30%-50% reduction in existing building energy use. CEER consists of members from the Dow Chemical Company, Michigan State University, Ferris State University and Habitat for Humanity Kent County. The purpose of this market characterization project was to identify housing archetypes which are dominant within Great Lakes region and therefore offer significant potential for energy-efficient retrofit research and implementation due to the substantial number of homes possessing similar characteristics. Understanding the characteristics of housing groups referred to as 'archetypes' by vintage, style, and construction characteristics can allow research teams to focus their retrofit research and develop prescriptive solutions for those structure types which are prevalent and offer high potential uptake within a region or market. Key research activities included; literature review, statistical analysis of national and regional data of the American Housing Survey (AHS) collected by the U.S. Census Bureau, analysis of Michigan specific data, development of a housing taxonomy of architectural styles, case studies of two local markets (i.e., Ann Arbor and Grand Rapids in Michigan) and development of a suggested framework (or process) for characterizing local markets. In order to gain a high level perspective, national and regional data from the U.S. Census Bureau was analyzed using cross tabulations, multiple regression models, and logistic regression to characterize the housing stock and determine dominant house types using 21 variables.

  12. Trends in polycyclic aromatic hydrocarbon concentrations in the Great Lakes atmosphere

    SciTech Connect (OSTI)

    Ping Sun; Pierrette Blanchard; Kenneth A. Brice; Ronald A. Hites [Indiana University, Bloomington, IN (United States). School of Public and Environmental Affairs

    2006-10-15

    Atmospheric polycyclic aromatic hydrocarbon (PAHs) concentrations were measured in both the vapor and particle phases at seven sites near the Great Lakes as a part of the Integrated Atmospheric Deposition Network. Lower molecular weight PAHs, including fluorene, phenanthrene, fluoranthrene, and pyrene, were dominant in the vapor phase, and higher molecular weight PAHs, including chrysene, benzo(a)pyrene, and coronene, were dominant in the particle phase. The highest PAH concentrations in both the vapor and particle phases were observed in Chicago followed by the semiurban site at Sturgeon Point, NY. The major sources of PAHs in and around Chicago are vehicle emissions, coal and natural gas combustion, and coke production. The spatial difference of PAH concentrations can be explained by the local population density. Long-term decreasing trends of most PAH concentrations were observed in both the vapor and particle phases at Chicago, with half-lives ranging from 3-10 years in the vapor phase and 5-15 years in the particle phase. At Eagle Harbor, Sleeping Bear Dunes, and Sturgeon Point, total PAH concentrations in the vapor phase showed significant, but slow, long-term decreasing trends. At the Sturgeon Point site, which was impacted by a nearby city, particle-phase PAH concentrations also declined. However, most particle-phase PAH concentrations did not show significant long-term decreasing trends at the remote sites. Seasonal trends were also observed for particle-phase PAH concentrations, which were higher in the winter and lower in the summer. 36 refs., 4 figs., 1 tab.

  13. Using Climate Predictions in Great Lakes Hydrologic Forecasts T. E. Croley II1

    E-Print Network [OSTI]

    Lakes water levels cause extensive flooding, erosion, and damage to shorelines, shipping, and hydropower the forecasting system utility to decision makers and potential impacts in practical applications. CLIMATE EFFECTS

  14. Natural Gas Regulations (Kentucky)

    Broader source: Energy.gov [DOE]

    Kentucky Administrative Regulation title 805 promulgates the rules and regulations pertaining to natural gas production in Kentucky. In addition to KAR title 405, chapter 30, which pertains to any...

  15. Episodic Events: Great Lakes Experiment Primary Investigator: Brian Eadie (Emeritus) and David Schwab -NOAA/GLERL

    E-Print Network [OSTI]

    on episodic sediment resuspension and constituent transport and subsequent ecological effects in Lake Michigan: to create an integrated observational and numerical modeling program for the winter-spring resuspension is a result of the first winter-spring storm after ice-out and represents the resuspension of particulate

  16. NOAA Technical Memorandum ERL GLERL-56 GREAT LAKES REGIONAL FALLOUT SOURCE FUNCTIONS

    E-Print Network [OSTI]

    the most accurate estimate of the rates of deposition of the three nuclides over the drainage basin of monthly deposition rates for each lake and its drainage basin for the three nuclides. Correction is made for increased plutonium production relative to the other two nuclides prior to 1960. Comparison between

  17. Simulation of oil-slick transport in Great Lakes connecting channels. Volume 4. User's manual for the microcomputer-based interactive program. Final report

    SciTech Connect (OSTI)

    Yapa, P.D.; Thomas, R.J.; Rutherford, R.S.; Shen, H.T.

    1986-11-01

    In this study, two computer models named as ROSS and LROSS are developed for simulating oil-slick transport in rivers and lakes, respectively. The oil-slick transformation processes considered in these models include advection, spreading, evaporation, and dissolution. These models can be used for slicks of any shape originated from instantaneous or continuous spills in rivers and lakes with or without ice covers. Although developed for the need of the connecting channels in the upper Great Lakes, including the Detroit River, Lake St. Clair and St. Marys River, these models are site independent and can be used for other rivers and lakes. The programs are written in FORTRAN programming language to be compatible with FORTRAN77 compiler. The models are designed to be used on mainframe and microcomputers.

  18. Simulation of oil-slick transport in Great Lakes connecting channels. User's manual for the River Spill Simulation Model (ROSS). Special report

    SciTech Connect (OSTI)

    Shen, H.T.; Yapa, P.D.; Petroski, M.E.

    1991-12-01

    Two computer models, named ROSS and LROSS, have been developed for simulating oil slick transport in rivers and lakes, respectively. The oil slick transformation processes considered in these models include advection, spreading, evaporation and dissolution. These models can be used for slicks of any shape originating from instantaneous or continuous spills in rivers and lakes with or without ice covers. Although developed for the connecting channels in the upper Great Lakes, including the Detroit River, Lake St. Clair, the St. Clair River and the St. Marys River, these models are site independent and can be used for other rivers and lakes. The programs are written in FORTRAN programming language to be compatible with the FORTRAN77 compiler. In addition, a user-friendly, menu-driven program with graphics capability was developed for the IBM-PC AT computer, so that these models can be easily used to assist the cleanup action in the connecting channels should an oil spill occur.

  19. Simulation of oil-slick transport in Great Lakes connecting channels. Volume 2. User's manual for the river oil-spill simulation model. Final report

    SciTech Connect (OSTI)

    Shen, H.T.; Yapa, P.D.; Petroski, M.E.

    1986-03-01

    In this study, two computer models named as ROSS and LROSS are developed for simulating oil-slick transport in rivers and lakes, respectively. The oil slick transformation processes considered in these models include advection, spreading, evaporation, and dissolution. These models can be used for slicks of any shape originated from instantaneous or continuous spills in rivers and lakes with or without ice covers. Although developed for the need of the connecting channels in the upper Great Lakes, including the Detroit River, Lake St. Clair, St. Clair River, and St. Marys River, these models are site independent and can be used for other rivers and lakes. The programs are written in FORTRAN programing language to be compatible with FORTRAN77 compiler. The models are designed to be used on both mainframe and microcomputers.

  20. Kentucky Economic Opportunity Zone Program (KEOZ) (Kentucky)

    Broader source: Energy.gov [DOE]

    The Kentucky Economic Opportunity Zone Program (KEOZ) focuses on the development of areas with high unemployment and poverty levels. The program provides an income tax credit of up to 100% of the...

  1. The Kentucky novel

    E-Print Network [OSTI]

    Stone, Marion

    1916-01-01

    own. Allen did for the central region of Kentucky what Harte, 3 Miller,and Mark Twain did for the West, Alice French for the canebrakers of Arkansas%Miss Murfree for the Tennessee mountains. Later, John Fox Jr. did for Eastern Kentucky what Allen... did for the central part and people learned,perhaps with astonishment, of the Kentucky mountains. That a few hundred miles from the most cultured city of Kentucky there lived a people who in origin were almost pure English' and who, unable to reach...

  2. Wickliffe, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: EnergyMaryland:Meadow Lake,Maine: EnergyWickliffe, Kentucky:

  3. DOE - Office of Legacy Management -- Great Lakes Carbon Corp - IL 21

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth Dakota Edgemont, SouthLaboratoryDiv -NewIllinois GraniteGreat

  4. GREAT LAKES EVAPORATION MODEL SENSITIVITIES AND ERRORS By Thomas E. Croley II, Research Hydrologist, and Raymond A. Assel, Physical Scientist,

    E-Print Network [OSTI]

    to identifying water surface temperature, heat storage, and ice cover from field conditions or from previous) superposition of lake heat storage (Croley, 1992). Ice formation and loss is coupled also to lake thermodynamics model runs. The model is used with boundary meteorology conditions (daily time series of air temperature

  5. Great Lakes NATIONALOCEAN

    E-Print Network [OSTI]

    -situ and modeled data, including marine and meteorological observations, buoy observations, water level gauge, bathymetry, and land mask overlays. In addition, near real-time NOAAPort marine observation data at buoy

  6. Chapter 1: Review of the status of fisheries and climate change research in the Great Lakes Lynch, A. J., W. W. Taylor, and K. D. Smith. 2010. The Influence of Changing Climate on the Ecology and Management of

    E-Print Network [OSTI]

    strategy evaluation of management options for lake whitefish management with climate change 2010 2011 2012Chapter 1: Review of the status of fisheries and climate change research in the Great Lakes Lynch, A. J., W. W. Taylor, and K. D. Smith. 2010. The Influence of Changing Climate on the Ecology

  7. Kentucky Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential Consumers (Number of Elements) KentuckyKentuckyYear JanNA

  8. Kentucky Residential Energy Code Field Study

    Broader source: Energy.gov [DOE]

    Lead Performer: Midwest Energy Efficiency Alliance – Chicago, ILPartners:   -  Kentucky Department of Housing, Buildings and Construction (DHBC) – Frankfort, KY  -  Kentucky Department of Energy...

  9. Alternative Fuel Production Facility Incentives (Kentucky) |...

    Broader source: Energy.gov (indexed) [DOE]

    Developer Utility Program Info State Kentucky Program Type Corporate Tax Incentive The Kentucky Economic Development and Finance Authority (KEDFA) provides tax incentives to...

  10. NOAA is a science-to-service agency, transforming research into products and services that people use every day. NOAA's services in the Great Lakes region include weather warnings and climate

    E-Print Network [OSTI]

    , removed over 209,250 metric tons of waste and demolition material, and opened over 780 miles of river then rebounded to above-average levels in 2014. NOAA's Great Lakes Water Levels Dashboard allows the general-focused work in the areas of toxic chemical remediation, habitat restoration, aquatic invasive species

  11. The Emergency Response Network of the Great Lakes Regional Center of Excellence exists to provide aid during a bio-defense emergency related to emerging infectious diseases or an act of bioterrorism.

    E-Print Network [OSTI]

    Sherman, S. Murray

    The Emergency Response Network of the Great Lakes Regional Center of Excellence exists to provide aid during a bio- defense emergency related to emerging infectious diseases or an act of bioterrorism in the field of infectious disease and special pathogen treatment and research. The Emergency Response Network

  12. Options for Kentucky's Energy Future

    SciTech Connect (OSTI)

    Larry Demick

    2012-11-01

    Three important imperatives are being pursued by the Commonwealth of Kentucky: ? Developing a viable economic future for the highly trained and experienced workforce and for the Paducah area that today supports, and is supported by, the operations of the US Department of Energy’s (DOE’s) Paducah Gaseous Diffusion Plant (PGDP). Currently, the PGDP is scheduled to be taken out of service in May, 2013. ? Restructuring the economic future for Kentucky’s most abundant indigenous resource and an important industry – the extraction and utilization of coal. The future of coal is being challenged by evolving and increasing requirements for its extraction and use, primarily from the perspective of environmental restrictions. Further, it is important that the economic value derived from this important resource for the Commonwealth, its people and its economy is commensurate with the risks involved. Over 70% of the extracted coal is exported from the Commonwealth and hence not used to directly expand the Commonwealth’s economy beyond the severance taxes on coal production. ? Ensuring a viable energy future for Kentucky to guarantee a continued reliable and affordable source of energy for its industries and people. Today, over 90% of Kentucky’s electricity is generated by burning coal with a delivered electric power price that is among the lowest in the United States. Anticipated increased environmental requirements necessitate looking at alternative forms of energy production, and in particular electricity generation.

  13. Kentucky Natural Gas Processed in Kentucky (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential Consumers (Number of Elements) KentuckyKentucky (Million

  14. Woodford County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:Wizard Power Pty Ltd JumpWoodcliff Lake,Kentucky: Energy

  15. FACT BOOKLET UNIVERSITY OF KENTUCKY

    E-Print Network [OSTI]

    MacAdam, Keith

    had a banner year with the fourth consecutive year of increased enrollment and second consecutive year for the fourth year in a row. #12;The University of Kentucky's mission is based on a profoundly important idea Capilouto 2-3 UK Mission and Vision 4 Enrollment 5-9 First-year Student Profile 10-11 Retention

  16. EIS-0318: Kentucky Pioneer Integrated Gasification Combined Cycle (IGCC) Demonstration Project, Trapp, Kentucky (Clark County)

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to provide cost-shared financial support for The Kentucky Pioneer IGCC Demonstration Project, an electrical power station demonstrating use of a Clean Coal Technology in Clark County, Kentucky.

  17. Kentucky Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    Water, Water Quality, Ecology Descriptors: stream restoration, secondary production, macroinvertebratesKentucky Water Resources Research Institute Annual Technical Report FY 2009 Kentucky Water of the Kentucky Water Resources Research Institute. Additional research, service, and technology transfer

  18. South Kentucky RECC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    South Kentucky Rural Electric Cooperative Corporation (RECC) provides service to more than 60,000 customers in southeastern Kentucky. To promote energy efficiency to residential customers, South...

  19. Mr. Todd Mullins Federal Facility Agreement Manager Kentucky...

    Office of Environmental Management (EM)

    Facility Agreement Manager Kentucky Department for Environmental Protection Division of Waste Management 200 Fair Oaks Lane, 2 nd Floor Frankfort, Kentucky 40601 Ms. Jennifer Tufts...

  20. Transitioning Kentucky Off Oil: An Interview with Clean Cities...

    Office of Environmental Management (EM)

    Transitioning Kentucky Off Oil: An Interview with Clean Cities Coordinator Melissa Howell Transitioning Kentucky Off Oil: An Interview with Clean Cities Coordinator Melissa Howell...

  1. Kentucky Power- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Kentucky Power provides a variety of prescriptive incentives to commercial customers for lighting upgrades, HVAC retrofits, refrigeration measures and custom upgrades which conserve energy....

  2. ,"Kentucky Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  3. Phase 1, Background study results under the Council of Great Lake Governors program to perform stack sampling and analysis of emissions from densified refuse derived fuels (d-RDF)

    SciTech Connect (OSTI)

    Not Available

    1989-04-07

    This report covers the results of the first part of the study. Chapter 2 contains a summary of the d-RDF literature which was surveyed. Chapter 3 contains a compilation of existing and proposed regulation information from the seven participating Great Lakes States. Chapter 4 includes identification of pellet producers in the region. Chapter 5 contains a description of the pellet producers and test burn facilities selected for the experimental work to be undertaken in the second part of the program study. Chapter 6 contains a list of references. 27 refs., 7 figs., 6 tabs.

  4. Green County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County, Georgia:Oregon: EnergyGreatGreeley,Button JumpCatKentucky:

  5. Chapter 53 Ambient Air Quality (Kentucky)

    Broader source: Energy.gov [DOE]

    Kentucky Administrative Regulation Chapter 53, entitled Ambient Air Quality, is promulgated under the authority of the Division of Air Quality within the Energy and Environment Cabinet’s Department...

  6. Kentucky WRI Pilot Test Universal ID

    E-Print Network [OSTI]

    screening deployment experience · Significant cost savings to FMCSA ·Enabling technology already deployedKentucky WRI Pilot Test ­ Universal ID Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 #12;·Utilizes existing automated screening system ·Uses assorted

  7. Biodiesel is Working Hard in Kentucky

    SciTech Connect (OSTI)

    Not Available

    2004-04-01

    This 4-page Clean Cities fact sheet describes the use of biodiesel fuel in 6 school districts throughout Kentucky. It contains usage information for each school district, as well as contact information for local Clean Cities Coordinators and Biodiesel suppliers.

  8. Kentucky

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets See full2% of

  9. Stimulating Energy Efficiency in Kentucky: An Implementation Model for States

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on Stimulating Energy Efficiency in Kentucky.

  10. An integrated approach to offshore wind energy assessment: Great Lakes 3D Wind Experiment. Part I. Calibration and testing RJ Barthelmie1, SC Pryor1, CM Smith1, P Crippa1, H Wang1, R. Krishnamurthy2, R. Calhoun2, D Valyou3, P Marzocca3, D Matthiesen4, N.

    E-Print Network [OSTI]

    Polly, David

    An integrated approach to offshore wind energy assessment: Great Lakes 3D Wind Experiment. Part I Government or any agency thereof." Introduction An experiment to test wind and turbulence measurement strategies was conducted at a northern Indiana wind farm in May 2012. The experimental design focused

  11. Columbus, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open EnergyColorado ParksKentucky:County,Illinois:Kentucky:

  12. Environmental investigations at the Paducah Gaseous Diffusion Plant and surrounding area, McCracken County, Kentucky: Volume 1 -- Executive summary. Final report

    SciTech Connect (OSTI)

    NONE

    1994-05-01

    This report details the results of four studies into environmental and cultural resources on and near the Department of Energy`s (DOE) Paducah Gaseous Diffusion Plant (PGDP) located in Western Kentucky in McCracken County, approximately 10 miles west of Paducah, KY. The area investigated includes the PGDP facility proper, additional area owned by DOE under use permit to the Western Kentucky Wildlife Management Area (WKWMA), area owned by the Commonwealth of Kentucky that is administered by the WKWMA, area owned by the Tennessee Valley Authority (TVA), the Metropolis Lake State Nature preserve and some privately held land. DOE requested the assistance and support of the US Army Engineer District, Nashville (CEORN) in conducting various environmental investigations of the area. The US Army Engineer Waterways Experiment Station (WES) provided technical support to the CEORN for environmental investigations of (1) wetland resources, (2) threatened or endangered species and habitats, and (3) cultural resources. A floodplain investigation was conducted by CEORN.

  13. Discovering the Sinkholes of Lake

    E-Print Network [OSTI]

    Discovering the Sinkholes of Lake Huron In June of 2001, in collaboration with Great Lakes, a number of submerged sinkholes and pockmarks were also discovered on the lakebed. From about 10 glacier maximum. Karst sinkholes were created when a chemical reaction between limestone and acidic water

  14. A Guidance Document for Kentucky's Oil and Gas Operators

    SciTech Connect (OSTI)

    Bender, Rick

    2002-03-18

    The accompanying report, manual and assimilated data represent the initial preparation for submission of an Application for Primacy under the Class II Underground Injection Control (UIC) program on behalf of the Commonwealth of Kentucky. The purpose of this study was to identify deficiencies in Kentucky law and regulation that would prevent the Kentucky Division of Oil and Gas from receiving approval of primacy of the UIC program, currently under control of the United States Environmental Protection Agency (EPA) in Atlanta, Georgia.

  15. Kentucky Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    Public Outreach Program. The Metropolitan Sewer District funded activities addressing Beargrass Creek combined sewer overflows in the Louisville area. The Kentucky Department for Environmental Protection also

  16. Kentucky Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    Public Outreach Program. The Metropolitan Sewer District funded activities addressing Beargrass Creek combined sewer overflows in Louisville. The Kentucky Department for Environmental Protection also supported

  17. Henderson County North Middle School wins 2015 DOE West Kentucky...

    Office of Environmental Management (EM)

    http:www.science.energy.govwdtsnsb. Addthis Related Articles Gatton Academy of Mathematics and Science won the 2015 West Kentucky Regional High School Science Bowl...

  18. Columbia Gas of Kentucky- Home Savings Rebate Program

    Broader source: Energy.gov [DOE]

    Columbia Gas of Kentucky offers rebates to residential customers for the purchase and installation of energy efficient appliances and equipment. Water heaters, furnaces and space heating equipment...

  19. ,"Kentucky Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky...

  20. Kentucky Utilities Company- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

     Kentucky Utilities Company's Home Energy Rebate program provides incentives for residential customers to upgrade to energy efficiency home appliances and heat and air conditioning equipment. ...

  1. Kentucky Residents Cash in on Rebate Program | Department of...

    Energy Savers [EERE]

    washers, dishwashers and refrigerators and even to solar water heaters and geothermal heat pumps. So far, Kentucky's energy efficient appliance rebate program has issued nearly...

  2. ,"Kentucky Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  3. For more information please contact the NOAA Center of Excellence for Great Lakes and Human Health at (734) 741-2283 or www.glerl.noaa.gov/res/Centers/HumanHealth.

    E-Print Network [OSTI]

    indicate the presence of other disease-causing bacteria. Illegal sewer connections to storm sewers into lakes. Sanitary sewer overflows (SSOs) release raw sewage directly into lakes, rivers, and streams. Combined sewer overflows following wet-weather events can discharge sewage into surface water because storm

  4. Kentucky DOE EPSCoR Program

    SciTech Connect (OSTI)

    Grulke, Eric; Stencel, John

    2011-09-13

    The KY DOE EPSCoR Program supports two research clusters. The Materials Cluster uses unique equipment and computational methods that involve research expertise at the University of Kentucky and University of Louisville. This team determines the physical, chemical and mechanical properties of nanostructured materials and examines the dominant mechanisms involved in the formation of new self-assembled nanostructures. State-of-the-art parallel computational methods and algorithms are used to overcome current limitations of processing that otherwise are restricted to small system sizes and short times. The team also focuses on developing and applying advanced microtechnology fabrication techniques and the application of microelectrornechanical systems (MEMS) for creating new materials, novel microdevices, and integrated microsensors. The second research cluster concentrates on High Energy and Nuclear Physics. lt connects research and educational activities at the University of Kentucky, Eastern Kentucky University and national DOE research laboratories. Its vision is to establish world-class research status dedicated to experimental and theoretical investigations in strong interaction physics. The research provides a forum, facilities, and support for scientists to interact and collaborate in subatomic physics research. The program enables increased student involvement in fundamental physics research through the establishment of graduate fellowships and collaborative work.

  5. The Bait Minnow Industry Great Lakes

    E-Print Network [OSTI]

    and to stoc k storage ponds and tanks for sal e when they are not found in shoal water. Spottail Shiner in shallow water than do e s the eme r ald shiner; therefore, the spot- tail shine r contributes to the bait

  6. Great Lakes Bioenergy Research Center Technologies Available...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and...

  7. Great Lakes Regional Land Cover Change Report

    E-Print Network [OSTI]

    management actions. To learn more about the C-CAP data products used in this report and to access the data, and tourism industries. However, some significant stressors have degraded the ecosystem integrity

  8. Great Lakes Environmental Research Laboratory GLERLNATIONALOCEAN

    E-Print Network [OSTI]

    's Muskegon Channel, GLERL's field station occupies three buildings. There are currently 12 employees, maintenance, planning, and effective field operations. The facility has both small boat and deep-water docking stations measure and record wind speed, wind gust, wind direction, air temperature, and wind chill

  9. Great Lakes WIND Network | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavy ElectricalsFTL SolarGate SolarGijeon WintecWIND Network Jump to:

  10. Green River Lake and Dam interim plan benefits ecosystem By John Hickey

    E-Print Network [OSTI]

    US Army Corps of Engineers

    11 Green River Lake and Dam interim plan benefits ecosystem By John Hickey Hydrologic Engineering that water is released from Green River Dam in Kentucky. In May 2006, the interim plan was approved shown that operation of Green River Dam can be changed in ways that improve ecosystems while continuing

  11. Licking River Basin, Cynthiana, Kentucky 24 March 2006

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Licking River Basin, Cynthiana, Kentucky 24 March 2006 Abstract: The recommended project would reduce flood damages in the communities of Cynthiana, Millersburg, and Paris, in the Licking River B Kentucky, by the construction of two dry bed detention basins on tributaries of the South Fork

  12. Utica, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York:PowerNewPumaty JumpRulesUtah's PublicsourceKentucky:

  13. Hopkinsville, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNew Jersey:Hopkinsville, Kentucky: Energy Resources Jump to:

  14. Kentucky Natural Gas Processed (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential Consumers (Number of Elements) Kentucky

  15. Tennessee Valley Authority (Kentucky) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfinMarketMemberI PLLCsourceValley Authority (Kentucky)

  16. Columbia, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open EnergyColorado ParksKentucky: Energy Resources Jump to:

  17. Glacial Lakes Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky:BoreOpenGilliam County, Oregon: EnergyGiraMundoEnergyLakes

  18. Kentucky Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    ) Continued development of a watershed-based water quality assessment and management methodology (DMA), 4) Kentucky River Basin management coordination (KRA), 5) Superfund outreach program roads in steep terrain: Influence on nonpoint source pollution and hillslope hydrology Basic Information

  19. EECBG Success Story: Software Helps Kentucky County Gauge Energy...

    Office of Environmental Management (EM)

    Addthis Lexington-Fayette Urban County, Kentucky invested 140,000 of a 2.7 million Energy Efficiency and Conservation Block Grant (EECBG) to purchase EnergyCAP software. The...

  20. Greater Cincinnati Energy Alliance- Residential Loan Program (Kentucky)

    Broader source: Energy.gov [DOE]

    The Greater Cincinnati Energy Alliance provides loans for single family residencies and owner occupied duplexes in Hamilton county in Ohio and Boone, Kenton, and Campbell counties in Kentucky. To...

  1. SEP Success Story: Kentucky Launches State-Wide School Energy...

    Office of Environmental Management (EM)

    In what could potentially be the first program of its scale, Kentucky has hired a new green team of 35 energy managers. Learn more. Addthis Related Articles Energy efficiency...

  2. Kentucky Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    and the Paducah Gaseous Diffusion Plant), the Kentucky Deparmtnet of Military Affairs (Technical Support and cleanup at the Paducah Gaseous Diffusion Plant over the next several years. Five research projects were

  3. Kentucky Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    ), and the Kentucky River Authority (KRA): 1) Technical Support for the Paducah Gaseous Diffusion Plant (CHS) 2 capability of wetland soils and paleowetland sediments in the vicinity of the Paducah Gaseous Diffusion Plant

  4. Kentucky Utilities Company- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Kentucky Utilities Company (KU) offers rebates to all commercial customers who pay a DSM charge on monthly bills. Rebates are available on lighting measures, sensors, air conditioners, heat pumps,...

  5. J. Great Lakes Res. 29(1):157171 Internat. Assoc. Great Lakes Res., 2003

    E-Print Network [OSTI]

    .S. and Canada with emphasis on commercial navigation and low head hydroelectric power. There was minimal

  6. J. Great Lakes Res. 32:6376 Internat. Assoc. Great Lakes Res., 2006

    E-Print Network [OSTI]

    , and oceans, occurs when the continued forcing of offshore winds moves warm epilimnetic water away from of southerly and west-to-north- westerly winds, while upwelling events occurring along the eastern shore were preceded by 4 days of northerly winds. Probability of an upwelling event occurring was a function

  7. J. Great Lakes Res. 31:373385 Internat. Assoc. Great Lakes Res., 2005

    E-Print Network [OSTI]

    2000 resuspension event. Model predictions were compared to data gathered by the EEGLE project in the area of the resuspension feature. The advection peaks seemed tied to the presence of a highly at depths of 40 m in the area of the resuspension feature were more problematic, as the observed data in one

  8. Ocean and Great Lakes Economic Data Millions of jobs depend on ocean and Great Lakes

    E-Print Network [OSTI]

    -dependent sectors, from tourism to ship building. These data have many uses, including helping coastal officials to access these data and obtain information designed to help coastal communities use economic data shore Mineral Extraction Ship and Boat Building Tourism and Recreation Living Resources Marine

  9. Great Lakes Management Act of 1985. Hearing before the Subcommittee on Intergovernmental Relations of the Committee on Governmental Affairs, United States Senate, Ninety-Ninth Congress, First Session on S. 765, May 22, 1985

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    A hearing on S.765 focused on water quality and the effect of construction and development on water supply and quality of the area. A congressional task force will address the implications of economic development and such water-related issues as transportation and pollutants. The Bill corrects the current fragmented management of this major resource by placing responsibility for environmental quality on the Environmental Protection Agency and for research on the National Oceanic and Atmospheric Administration. It also provides a mechanism for coordinating agency activities and programs for surveillance and monitoring, the exchange of research information, a five-year pilot program to demonstrate the removal of toxic materials from lake bottoms, and a five-year pilot program that will lesson the loading of nutrients in the lakes. The witnesses represented affected agencies and states, environmental groups, and research groups. The text of S.765 follows the testimony of the 10 witnesses.

  10. The Status of Diporeia spp. in Lake Ontario, 1994-Stephen J. Lozano1

    E-Print Network [OSTI]

    233 The Status of Diporeia spp. in Lake Ontario, 1994- 1997 Stephen J. Lozano1 DOC/NOAA Great Lakes in Lake Ontario between 1994 and 1997 revealed a recent decline in Diporeia spp. (Amphipoda) abundance on fish production in Lake Ontario. Introduction The abundance of the deep-water amphipod, Diporeia spp

  11. New constraints on water temperature at Lake Bonneville from carbonate clumped isotopes

    E-Print Network [OSTI]

    Mering, John Arthur

    2015-01-01

    Wilkinson, B.H. , 1986. Water chemistry and sedimentologicalmarl deposition. Environ. Geol. Water Sci. 8, 229–236. doi:of Great Salt Lake: History, Water Balance, Conditions, Lake

  12. Jefferson County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,OpenKentucky:Jeanerette BiomassJeffersonIowa:Kentucky:

  13. Kentucky Natural Gas Processed in West Virginia (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential Consumers (Number of Elements) KentuckyKentucky

  14. Kentucky Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential Consumers (Number of Elements) KentuckyKentuckyYear

  15. Kentucky Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    on environmental assessment and cleanup evaluation at the Paducah Gaseous Diffusion Plant over the next several for Health Services (Technical Support for the Maxey Flats Nuclear Disposal Site and the Paducah Gaseous Diffusion Plant Federal Facilities Agreement and Agreement in Principle), the Kentucky Department

  16. Kentucky Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    Flats Disposal Site (CHS) 2) Technical support for the Paducah Gaseous Diffusion Plant (CHS) 3 soils and paleowetland sediments in the vicinity of the Paducah Gaseous Diffusion Plant (PGDP) to bind Attenuation of a Trichloroethene-Contaminated Aquifer System, Paducah, Kentucky, MS Thesis, Department

  17. Physical-Biological Coupling in Southern Lake Michigan: Influence of Episodic Sediment Resuspension on Phytoplankton

    E-Print Network [OSTI]

    August 2003 Key words: Coastal resuspension, Diatoms, Great Lakes, Growth, Microalgae, Photosynthesis from the sediments i.e., meroplankton may significantly alter phytoplankton composition and biomass

  18. THREE NEW WHITEFISHES FROM BEAR LAKE, IDAHO AND UTAH

    E-Print Network [OSTI]

    the sides of the bordering mountains. The outlet of Lake Bonneville carried its overflow into Snake River of Great Salt Lake, the connection heing thr()ughBear River,~hic):1,h~.sits origin among the mountains connect~d'~th tbe quaternary.L,a~e Bonneville, the shorelines of which' are still plainly tracedalong

  19. Stimulation of Lake Michigan Plankton Metabolism by Sediment Resuspension and River Runoff

    E-Print Network [OSTI]

    Stimulation of Lake Michigan Plankton Metabolism by Sediment Resuspension and River Runoff Thomas H. Paul, Minnesota 55108 ABSTRACT. Previous work during a major sediment resuspension event (March 1988. INDEX WORDS: Sediment resuspension, river runoff, plankton metabolism, Lake Michigan. J. Great Lakes Res

  20. Kentucky Utilities Company and Louisville Gas & Electric- Residential Energy Efficiency Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

     Kentucky Utilities Company's Home Energy Rebate program provides incentives for residential customers to upgrade to energy efficiency home appliances and heat and air conditioning equipment. ...

  1. Tennessee Valley and Eastern Kentucky Wind Working Group

    SciTech Connect (OSTI)

    Katie Stokes

    2012-05-03

    In December 2009, the Southern Alliance for Clean Energy (SACE), through a partnership with the Appalachian Regional Commission, EKPC, Kentucky's Department for Energy Development and Independence, SACE, Tennessee's Department of Environment and Conservation, and TVA, and through a contract with the Department of Energy, established the Tennessee Valley and Eastern Kentucky Wind Working Group (TVEKWWG). TVEKWWG consists of a strong network of people and organizations. Working together, they provide information to various organizations and stakeholders regarding the responsible development of wind power in the state. Members include representatives from utility interests, state and federal agencies, economic development organizations, non-government organizations, local decision makers, educational institutions, and wind industry representatives. The working group is facilitated by the Southern Alliance for Clean Energy. TVEKWWG supports the Department of Energy by helping educate and inform key stakeholders about wind energy in the state of Tennessee.

  2. Gallatin County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: Energy Resources Jump to: navigation, search Equivalent

  3. Robertson County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, New York:Virginia:Riva,Maryland:City County,NorthRobekoKentucky:

  4. Lyon County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona:Oregon:Lowell Point,Massachusetts: EnergyKentucky: Energy

  5. Marion County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,InformationIllinois: Energy Resources Jump to: navigation,Kentucky:

  6. Martin County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,InformationIllinois: EnergyWisconsin:MarshfieldIndiana: EnergyKentucky:

  7. Letcher County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: EnergyLebanonTexas: Energy ResourcesLetcher County, Kentucky:

  8. Demographics of Same-sex Couples in Kentucky, Michigan, Ohio, and Tennessee: Analyses of the 2013 American Community Survey

    E-Print Network [OSTI]

    Gates, Gary J

    2015-01-01

    are being raised by same-sex couples in Kentucky, Michigan,Steinberger, MD. 2009. Same-Sex Unmarried Partner Couples inDemographics of Same-sex Couples in Kentucky, Michigan,

  9. Observations of Sediment Transport in Lake Erie during the Winter of 20042005

    E-Print Network [OSTI]

    of 2004­2005. The observations at the shallow site show that bottom resuspension occurred several times during the deployment. Although local resuspension did not occur at the deeper station, several advection. INDEX WORDS: Lake Erie, sediment resuspension. J. Great Lakes Res. 33:816­827 Internat. Assoc. Great

  10. FEBRUARY 1999 119O ' C O N N O R E T A L . Forecast Verification for Eta Model Winds Using Lake Erie

    E-Print Network [OSTI]

    FEBRUARY 1999 119O ' C O N N O R E T A L . Forecast Verification for Eta Model Winds Using Lake Forecasting System (GLCFS) can be used to validate wind forecasts for the Great Lakes using observed weather prediction step-coordinate Eta Model are able to forecast winds for the Great Lakes region, using

  11. Wayne County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarrensourceCentre Jump to:Wayland HotIndiana:Kentucky:

  12. Warren County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,Village ofWaialua,Wallington,Solar CoFacilityIndiana:Kentucky:

  13. Trigg County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergyTrail CanyonsourceRiverTrigg County, Kentucky: Energy

  14. Henderson County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources Jump to: navigation,Navigation Jump to:HemphillKentucky: Energy

  15. Fulton County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban TransportFortistarFuelCellsEtc Jump to:FuelsKentucky: Energy

  16. Garrard County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: Energy Resources JumpGarfield Heights,Garner, NorthCounty,

  17. Kentucky Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe23-24, 2011 High EnergyJanuary AdvancedJuneKentucky Regions

  18. Morgan County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformation MontanaOhio: EnergyMoodus,Pass,MoreKentucky: Energy

  19. Logan County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona:Oregon: EnergyLloyd, New York:Lodi, California:Illinois:Kentucky:

  20. Madison County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 <Kentucky: Energy Resources Jump to: navigation,

  1. Magoffin County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 <Kentucky:York:Texas: Energy ResourcesMagoffin

  2. Mason County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,InformationIllinois:Martin, Michigan:Ohio: EnergyMason City,Kentucky:

  3. McLean County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy Resources Jump to: navigation,McDonoughNorthMcKinleyville,andKentucky:

  4. Livingston County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona:Oregon: Energy ResourcesGrove,LittleNewNew Hampshire:Kentucky:

  5. Jackson County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,OpenKentucky: Energy Resources Jump to: navigation,

  6. Pulaski County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration JumpPublic Utility District No 2 JumpIndiana: EnergyKentucky:

  7. Ohio County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt. Louis,EnergyOctillion CorporationOgleAgriculturalKentucky:

  8. Pendleton County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio Program |ViewIllinois: EnergyPelham, NewPemeryKentucky: Energy

  9. Perry County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio ProgramInformation 9thPerformance-BasedPermaIllinois:Kentucky:

  10. Kentucky Natural Gas Number of Residential Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential Consumers (Number of Elements) Kentucky Natural Gas Number

  11. Kentucky Natural Gas Plant Liquids, Expected Future Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential Consumers (Number of Elements) Kentucky Natural Gas

  12. Kentucky Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential Consumers (Number of Elements) Kentucky Natural

  13. Kentucky Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013 2014 ViewSales (Billion Cubic Feet) Kentucky

  14. City of Benham, Kentucky (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd JumpGeorgia (UtilityBenham, Kentucky (Utility Company) Jump to:

  15. City of Benton, Kentucky (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd JumpGeorgia (UtilityBenham, Kentucky (Utility Company)Benton,

  16. City of Berea Municipal Utility, Kentucky | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd JumpGeorgia (UtilityBenham, Kentucky (UtilityJump to:

  17. City of Falmouth, Kentucky (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtdEllsworth, Iowa (Utility Company)Falmouth, Kentucky (Utility

  18. City of Glasgow, Kentucky (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtdEllsworth, Iowa (UtilityCollinsKansasGirard, KansasKentucky

  19. City of Owensboro, Kentucky (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler, Iowa (UtilityIowaIowa (Utility Company) JumpOwensboro, Kentucky

  20. City of Paducah, Kentucky (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler, Iowa (UtilityIowaIowa (Utility Company)Paducah, Kentucky

  1. South Kentucky Rural Electric Coop Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSolo EnergySouthSouth Kentucky Rural Electric Coop

  2. Tri-County Elec Member Corp (Kentucky) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film SolarTown ofTransportToolkitTrenton,Kentucky) Jump to:

  3. Anderson County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to: navigation,Inof Ground2008 |AndersonKentucky:

  4. Barren County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuelsOpenBardonia,Kentucky: Energy Resources Jump

  5. Bath County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminexInformation BartholomewBates County, Missouri:Kentucky:

  6. Campbell County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,Cammack Village, Arkansas: Energy Resources JumpVerde, Arizona:Kentucky:

  7. Carter County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,Cammack Village, Arkansas:FundMichigan: Energy ResourcesCarson,Kentucky:

  8. Bell County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation Beaufort County,Bel Air North,Bell County, Kentucky: Energy

  9. Bourbon County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-GasIllinois:EnergyIdahoTechnologyEnergyBoundKentucky: Energy

  10. Cumberland County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)|Alabama:Crofton,Developing andKentucky: Energy Resources Jump

  11. Franklin County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprint Ventures JumpIndiana: EnergyWindWindKentucky:

  12. Hardin County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energy Resources JumpConsulting JumpHanoverKentucky: Energy

  13. Adair County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan)dataSuccessful SmartAcomitaOklahoma: EnergyKentucky:

  14. Calvert City, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California:InformationInformationCalvert City, Kentucky:

  15. West Kentucky Regional Middle School Science Bowl | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricN AProjectAdministrationWest Kentucky Regional

  16. Kentucky Natural Gas Underground Storage Volume (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand Cubic Feet) SoldDepartment ofKen T.PriceFeet)Kentucky

  17. Continuous Bayesian Network for Studying the Causal Links between Phosphorus Loading and Plankton Patterns in Lake Simcoe, Ontario,

    E-Print Network [OSTI]

    Arhonditsis, George B.

    Patterns in Lake Simcoe, Ontario, Canada Alexey Gudimov, Eavan O'Connor, Maria Dittrich, Hamdi Jarjanazi, Toronto, Ontario, Canada, M1C 1A4 Lake Simcoe Region Conservation Authority, Newmarket, Ontario, Canada, L3Y 4X1 § Great Lakes Water Monitoring and Reporting Section, Ontario Ministry of the Environment

  18. Quaternary freshwater Ostracoda from the Great Salt Lake Basin

    E-Print Network [OSTI]

    Lister, K. H.

    1975-10-23

    ; normal pores moderately numerous, small, simple, scattered. Muscle scars as in genus. Inner lamella moderately broad, slop- ing inward steeply in midventral region, less steeply in posterior region; vestibulum widest anteriorly, posterior vestibulum...; normal pores moderately numerous, small, simple, scattered. Muscle scars as in genus. Inner lamella moderately broad, slop- ing inward steeply in midventral region, less steeply in posterior region; vestibulum widest anteriorly, posterior vestibulum...

  19. Stantec Investigates Bat Activity in Atlantic and Great Lakes...

    Broader source: Energy.gov (indexed) [DOE]

    coastal states regions to inform efforts to mitigate potential impacts associated with offshore wind energy development in these regions. Monitoring was initiated by Stantec in...

  20. Marine Instrumentation & Technology at NOAA's Great Lakes Environmental Research Laboratory

    E-Print Network [OSTI]

    of low cost coastal buoys capable of seabed to sea-surface observations. GLERL MIL staff designed, and Tennessee Reef, FL also include web cameras. All meteorological observation stations measure and record wind speed, wind gust, wind direction, air temperature, and wind chill. In addition, instruments in Muskegon

  1. Nutrient Cycling in the Great lakes: A Summarization of Factors

    E-Print Network [OSTI]

    .faetor, 1I,r..._.t h ..., .... _.r.bon fa.lou (Thoa.. !.!.!!. UfO) . tb......n ··· vblch .n 1t.t,IIl, tapaet

  2. Multicolored Asian Ladybeetle Update Great Lakes Fruit Worker's Meeting

    E-Print Network [OSTI]

    Isaacs, Rufus

    7 spotted lady beetle #12;Asian ladybeetles are an efficient biocontrol agent, feeding on a variety 3. Nuisance, sometimes a health concern to homeowners Efficient biocontrol agent, feeding Importations into the U.S. (for biocontrol of aphids and scale) 1978-1982 Ladybeetle life cycle adult egg larva

  3. SEA LAMPREY SPAWNING RUNS IN THE GREAT LAKES 1951

    E-Print Network [OSTI]

    developments and further evaluation of mechanical control devices, . , . o . . c 31 Barrier dams Literature cited ,,.,,,....,......,..... 36 List of common arid fr-cientlfic names of fishes mentioned,Iichigar> basin) ........ 7 3. Experimental sea laaiprsy bai'/rier dam in -the Black Ri.ver, Mackina-ar Co

  4. Polybrominated Diphenyl Ethers in the Sediments of the Great Lakes.

    E-Print Network [OSTI]

    Rockne, Karl J.

    products, sewage and sludge releases, and the leaching from landfills (4). Due to their widespread use, and hormone-disrupting effects is also mounting rapidly (3, 4). Since first reported in soil and sludge from

  5. The Great Lakes Insitute for Energy Innovation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeterInformation Policy andInstitute Jump to: navigation,Insitute for

  6. Stantec Investigates Bat Activity in Atlantic and Great Lakes Offshore

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProjectDataSecretaryDepartment7 Annual2 SpecialOctoberSafety,2012 Annual

  7. Great Lakes Science Center Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlantMagma EnergyGoogleProgramsScience Center Wind

  8. Obama Administration Hosts Great Lakes Offshore Wind Workshop in Chicago

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailable forSite |nEfficiencyandin Alaska,Programswith

  9. JW Great Lakes Wind LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgency (IRENA) Jump to: navigation, searchDataIwasakiJSW EnergyJW

  10. Obama Administration and Great Lakes States Announce Agreement to Spur

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice|in the subsurface isProjectSystemU.S.Gas and Oil

  11. Great Lakes Bioenergy Research Center Technology Marketing Summaries -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Lowď‚— We want USDOE to vitrify all Low Activity

  12. Mirror Lake Spring 2008

    E-Print Network [OSTI]

    New Hampshire, University of

    .) and the Wolfeboro Wastewater Treatment Facility (WWTF), which is upstream of the lake. In the summer of 2007). The LMP addresses the most pertinent initial concerns for the lake, including primary sources of excess

  13. Lake Survey DETROIT, MICH.

    E-Print Network [OSTI]

    ; · Lake Survey Center DETROIT, MICH. NOAA TM NOS LSC 06 NOAA Technical Memorandum NOS LSC 06 U. S Winter 1971_72 R. A. Ass.,i Lake Survey Center National Ocean Survey, NOAA Detroit, Michigan I ABSTRACT

  14. Lake Michigan Offshore Wind Feasibility Assessment

    SciTech Connect (OSTI)

    Boezaart, Arnold; Edmonson, James; Standridge, Charles; Pervez, Nahid; Desai, Neel; Williams, Bruce; Clark, Aaron; Zeitler, David; Kendall, Scott; Biddanda, Bopi; Steinman, Alan; Klatt, Brian; Gehring, J. L.; Walter, K.; Nordman, Erik E.

    2014-06-30

    The purpose of this project was to conduct the first comprehensive offshore wind assessment over Lake Michigan and to advance the body of knowledge needed to support future commercial wind energy development on the Great Lakes. The project involved evaluation and selection of emerging wind measurement technology and the permitting, installation and operation of the first mid-lake wind assessment meteorological (MET) facilities in Michigan’s Great Lakes. In addition, the project provided the first opportunity to deploy and field test floating LIDAR and Laser Wind Sensor (LWS) technology, and important research related equipment key to the sitting and permitting of future offshore wind energy development in accordance with public participation guidelines established by the Michigan Great Lakes Wind Council (GLOW). The project created opportunities for public dialogue and community education about offshore wind resource management and continued the dialogue to foster Great Lake wind resource utilization consistent with the focus of the GLOW Council. The technology proved to be effective, affordable, mobile, and the methods of data measurement accurate. The public benefited from a substantial increase in knowledge of the wind resources over Lake Michigan and gained insights about the potential environmental impacts of offshore wind turbine placements in the future. The unique first ever hub height wind resource assessment using LWS technology over water and development of related research data along with the permitting, sitting, and deployment of the WindSentinel MET buoy has captured public attention and has helped to increase awareness of the potential of future offshore wind energy development on the Great Lakes. Specifically, this project supported the acquisition and operation of a WindSentinel (WS) MET wind assessment buoy, and associated research for 549 days over multiple years at three locations on Lake Michigan. Four research objectives were defined for the project including to: 1) test and validate floating LIDAR technology; 2) collect and access offshore wind data; 3) detect and measure bird and bat activity over Lake Michigan; 4) conduct an over water sound propagation study; 5) prepare and offer a college course on offshore energy, and; 6) collect other environmental, bathometric, and atmospheric data. Desk-top research was performed to select anchorage sites and to secure permits to deploy the buoy. The project also collected and analyzed data essential to wind industry investment decision-making including: deploying highly mobile floating equipment to gather offshore wind data; correlating offshore wind data with conventional on-shore MET tower data; and performing studies that can contribute to the advancement and deployment of offshore wind technologies. Related activities included: • Siting, permitting, and deploying an offshore floating MET facility; • Validating the accuracy of floating LWS using near shoreline cup anemometer MET instruments; • Assessment of laser pulse technology (LIDAR) capability to establish hub height measurement of wind conditions at multiple locations on Lake Michigan; • Utilizing an extended-season (9-10 month) strategy to collect hub height wind data and weather conditions on Lake Michigan; • Investigation of technology best suited for wireless data transmission from distant offshore structures; • Conducting field-validated sound propagation study for a hypothetical offshore wind farm from shoreline locations; • Identifying the presence or absence of bird and bat species near wind assessment facilities; • Identifying the presence or absence of benthic and pelagic species near wind assessment facilities; All proposed project activities were completed with the following major findings: • Floating Laser Wind Sensors are capable of high quality measurement and recordings of wind resources. The WindSentinel presented no significant operational or statistical limitations in recording wind data technology at a at a high confidence level as compared to traditional an

  15. Lake Granbury and Lake Whitney Assessment Initiative Final Scientific/Technical Report Summary

    SciTech Connect (OSTI)

    Harris, B.L.; Roelke, Daniel; Brooks, Bryan; Grover, James

    2010-10-11

    A team of Texas AgriLife Research, Baylor University and University of Texas at Arlington researchers studied the biology and ecology of Prymnesium parvum (golden algae) in Texas lakes using a three-fold approach that involved system-wide monitoring, experimentation at the microcosm and mesocosm scales, and mathematical modeling. The following are conclusions, to date, regarding this organismâ??s ecology and potential strategies for mitigation of blooms by this organism. In-lake monitoring revealed that golden algae are present throughout the year, even in lakes where blooms do not occur. Compilation of our field monitoring data with data collected by Texas Parks and Wildlife and Brazos River Authority (a period spanning a decade) revealed that inflow and salinity variables affect bloom formations. Thresholds for algae populations vary per lake, likely due to adaptations to local conditions, and also to variations in lake-basin morphometry, especially the presence of coves that may serve as hydraulic storage zones for P. parvum populations. More specifically, our in-lake monitoring showed that the highly toxic bloom that occurred in Lake Granbury in the winter of 2006/2007 was eliminated by increased river inflow events. The bloom was flushed from the system. The lower salinities that resulted contributed to golden algae not blooming in the following years. However, flushing is not an absolute requirement for bloom termination. Laboratory experiments have shown that growth of golden algae can occur at salinities ~1-2 psu but only when temperatures are also low. This helps to explain why blooms are possible during winter months in Texas lakes. Our in-lake experiments in Lake Whitney and Lake Waco, as well as our laboratory experiments, revealed that cyanobacteria, or some other bacteria capable of producing algicides, were able to prevent golden algae from blooming. Identification of this organism is a high priority as it may be a key to managing golden algae blooms. Our numerical modeling results support the idea that cyanobacteria, through allelopathy, control the timing of golden algae blooms in Lake Granbury. The in-lake experiments in Lake Whitney and Lake Waco also revealed that as golden algae blooms develop, there are natural enemies (a species of rotifer, and a virus) that help slow the population growth. Again, better characterization of these organisms is a high priority as it may be key to managing golden algae blooms. Our laboratory and in-lake experiments and field monitoring have shown that nutrient additions will remove toxicity and prevent golden algae from blooming. In fact, other algae displace the golden algae after nutrient additions. Additions of ammonia are particularly effective, even at low doses (much lower than what is employed in fish hatchery ponds). Application of ammonia in limited areas of lakes, such as in coves, should be explored as a management option. The laboratory experiments and field monitoring also show that the potency of toxins produced by P. parvum is greatly reduced when water pH is lower, closer to neutral levels. Application of mild acid to limited areas of lakes (but not to a level where acidic conditions are created), such as in coves, should be explored as a management option. Finally, our field monitoring and mathematical modeling revealed that flushing/dilution at high enough levels could prevent P. parvum from forming blooms and/or terminate existing blooms. This technique could work using deeper waters within a lake to flush the surface waters of limited areas of the same lakes, such as in coves and should be explored as a management option. In this way, water releases from upstream reservoirs would not be necessary and there would be no addition of nutrients in the lake.

  16. MOUNTAIN LAKE USER HANDBOOK

    E-Print Network [OSTI]

    Huang, Wei

    MOUNTAIN LAKE BIOLOGICAL STATION USER HANDBOOK Updated: 02 June 2015 #12;2 #12;3 Fundamental Code, and Purchases ------------------------------------------------------------ 14 The Mountain Lake Lodge;4 #12;5 Welcome Welcome to the Mountain Lake Biological Station! MLBS was established in 1929

  17. Geothermometry At Fish Lake Valley Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky:Bore TechnologiesAssessmentOpenFish Lake Valley Area (DOE

  18. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Kentucky

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Kentucky.

  19. Restructuring the urban neighborhood : the dialogue between image and ideology in Phoenix Hill, Louisville, Kentucky

    E-Print Network [OSTI]

    Isaacs, Mark Andrew

    1980-01-01

    This thesis addresses the problems of restructuring the urban neighborhood as specifically applied to the Phoenix Hill community in Louisville, Kentucky. Theory and concepts are briefly presented as a basis for design ...

  20. Seasonal Distribution of the Great Gray Owl (Strix nebulosa) in Southwestern Alberta Douglas M. Collister1

    E-Print Network [OSTI]

    Seasonal Distribution of the Great Gray Owl (Strix nebulosa) in Southwestern Alberta Douglas M in the foothills of Alberta from 1986 to 1996. Thirty-six adult owls have been banded: 16 males, 16 females and 4. The Great Gray Owl (Strix nebulosa) breeds in northern and western Alberta south to Waterton Lakes National

  1. Geological History of Lake Lahontan, a Quaternary Lake of Northwestern...

    Open Energy Info (EERE)

    Monograph M11 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Geological History of Lake Lahontan, a Quaternary Lake of Northwestern...

  2. Environmental Monitoring of Lake Michigan Using CoastWatch Data and JAVA GIS

    E-Print Network [OSTI]

    Environmental Monitoring of Lake Michigan Using CoastWatch Data and JAVA GIS George A. Leshkevich Observation Data) Statistics (Great Lakes Average Surface Water Temperature) JAVA GIS (JAVA Applet) CDAT activities. New utilities such as JAVA based interactive retrieval of physical parameters such as surface

  3. Biophysical Model of Larval Yellow Perch Advection and Settlement in Lake Michigan

    E-Print Network [OSTI]

    ­2003 using a 3D particle transport model linked with an individual-based bioenergetics growth model. In all, and the size at transition to demersal stage. INDEX WORDS: Larval transport, bioenergetics model, Great Lakes

  4. New cichlids Lake Malawi

    E-Print Network [OSTI]

    's Note: Lake Malawi is a large body of water, the 11th largest lake in the world, with 10,600 sq. miles. Holotype deposited in American Museum of Natural History, New York City, catalog No. 33466. Collected off in the American Museum of Natural History, New York City. Holotype catalog No. 33464; Paratype catalog No. 33465

  5. Fast Track Reservoir Modeling of Shale Formations in the Appalachian Basin. Application to Lower Huron Shale in Eastern Kentucky.

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Huron Shale - Gas production from Devonian Shale in Eastern Kentucky goes all the way back to 1892, when of the reservoir, efficient gas production was established. The most prolific horizon of Devonian Shale in Eastern Kentucky is the Lower Huron Shale, which is Ohio Shale member. Over 80% of Devonian gas production comes

  6. Great cities look small

    E-Print Network [OSTI]

    Sim, Aaron; Barahona, Mauricio; Stumpf, Michael P H

    2015-01-01

    Great cities connect people; failed cities isolate people. Despite the fundamental importance of physical, face-to-face social-ties in the functioning of cities, these connectivity networks are not explicitly observed in their entirety. Attempts at estimating them often rely on unrealistic over-simplifications such as the assumption of spatial homogeneity. Here we propose a mathematical model of human interactions in terms of a local strategy of maximising the number of beneficial connections attainable under the constraint of limited individual travelling-time budgets. By incorporating census and openly-available online multi-modal transport data, we are able to characterise the connectivity of geometrically and topologically complex cities. Beyond providing a candidate measure of greatness, this model allows one to quantify and assess the impact of transport developments, population growth, and other infrastructure and demographic changes on a city. Supported by validations of GDP and HIV infection rates ac...

  7. Whitley County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: EnergyMaryland:Meadow Lake, NewWhitesideIndiana: Energy

  8. The biogeochemistry of tropical lakes: A case study from Lake Matano, Indonesia Sean A. Crowe

    E-Print Network [OSTI]

    Long, Bernard

    ; Earth and Planetary Sciences, McGill University, Montreal, Quebec H3A 2A7, Canada; GEOTOP-McGill-UQAM, Montreal, Quebec H3C 3P8, Canada Andrew H. O'Neill Great Lakes Institute for Environmental ResearchGill University, Montreal, Quebec H3A 2A7, Canada; GEOTOP-McGill-UQAM, Montreal, Quebec H3C 3P8, Canada Peter

  9. Late-Middle to Late Devonian (Givetian-Famennian) tectonic and stratigraphic history of central Kentucky

    SciTech Connect (OSTI)

    Ettensohn, F.R. (Univ. of Kentucky, Lexington, KY (United States). Dept. of Geological Sciences); Barnett, S.F. (Bryan Coll., Dayton, TN (United States)); Norby, R.D. (Illinois State Geological Survey, Champaign, IL (United States))

    1994-04-01

    Earliest Givetian deposition in central Kentucky is represented in upper parts of the Boyle and Sellersburg formations and reflects marginal-marine to shallow-marine carbonate deposition at the end of the second tectophase of the Acadian orogeny. Inception of the third tectophase of the Acadian orogeny in the area is reflected by a disconformity or angular unconformity between the Boyle and New Albany formations, by reactivation of faults on the Kentucky river and related fault zones, and by concurrent graben formation. Succeeding late Givetian deposition is represented by the equivalent Portwood and Blocher members of the New Albany. The Portwood represents localized deposition of dolomitic breccias and black shales in grabens and half grabens, paleogeographically manifest as a series of restricted coastal lagoons and estuaries in central and east-central Kentucky. In contrast, dolomitic, Blocher black shales in west-central kentucky, beyond the effects of faulting, reflect more open, platform-lagoonal conditions. Both units are carbonate rick, contain a sparse benthic fauna, and had local sources of sediment. By latest Givetian or earliest Frasnian, local basins were largely filed, and when local sediment sources were inundated by transgression, sediment starvation, represented by a major lag zone or bone bed, ensued throughout central Kentucky, while black- and gray-shale deposition continued in deeper parts of the Illinois and Appalachian basins. During the Frasnian and early Famennian, as subsidence and transgression continued, deeper water gray- and black-shale units from the Appalachian and Illinois basins slowly onlapped the Cincinnati Arch area of central Kentucky; black shales in these units are fissile and lack both carbonates and benthic fauna. At the Devonian-Mississippian transition, however, a locally developed unconformity and structurally related erosion probably reflect inception of the fourth and final tectophase of the Acadian orogeny.

  10. ARM Southern Great Plains

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility009 ARM Orientation 1Southern Great

  11. Reservoir characterization using oil-production-induced microseismicity, Clinton County, Kentucky

    E-Print Network [OSTI]

    , Clinton County, Kentucky. Oil is produced from low-porosity, fractured carbonate rocks at pressure via brine invasion. Storage capacity computed for one of these drained fractures implies total oil. Pressure re-equilibration via brine invasion replacing previously-produced oil along the seismically

  12. EIS-0073: Solvent Refined Coal-I Demonstration Project, Daviess County, Kentucky

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to assess the potential environmental, economic, and social impacts associated with construction and operation of a 6,000-tons-per-stream-day-capacity coal liquefaction facility in Newman, Kentucky, and the potential impacts of a future expansion of the proposed facility to an approximately 30,000 tons per stream day capacity.

  13. Ohio-Kentucky-Indiana Regional Council of Governments Go Solar Ready – Solar Map

    Broader source: Energy.gov [DOE]

    The Ohio-Kentucky-Indiana Regional Council of Governments Go Solar Ready Map provides general information about the estimated annual solar energy potential on building rooftops in the OKI region. The intention of this tool is to provide the user a general understanding of the solar energy available on rooftops in the OKI tristate region.

  14. Northern Lakes District of MAPLE project

    E-Print Network [OSTI]

    ;Northern Lakes Region #12;Current Landcover of NHLD #12;MAPLE Project · Region is defined by lake tourism Lakes #12;Ecology "Greenlash" Gradual Change Development pattern Lake centered Tourism Town centered Key problems near urban corridor Overfishing of public-access lakes; good on lakes with limited access and few

  15. Quaternary Science Reviews 26 (2007) 26312643 Charcoal and fly-ash particles from Lake Lucerne sediments (Central

    E-Print Network [OSTI]

    Gilli, Adrian

    2007-01-01

    Quaternary Science Reviews 26 (2007) 2631­2643 Charcoal and fly-ash particles from Lake Lucerne-nineteenth-century, a great increase in slag particles and magnetic spherules of fly-ash occurred due to the steamboat

  16. Assessment Of Bacterial Sources Impacting Lake Waco And Belton Lake 

    E-Print Network [OSTI]

    Giovanni, G.

    2006-01-01

    Of Bacterial Sources Impacting Lake Waco And Belton Lake Prepared for: TEXAS FARM BUREAU Prepared by: PARSONS TEXAS A&M UNIVERSITY AGRICULTURAL RESEARCH & EXTENSION CENTER AT EL PASO, TEXAS AGRICULTURAL EXPERIMENT STATION TEXAS A&M UNIVERSITY ? CORPUS CHRISTI... Authority, and the City of Waco. FEBRUARY 2006 ASSESSMENT OF BACTERIAL SOURCES IMPACTING LAKE WACO AND BELTON LAKE Prepared for: TEXAS FARM BUREAU Prepared by: PARSONS TEXAS A&M UNIVERSITY AGRICULTURAL RESEARCH & EXTENSION CENTER AT EL PASO...

  17. The paleolimnology of Haynes Lake, and Teapot Lake, Ontario

    E-Print Network [OSTI]

    Patterson, Timothy

    The paleolimnology of Haynes Lake, and Teapot Lake, Ontario: documenting anthropogenic disturbances Sciences and Ottawa-Carleton Geoscience Centre Carleton University, Ottawa, Ontario April 7, 2008 © 2008 journal articles can be extracted and published. The first, a study of Haynes Lake, Ontario (Chapter 2

  18. Lake Ontario Maritime Cultural Landscape 

    E-Print Network [OSTI]

    Ford, Benjamin L.

    2010-10-12

    The goal of the Lake Ontario Maritime Cultural Landscape project was to investigate the nature and distribution of archaeological sites along the northeast shoreline of Lake Ontario while examining the environmental, political, and cultural factors...

  19. Change in biomass of benthic and planktonic algae along a disturbance gradient for 24 Great

    E-Print Network [OSTI]

    McMaster University

    Change in biomass of benthic and planktonic algae along a disturbance gradient for 24 Great Lakes. The PC1 site score was significantly related to both periphyton and phytoplankton biomass, respectively accounted for 18% of the variation in epiphyton biomass. Periphytic and epiphytic biomass were negatively

  20. Improving primary science great science

    E-Print Network [OSTI]

    Rambaut, Andrew

    Improving primary science Developing great science subject leadershipGreat ideas for primary science leaders from schools that value science. #12;2 | Primary science Where science has a good profile, investigative science with access to high-quality expertise, children are likely to enjoy learning the subject

  1. Climate Change Impacts on Western Lake Erie, Detroit River, and Lake St. Clair Water Levels

    E-Print Network [OSTI]

    -- - --- Climate Change Impacts on Western Lake Erie, Detroit River, and Lake St. Clair WaterConditionsScenario 36 #12;#12;-- - ---- Climate Change Impacts on Western Lake Erie, Detroit River, and Lake St. Clair and frequenciesof Lake St. Clair,Detroit River, and western Lake Erie water levelsare computed

  2. Lake Petn Itz, a 165 m deep lake in northern Guatemala, is the deepest lake in the lowlands of

    E-Print Network [OSTI]

    Gilli, Adrian

    Lake Petén Itzá, a 165 m deep lake in northern Guatemala, is the deepest lake in the lowlands. The cores were shipped from Guatemala in a refrigerated container and arrived safely at the National

  3. Taste and Odor Problems in Clinton Lake Reservoir's Drinking Water

    E-Print Network [OSTI]

    Restrepo-Osorio, Diana L.

    2012-04-01

    Taste and Odor Problems in Clinton Lake Reservoir's Drinking Water Diana L. Restrepo-Osorio (McNair Scholar) Department of Ecology and Evolutionary Biology, INTRODUCTION Water is a requirement for human health and welfare; however... water are often the first to be blamed. Great efforts are being made, however, to build public awareness that every person plays a major role in reducing pollution that leads to taste and odor problems, and that water treatment facilities alone...

  4. Shetland and the Great War 

    E-Print Network [OSTI]

    Riddell, Linda Katherine

    2012-11-30

    The Great War was an enormous global cataclysm affecting the lives of all inhabitants of the combatant countries and many others. The effects were not uniform, however, and, by assessing the experience of the people of ...

  5. Lake Charles CCS Project

    SciTech Connect (OSTI)

    Leib, Thomas; Cole, Dan

    2015-06-30

    In late September 2014 development of the Lake Charles Clean Energy (LCCE) Plant was abandoned resulting in termination of Lake Charles Carbon Capture and Sequestration (CCS) Project which was a subset the LCCE Plant. As a result, the project was only funded through Phase 2A (Design) and did not enter Phase 2B (Construction) or Phase 2C (Operations). This report was prepared relying on information prepared and provided by engineering companies which were engaged by Leucadia Energy, LLC to prepare or review Front End Engineering and Design (FEED) for the Lake Charles Clean Energy Project, which includes the Carbon Capture and Sequestration (CCS) Project in Lake Charles, Louisiana. The Lake Charles Carbon Capture and Sequestration (CCS) Project was to be a large-scale industrial CCS project intended to demonstrate advanced technologies that capture and sequester carbon dioxide (CO2) emissions from industrial sources into underground formations. The Scope of work was divided into two discrete sections; 1) Capture and Compression prepared by the Recipient Leucadia Energy, LLC, and 2) Transport and Sequestration prepared by sub-Recipient Denbury Onshore, LLC. Capture and Compression-The Lake Charles CCS Project Final Technical Report describes the systems and equipment that would be necessary to capture CO2 generated in a large industrial gasification process and sequester the CO2 into underground formations. The purpose of each system is defined along with a description of its equipment and operation. Criteria for selection of major equipment are provided and ancillary utilities necessary for safe and reliable operation in compliance with environmental regulations are described. Construction considerations are described including a general arrangement of the CCS process units within the overall gasification project. A cost estimate is provided, delineated by system area with cost breakdown showing equipment, piping and materials, construction labor, engineering, and other costs. The CCS Project Final Technical Report is based on a Front End Engineering and Design (FEED) study prepared by SK E&C, completed in [June] 2014. Subsequently, Fluor Enterprises completed a FEED validation study in mid-September 2014. The design analyses indicated that the FEED package was sufficient and as expected. However, Fluor considered the construction risk based on a stick-build approach to be unacceptable, but construction risk would be substantially mitigated through utilization of modular construction where site labor and schedule uncertainty is minimized. Fluor’s estimate of the overall EPC project cost utilizing the revised construction plan was comparable to SKE&C’s value after reflecting Fluor’s assessment of project scope and risk characteristic. Development was halted upon conclusion of Phase 2A FEED and the project was not constructed.Transport and Sequestration – The overall objective of the pipeline project was to construct a pipeline to transport captured CO2 from the Lake Charles Clean Energy project to the existing Denbury Green Line and then to the Hastings Field in Southeast Texas to demonstrate effective geologic sequestration of captured CO2 through commercial EOR operations. The overall objective of the MVA portion of the project was to demonstrate effective geologic sequestration of captured CO2 through commercial Enhanced Oil Recovery (EOR) operations in order to evaluate costs, operational processes and technical performance. The DOE target for the project was to capture and implement a research MVA program to demonstrate the sequestration through EOR of approximately one million tons of CO2 per year as an integral component of commercial operations.

  6. Methane sources and sinks in Lake Kivu

    E-Print Network [OSTI]

    2011-01-01

    and G. T. Harvey (1973), Methane in Lake Kivu: New datagenes associated with methane? oxidizing archaea, Appl.Pace, and L. Tranvik (2004), Methane emissions from lakes:

  7. Kentucky Department for Natural Resources and Environmental Protection permit application for air contaminant source: SRC-I demonstration plant, Newman, Kentucky. [Demonstration plant at Newman, KY

    SciTech Connect (OSTI)

    none,

    1980-11-21

    This document and its several appendices constitute an application for a Kentucky Permit to Construct an Air Contaminant Source as well as a Prevention of Significant Air Quality Deterioration (PSD) Permit Application. The information needed to satisfy the application requirements for both permits has been integrated into a complete and logical description of the proposed source, its emissions, control systems, and its expected air quality impacts. The Department of Energy believes that it has made every reasonable effort to be responsive to both the letter and the spirit of the PSD regulations (40 CFR 52.21) and Kentucky Regulation No. 401 KAR 50:035. In this regard, it is important to note that because of the preliminary status of some aspects of the process engineering and engineering design for the Demonstration Plant, it is not yet possible precisely to define some venting operations or their associated control systems. Therefore, it is not possible precisely to quantify some atmospheric emissions or their likely impact on air quality. In these instances, DOE and ICRC have used assumptions that produce impact estimates that are believed to be worst case and are not expected to be exceeded no matter what the outcome of future engineering decisions. As these decisions are made, emission quantities and rates, control system characteristics and efficiencies, and vent stack parameters are more precisely defined; this Permit Application will be supplemented or modified as appropriate. But, all needed modifications are expected to represent either decreases or at worst no changes in the air quality impact of the SRC-I Demonstration Plant.

  8. Lakes_Elec_You

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA PublicLED ADOPTION REPORT LED8-14DepartmentLabor3-01Lakes,

  9. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-01-01

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  10. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-04-01

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 percent (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  11. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-07-28

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  12. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-10-29

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  13. Fire protection review revisit No. 2, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    Dobson, P.H.; Keller, D.R.; Treece, S.D.

    1990-02-01

    A fire protection survey was conducted for the Department of Energy at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, from October 30--November 4, November 6--10, and December 4--8, 1989. The purpose of the survey was to review the facility fire protection program and to make recommendations. Surveys of other facilities resulted in a classification system for buildings which provide an indication of the importance of the building to the fulfillment of the mission of the facility. Recommendations in this report reflect to some degree the relative importance of the facility and the time to restore it to useful condition in the event a loss were to occur.

  14. BYU Salt Lake Center Financial Assistance

    E-Print Network [OSTI]

    Hart, Gus

    BYU Salt Lake Center Financial Assistance Program 2015 A financial assistance program of the Brigham Young University Division of Continuing Education BYU Salt Lake Center 345 West North Temple Street 3 Triad Center Salt Lake City, UT 84180 Fax: (801) 933­9456 Email: slc@byu.edu #12;BYU Salt Lake

  15. Lake and Reservoir Management 21(1):24-29, 2005 Copyright by the North American Lake Management Society 2005

    E-Print Network [OSTI]

    24 Lake and Reservoir Management 21(1):24-29, 2005 © Copyright by the North American Lake Management Society 2005 Influences of Lake Level Changes on Reservoir Water Clarity in Allatoona Lake of lake level changes on reservoir water clarity in Allatoona Lake, Georgia. Lake and Reserv. Manage. Vol

  16. Numerical Modeling of Sedimentation by Storm Waves at Sand Island in Lake Superior, Wisconsin

    E-Print Network [OSTI]

    US Army Corps of Engineers

    (1 m) above the Low Water Datum (LWD) or 601 ft (183 m) according to the International Great Lake at the lakeside end of the dock is 2.6 ft (0.8 m) below the LWD. Figure 1. Sand Island north of Bayfield Peninsula

  17. NOAA Technical Memorandum ERL GLERL-51 A TWO-DIMENSIONAL LAKE WAVE PREDICTION SYSTEM

    E-Print Network [OSTI]

    the overlake wind forecast. 1. INTRODUCTION Wave forecasts on the Great Lakes have been automatically produced (Model Output Statistics or MOS) wind forecasts as input to Bretschneider's empirical equations forecast pro- gram. In this way, a range of wind forecasts could be used to generate a range of wave

  18. Review: The Great Lead Water Pipe Disaster

    E-Print Network [OSTI]

    Karalus, Daniel E

    2010-01-01

    Review: The Great Lead Water Pipe Disaster By WernerUSA Troesken, Werner. The Great Lead Water Pipe Disaster.paper. Alkaline paper. Lead poisoning usually conjures

  19. EA-1927: Conveyance of Land and Facilities at the Paducah Gaseous Diffusion Plant for Economic Development Purposes, Paducah, Kentucky

    Broader source: Energy.gov [DOE]

    Draft EA: Public Comment Period Ends 07/27/2015DOE’s Portsmouth/Paducah Project Office has prepared a Draft EA for potential land and facilities transfers at the Paducah Gaseous Diffusion Plant in McCracken County, Kentucky.

  20. Green River Locks and Dams 3, 4, 5, 6 and Barren River Lock and Dam 1 Disposition, Kentucky

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Green River Locks and Dams 3, 4, 5, 6 and Barren River Lock and Dam 1 Disposition, Kentucky 16 September 2014 ABSTRACT: Green River Locks and Dams 3 through 6 and Barren River Lock and Dam 1 were. The Green River Locks and Dams 5 and 6 ceased operations in 1951 due to a marked decline in navigation

  1. Lake Roosevelt Fisheries Evaluation Program, Part B; Limnology, Primary Production, and Zooplankton in Lake Roosevelt, Washington, 1998 Annual Report.

    SciTech Connect (OSTI)

    Shields, John; Spotts, Jim; Underwood, Keith

    2002-11-01

    The Lake Roosevelt Fisheries Evaluation Program is the result of a merger between two projects, the Lake Roosevelt Monitoring Program (BPA No. 8806300) and the Lake Roosevelt Data Collection Project (BPA No. 9404300). These projects were merged in 1996 to continue work historically completed under the separate projects, and is now referred to as the Lake Roosevelt Fisheries Evaluation Program. The 1998 Annual Report, Part B. Limnology, Primary Production, and Zooplankton in Lake Roosevelt, Washington examined the limnology, primary production, and zooplankton at eleven locations throughout the reservoir. The 1998 research protocol required a continuation of the more complete examination of limnological parameters in Lake Roosevelt that began in 1997. Phytoplankton and periphyton speciation, phytoplankton and periphyton chlorophyll a analysis, complete zooplankton biomass analysis by taxonomic group, and an increased number of limnologic parameters (TDG, TDS, etc.) were examined and compared with 1997 results. Total dissolved gas levels were greatly reduced in 1998, compared with 1997, likely resulting from the relatively normal water year experienced in 1998. Mean water temperatures were similar to what was observed in past years, with a maximum of 22.7 C and a minimum of 2.6 C. Oxygen concentrations were also relatively normal, with a maximum of 16.6 mg/L, and a minimum of 0.9 mg/L. Phytoplankton in Lake Roosevelt was primarily composed of microplankton (29.6%), Cryptophyceae (21.7%), and Bacillriophyceae (17.0 %). Mean total phytoplankton chlorophyll a maximum concentration occurred in May (3.53 mg/m{sup 3}), and the minimum in January (0.39 mg/m{sup 3}). Phytoplankton chlorophyll a concentrations appear to be influenced by hydro-operations and temperature. Trophic status as indicated by phytoplankton chlorophyll a concentrations place Lake Roosevelt in the oligomesotrophic range. Periphyton colonization rates and biovolume were significantly greater at a depth of 1.5 m (5 ft) when compared with a 4.6 m (15 ft) depth, and during the shorter incubation periods (two and four weeks). Mean zooplankton densities were greatest for Copepoda (88 %), then Daphnia spp. (10%) and other Cladocera (2.1%), while the zooplankton biomass assessment indicated Daphnia spp. had the greatest biomass (53.6%), then Copepoda (44.0%) and other Cladocera (2.5%). Mean overall zooplankton densities were the lowest observed since 1991. The cause was unclear, but may have been an artifact of human error. It seems unlikely that hydro-operations played a significant part in the reduction of zooplankton in light of the relatively friendly water year of 1998.

  2. Global Change and Mountain Lakes: Establishing Nutrient Criteria and Critical Loads for Sierra Nevada Lakes

    E-Print Network [OSTI]

    Heard, ANDREA Michelle

    2013-01-01

    and climate change in European mountain lakes assessed usinglimitation in Colorado mountain lakes. Freshwater Biologyparks of the Rocky Mountains. Ecological Applications 19(4):

  3. Southern Great Plains Safety Orientation

    SciTech Connect (OSTI)

    Schatz, John

    2014-05-01

    Welcome to the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ARM) Southern Great Plains (SGP) site. This U.S. Department of Energy (DOE) site is managed by Argonne National Laboratory (ANL). It is very important that all visitors comply with all DOE and ANL safety requirements, as well as those of the Occupational Safety and Health Administration (OSHA), the National Fire Protection Association, and the U.S. Environmental Protection Agency, and with other requirements as applicable.

  4. A giant dune-dammed lake on the North Platte River, Nebraska

    SciTech Connect (OSTI)

    Swinehart, J.B. (Univ. of Nebraska, Lincoln, NE (United States). Conservation and Survey Div.); Loope, D.B. (Univ. of Nebraska, Lincoln, NE (United States). Dept. of Geology)

    1992-01-01

    The recent work in the Nebraska Sand Hills, just north of the North Platte Valley, has revealed the presence of numerous dune dams--sites where eolian sand has filled Pleistocene paleovalleys and caused the formation of lake basins containing abundant small, interdunal lakes. Although the Platte River is considered the southern margin of the Sand Hills, there is a 1,200 sq km triangular area of large dunes in Lincoln County just south of the South Platte. The authors hypothesize that large dunes migrated southward to fill the North Platte Valley during glacial maximum when both the North and South Platte were dry. As Rocky Mountain snowmelt and Great Plains precipitation increased during deglaciation, a single 65 km-long, 15 km-wide, 50 m-deep lake formed behind the massive dune dam. The tentative chronology suggests that the lake was in existence for at least several thousand years. They have not yet found compelling evidence of catastrophic flooding downstream of the former lake. Evidence of two large Quaternary lakes on the White Nile between Khartoum and Malakal (Sudan) was discovered in the 1960's. Shoreline deposits indicate the lakes were 400--600 km long and up to 50 km wide. Although the lakes have been attributed to repeated blockage of the White Nile by clay-rich Blue Nile deposits, the distribution and age of dune sand near the confluence of these rivers suggest that, as in the Nebraska example, the course of the White Nile was blocked by dunes when the region was desiccated in the Late Pleistocene. Lakes behind permeable dams rise to a level where input equals output. Earthen dams are vulnerable to overtopping and piping. The relatively high permeability of dune sand prevents or delays overtopping, and piping is prevented by the extremely high low hydraulic gradients that typify extant sand dams.

  5. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-04-26

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  6. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-08-01

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library are being sampled to collect CO{sub 2} adsorption isotherms. Sidewall core samples have been acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log has been acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 4.62 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 19 scf/ton in less organic-rich zones to more than 86 scf/ton in the Lower Huron Member of the shale. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  7. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-07-29

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  8. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-01-01

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  9. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-01-28

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  10. GREAT PLAINS INTERSTATE FOREST FIRE COOPERATIVE

    E-Print Network [OSTI]

    GREAT PLAINS INTERSTATE FOREST FIRE COMPACT COOPERATIVE ANNUAL OPERATING PLAN 2011 #12;Great Plains Interstate Forest Fire Compact Page 2 of 31 2011 Great Plains Forest Fire Compact AOP Table of Contents I. Intentionally Left Blank 28 K. Public Law 110-79 29 #12;Great Plains Interstate Forest Fire Compact Page 3 of 31

  11. Temperature analysis for lake Yojoa, Honduras

    E-Print Network [OSTI]

    Chokshi, Mira (Mira K.)

    2006-01-01

    Lake Yojoa is the largest freshwater lake in Honduras, located in the central west region of the country (1405' N, 88° W). The lake has a surface area of 82 km2, a maximum depth of 26 m. and an average depth of 16 m. The ...

  12. Lake Charles Urbanized Area MTP 2034 

    E-Print Network [OSTI]

    Lake Charles Urbanized Area Metropolitan Planning Organization

    2009-08-04

    CONSTRAINED AND UNCONSTRAINED PLAN PROJECTS . C-1 ? Lake Charles Urbanized Area MTP 2034 ? Page v Alliance Transportation Group, Inc. Adopted August 4, 2009 Table of Tables Table 2-1 Stakeholders Present... ......................................................................................................... 3-1 ? Lake Charles Urbanized Area MTP 2034 ? Page iii Alliance Transportation Group, Inc. Adopted August 4, 2009 LAKE CHARLES URBANIZED AREA TRAVEL DEMAND MODEL .............................................................. 3-2 SOCIOECONOMIC...

  13. Supporting Water, Ecological, and Transportation Systems in the Great Lakes Basin Ecosystem

    E-Print Network [OSTI]

    Beck, Judy; Kamke, Sherry; Majerus, Kimberly

    2007-01-01

    on localized pollution” and from “management ofsources of pollution (GLWQA 1987). • Strengthened managementmanagement for land and water interactions and point and non-point sources of pollution

  14. Mercury in the Great Lakes Region Sponsored by the Commission for Environmental Cooperation's

    E-Print Network [OSTI]

    Environment Canada Coal-fired electricity generation Point sources other than coal-fired electricity to update 1995 data from Environment Canada 1995 data from Environment Canada Coal-fired electricity Cooperation* Montreal, Quebec, Canada Presentation at * This presentation was developed for discussion

  15. The Atmospheric Transport and Deposition of Mercury to the Great Lakes

    E-Print Network [OSTI]

    anthropogenic sources in the U.S. and Canada are considered · U.S. point and area source emissions from EPA 1999 available) · Canadian point and area source emissions from 1995 Environment Canada inventory · TopEmissions(metrictons/yr) Can_Hg(p) Can_Hg(II) Can_Hg(0) US_Hg(p) US_Hg(II) US_Hg(0) #12;coal elec gen (GL_states) waste incin

  16. The Great Lakes at a Crossroads Preparing for a Changing Climate

    E-Print Network [OSTI]

    , natural gas) to provide energy to run our vehicles, businesses, and homes, resulting in a significant? While the Earth's climate has changed many times during the planet's history because of natural factors on a greenhouse. A small amount of greenhouse gas is necessary to keep the planet's surface warm enough to sustain

  17. NEWASH AND TECUMSETH: ANALYSIS OF TWO POST-WAR OF 1812 VESSELS ON THE GREAT LAKES 

    E-Print Network [OSTI]

    Gordon, Leeanne E.

    2010-01-16

    .................................................................... 17 4 Angle of deadrise ....................................................................................... 19 5 Deck layout, showing placement of pivot guns and carronades ................ 21 6 A pivot gun.................................................................................................... 22 7 A carronade ................................................................................................ 22 8 A long gun.................................................................................................. 22 9 ?The Dual...

  18. The 1990 Clean Air Act Amendments and the Great Lakes economy: Challenges and opportunities

    SciTech Connect (OSTI)

    Hanson, D.; Molburg, J.; Pandola, G.; Taxon, T.; Lurie, G.; Fisher, R.; Boyd, G. (Argonne National Lab., IL (United States)); Fox, J. (Solar Energy Research Inst., Golden, CO (United States))

    1991-01-01

    This paper deals with the market for SO{sub 2} emission allowances over time and electric utility compliance choices. For currently high emitting plants ( > 2.5 lb SO{sub 2}/MMBtu), the 1990 Clean Air Act Amendments (CAAA) provide for about twice as many SO{sub 2} allowances to be issued per year in Phase 1 (1995--1999) than in Phase 2. Also, considering the scrubber incentives in Phase 1, there is likely to be substantial emission banking for use in Phase 2. Allowance prices are expected to increase over time at a rate less than the return on alternative investments, so utilities which are risk neutral or other potential speculators in the allowance market are not expected to bank allowances. The allowances will be banked by risk averse utilities or the utilities may buy forward contracts for SO{sub 2} allowances. However, speculators may play an important role by selling forward contracts for SO{sub 2} allowances to the risk averse utilities. The Argonne Utility Simulation Model (ARGUS) is being revised to incorporate the provisions of the CAAA acid rain title and to simulate SO{sub 2} allowance prices, compliance choices, capacity expansion, system dispatch, fuel use, and emissions. The revised model (ARGUS2) incorporates unit-level performance data and can incorporate unit-specific compliance decisions when these are known. The model has been designed for convenience in analyzing alternatives scenarios (demand growth rates, technology mix, economic parameters, etc). 1 ref., 5 figs.

  19. Great Lakes Geologic Mapping Coalition -Annual Science Meeting April 15-17, 2014

    E-Print Network [OSTI]

    Polly, David

    :30 Housekeeping ­ the day's plans Kevin Kincare 8:45 Illinois State Geological Survey Olivier Caron 9:00 Indiana

  20. Are PCB Levels in Fish from the Canadian Great Lakes Still Declining?

    E-Print Network [OSTI]

    Jackson, Don

    , Huron, and Ontario, their best projected 2007 PCB levels are below the unlimited fish consumption projected 2007 PCB levels (160 and 370 ng/g ww, respectively) will continue to result in consumption for capacitors and transformers, heat transfer and hydraulic fluids, lubricating and cutting oils

  1. Satellite SAR Remote Sensing of Great Lakes Ice Cover, Part 2. Ice Classification and Mapping

    E-Print Network [OSTI]

    (look-up table) for different ice types. The library is used in the computer classifica- tion (freshwater) ice types using the Jet Propulsion Laboratory C-band scatterometer, together with surface data set, composed of over 20 variations of different ice types measured at incident angles from 0

  2. Health-hazard evaluation report HETA 82-341-1682, Great Lakes Carbon, Wilmington, California

    SciTech Connect (OSTI)

    Lee, S.A.; Lipscomb, J.A.; Neumeister, C.E.

    1986-04-01

    An evaluation of environmental conditions and possible health effects among workers exposed to coke dust was conducted. Personal breathing-zone (PBZ) concentrations of total airborne dust ranged from 0.1 to 12 milligrams/cubic meter (mg/m3) with a median of 1.6 mg/m3; mass median particle diameter was about 8 micrometers. Very high PBZ concentrations of coke dust occurred during a semimonthly cleanup of underground coke pits; levels ranged from 98 to 190mg/m3 with a mean of 140mg/m3. Oil mists were not detected. Exposures to polynuclear aromatic compounds were below the analytical limit of detection among workers for routine jobs. Abnormal pulmonary function tests were found in 12% of those tested. Five cases of chronic bronchitis and seven of chronic cough, 10 and 13% respectively, were identified among those interviewed. The authors conclude that there were potentially hazardous exposures to high dust levels during semimonthly coke-pit cleaning jobs.

  3. NOAA Technical Memorandum GLERL-147a IMPACT OF CLIMATE CHANGE ON THE GREAT LAKES ECOSYSTEM

    E-Print Network [OSTI]

    SCIENCE NEEDS ASSESSMENT WORKSHOP TO MEET EMERGING CHALLENGES, JULY 29-31, 2008, FULL FINAL REPORT M................................................................................................................................................ 3 Summary

  4. Rev. of The Great Lake States and Alaska and Hawaii in Literature, by David Harkness

    E-Print Network [OSTI]

    Levine, Stuart

    1960-01-01

    These two pamphlets are part of a series published by the University of Tennessee. Other titles are Literary Profiles of the Southern States, The Southwest and West Coast in Literature, Literary New England, and Literary Mideast ...

  5. 1143AUGUST 2004AMERICAN METEOROLOGICAL SOCIETY | he Laurentian Great Lakes (Fig. 1) com-

    E-Print Network [OSTI]

    as hydroelectric power and fossil fuels) are limited or must be imported. Because of its rapid growth and high

  6. The Great Diversion Project in the Owens River Valley and Mono Lake Area

    E-Print Network [OSTI]

    Polly, David

    not only produce water, but also can produce hydroelectric power due to the high elevation from which

  7. Regional Gravity Survey of the Northern Great Salt Lake Desert and Adjacent

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b <Refurbished Projects Wind Farm

  8. FIA-14-0066 - In the Matter of Great Lakes Wind Truth | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order14, 2011 CX-006821:forEnergy 39 - In the1 -72 - In6

  9. of Energy's Los Alamos National Laboratory and Great Lakes Bioenergy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0 4 2 r m m m m port m fm f m T m jm tm r

  10. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-02-10

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  11. Program in Functional Genomics of Autoimmunity and Immunology of yhe University of Kentucky and the University of Alabama

    SciTech Connect (OSTI)

    Alan M Kaplan

    2012-10-12

    This grant will be used to augment the equipment infrastructure and core support at the University of Kentucky and the University of Alabama particularly in the areas of genomics/informatics, molecular analysis and cell separation. In addition, we will promote collaborative research interactions through scientific workshops and exchange of scientists, as well as joint exploration of the role of immune receptors as targets in autoimmunity and host defense, innate and adaptive immune responses, and mucosal immunity in host defense.

  12. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-02-11

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  13. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-04-28

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  14. GEOLOGIC CHARACTERIZATION AND CARBON STORAGE RESOURCE ESTIMATES FOR THE KNOX GROUP, ILLINOIS BASIN, ILLINOIS, INDIANA, AND KENTUCKY

    SciTech Connect (OSTI)

    Harris, David; Ellett, Kevin; Rupp, John; Leetaru, Hannes

    2014-09-30

    Research documented in this report includes (1) refinement and standardization of regional stratigraphy across the 3-state study area in Illinois, Indiana, and Kentucky, (2) detailed core description and sedimentological interpretion of Knox cores from five wells in western Kentucky, and (3) a detailed calculation of carbon storage volumetrics for the Knox using three different methodologies. Seven regional cross sections document Knox formation distribution and thickness. Uniform stratigraphic nomenclature for all three states helps to resolve state-to-state differences that previously made it difficult to evaluate the Knox on a basin-wide scale. Correlations have also refined the interpretation of an important sandstone reservoir interval in southern Indiana and western Kentucky. This sandstone, a CO2 injection zone in the KGS 1 Blan well, is correlated with the New Richmond Sandstone of Illinois. This sandstone is over 350 ft (107 m) thick in parts of southern Indiana. It has excellent porosity and permeability at sufficient depths, and provides an additional sequestration target in the Knox. The New Richmond sandstone interval has higher predictability than vuggy and fractured carbonates, and will be easier to model and monitor CO2 movement after injection.

  15. Problems encountered in establishing a historical erosion-rate database for the Illinois coast of Lake Michigan

    SciTech Connect (OSTI)

    Chrzastowski, M.J.; Erdmann, A.L.; Stohr, C.J. (Illinois State Geological Survey, Champaign, IL (United States))

    1992-01-01

    Erosion rates for segments of the Lake Michigan coast at Lake County, Illinois were determined from historical maps prepared by the US Lake Survey and aerial photographs collected for the State of Illinois. Shorelines and blufflines were digitized at 1:20,000 scale for 1872--73, 1910--11, 1947, and 1987; these data were registered to 1:24,000-scale USGS digital line graphs. Erosion rates were calculated from temporal changes on shore-normal transects at 50-m spacing. Three major factors were identified pertinent to future digital mapping of historical coastal changes along similar Great Lakes coasts. (1) Ground-control points and points for rubber sheeting must be carefully selected to ensure these points were stable. For example, road intersections had changed position 15 m or more between early and late data sets. (2) Unlike US ocean coasts, the Great Lakes do not have a standard datum for shoreline mapping, and shorelines are commonly shown for the lake level at the time of the survey. Variation in historical, monthly mean lake level (1.9 m max. range for Lake Michigan) can cause significant shoreline differences between data sets. Shoreline translations of tens of meters may be needed to adjust to a common datum. (3) The bluff crest may not always be an ideal reference line for documenting rates of coastal change. Locally and temporally, recession of the bluff crest may be caused by a variety of slope processes that are independent of wave erosion. Along some bluff coasts, the bluff toe, if carefully defined, may be a more appropriate reference for calculating erosion rates strictly due to coastal processes.

  16. Reports of the Great California Earthquake of 1857

    E-Print Network [OSTI]

    Agnew, Duncan Carr

    2006-01-01

    Reminiscence of John Barker, Tulare Meteorological ReportVista and perhaps Kern Lake; Tulare Lake is too far north toat the Tejon and in the Tulare country the earthquake was

  17. RESEARCH ARTICLE Evaluating the effects of upstream lakes and wetlands

    E-Print Network [OSTI]

    and recalculated downstream lake phosphorus concentra- tions. We found that upstream lakes decreased the phosphorusRESEARCH ARTICLE Evaluating the effects of upstream lakes and wetlands on lake phosphorus of these inputs. In addition, the presence, connectivity, and configuration of upstream lakes and wetlands likely

  18. Review of earthquake hazard assessments of plant sites at Paducah, Kentucky and Portsmouth, Ohio

    SciTech Connect (OSTI)

    1997-03-01

    Members of the US Geological Survey staff in Golden, Colorado, have reviewed the submissions of Lawrence Livermore National Laboratory (LLNL) staff and of Risk Engineering, Inc. (REI) (Golden, Colorado) for seismic hazard estimates for Department of Energy facilities at Portsmouth, Ohio, and Paducah, Kentucky. We reviewed the historical seismicity and seismotectonics near the two sites, and general features of the LLNL and EPRI/SOG methodologies used by LLNL and Risk Engineering respectively, and also the separate Risk Engineering methodology used at Paducah. We discussed generic issues that affect the modeling of both sites, and performed alternative calculations to determine sensitivities of seismic hazard results to various assumptions and models in an attempt to assign reasonable bounding values of the hazard. In our studies we find that peak acceleration values of 0.08 g for Portsmouth and 0.32 g for Paducah represent central values of the, ground motions obtained at 1000-year return periods. Peak accelerations obtained in the LLNL and Risk Engineering studies have medians near these values (results obtained using the EPRI/SOG methodology appear low at both sites), and we believe that these medians are appropriate values for use in the evaluation of systems, structures, and components for seismic structural integrity and for the seismic design of new and improved systems, structures, and components at Portsmouth and Paducah.

  19. Fourier and autocorrelation analysis of estuarine tidal rhythmites, lower Breathitt Formation (Pennsylvania), eastern Kentucky, USA

    SciTech Connect (OSTI)

    Martino, R.L.; Sanderson, D.D. (Marshall Univ., Huntington, WV (United States))

    1993-01-01

    Outcrops of the Pennsylvanian Breathitt Formation in eastern Kentucky reveal a rhythmic pattern of siliciclastic sedimentation in a marginal marine coastal setting. A 15-23 m thick stratigraphic interval of thinly interbedded, fine sandstone and shale displays tidally generated features such as flaser and wavy current ripple bedding, bipolar paleocurrents, and cyclic thickening and thinning of mud-draped sandstone layers. A statistical analysis of sand layer thickness was carried out using shale partings as bounding surfaces for the individual sand units. Fourier and autocorrelation analyses were performed on two vertical sequences containing a total of over 2,100 layers. The results reveal the presence of four cycles of thickness variation. First-order cycles consist of alternating thick-thin sand layers. These daily couplets may reflect unequal flood and ebb currents during a single tidal cycle or dominant and subordinate tidal deposits in an ebb or flood dominated semidiurnal or mixed system. Second-order cycles typically consist of 11-14 sand layers and reflect spring-neap variations in tidal range and current velocities. Third-order cycles are usually composed of 24-35 layers and are formed in response to monthly variations in tidal range resulting from the ellipticity of the moon's orbit. Fourth-order cycles generally contain about 150 layers (range, 100-166) and were caused by seasonal maxima in tidal range associated with the solstice (winter, summer) and seasonal minima associated with the equinox (spring, fall).

  20. Review of earthquake hazard assessments of plant sites at Paducah, Kentucky, and Portsmouth, Ohio

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    Members of the US Geological Survey staff in Golden, Colorado, have reviewed the submissions of Lawrence Livermore National Laboratory (LLNL) staff and of Risk Engineering, Inc. (REI) (Golden, Colorado) for seismic hazard estimates for Department of Energy facilities at Portsmouth, Ohio, and Paducah, Kentucky. We reviewed the historical seismicity and seismotectonics near the two sites, and general features of the LLNL and EPRI/SOG methodologies used by LLNL and Risk Engineering respectively, and also the separate Risk Engineering methodology used at Paducah. We discussed generic issues that affect the modeling of both sites, and performed alternative calculations to determine sensitivities of seismic hazard results to various assumptions and models in an attempt to assign reasonable bounding values of the hazard. In our studies we find that peak acceleration values of 0.08 g for Portsmouth and 0.32 g for Paducah represent central values of the ground motions obtained at 1000-year return periods. Peak accelerations obtained in the LLNL and Risk Engineering studies have medians near these values (results obtained using the EPRI/SOG methodology appear low at both sites), and we believe that these medians are appropriate values for use in the evaluation of systems, structures, and components for seismic structural integrity and for the seismic design of new and improved systems, structures, and components at Portsmouth and Paducah.

  1. Project plan for the background soils project for the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    NONE

    1995-09-01

    The Background Soils Project for the Paducah Gaseous Diffusion Plant (BSPP) will determine the background concentration levels of selected naturally occurring metals, other inorganics, and radionuclides in soils from uncontaminated areas in proximity to the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. The data will be used for comparison with characterization and compliance data for soils, with significant differences being indicative of contamination. All data collected as part of this project will be in addition to other background databases established for the PGDP. The BSPP will address the variability of surface and near-surface concentration levels with respect to (1) soil taxonomical types (series) and (2) soil sampling depths within a specific soil profile. The BSPP will also address the variability of concentration levels in deeper geologic formations by collecting samples of geologic materials. The BSPP will establish a database, with recommendations on how to use the data for contaminated site assessment, and provide data to estimate the potential human and health and ecological risk associated with background level concentrations of potentially hazardous constituents. BSPP data will be used or applied as follows.

  2. Site-specific earthquake response analysis for Paducah Gaseous Diffusion Plant, Paducah, Kentucky. Final report

    SciTech Connect (OSTI)

    Sykora, D.W.; Davis, J.J.

    1993-08-01

    The Paducah Gaseous Diffusion Plant (PGDP), owned by the US Department of Energy (DOE) and operated under contract by Martin Marietta Energy systems, Inc., is located southwest of Paducah, Kentucky. An aerial photograph and an oblique sketch of the plant are shown in Figures 1 and 2, respectively. The fenced portion of the plant consists of 748 acres. This plant was constructed in the 1950`s and is one of only two gaseous diffusion plants in operation in the United States; the other is located near Portsmouth, Ohio. The facilities at PGDP are currently being evaluated for safety in response to natural seismic hazards. Design and evaluation guidelines to evaluate the effects of earthquakes and other natural hazards on DOE facilities follow probabilistic hazard models that have been outlined by Kennedy et al. (1990). Criteria also established by Kennedy et al. (1990) classify diffusion plants as ``moderate hazard`` facilities. The US Army Engineer Waterways Experiment Station (WES) was tasked to calculate the site response using site-specific design earthquake records developed by others and the results of previous geotechnical investigations. In all, six earthquake records at three hazard levels and four individual and one average soil columns were used.

  3. Sauk structural elements and depositional response in Ohio and northern Kentucky

    SciTech Connect (OSTI)

    Coogan, A.H.; Peng, Shengfeng (Kent State Univ., OH (United States). Dept. of Geology)

    1992-01-01

    Three area structural elements were inherited from Precambrian events--the Rome Trough, Middle Run trough at the Grenville Line, and the Ohio platform on part of the more stable Grenville Province. They strongly influence the type of basal Sauk clastic and non-clastic deposits as documented from hundreds of wells in Ohio and adjacent northern Kentucky. These elements and the topography resulting from erosion during the Lipalian Interval most directly influence sedimentation during the onlap phase of the basal Sauk Sequence. Clastic wedge-base deposits are the Mt. Simon, Rome'', and Eau Claire formations. Deposition of the middle Cambrian Conasauga Shale coincides with the maximum marine onlap and wedge middle position. Upper Sauk Sequence deposition of the Knox Group carbonate rocks (Cooper Ridge Dolomite, Beekmantown Dolomite) and their interbedded clastic units (Steam Corners and Rose Run formations) represents the shallowing upward, pulsating clastic depositional events which anticipate the differential uplift and erosion that occurred later during the Taconic Orogeny and Early Ordovician hiatus. New Taconic structural elements involve the uplift of the central Ohio platform on the western part of the Grenville Province along reactivated, pre-Grenville sutures identified by CoCorp seismic lines. Platform uplift exposes lower Knox rocks to erosion. Younger Knox rocks are preserved east of the fault line zone. The Appalachian Basin's western edge is marked at this time by the trend of the Rose Run and Beekmantown subcrop below the Knox Unconformity surface and by the edge of the high magnetic intensity basement.

  4. Water Quality, Lake Sensitivity Ratings, and Septic Seepage Surveys of Six Lakes in the

    E-Print Network [OSTI]

    #12;Water Quality, Lake Sensitivity Ratings, and Septic Seepage Surveys of Six Lakes in the Bridge..................................................................................... 6 3.1.4 Water Clarity................................................................................... 12 3.2.4 Water Clarity

  5. The Price of Parking on Great Streets

    E-Print Network [OSTI]

    Shoup, Donald

    2011-01-01

    UCTC-FR-20II-26 The Price of Parking on Great Streets Donaldare enacted. With performance-based parking prices, localrevenue return, and parking increment finance, everybody

  6. VEE-0018- In the Matter of Lakes Gas Company

    Broader source: Energy.gov [DOE]

    On March 12, 1996, the Lakes Gas Company (Lakes) of Forest Lake, Minnesota, filed an Application for Exception with the Office of Hearings and Appeals of the Department of Energy. In its...

  7. Fates of methane from different lake habitats: Connecting whole-lake budgets and CH4 emissions

    E-Print Network [OSTI]

    Pace, Michael L.

    Fates of methane from different lake habitats: Connecting whole-lake budgets and CH4 emissions September 2007; revised 3 February 2008; accepted 28 February 2008; published 24 May 2008. [1] Methane (CH4 clear. We quantified internal cycling and methane emissions in three lakes during summer stratification

  8. Temperature Influence on Commercial Lake Whitefish Harvest in Eastern Lake Michigan

    E-Print Network [OSTI]

    the relationship between lake whitefish harvest, water temperature statistics, and fishing effort. Several vari in describing the fish harvest with surface water temperatures is most likely the consequence of warm surfaceTemperature Influence on Commercial Lake Whitefish Harvest in Eastern Lake Michigan Holly Price1

  9. Lake Sturgeon Biology in Rainy Lake, Minnesota and Ontario Wells Eugene Adams, Jr.

    E-Print Network [OSTI]

    Lake Sturgeon Biology in Rainy Lake, Minnesota and Ontario BY Wells Eugene Adams, Jr. A thesis and Ontario This thesis is approved as a creditable and independent investigation by a candidate on Rainy Lake over the past three years and Darryl McLeod of the Ontario Ministry of Natural Resources

  10. Signatures of slope failures and river-delta collapses in a perialpine lake (Lake Lucerne, Switzerland)

    E-Print Network [OSTI]

    Gilli, Adrian

    Signatures of slope failures and river-delta collapses in a perialpine lake (Lake Lucerne) which caused extensive slope failures in many parts of the lake. The second event in AD 1687 signatures of the two subaqueous mass movements that probably generated the observed tsunamis. Such mass

  11. Upper Klamath Lake Seismic Liberty and Pratt, 2000 1 Upper Klamath Lake Seismic Results

    E-Print Network [OSTI]

    Barrash, Warren

    Upper Klamath Lake Seismic Liberty and Pratt, 2000 1 Upper Klamath Lake Seismic Results October, 98195 Summary We collected greater than 200 km of seismic reflection data in Upper Klamath Lake independent seismic systems to digitally image subsurface sediment and rock interfaces to help DOGAMI complete

  12. Toxic and deadly: Working to manage algae in Lake Granbury 

    E-Print Network [OSTI]

    Wythe, Kathy

    2011-01-01

    Working to manage algae in Lake Granbury Lake Granbury, located about 33 miles southwest of Fort Worth, is a recreation haven for water enthusiasts. In recent years, however, bacteria and golden algae have threatened the lake?s water quality.... Educating citizens about water quality issues affecting Lake Granbury and determining ways to manage the deadly algae are the focus of two Texas Water Resources Institute (TWRI) projects. Lake Granbury, a critical water supply in North Central Texas...

  13. Toxic and deadly: Working to manage algae in Lake Granbury 

    E-Print Network [OSTI]

    Wythe, Kathy

    2010-01-01

    Working to manage algae in Lake Granbury Lake Granbury, located about 33 miles southwest of Fort Worth, is a recreation haven for water enthusiasts. In recent years, however, bacteria and golden algae have threatened the lake?s water quality.... Educating citizens about water quality issues affecting Lake Granbury and determining ways to manage the deadly algae are the focus of two Texas Water Resources Institute (TWRI) projects. Lake Granbury, a critical water supply in North Central Texas...

  14. The Great American Education-Industrial Complex

    E-Print Network [OSTI]

    Johnson Jr.,, Ray

    The Great American Education-Industrial Complex Ideology, Technology, and Profit Anthony G. Picciano & Joel Spring The Great American Education-Industrial Complex examines the structure and nature in a powerful common entity, and detail how the educational-industrial complex has grown and strengthened its

  15. Reports of the Great California Earthquake of 1857

    E-Print Network [OSTI]

    Agnew, Duncan Carr

    2006-01-01

    following the great 1857 earthquake, Southern California,foreshocks of the great 1857 earthquake, Bull. Seismol. Soc.with the great 1857 earthquake, Bull. Seismol. Soc. Amer. ,

  16. VALUE DISTRIBUTION ASSESSMENT OF GEOTHERMAL DEVELOPMENT IN LAKE COUNTY, CA

    E-Print Network [OSTI]

    Churchman, C.W.

    2011-01-01

    Eleven: Lake County Geothermal Energy Resource. . . .of Susanville, Susanville Geothermal Energy Project Workshopparts of the state. Geothermal energy is only one of Lake

  17. Leading the Charge: Jana Ganion Advances Blue Lake Rancheria...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Leading the Charge: Jana Ganion Advances Blue Lake Rancheria's Climate Action Agenda Leading the Charge: Jana Ganion Advances Blue Lake Rancheria's Climate Action Agenda February...

  18. Ground penetrating radar surveys over an alluvial DNAPL site, Paducah Gaseous Diffusion Plant, Kentucky

    SciTech Connect (OSTI)

    Carpenter, P.J. [Northern Illinois Univ., DeKalb, IL (United States). Dept. of Geology]|[Oak Ridge National Lab., TN (United States); Doll, W.E. [Oak Ridge National Lab., TN (United States); Phillips, B.E. [Paducah Gaseous Diffusion Plant, KY (United States)

    1994-09-01

    Ground penetrating radar (GPR) surveys were used to map shallow sands and gravels which are DNAPL migration pathways at the Paducah Gaseous Diffusion Plant in western Kentucky. The sands and gravels occur as paleochannel deposits, at depths of 17-25 ft, embedded in Pleistocene lacustrine clays. More than 30 GPR profiles were completed over the Drop Test Area (DTA) to map the top and base of the paleochannel deposits, and to assess their lateral continuity. A bistatic radar system was used with antenna frequencies of 25 and 50 MHz. An average velocity of 0.25 ft/ns for silty and clayey materials above the paleochannel deposits was established from radar walkaway tests, profiles over culverts of known depth, and comparison of radar sections with borings. In the south portion of the DTA, strong reflections corresponded to the water table at approximately 9-10 ft, the top of the paleochannel deposits at approximately 18 ft, and to gravel horizons within these deposits. The base of these deposits was not visible on the radar sections. Depth estimates for the top of the paleochannel deposits (from 50 records) were accurate to within 2 ft across the southern portion of the DTA. Continuity of these sands and gravels could not be assessed due to interference from air-wave reflections and lateral changes in signal penetration depth. However, the sands and gravels appear to extend across the entire southern portion of the DTA, at depths as shallow as 17 ft. Ringing, air-wave reflections and diffractions from powerlines, vehicles, well casings, and metal equipment severly degraded GPR profiles in the northern portion of the DTA; depths computed from reflection times (where visible) were accurate to within 4 ft in this area. The paleochannel deposits are deeper to the north and northeast where DNAPL has apparently pooled (DNAPL was not directly imaged by the GPR, however). Existing hydrogeological models of the DTA will be revised.

  19. Prediction of lake ice in the Netherlands

    E-Print Network [OSTI]

    Haak, Hein

    by HARMONIE ·Flake driven by ECMWF ensembles ·Conclusions and Outlook #12;Lake workshop sept 2012 Motivation Operational Observations ECMWF model #12;Lake workshop sept 2012 h D Air Water Ice ·Surface energy ·Radiative fluxes (Qs, Ql, absorbed solar radiation) ·Turbulent fluxes (sensible and latent heat fluxes

  20. ARTIFICIAL FERTILIZATION OF LAKES AND PONDS

    E-Print Network [OSTI]

    ARTIFICIAL FERTILIZATION OF LAKES AND PONDS A Review of the Literature SPECIAL SCIENTIFIC REPORT., John L. Farley, Director ARTIFICIAL FERTILIZATION OF LAKES AND PONDS A Review of the Literature By John Interpretation of results .................. l5 Fertilization and pond culture .................. l6 The pond

  1. The Lake Charles CCS Project

    SciTech Connect (OSTI)

    Doug Cathro

    2010-06-30

    The Lake Charles CCS Project is a large-scale industrial carbon capture and sequestration (CCS) project which will demonstrate advanced technologies that capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically the Lake Charles CCS Project will accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petroleum coke to chemicals plant (the LCC Gasification Project) and the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Lake Charles CCS Project will promote the expansion of EOR in Texas and Louisiana and supply greater energy security by expanding domestic energy supplies. The capture, compression, pipeline, injection, and monitoring infrastructure will continue to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project are expected to be fulfilled by working through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 includes the studies attached hereto that will establish: the engineering design basis for the capture, compression and transportation of CO{sub 2} from the LCC Gasification Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Hastings oil field in Texas. The overall objective of Phase 2, provided a successful competitive down-selection, is to execute design, construction and operations of three capital projects: (1) the CO{sub 2} capture and compression equipment, (2) a Connector Pipeline from the LLC Gasification Project to the Green Pipeline owned by Denbury and an affiliate of Denbury, and (3) a comprehensive MVA system at the Hastings oil field.

  2. The Great Migration and the Demographics of America

    E-Print Network [OSTI]

    McKnight, Christy

    2015-01-01

    The Great Migration and the Demographics of America Bynarratives of the Great Migration stop short of explaining

  3. Lake Winds | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWinds Jump to: navigation, search Name Lake Winds

  4. Hot Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNew Jersey:Hopkinsville, Kentucky:Open EnergyInformationHot

  5. Environmental perceptions in Great Plains novels 

    E-Print Network [OSTI]

    Pardee, Celeste Frances

    1976-01-01

    to environmental influ- ences on the overall settlement process. Finally, con- clusions are drawn on the contribution of novels to the study of environmental perception during the settlement period and to an understanding of Great Plains culture history...ENVIRONMENTAL PERCEPT10NS IN GREAT PLAINS NOVELS A Thesis CELESTE FRANCES PARDEE Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August 1976 Major...

  6. 2013-2014Series University of Kentucky is accredited by the Southern Association of Colleges and Schools Commission on Colleges to award associate, baccalaureate, masters,

    E-Print Network [OSTI]

    Hayes, Jane E.

    of Kentucky. Interdisciplinary Early Childhood Education Requirements for Program Early Childhood Education a state teaching certificate in Interdisciplinary Early Childhood Education. Graduates are awarded the B.S. degree in Education with a major in Interdisciplinary Early Childhood Education. The faculty

  7. 2014-2015Series University of Kentucky is accredited by the Southern Association of Colleges and Schools Commission on Colleges to award associate, baccalaureate, masters,

    E-Print Network [OSTI]

    MacAdam, Keith

    of Kentucky. Interdisciplinary Early Childhood Education Requirements for Program Early Childhood Education a state teaching certificate in Interdisciplinary Early Childhood Education. Graduates are awarded the B.S. degree in Education with a major in Interdisciplinary Early Childhood Education. The faculty

  8. 2012-2013 Series University of Kentucky is accredited by the Southern Association of Colleges and Schools Commission on Colleges to award associate, baccalaureate, masters,

    E-Print Network [OSTI]

    Hayes, Jane E.

    of Kentucky. Interdisciplinary Early Childhood Education Requirements for Program Early Childhood Education a state teaching certificate in Interdisciplinary Early Childhood Education. Graduates are awarded the B.S. degree in Education with a major in Interdisciplinary Early Childhood Education. The faculty

  9. International Symposium on Gaseous and Odour Emissions from Animal Production Facilities, Horsens, Jutland, Denmark 1-4 June, 2003 Ammonia Emissions from Broiler Houses in Kentucky during Winter

    E-Print Network [OSTI]

    Kentucky, University of

    International Symposium on Gaseous and Odour Emissions from Animal Production Facilities, Horsens, Jutland, Denmark 1-4 June, 2003 Ammonia Emissions from Broiler Houses in Kentucky during Winter Kenneth D a comprehensive database of ammonia emission rates (ER) from US poultry facilities. The influence of common

  10. Sediment entrapment by coastal structures along the Illinois shore of Lake Michigan

    SciTech Connect (OSTI)

    Shabica, C.W.; Pranschke, F.A. (Northeastern Illinois Univ., Chicago, IL (United States). Dept. of Earth Science); Chrzastowski, M.J. (Illinois State Geological Survey, Champaign, IL (United States))

    1992-01-01

    Sand diversion and entrapment by harbors and lakefills are acknowledged to be important causes for depletion of the littoral stream sands along the Illinois shore of Lake Michigan north of Chicago. Until now estimates of material trapped as sand fillets by structural barriers has been based mainly on maps and air photos. Only a small amount of core or drill data, necessary for detailed estimates, is available. In a survey sponsored by Illinois/Indiana Sea Grant, Northeastern Illinois University and the US Geological Survey Branch of Atlantic Marine Geology, beach and lake bottom sands adjacent to structural barriers were measured using a hydraulic probe. Locations include Waukegan Harbor, Great Lakes Naval Training Center, Forest Park Beach in Lake Forest, Winnetka Waterworks, Wilmette Harbor and Northwestern University lakefill. Results show the Waukegan Harbor has trapped or diverted more than 16,000,000 cubic meters of sand. Substantially lesser amounts were found at the remaining barriers, all of which are downdrift from Waukegan Harbor.

  11. Paleoecological response of ostracods to early Late Pleistocene lake-level changes in Lake Malawi, East Africa

    E-Print Network [OSTI]

    Paleoecological response of ostracods to early Late Pleistocene lake-level changes in Lake Malawi. This record of lake-level fluctuations is correlated with paleoecological changes in ostracod communities in paleoecological affinities related to lake chemistry and oxygenation of bottom waters. The characteristics

  12. Production and Ebullition of Methane in a Shallow Eutrophic Lake (Lake Elsinore, CA)

    E-Print Network [OSTI]

    Martinez, Denise Nicole

    2012-01-01

    Sediment, Gas ebullition, Gas storage 1. Introduction Anoxicintensive monitoring of gas storage and ebullition rates (sites on Lake Elsinore, gas storage within the sediments was

  13. Solar Policy Environment: Salt Lake

    Broader source: Energy.gov [DOE]

    The overall objective of the “Solar Salt Lake” (SSL) team is to develop a fully-scoped city and county-level implementation plan that will facilitate at least an additional ten megawatts of solar photovoltaic (PV) installations in the government, commercial, industrial, and residential sectors by 2015. To achieve this aggressive goal, the program strategy includes a combination of barrier identification, research, and policy analysis that utilizes the input of various stakeholders. Coupled with these activities will be the development and implementation of pilot installations in the government and residential sectors, and broad outreach to builders and potential practitioners of solar energy products in the process. In this way, while creating mechanisms to enable a demand for solar, SSL will also facilitate capacity building for suppliers, thereby helping to ensure long-term sustainability for the regional market.

  14. Kentucky Department for Natural Resources and Environmental Protection permit application for air contaminant source: SRC-I demonstration plant, Newman, Kentucky. Supplement I. [Additional information on 38 items requested by KY/DNREP

    SciTech Connect (OSTI)

    Pearson, Jr., John F.

    1981-02-13

    In response to a letter from KY/DNREP, January 19, 1981, ICRC and DOE have prepared the enclosed supplement to the Kentucky Department for Natural Resources and Environmental Protection Permit Application for Air Contaminant Source for the SRC-I Demonstration Plant. Each of the 38 comments contained in the letter has been addressed in accordance with the discussions held in Frankfort on January 28, 1981, among representatives of KY/DNREP, EPA Region IV, US DOE, and ICRC. The questions raised involve requests for detailed information on the performance and reliability of proprietary equipment, back-up methods, monitoring plans for various pollutants, composition of wastes to flares, emissions estimates from particular operations, origin of baseline information, mathematical models, storage tanks, dusts, etc. (LTN)

  15. Great Plains Ethanol | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County, Georgia:Oregon: EnergyGreat Basin Geothermal AreaGreat

  16. Great River Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County, Georgia:Oregon: EnergyGreat Basin Geothermal AreaGreatEnergy

  17. Lake thermal structure influences macroinvertebrate predation on

    E-Print Network [OSTI]

    Arnott, Shelley

    . KEYWORDS: thermal stratification; climate warming; Chaoborus; notonectid; Boreal Shield; mesocosm INTRODUCTION Climate change is expected to alter the timing, strength and depth of thermal stratificationLake thermal structure influences macroinvertebrate predation on crustacean zooplankton SHANNON A

  18. TEMPORAL CYANOBACTERIA FLUCTUATIONS IN LAKE BALLARD

    E-Print Network [OSTI]

    ). Through photosynthesis, phytoplankton transform solar energy and nutrients from, they are part of plant communities found in lakes all over the world (Marshall 2009 a physical water component to a usable energy source (Marshall 2009). Phytoplankton

  19. Synthetic ecology : revisiting Mexico City's lakes project

    E-Print Network [OSTI]

    Daou, Daniel (Daou Ornelas)

    2011-01-01

    Mexico City was founded 700 years ago on man made islets in the middle of a lake. Today, it faces a contradictory situation were water is running scarce, but simultaneously the city runs the risk of drowning in its own ...

  20. Geochemical characterization of geothermal systems in the Great Basin:

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: EnergyGateway EditOpenTechniques Jump to:

  1. Great Papers in the Earth Sciences FAS course web page: Great Papers, EPS 281r

    E-Print Network [OSTI]

    Huybers, Peter

    Great Papers in the Earth Sciences FAS course web page: Great Papers, EPS 281r (Spring 2015 of the topics to be covered during the course based on the papers posted on the course web page and lead a discussion during class. Students not part of the presenting group turn in one page (12pt, single spacing

  2. The Great Disconnection? Michael F. Schwartz

    E-Print Network [OSTI]

    Schwartz, Michael F.

    interconnected with interorganizational networks [National Research Council 1991]. There are a numberThe Great Disconnection? Michael F. Schwartz CU-CS-521-91 February 1991 Department of Computer of well publicized events, such as a series of espionage attempts directed at U.S. government research

  3. Perspective Great Expectations: Using Whole-Brain

    E-Print Network [OSTI]

    Deco, Gustavo

    Neuron Perspective Great Expectations: Using Whole-Brain Computational Connectomics for Understanding Neuropsychiatric Disorders Gustavo Deco1,2,* and Morten L. Kringelbach3,4 1Center for Brain://dx.doi.org/10.1016/j.neuron.2014.08.034 The study of human brain networks with in vivo neuroimaging has given

  4. Final Environmental Assessment and Finding of No Significant Impact: Waste Disposition Activities at the Paducah Site Paducah, Kentucky

    SciTech Connect (OSTI)

    N /A

    2002-11-05

    The U.S. Department of Energy (DOE) has completed an environmental assessment (DOE/EA-1339), which is incorporated herein by reference, for proposed disposition of polychlorinated biphenyl (PCB) wastes, low-level radioactive waste (LLW), mixed low-level radioactive waste (MLLW), and transuranic (TRU) waste from the Paducah Gaseous Diffusion Plant Site (Paducah Site) in Paducah, Kentucky. All of the wastes would be transported for disposal at various locations in the United States. Based on the results of the impact analysis reported in the EA, DOE has determined that the proposed action is not a major federal action that would significantly affect the quality of the human environment with in the context of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an environmental impact statement is not necessary, and DOE is issuing this Finding of No Significant Impact (FONSI).

  5. Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate

    E-Print Network [OSTI]

    Notre Dame, University of

    production rate minus potential methane oxidation) and the hydrostatic pressure which has to be overcome 2004. [1] Lake sediments are ``hot spots'' of methane production in the landscape. However, regional. Present evidence from lakes suggests that the majority of methane production occurs in anoxic sediment

  6. Lake sturgeon population characteristics in Rainy Lake, Minnesota and Ontario By W. E. Adams Jr1

    E-Print Network [OSTI]

    . Introduction Although the lake sturgeon Acipenser fulvescens is a Minnesota state-listed species of special, 1996) and may spawn only once every 7­9 years (Roussow, 1957). Dams constructed on the outlets of Rainy of a hydroelectric dam at the outlet of Rainy Lake and two regulatory dams on Namakan Reservoir immediately up

  7. Climatedependent CO2 emissions from lakes Sarian Kosten,1

    E-Print Network [OSTI]

    Cole, Jonathan J.

    in carbon dioxide partial pressure (pCO2) in 83 shallow lakes over a large climatic gradient in South influence lakes' metabolism as well. For instance through its effect on the hydraulic residence time, which

  8. THERMODYNAMICS OF PARTIALLY FROZEN COOLING LAKES

    SciTech Connect (OSTI)

    Garrett, A.; Casterline, M.; Salvaggio, C.

    2010-01-05

    The Rochester Institute of Technology (RIT) collected visible, SWIR, MWIR and LWIR imagery of the Midland (Michigan) Cogeneration Ventures Plant from aircraft during the winter of 2008-2009. RIT also made ground-based measurements of lake water and ice temperatures, ice thickness and atmospheric variables. The Savannah River National Laboratory (SRNL) used the data collected by RIT and a 3-D hydrodynamic code to simulate the Midland cooling lake. The hydrodynamic code was able to reproduce the time distribution of ice coverage on the lake during the entire winter. The simulations and data show that the amount of ice coverage is almost linearly proportional to the rate at which heat is injected into the lake (Q). Very rapid melting of ice occurs when strong winds accelerate the movement of warm water underneath the ice. A snow layer on top of the ice acts as an insulator and decreases the rate of heat loss from the water below the ice to the atmosphere above. The simulated ice cover on the lake was not highly sensitive to the thickness of the snow layer. The simplicity of the relationship between ice cover and Q and the weak responses of ice cover to snow depth over the ice are probably attributable to the negative feedback loop that exists between ice cover and heat loss to the atmosphere.

  9. Did International Economic Forces Cause the Great Depression?

    E-Print Network [OSTI]

    Eichengreen, Barry

    1987-01-01

    the Great Depression Maldistribution Liquidation interestbeggar-thy-neignbor maldistribution or to the the reserves.

  10. Lake Roosevelt Fisheries Evaluation Program; Meadow Creek vs. Lake Whatcom Stock Kokanee Salmon Investigations in Lake Roosevelt, 2001 Annual Report.

    SciTech Connect (OSTI)

    McLellan, Holly; Scholz, Allan

    2002-03-01

    Lake Roosevelt has been stocked with Lake Whatcom stock kokanee since 1989 with the primary objective of creating a self-sustaining recreational fishery. Due to low return numbers, it was hypothesized a stock of kokanee, native to the upper Columbia River, might perform better than the coastal Lake Whatcom strain. Kokanee from Meadow Creek, a tributary of Kootenay Lake, British Columbia were selected as an alternative stock. Matched pair releases of Lake Whatcom and Meadow Creek kokanee were made from Sherman Creek Hatchery in late June 2000 and repeated in 2001. Stock performance between Lake Whatcom and Meadow Creek kokanee was evaluated using three performance measures; (1) the number of returns to Sherman Creek, the primary egg collection facility, (2) the number of returns to other tributaries and (3) the number of returns to the creel. Kokanee were collected during five passes through the reservoir via electrofishing, which included 87 tributary mouths during the fall of 2000 and 2001. Chi-square analysis indicated age two Meadow Creek kokanee returned to Sherman Creek in significantly higher numbers when compared to the Whatcom stock in 2000 ({chi}{sup 2} = 736.6; d.f. = 1; P < 0.01) and 2001 ({chi}{sup 2} = 156.2; d.f. = 1; P < 0.01). Reservoir wide recoveries of age two kokanee had similar results in 2000 ({chi}{sup 2} = 735.3; d.f. = 1; P < 0.01) and 2001 ({chi}{sup 2} = 150.1; d.f. = 1; P < 0.01). Six Lake Whatcom and seven Meadow Creek three year olds were collected in 2001. The sample size of three year olds was too small for statistical analysis. No kokanee were collected during creel surveys in 2000, and two (age three kokanee) were collected in 2001. Neither of the hatchery kokanee collected were coded wire tagged, therefore stock could not be distinguished. After two years of monitoring, neither Meadow Creek or Lake Whatcom kokanee appear to be capable of providing a run of three-year-old spawners to sustain stocking efforts. The small number of hatchery three-year-olds collected indicated that the current stocking methods will continue to produce a limited jacking run largely composed of precocious males and a small number of three-year-olds. However, supplemental creel data indicated anglers harvested two-year-old hatchery kokanee 30-45 days after release. Supplemental creel data should continue to be collected to accurately evaluate hatchery contributions to the creel.

  11. Lake Roosevelt Fisheries Evaluation Program; Meadow Creek vs. Lake Whatcom Stock Kokanee Salmon Investigations in Lake Roosevelt, Annual Report 2002.

    SciTech Connect (OSTI)

    McLellan, Holly

    2003-03-01

    Lake Whatcom, Washington kokanee have been stocked in Lake Roosevelt since 1987 with the primary objective of creating a self-sustaining fishery. Success has been limited by low recruitment to the fishery, low adult returns to hatcheries, and a skewed sex ratio. It was hypothesized that a stock native to the upper Columbia River might perform better than the coastal Lake Whatcom stock. Kokanee from Meadow Creek, a tributary of Kootenay Lake, British Columbia were selected as an alternative stock. Post smolts from each stock were released from Sherman Creek Hatchery in late June 2000 and repeated in 2001. Stock performance was evaluated using three measures; (1) number of returns to Sherman Creek, the primary egg collection facility, (2) the number of returns to 86 tributaries sampled and, (3) the number of returns to the creel. In two repeated experiments, neither Meadow Creek or Lake Whatcom kokanee appeared to be capable of providing a run of three-year old spawners to sustain stocking efforts. Less than 10 three-years olds from either stock were collected during the study period. Chi-square analysis indicated age two Meadow Creek kokanee returned to Sherman Creek and to other tributaries in significantly higher numbers when compared to the Lake Whatcom stock in both 2000 and 2001. However, preliminary data from the Spokane Tribe of Indians indicated that a large number of both stocks were precocial before they were stocked. The small number of hatchery three-year olds collected indicated that the current hatchery rearing and stocking methods will continue to produce a limited jacking run largely composed of precocious males and a small number of three-year olds. No kokanee from the study were collected during standard lake wide creel surveys. Supplemental creel data, including fishing derbies, test fisheries, and angler diaries, indicated anglers harvested two-year-old hatchery kokanee a month after release. The majority of the two-year old kokanee harvested were from a direct stock at the Fort Spokane boat launch. Only Lake Whatcom kokanee were stocked from the boat launch, therefore stock performance was not evaluated, however the high success of the stocking location will likely increase harvest of hatchery kokanee in the future. Despite low numbers of the targeted three-year olds, Meadow Creek kokanee should be stocked when possible to promote fish native to the upper Columbia River.

  12. Preliminary Evaluation of a Lake Whitefish (Coregonus clupeaformis) Bioenergetics Model

    E-Print Network [OSTI]

    189 Preliminary Evaluation of a Lake Whitefish (Coregonus clupeaformis) Bioenergetics Model Charles whitefish (Coregonus clupeaformis) bioenergetics model by applying the model to size-at-age data for lake bioenergetics model with previously published estimates of GGE for bloater (C. hoyi) in Lake Michigan

  13. Melting Alpine Glaciers Enrich High-Elevation Lakes with Reactive

    E-Print Network [OSTI]

    Wolfe, Alexander P.

    melt alone (SF lakes) and those fed by both glacial and snowpack meltwaters (GSF lakes). We foundMelting Alpine Glaciers Enrich High-Elevation Lakes with Reactive Nitrogen J A S M I N E E . S A R century in many regions of the world. Resulting changes in glacial runoff not only affect the hydrological

  14. Recent declines in benthic macroinvertebrate densities in Lake Ontario1

    E-Print Network [OSTI]

    Recent declines in benthic macroinvertebrate densities in Lake Ontario1 Stephen J. Lozano, Jill V. Scharold, and Thomas F. Nalepa Abstract: Surveys of benthic macroinvertebrates conducted in Lake Ontario in macroinvertebrate densities, especially populations of an important food item such as Diporeia, in Lake Ontario

  15. NOAA Technical Memorandum ERL GLERL-1 LAKE ONTARIO BASIN

    E-Print Network [OSTI]

    NOAA Technical Memorandum ERL GLERL-1 LAKE ONTARIO BASIN: OVERLAND PRECIPITATION, 1972-73 David C. BASIC DATA 3. PROCEDURE 4. ACKNOWLEDGMBNTS APPENDIX. LAKE ONTARIO STATION SUMMARY Page iv 1 1 2 5 10 FIGURES 1. The United States portion of the Lake Ontario drainage basin with the precipitation stations

  16. 14. CARBON AND OXYGEN ISOTOPE ANALYSIS OF LAKE SEDIMENT CELLULOSE

    E-Print Network [OSTI]

    Edwards, Thomas W.D.

    14. CARBON AND OXYGEN ISOTOPE ANALYSIS OF LAKE SEDIMENT CELLULOSE: METHODS AND APPLICATIONS BRENT B and Environmental Sciences Wesleyan University, Middletown, CT USA 06459 Keywords: cellulose, lake sediment, oxygen of lake sediment cellulose is a recently developed paleolimnological approach that is gaining increasing

  17. The Unique Ecosystem of Mono Lake Aidan Geissler

    E-Print Network [OSTI]

    Polly, David

    the life in Mono Lake. And as this lake is vital to the migration and life of millions of birds with an abundance of food (Hill). Thus the lake has come to play a critical role in regional bird migration, Idaho, Utah, Arizona, New Mexico, Texas, and Mexico (Introduction to the Basin and Range). FIGURE 1: Map

  18. Vermont Water Resources and Lake Studies Annual Technical Report

    E-Print Network [OSTI]

    Vermont Water Resources and Lake Studies Center Annual Technical Report FY 2009 Vermont Water for the Vermont Water Resources and Lake Studies Center for FY2009 is attached. The grant awarded under the State Introduction In the 2009-2010 project year the Vermont Water Resources and Lake Studies Center continued its

  19. Vermont Water Resources and Lake Studies Center Annual Technical Report

    E-Print Network [OSTI]

    Vermont Water Resources and Lake Studies Center Annual Technical Report FY 2004 Introduction The Annual Report for the Vermont Water Resources and Lake Studies Center for FY2004 is attached. The grant The Vermont Water Resources and Lake Studies Center supported two major research projects during FY2004

  20. Vermont Water Resources and Lake Studies Center Annual Technical Report

    E-Print Network [OSTI]

    Vermont Water Resources and Lake Studies Center Annual Technical Report FY 2002 Introduction Attached is the Fiscal Year 2002 Annual Report for the Vermont Water Resources and Lake Studies Center-02702. Research Program The 2003 Vermont Water Resources and Lake Studies program has featured three new

  1. Vermont Water Resources and Lake Studies Center Annual Technical Report

    E-Print Network [OSTI]

    Vermont Water Resources and Lake Studies Center Annual Technical Report FY 2003 Introduction Attached is the Fiscal Year 2003 Annual Report for the Vermont Water Resources and Lake Studies Center-02702. Research Program The 2004 Vermont Water Resources and Lake Studies program has featured two

  2. Vermont Water Resources and Lake Studies Annual Technical Report

    E-Print Network [OSTI]

    Vermont Water Resources and Lake Studies Center Annual Technical Report FY 2008 Vermont Water for the Vermont Water Resources and Lake Studies Center for FY2007 is attached. The grant awarded under the State Introduction In the 2008-2009 project year the Vermont Water Resources and Lake Studies Center continued its

  3. Vermont Water Resources and Lake Studies Annual Technical Report

    E-Print Network [OSTI]

    Vermont Water Resources and Lake Studies Center Annual Technical Report FY 2010 Vermont Water for the Vermont Water Resources and Lake Studies Center for FY2010 is attached. The grant awarded under the State Introduction In the 2010-2011 project year the Vermont Water Resources and Lake Studies Center continued its

  4. Vermont Water Resources and Lake Studies Annual Technical Report

    E-Print Network [OSTI]

    Vermont Water Resources and Lake Studies Center Annual Technical Report FY 2012 Vermont Water describe the activities of the Vermont Water Resources and Lake Studies Center in the project year just the Vermont Water Resources and Lake Studies Center continued its collaboration with the Vermont Agency

  5. Vermont Water Resources and Lake Studies Annual Technical Report

    E-Print Network [OSTI]

    Vermont Water Resources and Lake Studies Center Annual Technical Report FY 2011 Vermont Water describe the activities of the Vermont Water Resources and Lake Studies Center in the project year just the Vermont Water Resources and Lake Studies Center continued to address several broad aspects of water

  6. Vermont Water Resources and Lake Studies Center Annual Technical Report

    E-Print Network [OSTI]

    Vermont Water Resources and Lake Studies Center Annual Technical Report FY 2005 Introduction The Annual Report for the Vermont Water Resources and Lake Studies Center for FY2005 is attached. The grant The Vermont Water Resources and Lake Studies Center supported two major research projects during FY2005

  7. FURTHER LIMNOLOGICAL OBSERVATIONS ON THE FINGER LAKES OF NEW YORK

    E-Print Network [OSTI]

    FURTHER LIMNOLOGICAL OBSERVATIONS ON THE FINGER LAKES OF NEW YORK .:f- By Edward A. Birge ON THE FINGER LAKES OF NEW YORK. .:I- By EDWARD A. BIRGE and CHANCEY JUDAY, Wisconsin Geological and Natural the authors of the present paper to spend some weeks in the study of the Finger Lakes of New York. The results

  8. LOCALIZED PRECIPITATION, LAKE-EFFECT STORMS, AND EROSION ON MARS.

    E-Print Network [OSTI]

    LOCALIZED PRECIPITATION, LAKE-EFFECT STORMS, AND EROSION ON MARS. Edwin. S. Kite*, Earth], this hypothesis has never been modeled. We report numerical tests of localized precipitation using MRAMS ephemeral lakes. For a given vapor injection rate or lake surface temperature, localized precipitation

  9. Great Basin Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County, Georgia:Oregon: EnergyGreat Basin Geothermal Area Jump to:

  10. Great Valley Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County, Georgia:Oregon: EnergyGreat Basin GeothermalValley Ethanol

  11. GreatPoint Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County, Georgia:Oregon: EnergyGreat Basin GeothermalValley

  12. Southern Great Plains Ice Nuclei Characterization Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|Sensitive Species3performedValleySouthern Great Plains Ice Nuclei

  13. Methane transport from the active layer to lakes in the Arctic using Toolik Lake, Alaska, as a case study

    E-Print Network [OSTI]

    Paytan, Adina

    Methane transport from the active layer to lakes in the Arctic using Toolik Lake, Alaska, as a case, and approved February 13, 2015 (received for review September 8, 2014) Methane emissions in the Arctic are important, and may be contributing to global warming. While methane emission rates from Arctic lakes

  14. Geologic Controls of Hydrocarbon Occurrence in the Appalachian Basin in Eastern Tennessee, Southwestern Virginia, Eastern Kentucky, and Southern West Virginia

    SciTech Connect (OSTI)

    Hatcher, Robert D

    2005-11-30

    This report summarizes the accomplishments of a three-year program to investigate the geologic controls of hydrocarbon occurrence in the southern Appalachian basin in eastern Tennessee, southwestern Virginia, eastern Kentucky, and southern West Virginia. The project: (1) employed the petroleum system approach to understand the geologic controls of hydrocarbons; (2) attempted to characterize the P-T parameters driving petroleum evolution; (3) attempted to obtain more quantitative definitions of reservoir architecture and identify new traps; (4) is worked with USGS and industry partners to develop new play concepts and geophysical log standards for subsurface correlation; and (5) geochemically characterized the hydrocarbons (cooperatively with USGS). Third-year results include: All project milestones have been met and addressed. We also have disseminated this research and related information through presentations at professional meetings, convening a major workshop in August 2003, and the publication of results. Our work in geophysical log correlation in the Middle Ordovician units is bearing fruit in recognition that the criteria developed locally in Tennessee and southern Kentucky are more extendible than anticipated earlier. We have identified a major 60 mi-long structure in the western part of the Valley and Ridge thrust belt that has been successfully tested by a local independent and is now producing commercial amounts of hydrocarbons. If this structure is productive along strike, it will be one of the largest producing structures in the Appalachians. We are completing a more quantitative structural reconstruction of the Valley and Ridge and Cumberland Plateau than has been made before. This should yield major dividends in future exploration in the southern Appalachian basin. Our work in mapping, retrodeformation, and modeling of the Sevier basin is a major component of the understanding of the Ordovician petroleum system in this region. Prior to our undertaking this project, this system was the least understood in the Appalachian basin. This project, in contrast to many if not most programs undertaken in DOE laboratories, has a major educational component wherein three Ph.D. students have been partially supported by this grant, one M.S. student partially supported, and another M.S. student fully supported by the project. These students will be well prepared for professional careers in the oil and gas industry.

  15. The biogeochemistry of tropical lakes: A case study from Lake Matano, Indonesia

    E-Print Network [OSTI]

    Crowe, S. A.; O'Neill, A. H.; Katsev, S.; Hehanussa, P.; Haffner, G. Douglas; Sundby, Bjorn; Mucci, Alfonso; Fowle, David A.

    2008-01-16

    We examined the chemical composition of the water column of Lake Matano, Sulawesi Island, Indonesia, to document how the high abundances of Fe (hydr)oxides in tropical soils and minimal seasonal temperature variability affect biogeochemical cycling...

  16. A Mass Balance Mercury Budget for a Mine-Dominated Lake: Clear Lake, California

    E-Print Network [OSTI]

    Richerson, Peter J.

    . 150­300 years. Keywords Acid mine drainage . Budget . Clear Lake . Mercury. Mass balance . Mercury) municipal and agricultural water diversions, (3) losses from out-flowing drainage of Cache Creek that feeds

  17. THE GEOLOGIC STORY of Chain O' Lakes

    E-Print Network [OSTI]

    Polly, David

    of ice broke free from the glacier and were buried under insulating debris. The ice slowly melted. The retreating glacier left behind sediments and carved depressions that filled with water from the melting ice. Glacial meltdown The beadlike string of lakes formed during the final stages of meltdown of the Erie Lobe

  18. 5200 N. Lake Road Merced, CA 95343

    E-Print Network [OSTI]

    Oviedo, Néstor J.

    5200 N. Lake Road Merced, CA 95343 Phone 209-228-7178 Fax 209-228-7861 E-mail: finaid on the FAFSA, not claiming the student as a dependent on a tax return, or a student's demonstration of self

  19. Fall 2014 / LAKELINE 25 Terminal Lakes

    E-Print Network [OSTI]

    Tarboton, David

    used commercially for mineral extraction and brine shrimp harvest. GSL is vital to the local-largest in the world. The only outflow of water is via evaporation, causing a very gradual accumulation of minerals a very small amount of water to the lake. averaging 317 g/L since 1966, while the south is considerably

  20. Nacimiento Reservoir San Antonio Reservoir Searles Lake

    E-Print Network [OSTI]

    -SUNSET COGEN 1-3 SUNRISE POWER & N.N. SANTA FE ENERGY MIDSET UNIVERSITY TAFT ELK HILLS SWICTHING STATION WESTLANDS 18RA CALFLAX PLEASANT VALLEY PUMPS TULARE LAKE KINGS KETTLEMAN HILLS AVENAL PENN ZIER OIL CITY CA STATE DEPT OF CORRECTIONS POLONIO PASS 198 25 1 LAS PERILLAS PUMPS LOST HILLS

  1. Quidi Vidi Lake Hydro Power Demonstration Project

    E-Print Network [OSTI]

    Bruneau, Steve

    Quidi Vidi Lake Hydro Power Demonstration Project Presented by Eugene G. Manning, B. Eng Candidate walking trail Comprised of a micro hydro generator a wind turbine and a solar array, metered and interpreted This presentation describes the preliminary work on the micro hydro component of the installation

  2. Disappearing Arctic Lakes L. C. Smith,1

    E-Print Network [OSTI]

    . The regional totals indicate a net decline in Siberian lake cover but mask an interesting spatial pattern with water (SOM text). Such observations are in apparent conflict with the phenomenon seen here and also near surveys at the Alaskan site suggest that warming temperatures lead to thinning and eventual Bbreaching

  3. Land Contamination Correction for Passive Microwave Radiometer Data: Demonstration of Wind Retrieval in the Great Lakes Using SSM/I

    E-Print Network [OSTI]

    Ruf, Christopher

    Land Contamination Correction for Passive Microwave Radiometer Data: Demonstration of Wind, are typically unavailable within about 100km of any coastline. This paper presents methods of cor- recting land-contaminated radiometer data in order to extract the coastal information. The land contamination signals are estimated

  4. A SWOT Analysis of the Great Lakes Water Quality Protocol 2012: The Good, the Bad and the Opportunity

    E-Print Network [OSTI]

    Jetoo, Savitri; Krantzberg, Gail

    2014-01-01

    between the Watershed and Offshore Waters. Work Group Reportfrom Dredging onshore and offshore facilities Phosphorousfrom Onshore and Offshore Facilities Joint Contingency Plan

  5. Regionalization of hydrologic response in the Great Lakes basin: Considerations of temporal and spatial scales of analysis

    E-Print Network [OSTI]

    to water resource management objectives; and Assess the potential for regression tree models for hydrologic scales for recreation, commerce, ecosystems, hydropower, transportation, and consumptive supply

  6. Stratigraphy and organic petrography of Mississippian and Devonian oil shale at the Means Project, East-Central Kentucky

    SciTech Connect (OSTI)

    Solomon, B.J.; Hutton, A.C.; Henstridge, D.A.; Ivanac, J.F.

    1985-02-01

    The Means Oil Shale Project is under consideration for financial assistance by the US Synthetic Fuels Corporation. The project site is located in southern Montgomery County, about 45 miles east of Lexington, Kentucky. In the site area the Devonian Ohio Shale and the Mississippian Sunbury Shale are under study; these oil shales were deposited in the Appalachian Basin. The objective of the Means Project is to mine, using open pit methods, an ore zone which includes the Sunbury and upper Cleveland and which excludes the Bedford interburden. The thick lower grade oil shale below this ore zone renders the higher grade shale at the base of the Huron commercially unattractive. The oil shale at Means has been classified as a marinite, an oil shale containing abundant alginite of marine origin. Lamalginite is the dominant liptinite and comprises small, unicellular alginite with weak to moderate fluorescence at low rank and a distinctive lamellar form. Telalginite, derived from large colonial or thick-walled, unicellular algae, is common in several stratigraphic intervals.

  7. Tri-State Synfuels Project Review: Volume 12. Fluor project status. [Proposed Henderson, Kentucky coal to gasoline plant; engineering

    SciTech Connect (OSTI)

    Not Available

    1982-06-01

    The purpose of this report is to document and summarize activities associated with Fluor's efforts on the Tri-State Synfuels Project. The proposed facility was to be coal-to-transport fuels facility located in Henderson, Kentucky. Tri-State Synfuels Company was participating in the project as a partner of the US Department of Energy per terms of a Cooperative Agreement resulting from DOE's synfuel's program solicitation. Fluor's initial work plan called for preliminary engineering and procurement services to the point of commitment for construction for a Sasol Fischer-Tropsch plant. Work proceeded as planned until October 1981 when results of alternative coal-to-methanol studies revealed the economic disadvantage of the Synthol design for US markets. A number of alternative process studies followed to determine the best process configuration. In January 1982 Tri-State officially announced a change from Synthol to a Methanol to Gasoline (MTG) design basis. Further evaluation and cost estimates for the MTG facility eventually led to the conclusion that, given the depressed economic outlook for alternative fuels development, the project should be terminated. Official announcement of cancellation was made on April 13, 1982. At the time of project cancellation, Fluor had completed significant portions of the preliminary engineering effort. Included in this report are descriptions and summaries of Fluor's work during this project. In addition location of key project data and materials is identified and status reports for each operation are presented.

  8. Hydrothermal vents of Yellowstone Lake, Yellowstone National Park, Wyoming

    SciTech Connect (OSTI)

    Kaplinski, M.A.; Morgan, P. (Northern Arizona Univ., Flagstaff, AZ (United States). Geology Dept.)

    1993-04-01

    Hydrothermal vent systems within Yellowstone Lake are located within the Yellowstone caldera in the northeastern and West Thumb sections of the lake. The vent systems lie within areas of extremely high geothermal gradients (< 1,000 C/km) in the lake sediments and occur as clusters of individual vents that expel both hydrothermal fluids and gas. Regions surrounding the vents are colonized by unique, chemotropic biologic communities and suggest that hydrothermal input plays an important role in the nutrient dynamics of the lake's ecosystem. The main concentration of hydrothermal activity occurs in the northeast region of the main lake body in a number of locations including: (1) along the shoreline from the southern edge of Sedge Bay to the inlet of Pelican Creek; (2) the central portion of the partially submerged Mary Bay phreatic explosion crater, within deep (30--50 m) fissures; (3) along the top of a 3 km long, steep-sided ridge that extends from the southern border of Mary Bay, south-southeast into the main lake basin; and (4) east of Stevenson Island along the lower portion of the slope (50--107 m) into the lake basin, within an anastomosing series of north to northwest trending, narrow troughs or fissures. Hydrothermal vents were also located within, and surrounding the West Thumb of Yellowstone Lake, with the main concentration occurring the offshore of the West Thumb and Potts Geyser Basin. Hydrothermal vents in Yellowstone Lake occur along fractures that have penetrated the lake sediments or along the tops of ridges and near shore areas. Underneath the lake, rising hydrothermal fluids encounter a semi-permeable cap of lake sediments. Upwardly convecting hydrothermal fluid flow may be diverted by the impermeable lake sediments along the buried, pre-existing topography. These fluids may continue to rise along topography until fractures are encountered, or the lake sediment cover is thinned sufficiently to allow egress of the fluids.

  9. Tectonic & Structural Controls of Great Basin Geothermal Systems...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Characterizing Structural Controls of EGS Candidate and Conventional Geothermal Reservoirs in the Great Basin: Developing...

  10. RESEARCH ARTICLE A seasonal cycle of terrestrial inputs in Lake Van, Turkey

    E-Print Network [OSTI]

    Gilli, Adrian

    RESEARCH ARTICLE A seasonal cycle of terrestrial inputs in Lake Van, Turkey C. Huguet & S. Fietz Van in Turkey is the world's largest soda lake (607 km3 ). The lake's catchment area is estimated the environmental status of a lake today and in the recent history. Lake Van in Eastern Anatolia (Turkey

  11. Great Plains Wind Energy Transmission Development Project

    SciTech Connect (OSTI)

    Brad G. Stevens, P.E.; Troy K. Simonsen; Kerryanne M. Leroux

    2012-06-09

    In fiscal year 2005, the Energy & Environmental Research Center (EERC) received funding from the U.S. Department of Energy (DOE) to undertake a broad array of tasks to either directly or indirectly address the barriers that faced much of the Great Plains states and their efforts to produce and transmit wind energy at the time. This program, entitled Great Plains Wind Energy Transmission Development Project, was focused on the central goal of stimulating wind energy development through expansion of new transmission capacity or development of new wind energy capacity through alternative market development. The original task structure was as follows: Task 1 - Regional Renewable Credit Tracking System (later rescoped to Small Wind Turbine Training Center); Task 2 - Multistate Transmission Collaborative; Task 3 - Wind Energy Forecasting System; and Task 4 - Analysis of the Long-Term Role of Hydrogen in the Region. As carried out, Task 1 involved the creation of the Small Wind Turbine Training Center (SWTTC). The SWTTC, located Grand Forks, North Dakota, consists of a single wind turbine, the Endurance S-250, on a 105-foot tilt-up guyed tower. The S-250 is connected to the electrical grid on the 'load side' of the electric meter, and the power produced by the wind turbine is consumed locally on the property. Establishment of the SWTTC will allow EERC personnel to provide educational opportunities to a wide range of participants, including grade school through college-level students and the general public. In addition, the facility will allow the EERC to provide technical training workshops related to the installation, operation, and maintenance of small wind turbines. In addition, under Task 1, the EERC hosted two small wind turbine workshops on May 18, 2010, and March 8, 2011, at the EERC in Grand Forks, North Dakota. Task 2 involved the EERC cosponsoring and aiding in the planning of three transmission workshops in the midwest and western regions. Under Task 3, the EERC, in collaboration with Meridian Environmental Services, developed and demonstrated the efficacy of a wind energy forecasting system for use in scheduling energy output from wind farms for a regional electrical generation and transmission utility. With the increased interest at the time of project award in the production of hydrogen as a critical future energy source, many viewed hydrogen produced from wind-generated electricity as an attractive option. In addition, many of the hydrogen production-related concepts involve utilization of energy resources without the need for additional electrical transmission. For this reason, under Task 4, the EERC provided a summary of end uses for hydrogen in the region and focused on one end product in particular (fertilizer), including several process options and related economic analyses.

  12. Kentucky-Kentucky Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013 2014Thousand CubicYearThousand60,941 67,568

  13. Horizontal Devonian shale well, Columbia Natural Resources, Inc.`s, Pocohontas Development Corp. Well 21747, Martin County, Kentucky. Final report

    SciTech Connect (OSTI)

    Koziar, G.; Ahmad, M.M.; Friend, L.L.; Friend, M.L.; Rothman, E.M.; Stollar, R.L. [Columbia Gas System Service Corp., Columbus, OH (United States)] [Columbia Gas System Service Corp., Columbus, OH (United States)

    1991-05-01

    Columbia Gas and the United States Department of Energy (DOE) have successfully completed field work on a horizontally drilled Devonian shale well located in Martin County, Kentucky. The objective of this cofunded project is to assess the effectiveness and economic feasibility of applying horizontal drilling and hydraulically fracturing stimulation techniques to enhance the extraction of natural gas from the Devonian shale. The well is comprised of three segments: a conventional vertical section, an angle build section and a horizontal section. The well reached a measured depth (MD) of 6263 feet, 3810 feet true vertical depth (TVD), with a horizontal displacement of 2812 feet achieved in the desired direction of N10{degrees}W. Both air and foam were used as drilling fluids. The vertical, lateral and tangent sections were drilled using conventional rotary drilling methods. Downhole motors were used to build angle. A total combined final open flow of 3.1 MMcfd was measured from all zones. Total well expenditures are approximately $1,460,000. Of this amount, $700,000 is directly related to the research and learning curve experience aspects. It is projected that the same horizontal well could be drilled with existing technology for $700,000. If advanced can be made in MWD systems for air drilling environments, wells of this type could be drilled routinely for $500,000. It appears that application of horizontal drilling will result in at least acceleration of gas production and possibly the addition of recoverable reserves from the Devonian shale. Production data, necessary to validate this statement, are also required to determine the economics. As we gain experience and technology advances, cost reductions will occur; this will result in economic improvement.

  14. Horizontal Devonian shale well, Columbia Natural Resources, Inc. 's, Pocohontas Development Corp. Well 21747, Martin County, Kentucky

    SciTech Connect (OSTI)

    Koziar, G.; Ahmad, M.M.; Friend, L.L.; Friend, M.L.; Rothman, E.M.; Stollar, R.L. (Columbia Gas System Service Corp., Columbus, OH (United States))

    1991-05-01

    Columbia Gas and the United States Department of Energy (DOE) have successfully completed field work on a horizontally drilled Devonian shale well located in Martin County, Kentucky. The objective of this cofunded project is to assess the effectiveness and economic feasibility of applying horizontal drilling and hydraulically fracturing stimulation techniques to enhance the extraction of natural gas from the Devonian shale. The well is comprised of three segments: a conventional vertical section, an angle build section and a horizontal section. The well reached a measured depth (MD) of 6263 feet, 3810 feet true vertical depth (TVD), with a horizontal displacement of 2812 feet achieved in the desired direction of N10{degrees}W. Both air and foam were used as drilling fluids. The vertical, lateral and tangent sections were drilled using conventional rotary drilling methods. Downhole motors were used to build angle. A total combined final open flow of 3.1 MMcfd was measured from all zones. Total well expenditures are approximately $1,460,000. Of this amount, $700,000 is directly related to the research and learning curve experience aspects. It is projected that the same horizontal well could be drilled with existing technology for $700,000. If advanced can be made in MWD systems for air drilling environments, wells of this type could be drilled routinely for $500,000. It appears that application of horizontal drilling will result in at least acceleration of gas production and possibly the addition of recoverable reserves from the Devonian shale. Production data, necessary to validate this statement, are also required to determine the economics. As we gain experience and technology advances, cost reductions will occur; this will result in economic improvement.

  15. MODELING POTENTIAL IMPACTS OF SO2 CO-INJECTED WITH CO2 ON THE KNOX GROUP, WESTERN KENTUCKY

    SciTech Connect (OSTI)

    Zhu, Junfeng; Harris, David; Leetaru, Hannes

    2014-09-30

    Understanding potential long-term impacts of CO2 impurities, such as sulfur and nitrogen compounds, on deep carbon storage reservoirs is of considerable interest because co-injection of the impurities with CO2 can bring significant economic and environmental benefits. The Cambrian–Ordovician Knox Group, a thick sequence of dolostone (Beekmantown Dolomite) with minor dolomitic sandstone (Gunter Sandstone), in western Kentucky, USA, has been evaluated as a prospective CO2 sequestration target. In this study, TOUGHREACT was used to build 1-D radial models to simulate the potential impacts of co-injected CO2 and SO2 on minerals, pore fluids, and porosity and permeability in the Beekmantown Dolomite and the Gunter Sandstone. Co-injection of a mass ratio of 2.5 percent SO2 and 97.5 percent CO2, representative of flue gas from coal-fired plants, was simulated and the co-injection simulations were compared to models with CO2 only injections. The model results suggest that the major impacts of added SO2 for both the Beekmantown and the Gunter rocks were significant enhancement of dissolution of dolomite and precipitation of anhydrite, leading to noticeable increases in porosity and permeability. The Gunter Sandstone appeared to be more active with SO2 than the Beekmantown Dolomite. More dolomite was dissolved in the Gunter than in the Beekmantown with the same SO2 impurity. Consequently, porosity was raised more in the Gunter than in the Beekmantown. On the other hand, the impacts on aluminosilicate minerals appeared to be insignificant in both reservoirs, slightly changing the rates of precipitation/dissolution but the overall reaction paths remained the same.

  16. Stochastic Forecasting of Algae Blooms in Lakes

    SciTech Connect (OSTI)

    Wang, Peng; Tartakovsky, Daniel M.; Tartakovsky, Alexandre M.

    2013-01-15

    We consider the development of harmful algae blooms (HABs) in a lake with uncertain nutrients inflow. Two general frameworks, Fokker-Planck equation and the PDF methods, are developed to quantify the resultant concentration uncertainty of various algae groups, via deriving a deterministic equation of their joint probability density function (PDF). A computational example is examined to study the evolution of cyanobacteria (the blue-green algae) and the impacts of initial concentration and inflow-outflow ratio.

  17. The southern Lake Michigan coastal erosion study

    SciTech Connect (OSTI)

    Folger, D.W. (Geological Survey, Woods Hole, MA (United States))

    1993-03-01

    As a result of damage inflicted on the Chicago shoreline by exceptionally high waters in 1985-87, the U.S. Geological Survey (USGS) initiated a cooperative 5-year (1988--1992) study to evaluate the geologic framework of the area, the frequency of lake level fluctuations, and the processes responsible for the intense coastal erosion. The study involved 19 scientists from the USGS, Illinois State Geological Survey, Indiana Geological Survey, Indiana University, Purdue University, Northeastern Illinois University, Oregon State University, and the University of Washington. Some important results of the study follow: (1) the failure of revetments protecting the Chicago lakeshore is mainly structural and not erosional. (2) Prehistoric lake level fluctuations exceeded historic fluctuations by as much as a factor of two. For example, in the 17th century, lake level changed over a range of [approximately]3 m, whereas between the 1964 low and the 1986 high it changed only [approximately]1.6 m. (3) Bluff retreat between Wilmette and Waukegan varies from 10--75 cm/yr and averages 20--25 cm/yr; erosion rates north of Waukegan have been as high as 3 m/yr. (4) Eroding bluffs provide most of the sand to the nearshore zone; however, possibly due to construction of shore protection, the nearshore sand wedge has shown a dramatic decrease in volume during the last two decades. (5) Ice ridges as high as 7 m form along the lakeshore but do not effectively protect the beach from winter erosion as previously thought. (6) The Indiana Dunes National Lakeshore apparently was a major sink for sand moving southward along both sides of the lake; sediment input now appears to come mostly from the eastern shore.

  18. Energy Efficient Buildings, Salt Lake County, Utah

    SciTech Connect (OSTI)

    Barnett, Kimberly

    2012-04-30

    Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars, site tours, presentations, and written correspondence.

  19. Rice Lake Utilities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, New York: EnergyOpenReykjanes GeothermalFalls,RiceLake Utilities

  20. Regional factors governing performance and sustainability of wastewater treatment plants in Honduras : Lake Yojoa Subwatershed

    E-Print Network [OSTI]

    Walker, Kent B. (Kent Bramwell)

    2011-01-01

    Lake Yojoa, the largest natural lake in Honduras, is currently experiencing eutrophication from overloading of nutrients, in part due to inadequate wastewater treatment throughout the Lake Yojoa Subwatershed. Some efforts ...

  1. Late Pleistocene paleohydrography and diatom paleoecology of the central basin of Lake Malawi, Africa

    E-Print Network [OSTI]

    Late Pleistocene paleohydrography and diatom paleoecology of the central basin of Lake Malawi of the paleohydrography and diatom paleoecology of Lake Malawi. Lake-level fluctuations on the order of hundreds of meters

  2. Lake Titicaca - Physics of an Inherited Hydropower Macroproject Proposal

    E-Print Network [OSTI]

    R. Cathcart; A. Bolonkin

    2007-03-19

    Shared almost evenly by Peru and Bolivia, Lake Titicaca is situated on an Altiplano endorheic region of the northern Andes Mountains. Rio Desaguadero is the lake only outlet. From 1908, several macro-engineers speculated on the creation of a second, completely artificial, outlet for Lake Titicaca freshwater. Here we reconsider several 20th Century macroproject proposals, with the goal of examining and enhancing this technically interesting South American 21st Century Macro-engineering inheritance.

  3. Lake Titicaca - Physics of an Inherited Hydropower Macroproject Proposal

    E-Print Network [OSTI]

    Cathcart, R

    2007-01-01

    Shared almost evenly by Peru and Bolivia, Lake Titicaca is situated on an Altiplano endorheic region of the northern Andes Mountains. Rio Desaguadero is the lake only outlet. From 1908, several macro-engineers speculated on the creation of a second, completely artificial, outlet for Lake Titicaca freshwater. Here we reconsider several 20th Century macroproject proposals, with the goal of examining and enhancing this technically interesting South American 21st Century Macro-engineering inheritance.

  4. Isotopic Survey of Lake Davis and the Local Groundwater

    SciTech Connect (OSTI)

    Ridley, M N; Moran, J E; Singleton, M J

    2007-08-21

    In September 2007, California Fish and Game (CAFG) plans to eradicate the northern pike from Lake Davis. As a result of the eradication treatment, local residents have concerns that the treatment might impact the local groundwater quality. To address the concerns of the residents, Lawrence Livermore National Laboratory (LLNL) recommended measuring the naturally occurring stable oxygen isotopes in local groundwater wells, Lake Davis, and the Lake Davis tributaries. The purpose of these measurements is to determine if the source of the local groundwater is either rain/snowmelt, Lake Davis/Big Grizzly Creek water or a mixture of Lake Davis/Big Grizzly Creek and rain/snowmelt. As a result of natural evaporation, Lake Davis and the water flowing into Big Grizzly Creek are naturally enriched in {sup 18}oxygen ({sup 18}O), and if a source of a well's water is Lake Davis or Big Grizzly Creek, the well water will contain a much higher concentration of {sup 18}O. This survey will allow for the identification of groundwater wells whose water source is Lake Davis or Big Grizzly Creek. The results of this survey will be useful in the development of a water-quality monitoring program for the upcoming Lake Davis treatment. LLNL analyzed 167 groundwater wells (Table 1), 12 monthly samples from Lake Davis (Table 2), 3 samples from Lake Davis tributaries (Table 2), and 8 Big Grizzly Creek samples (Table 2). Of the 167 groundwater wells sampled and analyzed, only 2 wells contained a significant component of evaporated water, with an isotope composition similar to Lake Davis water. The other 163 groundwater wells have isotope compositions which indicate that their water source is rain/snowmelt.

  5. Sediment resuspension in Lake St. Clair

    SciTech Connect (OSTI)

    Hawley, N. (National Oceanic and Atmospheric Administration, Ann Arbor, MI (United States)); Lesht, B.M. (Argonne National Lab., IL (United States))

    1992-12-01

    Time-series measurements of water transparency, wave conditions, and current speed were made at several different sites in Lake St. Clair during five different 1-month periods in 1985 and 1986. Observed changes in suspended sediment concentration were modeled with a simple zero-dimensional, spatially averaged, mass balance model in which local bottom erosion was expressed as a linear function of the bottom shear stress. Estimates of the three parameters required by the model (particle settling velocity, resuspension concentration, and background suspended material concentration) are reasonably consistent for the various data sets, suggesting that the properties of the lake bottom do not change significantly through either space or time. The modeled settling velocities agree with the observed suspended particle size data and the erosion rates are comparable to laboratory results for freshwater sediments. The results show that a simple mass flux model can be used to model local sediment resuspension events in Lake St. Clair with reasonable accuracy. 23 refs., 5 figs., 3 tabs.

  6. Paleoclimatic significance of lake level fluctuations in the Lahontan Basin. [Pyramid Lake, Nevada

    SciTech Connect (OSTI)

    Benson, L.V.

    1980-08-01

    An energy flux balance model has been developed which treats evaporation as a function of air temperature, surface water temperature, precipitable water aloft, the amount, height, and type of sky cover, and the optical air mass. The model has been used to estimate the mean historical evaporation rate for Pyramid Lake, Nevada, using as input climatic data from the Reno area averaged over the period 1950 to 1975. Estimated and measured values of the mean annual evaporation rate were found to be in good agreement. The model was used to simulate changes in the level, the surface area and the volume of paleo Lake Lahontan. In particular, possible climatic states responsible for past high stands (1270 and 1330 m) were investigated. A conservative range of discharge values was used in the calculations. Results of the simulations indicate the fundamental importance of sky cover in the creation and destruction of large lake systems.

  7. Palaeoflood activity and climate change over the last 1400 years recorded by lake sediments in the NW European Alps

    E-Print Network [OSTI]

    Boyer, Edmond

    ;2 Abstract A high-resolution sedimentological and geochemical study of a high-altitude proglacial lake (Lake

  8. VALUE DISTRIBUTION ASSESSMENT OF GEOTHERMAL DEVELOPMENT IN LAKE COUNTY, CA

    E-Print Network [OSTI]

    Churchman, C.W.

    2011-01-01

    Seismic Safety Commission CALTRAN Regional Water Quality Control Board REGIONAL GRIPS (Geothermal Resources Impact and'Planning Study) LAKE COUNTY Supervisors Planning Commission Environmental Assessment

  9. Mechanical mastication thins Lake Tahoe forest with few adverse impacts

    E-Print Network [OSTI]

    Hatchett, B.; Hogan, Michael P.; Grismer, Mark E.

    2006-01-01

    RESEARCH ARTICLE Mechanical mastication thins Lake Tahoetrack, as well as Mechanical mastication is a promisingtreatment employing a mechanical masticator to potentially

  10. Ground Gravity Survey At Lake City Hot Springs Area (Warpinski...

    Open Energy Info (EERE)

    Ground Gravity Survey At Lake City Hot Springs Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity...

  11. Lake County- Energy Smart Colorado Renewable Energy Rebate Program

    Broader source: Energy.gov [DOE]

    Residents of Roaring Fork Valley and Eagle, Gunnison, Lake, and Summit Counties are eligible for energy efficiency and renewable energy assistance, rebates, and financing through the Energy Smart...

  12. Hyperspectral Imaging At Fish Lake Valley Area (Littlefield ...

    Open Energy Info (EERE)

    Hyperspectral Imaging At Fish Lake Valley Area (Littlefield & Calvin, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging...

  13. Static Temperature Survey At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Static Temperature Survey At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature...

  14. Geothermal Literature Review At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Geothermal Literature Review At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  15. Geographic Information System At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Geographic Information System At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic...

  16. Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and...

  17. Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer...

  18. Lake County - Energy Smart Colorado Renewable Energy Rebate Program...

    Open Energy Info (EERE)

    Lake County - Energy Smart Colorado Renewable Energy Rebate Program (Colorado) No revision has been approved for this page. It is currently under review by our subject matter...

  19. Topography influence on the Lake equations in bounded domains

    E-Print Network [OSTI]

    Christophe Lacave; Toan T. Nguyen; Benoit Pausader

    2013-06-10

    We investigate the influence of the topography on the lake equations which describe the two-dimensional horizontal velocity of a three-dimensional incompressible flow. We show that the lake equations are structurally stable under Hausdorff approximations of the fluid domain and $L^p$ perturbations of the depth. As a byproduct, we obtain the existence of a weak solution to the lake equations in the case of singular domains and rough bottoms. Our result thus extends earlier works by Bresch and M\\'etivier treating the lake equations with a fixed topography and by G\\'erard-Varet and Lacave treating the Euler equations in singular domains.

  20. Groundwater recharge from Long Lake, Indiana Dunes National Lakeshore

    SciTech Connect (OSTI)

    Isiorho, S.A.; Beeching, F.M. (Indiana Univ., Fort Wayne, IN (United States). Geosciences Dept.); Whitman, R.L.; Stewart, P.M. (National Park Services, Porter, IN (United States). Indiana Dunes National Lakeshore); Gentleman, M.A.

    1992-01-01

    Long Lake, located between Lake Michigan and the Dune-complexes of Indiana Dunes, was formed during Pleistocene and Holocene epochs. The lake is currently being studied to understand the detailed hydrology. One of the objective of the study is to understand the hydrologic relationship between the lake and a water treatment holding pond to the northeast. Understanding the water movement between the two bodies of water, if any, would be very important in the management and protection of nature preserves in the area. Seepage measurement and minipiezometric tests indicate groundwater recharge from Long Lake. The groundwater recharge rate is approximately 1.40 to 22.28 x 10[sup [minus]4] m/day. An estimate of the amount of recharge of 7.0 x 10[sup 6] m[sup 3]/y may be significant in terms of groundwater recharge of the upper aquifer system of the Dunes area. The water chemistry of the two bodies of water appears to be similar, however, the pH of the holding pond is slightly alkaline (8.5) while that of Long Lake is less alkaline (7.7). There appears to be no direct contact between the two bodies of water (separated by approximately six meters of clay rich sediment). The geology of the area indicates a surficial aquifer underlying Long Lake. The lake should be regarded as a recharge area and should be protected from pollutants as the degradation of the lake would contaminate the underlying aquifer.

  1. Compound and Elemental Analysis At Lake City Hot Springs Area...

    Open Energy Info (EERE)

    Sladek, Et Al., 2004) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness useful...

  2. Data Acquisition-Manipulation At Lake City Hot Springs Area ...

    Open Energy Info (EERE)

    Data Acquisition-Manipulation At Lake City Hot Springs Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data...

  3. Geothermal Literature Review At Lake City Hot Springs Area (Benoit...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lake City Hot Springs Area (Benoit, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  4. Exploration And Discovery In Yellowstone Lake- Results From High...

    Open Energy Info (EERE)

    And Discovery In Yellowstone Lake- Results From High-Resolution Sonar Imaging, Seismic Reflection Profiling, And Submersible Studies Jump to: navigation, search OpenEI...

  5. Facies distributions within contrasting structural components of a rift lake: Lake Tanganyika, Africa

    SciTech Connect (OSTI)

    Soreghan, M.J.; Cohen, A.S. )

    1991-03-01

    Lake Tanganyika is the most widely cited modern analog for interpreting ancient rift lakes; thus, understanding controls on its facies distribution is critical for refining stratigraphic models for rifts. Four recurrent margin types occur along the alternating half-graben structure of the lake: rift axes, platforms, escarpments, and accommodation zones. Data from study sites in the northern part of the lake suggest that predictable facies differences exist between these structural margin types. The rift axis site comprises a low-gradient, clastic (wave/current)-dominated deltaic system, with strong facies asymmetry and minor carbonate accumulations on raised benches. The platform margin site comprises a series of structurally controlled benches over which long, continuous facies tracts occur. Carbonate sands, muds, and shell gravel dominate; clastics are limited to moderate-sized silty deltas and long, narrow shoreface sands. The escarpment margin site is a steep-gradient system along which small ({lt}1 km{sup 2}) fan deltas alternate with cemented talus. The accommodation zone margin sites are also dominated by rugged structural relief, generally small fan deltas, and semicontinuous shoreface sand belts ({gt}5 km) onshore and poorly sorted silts offshore. TOC from fine-grained samples reflects the contrast in margin types. TOC values for the platform and rift axis range from 0.4 - 2.1 wt. % (avg. 1.3%), whereas accommodation zone and escarpment margin values range from 0.5-5.5% (avg. 3.0%). Acid insoluble sulfur shows a similar trend. Although all data are significantly correlated with depth, the relative area of the lake margin above and below the oxicline is directly controlled by the structural style of the lake margin.

  6. Energy Savings Calculations for Heat Island Reduction Strategies in Baton Rouge, Sacramento and Salt Lake City

    E-Print Network [OSTI]

    Konopacki, S.; Akbari, H.

    2000-01-01

    Commission Report P300-94-007. Sacramento, CA. Commercialthe (New Orleans, Sacramento & Salt Lake City) MetropolitanStrategies in Baton Rouge, Sacramento and Salt Lake City S.

  7. Fond du Lac Band Leads Climate Resilience Efforts on Lake Superior...

    Energy Savers [EERE]

    Fond du Lac Band Leads Climate Resilience Efforts on Lake Superior Chippewa Indian Reservation Fond du Lac Band Leads Climate Resilience Efforts on Lake Superior Chippewa Indian...

  8. A Lipid Biomarker Investigation of Organic Matter Sources and Methane Cycling in Alaskan Thaw Lake Sediments

    E-Print Network [OSTI]

    Williams, Mark

    2012-01-01

    in anoxic cold seep sediments”. PNAS. 11. 7663-7668.Cycling in Alaskan Thaw Lake Sediments A Thesis submitted inin Alaskan Thaw Lake Sediments by Mark Richard Williams

  9. Variable Crustal Thickness In The Western Great Basin- A Compilation...

    Open Energy Info (EERE)

    php?titleVariableCrustalThicknessInTheWesternGreatBasin-ACompilationOfOldAndNewRefractionData&oldid793047" Categories: Missing Required Information Reference...

  10. SOVEREIGN WEALTH FUNDS AND NATIONAL SECURITY: THE GREAT TRADEOFF

    E-Print Network [OSTI]

    COHEN, BENJAMIN J

    2009-01-01

    ends represents a major national security issue. ’ 33 EchoedWEALTH FUNDS AND NATIONAL SECURITY: THE GREAT TRADEOFFthe legitimate national security concerns of individual host

  11. Great Basin College Direct Use Geothermal Demonstration Project

    SciTech Connect (OSTI)

    Rice, John

    2014-10-21

    This is the final technical report for the Great Basin College Direct Use Geothermal Demonstrationn Project, outlining the technical aspects of the User Group System.

  12. AdministrAtion And FinAnce mission stAtement Administration and Finance exists to support the strategic mission of Northern Kentucky University by providing quality service through sound

    E-Print Network [OSTI]

    Boyce, Richard L.

    20132013 AdministrAtion And FinAnce mission stAtement Administration and Finance exists to support within Administration and Finance are committed to the development, implementation, and continuous of Northern Kentucky University. Administration and Finance strives to provide a climate conducive

  13. Gazetteer: Karluk Lake and River Landmarks Gazetteer: Karluk Lake and River Landmarks

    E-Print Network [OSTI]

    Lake discharges into Bare Creek, a trib- utary of the Ayakulik River. Barnaby Mountain: Name used in 1937 by Thomas Barnaby (notebook) for the mountain south of Camp Island, but later officially named Mount Shuman on U.S. Geological Survey maps. Barnaby Ridge: Mountain just south of the Portage

  14. EVALUATING THE ENVIRONMENTAL IMAPCT OF DREDGING BURNABY LAKE

    E-Print Network [OSTI]

    metal and hydrocarbon contaminants originating from the urbanized areas around the lake. The sediments water quality, enhanced fish and wildlife habitat, and recreation opportunities. Dredging Burnaby Lake of the contaminant levels, namely copper, lead and zinc, in the sediments are greater than the urban park

  15. Climatology of Large Sediment Resuspension Events in Southern Lake Michigan

    E-Print Network [OSTI]

    Climatology of Large Sediment Resuspension Events in Southern Lake Michigan David J. Schwab1 the southern basin, is subject to recurrent episodes of mas- sive sediment resuspension by storm-induced waves with the largest events are examined. Our analysis indicates that significant resuspension events in southern Lake

  16. Chapter 1: Modelling Past Environmental Changes Using Lake Sediment Records

    E-Print Network [OSTI]

    Short, Daniel

    1 Chapter 1: Modelling Past Environmental Changes Using Lake Sediment Records 1.1 Data Collection metals. These include lake sediments (Haworth and Lund, 1984), peat bogs (Shotyk et al., 1998), ice sediments and peat bogs (Dörr et al., 1991; Evans et al., 1986; Farmer et al., 1997; Hamilton-Taylor, 1988

  17. Bridge Creek Watershed Volunteer Lake Secchi Disk Monitoring Program

    E-Print Network [OSTI]

    #12;Bridge Creek Watershed Volunteer Lake Secchi Disk Monitoring Program 1996 DOE FRAP 1996-13 Ryan.C. December 1996 #12;ABSTRACT This document summarizes data collected during the first year of the Bridge transparency data from 22 lakes in the Bridge Creek watershed. Secchi depth readings were collected between May

  18. Exploration of a Submerged Sinkhole Ecosystem in Lake Huron

    E-Print Network [OSTI]

    Exploration of a Submerged Sinkhole Ecosystem in Lake Huron Bopaiah A. Biddanda,1 * Dwight F in the bedrock (sinkholes), through which groundwater emerges onto the lake floor. During September 2003, we explored a recently discovered submerged sinkhole ecosystem (55 m · 40 m · 1 m) located at a depth of 93 m

  19. Vermont Water Resources and Lake Studies Center Annual Technical Report

    E-Print Network [OSTI]

    Vermont Water Resources and Lake Studies Center Annual Technical Report FY 2007 #12;Introduction The Annual Report for the Vermont Water Resources and Lake Studies Center for FY2007 is attached. The grant meeting the needs of the State of Vermont and the Nation. The program encourages submission of research

  20. Vermont Water Resources and Lake Studies Center Annual Technical Report

    E-Print Network [OSTI]

    Vermont Water Resources and Lake Studies Center Annual Technical Report FY 2001 Introduction Attached is the Fiscal Year 2001 Annual Report for the Vermont Water Resources and Lake Studies Center,Hydrodynamics Principal Investigators: Thomas O. Manley , Jean Claude Gascard Publication #12;State: Vermont Project

  1. Vermont Water Resources and Lake Studies Annual Technical Report

    E-Print Network [OSTI]

    Vermont Water Resources and Lake Studies Center Annual Technical Report FY 2013 Vermont Water describe the activities of the Vermont Water Resources and Lake Studies Center in the project year just concluded (2013-2014). The Vermont Water Center strives to work with faculty at Vermont colleges

  2. Vermont Water Resources and Lake Studies Center Annual Technical Report

    E-Print Network [OSTI]

    Vermont Water Resources and Lake Studies Center Annual Technical Report FY 2000 Introduction Attached is the Fiscal Year 2000 Annual Report for the Vermont Water Resources and Lake Studies Center Buffers: Reducing Fecal Contamination of Vermont Surface Waters Project Number: B-03 Start Date: 3

  3. Biogeochemistry of manganese in Lake Matano, Indonesia

    E-Print Network [OSTI]

    Jones, C.; Crowe, S. A.; Sturm, A.; Leslie, Karla Louise; MacLean, L. C. W.; Katsev, S.; Henny, C.; Fowle, David A.; Canfield, D. E.

    2011-10-26

    . L. Leslie2, L. C. W. MacLean3, S. Katsev4, C. Henny5, D. A. Fowle2, and D. E. Canfield1 1Nordic Center for Earth Evolution, Institute of Biology, Univ. of Southern Denmark, Campusvej 55, 5230 Odense, Denmark 2Dept. of Geology, Univ. of Kansas..., Lawrence, KS 66047, USA 3Canadian Light Source Inc., Univ. of Saskatchewan, Saskatoon, SK S7N 0X4, Canada 4Large Lakes Observatory and Dept. of Physics, Univ. of Minnesota, Duluth MN 55812, USA 5Research Center for Limnology, Indonesian Institute...

  4. Emmons Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville, New York: EnergyElyria,Emmaus,Emmitsburg,Emmons Lake

  5. ORISE Research Team Experiences: Joe Lake

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolarNewsusceptometer underI REEECNO OF DOCUMENT2 DIRECTORTHES.Joe Lake

  6. Spirit Lake Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPage Edit withSpion Kop Jump to:Spirit Lake

  7. Clear Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company) Jump to:New York:ClayBurnVitaCleanstar EnergyClear Lake

  8. Lake Region Electric Cooperative | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformation Actions(RedirectedLouisiana:Nacimiento,Lake Region

  9. Lake Region State College | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformation Actions(RedirectedLouisiana:Nacimiento,Lake

  10. Bingham Lake Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYorkColoradoBelcherCarbon SequestrationTreeIIIBinaryLake

  11. Carson Lake Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla, Georgia: Energy014771°, -77.1888704° ShowWind FarmLake

  12. A comparison of observed and modeled surface waves in southern Lake Michigan and the implications for models of sediment resuspension.

    SciTech Connect (OSTI)

    Hawley, N.; Lesht, B. M.; Schwab, D. J.; Environmental Research; Great Lakes Environmental Research Lab

    2004-06-25

    Subsurface pressure sensors were used to make measurements of surface waves during 18 deployments in southern Lake Michigan between 1998 and 2000. Most of the observations were made during the unstratified period (November--May) in water depths between 10 and 55 m. The observations (as well as those obtained from the National Data Buoy Center (NDBC) buoy 45007, which is located in the middle of the southern basin of the lake) were compared to the results obtained from the Great Lakes Environmental Research Laboratory (GLERL)-Donelan wave model implemented on a 2-km grid. The results show that the wave model does a good job of calculating the wave heights, but consistently underestimates the wave periods. In over 80% of the cases the bottom stresses calculated from both the observations and the wave model results agree as to whether or not resuspension occurs, but over 70% of this agreement is for cases when resuspension does not occur; both stresses predict resuspension about 6% of the time. Since the bottom stresses calculated from the model results are usually lower than those calculated from the observations, resuspension estimates based on the wave model parameters are also lower than those calculated from the observed waves.

  13. Science and innovation strategy for forestry in Great Britain

    E-Print Network [OSTI]

    Science and innovation strategy for forestry in Great Britain #12;The cover image is derived from X-rays of juniper berries (Juniperus communis), some containing seeds. #12;Science and innovation strategy COMMISSION (2014). Science and innovation strategy for forestry in Great Britain. Forestry Commission

  14. Geothermal Literature Review At Medicine Lake Geothermal Area (1984) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky:Bore Technologies IncEnergy2002) | Open1957) |Al.,

  15. Janette Lake, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8,OpenKentucky: EnergyFacility |Jane Capital

  16. Lake and Reservoir Management 24:381-391, 2008 Copyright by the North American Lake Management Society 2008

    E-Print Network [OSTI]

    Boss, Emmanuel S.

    carbon (DOC) in drinking-water reservoirs is an important manage- ment issue because DOC may form, dissolved organic carbon, fluorescence, multivariate analysis, sediment flux, Sweetwater Reservoir, water381 Lake and Reservoir Management 24:381-391, 2008 © Copyright by the North American Lake

  17. The 74-year water level record for Anvil Lake, a northern Wis-consin seepage lake, demonstrates pronounced, recurring highs

    E-Print Network [OSTI]

    Sheridan, Jennifer

    The 74-year water level record for Anvil Lake, a northern Wis- consin seepage lake, demonstrates impacts on Wisconsin's water resources Carolyn Rumery Betz1 , Tim Asplund2 , and jim Hurley1 1 University Impacts, a copy of the full Water Resources Working Group report, and a PDF of this poster, go to wicci

  18. Lake and Reservoir Management, 26:212216, 2010 C Copyright by the North American Lake Management Society 2010

    E-Print Network [OSTI]

    by zooplankton. Lake Reserv Manage. 26:212­216. Underwater strobe lights can influence the behavior underwater strobe lights influence zooplankton distributions and abundance in Lake Oahe, South Dakota. Zooplankton were collected using vertical tows at 3 discrete distances from an underwater strobe light

  19. Impact of early diagenesis of Eolian reservoirs, Great Sand Dunes National Monument, Colorado

    SciTech Connect (OSTI)

    Krystinik, L.F.; Andrews, S.; Fryberger, S.G.

    1985-02-01

    Dune and associated alluvial and playa deposits at Great Sand Dunes National Monument, Colorado, provide an excellent opportunity to study early diagenetic development of vertical and horizontal permeability barriers in recent eolian deposits (> 10 ka). Cements observed include calcite, aragonite, protodolomite(.), amorphous silica, iron hydroxide, smectite, trona, and halite. Cementation is controlled by the availability of water, with several hydrologic subenvironments producing different cements. Evaporative cementation in dunes adjacent to playas is commonly dominated by trona and halite, but calcite, aragonite, and amorphous silica also bind the sediment. These cements are generally most concentrated in fine laminations where capillary action has pulled water into dunes. Iron hydroxides, calcite, and amorphous silica precipitate at the interface between ground water and streams or lakes, where the pH gradient may exceed 5 pH units (pH 5.7-11.5). Subsequent movement of the ground-water table can result in cross-cutting cement zones. Early cementation in dunes prevents deflation and provides a mechanism for preservation of the reservoir unit. Intense cementation may permanently occlude porosity, or leaching may reestablish well-interconnected porosity. An understanding of the extent and composition of early cement zones can be used to improve hydrodynamic models for production and enhanced recovery.

  20. One-Two-Three Punch Clobbers Toxic Algae, Restores Fremont Lake

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    One-Two-Three Punch Clobbers Toxic Algae, Restores Fremont Lake Final Report Fremont Lake #20 Water-two-three punch to knockout toxic algae and restore water quality in Nebraska's numerous sandpit lakes. "It seems to help rid the too-often toxic algae prone Fremont State Lakes of the oily green scum that can close them

  1. Lake Roosevelt Fisheries and Limnological Research : 1996 Annual Report.

    SciTech Connect (OSTI)

    Cichosz, Thomas A.; Underwood, Keith D.; Shields, John; Scholz, Allan; Tilson, Mary Beth

    1997-05-01

    The Lake Roosevelt Monitoring/Data Collection Program resulted from a merger between the Lake Roosevelt Monitoring Program and the Lake Roosevelt Data Collection Project. This project will model biological responses to reservoir operations, evaluate the effects of releasing hatchery origin kokanee salmon and rainbow trout on the fishery, and evaluate the success of various stocking strategies. In 1996, limnological, reservoir operation, zooplankton, and tagging data were collected. Mean reservoir elevation, storage volume and water retention time were reduced in 1996 relative to the last five years. In 1996, Lake Roosevelt reached a yearly low of 1,227 feet above mean sea level in April, a yearly high of 1,289 feet in July, and a mean yearly reservoir elevation of 1,271.4 feet. Mean monthly water retention times in Lake Roosevelt during 1996 ranged from 15.7 days in May to 49.2 days in October. Average zooplankton densities and biomass were lower in 1996 than 1995. Daphnia spp. and total zooplankton densities peaked during the summer, whereas minimum densities occurred during the spring. Approximately 300,000 kokanee salmon and 400,000 rainbow trout were released into Lake Roosevelt in 1996. The authors estimated 195,628 angler trips to Lake Roosevelt during 1996 with an economic value of $7,629,492.

  2. COMBINED GEOPHYSICAL INVESTIGATION TECHNIQUES TO IDENTIFY BURIED WASTE IN AN UNCONTROLLED LANDFILL AT THE PADUCAH GASEOUS DIFFUSION PLANT, KENTUCKY

    SciTech Connect (OSTI)

    Miller, Peter T.; Starmer, R. John

    2003-02-27

    The primary objective of the investigation was to confirm the presence and determine the location of a cache of 30 to 60 buried 55-gallon drums that were allegedly dumped along the course of the pre-existing, northsouth diversion ditch (NSDD) adjacent to permitted landfills at the Paducah Gaseous Diffusion Plant, Kentucky. The ditch had been rerouted and was being filled and re-graded at the time of the alleged dumping. Historic information and interviews with individuals associated with alleged dumping activities indicated that the drums were dumped prior to the addition of other fill materials. In addition, materials alleged to have been dumped in the ditch, such as buried roofing materials, roof flashing, metal pins, tar substances, fly ash, and concrete rubble complicated data interpretation. Some clean fill materials have been placed over the site and graded. This is an environment that is extremely complicated in terms of past waste dumping activities, construction practices and miscellaneous landfill operations. The combination of site knowledge gained from interviews and research of existing site maps, variable frequency EM data, classical total magnetic field data and optimized GPR lead to success where a simpler less focused approach by other investigators using EM-31 and EM-61 electromagnetic methods and unfocused ground penetrating radar (GPR)did not produce results and defined no real anomalies. A variable frequency electromagnetic conductivity unit was used to collect the EM data at 3,030 Hz, 5,070 Hz, 8,430 Hz, and 14,010 Hz. Both in-phase and quadrature components were recorded at each station point. These results provided depth estimates for targets and some information on the subsurface conditions. A standard magnetometer was used to conduct the magnetic survey that showed the locations and extent of buried metal, the approximate volume of ferrous metal present within a particular area, and allowed estimation of approximate target depths. The GPR survey used a 200 megahertz (MHz) antenna to provide the maximum depth penetration and subsurface detail yielding usable signals to a depth of about 6 to 10 feet in this environment and allowed discrimination of objects that were deeper, particularly useful in the southern area of the site where shallow depth metallic debris (primarily roof flashing) complicated interpretation of the EM and magnetic data. Several geophysical anomalies were defined on the contour plots that indicated the presence of buried metal. During the first phase of the project, nine anomalies or anomalous areas were detected. The sizes, shapes, and magnitudes of the anomalies varied considerably, but given the anticipated size of the primary target of the investigation, only the most prominent anomalies were considered as potential caches of 30 to 60 buried drums. After completion of a second phase investigation, only two of the anomalies were of sufficient magnitude, not identifiable with existing known metallic objects such as monitoring wells, and in positions that corresponded to the location of alleged dumping activities and were recommended for further, intrusive investigation. Other important findings, based on the variable frequency EM method and its combination with total field magnetic and GPR data, included the confirmation of the position of the old NSDD, the ability to differentiate between ferrous and non-ferrous anomalies, and the detection of what may be plumes emanating from the landfill cell.

  3. Biological assessment of the effects of construction and operation of a depleted uranium hexafluoride conversion facility at the Paducah, Kentucky, site.

    SciTech Connect (OSTI)

    Van Lonkhuyzen, R.

    2005-09-09

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF6 inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This biological assessment (BA) has been prepared by DOE, pursuant to the National Environmental Policy Act of 1969 (NEPA) and the Endangered Species Act of 1974, to evaluate potential impacts to federally listed species from the construction and operation of a conversion facility at the DOE Paducah site.

  4. Kentucky Natural Gas Prices

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013 2014Thousand Cubic Feet) Decade

  5. Kentucky Natural Gas Prices

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013 2014Thousand Cubic Feet) DecadeMay-15

  6. Kentucky Proved Nonproducing Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013 2014Thousand CubicYearThousand Cubic0 0 0 1

  7. EIS-0106: Great Falls-Conrad Transmission Line Project, Montana

    Broader source: Energy.gov [DOE]

    The Western Area Power Administration prepared this EIS to evaluate the environmental impacts of the construction and operation of a 230-kilovolt transmission line from Great Falls, Montana, to Conrad, Montana.

  8. Arrangement between the Office for Nuclear Regulation of Great...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arrangement between the Office for Nuclear Regulation of Great Britain and the United States Department of Energy for the Exchange of Information and Co-operation in the Area of...

  9. 17.952 Great Power Military Intervention, Spring 2004

    E-Print Network [OSTI]

    Posen, Barry

    The purpose of this seminar is to examine systematically, and comparatively, great and middle power military interventions into civil wars during the 1990's. These civil wars were high on the policy agenda of western states ...

  10. China's Real Estate Revolution and the Great China Land Rush

    E-Print Network [OSTI]

    Ross, Madelyn C.; Rosen, Kenneth T.

    1993-01-01

    the boundaries of their real estate activities northward. AsBerkeley CENTER Fon REAL ESTATE AND URBAN ECONOMICS WORKINGNO. 93-215 CH|NA’S REAL ESTATE REVOLUTION AND THE GREAT

  11. Global study of lake surface water temperature (LSWT) behaviour and the tuning of a 1-dimensional model to determine the LSWTs of large lakes worldwide 

    E-Print Network [OSTI]

    Layden, Aisling

    2014-11-27

    Lake surface water temperatures (LSWTs) of 246 globally distributed large lakes were derived from Along-Track Scanning Radiometers (ATSR) for the period 1991 to 2011. These LSWTs, derived in a systematic manner, presents ...

  12. Influence of pH on Phosphorus Retention in Oxidized Lake Sediments O. G. Olila* and K. R. Reddy

    E-Print Network [OSTI]

    Florida, University of

    Influence of pH on Phosphorus Retention in Oxidized Lake Sediments O. G. Olila* and K. R. Reddy-soluble P concentration (WSP) and P sorption by suspended sediments in shallow eutrophic lakes. Labora- tory sediment suspensions from two subtropical lakes (Lake Apopka and Lake Okeechobee, Florida). The P sorption

  13. Heat flow studies, Coso Geothermal Area, China Lake, California...

    Open Energy Info (EERE)

    Heat flow studies, Coso Geothermal Area, China Lake, California. Technical report Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Heat flow studies, Coso...

  14. Continuous Commissioning of Salt Lake Community College South City Campus 

    E-Print Network [OSTI]

    Deng, S.; Turner, W. D.; Hood, J.

    2004-01-01

    The State of Utah's Department of Natural Resources funded two projects in Salt Lake City to demonstrate the feasibility of the Continuous Commissioning® (CC®)1 process. The two sites selected were a modern state building, the Matheson Courthouse [1...

  15. Thermal Waters Along The Konocti Bay Fault Zone, Lake County...

    Open Energy Info (EERE)

    Thermal Waters Along The Konocti Bay Fault Zone, Lake County, California- A Re-Evaluation Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  16. Numerical modeling of methane venting from lake sediments

    E-Print Network [OSTI]

    Scandella, Benjamin P. (Benjamin Paul)

    2010-01-01

    The dynamics of methane transport in lake sediments control the release of methane into the water column above, and the portion that reaches the atmosphere may contribute significantly to the greenhouse effect. The observed ...

  17. Origin and deformation of Holocene shoreline terraces, Yellowstone Lake, Wyoming

    SciTech Connect (OSTI)

    Meyer, G.A.; Locke, W.W.

    1986-08-01

    Geodetic surveys within the Yellowstone caldera have documented active uplift that is most likely caused by magmatic processes in the upper crust. Along the northeast shore of Yellowstone Lake, maximum relative uplift rates are 10 mm/yr for the period 1923-1975. However, information on deformation prior to historic instrumental records has been lacking. In this study, closely spaced data on elevations of postglacial shoreline terraces around the north end of Yellowstone Lake reveal complex tilting. Though most Holocene deformation is probably magma related, the pattern of shoreline tilting deviates significantly from the historic pattern of roughly symmetric inflation of the caldera. Along the northeast shore, where tilt directions of historic and shoreline deformation are similar, differential uplift of a > 2500-yr-old terrace is roughly 10 m; this gives a maximum uplift rate of 4 mm/yr. These unique Holocene terraces may exist due to episodic deformation because vertical movements affecting the lake outlet directly control lake level.

  18. Quality and Membrane Treatability of the Lake Houston Water Supply 

    E-Print Network [OSTI]

    Chellam, Shankar; Sharma, Ramesh; Shetty, Grishma; Wei, Ying

    2001-10-01

    fouling rates and increase chemical cleaning intervals during surface water nanofiltration (NF) (4). Therefore, an integrated membrane system employing MF or UF pretreatment to NF is expected to be an important treatment candidate for Lake Houston water...

  19. Lake Charles Carbon Capture and Sequestration Project U. S. Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plant will not receive co-funding from DOE. The Lake Charles CCS Project will capture carbon dioxide (CO 2 ) from the LCCE Gasification plant and transport the CO 2 via a new...

  20. City of Shasta Lake Electric Utility- PV Rebate Program

    Broader source: Energy.gov [DOE]

    City of Shasta Lake Electric Utility is providing rebates to their customers for the purchase of photovoltaic (PV) systems. The rebate levels will decrease annually over the life of the program. ...