Sample records for kentucky doe intends

  1. Kentucky DOE EPSCoR Program

    SciTech Connect (OSTI)

    Grulke, Eric; Stencel, John [no longer with UK

    2011-09-13T23:59:59.000Z

    The KY DOE EPSCoR Program supports two research clusters. The Materials Cluster uses unique equipment and computational methods that involve research expertise at the University of Kentucky and University of Louisville. This team determines the physical, chemical and mechanical properties of nanostructured materials and examines the dominant mechanisms involved in the formation of new self-assembled nanostructures. State-of-the-art parallel computational methods and algorithms are used to overcome current limitations of processing that otherwise are restricted to small system sizes and short times. The team also focuses on developing and applying advanced microtechnology fabrication techniques and the application of microelectrornechanical systems (MEMS) for creating new materials, novel microdevices, and integrated microsensors. The second research cluster concentrates on High Energy and Nuclear Physics. lt connects research and educational activities at the University of Kentucky, Eastern Kentucky University and national DOE research laboratories. Its vision is to establish world-class research status dedicated to experimental and theoretical investigations in strong interaction physics. The research provides a forum, facilities, and support for scientists to interact and collaborate in subatomic physics research. The program enables increased student involvement in fundamental physics research through the establishment of graduate fellowships and collaborative work.

  2. DOE West Kentucky Regional Science Bowl | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and Technical College, 4810 Alben Barkley Dr, Paducah, KY 42001 DOE West Kentucky Regional Science Bowl Contact Regional Co-Coordinator - Buz Smith, DOE Public Affairs 270-441-6821...

  3. Kentucky DOE-EPSCoR Program

    SciTech Connect (OSTI)

    Stencel, J.M.; Ochsenbein, M.P.

    2003-04-14T23:59:59.000Z

    The KY DOE EPSCoR Program included efforts to impact positively the pipeline of science and engineering students and to establish research, education and business infrastructure, sustainable beyond DOE EPSCoR funding.

  4. Kentucky Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionalsResearchIdahoKansas Regions NationalKentucky

  5. Kentucky Department of Agriculture

    Broader source: Energy.gov [DOE]

    At the August 7, 2008 quarterly joint Web conference of DOE's Biomass and Clean Cities programs, Wilbur Frye (Office of Consumer & Environmental Protection, Kentucky Department of Agriculture) described Biofuel Quality Testing in Kentucky.

  6. DOE Headquarters Review Focuses on Improved LATA Kentucky Worker Safety |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project|StatementDOE FuelProgramDepartment of

  7. EIS-0318: Kentucky Pioneer Integrated Gasification Combined Cycle (IGCC) Demonstration Project, Trapp, Kentucky (Clark County)

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to provide cost-shared financial support for The Kentucky Pioneer IGCC Demonstration Project, an electrical power station demonstrating use of a Clean Coal Technology in Clark County, Kentucky.

  8. Stimulating Energy Efficiency in Kentucky: An Implementation Model for States

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on Stimulating Energy Efficiency in Kentucky.

  9. West Kentucky Regional High School Science Bowl | U.S. DOE Office...

    Office of Science (SC) Website

    Coordinator: Don Dihel Email:Don.Dihel@lex.doe.gov Phone: 270-441-6824 Co-Coordinator: Buz Smith Email:Robert.Smith@lex.doe.gov Phone: 270-441-6821 Last modified: 1012014 10:45:1...

  10. West Kentucky Regional Middle School Science Bowl | U.S. DOE...

    Office of Science (SC) Website

    Don Dihel Email: Don.Dihel@lex.doe.gov Phone: 270-441-6824 Co-Coordinator: Buz Smith Email: Robert.Smith@lex.doe.gov Phone: 270-441-6821 Last modified: 9112014 12:27:47...

  11. Options for Kentucky's Energy Future

    SciTech Connect (OSTI)

    Larry Demick

    2012-11-01T23:59:59.000Z

    Three important imperatives are being pursued by the Commonwealth of Kentucky: ? Developing a viable economic future for the highly trained and experienced workforce and for the Paducah area that today supports, and is supported by, the operations of the US Department of Energy’s (DOE’s) Paducah Gaseous Diffusion Plant (PGDP). Currently, the PGDP is scheduled to be taken out of service in May, 2013. ? Restructuring the economic future for Kentucky’s most abundant indigenous resource and an important industry – the extraction and utilization of coal. The future of coal is being challenged by evolving and increasing requirements for its extraction and use, primarily from the perspective of environmental restrictions. Further, it is important that the economic value derived from this important resource for the Commonwealth, its people and its economy is commensurate with the risks involved. Over 70% of the extracted coal is exported from the Commonwealth and hence not used to directly expand the Commonwealth’s economy beyond the severance taxes on coal production. ? Ensuring a viable energy future for Kentucky to guarantee a continued reliable and affordable source of energy for its industries and people. Today, over 90% of Kentucky’s electricity is generated by burning coal with a delivered electric power price that is among the lowest in the United States. Anticipated increased environmental requirements necessitate looking at alternative forms of energy production, and in particular electricity generation.

  12. What level of Internet access does Paducah, Kentucky have? In order to answer this question, I ran a search of ISPs (Internet Service Providers) in the (502) area code

    E-Print Network [OSTI]

    Ehrman, Sheryl H.

    What level of Internet access does Paducah, Kentucky have? In order to answer this question, I ran a search of ISPs (Internet Service Providers) in the (502) area code (the area code which contains Paducah on these search results, I think that the level of Internet access availability in Paducah is equivalent

  13. Dose Modeling Evaluations and Technical Support Document For the Authorized Limits Request for the DOE-Owned Property Outside the Limited Area, Paducah Gaseous Diffusion Plant Paducah, Kentucky

    SciTech Connect (OSTI)

    Boerner, A. J. [Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States). Independent Environmental Assessment and Verification Program; Maldonado, D. G. [Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States). Independent Environmental Assessment and Verification Program; Hansen, Tom [Ameriphysics, LLC (United States)

    2012-09-01T23:59:59.000Z

    Environmental assessments and remediation activities are being conducted by the U.S. Department of Energy (DOE) at the Paducah Gaseous Diffusion Plant (PGDP), Paducah, Kentucky. The Oak Ridge Institute for Science and Education (ORISE), a DOE prime contractor, was contracted by the DOE Portsmouth/Paducah Project Office (DOE-PPPO) to conduct radiation dose modeling analyses and derive single radionuclide soil guidelines (soil guidelines) in support of the derivation of Authorized Limits (ALs) for 'DOE-Owned Property Outside the Limited Area' ('Property') at the PGDP. The ORISE evaluation specifically included the area identified by DOE restricted area postings (public use access restrictions) and areas licensed by DOE to the West Kentucky Wildlife Management Area (WKWMA). The licensed areas are available without restriction to the general public for a variety of (primarily) recreational uses. Relevant receptors impacting current and reasonably anticipated future use activities were evaluated. In support of soil guideline derivation, a Conceptual Site Model (CSM) was developed. The CSM listed radiation and contamination sources, release mechanisms, transport media, representative exposure pathways from residual radioactivity, and a total of three receptors (under present and future use scenarios). Plausible receptors included a Resident Farmer, Recreational User, and Wildlife Worker. single radionuclide soil guidelines (outputs specified by the software modeling code) were generated for three receptors and thirteen targeted radionuclides. These soil guidelines were based on satisfying the project dose constraints. For comparison, soil guidelines applicable to the basic radiation public dose limit of 100 mrem/yr were generated. Single radionuclide soil guidelines from the most limiting (restrictive) receptor based on a target dose constraint of 25 mrem/yr were then rounded and identified as the derived soil guidelines. An additional evaluation using the derived soil guidelines as inputs into the code was also performed to determine the maximum (peak) dose for all receptors. This report contains the technical basis in support of the DOE?s derivation of ALs for the 'Property.' A complete description of the methodology, including an assessment of the input parameters, model inputs, and results is provided in this report. This report also provides initial recommendations on applying the derived soil guidelines.

  14. Comment Policy The MU Counseling Center Facebook page is not intended as a crisis service and does not provide any clinical service or support.

    E-Print Network [OSTI]

    Taylor, Jerry

    Comment Policy The MU Counseling Center Facebook page is not intended as a crisis service and does relationship with any staff member or the Counseling Center. Our Facebook page is not continuously monitored and about relevant events on our campus. We encourage your comments on MUCC Facebook page, and hope you

  15. Microenterprise Loan Program (Kentucky)

    Broader source: Energy.gov [DOE]

    In partnership with Community Ventures Corporation, a non-profit community based lender, the Kentucky Cabinet for Economic Development has expanded the Kentucky Micro-Enterprise Loan (KMEL) program...

  16. Natural Gas Regulations (Kentucky)

    Broader source: Energy.gov [DOE]

    Kentucky Administrative Regulation title 805 promulgates the rules and regulations pertaining to natural gas production in Kentucky. In addition to KAR title 405, chapter 30, which pertains to any...

  17. DOE Selects Contractor for Depleted Hexafluoride Conversion Project...

    Broader source: Energy.gov (indexed) [DOE]

    to the DOE Portsmouth Paducah Project Office (PPPO) in Lexington, Kentucky and the Depleted Uranium Hexafluoride (DUF6) Conversion Project in Paducah, Kentucky and...

  18. Kentucky Economic Opportunity Zone Program (KEOZ) (Kentucky)

    Broader source: Energy.gov [DOE]

    The Kentucky Economic Opportunity Zone Program (KEOZ) focuses on the development of areas with high unemployment and poverty levels. The program provides an income tax credit of up to 100% of the...

  19. Recovery Act State Memos Kentucky

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * KENTUCKY RECOVERY ACT SNAPSHOT Kentucky has substantial natural resources, including coal, oil, gas, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA)...

  20. Coal Mining Regulations (Kentucky)

    Broader source: Energy.gov [DOE]

    Kentucky Administrative Regulation Title 405 chapters 1, 2, 3, 5, 7, 8, 10, 12, 16, 18 and 20 establish the laws governing coal mining in the state.

  1. Forestry Policies (Kentucky)

    Broader source: Energy.gov [DOE]

    Kentucky's forests are managed by the State Energy and Environment Cabinet, Department of Natural Resources, Division of Forestry. In 2010 the Division completed its Statewide Assessment of Forest...

  2. Rural Innovation Fund (Kentucky)

    Broader source: Energy.gov [DOE]

    This fund provides capital to early-stage technology companies located in rural areas of Kentucky. Companies may apply for a $30,000 grant or an investment up to $100,000.

  3. OHIO RIVER SHORELINE, PADUCAH, KENTUCKY, (PADUCAH, KENTUCKY LFPP)

    E-Print Network [OSTI]

    US Army Corps of Engineers

    1 OHIO RIVER SHORELINE, PADUCAH, KENTUCKY, (PADUCAH, KENTUCKY LFPP) RECONSTRUCTION PROJECT 22 June and private infrastructure to Paducah, Kentucky, from flooding by the Ohio River through reconstruction of an existing Corps of Engineers floodwall and levee system. The city of Paducah is the non-Federal sponsor

  4. Columbia Gas of Kentucky- Home Savings Rebate Program (Kentucky)

    Broader source: Energy.gov [DOE]

    Columbia Gas of Kentucky offers rebates to residential customers for the purchase and installation of energy efficient appliances and equipment. Water heaters, furnaces and space heating equipment...

  5. Construction Begins on DOE-Sponsored Carbon-Capture Project at...

    Office of Environmental Management (EM)

    Construction Begins on DOE-Sponsored Carbon-Capture Project at Kentucky Power Plant Construction Begins on DOE-Sponsored Carbon-Capture Project at Kentucky Power Plant July 21,...

  6. Kentucky Save Energy Now Program

    Broader source: Energy.gov [DOE]

    This fact sheet contains details regarding a Save Energy Now industrial energy efficiency project that the U.S. Department of Energy funded in Kentucky.

  7. CO2 Geologic Storage (Kentucky)

    Broader source: Energy.gov [DOE]

    Division staff, in partnership with the Kentucky Geological Survey (KGS), continued to support projects to investigate and demonstrate the technical feasibility of geologic storage of carbon...

  8. DOE Seeks Contractor for Depleted Uranium Hexafluoride (DUF6...

    Energy Savers [EERE]

    Contractor for Depleted Uranium Hexafluoride (DUF6) Operations at Ohio and Kentucky Facilities DOE Seeks Contractor for Depleted Uranium Hexafluoride (DUF6) Operations at Ohio and...

  9. DOE Awards Contract for Paducah Gaseous Diffusion Plant Infrastructure...

    Energy Savers [EERE]

    Plant Support Services DOE Seeks Contractor for Depleted Uranium Hexafluoride (DUF6) Operations at Ohio and Kentucky Facilities Subscribe to EM News Email Updates Gov...

  10. albany shale kentucky: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Bakken, Dobson, Patrick 2014-01-01 9 Kentucky Annual Economic Report Computer Technologies and Information Sciences Websites Summary: 2014 Kentucky Annual Economic Report...

  11. South Kentucky RECC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    South Kentucky Rural Electric Cooperative Corporation (RECC) provides service to more than 60,000 customers in southeastern Kentucky. To promote energy efficiency to residential customers, South...

  12. Petrography of the Herrin (No. 11) coal in western Kentucky

    SciTech Connect (OSTI)

    Hower, J.C.; Wild, G.D.

    1981-06-01T23:59:59.000Z

    The Herrin (No.11) coal in western Kentucky is in the upper part of the Pennsylvanian (Des Moinesian) Carbondale Formation. Samples were obtained from 13 mines in Kentucky and one mine in Illinois in three equal benches from two to three channels for a total of 93 samples. The rank of the coal (as vitrinite reflectance) is high volatile C bituminous in the Moorman Syncline and high volatile A bituminous in the Webster Syncline. Reflectance does not vary between mines in the Moorman Syncline. The percentage of total vitrinite macerals for each mine is over 85% and the percentage of total vitrinite plus liptinite macerals is over 89% (average over 90%) (both on dry, mineral-free basis). 37 refs.

  13. Qualifying RPS State Export Markets (Kentucky)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Kentucky as eligible sources towards their RPS targets or goals. For specific...

  14. State Energy Program: Kentucky Implementation Model Resources

    Broader source: Energy.gov [DOE]

    Below are resources associated with the U.S. Department of Energy's Weatherization and Intergovernmental Programs Office State Energy Program Kentucky Implementation Model.

  15. Chapter 63 General Standards of Performance (Kentucky)

    Broader source: Energy.gov [DOE]

    Kentucky Administrative Regulation Chapter 63, entitled Air Quality: General Standards of Performance, is promulgated under the authority of the Division of Air Quality within the Energy and...

  16. A PROFILE OF KENTUCKY MEDICAID MENTAL HEALTH

    E-Print Network [OSTI]

    Hayes, Jane E.

    can be advanced--among patients, health care providers, and the community at large. This workA PROFILE OF KENTUCKY MEDICAID MENTAL HEALTH DIAGNOSES, 2000-2010 #12; #12; i A Profile of Kentucky Medicaid Mental Health Diagnoses, 20002010 BY Michael T. Childress

  17. Microsoft Word - DOE News Release - Henderson North Middle School...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 6, 2015 Robert.Smith@lex.doe.gov Henderson North Middle School wins 2015 DOE West Kentucky Regional Science Bowl PADUCAH, Ky. - Henderson North Middle School won the U.S....

  18. Chapter 53 Ambient Air Quality (Kentucky)

    Broader source: Energy.gov [DOE]

    Kentucky Administrative Regulation Chapter 53, entitled Ambient Air Quality, is promulgated under the authority of the Division of Air Quality within the Energy and Environment Cabinet’s Department...

  19. Alternative Fuels Data Center: Kentucky Information

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    production facilities in Kentucky, use the TransAtlas interactive mapping tool or use BioFuels Atlas to show the use and potential production of biofuels throughout the U.S. and...

  20. Kentucky WRI Pilot Test Universal ID

    E-Print Network [OSTI]

    screening deployment experience · Significant cost savings to FMCSA ·Enabling technology already deployedKentucky WRI Pilot Test ­ Universal ID Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 #12;·Utilizes existing automated screening system ·Uses assorted

  1. Kentucky Power- Residential Efficient HVAC Rebate Program

    Broader source: Energy.gov [DOE]

    Kentucky Power's High Efficiency Heat Pump Program offers a $400 rebate to residential customers living in existing (site-built) homes who upgrade electric resistance heating systems with a new,...

  2. Kentucky

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarketsNov-14 Dec-14Has|Issues inU

  3. Comparisons of pyrite variability from selected western Kentucky and western Pennsylvania coals

    SciTech Connect (OSTI)

    Frankie, K.A.; Hower, J.C.

    1983-03-01T23:59:59.000Z

    Pyrite (and marcasite) variation in the lower Kittanning coal of western Pennsylvania has been petrographically characterized using three parameters of size (categories rather than absolute size), morphology (framboidal, euhedral, dendritic, massive, and cleat), and microlithotype (organic) association. The purpose of this study is to evaluate what influence paleo-environments have on the nature of variation of pyrite in coal. Comparison of coals has been done using the percentages of pyrite in the microlithotypes vitrite and clarite. In the lower Kittanning coal, framboidal pyrite is generally less abundant and dendritic pyrite was not observed at all. Euhedral pyrite exhibited no clear variation between the two environments. Massive pyrite was more abundant in the set of samples from the mine with the highest average pyritic sulfur but otherwise exhibited no variation. In contrast, a larger percentage of pyrite in the western Kentucky coals examined is framboidal and dendritic. Mines examined in the Moorman syncline of western Kentucky do have a framboidal pyrite percentage comparable to the lower Kittanning samples, but the percentage of dendritic pyrite (particularly in the Western Kentucky No. 9 coal) is significantly higher for the western Kentucky coals. Bulk petrography of the coals is similar with all having greater than 80% total vitrinite. The association of the pyritic sulfur does, however, change significantly between the various coals studied and particularly between the coals of western Kentucky and among the marine lower Kittanning samples and the fresh water lower Kittanning samples. Among the pyrite in the fresh water coals, massive (perhaps epigenetic) pyrite dominates the associations.

  4. Environmental investigations at the Paducah Gaseous Diffusion Plant and surrounding area, McCracken County, Kentucky: Volume 1 -- Executive summary. Final report

    SciTech Connect (OSTI)

    NONE

    1994-05-01T23:59:59.000Z

    This report details the results of four studies into environmental and cultural resources on and near the Department of Energy`s (DOE) Paducah Gaseous Diffusion Plant (PGDP) located in Western Kentucky in McCracken County, approximately 10 miles west of Paducah, KY. The area investigated includes the PGDP facility proper, additional area owned by DOE under use permit to the Western Kentucky Wildlife Management Area (WKWMA), area owned by the Commonwealth of Kentucky that is administered by the WKWMA, area owned by the Tennessee Valley Authority (TVA), the Metropolis Lake State Nature preserve and some privately held land. DOE requested the assistance and support of the US Army Engineer District, Nashville (CEORN) in conducting various environmental investigations of the area. The US Army Engineer Waterways Experiment Station (WES) provided technical support to the CEORN for environmental investigations of (1) wetland resources, (2) threatened or endangered species and habitats, and (3) cultural resources. A floodplain investigation was conducted by CEORN.

  5. Coal rank trends in eastern Kentucky

    SciTech Connect (OSTI)

    Hower, J.C.; Trinkle, E.J.

    1984-12-01T23:59:59.000Z

    Examination of coal rank (by vitrinite maximum reflectance) for eastern Kentucky coals has revealed several regional trends. Coal rank varies from high volatile C (0.5% R/sub max/) to medium volatile bituminous (1.1% R/sub max/), and generally increases to the southeast. One east-west-trending rank high and at least four north-south-trending rank highs interrupt the regional increase. The east-west-trending rank high is associated with the Kentucky River faults in northeastern Kentucky. It is the only rank high clearly associated with a fault zone. The four north-south-trending rank highs are parallel with portions of major tectonic features such as the Eastern Kentucky syncline. Overall, though, the association of north-south-trending rank highs with tectonic expression is not as marked as that with the anomaly associated with the Kentucky River faults. It is possible that the rank trends are related to basement features with subdued surface expression. Rank generally increases with depth, and regional trends observed in one coal are also seen in overlying and underlying coals. The cause of the regional southeastward increase in rank is likely to be the combined influence of greater depth of burial and proximity to late Paleozoic orogenic activity. The anomalous trends could be due to increased depth of burial, but are more likely to have resulted from tectonic activity along faults and basement discontinuities. The thermal disturbances necessary to increase the coal rank need not have been great, perhaps on the order of 10-20/sup 0/C (18-36/sup 0/F) above the metamorphic temperatures of the lower rank coals.

  6. Petrographic characterization of Kentucky coals. Final report. Part VI. The nature of pseudovitrinites in Kentucky coals

    SciTech Connect (OSTI)

    Trinkle, E.J.; Hower, J.C.

    1984-02-01T23:59:59.000Z

    Overall average pseudovitrinite content for 1055 eastern Kentucky coal samples is nearly 9% while average percentage of pseudovitrinite for 551 western Kentucky coals is approximately 4%. Examination of variation in pseudovitrinite content relative to rank changes shows uniformity in pseudovitrinite percentages within the 4 to 7 V-type interval for eastern Kentucky coals but a gradual increase in pseudovitrinite content for western Kentucky coals over the same rank interval. Coals from both coal fields show similar, distinct increases in pseudovitrinite percentage in the highest V-type categories. However, it is suggested here that these supposed increases in pseudovitrinite percentages are not real but rather, indicate distinct increase in the brightness of nitrinite resulting from increased alteration of vitrinite beginning at this stage of coalification and continuing into the higher rank stages. This conclusion is reached when it is found that differences between pseudovitrinite and vitrinite reflectance are least in coals at these high rank intervals of Kentucky and, also, when vitrinite particles are often visually observed having brightness equal to that of pseudovitrinite particles. Relation of pseudovitrinite to other sulfur forms and total sulfur in general shows no significant trends, although the relatively high pyritic sulfur content in western Kentucky coals, coupled with relatively low inert percentages suggest the existence of predominantly reducing, or at least non-oxidizing conditions in the Pennsylvanian peat swamps of western Kentucky. Initial work involving Vicker's microhardness testing of coals indicates that microhardness values for pseudovitrinite are higher than those for vitrinite within the same sample regardless of coal rank or coal field from which the sample was collected. 15 references, 9 figures, 9 tables.

  7. A Guidance Document for Kentucky's Oil and Gas Operators

    SciTech Connect (OSTI)

    Bender, Rick

    2002-03-18T23:59:59.000Z

    The accompanying report, manual and assimilated data represent the initial preparation for submission of an Application for Primacy under the Class II Underground Injection Control (UIC) program on behalf of the Commonwealth of Kentucky. The purpose of this study was to identify deficiencies in Kentucky law and regulation that would prevent the Kentucky Division of Oil and Gas from receiving approval of primacy of the UIC program, currently under control of the United States Environmental Protection Agency (EPA) in Atlanta, Georgia.

  8. Chapter 52 Permits, Registrations, and Prohibitory Rules (Kentucky)

    Broader source: Energy.gov [DOE]

    Kentucky Administrative Regulation Chapter 52, entitled Air Quality: Permits, Registrations, and Prohibitory Rules, is promulgated under the authority of the Division of Air Quality within the...

  9. Ethanol Production Tax Credit (Kentucky) | Open Energy Information

    Open Energy Info (EERE)

    Credit (Kentucky) Policy Category Financial Incentive Policy Type Corporate Tax Incentive Affected Technologies BiomassBiogas Active Policy Yes Implementing Sector StateProvince...

  10. Kentucky Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act State Memo Kentucky has substantial natural resources, including coal, oil, gas, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is...

  11. Petrographic characterization of Kentucky coals. Annual report

    SciTech Connect (OSTI)

    Hower, J.C.; Ferm, J.C.; Cobb, J.C.; Trinkle, E.J.; Frankie, K.A.; Poe, S.H.

    1981-09-29T23:59:59.000Z

    The study of the petrography of Kentucky coals sponsored by the US Department of Energy currently involves three projects as described below: semi-inert macerals, spectral fluorescence of liptinites, and pyrite size/form/microlithotype distribution. Progress to date has varied due to requirements for training personnel and due to equipment problems. With the two-year continuation of the grant further study will apply results from the above projects to stratigraphic problems.

  12. Kentucky Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    development for pH, nutrients, and pathogens in several Kentucky streams, 2) Evaluation of the impacts of Environmental Health (NIEH), and east Kentucky PRIDE (Personal Responsibility in a Desirable Environment): 1) Environmental Protection Scholarship (NREPC), 2) Technical support for the Maxey Flats Nuclear Disposal Site

  13. Kentucky Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    of environmental assessment and cleanup activities at the Paducah Gaseous Diffusion Plant. Six student research involving radiation and other contaminants at the Maxey Flats Nuclear Disposal Site and the Paducah Gaseous Diffusion Plant. The Kentucky River Authority supported watershed management services in the Kentucky River

  14. Environmental assessment for the construction, operation, and closure of the solid waste landfill at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    DOE has prepared an environmental assessment (EA) for the proposed construction, operation, and closure of a Solid Waste Landfill (SWL) that would be designed in accordance with Commonwealth of Kentucky landfill regulations (401 Kentucky Administrative Regulations Chapters 47 and 48 and Kentucky Revised Statutes 224.855). PGDP produces approximately 7,200 cubic yards per year of non-hazardous, non-radioactive solid waste currently being disposed of in a transitional contained (residential) landfill cell (Cell No. 3). New Kentucky landfill regulations mandate that all existing landfills be upgraded to meet the requirements of the new regulations or stop receiving wastes by June 30, 1995. Cell No. 3 must stop receiving wastes at that time and be closed and capped within 180 days after final receipt of wastes. The proposed SWL would occupy 25 acres of a 60-acre site immediately north of the existing PGDP landfill (Cell No. 3). The EA evaluated the potential environmental consequences of the proposed action and reasonable alternative actions. Based on the analysis in the EA, DOE has determined that the proposed action does not constitute a major Federal action which will significantly affect the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA), 42 USC 4321 et seq. Therefore, it is determined that an environmental impact statement will not be prepared, and DOE is issuing this FONSI.

  15. Henderson County North Middle School wins 2015 DOE West Kentucky...

    Energy Savers [EERE]

    students' knowledge in all areas of science, including biology, chemistry, Earth science, physics, energy, and math. Middle school student teams consist of four students,...

  16. solvent-university-kentucky | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development1 Comparison7Application of A

  17. Gatton Academy Wins 2015 DOE West Kentucky Regional Science Bowl |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAM RevisedFundingEnergyAPPLICATION OFGasDepartment of

  18. Kentucky Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionalsResearchIdahoKansas Regions

  19. Energy Incentive Programs, Kentucky | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal RegisterHydrogenDistributionFactIowa Energy IncentiveKentucky

  20. Adairville, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta Clara, CaliforniaI Jump to:Adairville, Kentucky:

  1. Categorical Exclusion Determinations: Kentucky | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments EnergyFebruary3 CategoricalIdaho CategoricalKentucky Categorical

  2. Kentucky Power Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa:Washington: Energy Resources Jump to: navigation,Kentucky

  3. Hickman, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation, search Name: Hi-GtelTennessee: EnergyKentucky:

  4. Hopkinsville, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania: EnergyHopkinsville, Kentucky: Energy Resources

  5. Kentucky Utilities Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou New EnergyKenosistec Srl Jump to:Kentucky Utilities

  6. Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou New EnergyKenosistec Srl Jump to:Kentucky

  7. Columbia, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew York:Governor s EnergyColquittWashington:RiverKentucky:

  8. Water resources data, Kentucky. Water year 1991

    SciTech Connect (OSTI)

    McClain, D.L.; Byrd, F.D.; Brown, A.C.

    1991-12-31T23:59:59.000Z

    Water resources data for the 1991 water year for Kentucky consist of records of stage, discharge, and water quality of streams and lakes; and water-levels of wells. This report includes daily discharge records for 115 stream-gaging stations. It also includes water-quality data for 38 stations sampled at regular intervals. Also published are 13 daily temperature and 8 specific conductance records, and 85 miscellaneous temperature and specific conductance determinations for the gaging stations. Suspended-sediment data for 12 stations (of which 5 are daily) are also published. Ground-water levels are published for 23 recording and 117 partial sites. Precipitation data at a regular interval is published for 1 site. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurement and analyses. These data represent that part of the National Water Data System operated by the US Geological Survey and cooperation State and Federal agencies in Kentucky.

  9. SEP Success Story: Kentucky Launches State-Wide School Energy...

    Energy Savers [EERE]

    In what could potentially be the first program of its scale, Kentucky has hired a new green team of 35 energy managers. Learn more. Addthis Related Articles Energy efficiency...

  10. EECBG Success Story: Software Helps Kentucky County Gauge Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Kentucky invested 140,000 of a 2.7 million Energy Efficiency and Conservation Block Grant (EECBG) to purchase EnergyCAP software. The energy management software will allow the...

  11. Kentucky Utilities Company- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Kentucky Utilities Company (KU) offers rebates to all commercial customers who pay a DSM charge on monthly bills. Rebates are available on lighting measures, sensors, air conditioners, heat pumps,...

  12. Transitioning Kentucky Off Oil: An Interview with Clean Cities...

    Broader source: Energy.gov (indexed) [DOE]

    fuel, and we're very proud of that. Also, Kentucky has the largest fleet of hybrid electric school buses in the nation and that's given our coalition a lot of credibility....

  13. Greater Cincinnati Energy Alliance- Residential Loan Program (Kentucky)

    Broader source: Energy.gov [DOE]

    The Greater Cincinnati Energy Alliance provides loans for single family residencies and owner occupied duplexes in Hamilton county in Ohio and Boone, Kenton, and Campbell counties in Kentucky. To...

  14. Kentucky Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    and the Paducah Gaseous Diffusion Plant), the Kentucky Deparmtnet of Military Affairs (Technical Support and cleanup at the Paducah Gaseous Diffusion Plant over the next several years. Five research projects were

  15. Kentucky Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    contaminants at the Maxey Flats Nuclear Disposal Site and at the Paducah Gaseous Diffusion Plant). The Kentucky at the Paducah Gaseous Diffusion Plant. Seven student research enhancement projects were selected for support

  16. Kentucky Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    ), and the Kentucky River Authority (KRA): 1) Technical Support for the Paducah Gaseous Diffusion Plant (CHS) 2 capability of wetland soils and paleowetland sediments in the vicinity of the Paducah Gaseous Diffusion Plant

  17. Final Environmental Assessment and Finding of No Significant Impact: Waste Disposition Activities at the Paducah Site Paducah, Kentucky

    SciTech Connect (OSTI)

    N /A

    2002-11-05T23:59:59.000Z

    The U.S. Department of Energy (DOE) has completed an environmental assessment (DOE/EA-1339), which is incorporated herein by reference, for proposed disposition of polychlorinated biphenyl (PCB) wastes, low-level radioactive waste (LLW), mixed low-level radioactive waste (MLLW), and transuranic (TRU) waste from the Paducah Gaseous Diffusion Plant Site (Paducah Site) in Paducah, Kentucky. All of the wastes would be transported for disposal at various locations in the United States. Based on the results of the impact analysis reported in the EA, DOE has determined that the proposed action is not a major federal action that would significantly affect the quality of the human environment with in the context of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an environmental impact statement is not necessary, and DOE is issuing this Finding of No Significant Impact (FONSI).

  18. z Transform Chapter Intended Learning Outcomes

    E-Print Network [OSTI]

    So, Hing-Cheung

    z Transform Chapter Intended Learning Outcomes: (i) Understanding the relationship between transform and the Fourier transform for discrete-time signals (ii) Understanding the characteristics and properties of transform (iii) Ability to compute transform and inverse transform (iv) Ability to apply

  19. Kentucky Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    contaminants at the Maxey Flats Nuclear Disposal Site and the Paducah Gaseous Diffusion Plant). The Kentucky Diffusion Plant. Over 20 technical projects supported through the consortium presented results during 2007 with efforts supporting a variety of environmental assessment and cleanup activities at the Paducah Gasous

  20. Kentucky Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    on environmental assessment and cleanup evaluation at the Paducah Gaseous Diffusion Plant over the next several for Health Services (Technical Support for the Maxey Flats Nuclear Disposal Site and the Paducah Gaseous Diffusion Plant Federal Facilities Agreement and Agreement in Principle), the Kentucky Department

  1. Kentucky Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    Flats Disposal Site (CHS) 2) Technical support for the Paducah Gaseous Diffusion Plant (CHS) 3 soils and paleowetland sediments in the vicinity of the Paducah Gaseous Diffusion Plant (PGDP) to bind Attenuation of a Trichloroethene-Contaminated Aquifer System, Paducah, Kentucky, MS Thesis, Department

  2. Biodiesel Production and Blending Tax Credit (Kentucky)

    Broader source: Energy.gov [DOE]

    blended biodiesel does not qualify. The biodiesel tax credit is applied against the corporation income tax imposed under KRS 141.040 and/or the limited liability entity tax (LLET) imposed under KRS...

  3. Petrographic characterization of Kentucky coals. Quarterly progress report, March 1982-May 1982

    SciTech Connect (OSTI)

    Hower, J.C.; Ferm, J.C.; Cobb, J.C.; Trinkle, E.J.; Frankie, K.A.; Poe, S.H.; Baynard, D.N.; Graese, A.M.; Raione, R.P.

    1982-01-01T23:59:59.000Z

    The project Petrographic characterization of Kentucky coals consists of three specific areas of coal petrology: spectral fluorescence of liptinite macerals, properties of semi-inert macerals, and size/form/microlithotype association of pyrite/marcasite. Additional research on the Mannington and Dunbar coals in western Kentucky and the Alma coal zone in eastern Kentucky will apply techniques developed in the first three areas. Suites of coals from other states will also be studied to expand the variability in the sample set.

  4. Petrographic characterization of Kentucky coals. Quarterly progress report, June 1982-August 1982

    SciTech Connect (OSTI)

    Hower, J.C.; Ferm, J.C.; Cobb, J.C.; Trinkle, E.J.; Frankie, K.A.; Poe, S.H.; Baynard, D.N.; Graese, A.M.; Raione, R.P.

    1982-01-01T23:59:59.000Z

    The project Petrographic Characterization of Kentucky Coals consists of three specific areas of coal petrology: spectral fluorescence of liptinite macerals, properties of semi-inert macerals, and size/form/microlithotype association of pyrite/marcasite. Additional research on the Mannington and Dunbar coals in western Kentucky and the Alma coal zone in eastern Kentucky will apply techniques developed in the first three areas. Suites of coals from other states will also be studied to expand the variability in the sample set.

  5. Chapter 51 Attainment and Maintenance of the National Ambient Air Quality Standards (Kentucky)

    Broader source: Energy.gov [DOE]

    Kentucky Administrative Regulation Chapter 51, entitled Attainment and Maintenance of the National Ambient Air Quality Standards, is promulgated under the authority of the Division of Air Quality...

  6. Tennessee Valley and Eastern Kentucky Wind Working Group

    SciTech Connect (OSTI)

    Katie Stokes

    2012-05-03T23:59:59.000Z

    In December 2009, the Southern Alliance for Clean Energy (SACE), through a partnership with the Appalachian Regional Commission, EKPC, Kentucky's Department for Energy Development and Independence, SACE, Tennessee's Department of Environment and Conservation, and TVA, and through a contract with the Department of Energy, established the Tennessee Valley and Eastern Kentucky Wind Working Group (TVEKWWG). TVEKWWG consists of a strong network of people and organizations. Working together, they provide information to various organizations and stakeholders regarding the responsible development of wind power in the state. Members include representatives from utility interests, state and federal agencies, economic development organizations, non-government organizations, local decision makers, educational institutions, and wind industry representatives. The working group is facilitated by the Southern Alliance for Clean Energy. TVEKWWG supports the Department of Energy by helping educate and inform key stakeholders about wind energy in the state of Tennessee.

  7. Kentucky Department for Natural Resources and Environmental Protection permit application for air contaminant source: SRC-I demonstration plant, Newman, Kentucky. Supplement I. [Additional information on 38 items requested by KY/DNREP

    SciTech Connect (OSTI)

    Pearson, Jr., John F.

    1981-02-13T23:59:59.000Z

    In response to a letter from KY/DNREP, January 19, 1981, ICRC and DOE have prepared the enclosed supplement to the Kentucky Department for Natural Resources and Environmental Protection Permit Application for Air Contaminant Source for the SRC-I Demonstration Plant. Each of the 38 comments contained in the letter has been addressed in accordance with the discussions held in Frankfort on January 28, 1981, among representatives of KY/DNREP, EPA Region IV, US DOE, and ICRC. The questions raised involve requests for detailed information on the performance and reliability of proprietary equipment, back-up methods, monitoring plans for various pollutants, composition of wastes to flares, emissions estimates from particular operations, origin of baseline information, mathematical models, storage tanks, dusts, etc. (LTN)

  8. 276 Drug-FreePolicy University of Kentucky 2008-2009 Undergraduate Bulletin

    E-Print Network [OSTI]

    MacAdam, Keith

    276 Drug-FreePolicy University of Kentucky 2008-2009 Undergraduate Bulletin Drug-Free Policy Policy Statement as a Drug-Free Institution The University of Kentucky is committed to providing a healthy and safe to the unlawful possession, use, dispensa- tion, distribution or manufacture of alcohol or illicit drugs. Conduct

  9. Petrographic characterization of Kentucky coals. Quarterly progress report, March-May 1983

    SciTech Connect (OSTI)

    Hower, J.C.; Ferm, J.C.; Cobb, J.C.; Trinkle, E.J.; Frankie, K.A.; Poe, S.H.; Baynard, D.N.; Graese, A.M.; Raione, R.P.

    1983-01-01T23:59:59.000Z

    This project consists of three specific areas of coal petrology: spectral fluorescence of liptinite macerals; properties of semi-inert macerals; and size/form/microlithotype association of pyrite/marcasite. Techniques developed in the first three areas were used in additional research on Mannington and Dunbar coals in western Kentucky and the Alma coal zone in eastern Kentucky. Some of the findings are: percent variations (pseudovitrinite-vitrinite/vitrinite X100) indicate greater dispersions in Vicker's microhardness values, MH(v), of vitrinite and pseudovitrinite from eastern Kentucky coals than those of western Kentucky coals; reflectance data confirm a previously suspected rank increase from eastern Knott and Magoffin Counties to eastern Pike County; microhardness investigation of Upper Elkhorn 2 coal in eastern Kentucky indicates that pseudovitrinite is consistently harder than vitrinite; and of the western coals studied, Dunbar and Lead Creek, there appears to be some correlations between vitrinite, ash, sulfur, and thickness. 6 tables.

  10. Site-specific earthquake response analysis for Paducah Gaseous Diffusion Plant, Paducah, Kentucky. Final report

    SciTech Connect (OSTI)

    Sykora, D.W.; Davis, J.J.

    1993-08-01T23:59:59.000Z

    The Paducah Gaseous Diffusion Plant (PGDP), owned by the US Department of Energy (DOE) and operated under contract by Martin Marietta Energy systems, Inc., is located southwest of Paducah, Kentucky. An aerial photograph and an oblique sketch of the plant are shown in Figures 1 and 2, respectively. The fenced portion of the plant consists of 748 acres. This plant was constructed in the 1950`s and is one of only two gaseous diffusion plants in operation in the United States; the other is located near Portsmouth, Ohio. The facilities at PGDP are currently being evaluated for safety in response to natural seismic hazards. Design and evaluation guidelines to evaluate the effects of earthquakes and other natural hazards on DOE facilities follow probabilistic hazard models that have been outlined by Kennedy et al. (1990). Criteria also established by Kennedy et al. (1990) classify diffusion plants as ``moderate hazard`` facilities. The US Army Engineer Waterways Experiment Station (WES) was tasked to calculate the site response using site-specific design earthquake records developed by others and the results of previous geotechnical investigations. In all, six earthquake records at three hazard levels and four individual and one average soil columns were used.

  11. Clean Cities: Kentucky Clean Cities Partnership coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12Denver MetroHonolulu CleanIowa

  12. Lawrence County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind Energy DevelopmentLaurentianIllinois: EnergyKentucky:

  13. Leslie County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana:New York:New York:Leslie County, Kentucky:

  14. Lincoln County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and WindLighting Control DesignKentucky: Energy Resources Jump to:

  15. Franklin County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information HydroFontana,datasetWind FarmKentucky: Energy

  16. Adair County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta Clara, California Sector:NewKentucky: Energy

  17. Butler County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda,Burke County,InformationBushyhead,Iowa:Kentucky:

  18. Campbell County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermits Manual Jump to:(RECP)Point,Kentucky: Energy

  19. Christian County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPower International NewOklahoma: EnergyChowanKentucky: Energy

  20. Scott County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformation Evaluation,SchmidNorth Carolina:94934°,Iowa:Kentucky:

  1. Jackson County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar EnergyEnergyKansas: Energy Resources Jump to:Kentucky:

  2. Knox County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermalKnowlton, Wisconsin:Kentucky:

  3. Kentucky DNR Oil and Gas Division | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii |Island,Kas Farms WindKemp,KenstonKentucky DNR

  4. Kentucky's 2nd congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii |Island,Kas Farms WindKemp,KenstonKentucky

  5. Hart County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| OpenInformation HandbookOhio: EnergyWestOhio:RhodeKentucky:

  6. Henderson County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|InformationInformation Station -Yinge IndustrialKentucky:

  7. Pendleton County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian,Parle BiscuitsPemery Corporation JumpKentucky: Energy

  8. Pike County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy ResourcesPicket Lake,Hampshire:Illinois: EnergyKentucky:

  9. City of Fulton, Kentucky (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCity ofCity ofCity of Fulton, Kentucky

  10. City of Princeton, Kentucky (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity of Okolona,Plummer, IdahoCity of Princeton, Kentucky

  11. Grant County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGove County,Texas:InformationIndiana:Kentucky:

  12. Marion County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez PuebloManteca,Marana,MariesWave)Georgia:Iowa:Kentucky:

  13. Marshall County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,JemezMissouri: EnergyMarlboro, New9972934°,Iowa:Kentucky:

  14. Martin County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,JemezMissouri:Marshfield Hills,Kentucky: Energy Resources

  15. McLean County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy8429°, -88.864698° Show Map Loading map...Kentucky:

  16. Mercer County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee Falls, Wisconsin: EnergyKentucky: Energy Resources Jump

  17. Crittenden County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCp Holdings LlcCrenshawCrete,Crisp County,Kentucky:

  18. TVA - Solar Solutions Initiative (Kentucky) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:Holdings Co08.0 -TEEMP Jump to:TIAX LLCTSNergy JumpKentucky)

  19. Taylor County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:Holdings Co08.0InformationBP SolarKentucky: Energy

  20. Monroe County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast Asia | OpenMonona1851445°,Kentucky: Energy

  1. Montgomery County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,Monterey County, California: Energy879°,Kentucky: Energy

  2. Bath County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIMBarnard,BarrowBastrop County, Texas:Missouri:Kentucky:

  3. Bell County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County,SouthCityStrategy | OpenCounty, Kentucky: Energy

  4. Pulaski County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:ThisPublic PowerKentucky: Energy Resources Jump to:

  5. Russell County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:Roscommon County,Vermont:Kentucky: Energy Resources Jump to:

  6. Fort Knox, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs ValleyCity,ForkedAddDevens,Knox, Kentucky:

  7. Kentucky National Guard Radiation Specialist Course | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approvedof6, 1945: Trinity TestKarenKentucky National Guard

  8. Kentucky - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15 Feb-15BOEJim Turnure,FieldsKentucky

  9. Biological assessment of the effects of construction and operation of a depleted uranium hexafluoride conversion facility at the Paducah, Kentucky, site.

    SciTech Connect (OSTI)

    Van Lonkhuyzen, R.

    2005-09-09T23:59:59.000Z

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF6 inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This biological assessment (BA) has been prepared by DOE, pursuant to the National Environmental Policy Act of 1969 (NEPA) and the Endangered Species Act of 1974, to evaluate potential impacts to federally listed species from the construction and operation of a conversion facility at the DOE Paducah site.

  10. Atmospheric fluidized-bed combustion testing of western Kentucky limestones

    SciTech Connect (OSTI)

    Zimmerman, G.P.; Holcomb, R.S.; Guymon, R.H.

    1982-09-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) is studying and testing the burning of coal in an atmospheric fluidized-bed combustor (AFBC) as a means of generating electricity and/or process heat in an environmentally acceptable manner. The abundant, high-sulfur coal resources in this country can be utilized effectively in such a system. The ORNL test program supporting the 20-MW(e) AFBC pilot plant planned for operation by the Tennessee Valley Authority (TVA) in 1982 is described. During the test program 625 hours of coal combustion were accumulated in a 25-cm-diam bench scale AFBC. The fuel was Kentucky No. 9 coal with about 4% sulfur. Five different limestones from the Western Kentucky area were tested for their ability to reduce sulfur dioxide emissions. The bench scale combustor was operated under a variety of conditions including changes in bed temperature, bed height and superficial velocity. At a superficial velocity of 1.2 m/s, four of the five limestones achieved 90% sulfur retention with weight ratios of limestone feed to coal feed near 0.40:1 under no recycle (once through) operation. Carbon utilization (based on carbon loss data) averaged 84% for these tests. Two of the more promising stones were tested by recycling the material elutriated from the combustor. The amount of fresh limestone required for 90% sulfur retention was reduced by up to 50%. Carbon utilization approaching 98% was obtained under these conditions.

  11. Testing Kentucky Coal to Set Design Criteria for a Lurgi Gasification Plant 

    E-Print Network [OSTI]

    Roeger, A., III; Jones, J. E., Jr.

    1983-01-01T23:59:59.000Z

    Tri-State Synfuels Company, in cooperation with the Commonwealth of Kentucky, undertook a comprehensive coal testing program to support the development of an indirect coal liquefaction project. One of the major elements of the program was a...

  12. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Kentucky

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01T23:59:59.000Z

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Kentucky.

  13. Building on Success: Educational Diversity and Equity in Kentucky Higher Education

    E-Print Network [OSTI]

    The Civil Rights Project/ Proyecto Derechos Civiles

    2008-01-01T23:59:59.000Z

    moving toward graduation. A pilot project will begin thisGraduation Rate Crisis, Cambridge: Harvard Education Press, 2004. The Civil Rights ProjectProjects in Education Research Center, the research arm of Education Week. Kentucky reported a graduation

  14. Testing of Western Kentucky No. 9 coal in an atmospheric fluidized-bed combustor. Technical report

    SciTech Connect (OSTI)

    Pettit, R.

    1984-05-01T23:59:59.000Z

    This report deals with the characterization of a western Kentucky No. 9 coal as an atmospheric fluidized-bed combustor (AFBC) feedstock. It is the first of a series of four reports, each dealing with a different Kentucky coal. All of the coal tests were conducted using an Oregon dolomite from the central Kentucky region. The tests were conducted in a 2 ft. 8 in. x 2 ft. 5 in. atmospheric fluidized bed combustor. The Western Kentucky No. 9 coal tested had a heating value of 12200 Btu/lb. The Oregon dolomite used contained 61% CaCO3 and 31% MgCO3. Detailed feedstock analyses are presented in Appendix E. Seven steady-state test runs were conducted over a two-week period. The runs were at one of 100%, 85%, or 70% loads. The air flowrate, bed temperature, and stack sulfur dioxide emissions rate were kept approximately constant during these tests to facilitate comparison.

  15. Restructuring the urban neighborhood : the dialogue between image and ideology in Phoenix Hill, Louisville, Kentucky

    E-Print Network [OSTI]

    Isaacs, Mark Andrew

    1980-01-01T23:59:59.000Z

    This thesis addresses the problems of restructuring the urban neighborhood as specifically applied to the Phoenix Hill community in Louisville, Kentucky. Theory and concepts are briefly presented as a basis for design ...

  16. Testing Kentucky Coal to Set Design Criteria for a Lurgi Gasification Plant

    E-Print Network [OSTI]

    Roeger, A., III; Jones, J. E., Jr.

    1983-01-01T23:59:59.000Z

    's subcontractors, the Commonwealth of Kentucky or any agency thereof, or the United States Government or any agency thereof. INTRODUCTION Tri-State Synfuels Project Tri-State Synfuels Company, a partnershi of Texas Eastern Corporation and Texas Gas Transmis...Eion Corporat ion affiliates, proposes to produce li~Uid transportation fuels and substitute natural gas rom coal using the indirect liquefaction appr ach (Reference 1). The proj ect is sited in Hende son County, Kentucky and will, if built, use COIer...

  17. Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site

    SciTech Connect (OSTI)

    N /A

    2003-11-28T23:59:59.000Z

    This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Paducah site in northwestern Kentucky (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Paducah to a more stable chemical form suitable for use or disposal. In a Notice of Intent (NOI) published in the ''Federal Register'' (FR) on September 18, 2001 (''Federal Register'', Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (''United States Code'', Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (''Code of Federal Regulations'', Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a ''Federal Register'' Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Paducah site; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride-containing conversion products (hydrogen fluoride [HF] or calcium fluoride [CaF{sub 2}]). Although not part of the proposed action, an option of shipping all cylinders (DUF{sub 6}, low-enriched UF{sub 6} [LEU-UF{sub 6}], and empty) stored at the East Tennessee Technology Park (ETTP) near Oak Ridge, Tennessee, to Paducah rather than to Portsmouth is also considered. In addition, this EIS evaluates a no action alternative, which assumes continued storage of DUF{sub 6} in cylinders at the Paducah site. A separate EIS (DOE/EIS-0360) evaluates the potential environmental impacts for the proposed Portsmouth conversion facility.

  18. Kentucky, Tennessee: corniferous potential may be worth exploring

    SciTech Connect (OSTI)

    Currie, M.T.

    1982-05-01T23:59:59.000Z

    The driller's term, corniferous, refers to all carbonate and clastic strata, regardless of geologic age, underlying the regional unconformity below the late Devonian-early Mississippian New Albany shale and overlying the middle Silurian Clinton shale in the study area. From oldest to youngest, the formations that constitute the corniferous are the middle Silurian Keefer formation, the middle Silurian Lockport dolomite, the upper Silurian Salina formation, the lower Devonian Helderberg limestone, the lower Devonian Oriskanysandstone, the lower Devonian Onondaga limestone, and in the extreme western portion of the study area, the middle Devonian Boyle dolomite. The overlying New Albany shale also is termed Ohio shale or Chattanooga shale in the Appalachian Basin. To drillers, it is known simply as the black shale. The study area is located in E. Kentucky on the western flank of the Appalachian Basin and covers all or parts of 32 counties.

  19. Construction Begins on DOE-Sponsored Carbon-Capture Project at Kentucky

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1.SpaceFluor Federal Services -EnergyPower Plant |

  20. DOE Awards Grants to the Commonwealth of Kentucky, Energy and Environment

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » ContactDepartment ofaProjects |LaboratoryDepartment

  1. Schools Near EM Sites in Kentucky, Ohio Advance to DOE's National Science

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 <Department ofDepartment| DepartmentScale ModelsPerformance |Bowl

  2. Henderson County North Middle School wins 2015 DOE West Kentucky Regional

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe Solar Power ProjectHawai'iPresented By:Science Bowl | Department

  3. Schools Near EM Sites in Kentucky, Ohio Advance to DOE's National Science

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005UNSDepartment of Energy Save the Date! EarthBowl | Department of

  4. A Radiation Laboratory Curriculum Development at Western Kentucky University

    SciTech Connect (OSTI)

    Barzilov, Alexander P.; Novikov, Ivan S.; Womble, Phil C. [Department of Physics and Astronomy, Western Kentucky University, 1906 College Heights Blvd, 11077, Bowling Green KY 42101 (United States)

    2009-03-10T23:59:59.000Z

    We present the latest developments for the radiation laboratory curriculum at the Department of Physics and Astronomy of Western Kentucky University. During the last decade, the Applied Physics Institute (API) at WKU accumulated various equipment for radiation experimentation. This includes various neutron sources (computer controlled d-t and d-d neutron generators, and isotopic 252 Cf and PuBe sources), the set of gamma sources with various intensities, gamma detectors with various energy resolutions (NaI, BGO, GSO, LaBr and HPGe) and the 2.5-MeV Van de Graaff particle accelerator. XRF and XRD apparatuses are also available for students and members at the API. This equipment is currently used in numerous scientific and teaching activities. Members of the API also developed a set of laboratory activities for undergraduate students taking classes from the physics curriculum (Nuclear Physics, Atomic Physics, and Radiation Biophysics). Our goal is to develop a set of radiation laboratories, which will strengthen the curriculum of physics, chemistry, geology, biology, and environmental science at WKU. The teaching and research activities are integrated into real-world projects and hands-on activities to engage students. The proposed experiments and their relevance to the modern status of physical science are discussed.

  5. DOE intends to extend the Advanced Mixed Waste Treatment Project contract

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUMCOSTDOE SolarPrinter-friendly iconofhostsfor

  6. Petrographic characterization of Kentucky coals. Quarterly progress report, December 1982 to February 1983

    SciTech Connect (OSTI)

    Hower, J.C.; Ferm, J.C.; Cobb, J.C.; Trinkle, E.J.; Frankie, K.A.; Poe, S.H.; Baynard, D.N.; Graese, A.M.; Raione, R.P.

    1983-01-01T23:59:59.000Z

    The project Petrographic characterization of Kentucky coals consists of three specific areas of coal petrology: spectral fluorescence of liptinite macerals, properties of semi-inert macerals, and size/form/microlithotype association of pyrite/marcasite. Additional research on the Mannington and Dunbar coals in western Kentucky and the Alma coal zone in eastern Kentucky will apply techniques developed in the first three areas. Suites of coals from other states will also be studied to expand the variability in the sample set. Due to the discrete nature of the projects, the final reports will be submitted in several parts. The first report on spectral fluorescence is in development and should be submitted prior to the end of the project. The other reports will be submitted shortly after the end of the project.

  7. Petrography and chemistry of high-carbon fly ash from the Shawnee Power Station, Kentucky

    SciTech Connect (OSTI)

    Hower, J.C.; Thomas, G.A.; Robertson, J.D.; Wong, A.S. [Univ. of Kentucky, Lexington, KY (United States); Clifford, D.S.; Eady, J.D. [Tennessee Valley Authority, Chattanooga, TN (United States)

    1996-01-01T23:59:59.000Z

    The Shawnee power station in western Kentucky consists of ten 150-MW units, eight of which burn low-sulfur (< 1 wt %) eastern Kentucky and central West Virginia coal. The other units burn medium- and high-sulfur (> 1 wt %) coal in an atmospheric fluidized-bed combustion unit and in a research unit. The eight low-sulfur coal units were sampled in a 1992 survey of Kentucky utilities. Little between-unit variation is seen in the ash-basis major oxide and minor element chemistry. The carbon content of the fly ashes varies from 5 to 25 wt %. Similarly, the isotropic and anisotropic coke in the fly ash varies from 6% to 42% (volume basis). Much of the anisotropic coke is a thin-walled macroporous variety, but there is a portion that is a thick-walled variety similar to a petroleum coke.

  8. Petrography and chemistry of fly ash from the Shawnee Power Station, Kentucky

    SciTech Connect (OSTI)

    Hower, J.C.; Thomas, G.A.; Wild, G.D. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Clifford, D.S.; Eady, J.D. [Tennessee Valley Authority, Chattanooga, TN (United States)

    1994-12-31T23:59:59.000Z

    The Shawnee Power Station in western Kentucky consists of ten 150 MW units, eight of which burn low-sulfur eastern Kentucky and central West Virginia coal. The other units bum medium and high-sulfur coal in an AFBC unit and in a research unit. The eight low-sulfur coal units were sampled in a 1992 survey of Kentucky utilities. Little between-unit variation is seen in the ash-basis major oxide and minor element chemistry. The carbon content of the fly ashes varies from 5 to 25%. Similarly, the isotropic and anisotropic coke in the fly ash varies from 6 to 42% (volume basis). Much of the anisotropic coke is a thin-walled macroporous variety but there is a portion which is a thick-walled variety similar to a petroleum coke.

  9. Testing of Oregon dolomite from central Kentucky in an atmospheric fluidized-bed combustor. Technical report

    SciTech Connect (OSTI)

    Not Available

    1984-12-01T23:59:59.000Z

    This report is the first in a series of six limestone reports, and describes the results of testing of an Oregon dolomite from central Kentucky (1/8 in. x 0, 63% CaCO/sub 3/, 31% MgCO/sub 3/) in a 2 ft/ 8 in. x 2 ft. 5 in., 0.75-MW AFBC. All six limestones (or dolomites) were tested using the same coal, a washed Western Kentucky No. 9 coal (1/4 in. x 0, 3.1% sulfur, 9% ash, 13230 Btu/lb.). Operating problems encountered are described. On the basis of numbers, it was concluded that an economic re-evaluation of low-superficial-velocity fluidized beds is warranted, and that it is feasible to burn high-sulfur coals efficiently in an AFBC when Oregon dolomite from central Kentucky is used as the sulfur sorbent.

  10. Late-Middle to Late Devonian (Givetian-Famennian) tectonic and stratigraphic history of central Kentucky

    SciTech Connect (OSTI)

    Ettensohn, F.R. (Univ. of Kentucky, Lexington, KY (United States). Dept. of Geological Sciences); Barnett, S.F. (Bryan Coll., Dayton, TN (United States)); Norby, R.D. (Illinois State Geological Survey, Champaign, IL (United States))

    1994-04-01T23:59:59.000Z

    Earliest Givetian deposition in central Kentucky is represented in upper parts of the Boyle and Sellersburg formations and reflects marginal-marine to shallow-marine carbonate deposition at the end of the second tectophase of the Acadian orogeny. Inception of the third tectophase of the Acadian orogeny in the area is reflected by a disconformity or angular unconformity between the Boyle and New Albany formations, by reactivation of faults on the Kentucky river and related fault zones, and by concurrent graben formation. Succeeding late Givetian deposition is represented by the equivalent Portwood and Blocher members of the New Albany. The Portwood represents localized deposition of dolomitic breccias and black shales in grabens and half grabens, paleogeographically manifest as a series of restricted coastal lagoons and estuaries in central and east-central Kentucky. In contrast, dolomitic, Blocher black shales in west-central kentucky, beyond the effects of faulting, reflect more open, platform-lagoonal conditions. Both units are carbonate rick, contain a sparse benthic fauna, and had local sources of sediment. By latest Givetian or earliest Frasnian, local basins were largely filed, and when local sediment sources were inundated by transgression, sediment starvation, represented by a major lag zone or bone bed, ensued throughout central Kentucky, while black- and gray-shale deposition continued in deeper parts of the Illinois and Appalachian basins. During the Frasnian and early Famennian, as subsidence and transgression continued, deeper water gray- and black-shale units from the Appalachian and Illinois basins slowly onlapped the Cincinnati Arch area of central Kentucky; black shales in these units are fissile and lack both carbonates and benthic fauna. At the Devonian-Mississippian transition, however, a locally developed unconformity and structurally related erosion probably reflect inception of the fourth and final tectophase of the Acadian orogeny.

  11. Petrographic characterization of Kentucky coals. Final report. Part V. Pyrite size/form/microlithotype distribution in western Kentucky prepared coals and in channel samples from western Kentucky and western Pennsylvania

    SciTech Connect (OSTI)

    Frankle, K.A.; Hower, J.C.

    1983-01-01T23:59:59.000Z

    Pyrite and marcasite distribution has been characterized in several western Kentucky coals, western Pennsylvania coals, and coals from western Kentucky preparation plants using three parameters of size, morphology, and microlithotype association. A classification system was developed to provide a consistent method for recording different pyrite/marcasite types. Sulfides were microscopically measured and placed in one of six size divisions (<5, 5 to 10, 10 to 40, 40 to 75, 75 to 100, or >150..mu..m) rather than absolute size. Five categories (euhedral, framboidal, dendritic, massive, or cleat) describe pyrite/marcasite morphology. The third parameter identifies the microlithotype (vitrite, clarite, inertite, liptite, durite, vitrinertite, trimacerite, or carbominerite) in which the pyrite occurs (not including the measured sulfide). Carbominerite is a mineral/organic association dominated by mineral matter. The percentage of each variable represents the total number of counts per sample and not the volume of pyrite. Throughout the studies, both sulfides are collectively referred to as pyrite unless otherwise specified. This paper describes the different studies which were undertaken to test the usefulness of this pyrite classification system. Systematic trends in pyrite variability were determined for the Springfield coal and Herrin of western Kentucky. Pyrite characterization of the Lower Kittanning coal from western Pennsylvania shows that certain pyrite morphologies can be an expression of the environments deposition of coal bodies. Studies of western Kentucky prepared coals demonstrate that pyrite characterization apparently can provide a method for predicting pyrite behavior and the extent of pyrite removal for specific coals. 77 references, 15 figures, 19 tables.

  12. Final Environmental Assessment and Finding of No Significant Impact: The Implementation of the Authorized Limits Process for Waste Acceptance at the C-746-U Landfill Paducah Gaseous Diffusion Plant Paducah, Kentucky

    SciTech Connect (OSTI)

    N /A

    2002-08-06T23:59:59.000Z

    The US Department of Energy (DOE) has completed an environmental assessment (DOE/EA-1414) for the proposed implementation of the authorized limits process for waste acceptance at the C-746-U Landfill at the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. Based on the results of the impact analysis reported in the EA, which is incorporated herein by this reference, DOE has determined that the proposed action is not a major Federal action that would significantly affect the quality of the human environment within the context of the ''National Environmental Policy Act of 1969'' (NEPA). Therefore preparation of an environmental impact statement is not necessary, and DOE is issuing this Finding of No Significant Impact (FONSI).

  13. Introduction This directory is intended to provide information about compost

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    Introduction This directory is intended to provide information about compost producers herein. If you are a compost supplier in the mid-Atlantic region who would like to be included@vt.edu or 540-231-9739. Compost Producers and Suppliers Name and address Phone (P) [cell (CP), home (HP)], fax

  14. U.S. DOE methodology for the development of geologic storage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    basin level. The US-DOE methodology is intended for external users such as the Regional Carbon Sequestration Partnerships (RCSPs), future project developers, and governmental...

  15. High-sulfur coals in the eastern Kentucky coal field

    SciTech Connect (OSTI)

    Hower, J.C.; Graham, U.M. (Univ. of Kentucky Center for Applied Energy Research, Lexington, KY (United States)); Eble, C.F. (Kentucky Geological Survey, Lexington, KY (United States))

    1993-08-01T23:59:59.000Z

    The Eastern Kentucky coal field is notable for relatively low-sulfur, [open quotes]compliance[close quotes] coals. Virtually all of the major coals in this area do have regions in which higher sulfur lithotypes are common, if not dominant, within the lithologic profile. Three Middle Pennsylvanian coals, each representing a major resource, exemplify this. The Clintwood coal bed is the stratigraphically lowest coal bed mined throughout the coal field. In Whitley County, the sulfur content increase from 0.6% at the base to nearly 12% in the top lithotype. Pyrite in the high-sulfur lithotype is a complex mixture of sub- to few-micron syngenetic forms and massive epigenetic growths. The stratigraphically higher Pond Creek coal bed is extensively mined in portions of the coal field. Although generally low in sulfur, in northern Pike and southern Martin counties the top one-third can have up to 6% sulfur. Uniformly low-sulfur profiles can occur within a few hundred meters of high-sulfur coal. Pyrite occurs as 10-50 [mu]m euhedra and coarser massive forms. In this case, sulfur distribution may have been controlled by sandstone channels in the overlying sediments. High-sulfur zones in the lower bench of the Fire Clay coal bed, the stratigraphically highest coal bed considered here, are more problematical. The lower bench, which is of highly variable thickness and quality, generally is overlain by a kaolinitic flint clay, the consequence of a volcanic ash fall into the peat swamp. In southern Perry and Letcher counties, a black, illite-chlorite clay directly overlies the lower bench. General lack of lateral continuity of lithotypes in the lower bench suggests that the precursor swamp consisted of discontinuous peat-forming environments that were spatially variable and regularly inundated by sediments. Some of the peat-forming areas may have been marshlike in character.

  16. Floodplain/wetland assessment of the effects of construction and operation ofa depleted uranium hexafluoride conversion facility at the Paducah, Kentucky,site.

    SciTech Connect (OSTI)

    Van Lonkhuyzen, R.

    2005-09-09T23:59:59.000Z

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This floodplain/wetland assessment has been prepared by DOE, pursuant to Executive Order 11988 (''Floodplain Management''), Executive Order 11990 (Protection of Wetlands), and DOE regulations for implementing these Executive Orders as set forth in Title 10, Part 1022, of the ''Code of Federal Regulations'' (10 CFR Part 1022 [''Compliance with Floodplain and Wetland Environmental Review Requirements'']), to evaluate potential impacts to floodplains and wetlands from the construction and operation of a conversion facility at the DOE Paducah site. Reconstruction of the bridge crossing Bayou Creek would occur within the Bayou Creek 100-year floodplain. Replacement of bridge components, including the bridge supports, however, would not be expected to result in measurable long-term changes to the floodplain. Approximately 0.16 acre (0.064 ha) of palustrine emergent wetlands would likely be eliminated by direct placement of fill material within Location A. Some wetlands that are not filled may be indirectly affected by an altered hydrologic regime, due to the proximity of construction, possibly resulting in a decreased frequency or duration of inundation or soil saturation and potential loss of hydrology necessary to sustain wetland conditions. Indirect impacts could be minimized by maintaining a buffer near adjacent wetlands. Wetlands would likely be impacted by construction at Location B; however, placement of a facility in the northern portion of this location would minimize wetland impacts. Construction at Location C could potentially result in impacts to wetlands, however placement of a facility in the southeastern portion of this location may best avoid direct impacts to wetlands. The hydrologic characteristics of nearby wetlands could be indirectly affected by adjacent construction. Executive Order 11990, ''Protection of Wetlands'', requires federal agencies to minimize the destruction, loss, or degradation of wetlands, and to preserve and enhance the natural and beneficial uses of wetlands. DOE regulations for implementing Executive Order 11990 as well as Executive Order 11988, ''Floodplain Management'', are set forth in 10 CFR Part 1022. Mitigation for unavoidable impacts may be developed in coordination with the appropriate regulatory agencies. Unavoidable impacts to wetlands that are within the jurisdiction of the USACE may require a CWA Section 404 Permit, which would trigger the requirement for a CWA Section 401 Water Quality Certification from the Commonwealth of Kentucky. A mitigation plan may be required prior to the initiation of construction. Cumulative impacts to floodplains and wetlands are anticipated to be negligible to minor under the proposed action, in conjunction with the effects of existing conditions and other activities. Habitat disturbance would involve settings commonly found i

  17. EIS-0073: Solvent Refined Coal-I Demonstration Project, Daviess County, Kentucky

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to assess the potential environmental, economic and social impacts associated with construction and operation of a 6,000 tons per stream day capacity coal liquefaction facility in Newman, Kentucky, and the potential impacts of a future expansion of the proposed facility to an approximately 30,000 tons per stream day capacity.

  18. Ohio-Kentucky-Indiana Regional Council of Governments Go Solar Ready – Solar Map

    Broader source: Energy.gov [DOE]

    The Ohio-Kentucky-Indiana Regional Council of Governments Go Solar Ready Map provides general information about the estimated annual solar energy potential on building rooftops in the OKI region. The intention of this tool is to provide the user a general understanding of the solar energy available on rooftops in the OKI tristate region.

  19. Reservoir characterization using oil-production-induced microseismicity, Clinton County, Kentucky

    E-Print Network [OSTI]

    -1- Reservoir characterization using oil-production-induced microseismicity, Clinton County;-2- Abstract Microseismic monitoring tests were conducted from 1993 to 1995 in the Seventy-Six oil field, Clinton County, Kentucky. Oil is produced from low-porosity, fractured carbonate rocks at

  20. Drug-FreePolicy University of Kentucky 2012-2013 Undergraduate Bulletin 304

    E-Print Network [OSTI]

    MacAdam, Keith

    Drug-FreePolicy University of Kentucky 2012-2013 Undergraduate Bulletin 304 Policy Statement as a Drug-Free Institution TheUniversityofKentuckyiscommittedtoprovidingahealthyandsafe environment for its, dispensation, distribu- tion or manufacture of alcohol or illicit drugs. Conduct which is violative

  1. Drug-FreePolicy University of Kentucky 2013-2014 Undergraduate Bulletin 318

    E-Print Network [OSTI]

    MacAdam, Keith

    Drug-FreePolicy University of Kentucky 2013-2014 Undergraduate Bulletin 318 Policy Statement as a Drug-Free Institution TheUniversityofKentuckyiscommittedtoprovidingahealthyandsafe environment for its, dispensation, distribu- tion or manufacture of alcohol or illicit drugs. Conduct which is violative

  2. RG1:aased on receipt but intended for use

    E-Print Network [OSTI]

    RG1:aased on receipt but intended for use March 14, 1928 Science Service Feature P W H Y and portable, is much b e t t e r known t o t h e average citizen., In t h i s instrument a thin-walled metal t s reserved by Science Service, Inc.) SCIENCE SERVICE, 21st mci B sts., .Washington, D. ~ C.. #12;

  3. Tri-State Synfuels Project Review: Volume 12. Fluor project status. [Proposed Henderson, Kentucky coal to gasoline plant; engineering

    SciTech Connect (OSTI)

    Not Available

    1982-06-01T23:59:59.000Z

    The purpose of this report is to document and summarize activities associated with Fluor's efforts on the Tri-State Synfuels Project. The proposed facility was to be coal-to-transport fuels facility located in Henderson, Kentucky. Tri-State Synfuels Company was participating in the project as a partner of the US Department of Energy per terms of a Cooperative Agreement resulting from DOE's synfuel's program solicitation. Fluor's initial work plan called for preliminary engineering and procurement services to the point of commitment for construction for a Sasol Fischer-Tropsch plant. Work proceeded as planned until October 1981 when results of alternative coal-to-methanol studies revealed the economic disadvantage of the Synthol design for US markets. A number of alternative process studies followed to determine the best process configuration. In January 1982 Tri-State officially announced a change from Synthol to a Methanol to Gasoline (MTG) design basis. Further evaluation and cost estimates for the MTG facility eventually led to the conclusion that, given the depressed economic outlook for alternative fuels development, the project should be terminated. Official announcement of cancellation was made on April 13, 1982. At the time of project cancellation, Fluor had completed significant portions of the preliminary engineering effort. Included in this report are descriptions and summaries of Fluor's work during this project. In addition location of key project data and materials is identified and status reports for each operation are presented.

  4. Geologic Controls of Hydrocarbon Occurrence in the Appalachian Basin in Eastern Tennessee, Southwestern Virginia, Eastern Kentucky, and Southern West Virginia

    SciTech Connect (OSTI)

    Hatcher, Robert D

    2005-11-30T23:59:59.000Z

    This report summarizes the accomplishments of a three-year program to investigate the geologic controls of hydrocarbon occurrence in the southern Appalachian basin in eastern Tennessee, southwestern Virginia, eastern Kentucky, and southern West Virginia. The project: (1) employed the petroleum system approach to understand the geologic controls of hydrocarbons; (2) attempted to characterize the P-T parameters driving petroleum evolution; (3) attempted to obtain more quantitative definitions of reservoir architecture and identify new traps; (4) is worked with USGS and industry partners to develop new play concepts and geophysical log standards for subsurface correlation; and (5) geochemically characterized the hydrocarbons (cooperatively with USGS). Third-year results include: All project milestones have been met and addressed. We also have disseminated this research and related information through presentations at professional meetings, convening a major workshop in August 2003, and the publication of results. Our work in geophysical log correlation in the Middle Ordovician units is bearing fruit in recognition that the criteria developed locally in Tennessee and southern Kentucky are more extendible than anticipated earlier. We have identified a major 60 mi-long structure in the western part of the Valley and Ridge thrust belt that has been successfully tested by a local independent and is now producing commercial amounts of hydrocarbons. If this structure is productive along strike, it will be one of the largest producing structures in the Appalachians. We are completing a more quantitative structural reconstruction of the Valley and Ridge and Cumberland Plateau than has been made before. This should yield major dividends in future exploration in the southern Appalachian basin. Our work in mapping, retrodeformation, and modeling of the Sevier basin is a major component of the understanding of the Ordovician petroleum system in this region. Prior to our undertaking this project, this system was the least understood in the Appalachian basin. This project, in contrast to many if not most programs undertaken in DOE laboratories, has a major educational component wherein three Ph.D. students have been partially supported by this grant, one M.S. student partially supported, and another M.S. student fully supported by the project. These students will be well prepared for professional careers in the oil and gas industry.

  5. Standard for developing and issuing DOE safety guides and implementation guides

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    This standard establishes the style, format, content, and process for preparing and issuing DOE guides. It is intended for use by all DOE components, including contractors. The DOE guides provide information on DOE`s expectations on meeting the provisions of rules, orders, notices, manuals, immediate action directives, and regulatory standards (requirements documents) or policies.

  6. DOE explosives safety manual

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    The Department of Energy (DOE) policy requires that all DOE activities be conducted in a manner that protects the safety of the public and provides a safe and healthful workplace for employees. DOE has also prescribed that all personnel be protected in any explosives operation undertaken. The level of safety provided shall be at least equivalent to that of the best industrial practice. The risk of death or serious injury shall be limited to the lowest practicable minimum. DOE and contractors shall continually review their explosives operations with the aim of achieving further refinements and improvements in safety practices and protective features. This manual describes the Department's explosive safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives. It is intended to reflect the state-of-the-art in explosives safety. In addition, it is essential that applicable criteria and requirements for implementing this policy be readily available and known to those responsible for conducting DOE programs.

  7. Gaseous diffusion plant transition from DOE to external regulation

    SciTech Connect (OSTI)

    Dann, R.K.; Crites, T.R.; Rahm-Crites, L.K. [Lawrence Livermore National Lab., CA (United States)

    1997-12-01T23:59:59.000Z

    After many years of operation as government-owned/contractor-operated facilities, large portions of the gaseous diffusion plants (GDPs) at Portsmouth, Ohio, and Paducah, Kentucky, were leased to the United States Enrichment Corporation (USEC). These facilities are now certified by the U.S. Nuclear Regulatory Commission (NRC) and subject to oversight by the Occupational Safety and Health Administration (OSHA). The transition from DOE to NRC regulation was more difficult than expected. The original commitment was to achieve NRC certification in October 1995; however, considerably more time was required and transition-related costs escalated. The Oak Ridge Operations Office originally estimated the cost of transition at $60 million; $240 million has been spent to date. The DOE`s experience in transitioning the GDPs to USEC operation with NRC oversight provides valuable lessons (both positive and negative) that could be applied to future transitions.

  8. Compositional characteristics of the Fire Clay coal bed in a portion of eastern Kentucky

    SciTech Connect (OSTI)

    Hower, J.C.; Andrews, W.M. Jr.; Rimmer, S.M. (Univ. of Kentucky, Lexington (United States)); Eble, C.F. (Kentucky Geological Survey, Lexington (United States))

    1991-08-01T23:59:59.000Z

    The Fire Clay (Hazard No. 4) coal bed (Middle Pennsylvanian Breathitt Formation) is one of the most extensively mined coal in eastern Kentucky. The coal is used for metallurgical and steam end uses and, with its low sulfur content, should continue to be a prime steam coal. This study focuses on the petrology, mineralogy, ash geochemistry, and palynology of the coal in an eight 7.5-min quadrangle area of Leslie, Perry, Knott, and Letcher counties.

  9. Influence of penecontemporaneous tectonism on development of Breathitt Formation coals, eastern Kentucky

    SciTech Connect (OSTI)

    Hower, J.C.; Trinkle, E.J.; Pollock, J.D.

    1988-08-01T23:59:59.000Z

    The Middle Pennsylvanian Breathitt Formation coals beds in the central portion of the Eastern Kentucky coal field exhibit changes in lithology, petrology, and chemistry that can be attributed to temporal continuity in the depositional systems. The study interval within northern Perry and Knott Counties includes coals from the Taylor coal bed at the base of the Magoffin marine member upward through the Hazard No. 8 (Francis) coal bed.

  10. Testing of Eastern Kentucky Amburgy coal in an atmospheric fluidized-bed combustor

    SciTech Connect (OSTI)

    Not Available

    1985-01-01T23:59:59.000Z

    This report is the third in a series of four coal reports, and describes the results of testing of an Eastern Kentucky Amburgy coal (1/4 in. x 0, 3.3% sulfur, 11% ash, 12920 Btu/lb.) in a 2 ft. 8 in. x 2 ft. 5 in., 0.75-MW AFBC. All 4 coal tests were conducted using Oregon dolomite from central Kentucky (1/8 in. x 0, 62% CaCO/sub 3/, 31% MgCO/sub 3/) as the sulfur sorbent. Results obtained from eight steady-state test runs at three different loads at a constant superficial velocity of 5.4 ft./s are presented. Operating problems encountered are described. On the basis of numbers, it was concluded that an economic re-evaluation of low-superficial-velocity fluidized beds is warranted, and that it is feasible to burn eastern Kentucky Amburgy coal efficiently in an AFBC while keeping emissions below EPA limits.

  11. Testing of Western Kentucky No. 11 coal in an atmospheric fluidized bed combustor

    SciTech Connect (OSTI)

    Not Available

    1985-01-01T23:59:59.000Z

    This report is the second of a series of four coal reports, and describes the results of testing of a Western Kentucky No. 11 coal (1/4 in. x 0, 3.8% sulfur, 33% ash, 83/50 Btu/lb.) in a 2 ft. 8 in. x 2 ft. 5 in., 0.75-MW AFBC. All four coal tests were conducted using Oregon dolomite from central Kentucky (1/8 in. x 0, 62% CaCO/sub 3/, 31% MgCO/sub 3/) as the sulfur sorbent. Results obtained from eight steady-state test runs at three different loads at a constant superficial velocity of 5 ft./s are presented. Operating problems encountered are described, and include problems with large variations in coal ash and Btu contents, cyclone downleg blockage, moisture in feed material, and fouling of heat-transfer surfaces caused by high carryover rates. On the basis of numbers, it was concluded that an economic re-evaluation of low-superficial-velocity fluidized beds is warranted, and that it is feasible to burn Western Kentucky No. 11 coal efficiently in an AFBC provided that the boiler control system is designed to handle large variations in coal ash and Btu contents.

  12. Testing of Eastern Kentucky Hazard coal in an atmospheric fluidized-bed combustor

    SciTech Connect (OSTI)

    Not Available

    1985-01-01T23:59:59.000Z

    This report is the fourth in a series of four coal reports, and describes the results of testing of an Eastern Kentucky Hazard No. 9 coal (1/4 in. x 0, 3.4% sulfur, 11% ash, 12640 Btu/lb.) in a 2 ft. 8 in. x 2 ft. 5 in., 0.75-MW AFBC. All four coal tests were conducted using Oregon dolomite from central Kentucky (1/8 in. x 0, 62% C-CO/sub 2/, 31% MgCO/sub 2/) as the sulfur sorbent. Results obtained from eight steady-state test runs at three different loads at a constant superficial velocity of 5.4 ft./s are presented. Operating problems encountered are described. On the basis of numbers, it was concluded that an economic re-evaluation of low-superficial velocity fluidized beds is warranted, and that it is feasible to burn Eastern Kentucky Hazard No. 9 coal efficiently in an AFBC while keeping emissions below EPA limits.

  13. Task 16 -- Sampling and analysis at the Vortec vitrification facility in Paducah, Kentucky. Semi-annual report, April 1--September 30, 1997

    SciTech Connect (OSTI)

    Laudal, D.L.; Lilemoen, C.M.; Hurley, J.P.; Ness, S.R.; Stepan, D.J.; Thompson, J.S.

    1997-05-01T23:59:59.000Z

    The Vortec Cyclone Melting System (CMS{reg_sign}) facility, to be located at the US Department of Energy (DOE) Paducah Gaseous Diffusion Plant, is designed to treat soil contaminated with low levels of heavy metals and radioactive elements, as well as organic waste. To assure that costs of sampling and analysis are contained, Vortec and the DOE Federal Energy Technology Center (FETC) have decided that initially the primary focus of the sampling activities will be on meeting permitting requirements of the state of Kentucky. Therefore, sampling will be limited to the feedstock entering the system, and the glass, flue gas, and water leaving the system. The authors provide suggestions for optional sampling points and procedures in case there is later interest in operations or mass balance data. The permits do not require speciation of the materials in the effluents, only opacity, total radioactivity, total particulate, and total HCl emissions for the gaseous emissions and total radioactivity in the water and solid products. In case future testing to support operations or mass balances is required, the authors include in this document additional information on the analyses of some species of interest. They include heavy metals (RCRA [Resource Conservation and Recovery Act] and Cu and Ni), radionuclides (Th{sub 230}, U{sub 235}, Tc{sup 99}, Cs{sup 137}, and Pu{sup 239}), and dioxins/furans.

  14. project information | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems NT0005988 Coal Fuels Alliance: Design and Construction of Early Lead Mini Fischer-Tropsch Refinery University of Kentucky Center for Applied Energy Research (CAER)...

  15. Magoffin County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez Pueblo Area (DOE GTP)Texas: Energy ResourcesMagoffin

  16. Daviess County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility Database DataDatatechnic International SAKentucky: Energy Resources

  17. Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels Clean CitiesStationTrucks

  18. Alternative Fuels Data Center: Kentucky Trucking Company Adds CNG Vehicles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels CleanReduce Operating Costs andGas andto Its

  19. Floyd County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs Valley Area (DOE GTP)TheFloyd

  20. Petrographic characterization of Kentucky coal. Final report. Part III. Petrographic characterization of the Upper Elkhorn No. 2 coal zone of eastern Kentucky

    SciTech Connect (OSTI)

    Raione, R.P.; Hower, J.C.

    1984-01-01T23:59:59.000Z

    This report presents the study of the Upper Elkhorn No. 2 coal zone in the Big Sandy Reserve District and the surrounding area of eastern Kentucky. The seams were analyzed using megascopic and microscopic petrography and chemical methods. The Upper Elkhorn No. 2 consists predominantly of clarain. A fair degree of correlation of fusain bands and clay partings between data sites is apparent. Microscopically, the vitrinite group of macerals are dominant. A rank increase from high volatile B to high volatile A bituminous to the southwest was noted. Pseudovitrinite is associated negatively with vitrinite and has a higher reflectance and microhardness than vitrinite. Both factors may indicate source material and/or environmental differences in the respective origins of the maceral. High inertinite and lipinite areas, low ash and sulfur contents, and the distribution of thin coals may be indicative of paleotopographic highs. 62 references, 26 figures, 8 tables.

  1. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-01-01T23:59:59.000Z

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  2. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-04-01T23:59:59.000Z

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 percent (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  3. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-10-29T23:59:59.000Z

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  4. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-07-28T23:59:59.000Z

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  5. Petrographic characterization of Kentucky coals. Quarterly progress report, September-November 1981

    SciTech Connect (OSTI)

    Hower, J.C.; Ferm, J.C.; Cobb, J.C.; Trinkle, E.J.; Frankie, K.A.; Poe, S.H.; Baynard, D.N.

    1981-01-01T23:59:59.000Z

    The project Petrographic Characterization of Kentucky Coals consists of research in three specific areas of coal petrology: spectral fluorescence of liptinite macerals, properties of semi-inert macerals, and size/form/microlithotype association of pyrite/marcasite. Additional research on the Mannington (No. 4, also known as Mining City and Lewisport) coal will apply techniques developed in the first three areas. Certain suits of coals from other states will also be studied to expand the variability in the samples. Preliminary results are reported.

  6. Air Force program tests production of aviation turbine fuels from Utah and Kentucky bitumens

    SciTech Connect (OSTI)

    Not Available

    1986-09-01T23:59:59.000Z

    Ashland Petroleum Company and Sun Refining and Marketing participated in a US Air Force program to determine the costs, yields, physical characteristics, and chemical properties of aviation turbine fuels, Grades JP-4 and JP-8, produced from Kentucky and Utah bitumens. The processes used by both are summarized; Ashland used a different approach for each bitumen; Sun's processing was the same for both, but different from Ashland's. Chemical and physical properties are tabulated for the two raw bitumens. Properties of the eight fuels produced are compared with specification for similar type aviation turbine fuels.

  7. Fire protection review revisit No. 2, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    Dobson, P.H.; Keller, D.R.; Treece, S.D.

    1990-02-01T23:59:59.000Z

    A fire protection survey was conducted for the Department of Energy at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, from October 30--November 4, November 6--10, and December 4--8, 1989. The purpose of the survey was to review the facility fire protection program and to make recommendations. Surveys of other facilities resulted in a classification system for buildings which provide an indication of the importance of the building to the fulfillment of the mission of the facility. Recommendations in this report reflect to some degree the relative importance of the facility and the time to restore it to useful condition in the event a loss were to occur.

  8. Department Chair Leadership and Management Roles This document is not intended to include every duty or responsibility of every chair; rather, it is intended to

    E-Print Network [OSTI]

    Hemmers, Oliver

    Department Chair Leadership and Management Roles This document is not intended to include every leadership role that is part-administrator (managing, budgeting, scheduling) and part-faculty (teaching and correctives when necessary. Management · Managing the department's curriculum, being conversant

  9. DOE Handbook: Guide to good practices evaluation instrument examples

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    Training evaluation determines a training program`s effectiveness in meeting its intended purpose: producing competent employees. Evaluation is the quality assurance component of a systematic approach to training program. This guide provides information on evaluation instruments used to gather employee, supervisor, and instructor feedback to identify strengths and weaknesses of training programs at DOE facilities. It should be used in conjunction with ``DOE Training Program Handbook: A Systematic Approach to Training`` and ``DOE Handbook, Alternative Systematic Approaches to Training.``

  10. DOE Standard: Fire protection design criteria

    SciTech Connect (OSTI)

    Not Available

    1999-07-01T23:59:59.000Z

    The development of this Standard reflects the fact that national consensus standards and other design criteria do not comprehensively or, in some cases, adequately address fire protection issues at DOE facilities. This Standard provides supplemental fire protection guidance applicable to the design and construction of DOE facilities and site features (such as water distribution systems) that are also provided for fire protection. It is intended to be used in conjunction with the applicable building code, National Fire Protection Association (NFPA) Codes and Standards, and any other applicable DOE construction criteria. This Standard replaces certain mandatory fire protection requirements that were formerly in DOE 5480.7A, ``Fire Protection``, and DOE 6430.1A, ``General Design Criteria``. It also contains the fire protection guidelines from two (now canceled) draft standards: ``Glove Box Fire Protection`` and ``Filter Plenum Fire Protection``. (Note: This Standard does not supersede the requirements of DOE 5480.7A and DOE 6430.1A where these DOE Orders are currently applicable under existing contracts.) This Standard, along with the criteria delineated in Section 3, constitutes the basic criteria for satisfying DOE fire and life safety objectives for the design and construction or renovation of DOE facilities.

  11. Petrographic characterization of Kentucky coals. Quarterly progress report, December 1981-February 1982

    SciTech Connect (OSTI)

    Hower, J.C.; Ferm, J.C.; Cobb, J.C.; Trinkle, E.J.; Frankie, K.A.; Poe, S.H.; Baynard, D.N.

    1982-01-01T23:59:59.000Z

    The project involves three specific areas of coal petrology: spectral fluorescence of liptinite macerals; properties of semi-inert macerals; and size/form/microlithotype association of pyrite/marcasite. Additional research on the Mannington and Dunbar coals in western Kentucky will apply techniques developed in the first three areas. Suites of coals from other states will also be studied to expand the variability for the project which involves the determination of coal rank through the use of fluorescence measurements on sporinite, all samples have been studied and data analysis is still incomplete. Interpretation of results will be presented in future reports. The actual developments of pseudovitrinites are being investigated. Two possible mechanisms for the origin of pseudovitrinites have been suggested. The first mechanism is differential coalification of similar materials. The second factor for influencing the development of pseudovitrinite is an actual difference in original plant composition. Pyrite analysis of western Kentucky coals has been completed, however data reduction is still incomplete. Changes in the petrography of western coals may be related to depositional environments of the coal.

  12. Coal quality trends and distribution of Title III trace elements in Eastern Kentucky coals

    SciTech Connect (OSTI)

    Eble, C.F. [Kentucky Geological Survey, Lexington, KY (United States); Hower, J.C. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1995-12-31T23:59:59.000Z

    The quality characteristics of eastern Kentucky coal beds vary both spatially and stratigraphically. Average total sulfur contents are lowest, and calorific values highest, in the Big Sandy and Upper Cumberland Reserve Districts. Average coal thickness is greatest in these two districts as well. Conversely, the thinnest coal with the highest total sulfur content, and lowest calorific value, on average, occurs in the Princess and Southwest Reserve Districts. Several Title III trace elements, notably arsenic, cadmium, lead, mercury, and nickel, mirror this distribution (lower average concentrations in the Big Sandy and Upper Cumberland Districts, higher average concentrations in the Princess and Southwest Districts), probably because these elements are primarily associated with sulfide minerals in coal. Ash yields and total sulfur contents are observed to increase in a stratigraphically older to younger direction. Several Title III elements, notably cadmium, chromium, lead, and selenium follow this trend, with average concentrations being higher in younger coals. Average chlorine concentration shows a reciprocal distribution, being more abundant in older coals. Some elements, such as arsenic, manganese, mercury, cobalt, and, to a lesser extent, phosphorus show concentration spikes in coal beds directly above, or below, major marine zones. With a few exceptions, average Title III trace element concentrations for eastern Kentucky coals are comparable with element distributions in other Appalachian coal-producing states.

  13. College of Agriculture and School of Human Environmental Sciences University of Kentucky 2011-2012 Undergraduate Bulletin 90

    E-Print Network [OSTI]

    MacAdam, Keith

    College of Agriculture and School of Human Environmental Sciences University of Kentucky 2011-2012 Undergraduate Bulletin 90 M. Scott Smith, Ph.D., is Dean and Director of the College of Agriculture; Nancy M,teaching,extension,andregula- tory functions of the College of Agriculture are combined into a coordinated, mutually support

  14. 85College of Agriculture and School of Human Environmental Sciences University of Kentucky 2008-2009 Undergraduate Bulletin

    E-Print Network [OSTI]

    MacAdam, Keith

    85College of Agriculture and School of Human Environmental Sciences University of Kentucky 2008-2009 Undergraduate Bulletin M. Scott Smith, Ph.D., is Dean and Director of the College of Agriculture; Nancy M. Cox of Agriculture are combined into a coordinated, mutually supporting program of undergraduate

  15. Green River Locks and Dams 3, 4, 5, 6 and Barren River Lock and Dam 1 Disposition, Kentucky

    E-Print Network [OSTI]

    US Army Corps of Engineers

    until 1981 when it was closed due to declining boat traffic. Since the failure of Green River Dam 4 by the dams and the impacts if the pool were to be lost, either by demolition or failure of the lock andGreen River Locks and Dams 3, 4, 5, 6 and Barren River Lock and Dam 1 Disposition, Kentucky 16

  16. Ergonomic Chair Specifications These specifications are intended to address most employees. Employees that have

    E-Print Network [OSTI]

    de Lijser, Peter

    Ergonomic Chair Specifications These specifications are intended to address most employees should consult Environmental Health & Safety if they require a special ergonomic chair. a. Any chair must

  17. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-04-26T23:59:59.000Z

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  18. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-07-29T23:59:59.000Z

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  19. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-08-01T23:59:59.000Z

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library are being sampled to collect CO{sub 2} adsorption isotherms. Sidewall core samples have been acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log has been acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 4.62 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 19 scf/ton in less organic-rich zones to more than 86 scf/ton in the Lower Huron Member of the shale. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  20. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-01-01T23:59:59.000Z

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  1. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-01-28T23:59:59.000Z

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  2. Geologic Controls of Hydrocarbon Occurrence in the Southern Appalachian Basin in Eastern Tennessee, Southwestern Virginia, Eastern Kentucky, and Southern West Virginia

    SciTech Connect (OSTI)

    Robert D. Hatcher

    2004-05-31T23:59:59.000Z

    This report summarizes the second-year accomplishments of a three-year program to investigate the geologic controls of hydrocarbon occurrence in the southern Appalachian basin in eastern Tennessee, southwestern Virginia, eastern Kentucky, and southern West Virginia. The project: (1) employs the petroleum system approach to understand the geologic controls of hydrocarbons; (2) attempts to characterize the T-P parameters driving petroleum evolution; (3) attempts to obtain more quantitative definitions of reservoir architecture and identify new traps; (4) is working with USGS and industry partners to develop new play concepts and geophysical log standards for subsurface correlation; and (5) is geochemically characterizing the hydrocarbons (cooperatively with USGS). Second-year results include: All current milestones have been met and other components of the project have been functioning in parallel toward satisfaction of year-3 milestones. We also have been effecting the ultimate goal of the project in the dissemination of information through presentations at professional meetings, convening a major workshop in August 2003, and the publication of results. Our work in geophysical log correlation in the Middle Ordovician units is bearing fruit in recognition that the criteria developed locally in Tennessee and southern Kentucky have much greater extensibility than anticipated earlier. We have identified a major 60 mi-long structure in the western part of the Valley and Ridge thrust belt that is generating considerable exploration interest. If this structure is productive, it will be one of the largest structures in the Appalachians. We are completing a more quantitative structural reconstruction of the Valley and Ridge than has been made before. This should yield major dividends in future exploration in the southern Appalachian basin. Our work in mapping, retrodeformation, and modeling of the Sevier basin is a major component of the understanding of the Ordovician petroleum system in this region. Prior to our undertaking this project, this system was the least understood in the Appalachian basin. We have made numerous presentations, convened a workshop, and are beginning to disseminate our results in print. This project, in contrast to many if not most programs undertaken in DOE laboratories, has a major educational component wherein three Ph.D. students have been partially supported by this grant, one M.S. student partially supported, and another M.S. student fully supported by the project. These students will be well prepared for professional careers in the oil and gas industry.

  3. Notice of Intent to Develop DOE O 470.X, Insider Threat Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-10-17T23:59:59.000Z

    The Order establishes top-level responsibilities and requirements for DOE's Insider Threat Program, which is intended to deter, detect, and mitigate insider threat actions by all Federal and contractor employees.

  4. Summary of Carbon Storage Project Public Information Meeting and Open House, Hawesville, Kentucky, October 28, 2010

    SciTech Connect (OSTI)

    David Harris; David Williams; J. Richard Bowersox; Hannes Leetaru

    2012-06-01T23:59:59.000Z

    The Kentucky Geological Survey (KGS) completed a second phase of carbon dioxide (CO{sub 2}) injection and seismic imaging in the Knox Group, a Cambrianâ?Ordovician dolomite and sandstone sequence in September 2010. This work completed 2 years of activity at the KGS No. 1 Marvin Blan well in Hancock County, Kentucky. The well was drilled in 2009 by a consortium of State and industry partners (Kentucky Consortium for Carbon Storage). An initial phase of CO{sub 2} injection occurred immediately after completion of the well in 2009. The second phase of injection and seismic work was completed in September 2010 as part of a U.S. DOEâ??funded project, after which the Blan well was plugged and abandoned. Following completion of research at the Blan well, a final public meeting and open house was held in Hancock County on October 28, 2010. This meeting followed one public meeting held prior to drilling of the well, and two onâ?site visits during drilling (one for news media, and one for school teachers). The goal of the final public meeting was to present the results of the project to the public, answer questions, and address any concerns. Despite diligent efforts to publicize the final meeting, it was poorly attended by the general public. Several local county officials and members of the news media attended, but only one person from the general public showed up. We attribute the lack of interest in the results of the project to several factors. First, the project went as planned, with no problems or incidents that affected the local residents. The fact that KGS fulfilled the promises it made at the beginning of the project satisfied residents, and they felt no need to attend the meeting. Second, Hancock County is largely rural, and the technical details of carbon sequestration were not of interest to many people. The county officials attending were an exception; they clearly realized the importance of the project in future economic development for the county.

  5. Petrographic investigation of River Gem Coal, Whitley County, eastern Kentucky Coal Field

    SciTech Connect (OSTI)

    Pollock, J.D.; Hower, J.C.

    1987-09-01T23:59:59.000Z

    The River Gem coal of the Breathitt Formation (Middle Pennsylvanian) was studied at three sites in a surface mine in the Holly Hill quadrangle, Whitley County, Kentucky. The River Gem coal is correlative with the Lily and Manchester coals in neighboring Knox, Laurel, and Clay Counties, Kentucky, and the Clintwood coal in Pike County, Kentucky. At the northern site, a 14-cm rider is separated from the 92.5-cm seam by 22 cm of shale. At the two southern sites, the rider is missing. At the latter sites, the 10 cm thick top bench of the seam is separated from the lower 63 cm of the seam by a 14-cm bony lithotype not found at the northern site. The lower 63 cm of the seam in the south and the main seam in the north are characterized by moderate ash and sulfur percentages (4.4-6.8% ash, 1.4-2.3% total sulfur, 0.6-1.1% pyritic sulfur, 74-81% vitrinite, 23-32% Fe/sub 2/O/sub 3/, and 2.3-4.5% CaO). In contrast, the upper bench in the south and the rider have 18.7-27.0% ash, 8.8-11.4% total sulfur, 5.1-6.4% pyritic sulfur, 92.3-93.6% vitrinite, 45.7-57.8% Fe/sub 2/O/sub 3/ and 0.13-0.20% CaO. The bone has over 26% ash, 5.5% total sulfur, 3.2% pyritic sulfur, and 93.1% vitrinite. The overall similarity of the seam and rider characteristics between the north and south suggests that the southern bone is the lateral equivalent of the northern shale. The sulfide in the upper bench or rider and in the bone consists of fine (generally less than 10 ..mu..m), euhedral and framboidal pyrite with common massive pyrite. Massive pyrite appears as an overgrowth of fine pyrite in some places. Massive forms of marcasite, less abundant than pyrite, exhibit some evidence of developing later than the massive pyrite. A variety of < 2-..mu..m pyrite occurs as abundant, but isolated, unidimensional to tabular grains within corpocollinite, some of which is transitional to resinite.

  6. Characterization of feed coal and coal combustion products from power plants in Indiana and Kentucky

    SciTech Connect (OSTI)

    Brownfield, M.E.; Affolter, R.H.; Cathcart, J.D.; O'Connor, J.T.; Brownfield, I.K.

    1999-07-01T23:59:59.000Z

    The US Geological Survey, Kentucky Geological Survey, and the University of Kentucky Center for Applied Energy Research are collaborating with Indiana and Kentucky utilities to determine the physical and chemical properties of feed coal and coal combustion products (CCP) from three coal-fired power plants. These three plants are designated as Units K1, K2, and I1 and burn high-, moderate-, and low-sulfur coals, respectively. Over 200 samples of feed coal and CCP were analyzed by various chemical and mineralogical methods to determine mode of occurrence and distribution of trace elements in the CCP. Generally, feed coals from all 3 Units contain mostly well-crystallized kaolinite and quartz. Comparatively, Unit K1 feed coals have higher amounts of carbonates, pyrite and sphalerite. Unit K2 feed coals contain higher kaolinite and illite/muscovite when compared to Unit K1 coals. Unit I1 feed coals contain beta-form quartz and alumino-phosphates with minor amounts of calcite, micas, anatase, and zircon when compared to K1 and K2 feed coals. Mineralogy of feed coals indicate that the coal sources for Units K1 and K2 are highly variable, with Unit K1 displaying the greatest mineralogic variability; Unit I1 feed coal however, displayed little mineralogic variation supporting a single source. Similarly, element contents of Units K1 and K2 feed coals show more variability than those of Unit I1. Fly ash samples from Units K1 and K2 consist mostly of glass, mullite, quartz, and spines group minerals. Minor amounts of illite/muscovite, sulfates, hematite, and corundum are also present. Spinel group minerals identified include magnetite, franklinite, magnesioferrite, trevorite, jacobisite, and zincochromite. Scanning Electron Microscope analysis reveals that most of the spinel minerals are dendritic intergrowths within aluminum silicate glass. Unit I1 fly ash samples contain glass, quartz, perovskite, lime, gehlenite, and apatite with minor amounts of periclase, anhydrite, carbonates, pyroxenes, and spinels. The abundant Ca mineral phases in the Unit I1 fly ashes are attributed to the presence of carbonate, clay and phosphate minerals in the coal.

  7. Petrographic characterization of Kentucky coals: relationship between sporinite spectral fluorescence and coal rank of selected western Kentucky coals. Final report, Part I. [Vitrinite

    SciTech Connect (OSTI)

    Poe, S.H.; Hower, J.C.

    1983-01-01T23:59:59.000Z

    A total of 43 coal samples were analyzed - the majority from western Kentucky, with a few from Pennsylvania for comparative purposes - using quantitative fluorescence microscopy of sporinite to determine if coal rank as determined by vitrinite maximum reflectance could be predicted by data gathered from selected fluorescence parameters. All eight parameters (wavelength of highest intensity, area under curve to the left of the peak, area in the blue wavelengths (400 to 500 nm), green (500 to 570 nm), yellow (570 to 630 nm), blue-red ratio, and red-green ratio were found to statistically predict coal rank. The general research hypothesis, which included all the variables, had a R/sup 2/ = 0.354. The results of the step-wise regression yielded red and yellow (collective R/sup 2/ = 0.341) as the best predictor variables of coal rank. The individual parameters of area of red wavelength and blue-red ratio accounted for the greatest variance in predicting coal rank, while the parameter yellow area was the least predictive of coal rank. 31 references, 7 figures, 5 tables.

  8. DOE Nuclear Weapon Reliability Definition: History, Description, and Implementation

    SciTech Connect (OSTI)

    Wright, D.L.; Cashen, J.J.; Sjulin, J.M.; Bierbaum, R.L.; Kerschen, T.J.

    1999-04-01T23:59:59.000Z

    The overarching goal of the Department of Energy (DOE) nuclear weapon reliability assessment process is to provide a quantitative metric that reflects the ability of the weapons to perform their intended function successfully. This white paper is intended to provide insight into the current and long-standing DOE definition of nuclear weapon reliability, which can be summarized as: The probability of achieving the specified yield, at the target, across the Stockpile-To-Target Sequence of environments, throughout the weapon's lifetime, assuming proper inputs.

  9. Pond Creek coal seam in eastern Kentucky - new look at an old resource

    SciTech Connect (OSTI)

    Hower, J.C.; Pollock, J.D.; Klapheke, J.G.

    1986-05-01T23:59:59.000Z

    The Middle Pennsylvania/Westphalian B Pond Creek Coal is an important low-sulfur resource in Pike and Martin Counties, Kentucky. The Breathitt Formation seam, also known as the lower Elkhorn coal, accounted for nearly 40% of Pike County's 1983 production of 22 million tons. Although the coal is nearly mined out through central Pike County, substantial reserves still exist in the northern part of the county. Past studies of the seam by the US Bureau of Mines concentrated on the utility of the seam as a coking blend, with additional consideration of the megascopic and microscopic coal petrology. The authors research has focused on the regional variations in the Pond Creek seam, with emphasis on the petrographic variations.

  10. Coal metamorphism in the upper portion of the Pennsylvanian Sturgis Formation in Western Kentucky

    SciTech Connect (OSTI)

    Hower, J.C.

    1983-12-01T23:59:59.000Z

    Coals from the Pennsylvanian upper Sturgis Formation (Mississippian and Virginian) were sampled from a borehole in Union County, western Kentucky. The coals exhibited two discrete levels of metamorphism. The lower rank coals of high-volatile C bituminous rank were assumed to represent the normal level of metamorphism. A second set of coals of high-volatile A bituminous rank was found to be associated with sphalerite, chlorite, and twinned calcite. The latter mineral assemblages indicate that hydrothermal metamorphism was responsible for the anomalous high rank. Consideration of the sphalerite fluid-inclusion temperatures from nearby ores and coals and the time - temperature aspects of the coal metamorphism suggests that the hydrothermal metamorphic event was in the 150 to 200 C range for a brief time (10/sup 5/-10/sup 5/and yr), as opposed to the longer term (25-50m yr) 60 to 75 C ambient metamorphism.

  11. Petrographic and geochemical anatomy of lithotypes from the Blue Gem coal bed, Southeastern Kentucky

    SciTech Connect (OSTI)

    Hower, J.C.; Taulbee, D.N.; Morrell, L.G. [Univ. of Kentucky, Lexington, KY (United States)] [and others

    1994-12-31T23:59:59.000Z

    The nature of the association of major, minor, and trace elements with coal has been the subject of intensive research by coal scientists (Swaine; and references cited therein). Density gradient centrifugation (DGC) offers a technique with which ultrafine coal particles can be partitioned into a density spectrum, portions of which represent nearly pure monomaceral concentrates. DGC has been typically conducted on demineralized coals assuring, particularly at lower specific gravities, that the resulting DGC fractions would have very low ash contents. In order to determine trends in elemental composition, particularly with a view towards maceral vs. mineral association, it is necessary to avoid demineralization. To this end the low-ash, low-sulfur Blue Gem coal bed (Middle Pennsylvanian Breathitt Formation) from Knox County, Kentucky, was selected for study. The objective of this study was to determine the petrography and chemistry, with particular emphasis on the ash geochemistry, of DGC separates of lithotypes of the Blue Gem coal bed.

  12. Stress, seismicity and structure of shallow oil reservoirs of Clinton County, Kentucky. Final report

    SciTech Connect (OSTI)

    Hamilton-Smith, T. [Kentucky Geological Survey, Lexington, KY (United States)

    1995-12-12T23:59:59.000Z

    Between 1993 and 1995 geophysicists of the Los Alamos National Laboratory, in a project funded by the US Department of Energy, conducted extensive microseismic monitoring of oil production in the recently discovered High Bridge pools of Clinton County and were able to acquire abundant, high-quality data in the northern of the two pools. This investigation provided both three-dimensional spatial and kinetic data relating to the High Bridge fracture system that previously had not been available. Funded in part by the Los Alamos National Laboratory, the Kentucky Geological Survey committed to develop a geological interpretation of these geophysical results, that would be of practical benefit to future oils exploration. This publication is a summary of the results of that project. Contents include the following: introduction; discovery and development; regional geology; fractured reservoir geology; oil migration and entrapment; subsurface stress; induced seismicity; structural geology; references; and appendices.

  13. Palynologic and petrographic cycles in the McLeansboro Group, Western Kentucky

    SciTech Connect (OSTI)

    Hower, J.C. (Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research); Helfrich, C.T. (Eastern Kentucky Univ., Richmond, KY (United States)); Williams, D.A. (Kentucky Geological Survey, Henderson, KY (United States))

    1992-01-01T23:59:59.000Z

    The McLeansboro Group in the Western Kentucky coal field spans the upper Desmoinesian and the Missourian and Virgilian series. Extensive drilling has demonstrated the lateral continuity of major and minor beds in the group, making it possible to study vertical and lateral changes in palynology and petrology. The Desmoinesian (Westphalian D) Baker (No. 13) and Wheatcroft (No. 13a) coal beds were included in the study but the primary emphasis is on the Missourian and Virgilian (Stephanian) coals. Patoka fm (lower Missourian) coals are dominated by tree fern spores with lesser sphenopsids, ferns, and cordaites. This is in marked contrast to the arborescent lycopod-dominated Desmoinesian coals. Only the No. 15 coal bed exceeds 80% vitrinite with the No. 16 coal bed vitrinite content of < 72% being the lowest of any Western Kentucky humic coal. The Bond Fm. (upper Missourian) represents a distinct floristic cycle with a greater diversity of plant groups including herbaceous lycopods, relatively minor contributors to the Patoka coals. The coals generally exceed 80% vitrinite. The Mattoon Fm. (Virgilian) coals have a variety of polynomorph assemblages. The low-sulfur Geiger Lake coal bed is dominated by tree ferns with important contributions from ferns and sphenopsids. Similar to the underlying tree fern interval, vitrinite contents are <80%. The uppermost Mattoon coals are dominated by ferns and are notable in being the only >1 m thick coals in the Stephanian portion of the section, with the top coal being 4.3 m thick. The uppermost coals are generally > 80% vitrinite. The palynologic/petrographic cycles appear to represent fluctuating dry (low vitrinite) and wet intervals within the Missourian/Virgilian which itself was drier than the Desmoinesian.

  14. DOE methods for evaluating environmental and waste management samples.

    SciTech Connect (OSTI)

    Goheen, S C; McCulloch, M; Thomas, B L; Riley, R G; Sklarew, D S; Mong, G M; Fadeff, S K [eds.; Pacific Northwest Lab., Richland, WA (United States)

    1994-04-01T23:59:59.000Z

    DOE Methods for Evaluating Environmental and Waste Management Samples (DOE Methods) provides applicable methods in use by. the US Department of Energy (DOE) laboratories for sampling and analyzing constituents of waste and environmental samples. The development of DOE Methods is supported by the Laboratory Management Division (LMD) of the DOE. This document contains chapters and methods that are proposed for use in evaluating components of DOE environmental and waste management samples. DOE Methods is a resource intended to support sampling and analytical activities that will aid in defining the type and breadth of contamination and thus determine the extent of environmental restoration or waste management actions needed, as defined by the DOE, the US Environmental Protection Agency (EPA), or others.

  15. DOE HANDBOOK

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project|StatementDOE FuelProgram |Guide for

  16. DOE-0336

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUMCOSTDOENuclear EnergyMeetingMetricDOE,to

  17. DOE-0344

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUMCOSTDOENuclear EnergyMeetingMetricDOE,to4

  18. Name: Intended quarter of entry: Academic Planning Worksheet for Aeronautics & Astronautics

    E-Print Network [OSTI]

    Queitsch, Christine

    Name: Intended quarter of entry: Academic Planning Worksheet for Aeronautics & Astronautics://engr.washington.edu/uapp. Visit the general catalog for more information on this major: www.washington.edu/students/gencat/academic/aeronautics

  19. Program in Functional Genomics of Autoimmunity and Immunology of yhe University of Kentucky and the University of Alabama

    SciTech Connect (OSTI)

    Alan M Kaplan

    2012-10-12T23:59:59.000Z

    This grant will be used to augment the equipment infrastructure and core support at the University of Kentucky and the University of Alabama particularly in the areas of genomics/informatics, molecular analysis and cell separation. In addition, we will promote collaborative research interactions through scientific workshops and exchange of scientists, as well as joint exploration of the role of immune receptors as targets in autoimmunity and host defense, innate and adaptive immune responses, and mucosal immunity in host defense.

  20. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-04-28T23:59:59.000Z

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  1. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-02-11T23:59:59.000Z

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  2. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-02-10T23:59:59.000Z

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  3. Implementation Guide - Performance Indicators (Metrics ) for Use with DOE O 440.2B, Aviation Management and Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-09-19T23:59:59.000Z

    The Guide provides information regarding specific provisions of DOE O 440.2B and is intended to be useful in understanding and implementing performance indicators (metrics) required by the Order. Cancels DOE G 440.2B-1. Canceled by DOE N 251.98.

  4. DOE Policy on Decommissioning DOE Facilities Under CERCLA | Department...

    Broader source: Energy.gov (indexed) [DOE]

    DOE Policy on Decommissioning DOE Facilities Under CERCLA DOE Policy on Decommissioning DOE Facilities Under CERCLA In May 1995, the Department of Energy (DOE) issued a policy in...

  5. DOE/OR/07-2119&D2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessment Summary Tables HI hazard index HQ hazard quotient HSWA Hazardous and Solid Waste Amendment IRIS Integrated Risk Information System KDEP Kentucky Department for...

  6. Geologic controls on sulfur content of the Blue Gem coal seam, southeastern Kentucky

    SciTech Connect (OSTI)

    Rimmer, S.M.; Moore, T.A.; Esterle, J.S.; Hower, J.C.

    1985-01-01T23:59:59.000Z

    Detailed petrographic and lithologic data on the Blue Gem coal seam for a local area in Knox County, Kentucky, suggest that a relationship may exist between overlying roof lithology, petrographic composition of the coal, and sulfur content. In the western part of the area, where thick (20-40 feet) shale sequences overlie the coal, sulfur contents are low (less than 1%). In isolated areas where discontinuous sandstones occur within 6 feet of the coal, sulfur contents range from 1% to over 3%. In the east, a sandstone body usually overlies and frequently scours out the coal, yet sulfur content varies independently of roof lithology. Towards the east, there is an increase in abundance, thickness and variability of fusain bands within the coal and an increase in pyrite and siderite either as cell fillings in fusinite or as masses within vitrinite; early emplacement of these minerals is indicated by compaction features. Data suggest the importance of depositional environment of the peat and overlying sediments as a control on sulfur occurrence. High sulfur contents in the west are related to sandstone bodies which may have allowed sulfate-bearing waters to permeate into the peat. In the east, where increases in pyrite, siderite and fusain content of the coal and coarsening of the overlying sediments suggest a change in environment, the presence or absence of pyrite-containing fusain bands may account for sulfur variability. Siderite occurrence may reflect local fluctuations in sulfate supply to the peat swamp.

  7. Project plan for the background soils project for the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The Background Soils Project for the Paducah Gaseous Diffusion Plant (BSPP) will determine the background concentration levels of selected naturally occurring metals, other inorganics, and radionuclides in soils from uncontaminated areas in proximity to the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. The data will be used for comparison with characterization and compliance data for soils, with significant differences being indicative of contamination. All data collected as part of this project will be in addition to other background databases established for the PGDP. The BSPP will address the variability of surface and near-surface concentration levels with respect to (1) soil taxonomical types (series) and (2) soil sampling depths within a specific soil profile. The BSPP will also address the variability of concentration levels in deeper geologic formations by collecting samples of geologic materials. The BSPP will establish a database, with recommendations on how to use the data for contaminated site assessment, and provide data to estimate the potential human and health and ecological risk associated with background level concentrations of potentially hazardous constituents. BSPP data will be used or applied as follows.

  8. An aerial radiological survey of the Paducah Gaseous Diffusion Plant and surrounding area, Paducah, Kentucky

    SciTech Connect (OSTI)

    Not Available

    1992-11-01T23:59:59.000Z

    An aerial radiological survey of the Paducah Gaseous Diffusion Plant (PGDP) and surrounding area in Paducah, Kentucky, was conducted during May 15--25, 1990. The purpose of the survey was to measure and document the terrestrial radiological environment at the PGDP and surrounding area for use in effective environmental management and emergency response planning. The aerial survey was flown at an altitude of 61 meters (200 feet) along a series of parallel lines 107 meters (350 feet) apart. The survey encompassed an area of 62 square kilometers (24 square miles), bordered on the north by the Ohio River. The results of the aerial survey are reported as inferred exposure rates at 1 meter above ground level in the form of a gamma radiation contour map. Typical background exposure rates were found to vary from 5 to 12 microroentgens per hour ([mu]R/h). Protactinium-234m, a radioisotope indicative of uranium-238, was detected at several facilities at the PGDR. In support of the aerial survey, ground-based exposure rate and soil sample measurements were obtained at several sites within the survey perimeter. The results of the aerial and ground-based measurements were found to agree within [plus minus]15%.

  9. New industrial heat pump applications to a synthetic rubber production, Louisville, Kentucky

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    The site selected for this study is the American Synthetic Rubber Corporation's polybutadiene plant in Louisville, Kentucky. The objective of this study is to further identify the energy savings potential through advanced heat pumps and other energy conservation methods developed in the context of pinch technology. The process studied involves a solution polymerization of butadiene monomer in the presence of toluene, which acts as a solvent. The results indicate that there is an excellent prospect for heat integration and heat pump application. The heat integration option requires an investment of about 8900 sq. ft. in additional area, to save about one third of the present steam consumption. Two process streams were identified for potential heat pump application. One of them is the combined overhead vapor stream from the stripping section, composed of steam and toluene mixture. The other stream is the overhead vapor from the concentration section, composed mainly of toluene. Economic analysis were performed, both for closed cycle and semi open cycle heat pumps. The potential for semi-open cycle (MVR) hear pumps looks extremely good. 15 figs., 11 tabs.

  10. Community Energy Systems and the Law of Public Utilities. Volume Nineteen. Kentucky

    SciTech Connect (OSTI)

    Feurer, D A; Weaver, C L

    1981-01-01T23:59:59.000Z

    A detailed description is given of the laws and programs of the State of Kentucky governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  11. Health-hazard evaluation report No. HETA-88-377-2120, Armco Coke Oven, Ashland Kentucky

    SciTech Connect (OSTI)

    Kinnes, G.M.; Fleeger, A.K.; Baron, S.L.

    1991-06-01T23:59:59.000Z

    In response to a request from the Oil, Chemical and Atomic Workers International Union, a study was made of possible hazardous working conditions at ARMCO Coke Oven (SIC-3312), Ashland, Kentucky. The facility produces about 1,000,000 tons of coke annually. Of the approximately 400 total employees at the coke oven site, 55 work in the by products area. Air quality sampling results indicated overexposure to both benzene (71432) and coal tar pitch volatiles (CTPVs). Airborne levels of benzene ranged as high as 117 parts per million (ppm) with three of 17 samples being above the OSHA limit of 1ppm. Airborne concentrations of CTPVs ranged as high as 0.38mg/cu m with two of six readings being above OSHA limit of 0.2mg/cu m. Several polynuclear aromatic hydrocarbons were also detected. The authors conclude that by products area workers are potentially overexposed to carcinogens, including benzene, CTPVs, and polynuclear aromatic hydrocarbons. An epidemiologic study is considered unlikely to yield meaningful information at this time, due to the small number of workers and the short follow up period. The authors recommend specific measures for reducing potential employee exposures, including an environmental sampling program, a preventive maintenance program, improved housekeeping procedures, and reducing exposure in operators' booths.

  12. Evaluation of the Berea sandstone formation in eastern Pike County, Kentucky

    SciTech Connect (OSTI)

    Frantz, J.H. Jr. (S.A. Holditch Associates, Inc., Pittsburgh, PA (United States)); Luffel, D. (ResTech Houston, Inc., Houston, TX (United States)); Kubik, W. (K A Energy Consultants, Tulsa, OK (United States))

    1993-08-01T23:59:59.000Z

    The Gas Research Institute (GRI) has been sponsoring a cooperative well program with Ashland Exploration, Inc., (AEI) during the past two years targeting the Devonian Shale and Berea sandstone formations in Pike County of eastern Kentucky. Operators typically complete both the shales and Berea in one well bore in this area. This presentation summarizes the research results of the Berea cooperative well, the COOP 2 (Ashland FMC 80). The specific objectives of the Berea evaluation in the COOP 2 were to develop an integrated reservoir description for stimulation design and predicting long-term well performance, identify geologic production controls, determine the in-situ stress profile, and develop Berea log interpretation models for gas porosity and stress. To satisfy these objectives, data were collected and analyzed from 146 ft of whole core, open-hole geophysical logs, including formation microscanner and digital sonic, in-situ stress measurements, and prefracture production and pressure transient tests. In addition, data from a minifracture, a fracture stimulation treatment, and postfracture performance tests were analyzed. The authors determined the integrated reservoir/hydraulic fracture descriptions from analyzing the data collected in the open- and cased-hole, in addition to the log interpretation models developed to accurately predict gas porosity and stress profiles. Results can be applied by operators to better understand the Berea reservoir in the study area, predict well performance, and design completion procedures and stimulation treatments. The methodology can also be applied to other tight-gas sand formations.

  13. Review of earthquake hazard assessments of plant sites at Paducah, Kentucky, and Portsmouth, Ohio

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    Members of the US Geological Survey staff in Golden, Colorado, have reviewed the submissions of Lawrence Livermore National Laboratory (LLNL) staff and of Risk Engineering, Inc. (REI) (Golden, Colorado) for seismic hazard estimates for Department of Energy facilities at Portsmouth, Ohio, and Paducah, Kentucky. We reviewed the historical seismicity and seismotectonics near the two sites, and general features of the LLNL and EPRI/SOG methodologies used by LLNL and Risk Engineering respectively, and also the separate Risk Engineering methodology used at Paducah. We discussed generic issues that affect the modeling of both sites, and performed alternative calculations to determine sensitivities of seismic hazard results to various assumptions and models in an attempt to assign reasonable bounding values of the hazard. In our studies we find that peak acceleration values of 0.08 g for Portsmouth and 0.32 g for Paducah represent central values of the ground motions obtained at 1000-year return periods. Peak accelerations obtained in the LLNL and Risk Engineering studies have medians near these values (results obtained using the EPRI/SOG methodology appear low at both sites), and we believe that these medians are appropriate values for use in the evaluation of systems, structures, and components for seismic structural integrity and for the seismic design of new and improved systems, structures, and components at Portsmouth and Paducah.

  14. Review of earthquake hazard assessments of plant sites at Paducah, Kentucky and Portsmouth, Ohio

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    Members of the US Geological Survey staff in Golden, Colorado, have reviewed the submissions of Lawrence Livermore National Laboratory (LLNL) staff and of Risk Engineering, Inc. (REI) (Golden, Colorado) for seismic hazard estimates for Department of Energy facilities at Portsmouth, Ohio, and Paducah, Kentucky. We reviewed the historical seismicity and seismotectonics near the two sites, and general features of the LLNL and EPRI/SOG methodologies used by LLNL and Risk Engineering respectively, and also the separate Risk Engineering methodology used at Paducah. We discussed generic issues that affect the modeling of both sites, and performed alternative calculations to determine sensitivities of seismic hazard results to various assumptions and models in an attempt to assign reasonable bounding values of the hazard. In our studies we find that peak acceleration values of 0.08 g for Portsmouth and 0.32 g for Paducah represent central values of the, ground motions obtained at 1000-year return periods. Peak accelerations obtained in the LLNL and Risk Engineering studies have medians near these values (results obtained using the EPRI/SOG methodology appear low at both sites), and we believe that these medians are appropriate values for use in the evaluation of systems, structures, and components for seismic structural integrity and for the seismic design of new and improved systems, structures, and components at Portsmouth and Paducah.

  15. DOE-FLEX: DOE's Telework Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-02-11T23:59:59.000Z

    The order establishes the requirements and responsibilities for the Departments telework program. Cancels DOE N 314.1.

  16. DOE program guide for universities and other research groups. Part I. DOE Research and Development Programs; Part II. DOE Procurement and Assistance Policies/Procedures

    SciTech Connect (OSTI)

    Not Available

    1980-03-01T23:59:59.000Z

    This guide addresses the DOE responsibility for fostering advanced research and development of all energy resources, both current and potential. It is intended to provide, in a single publication, all the fundamental information needed by an institution to develop a potential working relationship with DOE. Part I describes DOE research and development programs and facilities, and identifies areas of additional research needs and potential areas for new research opportunities. It also summarizes budget data and identifies the DOE program information contacts for each program. Part II provides researchers and research administrators with an introduction to the DOE administrative policies and procedures for submission and evaluation of proposals and the administration of resulting grants, cooperative agreements, and research contracts. (RWR)

  17. READY FOR TODAY. PREPARING FOR TOMORROW. The Joint Operating Environment is intended to inform joint concept

    E-Print Network [OSTI]

    Sainudiin, Raazesh

    READY FOR TODAY. PREPARING FOR TOMORROW. #12;The Joint Operating Environment is intended to inform. Inquiries about the Joint Operating Environment should be directed to USJFCOM Public Affairs, 1562 Mitscher R O N M E N T ( J O E ) #12;While U.S. Joint Forces Command's Joint Operating Environment (JOE

  18. Ratsnakes and Brush Piles: Intended and Unintended Consequences of Improving Habitat for Wildlife?

    E-Print Network [OSTI]

    Weatherhead, Patrick J.

    Ratsnakes and Brush Piles: Intended and Unintended Consequences of Improving Habitat for Wildlife, University of Illinois Urbana-Champaign, Champaign 61820 ABSTRACT.--Brush pile creation is a common habitat of brush pile creation and the indirect effects of brush piles on multi-species interactions. Here we

  19. Vibration Damping Control of Robot Arm Intended for Service Application in Human Environment

    E-Print Network [OSTI]

    Tachi, Susumu

    Vibration Damping Control of Robot Arm Intended for Service Application in Human Environment anthropomorphic robot arm enabling the torque measurement in each joint and tactile area recognition to ensure in heavily loaded joints have risen due to compliances introduced into each joint of the robot arm by means

  20. Abstract--Implementation of Distribution Automation (DA) and Demand Side Management (DSM) intended to serve both

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Abstract--Implementation of Distribution Automation (DA) and Demand Side Management (DSM) intended with differentiate QoS in a multitasking environment. I. INTRODUCTION ODERN society demands a reliable and high by the distribution utility for the security. REMPLI (Remote Energy Management over Power Lines and Internet) system

  1. Clemson's Logo System Any mark that is intended to represent Clemson University is the prop-

    E-Print Network [OSTI]

    Stuart, Steven J.

    15 3 Clemson's Logo System Any mark that is intended to represent Clemson University is the prop guidelines will be evaluated on a case-by-case basis. Logos at this level must contain a wordmark or Tiger five marks preferably use level one logos (masterbrand symbols), brand fonts and Clemson Orange

  2. Assessing the operational life of flexible printed boards intended for continuous flexing applications : a case study.

    SciTech Connect (OSTI)

    Beck, David Franklin

    2011-01-01T23:59:59.000Z

    Through the vehicle of a case study, this paper describes in detail how the guidance found in the suite of IPC (Association Connecting Electronics Industries) publications can be applied to develop a high level of design assurance that flexible printed boards intended for continuous flexing applications will satisfy specified lifetime requirements.

  3. DOE MENTOR-PROTÉGÉ

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    small business subcontracting goal, and statutory socio-economic goal 2 HISTORY OF DOE MENTOR-PROTG PROGRAM June 9, 1995 The DOE Mentor Protg Program Initiative was...

  4. DOE MENTOR-PROTÉGÉ

    Broader source: Energy.gov (indexed) [DOE]

    business subcontracting goal, and statutory socio-economic goals 2 HISTORY OF DOE MENTOR-PROTG PROGRAM June 9, 1995 The DOE Mentor Protg Program Initiative was...

  5. Radiochemistry methods in DOE methods for evaluating environmental and waste management samples

    SciTech Connect (OSTI)

    Fadeff, S.K.; Goheen, S.C.

    1994-08-01T23:59:59.000Z

    Current standard sources of radiochemistry methods are often inappropriate for use in evaluating US Department of Energy environmental and waste management (DOE/EW) samples. Examples of current sources include EPA, ASTM, Standard Methods for the Examination of Water and Wastewater and HASL-300. Applicability of these methods is limited to specific matrices (usually water), radiation levels (usually environmental levels), and analytes (limited number). Radiochemistry methods in DOE Methods for Evaluating Environmental and Waste Management Samples (DOE Methods) attempt to fill the applicability gap that exists between standard methods and those needed for DOE/EM activities. The Radiochemistry chapter in DOE Methods includes an ``analysis and reporting`` guidance section as well as radiochemistry methods. A basis for identifying the DOE/EM radiochemistry needs is discussed. Within this needs framework, the applicability of standard methods and targeted new methods is identified. Sources of new methods (consolidated methods from DOE laboratories and submissions from individuals) and the methods review process will be discussed. The processes involved in generating consolidated methods add editing individually submitted methods will be compared. DOE Methods is a living document and continues to expand by adding various kinds of methods. Radiochemistry methods are highlighted in this paper. DOE Methods is intended to be a resource for methods applicable to DOE/EM problems. Although it is intended to support DOE, the guidance and methods are not necessarily exclusive to DOE. The document is available at no cost through the Laboratory Management Division of DOE, Office of Technology Development.

  6. DOE Sustainability SPOtlight: Special Edition 2013 DOE Sustainability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Sustainability SPOtlight: Special Edition 2013 DOE Sustainability Awards DOE Sustainability SPOtlight: Special Edition 2013 DOE Sustainability Awards Newsletter highlights the...

  7. DOE's General Counsel Determines Sudan Act Does Not Bar Areva...

    Office of Environmental Management (EM)

    DOE's General Counsel Determines Sudan Act Does Not Bar Areva Enrichment Services LLC Loan Application DOE's General Counsel Determines Sudan Act Does Not Bar Areva Enrichment...

  8. Ground penetrating radar surveys over an alluvial DNAPL site, Paducah Gaseous Diffusion Plant, Kentucky

    SciTech Connect (OSTI)

    Carpenter, P.J. [Northern Illinois Univ., DeKalb, IL (United States). Dept. of Geology]|[Oak Ridge National Lab., TN (United States); Doll, W.E. [Oak Ridge National Lab., TN (United States); Phillips, B.E. [Paducah Gaseous Diffusion Plant, KY (United States)

    1994-09-01T23:59:59.000Z

    Ground penetrating radar (GPR) surveys were used to map shallow sands and gravels which are DNAPL migration pathways at the Paducah Gaseous Diffusion Plant in western Kentucky. The sands and gravels occur as paleochannel deposits, at depths of 17-25 ft, embedded in Pleistocene lacustrine clays. More than 30 GPR profiles were completed over the Drop Test Area (DTA) to map the top and base of the paleochannel deposits, and to assess their lateral continuity. A bistatic radar system was used with antenna frequencies of 25 and 50 MHz. An average velocity of 0.25 ft/ns for silty and clayey materials above the paleochannel deposits was established from radar walkaway tests, profiles over culverts of known depth, and comparison of radar sections with borings. In the south portion of the DTA, strong reflections corresponded to the water table at approximately 9-10 ft, the top of the paleochannel deposits at approximately 18 ft, and to gravel horizons within these deposits. The base of these deposits was not visible on the radar sections. Depth estimates for the top of the paleochannel deposits (from 50 records) were accurate to within 2 ft across the southern portion of the DTA. Continuity of these sands and gravels could not be assessed due to interference from air-wave reflections and lateral changes in signal penetration depth. However, the sands and gravels appear to extend across the entire southern portion of the DTA, at depths as shallow as 17 ft. Ringing, air-wave reflections and diffractions from powerlines, vehicles, well casings, and metal equipment severly degraded GPR profiles in the northern portion of the DTA; depths computed from reflection times (where visible) were accurate to within 4 ft in this area. The paleochannel deposits are deeper to the north and northeast where DNAPL has apparently pooled (DNAPL was not directly imaged by the GPR, however). Existing hydrogeological models of the DTA will be revised.

  9. Relative risk site evaluation for buildings 7740 and 7741 Fort Campbell, Kentucky

    SciTech Connect (OSTI)

    Last, G.V.; Gilmore, T.J.; Bronson, F.J.

    1998-01-01T23:59:59.000Z

    Buildings 7740 and 7741 are a part of a former nuclear weapon`s storage and maintenance facility located in the southeastern portion of Fort Campbell, Kentucky. This underground tunnel complex was originally used as a classified storage area beginning in 1949 and continuing until 1969. Staff from the Pacific Northwest National Laboratory recently completed a detailed Relative Risk Site Evaluation of the facility. This evaluation included (1) obtaining engineering drawings of the facility and associated structures, (2) conducting detailed radiological surveys, (3) air sampling, (4) sampling drainage systems, and (5) sampling the underground wastewater storage tank. Ten samples were submitted for laboratory analysis of radionuclides and priority pollutant metals, and two samples submitted for analysis of volatile organic compounds. No volatile organic contaminants were detected using field instruments or laboratory analyses. However, several radionuclides and metals were detected in water and/or soil/sediment samples collected from this facility. Of the radionuclides detected, only {sup 226}Ra may have come from facility operations; however, its concentration is at least one order of magnitude below the relative-risk comparison value. Several metals (arsenic, beryllium, cadmium, copper, mercury, lead, and antimony) were found to exceed the relative-risk comparison values for water, while only arsenic, cadmium, and lead were found to exceed the relative risk comparison values for soil. Of these constituents, it is believed that only arsenic, beryllium, mercury, and lead may have come from facility operations. Other significant hazards posed by the tunnel complex include radon exposure and potentially low oxygen concentrations (<19.5% in atmosphere) if the tunnel complex is not allowed to vent to the outside air. Asbestos-wrapped pipes, lead-based paint, rat poison, and possibly a selenium rectifier are also present within the tunnel complex.

  10. DOE Mentoring Program

    Broader source: Energy.gov [DOE]

    The Office of Learning and Workforce Development coordinates this mentoring program for DOE Federal Employees.

  11. DOE Lessons Learned

    Broader source: Energy.gov [DOE]

    DOE Lessons Learned Information Services Catches the Eye of Corporations and Educational Institutions

  12. Data report: Illinois, Indiana, Kentucky, Tennessee, and Ohio. National Uranium Resource Evaluation Program. Hydrogeochemical and stream sediment reconnaissance

    SciTech Connect (OSTI)

    Sargent, K A; Cook, J R; Fay, W M

    1982-02-01T23:59:59.000Z

    This report presents the results of ground water, stream water, and stream sediment reconnaissance in Illinois, Indiana, Kentucky, Tennessee, and Ohio. The following sample types were collected in each state: Illinois - 716 stream sediment, 1046 ground water, 337 stream water; Indiana - 126 stream sediment, 443 ground water, 111 stream water; Kentucky - 4901 stream sediment, 6408 ground water, 3966 stream water; Tennessee - 3309 stream sediment, 3574 ground water, 1584 stream water; Ohio - 1214 stream sediment, 2049 ground water, 1205 stream water. Neutron activation analyses are given for U, Br, Cl, F, Mn, Na, Al, V, and Dy in ground water and stream water, and for U, Th, Hf, Ce, Fe, Mn, Na, Sc, Ti, V, Al, Dy, Eu, La, Sm, Yb, and Lu in sediments. Supplementary analyses by other techniques are reported for U (extractable), Ag, As, Ba, Be, Ca, Co, Cr, Cu, K, Li, Mg, Mo, Nb, Ni, P, Pb, Se, Sn, Sr, W, Y, and Zn. These analyses were made on 248 sediment samples from Tennessee. Field measurements and observations are reported for each site. Oak Ridge National Laboratory analyzed sediment samples which were not analyzed by Savannah River Laboratory neutron activation.

  13. Nature of petrographic variation in Taylor-Copland Coal of middle Pennsylvanian Breathitt Formation of eastern Kentucky

    SciTech Connect (OSTI)

    Trinkle, E.J.; Hower, J.C.; Tully, D.G.; Helfrich, C.T.

    1984-12-01T23:59:59.000Z

    The Taylor-Copland Coal is petrographically distinctive in that it has lowest average vitrinite content (63%) and concomitant highest inertinite (25%) and exinite (12%) of all eastern Kentucky coals. Additionally, average total sulfur is 3.4%, or nearly twice the 1.8% figure determined for all eastern Kentucky samples. Deviations from the maceral averages are equally distinctive. Particularly interesting is an areally extensive, though discontinuous, sample sequence showing significantly lower vitrinites (commonly 40%), very high inertinites (40%), and high exinite content (15-20%). The high-inertinite and high total-sulfur trends and variations for each were presumed to be related to proximity to the coal of marine lithologic units of the overlying Magoffin Member. However, it was found that maceral and possible sulfur trends are probably unrelated to roof rock variation, but are related to existence or absence of a thick durain coal lithotype toward the middle of some coal beds. Palynology reveals that spores in the durain-rich samples are poorly preserved (micrinitized), but assemblages and relative percentages of genera forming the assemblages remained unchanged from those found in high-vitrinite (durain-free) samples. Unchanged spore assemblages possibly indicate that unchanging plant communities existed through the durain-forming episode of the Taylor-Copland swamp. Rather, the effect of the durain phase on the Taylor-Copland swamp was to accelerate degradation (oxidation) of peat deposits associated with the surrounding plant community.

  14. Association of the sites of heavy metals with nanoscale carbon in a Kentucky electrostatic precipitator fly ash

    SciTech Connect (OSTI)

    James C. Hower; Uschi M. Graham; Alan Dozier; Michael T. Tseng; Rajesh A. Khatri [University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    2008-11-15T23:59:59.000Z

    A combination of high-resolution transmission electron microscopy, scanning transmission electron microscopy, and electron energy-loss spectroscopy (HRTEM-STEM-EELS) was used to study fly ashes produced from the combustion of an eastern Kentucky coal at a southeastern-Kentucky wall-fired pulverized coal utility boiler retrofitted for low-NOx combustion. Fly ash was collected from individual hoppers in each row of the electrostatic precipitators (ESP) pollution-control system, with multiple hoppers sampled within each of the three rows. Temperatures within the ESP array range from about 200 {degree}C at the entry to the first row to <150{degree}C at the exit of the third row. HRTEM-STEM-EELS study demonstrated the presence of nanoscale (10 s nm) C agglomerates with typical soot-like appearance and others with graphitic fullerene-like nanocarbon structures. The minute carbon agglomerates are typically juxtaposed and intergrown with slightly larger aluminosilicate spheres and often form an ultrathin halo or deposit on the fly ash particles. The STEM-EELS analyses revealed that the nanocarbon agglomerates host even finer (<3 nm) metal and metal oxide particles. Elemental analysis indicated an association of Hg with the nanocarbon. Arsenic, Se, Pb, Co, and traces of Ti and Ba are often associated with Fe-rich particles within the nanocarbon deposits. 57 refs., 5 figs.

  15. Code of Federal Regulations Procedural Rules for DOE Nuclear Activities Part II

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) is issuing procedural rules to be used in applying its substantive regulations and orders relating to nuclear safety. These procedural rules are intended to be an essential part of the framework through which DOE deals with its contractors, subcontractors, and suppliers to ensure its nuclear facilities are operated in a manner that protects public and worker safety and the environment. In particular, this part sets forth the procedures to implement the provisions of the Price- Anderson Amendments Act of 1988 (PAAA) which subjects DOE contractors to potential civil and criminal penalties for violations of DOE rules, regulations and orders relating to nuclear safety (DOE Nuclear Safety Requirements).

  16. International Symposium on Gaseous and Odour Emissions from Animal Production Facilities, Horsens, Jutland, Denmark 1-4 June, 2003 Ammonia Emissions from Broiler Houses in Kentucky during Winter

    E-Print Network [OSTI]

    Kentucky, University of

    International Symposium on Gaseous and Odour Emissions from Animal Production Facilities, Horsens, Jutland, Denmark 1-4 June, 2003 Ammonia Emissions from Broiler Houses in Kentucky during Winter Kenneth D a comprehensive database of ammonia emission rates (ER) from US poultry facilities. The influence of common

  17. Protocols for conducting Environmental Management Assessments of DOE organizations

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    To assess the effectiveness of DOE`s environmental programs, the Office of Environmental Audit conducts Environmental Management Assessments of DOE programs and facilities. These assessments take a broad programmatic view of environmental systems which may cover multiple sites. The focus of the assessment is on the infrastructure, systems, programs, and tools to manage environmental issues, not on the compliance issues themselves. Protocols have been developed to assist in the conduct of Environmental Management Assessments. The protocols are, based on and serve as implementing guidelines for the Environmental Management Section of ``Performance Objectives and Criteria for Conducting DOE Environmental Audits`` (DOE/EH-022). They are intended to provide guidance to the Assessment Team in conducting these reviews.

  18. DOE Fire Protection Handbook, Volume I

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    The Department of Energy (DOE) Fire Protection Program is delineated in a number of source documents including; the Code of Federal Regulations (CFR), DOE Policy Statements and Orders, DOE and national consensus standards (such as those promulgated by the National Fire Protection Association), and supplementary guidance, This Handbook is intended to bring together in one location as much of this material as possible to facilitate understanding and ease of use. The applicability of any of these directives to individual Maintenance and Operating Contractors or to given facilities and operations is governed by existing contracts. Questions regarding applicability should be directed to the DOE Authority Having Jurisdiction for fire safety. The information provided within includes copies of those DOE directives that are directly applicable to the implementation of a comprehensive fire protection program. They are delineated in the Table of Contents. The items marked with an asterisk (*) are included on the disks in WordPerfect 5.1 format, with the filename noted below. The items marked with double asterisks are provided as hard copies as well as on the disk. For those using MAC disks, the files are in Wordperfect 2.1 for MAC.

  19. DOE-FLEX: DOE's Telework Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-07-05T23:59:59.000Z

    The directive establishes the requirements and responsibilities for the Department’s telework program. Canceled by DOE O 314.1.

  20. Order Module--DOE-STD-1104-2009, REVIEW AND APPROVAL OF NUCLEAR FACILITY SAFETY BASIS AND SAFETY DESIGN BASIS DOCUMENTS

    Broader source: Energy.gov [DOE]

    The familiar level of this module is divided into two sections that are intended to provide only an overview of the material contained in DOE-STD-1104-2009, which should be consulted for complete...

  1. A DOE manual: DOE methods for evaluating environmental and waste management samples

    SciTech Connect (OSTI)

    Goheen, S.C.; Fadeff, S.K.; Sklarew, D.S.; McCulloch, M.; Mong, G.M.; Riley, R.G.; Thomas, B.L.

    1994-08-01T23:59:59.000Z

    DOE Methods for Evaluating Environmental and Waste Management Samples (DOE Methods) is a guidance/methods document supporting environmental restoration (ER) and waste management (WM) (collectively referred to as EM) sampling and analysis activities at US Department of Energy (DOE) sites. DOE Methods is intended to supplement existing guidance documents (e.g., the US Environmental Protection Agency`s Test Methods for Evaluating Solid Waste, SW-846), which apply to low-level or non-radioactive samples, and the complexities of waste and environmental samples encountered at DOE sites. The document contains quality assurance (QA), quality control (QC), safety, sampling, organic analysis, inorganic analysis, and radio-analytical guidance as well as sampling and analytical methods. It is updated every six months (April and October) with additional methods. As of April 1994, DOE methods contained 3 sampling and 39 analytical methods. It is anticipated that between 10 and 20 new methods will be added in October 1994. All methods are either peer reviewed and contain performance data, or are included as draft methods.

  2. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-03-18T23:59:59.000Z

    The following directives are extended until 3-18-06: DOE N 205.8, Cyber Security Requirements for Wireless Devices and Information Systems, dated 2-11-04; DOE N 205.9, Certification and Accreditation Process for Information Systems Including National Security Systems, dated 02-19-04; DOE N 205.10, Cyber Security Requirements for Risk Management, dated 02-19-04; DOE N 205.11, Security Requirements for Remote Access to DOE and Applicable Contractor Information Technology Systems, dated 2-19-04. DOE N 205.12, Clearing, Sanitizing, and Destroying Information System Storage Media, Memory Devices, and Other Related Hardware, dated 2-19-04.

  3. Ohio-Kentucky-Indiana Regional Council of Governments Solar Ready Construction Guidelines

    Broader source: Energy.gov [DOE]

    These voluntary guidelines are developed for the local governments of the OKI region to provide guidance for residential developers, home builders, and architects in the design and construction of new residential buildings. These guidelines are intended to guide a developer, architect, or other interested party through the components of building design required to prepare a building for future solar installation. These guidelines include best practices for solar-ready building design to minimize the costs of future solar installation while maximizing potential system efficiency and apply to site selection, building design, and building construction.

  4. Primer on molecular genetics. DOE Human Genome Program

    SciTech Connect (OSTI)

    Not Available

    1992-04-01T23:59:59.000Z

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  5. Vintage DOE: Accomplishments

    Broader source: Energy.gov [DOE]

    This vintage video, from the Office of Scientific and Technical Information and the U.S. Department of Energy Office of Science, does a great job detailing DOE's accomplishments.

  6. DOE-STD-1104

    Office of Environmental Management (EM)

    Implementation 1 DOE-STD-1104-2014 Roll-out AU Roll-out Contacts 2 Garrett Smith, Director, Nuclear Safety Basis and Facility Design, Office of Nuclear Safety (DOE...

  7. DOE Sustainability SPOtlight

    Broader source: Energy.gov [DOE]

    Newsletter highlights the recipients of the U.S. Department of Energy (DOE) Sustainability Performance Office (SPO) 2014 Sustainability Awards.

  8. Novel electrochemical system intended for 1.5 V nonmetallic hermetically sealed secondary cell

    SciTech Connect (OSTI)

    Barsukov, V.Z. [Institute of General and Inorganic Chemistry, Kiev (Ukraine); Barsukov, I.V.; Motronyuk, T.I. [Kiev Polytechnical Institute (Ukraine); Beck, F. [Univ. of Duisburg, Lotharstrabe (Germany)

    1995-04-01T23:59:59.000Z

    A novel reversible system based on graphite and anthraquinone electrodes and intended for the development of a nonmetallic ecologically clean secondary cell is proposed. The principal problem associated with combining the two electrodes in a unified electrochemical system involves the search for an electrolyte which would be suitable for both electrodes. Optimum and limiting pH intervals as well as the influence exerted by the anion type on the electrode efficiency are considered. The use of combined electrolytes on the basis of HBF{sub 4} with tetrafluoroborate additives is recommended.

  9. DOE complex buried waste characterization assessment

    SciTech Connect (OSTI)

    Kaae, P.S.; Holter, G.M.; Garrett, S.M.K.

    1993-01-01T23:59:59.000Z

    The work described in this report was conducted by Pacific Northwest Laboratory to provide information to the Buried Waste Integrated Demonstration (BWID) program. The information in this report is intended to provide a complex-wide planning base for th.e BWID to ensure that BWID activities are appropriately focused to address the range of remediation problems existing across the US Department of Energy (DOE) complex. This report contains information characterizing the 2.1 million m[sup 3] of buried and stored wastes and their associated sites at six major DOE facilities. Approximately 85% of this waste is low-level waste, with about 12% TRU or TRU mixed waste; the remaining 3% is low-level mixed waste. In addition, the report describes soil contamination sites across the complex. Some of the details that would be useful in further characterizing the buried wastes and contaminated soil sites across the DOE complex are either unavailable or difficult to locate. Several options for accessing this information and/or improving the information that is available are identified in the report. This document is a companion to Technology Needs for Remediation: Hanford and Other DOE Sites, PNL-8328 (Stapp 1993).

  10. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-02-24T23:59:59.000Z

    This Notice extends the following directives until 2/16/04: DOE N 205.2, Foreign National Access to DOE Cyber Systems, and DOE N 205.3, Password Generation, Protection, and Use, dated 11/23/99-7/1/00.

  11. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-02-12T23:59:59.000Z

    The following directives are extended until 8-12-04. DOE N 205.2, Foreign National Access to DOE Cyber Systems, dated 11/1/99. DOE N 205.3, Password Generation, Protection, and Use, dated 11/23/99.

  12. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-08-12T23:59:59.000Z

    The following directives are extended until 8-12-05: DOE N 205.2, Foreign National Access to DOE Cyber Security Systems, dated 11-1-99 and DOE N 205.3, Password Generation, Protection, and Use, dated 11-23-99. No cancellations.

  13. Extension of DOE Directives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-09-15T23:59:59.000Z

    Effective immediately, DOE N 205.2, Foreign National Access to DOE Cyber Systems, dated 11-1-99, and DOE N 205.3, Password Generation, Protection, and Use, dated 11-23-99, are extended until 9-30-06, unless sooner rescinded.

  14. Intra- and inter-unit variation in fly ash petrography: Examples from a western Kentucky power station

    SciTech Connect (OSTI)

    Hower, J.C.; Rathbone, R.F. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Goodman, J. [Prestonburg High School, KY (United States)

    1998-12-31T23:59:59.000Z

    Fly ash was collected from eight mechanical and ten baghouse hoppers at each of twin 150-MW wall-fired units in a western Kentucky power station. The fuel burned at that time was a blend of low-sulfur, high volatile bituminous Central Appalachian coals. The baghouse ash showed less variation between units than the mechanical units. The coarser mechanical fly ash showed significant differences in the amount of total carbon and in the ratio of isotropic coke to both total carbons and total coke; the latter excluding inertinite and other unburned, uncoked coal. There was no significant variation in ratios of inorganic fly ash constituents. The inter-unit differences in the amount and forms of mechanical fly ash carbon appear to be related to differences in pulverizer efficiency, leading to greater amounts of coarse coal, therefore unburned carbon, in one of the units.

  15. DOE methods for evaluating environmental and waste management samples

    SciTech Connect (OSTI)

    Goheen, S.C.; McCulloch, M.; Thomas, B.L.; Riley, R.G.; Sklarew, D.S.; Mong, G.M.; Fadeff, S.K. [eds.

    1994-10-01T23:59:59.000Z

    DOE Methods for Evaluating Environmental and Waste Management Samples (DOE Methods) is a resource intended to support sampling and analytical activities for the evaluation of environmental and waste management samples from U.S. Department of Energy (DOE) sites. DOE Methods is the result of extensive cooperation from all DOE analytical laboratories. All of these laboratories have contributed key information and provided technical reviews as well as significant moral support leading to the success of this document. DOE Methods is designed to encompass methods for collecting representative samples and for determining the radioisotope activity and organic and inorganic composition of a sample. These determinations will aid in defining the type and breadth of contamination and thus determine the extent of environmental restoration or waste management actions needed, as defined by the DOE, the U.S. Environmental Protection Agency, or others. The development of DOE Methods is supported by the Analytical Services Division of DOE. Unique methods or methods consolidated from similar procedures in the DOE Procedures Database are selected for potential inclusion in this document. Initial selection is based largely on DOE needs and procedure applicability and completeness. Methods appearing in this document are one of two types, {open_quotes}Draft{close_quotes} or {open_quotes}Verified{close_quotes}. {open_quotes}Draft{close_quotes} methods that have been reviewed internally and show potential for eventual verification are included in this document, but they have not been reviewed externally, and their precision and bias may not be known. {open_quotes}Verified{close_quotes} methods in DOE Methods have been reviewed by volunteers from various DOE sites and private corporations. These methods have delineated measures of precision and accuracy.

  16. DOE Testing Reveals Samsung Refrigerator Does Not Meet Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Articles DOE Energy Star Testing Reveals Inefficient ASKO Dishwasher Electrolux Gibson Air Conditioner and Equator Clothes Washer Fail DOE Energy Star Testing DOE Refers Four...

  17. Fast Track Reservoir Modeling of Shale Formations in the Appalachian Basin. Application to Lower Huron Shale in Eastern Kentucky

    SciTech Connect (OSTI)

    Grujic, Ognjen; Mohaghegh, Shahab; Bromhal, Grant

    2010-07-01T23:59:59.000Z

    In this paper a fast track reservoir modeling and analysis of the Lower Huron Shale in Eastern Kentucky is presented. Unlike conventional reservoir simulation and modeling which is a bottom up approach (geo-cellular model to history matching) this new approach starts by attempting to build a reservoir realization from well production history (Top to Bottom), augmented by core, well-log, well-test and seismic data in order to increase accuracy. This approach requires creation of a large spatial-temporal database that is efficiently handled with state of the art Artificial Intelligence and Data Mining techniques (AI & DM), and therefore it represents an elegant integration of reservoir engineering techniques with Artificial Intelligence and Data Mining. Advantages of this new technique are a) ease of development, b) limited data requirement (as compared to reservoir simulation), and c) speed of analysis. All of the 77 wells used in this study are completed in the Lower Huron Shale and are a part of the Big Sandy Gas field in Eastern Kentucky. Most of the wells have production profiles for more than twenty years. Porosity and thickness data was acquired from the available well logs, while permeability, natural fracture network properties, and fracture aperture data was acquired through a single well history matching process that uses the FRACGEN/NFFLOW simulator package. This technology, known as Top-Down Intelligent Reservoir Modeling, starts with performing conventional reservoir engineering analysis on individual wells such as decline curve analysis and volumetric reserves estimation. Statistical techniques along with information generated from the reservoir engineering analysis contribute to an extensive spatio-temporal database of reservoir behavior. The database is used to develop a cohesive model of the field using fuzzy pattern recognition or similar techniques. The reservoir model is calibrated (history matched) with production history from the most recently drilled wells. The calibrated model is then further used for field development strategies to improve and enhance gas recovery.

  18. DOE Technical Standards List. Directory of DOE and contractor personnel involved in non-government standards activities

    SciTech Connect (OSTI)

    NONE

    1997-06-01T23:59:59.000Z

    This is a periodic report on the level of agency participation in non-Government standards activities. This technical standards list is intended to assist US Department of Energy (DOE) management and other personnel involved in the DOE technical Standards Program by identifying those participating individuals. The body of this document contains a listing of DOE employees and DOE contractors who have submitted a Record of Non-Government Standards Activity. Additional names were added from rosters supplied by non-Government standards bodies. Appendices to this document are provided to list the information by parent employment organization, by non-Government standards activity, and by the proper names of the non-Government standards organizations and committees.

  19. SRC-I Project Baseline. [SRC-I demonstration project near Owensboro, Kentucky

    SciTech Connect (OSTI)

    None

    1982-03-01T23:59:59.000Z

    The Process Design Criteria Specification forms the basis for process design for the 6000-TPSD SRC-I Demonstration Plant. It sets forth: basic engineering data, e.g., type and size of plant, feedstocks, product specifications, and atmospheric emission and waste disposal limits; utility conditions; equipment design criteria and sparing philosophy; and estimating criteria for economic considerations. Previously the formal ICRC Document No. 0001-01-002 has been submitted to DOE and revised, as necessary, to be consistent with the SRC-I Project Baseline. Revision 6, dated 19 March 1982, 51 pages, was forwarded to DOE on 19 March 1982.

  20. Influence of coal quality parameters on utilization of high-sulfur coals: Examples from Springfield (western Kentucky No. 9) coal bed

    SciTech Connect (OSTI)

    Griswold, T.B.; Hower, J.C.; Cobb, J.C. (Kentucky Energy Cabinet, Lexington (USA))

    1989-08-01T23:59:59.000Z

    The Springfield (Western Kentucky No. 9) coal bed is the most important energy resource in the Western Kentucky coalfield (Eastern Interior coalfield), accounting for over 30 million tons of annual production from remaining resources of over 9 billion tons. For many coal quality parameters, the quality of the coal bed is relatively consistent throughout the region. For example, the Springfield has about 80-85% vitrinite, 10% ash, and 3.5-4.5% total sulfur at most sites in the coalfield. However, coal quality variation is more than just the changes in ash and sulfur. As demonstrated by the Springfield coal bed, it is a complex interaction of related and unrelated variables many of which directly affect utilization of the coal. Significant, though generally predictable, changes are observed in other parameters. Comparison of data from the Millport (Muhlenberg and Hopkins Countries), Providence (Hopkins and Webster Counties), and Waverly (Union County) 7{1/2} Quadrangles illustrated such variations.

  1. Environmental program audit, Paducah Gaseous Diffusion Plant, Paducah, Kentucky. Final report

    SciTech Connect (OSTI)

    Not Available

    1985-08-01T23:59:59.000Z

    The environmental monitoring program, environmental control equipment and its use, and the facility's compliance with DOE orders, Federal and State laws and regulations were evaluated in this audit. No imminent threat to public health and safety was discovered. A needed quality assurance program is being added. Recommendations are given. (PSB)

  2. DOE handbook electrical safety

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    Electrical Safety Handbook presents the Department of Energy (DOE) safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety guidance and information for DOE installations to effect a reduction or elimination of risks associated with the use of electrical energy. The objectives of this handbook are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  3. DOE/CF-0088

    Office of Environmental Management (EM)

    used to effectively improve coordination between other parts of DOE. EM has developed 16 corporate performance measures to enable the program to monitor annual and life-cycle...

  4. DOE Electricity Advisory Committee

    Office of Environmental Management (EM)

    limiters (SCCL) or fault current limiters are a family of technologies that can be applied to utility power delivery systems to address the growing problems associated with DOE...

  5. DOE Technical Assistance Program

    Broader source: Energy.gov (indexed) [DOE]

    Designing Effective Residential Retrofit Programs eere.energy.gov The Parker Ranch installation in Hawaii DOE Technical Assistance Program Quality Assurance for Residential...

  6. DOE Building Technologies Program

    Energy Savers [EERE]

    501c3 * DOE will continue to support SEED, and Lawrence Berkeley National Laboratory (LBNL) will provide oversight of the code, while the permanent management plan is established...

  7. DOE Explosives Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-03-29T23:59:59.000Z

    This Manual describes DOE's explosives safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives.

  8. DOE explosives safety manual. Revision 7

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    This manual prescribes the Department of Energy (DOE) safety rules used to implement the DOE safety policy for operations involving explosives. This manual is applicable to all DOE facilities engaged in operations of development, manufacturing, handling, storage, transportation, processing, or testing of explosives, pyrotechnics and propellants, or assemblies containing these materials. The standards of this manual deal with the operations involving explosives, pyrotechnics and propellants, and the safe management of such operations. The design of all new explosives facilities shall conform to the requirements established in this manual and implemented in DOE 6430.1A, ``General Design Criteria Manual.`` It is not intended that existing physical facilities be changed arbitrarily to comply with these provisions, except as required by law. Existing facilities that do not comply with these standards may continue to be used for the balance of their functional life, as long as the current operation presents no significantly greater risk than that assumed when the facility was originally designed and it can be demonstrated clearly that a modification to bring the facility into compliance is not feasible. However, in the case of a major renovation, the facility must be brought into compliance with current standards. The standards are presented as either mandatory or advisory. Mandatory standards, denoted by the words ``shall,`` ``must,`` or ``will,`` are requirements that must be followed unless written authority for deviation is granted as an exemption by the DOE. Advisory standards denoted by ``should`` or ``may`` are standards that may be deviated from with a waiver granted by facility management.

  9. Public key infrastructure for DOE security research

    SciTech Connect (OSTI)

    Aiken, R.; Foster, I.; Johnston, W.E. [and others

    1997-06-01T23:59:59.000Z

    This document summarizes the Department of Energy`s Second Joint Energy Research/Defence Programs Security Research Workshop. The workshop, built on the results of the first Joint Workshop which reviewed security requirements represented in a range of mission-critical ER and DP applications, discussed commonalties and differences in ER/DP requirements and approaches, and identified an integrated common set of security research priorities. One significant conclusion of the first workshop was that progress in a broad spectrum of DOE-relevant security problems and applications could best be addressed through public-key cryptography based systems, and therefore depended upon the existence of a robust, broadly deployed public-key infrastructure. Hence, public-key infrastructure ({open_quotes}PKI{close_quotes}) was adopted as a primary focus for the second workshop. The Second Joint Workshop covered a range of DOE security research and deployment efforts, as well as summaries of the state of the art in various areas relating to public-key technologies. Key findings were that a broad range of DOE applications can benefit from security architectures and technologies built on a robust, flexible, widely deployed public-key infrastructure; that there exists a collection of specific requirements for missing or undeveloped PKI functionality, together with a preliminary assessment of how these requirements can be met; that, while commercial developments can be expected to provide many relevant security technologies, there are important capabilities that commercial developments will not address, due to the unique scale, performance, diversity, distributed nature, and sensitivity of DOE applications; that DOE should encourage and support research activities intended to increase understanding of security technology requirements, and to develop critical components not forthcoming from other sources in a timely manner.

  10. DOE Radiation Records Contacts List

    Broader source: Energy.gov [DOE]

    DOE radiation records contact list for individuals to obtain records of occupational exposure directly from a DOE site.

  11. DOE standard: Radiological control

    SciTech Connect (OSTI)

    Not Available

    1999-07-01T23:59:59.000Z

    The Department of Energy (DOE) has developed this Standard to assist line managers in meeting their responsibilities for implementing occupational radiological control programs. DOE has established regulatory requirements for occupational radiation protection in Title 10 of the Code of Federal Regulations, Part 835 (10 CFR 835), ``Occupational Radiation Protection``. Failure to comply with these requirements may lead to appropriate enforcement actions as authorized under the Price Anderson Act Amendments (PAAA). While this Standard does not establish requirements, it does restate, paraphrase, or cite many (but not all) of the requirements of 10 CFR 835 and related documents (e.g., occupational safety and health, hazardous materials transportation, and environmental protection standards). Because of the wide range of activities undertaken by DOE and the varying requirements affecting these activities, DOE does not believe that it would be practical or useful to identify and reproduce the entire range of health and safety requirements in this Standard and therefore has not done so. In all cases, DOE cautions the user to review any underlying regulatory and contractual requirements and the primary guidance documents in their original context to ensure that the site program is adequate to ensure continuing compliance with the applicable requirements. To assist its operating entities in achieving and maintaining compliance with the requirements of 10 CFR 835, DOE has established its primary regulatory guidance in the DOE G 441.1 series of Guides. This Standard supplements the DOE G 441.1 series of Guides and serves as a secondary source of guidance for achieving compliance with 10 CFR 835.

  12. Peak Dose Assessment for Proposed DOE-PPPO Authorized Limits

    SciTech Connect (OSTI)

    Maldonado, Delis [Oak Ridge Institute for Science and Education, Oak Ridge, TN (United States). Independent Environmental Assessment and Verification Program

    2012-06-01T23:59:59.000Z

    The Oak Ridge Institute for Science and Education (ORISE), a U.S. Department of Energy (DOE) prime contractor, was contracted by the DOE Portsmouth/Paducah Project Office (DOE-PPPO) to conduct a peak dose assessment in support of the Authorized Limits Request for Solid Waste Disposal at Landfill C-746-U at the Paducah Gaseous Diffusion Plant (DOE-PPPO 2011a). The peak doses were calculated based on the DOE-PPPO Proposed Single Radionuclides Soil Guidelines and the DOE-PPPO Proposed Authorized Limits (AL) Volumetric Concentrations available in DOE-PPPO 2011a. This work is provided as an appendix to the Dose Modeling Evaluations and Technical Support Document for the Authorized Limits Request for the C-746-U Landfill at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (ORISE 2012). The receptors evaluated in ORISE 2012 were selected by the DOE-PPPO for the additional peak dose evaluations. These receptors included a Landfill Worker, Trespasser, Resident Farmer (onsite), Resident Gardener, Recreational User, Outdoor Worker and an Offsite Resident Farmer. The RESRAD (Version 6.5) and RESRAD-OFFSITE (Version 2.5) computer codes were used for the peak dose assessments. Deterministic peak dose assessments were performed for all the receptors and a probabilistic dose assessment was performed only for the Offsite Resident Farmer at the request of the DOE-PPPO. In a deterministic analysis, a single input value results in a single output value. In other words, a deterministic analysis uses single parameter values for every variable in the code. By contrast, a probabilistic approach assigns parameter ranges to certain variables, and the code randomly selects the values for each variable from the parameter range each time it calculates the dose (NRC 2006). The receptor scenarios, computer codes and parameter input files were previously used in ORISE 2012. A few modifications were made to the parameter input files as appropriate for this effort. Some of these changes included increasing the time horizon beyond 1,050 years (yr), and using the radionuclide concentrations provided by the DOE-PPPO as inputs into the codes. The deterministic peak doses were evaluated within time horizons of 70 yr (for the Landfill Worker and Trespasser), 1,050 yr, 10,000 yr and 100,000 yr (for the Resident Farmer [onsite], Resident Gardener, Recreational User, Outdoor Worker and Offsite Resident Farmer) at the request of the DOE-PPPO. The time horizons of 10,000 yr and 100,000 yr were used at the request of the DOE-PPPO for informational purposes only. The probabilistic peak of the mean dose assessment was performed for the Offsite Resident Farmer using Technetium-99 (Tc-99) and a time horizon of 1,050 yr. The results of the deterministic analyses indicate that among all receptors and time horizons evaluated, the highest projected dose, 2,700 mrem/yr, occurred for the Resident Farmer (onsite) at 12,773 yr. The exposure pathways contributing to the peak dose are ingestion of plants, external gamma, and ingestion of milk, meat and soil. However, this receptor is considered an implausible receptor. The only receptors considered plausible are the Landfill Worker, Recreational User, Outdoor Worker and the Offsite Resident Farmer. The maximum projected dose among the plausible receptors is 220 mrem/yr for the Outdoor Worker and it occurs at 19,045 yr. The exposure pathways contributing to the dose for this receptor are external gamma and soil ingestion. The results of the probabilistic peak of the mean dose analysis for the Offsite Resident Farmer indicate that the average (arithmetic mean) of the peak of the mean doses for this receptor is 0.98 mrem/yr and it occurs at 1,050 yr. This dose corresponds to Tc-99 within the time horizon of 1,050 yr.

  13. Department of Energy (DOE) Acquisition Guide

    Broader source: Energy.gov [DOE]

    Regulatory requirements for the acquisition process are set forth in the Federal Acquisition Regulation (FAR) and are supplemented in the Department of Energy Acquisition Regulation (DEAR). FAR 1.301 provides for the issuance of additional internal agency guidance, including designations and delegations of authority, assignments of responsibilities, work-flow procedures, and internal reporting requirements. The DOE Acquisition Guide serves this purpose by identifying relevant internal standard operating procedures to be followed by both procurement and program personnel who are involved in various aspects of the acquisition process. The Guide also is intended to be a repository of best practices found throughout the agency that reflect specific illustrations of techniques which ' might be helpful to all readers. Additionally, the Guide includes subject matter that was issued previously through other media, such as Acquisition Letters.

  14. DOE Explosives Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-01-09T23:59:59.000Z

    The Manual describes the Departments explosive safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives. Cancels DOE M 440.1-1. Canceled by DOE O 440.1B Chg 1.

  15. Petrographic characterization of Kentucky coals. Final report. Part II. Depositional settings of the coal bearing, upper Tradewater Formation in western Kentucky with emphasis on the Mannington (No. 4) coal zone

    SciTech Connect (OSTI)

    Baynard, D.N.; Hower, J.C.

    1983-01-01T23:59:59.000Z

    Depositional settings were determined in the coal bearing, Middle Pennsylvanian, upper Tradewater Formation in western Kentucky with emphasis on the Mannington (No. 4) coal zone. The coals have been analyzed for maceral contents, lithotypes, dry sulfur/ash percentages, vitrinite reflectance values, pyrite/marcasite contents, and associated lithologies at different vertical and lateral scales. This study concludes that: (1) the thin coarsening - or fining upward sequences, under the Mannington (No. 4) coal zone are possibly shallow bayfill and channel-fill deposits that provided an environment that has slight differences in topography, (2) rapid vertical and lateral change in total vitrinite, dry sulfur/ash percentages and lithotypes at different scales in the Mannington (No. 4) coal zone are indicative of wideranging Eh and pH values and possibly result from slight changes in paleotopography, and (3) the Davis (No. 6) coal was deposited after a period of thick coarsening - or fining upward sequences, possibly providing a relatively flat-stable surface for peat development. The consistent total vitrinite, dry sulfur/ash values, and thickness trends indicate a more restricted environment (pH and Eh) in the Davis (No. 6) swamp. 41 references, 25 figures, 3 tables.

  16. The following two-volume report is intended solely as guidance to EPA and other environmental professionals. This document does not constitute rulemaking by the Agency, and

    E-Print Network [OSTI]

    contaminants investigated in this two-volume document include: chromium, cadmium, cesium, lead, plutonium;FOREWORD Understanding the long-term behavior of contaminants in the subsurface is becoming increasingly more important as the nation addresses groundwater contamination. Groundwater contamination

  17. Radiological Protection for DOE Activities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-29T23:59:59.000Z

    Establishes radiological protection program requirements that, combined with 10 CFR 835 and its associated implementation guidance, form the basis for a comprehensive program for protection of individuals from the hazards of ionizing radiation in controlled areas. Extended by DOE N 441.3. Cancels DOE 5480.11, DOE 5480.15, DOE N 5400.13, DOE N 5480.11; please note: the DOE radiological control manual (DOE/EH-0256T)

  18. DOE-STD-5506-2007 DOE STANDARD

    E-Print Network [OSTI]

    DOE-STD-5506-2007 April 2007 DOE STANDARD Preparation of Safety Basis Documents for Transuranic on the Department of Energy Technical Standards Program Web Site at Http://tis.eh.doe.gov/techstds/ #12;DOE-STD-5506 STATEMENT A. Approved for public release; distribution is unlimited. #12;DOE-STD-5506-2007 ii Available

  19. A method for forecasting winter precipitation in Kentucky based on sea-level pressure patterns

    E-Print Network [OSTI]

    Ainsworth, Carl Gregory

    1980-01-01T23:59:59.000Z

    the same number of days. This is indicated by the use of upper-case let- ters following the numbers. Note that this does not imply any par- ticular similarity between patterns with the same type number, but that the frequencies of the types within... 10 9 13 4 2 13 9 6 3 5 11 4 3 2 3 3 3 2 3 38 30 :1016 0 -- 4018-. L' 1012' '"-: ---. - 0 . -p 0 y 0 4 1024 1028 1016 ' ~ 10 0 0 ~ 1024 1028 TYPE 1A DAY 494 10 APR 1972 0 1Ql XO XO %) KIJ5 0 ZI ~ aa KIU...

  20. Y-12 team garners efficiency best practices at Toyota's Kentucky plant |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contributeSecuritysupports neighbors in ... Y-12Y-12

  1. Stratigraphy and organic petrography of Mississippian and Devonian oil shale at the Means Project, East-Central Kentucky

    SciTech Connect (OSTI)

    Solomon, B.J.; Hutton, A.C.; Henstridge, D.A.; Ivanac, J.F.

    1985-02-01T23:59:59.000Z

    The Means Oil Shale Project is under consideration for financial assistance by the US Synthetic Fuels Corporation. The project site is located in southern Montgomery County, about 45 miles east of Lexington, Kentucky. In the site area the Devonian Ohio Shale and the Mississippian Sunbury Shale are under study; these oil shales were deposited in the Appalachian Basin. The objective of the Means Project is to mine, using open pit methods, an ore zone which includes the Sunbury and upper Cleveland and which excludes the Bedford interburden. The thick lower grade oil shale below this ore zone renders the higher grade shale at the base of the Huron commercially unattractive. The oil shale at Means has been classified as a marinite, an oil shale containing abundant alginite of marine origin. Lamalginite is the dominant liptinite and comprises small, unicellular alginite with weak to moderate fluorescence at low rank and a distinctive lamellar form. Telalginite, derived from large colonial or thick-walled, unicellular algae, is common in several stratigraphic intervals.

  2. DOE 2014 Biomass Conference

    Broader source: Energy.gov [DOE]

    Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels DOE 2014 Biomass Conference Jim Williams, Senior Manager, American Petroleum Institute

  3. DOE/EA-2002

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Western Area Power Administration's Right-of-Way Application for the Tucson-Apache 115-kV Transmission Line Tohono O'odham Nation, San Xavier District, Pima County, Arizona (DOE...

  4. DOE Corporate FEOSH

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) Federal Employee Occupational Safety and Health (FEOSH) Program web site is the connection to current safety and health news and issues: Departmental special emphasis initiatives, upcoming activities, resources, contacts, and much, much more.

  5. DOE Technical Assistance Program

    Broader source: Energy.gov (indexed) [DOE]

    Solid-State Solutions for Municipal Lighting: What You'll Need to Know eere.energy.gov The Parker Ranch installation in Hawaii DOE Technical Assistance Program Solid-State...

  6. Identifying a Collaborating DOE Laboratory Scientist | U.S. DOE...

    Office of Science (SC) Website

    Identifying a Collaborating DOE Laboratory Scientist DOE Office of Science Graduate Student Research (SCGSR) Program SCGSR Home Eligibility Benefits Participant Obligations How to...

  7. Does Doctrine Drive Technology or Does Technology Drive Doctrine?

    E-Print Network [OSTI]

    Blasko, Dennis

    2010-01-01T23:59:59.000Z

    Brief No. 4 September 2010 Does Doctrine Drive Technology orDoes Technology Drive Doctrine? Dennis Blasko Summary Wthat emphasizes strategy over technology and may hold some

  8. DOE Policy on Decommissioning DOE Facilities Under CERCLA

    Broader source: Energy.gov [DOE]

    In May 1995, the Department of Energy (DOE) issued a policy in collaboration with the Environmental Protection Agency (EPA) for decommissioning surplus DOE facilities consistent with the...

  9. DOE Corporate Operating Experience Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-04-08T23:59:59.000Z

    The Order institutes a DOE wide program for the management of operating experience to prevent adverse operating incidents and facilitate the sharing of good work practices among DOE sites. Cancels DOE O 210.2.

  10. DOE Directives | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DOE O 414.1D, Quality Assurance DOE G 414.1-2B Admin Change 1, Quality Assurance Program Guide DOE O 221.1A, Reporting Fraud, Waste and Abuse to the Office of the Inspector...

  11. Proposed sale of radioactively contaminated nickel ingots located at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) proposes to sell 8,500 radioactively contaminated nickel ingots (9.350 short tons), currently in open storage at the Paducah Gaseous Diffusion Plant (PGDP), to Scientific Ecology Group, Inc. (SEG) for decontamination and resale on the international market. SEG would take ownership of the ingots when they are loaded for transport by truck to its facility in Oak Ridge, Tennessee. SEG would receive approximately 200 short tons per month over approximately 48 months (an average of 180 ingots per month). The nickel decontamination process specified in SEG`s technical proposal is considered the best available technology and has been demonstrated in prototype at SEG. The resultant metal for resale would have contamination levels between 0.3 and 20 becquerel per gram (Bq/g). The health hazards associated with release of the decontaminated nickel are minimal. The activity concentration of the end product would be further reduced when the nickel is combined with other metals to make stainless steel. Low-level radioactive waste from the SEG decontamination process, estimated to be approximately 382 m{sup 3} (12,730 ft), would be shipped to a licensed commercial or DOE disposal facility. If the waste were packaged in 0.23 m{sup 3}-(7.5 ft{sup 3}-) capacity drums, approximately 1,500 to 1,900 drums would be transported over the 48-month contract period. Impacts from the construction of decontamination facilities and the selected site are minimal.

  12. Undergraduate Applicants from Pakistan These notes are intended for applicants from Pakistan who are considering applying to the

    E-Print Network [OSTI]

    Talbot, James P.

    Undergraduate Applicants from Pakistan These notes are intended for applicants from Pakistan who are on the website) or email: pakistan@cao.cam.ac.uk Information on entry for postgraduate courses may be obtained Scholarship or would like to be considered for interview in Pakistan in November, your completed COPA and UCAS

  13. I. Standard Configuration The Radio Frequency Fragment Separator (RFFS) is a filtering device intended to enhance the

    E-Print Network [OSTI]

    to stop the ions in the last detector, so that gamma-rays emitted shortly after implantation canI. Standard Configuration A. General The Radio Frequency Fragment Separator (RFFS) is a filtering device intended to enhance the purity of radioactive beams produced via projectile fragmentation

  14. Characterization of the thermo-mechanical behaviour of Hemp fibres intended for the manufacturing of high performance composites.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Characterization of the thermo-mechanical behaviour of Hemp fibres intended for the manufacturing-mechanical behaviour of hemp fibres (Cannabis sativa L.) is investigated by means of a Dynamic Mechanical Analyser, in the material's organisation. In addition, the behaviour of hemp fibres is affected by temperature, which acts

  15. Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials

    SciTech Connect (OSTI)

    Rachor, Ingke, E-mail: i.rachor@ifb.uni-hamburg.de [University of Hamburg, Institute of Soil Science, Allende-Platz 2, 20146 Hamburg (Germany); Gebert, Julia; Groengroeft, Alexander; Pfeiffer, Eva-Maria [University of Hamburg, Institute of Soil Science, Allende-Platz 2, 20146 Hamburg (Germany)

    2011-05-15T23:59:59.000Z

    The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation and corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm{sup -3}, reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100 g CH{sub 4} m{sup -2} d{sup -1}, covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH{sub 4} m{sup -2} d{sup -1} and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity and diffusive ingress of atmospheric air. For one material with elevated levels of fine particles and high organic matter content, methane production impeded the quantification of methane oxidation potentials. Regarding the design of landfill cover layers it was concluded that the magnitude of the expected methane load, the texture and expected compaction of the cover material are key variables that need to be known. Based on these, a column study can serve as an appropriate testing system to determine the methane oxidation capacity of a soil intended as landfill cover material.

  16. DOE F 740-MX

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU Waste Cleanup at1450.5B OMB3.2 DOE F580.1 DOE F

  17. DOE O 451

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014ContributingDOE Contract DOE Internationalwith 17O 451.1B Chg 3

  18. About | DOE Data Explorer

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Garyand TechnicalAbout About DOE Data Explorer The DOE

  19. DOE FOIA Request Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUMCOST MANAGEMENT REPORT Page of DOE2 DOE

  20. Feedback | DOE PAGES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget » FYU.S. DOE Office ofPublic Access Feedback

  1. INDEPENDENT TECHNICAL REVIEW OF THE C-400 INTERIM REMEDIAL PROJECT PHASE I RESULTS, PADUCAH, KENTUCKY

    SciTech Connect (OSTI)

    Looney, B.; Rossabi, J.; Stewart,L.; Richards, W.

    2010-10-29T23:59:59.000Z

    The groundwater and soil in the vicinity of the C-400 Building at the Paducah Gaseous Diffusion Plant (PGDP), is contaminated with substantial quantities of industrial solvents, primarily trichoroethene (TCE). This solvent 'source' is recognized as a significant challenge and an important remediation target in the overall environmental cleanup strategy for PGDP. Thus, the cleanup of the C-400 TCE Source is a principal focus for the Department of Energy (DOE) and its contractors, and for PGDP regulators and stakeholders. Using a formal investigation, feasibility study and decision process, Electrical Resistance Heating (ERH) was selected for the treatment of the soil and groundwater in the vicinity of C-400. ERH was selected as an interim action to remove 'a significant portion of the contaminant mass of TCE at the C-400 Cleaning Building area through treatment' with the longer term goal of reducing 'the period the TCE concentration in groundwater remains above its Maximum Contaminant Level (MCL).' ERH is a thermal treatment that enhances the removal of TCE and related solvents from soil and groundwater. The heterogeneous conditions at PGDP, particularly the high permeability regional gravel aquifer (RGA), are challenging to ERH. Thus, a phased approach is being followed to implement this relatively expensive and complex remediation technology. Conceptually, the phased approach encourages safety and efficiency by providing a 'lessons learned' process and allowing appropriate adjustments to be identified and implemented prior to follow-on phase(s) of treatment. More specifically, early deployment targeted portions of the challenging RGA treatment zone with relatively little contamination reducing the risk of adverse collateral impacts from underperformance in terms of heating and capture. Because of the importance and scope of the C-400 TCE source remediation activities, DOE chartered an Independent Technical Review (ITR) in 2007 to assess the C-400 ERH plans prior to deployment and a second ITR to evaluate Phase I performance in September 2010. In this report, these ITR efforts are referenced as the '2007 ITR' and the 'current ITR', respectively. The 2007 ITR document (Looney et al., 2007) provided a detailed technical evaluation that remains relevant and this report builds on that analysis. The primary objective of the current ITR is to provide an expedited assessment of the available Phase I data to assist the PGDP team as they develop the lessons learned from Phase I and prepare plans for Phase II.

  2. Association of coal metamorphism and hydrothermal mineralization in Rough Creek fault zone and Fluorspar District, Western Kentucky

    SciTech Connect (OSTI)

    Hower, J.C.; Fiene, F.L.; Trinkle, E.J.

    1983-09-01T23:59:59.000Z

    The ambient coal rank (metamorphism) of the Carboniferous coals in the Western Kentucky coalfield ranges from high volatile A bituminous (vitrinite maximum reflectance up to 0.75% R/sub max/) in the Webster syncline (Webster and southern Union Counties) to high volatile C bituminous (0.45 to 0.60% R/sub max/) over most of the remainder of the area. Anomalous patterns of metamorphism, however, have been noted in coals recovered from cores and mines in fault blocks of the Rough Creek fault zone and Fluorspar District. Coals in Gil-30 borehole (Rough Creek faults, Bordley Quadrangle, Union County) vary with no regard for vertical position, from high volatile C(0.55% R/sub max/) to high volatile A (0.89%R/sub max) bituminous. Examination of the upper Sturgis Formation (Missourian/Virgilian) coals revealed that the higher rank (generally above 0.75% R/sub max/) coals had vein mineral assemblages of sphalerite, twinned calcite, and ferroan dolomite. Lower rank coals had only untwinned calcite. Several sites in Webster County contain various coals (Well (No. 8) to Coiltwon (No. 14)) with vitrinite reflectances up to 0.83% R/sub max/ and associated sphalerite mineralization. Mississippian and Lower Pennsylvanian (Caseyville Formation Gentry coal) coals in the mineralized Fluorspar District have ranks to nearly medium volatile bituminous (1.03% R/sub max/). The regional rank trend exhibited by the fualt zones is generally higher rank than the surrounding areas. Sphalerite mineralization in itself is not unique within Illinois basin coals, but if it was partly responsible for the metamorphism of these coals, then the fluid temperature must have been higher within the above mentioned fault complexes.

  3. Kentucky-Kentucky Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0 1 1996-2013 Lease20 55 1060,941

  4. DOE Corporate Operating Experience Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-06-12T23:59:59.000Z

    The Order establishes a DOE wide program for management of operating experience to prevent adverse operating incidents and to expand the sharing of good work practices among DOE sites. Canceled by DOE O 210.2A. Does not cancel other directives.

  5. DRAFT - DOE G 430.1-8, Asset Revitalization Initiative Guide for Sustainable Asset Management and Reuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The Guide is intended to assist sites in sustainable planning, management, and reuse of assets that allows effective mission execution, optimizes federal and public resources, and supports local and national goals for economic growth and diversification in support of DOE O 430.1B.

  6. DOE JGI Welcome Remarks

    SciTech Connect (OSTI)

    Bristow, Jim [DOE Joint Genome Institute

    2010-06-03T23:59:59.000Z

    Jim Bristow, Deputy Director of Programs at the DOE Joint Genome Institute, discusses the impact of advances in sequencing technologies on large genome centers on June 3, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

  7. AdministrAtion And FinAnce mission stAtement Administration and Finance exists to support the strategic mission of Northern Kentucky University by providing quality service through sound

    E-Print Network [OSTI]

    Boyce, Richard L.

    20132013 AdministrAtion And FinAnce mission stAtement Administration and Finance exists to support within Administration and Finance are committed to the development, implementation, and continuous of Northern Kentucky University. Administration and Finance strives to provide a climate conducive

  8. 82 College of Agriculture and School of Human Environmental Sciences 2007-2008 University of Kentucky Bulletin M. Scott Smith, Ph.D., is Dean and Director of the

    E-Print Network [OSTI]

    MacAdam, Keith

    82 College of Agriculture and School of Human Environmental Sciences 2007-2008 University of Kentucky Bulletin M. Scott Smith, Ph.D., is Dean and Director of the College of Agriculture; Linus R for Academic Programs. Theresearch,teaching,extension,andregu- latory functions of the College of Agriculture

  9. 1979 DOE statistical symposium

    SciTech Connect (OSTI)

    Gardiner, D.A.; Truett T. (comps. and eds.)

    1980-09-01T23:59:59.000Z

    The 1979 DOE Statistical Symposium was the fifth in the series of annual symposia designed to bring together statisticians and other interested parties who are actively engaged in helping to solve the nation's energy problems. The program included presentations of technical papers centered around exploration and disposal of nuclear fuel, general energy-related topics, and health-related issues, and workshops on model evaluation, risk analysis, analysis of large data sets, and resource estimation.

  10. DOE/CF-0090

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014ContributingDOE ContractDepartment of4 Volume 1 Department

  11. DOE Energy Challenge Project

    SciTech Connect (OSTI)

    Frank Murray; Michael Schaepe

    2009-04-24T23:59:59.000Z

    Project Objectives: 1. Promote energy efficiency concepts in undergraduate and graduate education. 2. Stimulate and interest in pulp and paper industrial processes, which promote and encourage activities in the area of manufacturing design efficiency. 3. Attract both industrial and media attention. Background and executive Summary: In 1997, the Institute of Paper Science and Technology in conjunction with the U.S. Department of Energy developed a university design competition with an orientation to the Forest Products Industry. This university design competition is in direct alignment with DOE’s interests in instilling in undergraduate education the concepts of developing energy efficient processes, minimizing waste, and providing environmental benefits and in maintaining and enhancing the economic competitiveness of the U.S. forest products industry in a global environment. The primary focus of the competition is projects, which are aligned with the existing DOE Agenda 2020 program for the industry and the lines of research being established with the colleges comprising the Pulp and Paper Education and Research Alliance (PPERA). The six design competitions were held annually for the period 1999 through 2004.

  12. Extension of DOE Directives on Security

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-05-06T23:59:59.000Z

    The Notice extends the following directives until 12/31/02. DOE N 205.1, DOE N 205.2, DOE 205.3, DOE N 471.3, and DOE 473.6.

  13. Healy Clean Coal Project: A DOE Assessment

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2003-09-01T23:59:59.000Z

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) Program is to provide the energy marketplace with advanced, more efficient, and environmentally responsible coal utilization options by conducting demonstrations of new technologies. These demonstration projects are intended to establish the commercial feasibility of promising advanced coal technologies that have been developed to a level at which they are ready for demonstration testing under commercial conditions. This document serves as a DOE post-project assessment (PPA) of the Healy Clean Coal Project (HCCP), selected under Round III of the CCT Program, and described in a Report to Congress (U.S. Department of Energy, 1991). The desire to demonstrate an innovative power plant that integrates an advanced slagging combustor, a heat recovery system, and both high- and low-temperature emissions control processes prompted the Alaska Industrial Development and Export Authority (AIDEA) to submit a proposal for this project. In April 1991, AIDEA entered into a cooperative agreement with DOE to conduct this project. Other team members included Golden Valley Electric Association (GVEA), host and operator; Usibelli Coal Mine, Inc., coal supplier; TRW, Inc., Space & Technology Division, combustor technology provider; Stone & Webster Engineering Corp. (S&W), engineer; Babcock & Wilcox Company (which acquired the assets of Joy Environmental Technologies, Inc.), supplier of the spray dryer absorber technology; and Steigers Corporation, provider of environmental and permitting support. Foster Wheeler Energy Corporation supplied the boiler. GVEA provided oversight of the design and provided operators during demonstration testing. The project was sited adjacent to GVEA's Healy Unit No. 1 in Healy, Alaska. The objective of this CCT project was to demonstrate the ability of the TRW Clean Coal Combustion System to operate on a blend of run-of-mine (ROM) coal and waste coal, while meeting strict environmental requirements. DOE provided $117,327,000 of the total project cost of $282,300,000, or 41.6 percent. Construction for the demonstration project was started in May 1995, and completed in November 1997. Operations were initiated in January 1998, and completed in December 1999. The evaluation contained herein is based primarily on information from the AIDEA's Final Report (Alaska Industrial Development and Export Authority, 2001), as well as other references cited.

  14. Does DOF Separation on Elastic Devices Improve User 3D Steering Task Performance?

    E-Print Network [OSTI]

    Casiez, Géry

    Does DOF Separation on Elastic Devices Improve User 3D Steering Task Performance? G´ery CasiezHaptic in a 3D steering task. Unlike other devices intended to interact in 3D with one end-effector, the Digi the manipulation of a stylus or thimble, and the SpaceMouse [2] is an elastic device to rate control objects in 3D

  15. Identifying and Resolving Issues in EnergyPlus and DOE-2 Window Heat Transfer Calculations

    SciTech Connect (OSTI)

    Booten, C.; Kruis, N.; Christensen, C.

    2012-08-01T23:59:59.000Z

    Issues in building energy software accuracy are often identified by comparative, analytical, and empirical testing as delineated in the BESTEST methodology. As described in this report, window-related discrepancies in heating energy predictions were identified through comparative testing of EnergyPlus and DOE-2. Multiple causes for discrepancies were identified, and software fixes are recommended to better align the models with the intended algorithms and underlying test data.

  16. Geochemical Analyses of Surface and Shallow Gas Flux and Composition Over a Proposed Carbon Sequestration Site in Eastern Kentucky

    SciTech Connect (OSTI)

    Thomas Parris; Michael Solis; Kathryn Takacs

    2009-12-31T23:59:59.000Z

    Using soil gas chemistry to detect leakage from underground reservoirs (i.e. microseepage) requires that the natural range of soil gas flux and chemistry be fully characterized. To meet this need, soil gas flux (CO{sub 2}, CH{sub 4}) and the bulk (CO{sub 2}, CH{sub 4}) and isotopic chemistry ({delta}{sup 13}C-CO2) of shallow soil gases (<1 m, 3.3 ft) were measured at 25 locations distributed among two active oil and gas fields, an active strip mine, and a relatively undisturbed research forest in eastern Kentucky. The measurements apportion the biologic, atmospheric, and geologic influences on soil gas composition under varying degrees of human surface disturbance. The measurements also highlight potential challenges in using soil gas chemistry as a monitoring tool where the surface cover consists of reclaimed mine land or is underlain by shallow coals. For example, enrichment of ({delta}{sup 13}C-CO2) and high CH{sub 4} concentrations in soils have been historically used as indicators of microseepage, but in the reclaimed mine lands similar soil chemistry characteristics likely result from dissolution of carbonate cement in siliciclastic clasts having {delta}{sup 13}C values close to 0{per_thousand} and degassing of coal fragments. The gases accumulate in the reclaimed mine land soils because intense compaction reduces soil permeability, thereby impeding equilibration with the atmosphere. Consequently, the reclaimed mine lands provide a false microseepage anomaly. Further potential challenges arise from low permeability zones associated with compacted soils in reclaimed mine lands and shallow coals in undisturbed areas that might impede upward gas migration. To investigate the effect of these materials on gas migration and composition, four 10 m (33 ft) deep monitoring wells were drilled in reclaimed mine material and in undisturbed soils with and without coals. The wells, configured with sampling zones at discrete intervals, show the persistence of some of the aforementioned anomalies at depth. Moreover, high CO{sub 2} concentrations associated with coals in the vadose zone suggest a strong affinity for adsorbing CO{sub 2}. Overall, the low permeability of reclaimed mine lands and coals and CO2 adsorption by the latter is likely to reduce the ability of surface geochemistry tools to detect a microseepage signal.

  17. DOE: Support Implementation of EEOICPA

    Broader source: Energy.gov [DOE]

    DOE’s primary role in the EEOICPA is to provide records to DOL, NIOSH and DOJ, to support claim processing, dose reconstruction and ultimately claim adjudication. The worker records provided by...

  18. Government perspective. [FY 1994 budgets for DOE and NRC

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    During April, several Congressional committees held hearings on the FY 1994 budget submitted by the Department of Energy (DOE). DOE has requested a total nuclear energy budget of $165 million, reduced from $299.3 million in FY 1993. Energy Secretary Hazel O'Leary and acting Assistant Secretary for Nuclear Energy, Mr. E.C. Brolin, testified that DOE intends to continue to fund research for light water reactors (LWR) at a level of $57.8 million during FY 1994, a slight decline from the $58.7 million requested for FY 1993. The LWR program funding will allow work to continue on the standardization and design certification programs. However, DOE's proposed $45 million budget cut, to only $15 million, for funding of advanced nuclear research and development programs has been sharply criticized by nuclear industry supporters in Congress. The Nuclear Regulatory Commission's (NRC) Chairman, Ivan Selin, testified before the House Energy and Water Appropriations Subcommittee regarding NRC's budget request. NRC is requesting $547.7 million for FY 1994, an increase of 1.5 percent over the FY 1993 budget.

  19. DOE Average Results

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | DepartmentIOffshore WindEnergy's FY2016Appoints DOE

  20. DOE Challenge Home Verification

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | DepartmentIOffshoreDepartmentBegins DOE Challenge Home

  1. DOE F 5631

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU Waste Cleanup at1450.5B OMB3.2 DOE F 473.23

  2. DOE F 5634

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU Waste Cleanup at1450.5B OMB3.2 DOE F 473.2334 OMBCSCS

  3. DOE F 5634

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU Waste Cleanup at1450.5B OMB3.2 DOE F 473.2334

  4. DOE F 5634

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU Waste Cleanup at1450.5B OMB3.2 DOE F 473.23342

  5. DOE/CF-0084

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014ContributingDOE ContractDepartment of4 Volume 1 Department of

  6. DOE/CF-0085

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014ContributingDOE ContractDepartment of4 Volume 1 Department of2

  7. DOE/CF-0086

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014ContributingDOE ContractDepartment of4 Volume 1 Department of2

  8. DOE/CF-0088

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014ContributingDOE ContractDepartment of4 Volume 1 Department of28

  9. DOE/CF-0089

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014ContributingDOE ContractDepartment of4 Volume 1 Department of289

  10. DOE PAGES Beta

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePART I SECTIONPlasma PhysicsDOE Allocationportal

  11. space booklet_DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development1U C L E A R E N E R G Y DOE/NE-0071 U .

  12. DOE Energy Innovation Hubs

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of ScienceCurrent ProjectsResearch » DOE Energy

  13. DOE Challenge Home Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project for ETTPFeedstockDepartment DOE

  14. DOE Organizational Chart

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions and Policy (2009) | DepartmentDepartmentDOE, 201418

  15. DOE/EIS-0380

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant6-2002DOE/EA-1313 Rev.79-SA-0190-SA-032 FISCAL

  16. DOE/EIS-0380

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant6-2002DOE/EA-1313 Rev.79-SA-0190-SA-032 FISCAL3

  17. DOE/EIS-0380

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant6-2002DOE/EA-1313 Rev.79-SA-0190-SA-032 FISCAL31

  18. DOE/ID-Number

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant6-2002DOE/EA-13135 Final Environmental(July

  19. DOE/ID-Number

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant6-2002DOE/EA-13135 Final

  20. DOE/ID-Number

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant6-2002DOE/EA-13135 FinalUsed Fuel Disposal in

  1. DOE/ID-Number

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant6-2002DOE/EA-13135 FinalUsed Fuel Disposal in310

  2. DOE/ID-Number

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant6-2002DOE/EA-13135 FinalUsed Fuel Disposal

  3. DOE Exascale Initiative

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. DepartmentEnergy ThisStandardsSeptember 7, 2012DepartmentHudsonWestern DOE

  4. Cameron Salony, DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r8.05 CalendarINT'L. S C HOLARMedia

  5. DOE/BP-3828

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUMCOSTDOENuclear1 ofDOE Office of

  6. DOE/BP-4674

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUMCOSTDOENuclear1 ofDOE Office of

  7. DOE/EA-

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUMCOSTDOENuclear1 ofDOE Office of4 Volume1 FINAL

  8. DOE/EA-XXXX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUMCOSTDOENuclear1 ofDOE Office of4 Volume153049

  9. DOE/CF-0059

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdleBiologicalCrosscutting SuccessOperationalDOE Plans2 of 4)349

  10. DOE/CF-0086

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department ofDepartment9-92January 20,Department of Energy4-99 DOE-TSL-4-99

  11. DOE FILE NO.

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthNrr-osams ADMIN RCDBaseline0 0 0 0 0 DOE

  12. DOE's Offices of Environmental

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAboutStatement of Intent (SOI) between the US Dept of Energy (DOE)

  13. Student Name John Xa Doe

    E-Print Network [OSTI]

    Zhou, Yaoqi

    -cultural cognition: An investigation of designer thinking on web site design Thesis Proposal Abstract (Max. 200 words, one paragraph) Cross-cultural web design and usability research takes as its theoretical underpinning, the current study is intended to show how culture shapes the cognitive style of Web designers. Using subjects

  14. R E l E a s E d on rfcEist but intEndEd for USE

    E-Print Network [OSTI]

    R E l E a s E d on rfcEist but intEndEd for USE h r 53 1926 MailEd April 28,19267 :mE YXAl i l l 1 E t through 50 pEr cEnt. of thE sunshin, SaYS Dr. A. Angstrom, w i l l stop 80 t o 90 pEr cmt. of t h E outgoing radiatioil from thE Earth. UP than t o hold day tErnpErLturEs down. Obviously

  15. DOE - Office of Legacy Management -- Maxey

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizona Arizona az_map MonumentNebraskaIdahoKentucky

  16. Research results from the Ashland Exploration, Inc. Ford Motor Company 78 (ed) well, Pike County, Kentucky. Topical report, April 1992-December 1993

    SciTech Connect (OSTI)

    Hopkins, C.W.; Frantz, J.H.; Lancaster, D.E.

    1995-06-01T23:59:59.000Z

    This report summarizes the work performed on the Ashland Exploration, Inc. Ford Motor Company 78 (Experimental Development (ED)) Well, in Pike County, KY. The ED well was the third well drilled in a research project conducted by GRI in eastern Kentucky targeting both the Devonian Shales and Berea Sandstone. Both the Shales and Berea were completed and tested in the ED well. The primary objective of the ED well was to apply what was learned from studying the Shalers in COOP 1 (first well drilled) and the Berea in COOP 2 (second well drilled) to both the Shales and the Berea in the ED well. Additionally, the ED well was used to evaluate the impact of different stimulation treatments on Shales production. Research in the ED well brings to a close GRI`s extensive field-based research program in the Appalachian Basin over the last ten years.

  17. COMBINED GEOPHYSICAL INVESTIGATION TECHNIQUES TO IDENTIFY BURIED WASTE IN AN UNCONTROLLED LANDFILL AT THE PADUCAH GASEOUS DIFFUSION PLANT, KENTUCKY

    SciTech Connect (OSTI)

    Miller, Peter T.; Starmer, R. John

    2003-02-27T23:59:59.000Z

    The primary objective of the investigation was to confirm the presence and determine the location of a cache of 30 to 60 buried 55-gallon drums that were allegedly dumped along the course of the pre-existing, northsouth diversion ditch (NSDD) adjacent to permitted landfills at the Paducah Gaseous Diffusion Plant, Kentucky. The ditch had been rerouted and was being filled and re-graded at the time of the alleged dumping. Historic information and interviews with individuals associated with alleged dumping activities indicated that the drums were dumped prior to the addition of other fill materials. In addition, materials alleged to have been dumped in the ditch, such as buried roofing materials, roof flashing, metal pins, tar substances, fly ash, and concrete rubble complicated data interpretation. Some clean fill materials have been placed over the site and graded. This is an environment that is extremely complicated in terms of past waste dumping activities, construction practices and miscellaneous landfill operations. The combination of site knowledge gained from interviews and research of existing site maps, variable frequency EM data, classical total magnetic field data and optimized GPR lead to success where a simpler less focused approach by other investigators using EM-31 and EM-61 electromagnetic methods and unfocused ground penetrating radar (GPR)did not produce results and defined no real anomalies. A variable frequency electromagnetic conductivity unit was used to collect the EM data at 3,030 Hz, 5,070 Hz, 8,430 Hz, and 14,010 Hz. Both in-phase and quadrature components were recorded at each station point. These results provided depth estimates for targets and some information on the subsurface conditions. A standard magnetometer was used to conduct the magnetic survey that showed the locations and extent of buried metal, the approximate volume of ferrous metal present within a particular area, and allowed estimation of approximate target depths. The GPR survey used a 200 megahertz (MHz) antenna to provide the maximum depth penetration and subsurface detail yielding usable signals to a depth of about 6 to 10 feet in this environment and allowed discrimination of objects that were deeper, particularly useful in the southern area of the site where shallow depth metallic debris (primarily roof flashing) complicated interpretation of the EM and magnetic data. Several geophysical anomalies were defined on the contour plots that indicated the presence of buried metal. During the first phase of the project, nine anomalies or anomalous areas were detected. The sizes, shapes, and magnitudes of the anomalies varied considerably, but given the anticipated size of the primary target of the investigation, only the most prominent anomalies were considered as potential caches of 30 to 60 buried drums. After completion of a second phase investigation, only two of the anomalies were of sufficient magnitude, not identifiable with existing known metallic objects such as monitoring wells, and in positions that corresponded to the location of alleged dumping activities and were recommended for further, intrusive investigation. Other important findings, based on the variable frequency EM method and its combination with total field magnetic and GPR data, included the confirmation of the position of the old NSDD, the ability to differentiate between ferrous and non-ferrous anomalies, and the detection of what may be plumes emanating from the landfill cell.

  18. Notice of Intent to Revise Department of Energy Order 426.2 Change 1, Personnel Selection, Training, Qualification and Certification Requirements for DOE Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The Office of Nuclear Safety consulted field and Headquarters (HQ) offices on whether or not a revision is warranted for DOE O 426.2. As a result, certain aspects of DOE O 426.2 were identified as needing clarification and revision. Based on this feedback, the revision is intended to clarify educational requirements, certification requirements, and applicability. Addressing these concerns should improve operating training programs, and result in less time focused on managing ambiguous or possibly unnecessary requirements.

  19. Notice of Intent to Revise Department of Energy Order 426.2 Change 1, Personnel Selection, Training, Qualification and Certification Requirements for DOE Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-02-19T23:59:59.000Z

    The Office of Nuclear Safety consulted field and Headquarters (HQ) offices on whether or not a revision is warranted for DOE O 426.2. As a result, certain aspects of DOE O 426.2 were identified as needing clarification and revision. Based on this feedback, the revision is intended to clarify educational requirements, certification requirements, and applicability. Addressing these concerns should improve operating training programs, and result in less time focused on managing ambiguous or possibly unnecessary requirements.

  20. Reassessment of liquefaction potential and estimation of earthquake- induced settlements at Paducah Gaseous Diffusion Plant, Paducah, Kentucky. Final report

    SciTech Connect (OSTI)

    Sykora, D.W.; Yule, D.E.

    1996-04-01T23:59:59.000Z

    This report documents a reassessment of liquefaction potential and estimation of earthquake-induced settlements for the U.S. Department of Energy (DOE), Paducah Gaseous Diffusion Plant (PGDP), located southwest of Paducah, KY. The U.S. Army Engineer Waterways Experiment Station (WES) was authorized to conduct this study from FY91 to FY94 by the DOE, Oak Ridge Operations (ORO), Oak Ridge, TN, through Inter- Agency Agreement (IAG) No. DE-AI05-91OR21971. The study was conducted under the Gaseous Diffusion Plant Safety Analysis Report (GDP SAR) Program.

  1. DOE-STD-1104 Requirements Crosswalk

    Office of Environmental Management (EM)

    09 to DOE-STD-1104-2014 Requirements Matrix - 1 - No. Section Page Number DOE-STD-1104-2009 Requirement DOE-STD-1104-2014 Requirements Comment Gen DOE-STD-1104-2009 was broadly...

  2. Carbon Capture Pilots (Kentucky)

    Broader source: Energy.gov [DOE]

    Support for the Carbon Management Research Group (CMRG), a public/private partnership consisting of most of the Commonwealth’s utilities, the Electric Power Research Institute, the Center for...

  3. Kentucky Natural Gas Prices

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) Kenai,Feet) YearLiquids58,8992009 2010

  4. Kentucky Natural Gas Prices

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) Kenai,Feet) YearLiquids58,8992009

  5. Kentucky Proved Nonproducing Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0 1 1996-2013 Lease Condensate

  6. Kentucky Natural Gas Summary

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProved Reserves (Billion Cubic Feet) DecadeYear(Million

  7. Joint Statement for Candidates on Common Ivy League Admission Procedure [intended for all applicants and included on all Ivy admission forms

    E-Print Network [OSTI]

    Fall 2013 Joint Statement for Candidates on Common Ivy League Admission Procedure [intended for all the procedures under which we are operating and by clearly specifying the obligations of both the applicant

  8. Microsoft Word - DOE-EA-1599 Draft 2008-06-11--rjk dc - accepted...

    Office of Environmental Management (EM)

    injury and fatality data were for the year 2005 for Tennessee, Kentucky, and the average United States (to serve as the basis for the generic site). The data are specific to metal...

  9. Introducing the DOE Sustainability Dashboard

    Broader source: Energy.gov [DOE]

    Please join us as we introduce DOE's new Sustainability Dashboard. This webinar will provide an overview and demonstration of the new Dashboard and offer an opportunity for questions.

  10. DOE F 4220-10

    Broader source: Energy.gov (indexed) [DOE]

    6. Contract, Grant, or Other Agreement No.: (Specify Type of Instrument) New Renewal Termination (See Inst) Modification (Total to date: ) Does this award result from an...

  11. presentations | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    International Activity Project Information Project Portfolio Publications Coal Gasification Magazine Solicitations FAQs Overview of DOE's C&CBTL Program (Dec 2014) The C&CBTL...

  12. receive DOE Early Career Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hydrological controls on carbon cycling in flood plain ecosystems into Earth System Models (ESM). "The DOE Early Career Research Award represents both a significant honor...

  13. seq | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System, based on DOE's Integrated Safety Management System, the International Organization for Standardization (ISO) 14000 series, and the Occupational Health and Safety...

  14. DOE IDIQ ESPC Awarded Projects

    Broader source: Energy.gov [DOE]

    Excel spreadsheet summarizes the U.S. Department of Energy's (DOE) indefinite delivery, indefinite quantity (IDIQ) energy savings performance contract (ESPC) awarded projects.

  15. coal | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial Technologies for Coal Storage and Feed Preparation AlternativesSupplements to Coal - Feedstock Flexibility DOE Supported R&D for CoalBiomass Feed and Gasification...

  16. DOE Leadership & Career Development Programs | Department of...

    Energy Savers [EERE]

    Development DOE Leadership & Career Development Programs DOE Leadership & Career Development Programs Senior Executive Service Candidate Development Program (SESCDP): This...

  17. Final Report to DOE

    SciTech Connect (OSTI)

    Ismail Gultepe

    2012-05-15T23:59:59.000Z

    This final report summarizes the accomplished goals and provide a list of the publications and presentations made during the project. The goals of the project were accomplished through the various publications submitted to Journals and presentations done at the DOE and international meetings and conferences. The 8 journal articles related to the goals of this project were accepted or submitted. The 23 presentations related to goals of the project were presented at the meetings. There were some minor changes regarding to project goals because of issues encountered during the analysis of the data. For example, a total water probe sensor mounted on the Convair-580 that can be used for defining mixed phase conditions and parameterization, had some problems to estimate magnitude of total water mass, and this resulted in issues providing an accurate parameterization for cloud fraction. Variability related aerosol number concentrations and their composition for direct and indirect effects were studied and published. Results were given to explain aerosol and ice microphysical effects on climate change studies. It is suggested that developed parameterizations should consider the variability in aerosol and ice parameters over the Arctic regions.

  18. DOE handbook: Design considerations

    SciTech Connect (OSTI)

    NONE

    1999-04-01T23:59:59.000Z

    The Design Considerations Handbook includes information and suggestions for the design of systems typical to nuclear facilities, information specific to various types of special facilities, and information useful to various design disciplines. The handbook is presented in two parts. Part 1, which addresses design considerations, includes two sections. The first addresses the design of systems typically used in nuclear facilities to control radiation or radioactive materials. Specifically, this part addresses the design of confinement systems and radiation protection and effluent monitoring systems. The second section of Part 1 addresses the design of special facilities (i.e., specific types of nonreactor nuclear facilities). The specific design considerations provided in this section were developed from review of DOE 6430.1A and are supplemented with specific suggestions and considerations from designers with experience designing and operating such facilities. Part 2 of the Design Considerations Handbook describes good practices and design principles that should be considered in specific design disciplines, such as mechanical systems and electrical systems. These good practices are based on specific experiences in the design of nuclear facilities by design engineers with related experience. This part of the Design Considerations Handbook contains five sections, each of which applies to a particular engineering discipline.

  19. Generic Degraded Congiguration Probability Analysis for DOE Codisposal Waste Package

    SciTech Connect (OSTI)

    S.F.A. Deng; M. Saglam; L.J. Gratton

    2001-05-23T23:59:59.000Z

    In accordance with the technical work plan, ''Technical Work Plan For: Department of Energy Spent Nuclear Fuel Work Packages'' (CRWMS M&O 2000c), this Analysis/Model Report (AMR) is developed for the purpose of screening out degraded configurations for U.S. Department of Energy (DOE) spent nuclear fuel (SNF) types. It performs the degraded configuration parameter and probability evaluations of the overall methodology specified in the ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2000, Section 3) to qualifying configurations. Degradation analyses are performed to assess realizable parameter ranges and physical regimes for configurations. Probability calculations are then performed for configurations characterized by k{sub eff} in excess of the Critical Limit (CL). The scope of this document is to develop a generic set of screening criteria or models to screen out degraded configurations having potential for exceeding a criticality limit. The developed screening criteria include arguments based on physical/chemical processes and probability calculations and apply to DOE SNF types when codisposed with the high-level waste (HLW) glass inside a waste package. The degradation takes place inside the waste package and is long after repository licensing has expired. The emphasis of this AMR is on degraded configuration screening and the probability analysis is one of the approaches used for screening. The intended use of the model is to apply the developed screening criteria to each DOE SNF type following the completion of the degraded mode criticality analysis internal to the waste package.

  20. Proceedings of the DOE standards managers workshop, Gaithersburg, Maryland, October 26--28, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31T23:59:59.000Z

    On May 19, 1992, the Secretary of Energy signed the revised DOE Order 1300.2A, Department of Energy Technical Standards Program, which set the policy and assigned responsibility for activities within the program. The purpose of the revision to the order was to place greater emphasis on the use of technical standards for design, construction, testing, modification, operation, decommissioning, decontamination, and remediation of DOE`s facilities and activities. Within the context of this order, Standards Managers have been assigned for each DOE Secretarial office, each DOE Field Office, and each management and operating (M&O) contractor or site manager to be responsible for and provide the appropriate amount of emphasis on consistent use of standards at DOE facilities. Office of Management and Budget (OMB) Circular A-119 also stresses the importance of the use of standards within Government facilities and directs that activities first attempt to locate and adopt non-Government standards (NGSs) for DOE use. If an NGS is not complete enough for the intended application, it should be adopted for the activity and tailored for the need by development of a Government (DOE) standard. When these NGS documents are unavailable, DOE components will develop an appropriate Government standard to satisfy the need. This expanded DOE program will provide all the information necessary to adopt, tailor, or develop these standards and track the activities. A key to the proper implementation of technical standards and governing requirements is establishing a culture of knowledge and commitment. The workshop provided an in-depth orientation on the Technical Standards Program to participating DOE and M&O Standards Managers.

  1. DOE Municipal Solid-State Street Lighting Consortium

    Broader source: Energy.gov [DOE]

    The DOE Municipal Solid-State Street Lighting Consortium shares technical information and experiences related to LED street and area lighting demonstrations and serves as an objective resource for evaluating new products on the market intended for those applications. Cities, power providers, and others who invest in street and area lighting are invited to join the Consortium and share their experiences. The goal is to build a repository of valuable field experience and data that will significantly accelerate the learning curve for buying and implementing high-quality, energy-efficient LED lighting. Consortium members are part of an international knowledge base and peer group, receive updates on Consortium tools and resources, receive the Consortium E-Newsletter, and help steer the work of the Consortium by participating on a committee. Learn more about the Consortium.

  2. Celebrating DOE'sCleanup

    E-Print Network [OSTI]

    .S. Department of Energy (DOE) and Brookhaven National Laboratory management (the Lab) will celebrate a momentousCelebrating DOE'sCleanup Accomplishments then,now,andtomorrow U.S. Department of Energy Brookhaven-by-shovel, system-by-system, and project-by-project, incremental but progressive achievements were made

  3. DOE's Roof Savings Calculator (RSC)

    E-Print Network [OSTI]

    Wang, Xiaorui "Ray"

    energy consumption, 2006 Source: Building Energy Data Book, U.S. DOE, Prepared by D&R International, Ltd and windows Source: Building Energy Data Book, U.S. DOE, Prepared by D&R International, Ltd., September 2008. Figure 3. Commercial energy loads attributed to envelope and windows Source: Building Energy Data Book, U

  4. Implications of DOE O 1027 Guidance on Rad-NESHAP Programs

    SciTech Connect (OSTI)

    Fuehne, David P. [Los Alamos National Laboratory; Fong, Stephen C. [Los Alamos National Laboratory

    2012-07-20T23:59:59.000Z

    This presentation is for the national Radionuclide NESHAP meeting, an embedded topic of the 2012 Health Physics Society Annual Meeting in Sacramento, CA. The Radionuclide NESHAP program is responsible for measuring and reporting the amount of airborne radioactive material released from DOE facilities. The issue at hand is recent guidance put forth by the Department of Energy regarding threshold limits for Category 3 and Category 2 nuclear facilities. Updates to calculation methods have resulted in increased amounts of radioactive material allowed in inventory for facilities before they reach levels which require them to be categorized as a Category 2 or 3 nuclear facility. With larger radioactive material inventories, there may be a corresponding increase in overall facility emissions. This can have permitting and monitoring impacts for DOE sites, as well as political ramifications with citizen organizations. This presentation is intended to raise awareness of the new guidance and associated issues, and to stimulate discussion among DOE Radionuclide NESHAP representatives.

  5. Issues Associated with the Conveyance and Transfer of DOE Lands under Public Law 105-119

    SciTech Connect (OSTI)

    Ladino, A.G.

    1999-04-21T23:59:59.000Z

    Public Law 105-119 (Law) was enacted in November 1997 as part of the Defense Authorization Act of 1998 (Act). The Law specifically requires the US Department of Energy (DOE) to identify lands that are suitable for conveyance or transfer at Los Alamos National Laboratory (LANL) within 90 days after enactment of the Act. In general, suitable lands include those parcels that are not required to meet the national security missions assigned to DOE at LANL within a ten year period beginning on the date of enactment of the Act. Additional suitability criteria are addressed below and include the need to establish clear title to the land and to restore areas contaminated with hazardous wastes. This proposed change in future land ownership is intended to serve as the final settlement of DOE community assistance obligations with respect to LANL and Los Alamos County and to stimulate economic development.

  6. Utilization of 4-Dimensional Data Visualization Modeling to Evaluate Burial Ground Contaminants at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    Brindley, T. L.; Tarantino, J. J.; Locke, A. L. [CDM, 325 Kentucky Ave., Kevil, Kentucky 42053 (United States); Dollins, D. W. [Department of Energy, Paducah Gaseous Diffusion Plant, Paducah Kentucky 42001 (United States)

    2006-07-01T23:59:59.000Z

    This paper describes how 4-Dimensional (4D) Data Visualization Modeling was used to evaluate historical data and to help guide the decisions for the sampling necessary to complete a Remedial Investigation/Feasibility Study (RI/FS) for the burial ground sites at the Department of Energy (DOE) Paducah Gaseous Diffusion Plant (PGDP). DOE at the Paducah Site is primarily involved in environmental cleanup and landlord activities. The scope of this project was to prepare a work plan for identifying the data available and the data required to conduct an RI/FS for the Burial Ground Operable Unit (BGOU) located within and near PGDP. The work plan focuses on collecting existing information about contamination in and around the burial grounds and determining what additional data are required to support an assessment of risks to human health and the environment and to support future decisions regarding actions to reduce these risks. (authors)

  7. Ecological risks of DOE`s programmatic environmental restoration alternatives

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This report assesses the ecological risks of the Department of Energy`s (DOE) Environmental Restoration Program. The assessment is programmatic in that it is directed at evaluation of the broad programmatic alternatives outlined in the DOE Implementation Plan. It attempts to (1) characterize the ecological resources present on DOE facilities, (2) describe the occurrence and importance of ecologically significant contamination at major DOE facilities, (3) evaluate the adverse ecological impacts of habitat disturbance caused by remedial activities, and (4) determine whether one or another of the programmatic alternatives is clearly ecologically superior to the others. The assessment focuses on six representative facilities: the Idaho National Engineering Laboratory (INEL); the Fernald Environmental Management Project (FEMP); the Oak Ridge Reservation (ORR), including the Oak Ridge National Laboratory (ORNL), Y-12 plant, and K-25 plant; the Rocky Flats Plant; the Hanford Reservation; and the Portsmouth Gaseous Diffusion Plant.

  8. Comprehensive Integrated Planning Process for the Oak Ridge Operations Sites

    SciTech Connect (OSTI)

    Bechtel Jacobs Company LLC; Lockheed Martin Energy Research Corporation; Lockheed Martin Energy Systems, Inc.

    1999-09-01T23:59:59.000Z

    This plan is intended to assist the U.S. Department of Energy (DOE) and contractor personnel in implementing a comprehensive integrated planning process consistent with DOE Order 430.1A, "Life Cycle Asset Management," and Oak Ridge Operations (ORO) Order 430 on sites under the jurisdiction of DOE-ORO. Those sites are the Oak Ridge Reservation, in Oak Ridge, Tennessee; the Paducah Gaseous Diffusion Plant, in Paducah, Kentucky; and the Portsmouth Gaseous Diffusion Plant, in Piketon, Ohio. DOE contractors at these sites are charged with developing and producing this plan, which is referred to as simply the Comprehensive Integrated Plan.

  9. DOE Policies | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010ConferencingOperationalDOE Plans DOE PlansDOE

  10. DOE-TSPP-6, Coordination of DOE Technical Standards - July 2004...

    Broader source: Energy.gov (indexed) [DOE]

    (hereafter referred to collectively as "DOE Components") working to the latest revision of DOE Order 252.1, "Technical Standards Program." DOE-TSPP-6, Coordination of...

  11. DOE Order 440. 1 B: Worker Protection Program for DOE (Including...

    Office of Environmental Management (EM)

    0. 1 B: Worker Protection Program for DOE (Including NNSA) Federal Employees DOE Order 440. 1 B: Worker Protection Program for DOE (Including NNSA) Federal Employees Stakeholders:...

  12. DOE-TSPP-8-2013, Converting DOE Technical Standards to Voluntary...

    Energy Savers [EERE]

    8-2013, Converting DOE Technical Standards to Voluntary Consensus Standards DOE-TSPP-8-2013, Converting DOE Technical Standards to Voluntary Consensus Standards Technical Standards...

  13. Lifetime studies of 130nm nMOS transistors intended for long-duration, cryogenic high-energy physics experiments.

    SciTech Connect (OSTI)

    Hoff, J.R.; /Fermilab; Arora, R.; Cressler, J.D.; /Georgia Tech; Deptuch, G.W.; /Fermilab; Gui, P.; /Southern Methodist U.; Lourenco, N.E.; /Georgia Tech; Wu, G.; /Southern Methodist U.; Yarema, R.J.; /Fermilab

    2011-12-01T23:59:59.000Z

    Future neutrino physics experiments intend to use unprecedented volumes of liquid argon to fill a time projection chamber in an underground facility. To increase performance, integrated readout electronics should work inside the cryostat. Due to the scale and cost associated with evacuating and filling the cryostat, the electronics will be unserviceable for the duration of the experiment. Therefore, the lifetimes of these circuits must be well in excess of 20 years. The principle mechanism for lifetime degradation of MOSFET devices and circuits operating at cryogenic temperatures is via hot carrier degradation. Choosing a process technology that is, as much as possible, immune to such degradation and developing design techniques to avoid exposure to such damage are the goals. This requires careful investigation and a basic understanding of the mechanisms that underlie hot carrier degradation and the secondary effects they cause in circuits. In this work, commercially available 130nm nMOS transistors operating at cryogenic temperatures are investigated. The results show that the difference in lifetime for room temperature operation and cryogenic operation for this process are not great and the lifetimes at both 300K and at 77K can be projected to more than 20 years at the nominal voltage (1.5V) for this technology.

  14. DOE Organization Chart- February 2015

    Broader source: Energy.gov [DOE]

    The DOE Organization Chart is a diagram of the U.S. Department of Energy’s structure along with the relationships and relative ranks of its parts and positions/jobs.

  15. IDIQ DOE ESPC Contract Modifications

    Broader source: Energy.gov [DOE]

    Documents display Amendment of Solicitation/Modification of Contract forms for indefinite-delivery, indefinite-quantity (IDIQ) U.S. Department of Energy (DOE) energy savings performance contracts (ESPCs).

  16. DOE Facilities Technology Partnering Programs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-12T23:59:59.000Z

    The Order establishes roles and responsibilities for the oversight, management and administration of technology partnerships and associated technology transfer mechanisms, and clarifies related policies and procedures. Does not cancel other directives.

  17. DOE Organization Chart- May 2015

    Broader source: Energy.gov [DOE]

    The DOE Organization Chart is a diagram of the U.S. Department of Energy’s structure along with the relationships and relative ranks of its parts and positions/jobs.

  18. DOE-Geothermal Data Repository

    Broader source: Energy.gov [DOE]

    Geothermal energy hidden in the subsurface can be more effectively targeted through precise heatflow and temperature data. The Energy Department makes all data from DOE-funded projects available free online through the National Geothermal Data System.

  19. DOE - Office of Legacy Management

    Office of Legacy Management (LM)

    remaining at the site be subject to a five-year review. The U.S. Department of Energy (DOE) is currently conducting the fourth five-year review at the Weldon Spring...

  20. DOE Hydrogen & Fuel Cell Overview

    Broader source: Energy.gov (indexed) [DOE]

    t t 1 | Fuel Cell Technologies Program eere.energy.gov Fuel Cell Technologies Program DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U S D f E Overview U.S....

  1. The DOE Feeds Families Festival

    Broader source: Energy.gov [DOE]

    Department of Energy employees took a moment to give back to the Washington, D.C. community by holding our first "DOE Feeds Families Festival" outside of the Forrestal Building.

  2. DOE limited standard: Operations assessments

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    Purpose of this standard is to provide DOE Field Element assessors with a guide for conducting operations assessments, and provide DOE Field Element managers with the criteria of the EM Operations Assessment Program. Sections 6.1 to 6.21 provide examples of how to assess specific areas; the general techniques of operations assessments (Section 5) may be applied to other areas of health and safety (e.g. fire protection, criticality safety, quality assurance, occupational safety, etc.).

  3. DOE Privacy Steering Committee Charter

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014ContributingDOE Contract DOE Internationalwith 17Oof

  4. Development of DOE complex wide authorized release protocols for radioactive scrap metals.

    SciTech Connect (OSTI)

    Chen, S. Y.

    1998-11-23T23:59:59.000Z

    Within the next few decades, several hundred thousand tons of metal are expected to be removed from nuclear facilities across the U.S. Department of Energy (DOE) complex as a result of decontamination and decommissioning (D&D) activities. These materials, together with large quantities of tools, equipment, and other items that are commonly recovered from site cleanup or D&D activities, constitute non-real properties that warrant consideration for reuse or recycle, as permitted and practiced under the current DOE policy. The provisions for supporting this policy are contained in the Draft Handbook for Controlling Release for Reuse or Recycle of Property Containing Residual Radioactive Material published by DOE in 1997 and distributed to DOE field offices for interim use and implementation. The authorized release of such property is intended to permit its beneficial use across the entire DOE complex. The objective of this study is to develop readily usable computer-based release protocols to facilitate implementation of the Handbook in evaluating the scrap metals for reuse and recycle. The protocols provide DOE with an effective oversight tool for managing release activities.

  5. Tri-State Synfuels Project Review: Volume 8. Commercial status of licensed process units. [Proposed Henderson, Kentucky coal to gasoline plant; licensed commercial processes

    SciTech Connect (OSTI)

    Not Available

    1982-06-01T23:59:59.000Z

    This document demonstrates the commercial status of the process units to be used in the Tri-State Synfuels Project at Henderson, Kentucky. The basic design philosophy as established in October, 1979, was to use the commercial SASOL II/III plants as a basis. This was changed in January 1982 to a plant configuration to produce gasoline via a methanol and methanol to gasoline process. To accomplish this change the Synthol, Oil workup and Chemical Workup Units were eliminated and replaced by Methanol Synthesis and Methanol to Gasoline Units. Certain other changes to optimize the Lurgi liquids processing eliminated the Tar Distillation and Naphtha Hydrotreater Units which were replaced by the Partial Oxidation Unit. The coals to be gasified are moderately caking which necessitates the installation of stirring mechanism in the Lurgi Dry Bottom gasifier. This work is in the demonstration phase. Process licenses either have been obtained or must be obtained for a number of processes to be used in the plant. The commercial nature of these processes is discussed in detail in the tabbed sections of this document. In many cases there is a list of commercial installations at which the licensed equipment is used.

  6. Dual wall reverse circulation drilling with multi-level groundwater sampling for groundwater contaminant plume delineation at Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    Smuin, D.R.; Morti, E.E.; Zutman, J.L.; Pickering, D.A.

    1995-08-01T23:59:59.000Z

    Dual wall reverse circulation (DWRC) drilling was used to drill 48 borings during a groundwater contaminant investigation at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky. This method was selected as an alternative to conventional hollow stem auger drilling for a number of reasons, including the expectation of minimizing waste, increasing the drilling rate, and reducing the potential for cross contamination of aquifers. Groundwater samples were collected from several water-bearing zones during drilling of each borehole. The samples were analyzed for volatile organic compounds using a field gas chromatograph. This approach allowed the investigation to be directed using near-real-time data. Use of downhole geophysical logging, in conjunction with lithologic descriptions of borehole cuttings, resulted in excellent correlation of the geology in the vicinity of the contaminant plume. The total volume of cuttings generated using the DWRC drilling method was less than half of what would have been produced by hollow stem augering; however, the cuttings were recovered in slurry form and had to be dewatered prior to disposal. The drilling rate was very rapid, often approaching 10 ft/min; however, frequent breaks to perform groundwater sampling resulted in an average drilling rate of < 1 ft/min. The time required for groundwater sampling could be shortened by changing the sampling methodology. Analytical results indicated that the drilling method successfully isolated the various water bearing zones and no cross contamination resulted from the investigation.

  7. DOE Cooperative Research and Development Agreements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-11-06T23:59:59.000Z

    The order establishes policy, requirements, and responsibilities for the oversight, management, and administration of Cooperative Research and Development Agreement (CRADA) activities at DOE facilities. Cancels DOE O 483.1 Admin Chg 1 and DOE M 483.1-1.

  8. Annual DOE Occupational Radiation Exposure | 1977 Report

    Broader source: Energy.gov [DOE]

    The Tenth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1977.

  9. Annual DOE Occupational Radiation Exposure | 1978 Report

    Broader source: Energy.gov [DOE]

    The Eleventh Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1978.

  10. Annual DOE Occupational Radiation Exposure | 1984 Report

    Broader source: Energy.gov [DOE]

    The Seventeenth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1984.

  11. 2015 cross cutting | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (412) 386-4763 Fax: (412) 386-6486 E-mail: karen.lockhart@contr.netl.doe.gov submit USA.GOV | U.S. DEPARTMENT OF ENERGY | DOE OFFICE OF FOSSIL ENERGY DOE OFFICE OF ENERGY...

  12. Annual DOE Occupational Radiation Exposure | 1976 Report

    Broader source: Energy.gov [DOE]

    The Ninth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1976.

  13. Annual DOE Occupational Radiation Exposure | 1985 Report

    Broader source: Energy.gov [DOE]

    The Eighteenth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1985.

  14. Annual DOE Occupational Radiation Exposure | 1981 Report

    Broader source: Energy.gov [DOE]

    The Fourteenth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1981.

  15. Annual DOE Occupational Radiation Exposure | 1986 Report

    Broader source: Energy.gov [DOE]

    The Nineteenth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1986.

  16. Annual DOE Occupational Radiation Exposure | 1980 Report

    Broader source: Energy.gov [DOE]

    The Thirteenth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1980.

  17. Annual DOE Occupational Radiation Exposure | 1979 Report

    Broader source: Energy.gov [DOE]

    The Twelfth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1979.

  18. Annual DOE Occupational Radiation Exposure | 1982 Report

    Broader source: Energy.gov [DOE]

    The Fifteenth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1982.

  19. Annual DOE Occupational Radiation Exposure | 1983 Report

    Broader source: Energy.gov [DOE]

    The Sixteenth Annual Report of Radiation Exposures for DOE & DOE Contractor Employees analyzes occupational radiation exposures at the U.S. Department of Energy (DOE) and its contractor employees during 1983.

  20. Policy Flash 2014-40 Implementation of DOE O 580.1A, DOE Energy...

    Energy Savers [EERE]

    4-40 Implementation of DOE O 580.1A, DOE Energy Personal Property Management Policy Flash 2014-40 Implementation of DOE O 580.1A, DOE Energy Personal Property Management Questions...

  1. "DOE O 450.2 INTEGRATED SAFETY MANAGEMENT AND DOE P 450.4A INTEGRATED...

    Office of Environmental Management (EM)

    "DOE O 450.2 INTEGRATED SAFETY MANAGEMENT AND DOE P 450.4A INTEGRATED SAFETY MANAGEMENT POLICY FAMILIAR LEVEL "DOE O 450.2 INTEGRATED SAFETY MANAGEMENT AND DOE P 450.4A INTEGRATED...

  2. Report of the DOE-DOE Workshop on Fuel Cells in Aviation: Workshop...

    Office of Environmental Management (EM)

    DOE-DOE Workshop on Fuel Cells in Aviation: Workshop Summary and Action Plan Report of the DOE-DOE Workshop on Fuel Cells in Aviation: Workshop Summary and Action Plan This report...

  3. REVIEW REPORT: BUILDING C-400 THERMAL TREATMENT 90 PERCENT REMEDIAL DESIGN REPORT AND SITE INVESTIGATION, PGDP, PADUCAH, KENTUCKY

    SciTech Connect (OSTI)

    Looney, B; Jed Costanza, J; Eva Davis, E; Joe Rossabi, J; Lloyd (Bo) Stewart, L; Hans Stroo, H

    2007-08-15T23:59:59.000Z

    On 9 April 2007, the U.S. Department of Energy (DOE) Headquarters, Office of Soil and Groundwater Remediation (EM-22) initiated an Independent Technical Review (ITR) of the 90% Remedial Design Report (RDR) and Site Investigation (RDSI) for thermal treatment of trichloroethylene (TCE) in the soil and groundwater in the vicinity of Building C-400 at the Paducah Gaseous Diffusion Plant (PGDP). The general ITR goals were to assess the technical adequacy of the 90% RDSI and provide recommendations sufficient for DOE to determine if modifications are warranted pertaining to the design, schedule, or cost of implementing the proposed design. The ultimate goal of the effort was to assist the DOE Paducah/Portsmouth Project Office (PPPO) and their contractor team in ''removing'' the TCE source zone located near the C-400 Building. This report provides the ITR findings and recommendations and supporting evaluations as needed to facilitate use of the recommendations. The ITR team supports the remedial action objective (RAO) at C-400 to reduce the TCE source area via subsurface Electrical Resistance Heating (ERH). Further, the ITR team commends PPPO, their contractor team, regulators, and stakeholders for the significant efforts taken in preparing the 90% RDR. To maximize TCE removal at the target source area, several themes emerge from the review which the ITR team believes should be considered and addressed before implementing the thermal treatment. These themes include the need for: (1) Accurate and site-specific models as the basis to verify the ERH design for full-scale implementation for this challenging hydrogeologic setting; (2) Flexible project implementation and operation to allow the project team to respond to observations and data collected during construction and operation; (3) Defensible performance metrics and monitoring, appropriate for ERH, to ensure sufficient and efficient clean-up; and (4) Comprehensive (creative and diverse) contingencies to address the potential for system underperformance, and other unforeseen conditions These themes weave through the ITR report and the various analyses and recommendations. The ITR team recognizes that a number of technologies are available for treatment of TCE sources. Further, the team supports the regulatory process through which the selected remedy is being implemented, and concurs that ERH is a potentially viable remedial technology to meet the RAOs adjacent to C-400. Nonetheless, the ITR team concluded that additional efforts are needed to provide an adequate basis for the planned ERH design, particularly in the highly permeable Regional Gravel Aquifer (RGA), where sustaining target temperatures present a challenge. The ERH design modeling in the 90% RDR does not fully substantiate that heating in the deep RGA, at the interface with the McNairy formation, will meet the design goals; specifically the target temperatures. Full-scale implementation of ERH to meet the RAOs is a challenge in the complex hydrogeologic setting at PGDP. Where possible, risks to the project identified in this ITR report as ''issues'' and ''recommendations'' should be mitigated as part of the final design process to increase the likelihood of remedial success. The ITR efforts were organized into five lines of inquiry (LOIs): (1) Site investigation and target zone delineation; (2) Performance objectives; (3) Project and design topics; (4) Health and safety; and (5) Cross cutting and independent cost evaluation. Within each of these LOIs, the ITR team identified a series of unresolved issues--topics that have remaining uncertainties or potential project risks. These issues were analyzed and one or more recommendations were developed for each. In the end, the ITR team identified 27 issues and provided 50 recommendations. The issues and recommendations are briefly summarized below, developed in Section 5, and consolidated into a single list in Section 6. The ITR team concluded that there are substantive unresolved issues and system design uncertainties, resulting in technical and financial risks to DOE.

  4. Waste not - want not. DOE appropriate technology small grants program

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    The work reported was to look at various alternatives for local solid waste management and develop an implementation strategy for a resource conservation and recovery plan for the community of Berea, Kentucky. A library on recycling and conservation of resources was compiled, and state and local plans were examined. To get a better understanding of how the community would respond to a waste reduction and recycling program, a series of surveys was conducted. A community recycling project plan is proposed. (LEW)

  5. DOE Occupational Radiation Exposure, 2001 report

    SciTech Connect (OSTI)

    none,

    2001-12-31T23:59:59.000Z

    The goal of the U.S. Department of Energy (DOE) is to conduct its operations, including radiological, to ensure the safety and health of all DOE employees, contractors, and subcontractors. The DOE strives to maintain radiation exposures to its workers below administrative control levels and DOE limits and to further reduce these exposures to levels that are “As Low As Reasonably Achievable” (ALARA). The 2001 DOE Occupational Radiation Exposure Report provides a summary and analysis of the occupational radiation exposure received by individuals associated with DOE activities. The DOE mission includes stewardship of the nuclear weapons stockpile and the associated facilities, environmental restoration of DOE, and energy research.

  6. CRAD, Feedback and Continuous Improvement - DOE Headquarters...

    Office of Environmental Management (EM)

    CRAD, Feedback and Continuous Improvement - DOE Headquarters - December 4, 2007 CRAD, Feedback and Continuous Improvement - DOE Headquarters - December 4, 2007 December 4, 2007...

  7. Memorandum Memorializing Ex Parte Communication, DOE impending...

    Broader source: Energy.gov (indexed) [DOE]

    The meeting was requested by AMCA International to introduce the association's leadership, standards, and experience in developing fan standards to DOE; to learn more about the DOE...

  8. DOE Approved Technical Standards | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Training Superseding DOE-STD-1060-93 (February 1993) | Replaced DOE-HDBK-1118-99 (October 1999) | Reaffirmed (January 2014) This guide provides contractor training...

  9. DOE Approved Technical Standards | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Superseding DOE-STD-1060-93 (February 1993) | Replaced DOE-HDBK-1118-99 (October 1999) | Reaffirmed (January 2014) This guide provides contractor training organizations with...

  10. DOE Approved Technical Standards | Department of Energy

    Energy Savers [EERE]

    safe operation of DOE's defense nuclear facilities. 03032004 DOE-STD-1181-2014 Facility Maintenance Management Functional Area Qualification Standard The Facility Maintenance...

  11. Maintenance Management Program for DOE Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-06-01T23:59:59.000Z

    To define the program for the management of cost-effective maintenance of Department of Energy (DOE) nuclear facilities. Guidance for compliance with this Order is contained in DOE G 433.1-1, Nuclear Facility Maintenance Management Program Guide for use with DOE O 433.1, which references Federal regulations, DOE directives, and industry best practices using a graded approach to clarify requirements and guidance for maintaining DOE-owned Government property. (Cancels DOE 4330.4B, Chapter II, Maintenance Management Program, dated 2-10-94.) Cancels DOE 4330.4B (in part). Canceled by DOE O 433.1A.

  12. NERSC/DOE NP Requirements Workshop Participants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Scale Computing and Storage Requirements for Nuclear Physics May 26-27, 2011 Name Organization Area DOE Program Managers Ted Barnes DOE Office of Nuclear Physics Nuclear...

  13. DOE Challenge Home Recommended Quality Management Provisions...

    Broader source: Energy.gov (indexed) [DOE]

    Recommended Quality Management Provisions DOE Challenge Home Recommended Quality Management Provisions DOE Challenge Home Recommended Quality Management Provisions. qm6-14-13.pdf...

  14. DOE Affirms National Interest Electric Transmission Corridor...

    Broader source: Energy.gov (indexed) [DOE]

    2, 2007 DOE Announces Membership of New Electricity Advisory Committee, April 17, 2008 Senior DOE Officials in Spain to Participate in World Petroleum Congress, July 1, 2008...

  15. DOE Program/Targets and Workshop Objectives

    Broader source: Energy.gov (indexed) [DOE]

    Nancy Garland DOE Hydrogen Program Fuel Cell Operation at Sub- Freezing Temperatures DOE ProgramTargets and Workshop Objectives Sub-Freezing Temperature Effects on Fuel Cells...

  16. DOE FEMA Videos | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DOE FEMA Videos DOE FEMA Videos EMERGENCY RESPONSE TO A TRANSPORTATION ACCIDENT INVOLVING RADIOACTIVE MATERIAL This training video and user guide was designed to supplement the...

  17. doe_netl_completed_proj | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T. Lee'sdefault Sign In AboutDistrict HotDOE/NETL

  18. DOE Formally Commits 1 Billion to | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUMCOST MANAGEMENT REPORT Page of DOE2 DOE4#NEWS

  19. Environmental assessment for the construction and operation of waste storage facilities at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    NONE

    1994-06-01T23:59:59.000Z

    DOE is proposing to construct and operate 3 waste storage facilities (one 42,000 ft{sup 2} waste storage facility for RCRA waste, one 42,000 ft{sup 2} waste storage facility for toxic waste (TSCA), and one 200,000 ft{sup 2} mixed (hazardous/radioactive) waste storage facility) at Paducah. This environmental assessment compares impacts of this proposed action with those of continuing present practices aof of using alternative locations. It is found that the construction, operation, and ultimate closure of the proposed waste storage facilities would not significantly affect the quality of the human environment within the meaning of NEPA; therefore an environmental impact statement is not required.

  20. DOE Global Energy Storage Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The DOE International Energy Storage Database has more than 400 documented energy storage projects from 34 countries around the world. The database provides free, up-to-date information on grid-connected energy storage projects and relevant state and federal policies. More than 50 energy storage technologies are represented worldwide, including multiple battery technologies, compressed air energy storage, flywheels, gravel energy storage, hydrogen energy storage, pumped hydroelectric, superconducting magnetic energy storage, and thermal energy storage. The policy section of the database shows 18 federal and state policies addressing grid-connected energy storage, from rules and regulations to tariffs and other financial incentives. It is funded through DOE’s Sandia National Laboratories, and has been operating since January 2012.

  1. DOE outlines complex cleanup options

    SciTech Connect (OSTI)

    Lobsenz, G.

    1994-02-25T23:59:59.000Z

    The Energy Department said last week it will consider four different strategies for cleanup of its nuclear weapons complex in a draft programmatic environmental impact statement due for release this summer. In an implementation plan released for public comment February 17, DOE also said the EIS would look at centralized, decentralized and regional approaches to management of six types of radioactive and hazardous wastes. Other issues to be addressed in the EIS are development of innovative cleanup technology, budgeting and prioritization, job cutbacks and worker retraining, waste minimization and community involvement in cleanup decisions. However, DOE said it had decided not to address spent nuclear fuel storage in the EIS, as had been previously planned. Instead, spent fuel storage options will be reviewed in another environmental study being done under court order for DOE's Idaho National Engineering Laboratory. Findings from the INEL study will be incorporated in the department-wide EIS for environmental restoration and waste management.

  2. Wyoming DOE EPSCoR

    SciTech Connect (OSTI)

    Gern, W.A.

    2004-01-15T23:59:59.000Z

    All of the research and human resource development projects were systemic in nature with real potential for becoming self sustaining. They concentrated on building permanent structure, such as faculty expertise, research equipment, the SEM Minority Center, and the School of Environment and Natural Resources. It was the intent of the DOE/EPSCoR project to permanently change the way Wyoming does business in energy-related research, human development for science and engineering careers, and in relationships between Wyoming industry, State Government and UW. While there is still much to be done, the DOE/EPSCoR implementation award has been successful in accomplishing that change and enhancing UW's competitiveness associated with coal utilization, electrical energy efficiency, and environmental remediation.

  3. PHYSICS/COMPUTER SCIENCEPHYSICS/COMPUTER SCIENCEPHYSICS/COMPUTER SCIENCE This major is intended for students with dual interests in physics and computer

    E-Print Network [OSTI]

    Krylov, Anna I.

    PHYSICS/COMPUTER SCIENCEPHYSICS/COMPUTER SCIENCEPHYSICS/COMPUTER SCIENCE This major is intended for students with dual interests in physics and computer science who wish to complete the essential courses for both majors within four years. It prepares students for a career in a computer-related field and

  4. Intention to Ship Hazardous Materials Complete and submit this form to EHS if you intend to ship material that may be

    E-Print Network [OSTI]

    Intention to Ship Hazardous Materials Complete and submit this form to EHS if you intend to ship material that may be classified as hazardous material. EHS will determine if the shipment is regulated and/supervisor Department Phone Email Description of material (commercial product name, chemical name, etc.): Known hazards

  5. Materials Science Minor (Draft 3/26/12) This minor is intended for students who have chosen to take a minimum of 16 credits of

    E-Print Network [OSTI]

    Portman, Douglas

    Materials Science Minor (Draft 3/26/12) This minor is intended for students who have chosen to take a minimum of 16 credits of materials science coursework in any appropriate department. Required: 1) ME 280 or MSC 202 Introduction to Materials Science Prerequisites below or with permission of instructor: MTH

  6. AeroLab Wireless Network Code of Conduct The AeroLab wireless network is intended for academic use only. Any use of the

    E-Print Network [OSTI]

    Sislian, J. P.

    AeroLab Wireless Network Code of Conduct The AeroLab wireless network is intended for academic use only. Any use of the wireless network for BitTorrent or other Peer-to-Peer file sharing is strictly will have their wireless access privileges revoked. Connecting to the AeroLab Wireless Network This document

  7. INI Policies & Procedures MS18 8/09/06 The information provided in this policy guide is intended to summarize the rules of the INI MSIN,

    E-Print Network [OSTI]

    Tague, Patrick

    INI Policies & Procedures ­ MS18 ­ 8/09/06 The information provided in this policy guide is intended to summarize the rules of the INI MSIN, Athens MSIN, MSISTM, and Carnegie Mellon CyLab Japan MSIT a contract. I. INI DEGREE REQUIREMENTS II. COURSE ENROLLMENT III. REGISTRATION PROCEDURES IV. GRADES V

  8. Code of Conduct for Users of McGill Computing Facilities McGill Computing Facilities (MCF) are intended to support the academic mission and the

    E-Print Network [OSTI]

    Shoubridge, Eric

    Code of Conduct for Users of McGill Computing Facilities McGill Computing Facilities (MCF for Users of McGill Computing Facilities 1 #12;Code of Conduct for Users of McGill Computing Facilities) are intended to support the academic mission and the administrative functions of the University. This code

  9. Chapter 4. Uranium Mine and Extraction Facility Reclamation This chapter is not intended to serve as guidance, or to supplement EPA or other agency environmental

    E-Print Network [OSTI]

    4-1 Chapter 4. Uranium Mine and Extraction Facility Reclamation This chapter is not intended, it is an outline of practices which may or have been used for uranium site restoration. Mining reclamation for uranium mining sites. The existence of bonding requirements and/or financial guarantees in the cases where

  10. Sept, 1998./D. Barker, TJNAF.& S. Lewis, LBNL1 of 32EPICS Tutorial: Detail Intended for an audience of EPICS application developers.

    E-Print Network [OSTI]

    Sept, 1998./D. Barker, TJNAF.& S. Lewis, LBNL1 of 32EPICS Tutorial: Detail Intended for an audience, 1998./D. Barker, TJNAF.& S. Lewis, LBNL2 of 32EPICS Tutorial: Detail ·Ai, Ao Analog In/Out. Read, 1998./D. Barker, TJNAF.& S. Lewis, LBNL3 of 32EPICS Tutorial: Detail Database records do not always

  11. Graduate Student and Postdoctoral Scholar IDP This document is intended to be one tool that can help you consider your career aspirations and the

    E-Print Network [OSTI]

    Dennett, Daniel

    1 Graduate Student and Postdoctoral Scholar IDP This document is intended to be one tool that can careers that match your skills. The document is for your personal use only. You are not required to share this document with anyone or provide anyone at Tufts with a copy of the completed document

  12. DOE F 4220-10

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE F 1300.2 Record Of00.830.1 DOE3220.10

  13. DOE Plans | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010ConferencingOperationalDOE Plans DOE Plans

  14. Newsletters | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew4 News ReleasesNewsletters

  15. DOE Order on Quality Assurance

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732 DOE F 243.2 Records Scheduling3-2008 DOE OIGInteractions

  16. DOE Form 1332.4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUMCOST MANAGEMENT REPORT Page of DOE2 DOE4# LABOR

  17. DOE Form 1332.7

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUMCOST MANAGEMENT REPORT Page of DOE2 DOE4#

  18. DOE F 4220-10

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 ChairsEnergy DOE Cites FluorDepartmentSeptemberA DOE F

  19. DOE Collegiate Wind Competition (Presentation)

    SciTech Connect (OSTI)

    Jones, J.

    2014-02-01T23:59:59.000Z

    This presentation for the January Stakeholder Engagement and Outreach webinar outlines the expanded need for workers in the wind industry and provides an overview of the DOE Wind Competition (to be held in May 2014) and the guiding principles of the competition.

  20. Penn State DOE GATE Program

    SciTech Connect (OSTI)

    Anstrom, Joel

    2012-08-31T23:59:59.000Z

    The Graduate Automotive Technology Education (GATE) Program at The Pennsylvania State University (Penn State) was established in October 1998 pursuant to an award from the U.S. Department of Energy (U.S. DOE). The focus area of the Penn State GATE Program is advanced energy storage systems for electric and hybrid vehicles.

  1. DOE Peer Review, Washington, DC

    E-Print Network [OSTI]

    . Refrigeration system DOE National Labs: ORNL and LANL #12;Slide 4 GE GR & PSe Customer Participation Utility advisory council #12;Slide 5 GE GR & PSe Magnetic field strength Low High Magnetic rotor forging Yes No Magnetic stator teeth Yes No Performance Efficiency Reactive power capability System stability Design

  2. DOE

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4ConsumptionDOBEIA-0202(83/4Q)

  3. DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUM SULFATE: A REVIEWThisPLAN-46847 (2)6992

  4. Assessment of the influences of groundwater colloids on the migration of technetium-99 at the Paducah Gaseous Diffusion Plant Site in Paducah, Kentucky

    SciTech Connect (OSTI)

    Gu, B.; McDonald, J.A.; McCarthy, J.F. [Oak Ridge National Lab., TN (United States); Clausen, J.L. [Paducah Gaseous Diffusion Plant, KY (United States). Environmental Restoration and Waste Management

    1994-07-01T23:59:59.000Z

    This short report summarizes the influences of groundwater colloids on the migration/transport of {sup 99}Tc at the Paducah Gaseous Diffusion Plant (PGDP) site in Paducah, Kentucky. Limited data suggest that inorganic colloidal materials (e.g., aluminosilicate clay minerals) may not play a significant role in the retention and transport of Tc. Studies by size fractionation reveal that both Tc and natural organic matter (NOM) are largely present in the <3K fraction. The role of NOM on Tc retention and transport is not conclusive on the basis of this study. However, a literature review suggests that Tc is very likely associated with the groundwater organics. The presence of the organic matter could have increased the solubility and cotransport of Tc at the PGDP site. Further studies, applying such techniques as gel chromatography, size exclusion, and spectroscopy, may be useful to determine the association of organic matter with Tc. If Tc is associated with groundwater organics, appropriate protocols for removal of organic matter associated with Tc may be developed. Time and resources were limited so this study is not comprehensive with respect to the role of mobile organic and inorganic colloidal materials on Tc transport in subsurface soils. The redox conditions (DO) of groundwaters reported may not represent the true groundwater conditions, which could have influenced the association and dissociation of Tc with groundwater colloidal materials. Because Tc concentrations in the groundwater (on the order of nCi/L) at the PGDP site is much lower than the solubility of reduced Tc (IV) (on the order of {approximately}10{sup {minus}8} mol/L or parts per billion), regardless of the redox conditions, Tc will stay in solution phase as TC(IV) or Tc(VII). The mechanisms of adsorption/association vs precipitation must be understood under reduced and low Tc conditions so that strategic plans for remediation of Tc contaminated soils and groundwaters can be developed.

  5. Sampling and Analysis at the Vortec Vitrification Facility in Paducah, Kentucky. Semiannual report, November 1, 1996--March 31, 1997

    SciTech Connect (OSTI)

    Laudal, Dennis L.; Lillemoen, Carolyn M.; Hurley, John P.; Ness, Sumitra R.; Stepan, Daniel J.; Thompson, Jeffrey, S.

    1997-12-31T23:59:59.000Z

    The Vortec Cyclone Melting System (CMS) facility; to be located at the U.S. Department of Energy (DOE) Paducah Gaseous Diffusion Plant, is designed to treat soil contaminated with low levels of heavy metals and radioactive elements, as well as organic waste. The primary components of Vortec`s CMS are a counter rotating vortex (CRV) reactor and cyclone melter. In the CMS process, granular glass forming ingredients and other feedstocks are introduced into the CRV reactor where the intense CRV mixing allows the mixture to achieve a stable reaction and rapid heating of the feedstock materials. Organic contaminants in the feedstock are effectively oxidized, and the inert inorganic solids are melted. The University of North Dakota Energy {ampersand} Environmental Research Center (EERC) has been contacted to help in the development of sampling plans and to conduct the sampling at the facility. This document is written in a format that assumes that the EERC will perform the sampling activities and be in charge of sample chain of custody, but that another laboratory will perform required sample analyses.

  6. Pluto's Atmosphere Does Not Collapse

    E-Print Network [OSTI]

    Olkin, C B; Borncamp, D; Pickles, A; Sicardy, B; Assafin, M; Bianco, F B; Buie, M W; de Oliveira, A Dias; Gillon, M; French, R G; Gomes, A Ramos; Jehin, E; Morales, N; Opitom, C; Ortiz, J L; Maury, A; Norbury, M; Ribas, F B; Smith, R; Wasserman, L H; Young, E F; Zacharias, M; Zacharias, N

    2013-01-01T23:59:59.000Z

    Combining stellar occultation observations probing Pluto's atmosphere from 1988 to 2013 and models of energy balance between Pluto's surface and atmosphere, we conclude that Pluto's atmosphere does not collapse at any point in its 248-year orbit. The occultation results show an increasing atmospheric pressure with time in the current epoch, a trend present only in models with a high thermal inertia and a permanent N2 ice cap at Pluto's north rotational pole.

  7. Nancy Garland DOE Hydrogen Program

    E-Print Network [OSTI]

    commercialization decision by 2015 Fuel cell vehicles in showroom and hydrogen at fuel stations by 2020 #12;Hydrogen, and distributed combined heat and power applications. #12;DOE Hydrogen Program Budget $544DOT $37,301Earmarks (EE,830$30,000$29,432Storage R&D (EE) $14,363$25,325$22,564Production & Delivery R&D (EE) FY 05 Appropriations* ($000) FY 05

  8. One Panel One Roof, DOE Powering Solar Workforce | Department...

    Broader source: Energy.gov (indexed) [DOE]

    One Panel One Roof, DOE Powering Solar Workforce One Panel One Roof, DOE Powering Solar Workforce...

  9. Order Module--DOE O 440.1B, WORKER PROTECTION PROGRAM FOR DOE...

    Office of Environmental Management (EM)

    40.1B, WORKER PROTECTION PROGRAM FOR DOE (INCLUDING NNSA) FEDERAL EMPLOYEES Order Module--DOE O 440.1B, WORKER PROTECTION PROGRAM FOR DOE (INCLUDING NNSA) FEDERAL EMPLOYEES The...

  10. Order Module--DOE O 433.1B, MAINTENANCE MANAGEMENT PROGRAM FOR DOE NUCLEAR FACILITIES

    Broader source: Energy.gov [DOE]

    "The familiar level of this module is designed to summarize the basic information in DOE O 433.1B, Maintenance Management Program for DOE Nuclear Facilities. This Order canceled DOE O 433.1A. This...

  11. DOE Departmental Elements - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePART I SECTION ADMSEDOE /DOE Departmental

  12. DOE-STD-1091-96; DOE Standard Firearms Safety

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRUJuly3010-942-94 June 1994 DOE APPENDIX4491-961-96

  13. DOE Awards Management and Operating Contract for DOE's Waste Isolation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project for ETTP DOE Awards ContractDepartmentPilot

  14. DOE Responses to DOE Challenge Home (formerly Builders Challenge) National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions and PolicyCybersecurityThis version ofDOE Response

  15. DOE-HDBK-1092-98; DOE Handbook Electrical Safety

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant Impact for1-93 JANUARY092-98 January 1998 DOE

  16. DOE-HDBK-1132-99; DOE Handbook Design Considerations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant Impact6 of 9 Radiological32-99 April 1999 DOE

  17. doe energy innovation hubs | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ .-detonation detectionDocument1 2 3DOE

  18. DOE Announced the EFRC Summit & Forum | U.S. DOE Office of Science...

    Office of Science (SC) Website

    DOE Announced the EFRC Summit & Forum Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements...

  19. DOEs Effort to Reduce Truck Aerodynamic Drag through Joint...

    Energy Savers [EERE]

    DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland. merit08salari.pdf More Documents & Publications DOEs Effort to Reduce...

  20. Dictionary - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1997 CRD: No DNFSB: No Related History Exemptions Standards Related to: DOE G 430.1-1 Chp 9, Operating Costs DOE G 430.1-1 Chp 19, Data Collection and Normalization for the...