National Library of Energy BETA

Sample records for kentucky butler caldwell

  1. Caldwell County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Caldwell County, Kentucky Dawson Springs, Kentucky Fredonia, Kentucky Princeton, Kentucky Retrieved from "http:...

  2. Butler County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Butler County is a county in Kentucky. Its FIPS County Code is 031. It is classified as...

  3. Kentucky

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky

  4. Pendleton County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Pendleton County, Kentucky Butler, Kentucky Falmouth, Kentucky Williamstown, Kentucky Retrieved from "http:...

  5. Tina Butler

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Butler Tina Butler Tina-Butler.jpg Tina L. P. Butler Computational Systems Group TLButler@lbl.gov Phone: (510) 495-2379 Fax: (510) 486-4316 1 Cyclotron Road Mail Stop 943-256 Berkeley, CA 94720 Biographical Sketch Tina Butler is responsible for evaluating and recommending the direction and implementation of technology at NERSC, as well as performing ongoing system administration and support for the center's systems. Over the last 20 years, she held a variety of systems and applications

  6. Greg Butler

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Greg Butler Greg Butler Greg-Butler_2.jpg Gregory (Greg) F. Butler Storage Systems Group National Energy Research Scientific Computing Center GFButler@lbl.gov Phone: (510) 486-8691 Fax: (510) 486-4316 Lawrence Berkeley National Laboratory 1 Cyclotron Road Mail Stop 943-256 Berkeley, CA 94720 US Biographical Sketch Greg Butler has over 35 years experience in the computing field, with over 25 years experience in high performance scientific computing at DOE, DOD, and US EPA installations. His

  7. Lauren Caldwell | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lauren Caldwell About Us Lauren Caldwell - Intern, Education & Workforce Development Most Recent Jamming Out to Energy Data: Building Apps That Improve Energy Literacy March 27

  8. Caldwell Ranch: Innovative Exploration Technologies Yield Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Caldwell Ranch: Innovative Exploration Technologies Yield Geothermal Potential Caldwell Ranch: Innovative Exploration Technologies Yield Geothermal Potential July 11, 2013 - 4:55pm ...

  9. Kentucky - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky Kentucky

  10. Kentucky - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky Kentucky

  11. Kentucky - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky Kentucky

  12. Women @ Energy: Jennifer Caldwell | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jennifer Caldwell Women @ Energy: Jennifer Caldwell August 27, 2015 - 4:10pm Addthis Jennifer Caldwell is a group leader in technology commercialization at Oak Ridge National Laboratory. She attended the University of Florida and Florida State University and has a bachelor of science degree in chemistry and Ph.D in chemistry with emphasis in biochemistry. Jennifer Caldwell is a group leader in technology commercialization at Oak Ridge National Laboratory. She attended the University of Florida

  13. Keith A. Caldwell | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Keith A. Caldwell About Us Keith A. Caldwell - Administrative Support Specialist Keith A. Caldwell Keith Caldwell is an Administrative Support Specialist with BCS, Inc. and is currently working with the Department of Energy's Office of Small and Disadvantaged Business Utilization. Keith is a recent graduate of Penn State University, where he earned his B.A. in political science and philosophy. He previously worked at the Department of Agriculture, Food and Nutrition Services. Keith currently

  14. Tim Butler | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tim Butler About Us Tim Butler - Project Officer at the Golden Field Office Tim Butler is a project officer at the Golden Field Office. Most Recent Nashville Turns an Eyesore into an Energy-Efficient Asset September 19

  15. Women @ Energy: Jennifer Caldwell | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Florida and Florida State University and has a bachelor of science degree in chemistry and Ph.D in chemistry with emphasis in biochemistry. Jennifer Caldwell is a group...

  16. Admiral James Frank Caldwell Jr. | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Admiral James Frank Caldwell Jr. Deputy Administrator for NNSA's Office of Naval Reactors Admiral James Frank Caldwell Jr. Admiral James Caldwell received his commission graduating with distinction from the United States Naval Academy in 1981 with a Bachelor of Science in Marine Engineering. He also holds a Master of Science in Operations Research from the Naval Postgraduate School. Caldwell commanded USS Jacksonville (SSN 699) homeported in Norfolk, Virginia; Submarine Development Squadron

  17. Caldwell County, Missouri: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Missouri Cowgill, Missouri Hamilton, Missouri Kidder, Missouri Kingston, Missouri Polo, Missouri Retrieved from "http:en.openei.orgwindex.php?titleCaldwellCounty,Misso...

  18. Caldwell County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Places in Caldwell County, Texas Lockhart, Texas Luling, Texas Martindale, Texas Mustang Ridge, Texas Niederwald, Texas San Marcos, Texas Uhland, Texas Retrieved from "http:...

  19. City of Butler, Missouri (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Butler, Missouri (Utility Company) Jump to: navigation, search Name: Butler City of Place: Missouri Phone Number: (660) 679-5502 or 4182 Website: mo-butler.civiccities.cominde...

  20. Harlan County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Kentucky Cumberland, Kentucky Evarts, Kentucky Harlan, Kentucky Loyall, Kentucky Lynch, Kentucky South Wallins, Kentucky Wallins Creek, Kentucky Retrieved from "http:...

  1. DOE Zero Ready Home Case Study: Caldwell and Johnson, Church...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... U.S. DOE ZERO ENERGY READY HOME DOE ZERO ENERGY READY HOME Caldwell and Johnson 2 "There is a perception that energy-efficient construction is too expensive to be affordable," said ...

  2. West Caldwell, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. West Caldwell is a census-designated place in Essex County, New Jersey.1 References US...

  3. Butler Public Power District | Open Energy Information

    Open Energy Info (EERE)

    Butler County Rural P P D) Jump to: navigation, search Name: Butler Public Power District Place: Nebraska Phone Number: 402-367-3081 or 402-367-3082 Website: www.butlerppd.com...

  4. Jefferson County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Broeck Pointe, Kentucky Brownsboro Farm, Kentucky Brownsboro Village, Kentucky Cambridge, Kentucky Coldstream, Kentucky Creekside, Kentucky Crossgate, Kentucky Douglass...

  5. DOE Tour of Zero: The Edies Lane House by Caldwell and Johnson...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Edies Lane House by Caldwell and Johnson DOE Tour of Zero: The Edies Lane House by Caldwell and Johnson Addthis 1 of 4 This 2,046-square-foot home in Exeter, Rhode Island, by...

  6. Margaret Butler Fellowship in Computational Science | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The 2016 Margaret Butler Fellowship call for applications has closed. Open to outstanding postdoctoral candidates, this computational science fellowship offers an opportunity to ...

  7. Hardin County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Elizabethtown, Kentucky Fort Knox, Kentucky Muldraugh, Kentucky Radcliff, Kentucky Sonora, Kentucky Upton, Kentucky Vine Grove, Kentucky West Point, Kentucky Retrieved from...

  8. Butler County, Pennsylvania: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Chicora, Pennsylvania Connoquenessing, Pennsylvania East Butler, Pennsylvania Eau Claire, Pennsylvania Evans City, Pennsylvania Fairview, Pennsylvania Fernway,...

  9. Caldwell Ranch Exploration and Confirmation Project, Northwest Geysers, CA

    SciTech Connect (OSTI)

    Walters, Mark A.

    2013-04-25

    The purpose of the Caldwell Ranch Exploration and Confirmation Project was to drill, test, and confirm the present economic viability of the undeveloped geothermal reservoir in the 870 acre Caldwell Ranch area of the Northwest Geysers that included the CCPA No.1 steam field. All of the drilling, logging, and sampling challenges were met. � Three abandoned wells, Prati 5, Prati 14 and Prati 38 were re-opened and recompleted to nominal depths of 10,000 feet in 2010. Two of the wells required sidetracking. � The flow tests indicated Prati 5 Sidetrack 1 (P-5 St1), Prati 14 (P-14) and Prati 38 Sidetrack 2 (P-38 St2) were collectively capable of initially producing an equivalent of 12 megawatts (MWe) of steam using a conversion rate of 19,000 pounds of steam/hour

  10. Butler Public Power District | Open Energy Information

    Open Energy Info (EERE)

    Nebraska Phone Number: 402-367-3081 or 402-367-3082 Website: www.butlerppd.com Facebook: https:www.facebook.compagesButler-Public-Power-District176407425708968 Outage...

  11. Butler, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Butler is a village in Richland County, Ohio. It falls under Ohio's 4th congressional...

  12. Butler, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Butler is a village in Waukesha County, Wisconsin. It falls under Wisconsin's 5th...

  13. Kenton County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lakeside Park, Kentucky Ludlow, Kentucky Park Hills, Kentucky Ryland Heights, Kentucky Taylor Mill, Kentucky Villa Hills, Kentucky Walton, Kentucky Retrieved from "http:...

  14. Butler Rural Electric Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    Butler Rural Electric Coop Inc Place: Ohio Website: www.butlerrural.coop Facebook: https:www.facebook.comButlerRuralElectricCooperative Outage Hotline: 800-255-2732 Outage Map:...

  15. Butler Rural El Coop Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    Coop Assn, Inc Jump to: navigation, search Name: Butler Rural El Coop Assn, Inc Place: Kansas Phone Number: 316.321.9600 Website: www.butler.coop Facebook: https:...

  16. DOE Zero Energy Ready Home Case Study, Caldwell and Johnson, Exeter, RI,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Custom Home | Department of Energy Study, Caldwell and Johnson, Exeter, RI, Custom Home DOE Zero Energy Ready Home Case Study, Caldwell and Johnson, Exeter, RI, Custom Home Case study of a DOE Zero Energy Ready Home in Exeter, Rhode Island, that scored HERS 43 without PV. This 2,000 ft2 custom home has a spray- foamed attic and walls, plus rigid foam sheathing, ducted mini-split heat pumps, and an HRV. PDF icon BA_ZeroEnergyReady_CaldwellJohnson_062314.pdf More Documents & Publications

  17. DOE Zero Energy Ready Home Case Study: Caldwell and Johnson, Charlestown,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RI | Department of Energy Caldwell and Johnson, Charlestown, RI DOE Zero Energy Ready Home Case Study: Caldwell and Johnson, Charlestown, RI DOE Zero Energy Ready Home Case Study: Caldwell and Johnson, Charlestown, RI Case study of a DOE Zero Energy Ready affordable home in Charlestown, RI, that achieved a HERS Index of 47 without PV. The 2,244-ft2 two-story home with basement has 2x6 walls filled with 5.5 in. (R-23) 2-lb open-cell spray foam, R-12 closed-cell spray foam under the slab, and

  18. Christian County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Commonwealth AgriEnergy Places in Christian County, Kentucky Crofton, Kentucky Fort Campbell North, Kentucky Hopkinsville, Kentucky LaFayette, Kentucky Oak Grove, Kentucky...

  19. Owen County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Places in Owen County, Kentucky Gratz, Kentucky Monterey, Kentucky Owenton, Kentucky Sparta, Kentucky Retrieved from "http:en.openei.orgwindex.php?titleOwenCounty,Kentucky...

  20. Kentucky Department of Agriculture

    Broader source: Energy.gov [DOE]

    At the August 7, 2008 quarterly joint Web conference of DOE's Biomass and Clean Cities programs, Wilbur Frye (Office of Consumer & Environmental Protection, Kentucky Department of Agriculture) described Biofuel Quality Testing in Kentucky.

  1. Butler County, Iowa: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Iowa Clarksville, Iowa Dumont, Iowa Greene, Iowa New Hartford, Iowa Parkersburg, Iowa Shell Rock, Iowa Retrieved from "http:en.openei.orgwindex.php?titleButlerCounty,Iowa&...

  2. New Kingman-Butler, Arizona: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Kingman-Butler, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.2593696, -114.0190671 Show Map Loading map... "minzoom":false,"mapp...

  3. by Sharon Butler, Office of Public Affairs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sharon Butler, Office of Public Affairs On a day in mid-September, a switch will be flipped, the power supply locked out, circuit breakers around the Main Ring cut. And in the two hours or so that it takes to complete those operations, a year's run will come to an end, closing down Fermilab's fixed-target experiments, capping a remarkable 25-year history of discoveries and shutting down the Main Ring forever. Volume 20 Friday, August 15, 1997 Number 16 Photos by Reidar Hahn Fixed-Target Run

  4. Doug Jacobsen! Tina Butler! Tina Declerck

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jacobsen! Tina Butler! Tina Declerck Edison and Cori Status Update Recent Changes - Edison * Move from Oakland -> Wang Hall - Edison powered off for move 11/30/15 * Physical move completed 12/07 * /scratch3 upgraded to Lustre 2.5 with GRIDRAID * Edison transiNoned to naNve SLURM * System returned to users 01/04/16 * Building power issues caused Edison outages on 01/22, 01/28 and 02/27. * Updated SLURM Scheduling Logic and PrioriNes to improve throughput (reduce waiWme) Recent Changes - Cori *

  5. Oldham County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Oldham County, Kentucky Buckner, Kentucky Crestwood, Kentucky Goshen, Kentucky La Grange, Kentucky Orchard Grass...

  6. Lincoln County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Crab Orchard, Kentucky Eubank, Kentucky Hustonville, Kentucky Junction City, Kentucky Stanford, Kentucky Retrieved from "http:en.openei.orgwindex.php?titleLincolnCounty,Kent...

  7. Hopkins County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Hopkins County, Kentucky Dawson Springs, Kentucky Earlington, Kentucky Hanson, Kentucky Madisonville, Kentucky Mortons...

  8. DOE Zero Energy Ready Home Case Study: Caldwell and Johnson, Exeter, Rhode Island

    SciTech Connect (OSTI)

    none,

    2013-09-01

    This house, constructed by Caldwell and Johnson, should save its owners $600 per year over the 2009 IECC with the help of efficiency measures such as walls with OSB sheathing and R-13 open cell spray foam insulation. The home garnered a 2013 Housing Innovation Award in the custom builder category.

  9. Butler County, Nebraska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Butler County is a county in Nebraska. Its FIPS County Code is 023. It is classified as...

  10. Butler County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Butler County is a county in Alabama. Its FIPS County Code is 013. It is classified as ASHRAE...

  11. Butler County, Missouri: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Butler County is a county in Missouri. Its FIPS County Code is 023. It is classified as...

  12. Butler County Rural Elec Coop | Open Energy Information

    Open Energy Info (EERE)

    Iowa Phone Number: 888-267-2726 Website: www.butlerrec.coop Twitter: @ButlerCountyREC Facebook: https:www.facebook.combcrec Outage Hotline: 888-267-2726 Outage Map:...

  13. Kentucky National Guard Radiation Specialist Course | Department...

    Office of Environmental Management (EM)

    Kentucky National Guard Radiation Specialist Course Kentucky National Guard Radiation Specialist Course PDF icon Kentucky National Guard Radiation Specialist Course More Documents...

  14. Barren County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 4 Climate Zone Subtype A. Places in Barren County, Kentucky Cave City, Kentucky Glasgow, Kentucky Park City, Kentucky Retrieved from "http:en.openei.orgw...

  15. Monroe County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Monroe County, Kentucky Fountain Run, Kentucky Gamaliel, Kentucky Tompkinsville, Kentucky Retrieved from "http:...

  16. Gallatin County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 4 Climate Zone Subtype A. Places in Gallatin County, Kentucky Glencoe, Kentucky Sparta, Kentucky Warsaw, Kentucky Retrieved from "http:en.openei.orgw...

  17. Grayson County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    4 Climate Zone Subtype A. Places in Grayson County, Kentucky Caneyville, Kentucky Clarkson, Kentucky Leitchfield, Kentucky Retrieved from "http:en.openei.orgw...

  18. Kentucky/Incentives | Open Energy Information

    Open Energy Info (EERE)

    Incentives for Kentucky CSV (rows 1 - 71) Incentive Incentive Type Active Atmos Energy - Natural Gas and Weatherization Efficiency Program (Kentucky) Utility Rebate Program Yes...

  19. Kentucky Save Energy Now Program

    Broader source: Energy.gov [DOE]

    This fact sheet contains details regarding a Save Energy Now industrial energy efficiency project that the U.S. Department of Energy funded in Kentucky.

  20. FIA-15-0056- In the Matter of Alan Butler

    Broader source: Energy.gov [DOE]

    On November 24, 2015, OHA denied a FOIA Appeal filed by Alan Butler of the Electronic Privacy Information Center from a determination issued to him by the DOE Office of Information Resources. In his Appeal, Mr. Butler challenged the OIR’s finding that the DOE had no documents responsive to its request for records “interpreting or addressing the collection, retention, dissemination, or sharing of electronic communications or metadata” under Executive Order 12333. Reviewing the scope of the DOE’s search for responsive records, OHA determined that a single responsive document existed: agency procedures adopted under that Executive Order, which are publicly available. While it found that OIR should have identified these procedures as responsive to Mr. Butler’s request, OHA found that the DOE’s search for responsive documents was otherwise reasonably calculated to uncover the sought materials. Therefore, OHA denied the Appeal.

  1. Western Kentucky thrives

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2005-10-01

    Independents and big boys struggle to keep up with increasing demand and a lack of experienced workers in the Illinois Basin. This is the second of a two part series reviewing the coal mining industry in the Illinois Basin which also includes Indiana and Western Kentucky. It includes a classification/correction to Part 1 of the article published in the September 2005 issue (see Coal Abstracts Entry data/number Dec 2005 00204). 4 photos.

  2. Trimble County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 4 Climate Zone Subtype A. Places in Trimble County, Kentucky Bedford, Kentucky Milton, Kentucky Retrieved from "http:en.openei.orgwindex.php?titleTrimbleCounty,Kentu...

  3. Kentucky Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    state, county, city, or district. For more information, please visit the Middle School Coach page. Kentucky Region Middle School Regional Kentucky West Kentucky Regional Middle...

  4. Kentucky Consortium for Carbon Storage | Open Energy Information

    Open Energy Info (EERE)

    Consortium for Carbon Storage Jump to: navigation, search Name: Kentucky Consortium for Carbon Storage Place: Lexington, Kentucky Zip: 40506-0107 Product: Kentucky based...

  5. Fulton County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 4 Climate Zone Subtype A. Places in Fulton County, Kentucky Fulton, Kentucky Hickman, Kentucky Retrieved from "http:en.openei.orgwindex.php?titleFultonCounty,Kentu...

  6. Madison County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 4 Climate Zone Subtype A. Places in Madison County, Kentucky Berea, Kentucky Richmond, Kentucky Retrieved from "http:en.openei.orgwindex.php?titleMadisonCounty,Kent...

  7. Calloway County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 4 Climate Zone Subtype A. Places in Calloway County, Kentucky Hazel, Kentucky Murray, Kentucky Retrieved from "http:en.openei.orgwindex.php?titleCallowayCounty,Kent...

  8. Kentucky.pdf | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Kentucky's School Energy Managers pose for a photo during an orientation session. | Photo courtesy of Chris Wooten, Kentucky Pollution Prevention Center Kentucky's School Energy Managers pose for a photo during an orientation session. | Photo courtesy of Chris Wooten, Kentucky Pollution Prevention Center Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs In what could potentially be the first program of its scale, Kentucky has hired a new green team of 35

  9. Options for Kentucky's Energy Future

    SciTech Connect (OSTI)

    Larry Demick

    2012-11-01

    Three important imperatives are being pursued by the Commonwealth of Kentucky: ? Developing a viable economic future for the highly trained and experienced workforce and for the Paducah area that today supports, and is supported by, the operations of the US Department of Energys (DOEs) Paducah Gaseous Diffusion Plant (PGDP). Currently, the PGDP is scheduled to be taken out of service in May, 2013. ? Restructuring the economic future for Kentuckys most abundant indigenous resource and an important industry the extraction and utilization of coal. The future of coal is being challenged by evolving and increasing requirements for its extraction and use, primarily from the perspective of environmental restrictions. Further, it is important that the economic value derived from this important resource for the Commonwealth, its people and its economy is commensurate with the risks involved. Over 70% of the extracted coal is exported from the Commonwealth and hence not used to directly expand the Commonwealths economy beyond the severance taxes on coal production. ? Ensuring a viable energy future for Kentucky to guarantee a continued reliable and affordable source of energy for its industries and people. Today, over 90% of Kentuckys electricity is generated by burning coal with a delivered electric power price that is among the lowest in the United States. Anticipated increased environmental requirements necessitate looking at alternative forms of energy production, and in particular electricity generation.

  10. Adairville, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. Adairville is a city in Logan County, Kentucky. It falls under Kentucky's 1st congressional district.12...

  11. Kentucky Residential Energy Code Field Study

    Broader source: Energy.gov [DOE]

    Lead Performer: Midwest Energy Efficiency Alliance – Chicago, ILPartners:   -  Kentucky Department of Housing, Buildings and Construction (DHBC) – Frankfort, KY  -  Kentucky Department of Energy...

  12. Columbus, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Columbus is a city in Hickman County, Kentucky. It falls under Kentucky's 1st congressional district.12...

  13. Maxey Flats, Kentucky, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    3 Fact Sheet Maxey Flats, Kentucky, Disposal Site This fact sheet provides information about the Maxey Flats, Kentucky, Disposal Site. This site is managed by the U.S. Department of Energy Office of Legacy Management under the Comprehensive Environmental Response, Compensation, and Liability Act. Location of the Maxey Flats, Kentucky, Disposal Site Site Description and History The Maxey Flats site is an inactive, low-level radioactive waste disposal site located in eastern Kentucky about 10

  14. Energy Incentive Programs, Kentucky | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kentucky Energy Incentive Programs, Kentucky Updated June 2015 Kentucky utilities budgeted over $60 million for energy efficiency and load management programs in 2014. What public-purpose-funded energy efficiency programs are available in my state? Kentucky has no public-purpose-funded energy efficiency programs. What utility energy efficiency programs are available to me? Duke Energy offers the Smart Saver Incentive program for rebates on high efficiency lighting, VFDs, pumps, HVAC equipment

  15. EIS-0318: Kentucky Pioneer Integrated Gasification Combined Cycle (IGCC) Demonstration Project, Trapp, Kentucky (Clark County)

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to provide cost-shared financial support for The Kentucky Pioneer IGCC Demonstration Project, an electrical power station demonstrating use of a Clean Coal Technology in Clark County, Kentucky.

  16. West Kentucky Rural E C C | Open Energy Information

    Open Energy Info (EERE)

    West Kentucky Rural E C C Jump to: navigation, search Name: West Kentucky Rural E C C Place: Kentucky Phone Number: 270-247-1321 or 1-877-495-7322 Website: www.wkrecc.com Twitter:...

  17. Sherwin-Williams' Richmond, Kentucky, Facility Achieves 26% Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sherwin-Williams' Richmond, Kentucky, Facility Achieves 26% Energy Intensity Reduction; Leads to Corporate Adoption of Save Energy Now LEADER Sherwin-Williams' Richmond, Kentucky, ...

  18. Kentucky DNR Oil and Gas Division | Open Energy Information

    Open Energy Info (EERE)

    DNR Oil and Gas Division Jump to: navigation, search Name: Kentucky DNR Oil and Gas Division Address: 1025 Capital Center Drive Place: Kentucky Zip: 40601 Website:...

  19. Fayette County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 4 Climate Zone Subtype A. Places in Fayette County, Kentucky Lexington-Fayette urban, Kentucky Retrieved from "http:en.openei.orgwindex.php?titleFayetteCounty,Kentu...

  20. South Kentucky RECC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    South Kentucky Rural Electric Cooperative Corporation (RECC) provides service to more than 60,000 customers in southeastern Kentucky. To promote energy efficiency to residential customers, South...

  1. Anderson County, Kentucky ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Anderson County, Kentucky ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anderson County, Kentucky ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  2. City of Olive Hill, Kentucky (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    City of Olive Hill, Kentucky (Utility Company) Jump to: navigation, search Name: Olive Hill City of Place: Kentucky Phone Number: (606) 286-2192 Website: www.cityofolivehillutiliti...

  3. Breathitt County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Breathitt County, Kentucky Jackson, Kentucky Retrieved from "http:en.openei.orgwindex.php?titleBreathittCounty,Ke...

  4. City of Glasgow, Kentucky (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Kentucky (Utility Company) Jump to: navigation, search Name: City of Glasgow Place: Kentucky Phone Number: (270) 651-8341 Website: www.glasgowepb.net Facebook: https:...

  5. Crittenden County, Kentucky: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Crittenden County, Kentucky Marion, Kentucky Retrieved from "http:en.openei.orgwindex.php?titleCrittendenCounty,Ke...

  6. Henderson County North Middle School wins 2015 DOE West Kentucky...

    Energy Savers [EERE]

    Henderson County North Middle School wins 2015 DOE West Kentucky Regional Science Bowl Henderson County North Middle School wins 2015 DOE West Kentucky Regional Science Bowl ...

  7. City of Owensboro, Kentucky (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    Owensboro, Kentucky (Utility Company) Jump to: navigation, search Name: City of Owensboro Place: Kentucky Phone Number: (270) 926-3200 Website: omu.org Facebook: https:...

  8. Kentucky Hybrid Electric School Bus Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    icon tiarravt062settle2010p.pdf More Documents & Publications Kentucky Hybrid Electric School Bus Program Kentucky Hybrid Electric School Bus Program Plug IN Hybrid Vehicle Bus...

  9. Kentucky Utilities Co (Tennessee) | Open Energy Information

    Open Energy Info (EERE)

    Co (Tennessee) Jump to: navigation, search Name: Kentucky Utilities Co (Tennessee) Place: Tennessee Phone Number: 800-981-0600 Website: lge-ku.comcustomer-serviceou Outage...

  10. ,"Kentucky Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:37 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Kentucky Natural Gas in ...

  11. Sonora, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sonora, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.524226, -85.8930192 Show Map Loading map... "minzoom":false,"mappingservic...

  12. Kentucky Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  13. Tennessee Valley Authority (Kentucky) | Open Energy Information

    Open Energy Info (EERE)

    Place: Kentucky Phone Number: 865-632-2101 Website: www.tva.comabouttvacontact.h Twitter: @TVANewsroom Facebook: https:www.facebook.comTVAapp116943498446376 Outage...

  14. State Energy Program: Kentucky Implementation Model Resources

    Broader source: Energy.gov [DOE]

    Below are resources associated with the U.S. Department of Energy's Weatherization and Intergovernmental Programs Office State Energy Program Kentucky Implementation Model.

  15. Kentucky Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Kentucky Primary Renewable Energy Capacity Source Hydro ... Hydro Conventional 824 4.0 Solar - - Wind - - WoodWood ... Absolute percentage less than 0.05. - No data reported. ...

  16. Kentucky/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Kentucky Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  17. Hickman, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Kentucky: Energy Resources (Redirected from Hickman, KY) Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.5711721, -89.1861791 Show Map Loading map......

  18. ,"Kentucky Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  19. Alternative Fuels Data Center: Kentucky Trucking Company Adds CNG Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    to Its Fleet Kentucky Trucking Company Adds CNG Vehicles to Its Fleet to someone by E-mail Share Alternative Fuels Data Center: Kentucky Trucking Company Adds CNG Vehicles to Its Fleet on Facebook Tweet about Alternative Fuels Data Center: Kentucky Trucking Company Adds CNG Vehicles to Its Fleet on Twitter Bookmark Alternative Fuels Data Center: Kentucky Trucking Company Adds CNG Vehicles to Its Fleet on Google Bookmark Alternative Fuels Data Center: Kentucky Trucking Company Adds CNG

  20. Kentucky Natural Gas Plant Liquids Production Extracted in Kentucky

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) Kentucky Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 63,024 63,971 65,041 1990's 67,086 68,461 69,466 71,998 73,562 74,521 76,079 77,693 80,147 80,283 2000's 81,588 81,795 82,757 84,110 84,493 85,243 85,236 85,210 84,985 83,862 2010's 84,707 84,977 85,129 85,999 85,318 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  1. Biodiesel is Working Hard in Kentucky

    SciTech Connect (OSTI)

    Not Available

    2004-04-01

    This 4-page Clean Cities fact sheet describes the use of biodiesel fuel in 6 school districts throughout Kentucky. It contains usage information for each school district, as well as contact information for local Clean Cities Coordinators and Biodiesel suppliers.

  2. Kentucky Residents Cash in on Rebate Program

    Broader source: Energy.gov [DOE]

    A look at Kentucky's energy efficient rebate program, which has issued nearly 29,500 rebates for 16 different types of energy efficient appliances to residents across the state.

  3. EECBG Success Story: Software Helps Kentucky County Gauge Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Software Helps Kentucky County Gauge Energy Use EECBG Success Story: Software Helps Kentucky County Gauge Energy Use July 27, 2010 - 1:00pm Addthis Lexington-Fayette Urban County, ...

  4. Kentucky's 1st congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    in Kentucky's 1st congressional district Commonwealth AgriEnergy Four Rivers BioEnergy Retrieved from "http:en.openei.orgwindex.php?titleKentucky%27s1stcongressiona...

  5. West Point, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. West Point is a city in Hardin County, Kentucky. It falls under Kentucky's 2nd congressional...

  6. City of Hickman, Kentucky (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Hickman, Kentucky (Utility Company) Jump to: navigation, search Name: City of Hickman Place: Kentucky Phone Number: (270) 236-3951 or (270) 236-2535 Website: hickman.cityof.org...

  7. ,"Kentucky Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:42 AM" "Back to Contents","Data 1: Kentucky Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035KY3" "Date","Kentucky...

  8. City of Murray, Kentucky (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    City of Murray, Kentucky (Utility Company) Jump to: navigation, search Name: City of Murray Place: Kentucky Phone Number: (270) 753-5312 Website: www2.murray-ky.net Twitter:...

  9. Stimulating Energy Efficiency in Kentucky: An Implementation Model for States

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on Stimulating Energy Efficiency in Kentucky.

  10. Kentucky Shale Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet) Kentucky Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 21 20 55 2010's 10 41 34 46 50 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 Kentucky Shale Gas Proved Reserves, Reserves

  11. Kentucky Shale Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) Kentucky Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 2 5 2010's 4 4 4 4 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Estimated Production Kentucky Shale Gas Proved Reserves, Reserves Changes, and Production Shale G

  12. Kentucky Launches State-Wide School Energy Manager Program | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Kentucky Launches State-Wide School Energy Manager Program Kentucky Launches State-Wide School Energy Manager Program August 17, 2010 - 2:00pm Addthis Kentucky's School Energy Managers pose for a photo during an orientation session. | Photo courtesy of Chris Wooten, Kentucky Pollution Prevention Center Kentucky's School Energy Managers pose for a photo during an orientation session. | Photo courtesy of Chris Wooten, Kentucky Pollution Prevention Center Paul Lester Paul Lester Digital

  13. SEP Success Story: Kentucky Launches State-Wide School Energy Manager

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program | Department of Energy Kentucky Launches State-Wide School Energy Manager Program SEP Success Story: Kentucky Launches State-Wide School Energy Manager Program August 17, 2010 - 9:29am Addthis Kentucky's School Energy Managers pose for a photo during an orientation session. | Photo courtesy of Chris Wooten, Kentucky Pollution Prevention Center Kentucky's School Energy Managers pose for a photo during an orientation session. | Photo courtesy of Chris Wooten, Kentucky Pollution

  14. Transitioning Kentucky Off Oil: An Interview with Clean Cities Coordinator

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Melissa Howell | Department of Energy Transitioning Kentucky Off Oil: An Interview with Clean Cities Coordinator Melissa Howell Transitioning Kentucky Off Oil: An Interview with Clean Cities Coordinator Melissa Howell June 18, 2013 - 4:12pm Addthis With the help of Kentucky Clean Fuels Coalition, Mammoth Cave National Park was the first National Park fleet to use 100 percent alternative fuel. The Global Electric Motorcar (pictured above) is used by park rangers who need to travel between the

  15. A Guidance Document for Kentucky's Oil and Gas Operators

    SciTech Connect (OSTI)

    Bender, Rick

    2002-03-18

    The accompanying report, manual and assimilated data represent the initial preparation for submission of an Application for Primacy under the Class II Underground Injection Control (UIC) program on behalf of the Commonwealth of Kentucky. The purpose of this study was to identify deficiencies in Kentucky law and regulation that would prevent the Kentucky Division of Oil and Gas from receiving approval of primacy of the UIC program, currently under control of the United States Environmental Protection Agency (EPA) in Atlanta, Georgia.

  16. Clay County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.1738044, -83.7199136 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  17. Powell County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.8380647, -83.8260884 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  18. Webster County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.4892188, -87.7369607 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  19. Hart County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hart County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.3101304, -85.8486236 Show Map Loading map... "minzoom":false,"mapping...

  20. ,"Kentucky Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  1. Kentucky Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Kentucky Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  2. South Kentucky Rural Electric Coop Corp (Tennessee) | Open Energy...

    Open Energy Info (EERE)

    Electric Coop Corp Place: Tennessee Phone Number: 800-772-4636 Website: www.skrecc.com Twitter: @skrecc Facebook: https:www.facebook.compagesSouth-Kentucky-RECC...

  3. Washington County, Kentucky: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Washington County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.7516142, -85.1479364 Show Map Loading map......

  4. Lyon County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lyon County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.0247261, -88.0900762 Show Map Loading map... "minzoom":false,"mapping...

  5. West Kentucky Regional High School Science Bowl | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    West Kentucky Community & Technical College 4810 Alben Barkley Dr Paducah County, KY 42001 Contact Co-Coordinator: Robert "Buz" Smith Email: Robert.Smith@lex.doe.gov Phone: ...

  6. West Kentucky Regional Middle School Science Bowl | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    West Kentucky Community & Technical College 4810 Alben Barkley Dr Paducah County, KY 42001 Contact Co-Coordinator: Robert "Buz" Smith Email: Robert.Smith@lex.doe.gov Phone: ...

  7. ,"Kentucky Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky...

  8. Nelson County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Nelson County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.7647455, -85.4788065 Show Map Loading map... "minzoom":false,"mappi...

  9. Boyle County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Boyle County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.6526034, -84.8150781 Show Map Loading map... "minzoom":false,"mappin...

  10. Columbia Gas of Kentucky- Home Savings Rebate Program

    Broader source: Energy.gov [DOE]

    Columbia Gas of Kentucky offers rebates to residential customers for the purchase and installation of energy efficient appliances and equipment. These programs include:

  11. Green County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.2570117, -85.56121 Show Map Loading map... "minzoom":false,"mappingservice":"googl...

  12. Kentucky Utilities Company- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Kentucky Utilities Company's Home Energy Rebate program provides incentives for residential customers to upgrade to energy efficiency home appliances and heat and air conditioning equipment. ...

  13. Kentucky Crude Oil + Lease Condensate Proved Reserves (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Crude Oil plus ...

  14. Kentucky Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Kentucky are ...

  15. Kentucky DOE EPSCoR Program

    SciTech Connect (OSTI)

    Grulke, Eric; Stencel, John

    2011-09-13

    The KY DOE EPSCoR Program supports two research clusters. The Materials Cluster uses unique equipment and computational methods that involve research expertise at the University of Kentucky and University of Louisville. This team determines the physical, chemical and mechanical properties of nanostructured materials and examines the dominant mechanisms involved in the formation of new self-assembled nanostructures. State-of-the-art parallel computational methods and algorithms are used to overcome current limitations of processing that otherwise are restricted to small system sizes and short times. The team also focuses on developing and applying advanced microtechnology fabrication techniques and the application of microelectrornechanical systems (MEMS) for creating new materials, novel microdevices, and integrated microsensors. The second research cluster concentrates on High Energy and Nuclear Physics. lt connects research and educational activities at the University of Kentucky, Eastern Kentucky University and national DOE research laboratories. Its vision is to establish world-class research status dedicated to experimental and theoretical investigations in strong interaction physics. The research provides a forum, facilities, and support for scientists to interact and collaborate in subatomic physics research. The program enables increased student involvement in fundamental physics research through the establishment of graduate fellowships and collaborative work.

  16. Kentucky - Seds - U.S. Energy Information Administration (EIA...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Enter Search Term(s): Search eia.gov A-Z Index A-Z Index A B C D E F G H I J K L M N O P Q R S T U V W XYZ U.S. States Kentucky Kentucky Profile State Profile and Energy ...

  17. Seismic Hazard Assessment for Western Kentucky, Northeastern Kentucky and Southeastern Ohio

    SciTech Connect (OSTI)

    Cobb, James C; Wang, Zhenming; Woolery, Edward W; Kiefer, John D

    2002-07-01

    Earthquakes pose a seismic hazards and risk to the Commonwealth of Kentucky. Furthermore, the seismic hazards and risk vary throughout the Commonwealth. The US Nuclear Regulatory Commission uses the seismic hazard maps developed by the US Geological Survey for seismic safety regulation for nuclear facilities. Under current US Geological Survey's seismic hazard assessment it is economically unfeasible to build a new uranium plant near Paducah relative to the Portsmouth, Ohio site. This is not to say that the facility cannot be safely engineered to withstand the present seismic load, but enormously expensive to do so. More than 20 years observations and research at UK have shown that the US Geological Survey has overestimated seismic hazards in western Kentucky, particularly in the Jackson Purchase area that includes Paducah. Furthermore, our research indicates underestimated seismic hazards in northeastern Kentucky and southeastern Ohio. Such overestimation and underestimation could jeopardize possible site selection of PGDP for the new uranium plant. The existing database, research experience, and expertise in UK's Kentucky Geological Survey and Department of Geological Science put this institution in a unique position to conduct a comprehensive seismic hazard evaluation.

  18. Kentucky Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 20,453 100.0 Total Net Summer Renewable Capacity 893 4.4 Geothermal - - Hydro Conventional 824 4.0 Solar - - Wind - - Wood/Wood Waste 52 0.3 MSW/Landfill Gas 17 0.1 Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 98,218 100.0 Total Renewable

  19. Kentucky Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",20453,100 "Total Net Summer Renewable Capacity",893,4.4 " Geothermal","-","-" " Hydro Conventional",824,4 "

  20. Kentucky Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Used for Repressuring Kentucky Natural Gas Gross Withdrawals and Production Natural Gas Used for Repressuring

  1. Water resources data, Kentucky. Water year 1991

    SciTech Connect (OSTI)

    McClain, D.L.; Byrd, F.D.; Brown, A.C.

    1991-12-31

    Water resources data for the 1991 water year for Kentucky consist of records of stage, discharge, and water quality of streams and lakes; and water-levels of wells. This report includes daily discharge records for 115 stream-gaging stations. It also includes water-quality data for 38 stations sampled at regular intervals. Also published are 13 daily temperature and 8 specific conductance records, and 85 miscellaneous temperature and specific conductance determinations for the gaging stations. Suspended-sediment data for 12 stations (of which 5 are daily) are also published. Ground-water levels are published for 23 recording and 117 partial sites. Precipitation data at a regular interval is published for 1 site. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurement and analyses. These data represent that part of the National Water Data System operated by the US Geological Survey and cooperation State and Federal agencies in Kentucky.

  2. Logan County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Logan County is a county in Kentucky. Its FIPS County Code is 141. It is classified as...

  3. Gatton Academy Wins 2015 DOE West Kentucky Regional Science Bowl...

    Office of Environmental Management (EM)

    February 27, 2015 - 11:31am Addthis Gatton Academy of Mathematics and Science won the 2015 ... Gatton Academy of Mathematics and Science won the 2015 West Kentucky Regional High School ...

  4. Carter County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Carter County is a county in Kentucky. Its FIPS County Code is 043. It is classified as...

  5. Johnson County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Johnson County is a county in Kentucky. Its FIPS County Code is 115. It is classified as...

  6. Kentucky Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Kentucky Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  7. Indiana-Kentucky Electric Corp | Open Energy Information

    Open Energy Info (EERE)

    search Name: Indiana-Kentucky Electric Corp Place: Ohio Website: www.ovec.comindex.php Outage Hotline: (740) 289-7200 References: EIA Form EIA-861 Final Data File for 2010 -...

  8. Campbell County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Campbell County is a county in Kentucky. Its FIPS County Code is 037. It is classified as...

  9. Scott County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Scott County is a county in Kentucky. Its FIPS County Code is 209. It is classified as...

  10. Kentucky Natural Gas Withdrawals from Gas Wells (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Kentucky Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 7,021 6,303 6,870 ...

  11. Kentucky Natural Gas in Underground Storage (Base Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas) (Million Cubic Feet) Kentucky Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 105,889 105,889 ...

  12. Kentucky Natural Gas in Underground Storage (Working Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Kentucky Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 58,567 ...

  13. Kentucky Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  14. Anderson County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Anderson County is a county in Kentucky. Its FIPS County Code is 005. It is classified as...

  15. Simpson County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Simpson County is a county in Kentucky. Its FIPS County Code is 213. It is classified as...

  16. Taylor County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Taylor County is a county in Kentucky. Its FIPS County Code is 217. It is classified as...

  17. Jackson County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Jackson County is a county in Kentucky. Its FIPS County Code is 109. It is classified as...

  18. Harrison County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Harrison County is a county in Kentucky. Its FIPS County Code is 097. It is classified as...

  19. Kentucky Natural Gas Number of Industrial Consumers (Number of...

    Gasoline and Diesel Fuel Update (EIA)

    Industrial Consumers (Number of Elements) Kentucky Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  20. Marion County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Marion County is a county in Kentucky. Its FIPS County Code is 155. It is classified as...

  1. ,"Kentucky Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"1292016 12:16:55 AM" "Back to Contents","Data 1: Kentucky Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"...

  2. SEP Success Story: Kentucky Launches State-Wide School Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In what could potentially be the first program of its scale, Kentucky has hired a new green team of 35 energy managers. Learn more. Addthis Related Articles Energy efficiency ...

  3. Hickman County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Hickman County is a county in Kentucky. Its FIPS County Code is 105. It is classified as...

  4. Lee County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Lee County is a county in Kentucky. Its FIPS County Code is 129. It is classified as ASHRAE...

  5. Perry County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Perry County is a county in Kentucky. Its FIPS County Code is 193. It is classified as...

  6. Henry County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Henry County is a county in Kentucky. Its FIPS County Code is 103. It is classified as...

  7. Floyd County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Floyd County is a county in Kentucky. Its FIPS County Code is 071. It is classified as...

  8. DOE Headquarters Review Focuses on Improved LATA Kentucky Worker Safety

    Broader source: Energy.gov [DOE]

    PADUCAH, Ky. – DOE Office of Health, Safety and Security headquarters representatives recently spent three days at the Paducah site helping EM cleanup contractor LATA Kentucky better identify and correct issues before they result in worker illness or injury.

  9. Montgomery County, Kentucky: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Montgomery County is a county in Kentucky. Its FIPS County Code is 173. It is classified as...

  10. Pike County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Pike County is a county in Kentucky. Its FIPS County Code is 195. It is classified as ASHRAE...

  11. Lewis County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Lewis County is a county in Kentucky. Its FIPS County Code is 135. It is classified as...

  12. Y-12 team garners efficiency best practices at Toyota's Kentucky...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Y-12 team garners ... Y-12 team garners efficiency best practices at Toyota's Kentucky plant Posted: October 17, 2014 - 2:25pm Y-12 Production managers recently gained a new...

  13. Kentucky Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Processed (Million Cubic Feet) Kentucky Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 1980's 237,759 230,940 241,558 256,522 253,652 150,627 26,888 26,673 18,707 1990's 28,379 40,966 47,425 45,782 42,877 44,734 46,015 43,352 37,929 44,064 2000's 36,734 36,901 41,078 42,758 38,208 38,792 39,559 38,158 58,899 60,167 2010's 66,579 60,941 92,883 85,549 79,985 - = No Data Reported; -- = Not

  14. Brighter Future for Kentucky Manufacturing Plants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Brighter Future for Kentucky Manufacturing Plants Brighter Future for Kentucky Manufacturing Plants May 28, 2010 - 3:04pm Addthis Montaplast North America, Inc. is replacing almost 1,200 halide lights with high-efficiency fluorescent fixtures at its Frankfort, KY, facility. | Photo Courtesy of Montaplast | Montaplast North America, Inc. is replacing almost 1,200 halide lights with high-efficiency fluorescent fixtures at its Frankfort, KY, facility. | Photo Courtesy of Montaplast | Stephen Graff

  15. Western Kentucky University Research Foundation Biodiesel Project

    SciTech Connect (OSTI)

    Pan, Wei-Ping; Cao, Yan

    2013-03-15

    Petroleum-based liquid hydrocarbons is exclusively major energy source in the transportation sector. Thus, it is the major CO{sub 2} source which is the associated with greenhouse effect. In the United States alone, petroleum consumption in the transportation sector approaches 13.8 million barrels per day (Mbbl/d). It is corresponding to a release of 0.53 gigatons of carbon per year (GtC/yr), which accounts for approximate 7.6 % of the current global release of CO{sub 2} from all of the fossil fuel usage (7 GtC/yr). For the long term, the conventional petroleum production is predicted to peak in as little as the next 10 years to as high as the next 50 years. Negative environmental consequences, the frequently roaring petroleum prices, increasing petroleum utilization and concerns about competitive supplies of petroleum have driven dramatic interest in producing alternative transportation fuels, such as electricity-based, hydrogen-based and bio-based transportation alternative fuels. Use of either of electricity-based or hydrogen-based alternative energy in the transportation sector is currently laden with technical and economical challenges. The current energy density of commercial batteries is 175 Wh/kg of battery. At a storage pressure of 680 atm, the lower heating value (LHV) of H{sub 2} is 1.32 kWh/liter. In contrast, the corresponding energy density for gasoline can reach as high as 8.88 kWh/liter. Furthermore, the convenience of using a liquid hydrocarbon fuel through the existing infrastructures is a big deterrent to replacement by both batteries and hydrogen. Biomass-derived ethanol and bio-diesel (biofuels) can be two promising and predominant U.S. alternative transportation fuels. Both their energy densities and physical properties are comparable to their relatives of petroleum-based gasoline and diesel, however, biofuels are significantly environmental-benign. Ethanol can be made from the sugar-based or starch-based biomass materials, which is easily fermented to create ethanol. In the United States almost all starch ethanol is mainly manufactured from corn grains. The technology for manufacturing corn ethanol can be considered mature as of the late 1980s. In 2005, 14.3 % of the U.S. corn harvest was processed to produce 1.48 x10{sup 10} liters of ethanol, energetically equivalent to 1.72 % of U.S. gasoline usage. Soybean oil is extracted from 1.5 % of the U.S. soybean harvest to produce 2.56 x 10{sup 8} liters of bio-diesel, which was 0.09 % of U.S. diesel usage. However, reaching maximum rates of bio-fuel supply from corn and soybeans is unlikely because these crops are presently major contributors to human food supplies through livestock feed and direct consumption. Moreover, there currently arguments on that the conversion of many types of many natural landscapes to grow corn for feedstock is likely to create substantial carbon emissions that will exacerbate globe warming. On the other hand, there is a large underutilized resource of cellulose biomass from trees, grasses, and nonedible parts of crops that could serve as a feedstock. One of the potentially significant new bio-fuels is so called "cellulosic ethanol", which is dependent on break-down by microbes or enzymes. Because of technological limitations (the wider variety of molecular structures in cellulose and hemicellulose requires a wider variety of microorganisms to break them down) and other cost hurdles (such as lower kinetics), cellulosic ethanol can currently remain in lab scales. Considering farm yields, commodity and fuel prices, farm energy and agrichemical inputs, production plant efficiencies, byproduct production, greenhouse gas (GHG) emissions, and other environmental effects, a life-cycle evaluation of competitive indicated that corn ethanol yields 25 % more energy than the energy invested in its production, whereas soybean bio-diesel yields 93 % more. Relative to the fossil fuels they displace, greenhouse gas emissions are reduced 12 % by the production and combustion of ethanol and 41 % by bio-diesel. Bio-diesel also releases less air pollutants per net energy gain than ethanol. Bio-diesel has advantages over ethanol due to its lower agricultural inputs and more efficient conversion. Thus, to be a viable alternative, a bio-fuel firstly should be producible in large quantities without reducing food supplies. In this aspect, larger quantity supplies of cellulose biomass are likely viable alternatives. U. S. Congress has introduced an initiative and subsequently rolled into the basic energy package, which encourages the production of fuel from purely renewable resources, biomass. Secondly, a bio-fuel should also provide a net energy gain, have environmental benefits and be economically competitive. In this aspect, bio-diesel has advantages over ethanol. The commonwealth of Kentucky is fortunate to have a diverse and abundant supply of renewable energy resources. Both Kentucky Governor Beshear in the energy plan for Kentucky "Intelligent Energy Choices for Kentucky's Future", and Kentucky Renewable Energy Consortium, outlined strategies on developing energy in renewable, sustainable and efficient ways. Smart utilization of diversified renewable energy resources using advanced technologies developed by Kentucky public universities, and promotion of these technologies to the market place by collaboration between universities and private industry, are specially encouraged. Thus, the initially question answering Governor's strategic plan is if there is any economical way to make utilization of larger quantities of cellulose and hemicellulose for production of bio-fuels, especially bio-diesel. There are some possible options of commercially available technologies to convert cellulose based biomass energy to bio-fuels. Cellulose based biomass can be firstly gasified to obtain synthesis gas (a mixture of CO and H{sub 2}), which is followed up by being converted into liquid hydrocarbon fuels or oxygenate hydrocarbon fuel through Fischer-Tropsch (F-T) synthesis. Methanol production is regarded to be the most economic starting step in many-year practices of the development of F-T synthesis technology since only C{sub 1} synthesis through F-T process can potentially achieve 100% conversion efficiency. Mobil's F-T synthesis process is based on this understanding. Considering the economical advantages of bio-diesel production over ethanol and necessary supply of methanol during bio-diesel production, a new opportunity for bio-diesel production with total supplies of biomass-based raw materials through more economic reaction pathways is likely identified in this proposal. The bio-oil part of biomass can be transesterified under available methanol (or mixed alcohols), which can be synthesized in the most easy part of F-T synthesis process using synthesis gas from gasification of cellulose fractions of biomass. We propose a novel concept to make sense of bio-diesel production economically though a coupling reaction of bio-oil transesterification and methanol synthesis. It will overcome problems of current bio-diesel producing process based on separated handling of methanol and bio-oil.

  16. Kentucky Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Kentucky Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 7 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Kentucky Coalbed Methane Proved

  17. Kentucky Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Kentucky Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 7 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Kentucky Coalbed Methane Proved

  18. Kentucky Natural Gas Processed in West Virginia (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    West Virginia (Million Cubic Feet) Kentucky Natural Gas Processed in West Virginia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 22,637 25,315 24,086 23,759 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Processed Kentucky-West Virginia

  19. Kentucky Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 508 49 66 0 0 0 534 6 13 0 2010's 39 84 0 1 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions Kentucky Dry Natural Gas Proved

  20. Kentucky Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 432 50 2 0 5 1 432 4 10 0 2010's 0 100 0 1 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Kentucky Dry Natural Gas Proved Reserves Dry Natural Gas

  1. Kentucky Natural Gas Plant Liquids Production Extracted in West Virginia

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) West Virginia (Million Cubic Feet) Kentucky Natural Gas Plant Liquids Production Extracted in West Virginia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1,465 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Kentucky-West Virginia

  2. STEM Mentors Reach Nearly 300 Western Kentucky Sixth Graders | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy STEM Mentors Reach Nearly 300 Western Kentucky Sixth Graders STEM Mentors Reach Nearly 300 Western Kentucky Sixth Graders November 25, 2015 - 12:00pm Addthis David Curry (far right) teaches Ayden Mowery, Jake Miller, and Bella Presson (left to right) at Ballard County Middle School to read a pH strip to test water. David Curry (far right) teaches Ayden Mowery, Jake Miller, and Bella Presson (left to right) at Ballard County Middle School to read a pH strip to test water. Ken Davis

  3. EECBG Success Story: Software Helps Kentucky County Gauge Energy Use

    Broader source: Energy.gov [DOE]

    Lexington-Fayette Urban County, Kentucky invested $140,000 of a $2.7 million Energy Efficiency and Conservation Block Grant (EECBG) to purchase EnergyCAP software. The energy management software will allow the county to track energy usage and greenhouse gas emission levels in targeted properties as well as process reports and analyze utility bills. Learn more.

  4. Quality characteristics of Kentucky coal from a utility perspective

    SciTech Connect (OSTI)

    Eble, C.F.; Hoover, J.C.

    1999-07-01

    Coal in Kentucky has been, and continues to be, a valuable energy source, especially for the electric utility industry. However, Federal mandates in Titles III and IV of the Clean Air Act Amendments of 1990, and more recently proposed ``greenhouse gas'' emission reductions, have placed increasingly stringent demands on the type and grade of coal that can be burned in an environmentally-accepted manner. Therefore, a greater understanding of the spatial and temporal distribution of thickness and quality parameters, and the geological factors that control their distribution, is critical if Kentucky will continue to be a major producer of high quality coal. Information from the Kentucky Geological Survey's Coal Resource Information System data base (KCRIS) is used in this paper to document the geological and stratigraphic distribution of important factors such as bed thickness, calorific value, ash yield, and total sulfur content. The distribution of major and minor elements that naturally occur in Kentucky coal is also discussed as some of these elements contribute to slagging and fouling in coal-fired furnaces; others may require monitoring with passage of Title III of the Clean Air Act Amendments of 1990.

  5. Kentucky Utilities Company and Louisville Gas & Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

     Kentucky Utilities Company's Home Energy Rebate program provides incentives for residential customers to upgrade to energy efficiency home appliances and heat and air conditioning equipment. ...

  6. Schools Near EM Sites in Kentucky, Ohio Advance to DOE's National...

    Broader source: Energy.gov (indexed) [DOE]

    Lone Oak Middle Schools winning team at DOEs 2014 West Kentucky Regional Science Bowl, left to right, David Perriello, Drew Schofield, Ethan Brown, and David Dodd,...

  7. Tennessee Valley and Eastern Kentucky Wind Working Group

    SciTech Connect (OSTI)

    Katie Stokes

    2012-05-03

    In December 2009, the Southern Alliance for Clean Energy (SACE), through a partnership with the Appalachian Regional Commission, EKPC, Kentucky's Department for Energy Development and Independence, SACE, Tennessee's Department of Environment and Conservation, and TVA, and through a contract with the Department of Energy, established the Tennessee Valley and Eastern Kentucky Wind Working Group (TVEKWWG). TVEKWWG consists of a strong network of people and organizations. Working together, they provide information to various organizations and stakeholders regarding the responsible development of wind power in the state. Members include representatives from utility interests, state and federal agencies, economic development organizations, non-government organizations, local decision makers, educational institutions, and wind industry representatives. The working group is facilitated by the Southern Alliance for Clean Energy. TVEKWWG supports the Department of Energy by helping educate and inform key stakeholders about wind energy in the state of Tennessee.

  8. Health hazard evaluation report HETA 91-0292-2467, Magnetics Division of Spang and Company, Butler, Pennsylvania

    SciTech Connect (OSTI)

    Blade, L.M.; Bresler, F.T.

    1994-11-01

    In response to an employee request, an investigation was begun into possible exposures to paint, paint thinners, and Freon at the Magnetics Division of Spang and Company (SIC-3679), Butler, Pennsylvania. The division employed about 450 people and manufactured two types of magnetic cores used in a variety of electronic devices. Workers in the Tape Core Paint Room had experienced light headedness or fainted episodes. Only one sample contained measurable levels of 2-ethoxyethyl-acetate (111159) but the level was 0.25 parts per million (ppm), one half of the NIOSH recommended exposure limit for full shift time weighted average exposure. Methylene-chloride (75092) was detected in all but one of the air samples with levels ranging up to 35ppm. One personal breathing zone sample had a lead (7439921) concentration of 36 micrograms/cubic meter (microg/m3) which exceeded the OSHA action level for lead of 30 microg/m3. The paint booth exhaust systems appeared to be operating efficiently and there were good work practices among the painters. The authors conclude that workers were exposed to methylene-chloride, considered by NIOSH to be a potential occupational carcinogen. Exposures to lead and 2-ethoxyethyl-acetate may exceed the evaluation criteria. Some workers may experience symptoms when working near solvents and paints, even though the measured exposures were below the permissible exposure limits. The authors recommend that efforts be made to reduce exposures in the paint room.

  9. Construction Begins on DOE-Sponsored Carbon-Capture Project at Kentucky Power Plant

    Broader source: Energy.gov [DOE]

    Today, construction began on an innovative $19.5 million carbon-capture pilot, funded in part by the U.S. Department of Energy, at Kentucky Utilities’ E.W. Brown Generating Station near Harrodsburg, Kentucky. The 2 megawatt thermal system will be the first megawatt-scale carbon-capture pilot unit in the Commonwealth.

  10. Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 11 14 12 19 17 13 17 19 19 22 1990's 8 10 8 6 47 27 24 26 20 29 2000's 27 25 25 25 19 30 36 34 34 32 2010's 111 98 93 44 49 - = No Data Reported; -- = Not

  11. Kentucky Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves in Nonproducing Reservoirs (Million Barrels) Kentucky Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 0 0 2000's 0 0 4 4 5 5 0 0 1 3 2010's 0 0 0 1 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing Reserves of Crude

  12. Kentucky Natural Gas Liquids Lease Condensate, Proved Reserves (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) Kentucky Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 0 0 0 0 0 0 0 1 1990's 1 0 0 1 0 1 1 1 1 0 2000's 0 0 1 1 1 1 1 1 4 4 2010's 1 5 4 5 5 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  13. Kentucky Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Kentucky Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 26 1980's 25 25 35 31 24 27 29 23 24 15 1990's 24 24 32 25 39 42 45 47 53 69 2000's 56 72 65 65 71 69 104 88 96 101 2010's 124 88 81 95 108 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  14. Kentucky Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",2592,1669,1917,3318,2580 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",369,370,351,263,349 "MSW Biogenic/Landfill Gas",88,93,105,96,89

  15. Kentucky Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "Energy Source",2006,2007,2008,2009,2010 "Fossil",95720,95075,95478,86937,95182 " Coal",91198,90483,91621,84038,91054 " Petroleum",3341,2791,2874,2016,2285 " Natural Gas",1177,1796,979,878,1841 " Other Gases",4,5,4,4,3 "Nuclear","-","-","-","-","-" "Renewables",3050,2134,2377,3681,3020 "Pumped

  16. Kentucky Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 64 -66 1980's 67 -20 -4 6 55 -126 7 68 16 14 1990's -31 97 -107 -34 40 43 -55 321 -93 34 2000's -4 158 -24 49 -40 65 -22 37 81 97 2010's -58 -34 -282 103 -9 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  17. Kentucky Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 48 52 49 1980's 60 52 44 38 54 53 56 58 60 65 1990's 62 78 61 66 64 67 58 79 63 59 2000's 67 73 79 78 83 85 66 80 93 108 2010's 96 101 83 81 70 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  18. Kentucky Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10 26 16 1980's 3 11 33 13 22 12 6 10 51 60 1990's 42 27 35 8 35 10 10 18 20 30 2000's 2 42 92 49 96 101 23 373 200 713 2010's 383 4 0 132 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  19. Kentucky Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 17 23 17 1980's 11 8 19 14 29 26 9 17 18 13 1990's 19 6 12 31 101 12 12 3 41 41 2000's 77 397 383 167 153 77 21 152 133 760 2010's 540 639 276 58 46 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  20. Kentucky Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 35 79 37 1980's 39 91 54 32 65 343 126 65 25 67 1990's 93 99 73 34 49 100 43 107 14 230 2000's 363 348 377 128 176 251 56 62 187 126 2010's 103 178 43 159 72 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  1. Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Coalbed Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Gross Withdrawals from Coalbed Wells Kentucky Natural Gas Gross Withdrawals and Production Natural Gas Gross Withdrawals from Coalbed

  2. Kentucky Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Kentucky Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,025 7,165 6,940 4,056 852 830 627 1990's 657 702 707 689 611 702 682 641 548 641 2000's 419 475 535 536 617 698 653 691 587 391 2010's 772 278 641 280 278 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next

  3. Schools Near EM Sites in Kentucky, Ohio Advance to DOE's National Science

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bowl | Department of Energy Schools Near EM Sites in Kentucky, Ohio Advance to DOE's National Science Bowl Schools Near EM Sites in Kentucky, Ohio Advance to DOE's National Science Bowl March 31, 2014 - 12:00pm Addthis Members of Lone Oak Middle School’s winning team at DOE’s 2014 West Kentucky Regional Science Bowl, left to right, David Perriello, Drew Schofield, Ethan Brown, and David Dodd, formulate their answer to a question in the middle school finals Feb. 28 in Paducah, Ky.

  4. Kentucky Utilities Company and Louisville Gas & Electric- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Kentucky Utilities Company (KU) offers rebates to all commercial customers who pay a DSM charge on monthly bills. Rebates are available on lighting measures, sensors, air conditioners, heat pumps,...

  5. Gatton Academy Wins DOE’s West Kentucky Regional Science Bowl

    Broader source: Energy.gov [DOE]

    PADUCAH, Ky. – Gatton Academy Team-1 won the U.S. Department of Energy’s (DOE) West Kentucky Regional Science Bowl, the region’s foremost academic and scientific event for high school students, on...

  6. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Kentucky

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Kentucky.

  7. Kentucky State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-08-01

    The Kentucky State Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist State and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Kentucky. The profile is the result of a survey of NRC licensees in Kentucky. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Kentucky.

  8. Henderson County North Middle School wins 2015 DOE West Kentucky Regional Science Bowl

    Broader source: Energy.gov [DOE]

    PADUCAH, Ky. – Henderson County North Middle School won the U.S. Department of Energy’s West Kentucky Regional Science Bowl February 6, 2015 during competition among 12 middle school teams. The...

  9. Kentucky Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Kentucky Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 451 545 468 1980's 508 530 551 554 613 766 841 909 923 992 1990's 1,016 1,155 1,084 1,003 969 1,044 983 1,364 1,222 1,435 2000's 1,760 1,860 1,907 1,889 1,880 2,151 2,227 2,469 2,714 2,782 2010's 2,613 2,006 1,408 1,663 1,611 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  10. Kentucky Natural Gas Underground Storage Volume (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Volume (Million Cubic Feet) Kentucky Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 167,899 166,624 167,576 172,320 177,680 185,467 192,473 199,674 202,983 198,545 192,581 1991 183,697 180,169 176,535 181,119 183,491 186,795 192,143 195,330 198,776 198,351 191,831 189,130 1992 189,866 188,587 183,694 182,008 180,781 182,342 185,893 187,501 191,689 202,391 200,871 197,857 1993 192,736 181,774 172,140

  11. Kentucky Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Kentucky Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 504 1980's 536 561 592 600 647 806 883 940 957 1,015 1990's 1,047 1,187 1,126 1,036 1,025 1,102 1,046 1,429 1,295 1,530 2000's 1,837 1,950 1,999 1,971 1,982 2,240 2,369 2,588 2,846 2,919 2010's 2,785 2,128 1,515 1,794 1,753 - = No Data Reported;

  12. Kentucky Nonassociated Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Kentucky Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 502 1980's 525 547 580 581 630 793 866 921 938 993 1990's 1,039 1,177 1,118 1,030 978 1,075 1,022 1,403 1,275 1,501 2000's 1,810 1,925 1,974 1,946 1,963 2,210 2,333 2,554 2,812 2,887 2010's

  13. Kentucky Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Kentucky Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3 1980's 3 2 3 2 2 2 2 1 2 1 1990's 1 2 2 2 3 3 3 3 3 3 2000's 2 3 3 3 3 3 3 3 3 4 2010's 5 4 5 5 5 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  14. New coal technology to flourish at Kentucky plant

    SciTech Connect (OSTI)

    Blankinship, S.

    2007-08-15

    Within four years a 76 MW (net) advanced supercritical coal unit, TC2, will go into service at the Trimble County power plant on the Ohio River near Louiseville, KY, USA. The unit is designed to burn a blend of eastern bituminous and western sub-bituminous Powder River Basin coals. TC2 is one of four US power plants to receive a $125 m tax credit under the 2005 EPACT Qualifying Advanced Coal Program for high efficiency and low emission generating units. Trimble County is owned and operated by E.ON US subsidiaries Kentucky Utilities and Louiseville Gas & Electric. It was originally designed to accommodate four 500 MW coal-fired units fired by bituminous coal from the Illinois Basin. 1 photo.

  15. Kentucky Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Field Discoveries (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3 0 1 1980's 2 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 1 0 0 0 2000's 5 0 0 0 0 17 0 0 0 0 2010's 0 1 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  16. Kentucky Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Kentucky Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 42 2 131 259 94 4 1 0 6 44 1990's 2 2 5 16 50 6 45 24 2 3 2000's 10 2 1 98 0 15 3 124 15 18 2010's 5 8 1 29 52 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next

  17. Kentucky Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Kentucky Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,336 1,873 2,155 2,279 2,402 2,112 1,718 1990's 2,492 1,730 2,105 2,573 2,162 1,945 1,744 1,816 1,777 1,615 2000's 2,075 1,980 3,442 2,278 2,044 2,879 3,524 2,676 3,914 4,862 2010's 5,626 5,925 6,095 6,095 4,388 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  18. Kentucky Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Kentucky Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 63,024 63,971 65,041 1990's 67,086 68,461 69,466 71,998 73,562 74,521 76,079 77,693 80,147 80,283 2000's 81,588 81,795 82,757 84,110 84,493 85,243 85,236 85,210 84,985 83,862 2010's 84,707 84,977 85,129 85,999 85,318 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  19. Kentucky Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Kentucky Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 596,320 606,106 614,058 1990's 624,477 633,942 644,281 654,664 668,774 685,481 696,989 713,509 726,960 735,371 2000's 744,816 749,106 756,234 763,290 767,022 770,080 770,171 771,047 753,531 754,761 2010's 758,129 759,584 757,790 761,575 760,131 - = No Data Reported; -- = Not Applicable; NA = Not

  20. Kentucky Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Kentucky Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 22,854 15,750 16,632 2000's 13,826 14,912 11,993 14,279 10,143 8,254 6,510 11,885 12,957 12,558 2010's 13,708 12,451 8,604 7,157 8,426 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring

  1. Kentucky Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Kentucky Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 227,931 205,129 218,399 2000's 225,168 208,974 227,920 223,226 225,470 234,080 211,049 229,799 225,295 206,833 2010's 232,099 223,034 225,924 229,983 254,244 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next

  2. Kentucky Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Kentucky Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6 15 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  3. Kentucky Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Kentucky Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 46,720 61,518 73,126 80,195 70,125 44,725 72,417 1990's 75,333 78,904 79,690 86,966 73,081 74,754 81,435 79,547 81,868 76,770 2000's 81,545 81,723 88,259 87,609 94,259 92,795 95,320 95,437 114,116 NA 2010's 135,355

  4. DOE Awards Grants to the Commonwealth of Kentucky, Energy and Environment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cabinet | Department of Energy Grants to the Commonwealth of Kentucky, Energy and Environment Cabinet DOE Awards Grants to the Commonwealth of Kentucky, Energy and Environment Cabinet October 31, 2014 - 3:00pm Addthis Media Contact Lynette Chafin, 513-246-0461, Lynette.Chafin@emcbc.doe.gov Cincinnati - The U.S. Department of Energy (DOE) Environmental Management Consolidated Business Center (EMCBC) is awarding two separate grants together totaling about $7 million to the Commonwealth of

  5. Mr. Todd Mullins Federal Facility Agreement Manager Kentucky Department for Environmental Protection

    Energy Savers [EERE]

    JUN 1 1 2013 Mr. Todd Mullins Federal Facility Agreement Manager Kentucky Department for Environmental Protection Division of Waste Management 200 Fair Oaks Lane, 2 nd Floor Frankfort, Kentucky 40601 Ms. Jennifer Tufts Federal Facility Agreement Manager U.S. Environmental Protection Agency, Region 4 61 Forsyth Street Atlanta, Georgia 30303 Dear Mr. Mullins and Ms. Tufts: PPPO-02-1813000-13B TRANSMITTAL OF THE COMMUNITY RELATIONS PLAN UNDER THE FEDERAL FACILITY AGREEMENT AT THE U.S. DEPARTMENT OF

  6. Department of Energy Cites LATA Environmental Services of Kentucky, LLC for Worker Safety and Health and Nuclear Safety Violations

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) has issued a Preliminary Notice of Violation (PNOV) to LATA Environmental Services of Kentucky.

  7. Kentucky Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Kentucky Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.24 0.25 0.25 1970's 0.25 0.25 0.25 0.35 0.50 0.54 0.55 0.55 0.58 0.95 1980's 0.89 1.01 1.52 1.51 1.70 2.39 1.88 1.82 2.56 2.13 1990's 2.24 2.03 1.92 2.28 2.24 1.64 2.55 2.66 2.39 2.07 2000's 3.16 4.78 3.01 4.54 5.26 6.84 8.83 7.35 8.42 NA 2010's 4.47 - = No Data Reported; -- = Not Applicable;

  8. Kentucky Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,023 1,022 1,023 1,025 1,026 1,027 1,028 1,030 1,031 1,028 1,028 1,033 2014 1,029 1,024 1,026 1,028 1,031 1,037 1,034 1,036 1,038 1,022 1,017 1,019 2015 1,023 1,018 1,015 1,016 1,023 1,021 1,024 1,015 1,020 1,024 1,021 1,024 2016 1,027

    % of Total Residential Deliveries (Percent) Kentucky Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's

  9. Kentucky Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Kentucky Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.33 0.27 0.23 1970's 0.20 0.22 0.24 0.25 0.29 0.37 0.48 0.60 0.57 1.26 1980's 1.67 2.18 2.85 3.05 2.93 2.89 2.44 1.97 1.77 2.00 1990's 2.12 2.35 2.51 2.67 1.95 1.83 2.63 2.51 2.45 2.11 2000's 3.27 3.96 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  10. Kentucky Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Kentucky Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 11,500 8,573 8,579 1970's 6,574 6,133 6,063 5,441 5,557 5,454 5,231 4,764 6,192 3,923 1980's 6,845 5,638 6,854 6,213 6,516 6,334 4,466 2,003 2,142 1,444 1990's 1,899 2,181 2,342 2,252 2,024 2,303 2,385 2,404 2,263 2,287 2000's 1,416 1,558 1,836 1,463 2,413 1,716 2,252 1,957 2,401 3,270 2010's 4,576 4,684

  11. Kentucky Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 2 2 2 2 2 2 2 2 2 2 2 2 2014 2 2 2 2 2 2 2 2 2 2 2 2 2015 0 0 0 0 0 2 2 2 2 2 2 2 2016 3 2

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Kentucky Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.78 5.30 4.62 5.10 5.54 6.68 6.75 6.68 2000's

  12. Finding Energy Efficiency and Savings on a Kentucky Farm | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Finding Energy Efficiency and Savings on a Kentucky Farm Finding Energy Efficiency and Savings on a Kentucky Farm September 28, 2010 - 4:00pm Addthis Maya Payne Smart Former Writer for Energy Empowers, EERE What does this project do? The project is expected to create $852,000 worth of energy savings. Alvin Frogue of Frogue Dairy has been in the dairy business for 50 years and until recently one of his top challenges was managing 250 cows with individualized care. Now $80,540 worth of

  13. Ohio-Kentucky-Indiana Regional Council of Governments Go Solar Ready – Solar Map

    Broader source: Energy.gov [DOE]

    The Ohio-Kentucky-Indiana Regional Council of Governments Go Solar Ready Map provides general information about the estimated annual solar energy potential on building rooftops in the OKI region. The intention of this tool is to provide the user a general understanding of the solar energy available on rooftops in the OKI tristate region.

  14. EIS-0073: Solvent Refined Coal-I Demonstration Project, Daviess County, Kentucky

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to assess the potential environmental, economic, and social impacts associated with construction and operation of a 6,000-tons-per-stream-day-capacity coal liquefaction facility in Newman, Kentucky, and the potential impacts of a future expansion of the proposed facility to an approximately 30,000 tons per stream day capacity.

  15. Microsoft Word - EMC05_Caldwell.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    up- to-date trigger generators that are remotely set and adjusted through a custom Labview program. The low-voltage trigger system initiates the firing of the high-voltage Marx...

  16. Partnering Agreement between the U.S. Department of Energy and LATA Environmental Services of Kentucky, LLC

    Broader source: Energy.gov [DOE]

    We, the members of the LATA Kentucky and Portsmouth/Paducah Office Partnering Team, will improve communications, drive change, ensure safety, raise the quality of all we do, and sustain a shared...

  17. Summary - Building C-400 Thermal Treatment Remedial Design Report and Investigation, Paducah, Kentucky

    Office of Environmental Management (EM)

    Paducah, KY EM Project: Building C400 Thermal Treatment ETR Report Date: August 2007 ETR-8 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Building C-400 Thermal Treatment 90% Remedial Design Report and Site Investigation, Paducah Kentucky Why DOE-EM Did This Review The groundwater underlying the Paducah Gaseous Diffusion Plant (PGDP) is contaminated by chlorinated solvents, principally trichloroethylene (TCE), as well as other

  18. Kentucky Department for Natural Resources and Environmental Protection permit application for air contaminant source: SRC-I demonstration plant, Newman, Kentucky. [Demonstration plant at Newman, KY

    SciTech Connect (OSTI)

    none,

    1980-11-21

    This document and its several appendices constitute an application for a Kentucky Permit to Construct an Air Contaminant Source as well as a Prevention of Significant Air Quality Deterioration (PSD) Permit Application. The information needed to satisfy the application requirements for both permits has been integrated into a complete and logical description of the proposed source, its emissions, control systems, and its expected air quality impacts. The Department of Energy believes that it has made every reasonable effort to be responsive to both the letter and the spirit of the PSD regulations (40 CFR 52.21) and Kentucky Regulation No. 401 KAR 50:035. In this regard, it is important to note that because of the preliminary status of some aspects of the process engineering and engineering design for the Demonstration Plant, it is not yet possible precisely to define some venting operations or their associated control systems. Therefore, it is not possible precisely to quantify some atmospheric emissions or their likely impact on air quality. In these instances, DOE and ICRC have used assumptions that produce impact estimates that are believed to be worst case and are not expected to be exceeded no matter what the outcome of future engineering decisions. As these decisions are made, emission quantities and rates, control system characteristics and efficiencies, and vent stack parameters are more precisely defined; this Permit Application will be supplemented or modified as appropriate. But, all needed modifications are expected to represent either decreases or at worst no changes in the air quality impact of the SRC-I Demonstration Plant.

  19. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-01-01

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  20. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-04-01

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 percent (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  1. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-07-28

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  2. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-10-29

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  3. Kentucky Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",815,817,824,824,824 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",43,47,47,52,52 "MSW/Landfill Gas",12,15,15,17,17 "Other

  4. Kentucky Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "Energy Source",2006,2007,2008,2009,2010 "Fossil",19177,19088,19016,19268,19560 " Coal",14386,14374,14301,14553,14566 " Petroleum",135,77,77,77,70 " Natural Gas",4656,4638,4638,4638,4924 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",871,880,886,893,893 "Pumped

  5. Kentucky Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Kentucky Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.78 5.30 4.62 5.10 5.54 6.68 6.75 6.68 2000's 5.49 7.78 9.42 11.15 -- -- -- -- -- -- 2010's -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring

  6. ,"Kentucky Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  7. ,"Kentucky Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  8. ,"Kentucky Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  9. ,"Kentucky Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","12/2013" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  10. ,"Kentucky Natural Gas Underground Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Underground Storage Withdrawals (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  11. ,"Kentucky Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    from Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  12. ,"Kentucky Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  13. ,"Kentucky Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  14. ,"Kentucky Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  15. ,"Kentucky Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File Name:","n5290ky2m.xls"

  16. ,"Kentucky Natural Gas Underground Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  17. ,"Kentucky Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File Name:","n5030ky2m.xls"

  18. ,"Kentucky Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  19. ,"Kentucky Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  20. ,"Kentucky Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  1. ,"Kentucky Shale Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Shale Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  2. Coal quality trends and distribution of Title III trace elements in Eastern Kentucky coals

    SciTech Connect (OSTI)

    Eble, C.F.; Hower, J.C.

    1995-12-31

    The quality characteristics of eastern Kentucky coal beds vary both spatially and stratigraphically. Average total sulfur contents are lowest, and calorific values highest, in the Big Sandy and Upper Cumberland Reserve Districts. Average coal thickness is greatest in these two districts as well. Conversely, the thinnest coal with the highest total sulfur content, and lowest calorific value, on average, occurs in the Princess and Southwest Reserve Districts. Several Title III trace elements, notably arsenic, cadmium, lead, mercury, and nickel, mirror this distribution (lower average concentrations in the Big Sandy and Upper Cumberland Districts, higher average concentrations in the Princess and Southwest Districts), probably because these elements are primarily associated with sulfide minerals in coal. Ash yields and total sulfur contents are observed to increase in a stratigraphically older to younger direction. Several Title III elements, notably cadmium, chromium, lead, and selenium follow this trend, with average concentrations being higher in younger coals. Average chlorine concentration shows a reciprocal distribution, being more abundant in older coals. Some elements, such as arsenic, manganese, mercury, cobalt, and, to a lesser extent, phosphorus show concentration spikes in coal beds directly above, or below, major marine zones. With a few exceptions, average Title III trace element concentrations for eastern Kentucky coals are comparable with element distributions in other Appalachian coal-producing states.

  3. Sherwin-Williams’ Richmond, Kentucky, Facility Achieves 26% Energy Intensity Reduction; Leads to Corporate Adoption of Save Energy Now LEADER

    Broader source: Energy.gov [DOE]

    This case study summarizes energy efficiency achievements made by Sherwin-Williams' Richmond, Kentucky, manufacturing facility under the Save Energy Now LEADER program, now known as the Better Plants Program. This includes a variety of steam system and compressed air technology improvements.

  4. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-08-01

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library are being sampled to collect CO{sub 2} adsorption isotherms. Sidewall core samples have been acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log has been acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 4.62 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 19 scf/ton in less organic-rich zones to more than 86 scf/ton in the Lower Huron Member of the shale. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  5. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-07-29

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  6. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-01-28

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  7. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-04-26

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  8. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-01-01

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  9. Summary of Carbon Storage Project Public Information Meeting and Open House, Hawesville, Kentucky, October 28, 2010

    SciTech Connect (OSTI)

    David Harris; David Williams; J. Richard Bowersox; Hannes Leetaru

    2012-06-01

    The Kentucky Geological Survey (KGS) completed a second phase of carbon dioxide (CO{sub 2}) injection and seismic imaging in the Knox Group, a Cambrian‐Ordovician dolomite and sandstone sequence in September 2010. This work completed 2 years of activity at the KGS No. 1 Marvin Blan well in Hancock County, Kentucky. The well was drilled in 2009 by a consortium of State and industry partners (Kentucky Consortium for Carbon Storage). An initial phase of CO{sub 2} injection occurred immediately after completion of the well in 2009. The second phase of injection and seismic work was completed in September 2010 as part of a U.S. DOE–funded project, after which the Blan well was plugged and abandoned. Following completion of research at the Blan well, a final public meeting and open house was held in Hancock County on October 28, 2010. This meeting followed one public meeting held prior to drilling of the well, and two on‐site visits during drilling (one for news media, and one for school teachers). The goal of the final public meeting was to present the results of the project to the public, answer questions, and address any concerns. Despite diligent efforts to publicize the final meeting, it was poorly attended by the general public. Several local county officials and members of the news media attended, but only one person from the general public showed up. We attribute the lack of interest in the results of the project to several factors. First, the project went as planned, with no problems or incidents that affected the local residents. The fact that KGS fulfilled the promises it made at the beginning of the project satisfied residents, and they felt no need to attend the meeting. Second, Hancock County is largely rural, and the technical details of carbon sequestration were not of interest to many people. The county officials attending were an exception; they clearly realized the importance of the project in future economic development for the county.

  10. Field Sampling Plan for the Distler Brickyard Superfund Site, Hardin County, Kentucky

    SciTech Connect (OSTI)

    J. P. Martin; L. N. Peterson; C. J. Taylor

    1999-08-01

    This plan describes the field and analytical activities to be conducted at the Distler Brickyard Superfund Site, Hardin County, Kentucky, in order to evaluate natural attenuation processes within the aquifer system. Sampling will consist of a single round to take place in October 1999. Analytes will consist of the contaminants of concern (chlorinated aliphatic hydrocarbons), electron donors (non-chlorinated organic compounds), oxidation-reduction indicators, and water quality parameters. These activities are conducted in order to evaluate the water quality parameters. These activities are conducted in order to evaluate the extent to which natural attenuation processes, in the form of anaerobic reductive dechlorination, may be taking place in the aquifer system. These data will then be used to select the appropriate remediation technology for this site.

  11. Kentucky Natural Gas Delivered to Commercial Consumers for the Account of

    Gasoline and Diesel Fuel Update (EIA)

    Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Kentucky Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,053 1,501 1,828 1990's 1,575 2,035 2,451 2,809 3,171 4,169 3,773 3,860 4,076 4,315 2000's 5,584 6,424 7,590 7,942 7,864 7,488 6,092 6,304 6,673 7,047 2010's 7,163 7,188 6,941 7,919 7,819 - = No Data

  12. Kentucky Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Kentucky Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,828 1,992 2,277 1970's 2,317 2,212 1,509 1,238 1,206 1,218 1,040 1,107 1,160 1,214 1980's 989 1,040 9,772 8,361 9,038 9,095 6,335 3,254 2,942 2,345 1990's 3,149 2,432 2,812 3,262 2,773 2,647 2,426 2,457 2,325 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  13. Kentucky Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Kentucky Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -1,772 682 336 86 308 -489 138 -272 -702 -351 130 2,383 1991 21,249 14,278 11,919 15,552 13,179 11,123 8,684 4,865 1,110 -2,624 -4,707 -1,444 1992 4,569 6,818 5,559 -712 -4,310 -6,053 -7,850 -9,429 -8,687 2,440 7,441 7,127 1993 2,921 -6,726 -11,466

  14. Aerial gamma ray and magnetic survey, Huntington quadrangle: Ohio, West Virginia and Kentucky. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-04-01

    The Huntington quadrangle of Kentucky, Ohio, and West Virginia covers 7250 square miles of the easternmost Midwestern Physiographic Province. Paleozoic exposures dominate the surface. These Paleozoics deepen toward the east from approximately 500 feet to a maximum depth of 8000 feet. Precambrian basement is thought to underlie the entire area. No known uranium deposits exist in the area. One hundred anomalies were found using the standard statistical analysis. Some high uranium concentration anomalies that may overlie the stratigraphic equivalent of the Devonian-Mississippian New Albany or Chattanooga Shales may represent significant levels of naturally occurring uranium. Future studies should concentrate on this unit. Magnetic data are largely in concurrence with existing structural interpretations but suggest some complexities in the underlying Precambrian.

  15. Program in Functional Genomics of Autoimmunity and Immunology of yhe University of Kentucky and the University of Alabama

    SciTech Connect (OSTI)

    Alan M Kaplan

    2012-10-12

    This grant will be used to augment the equipment infrastructure and core support at the University of Kentucky and the University of Alabama particularly in the areas of genomics/informatics, molecular analysis and cell separation. In addition, we will promote collaborative research interactions through scientific workshops and exchange of scientists, as well as joint exploration of the role of immune receptors as targets in autoimmunity and host defense, innate and adaptive immune responses, and mucosal immunity in host defense.

  16. Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site

    Office of Environmental Management (EM)

    DRAFT ENVIRONMENTAL IMPACT STATEMENT FOR CONSTRUCTION AND OPERATION OF A DEPLETED URANIUM HEXAFLUORIDE CONVERSION FACILITY AT THE PADUCAH, KENTUCKY, SITE DECEMBER 2003 U.S. Department of Energy-Oak Ridge Operations Office of Environmental Management Cover Sheet Paducah DUF 6 DEIS: December 2003 iii COVER SHEET RESPONSIBLE FEDERAL AGENCY: U.S. Department of Energy (DOE) TITLE: Draft Environmental Impact Statement (DEIS) for Construction and Operation of a Depleted Uranium Hexafluoride Conversion

  17. Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site

    Office of Environmental Management (EM)

    1: Main Text and Appendixes A-H June 2004 U.S. Department of Energy Office of Environmental Management Cover Sheet Paducah DUF 6 Conversion Final EIS iii COVER SHEET * RESPONSIBLE FEDERAL AGENCY: U.S. Department of Energy (DOE) TITLE: Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site (DOE/EIS-0359) CONTACT: For further information on this environmental impact statement (EIS), contact: Gary S.

  18. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-02-11

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  19. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-04-28

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  20. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-02-10

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  1. GEOLOGIC CHARACTERIZATION AND CARBON STORAGE RESOURCE ESTIMATES FOR THE KNOX GROUP, ILLINOIS BASIN, ILLINOIS, INDIANA, AND KENTUCKY

    SciTech Connect (OSTI)

    Harris, David; Ellett, Kevin; Rupp, John; Leetaru, Hannes

    2014-09-30

    Research documented in this report includes (1) refinement and standardization of regional stratigraphy across the 3-state study area in Illinois, Indiana, and Kentucky, (2) detailed core description and sedimentological interpretion of Knox cores from five wells in western Kentucky, and (3) a detailed calculation of carbon storage volumetrics for the Knox using three different methodologies. Seven regional cross sections document Knox formation distribution and thickness. Uniform stratigraphic nomenclature for all three states helps to resolve state-to-state differences that previously made it difficult to evaluate the Knox on a basin-wide scale. Correlations have also refined the interpretation of an important sandstone reservoir interval in southern Indiana and western Kentucky. This sandstone, a CO2 injection zone in the KGS 1 Blan well, is correlated with the New Richmond Sandstone of Illinois. This sandstone is over 350 ft (107 m) thick in parts of southern Indiana. It has excellent porosity and permeability at sufficient depths, and provides an additional sequestration target in the Knox. The New Richmond sandstone interval has higher predictability than vuggy and fractured carbonates, and will be easier to model and monitor CO2 movement after injection.

  2. Project plan for the background soils project for the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    1995-09-01

    The Background Soils Project for the Paducah Gaseous Diffusion Plant (BSPP) will determine the background concentration levels of selected naturally occurring metals, other inorganics, and radionuclides in soils from uncontaminated areas in proximity to the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. The data will be used for comparison with characterization and compliance data for soils, with significant differences being indicative of contamination. All data collected as part of this project will be in addition to other background databases established for the PGDP. The BSPP will address the variability of surface and near-surface concentration levels with respect to (1) soil taxonomical types (series) and (2) soil sampling depths within a specific soil profile. The BSPP will also address the variability of concentration levels in deeper geologic formations by collecting samples of geologic materials. The BSPP will establish a database, with recommendations on how to use the data for contaminated site assessment, and provide data to estimate the potential human and health and ecological risk associated with background level concentrations of potentially hazardous constituents. BSPP data will be used or applied as follows.

  3. Review of earthquake hazard assessments of plant sites at Paducah, Kentucky and Portsmouth, Ohio

    SciTech Connect (OSTI)

    1997-03-01

    Members of the US Geological Survey staff in Golden, Colorado, have reviewed the submissions of Lawrence Livermore National Laboratory (LLNL) staff and of Risk Engineering, Inc. (REI) (Golden, Colorado) for seismic hazard estimates for Department of Energy facilities at Portsmouth, Ohio, and Paducah, Kentucky. We reviewed the historical seismicity and seismotectonics near the two sites, and general features of the LLNL and EPRI/SOG methodologies used by LLNL and Risk Engineering respectively, and also the separate Risk Engineering methodology used at Paducah. We discussed generic issues that affect the modeling of both sites, and performed alternative calculations to determine sensitivities of seismic hazard results to various assumptions and models in an attempt to assign reasonable bounding values of the hazard. In our studies we find that peak acceleration values of 0.08 g for Portsmouth and 0.32 g for Paducah represent central values of the, ground motions obtained at 1000-year return periods. Peak accelerations obtained in the LLNL and Risk Engineering studies have medians near these values (results obtained using the EPRI/SOG methodology appear low at both sites), and we believe that these medians are appropriate values for use in the evaluation of systems, structures, and components for seismic structural integrity and for the seismic design of new and improved systems, structures, and components at Portsmouth and Paducah.

  4. Site-specific earthquake response analysis for Paducah Gaseous Diffusion Plant, Paducah, Kentucky. Final report

    SciTech Connect (OSTI)

    Sykora, D.W.; Davis, J.J.

    1993-08-01

    The Paducah Gaseous Diffusion Plant (PGDP), owned by the US Department of Energy (DOE) and operated under contract by Martin Marietta Energy systems, Inc., is located southwest of Paducah, Kentucky. An aerial photograph and an oblique sketch of the plant are shown in Figures 1 and 2, respectively. The fenced portion of the plant consists of 748 acres. This plant was constructed in the 1950`s and is one of only two gaseous diffusion plants in operation in the United States; the other is located near Portsmouth, Ohio. The facilities at PGDP are currently being evaluated for safety in response to natural seismic hazards. Design and evaluation guidelines to evaluate the effects of earthquakes and other natural hazards on DOE facilities follow probabilistic hazard models that have been outlined by Kennedy et al. (1990). Criteria also established by Kennedy et al. (1990) classify diffusion plants as ``moderate hazard`` facilities. The US Army Engineer Waterways Experiment Station (WES) was tasked to calculate the site response using site-specific design earthquake records developed by others and the results of previous geotechnical investigations. In all, six earthquake records at three hazard levels and four individual and one average soil columns were used.

  5. October 1999 Groundwater Sampling and Data Analysis, Distler Brickyard Site, Hardin County, Kentucky

    SciTech Connect (OSTI)

    J. P. Martin, L. N. Peterson; C. J. Taylor

    2000-03-01

    This report describes the results of a sampling event conducted at the Distler Brickyard Superfund Site, Hardin County, Kentucky, October 1999. The purpose of the sampling event was to evaluate the extent of natural biodegradation of chlorinated aliphatic hydrocarbons (CAH) occurring at the Site. Sampling locations were selected to evaluate three areas of the suspected CAH plume: the source area, an axial cross-section, and a downgradient transect. Due to inadequate recharge to and the poor physical condition of some monitoring wells at the Site, the sampling approach was modified to reflect wells that could be sampled. Results indicate that natural anaerobic degradation of chlorinated aliphatic hydrocarbons is occurring in the presumed source area around monitoring well GW-11. The primary contaminant of concern, trichloroethene, migrates downgradient from the source area into the Coarse Grained Alluvium Aquifer at concentrations slightly greater than the Maximum Contaminant Level (MCL). Based on the available, the following hypothesis is proposed: the source area has been remediated through soil removal activities and subsequent anaerobic reductive dechlorination. If this is the case, this Site may be a good candidate for implementation of a monitored natural attenuation remedy. However, more data are necessary before this hypothesis can be confirmed.

  6. Kentucky Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Kentucky Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 36.3 23.0 19.6 25.2 19.8 15.5 10.9 5.6 1.2 -2.7 -5.1 -1.7 1992 5.7 8.9 7.7 -0.9 -5.4 -7.3 -8.9 -10.3 -9.2 2.6 8.5 8.4 1993 3.5 -8.1 -14.7 -13.7 -3.8 4.4 9.2 12.9 14.8 3.2 -1.2 -9.6 1994 -25.7 -31.2 -28.1 -20.1 -13.8 -10.6 -7.3 -4.7 -7.2 -4.8 1.4 4.5 1995 14.0 16.7 18.3 14.2 16.8 12.2

  7. Sauk structural elements and depositional response in Ohio and northern Kentucky

    SciTech Connect (OSTI)

    Coogan, A.H.; Peng, Shengfeng (Kent State Univ., OH (United States). Dept. of Geology)

    1992-01-01

    Three area structural elements were inherited from Precambrian events--the Rome Trough, Middle Run trough at the Grenville Line, and the Ohio platform on part of the more stable Grenville Province. They strongly influence the type of basal Sauk clastic and non-clastic deposits as documented from hundreds of wells in Ohio and adjacent northern Kentucky. These elements and the topography resulting from erosion during the Lipalian Interval most directly influence sedimentation during the onlap phase of the basal Sauk Sequence. Clastic wedge-base deposits are the Mt. Simon, Rome'', and Eau Claire formations. Deposition of the middle Cambrian Conasauga Shale coincides with the maximum marine onlap and wedge middle position. Upper Sauk Sequence deposition of the Knox Group carbonate rocks (Cooper Ridge Dolomite, Beekmantown Dolomite) and their interbedded clastic units (Steam Corners and Rose Run formations) represents the shallowing upward, pulsating clastic depositional events which anticipate the differential uplift and erosion that occurred later during the Taconic Orogeny and Early Ordovician hiatus. New Taconic structural elements involve the uplift of the central Ohio platform on the western part of the Grenville Province along reactivated, pre-Grenville sutures identified by CoCorp seismic lines. Platform uplift exposes lower Knox rocks to erosion. Younger Knox rocks are preserved east of the fault line zone. The Appalachian Basin's western edge is marked at this time by the trend of the Rose Run and Beekmantown subcrop below the Knox Unconformity surface and by the edge of the high magnetic intensity basement.

  8. Community Energy Systems and the Law of Public Utilities. Volume Nineteen. Kentucky

    SciTech Connect (OSTI)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Kentucky governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  9. Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site

    Office of Environmental Management (EM)

    1 Paducah DUF 6 DEIS: December 2003 SUMMARY S.1 INTRODUCTION This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF 6 ) conversion facility at the U.S. Department of Energy (DOE) Paducah site in northwestern Kentucky (Figure S-1). The proposed facility would convert the DUF 6 stored at Paducah to a more stable chemical form suitable for use or disposal. In a Notice of Intent (NOI) published in the

  10. ,"Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  11. ,"Kentucky Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release

  12. ,"Kentucky Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015"

  13. Ground penetrating radar surveys over an alluvial DNAPL site, Paducah Gaseous Diffusion Plant, Kentucky

    SciTech Connect (OSTI)

    Carpenter, P.J. |; Doll, W.E.; Phillips, B.E.

    1994-09-01

    Ground penetrating radar (GPR) surveys were used to map shallow sands and gravels which are DNAPL migration pathways at the Paducah Gaseous Diffusion Plant in western Kentucky. The sands and gravels occur as paleochannel deposits, at depths of 17-25 ft, embedded in Pleistocene lacustrine clays. More than 30 GPR profiles were completed over the Drop Test Area (DTA) to map the top and base of the paleochannel deposits, and to assess their lateral continuity. A bistatic radar system was used with antenna frequencies of 25 and 50 MHz. An average velocity of 0.25 ft/ns for silty and clayey materials above the paleochannel deposits was established from radar walkaway tests, profiles over culverts of known depth, and comparison of radar sections with borings. In the south portion of the DTA, strong reflections corresponded to the water table at approximately 9-10 ft, the top of the paleochannel deposits at approximately 18 ft, and to gravel horizons within these deposits. The base of these deposits was not visible on the radar sections. Depth estimates for the top of the paleochannel deposits (from 50 records) were accurate to within 2 ft across the southern portion of the DTA. Continuity of these sands and gravels could not be assessed due to interference from air-wave reflections and lateral changes in signal penetration depth. However, the sands and gravels appear to extend across the entire southern portion of the DTA, at depths as shallow as 17 ft. Ringing, air-wave reflections and diffractions from powerlines, vehicles, well casings, and metal equipment severly degraded GPR profiles in the northern portion of the DTA; depths computed from reflection times (where visible) were accurate to within 4 ft in this area. The paleochannel deposits are deeper to the north and northeast where DNAPL has apparently pooled (DNAPL was not directly imaged by the GPR, however). Existing hydrogeological models of the DTA will be revised.

  14. DOE Zero Energy Ready Home Case Study: Caldwell and Johnson,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home DOE Zero Energy Ready Home Case Study: Transformations Inc., Custom House, Devens, MA DOE Zero Energy Ready Home Case Study: Heirloom Design Build, Euclid Avenue, Atlanta, GA

  15. DOE Zero Energy Ready Home Case Study, Caldwell and Johnson,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charlestown, RI DOE Zero Energy Ready Home: Healthy Efficient Homes - Spirit Lake, Iowa DOE Zero Energy Ready Home Case Study: Preferred Builders, Old Greenwich, CT, Custom

  16. Caldwell County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    North Carolina: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.9227448, -81.5596427 Show Map Loading map... "minzoom":false,"mappingservice...

  17. DOE Zero Energy Ready Home Case Study, Caldwell and Johnson,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exeter, RI, Custom Home Case study of a DOE Zero Energy Ready Home in Exeter, Rhode Island, that scored HERS 43 without PV. This 2,000 ft2 custom home has a spray- foamed...

  18. DOE Zero Energy Ready Home Case Study: Caldwell and Johnson,...

    Energy Savers [EERE]

    on the underside of the roof; a minisplit heat pump with 4 indoor air handlers; a heat pump water heater; and triple-pane windows. PDF icon DOEZEHCaldwellJohnsonAfford09-20...

  19. Caldwell Ranch: Innovative Exploration Technologies Yield Geothermal Potential

    Broader source: Energy.gov [DOE]

    As part of a geothermal exploration effort to search for geothermal resources nationwide, a $5 million U.S. Department of Energy investment to Calpine Corporation this year culminated in the confirmation of an initial 11.4 MW of equivalent steam — 50% more than early estimates — from three previously abandoned wells at The Geysers geothermal field in northern California.

  20. Kentucky Department for Natural Resources and Environmental Protection permit application for air contaminant source: SRC-I demonstration plant, Newman, Kentucky. Supplement I. [Additional information on 38 items requested by KY/DNREP

    SciTech Connect (OSTI)

    Pearson, Jr., John F.

    1981-02-13

    In response to a letter from KY/DNREP, January 19, 1981, ICRC and DOE have prepared the enclosed supplement to the Kentucky Department for Natural Resources and Environmental Protection Permit Application for Air Contaminant Source for the SRC-I Demonstration Plant. Each of the 38 comments contained in the letter has been addressed in accordance with the discussions held in Frankfort on January 28, 1981, among representatives of KY/DNREP, EPA Region IV, US DOE, and ICRC. The questions raised involve requests for detailed information on the performance and reliability of proprietary equipment, back-up methods, monitoring plans for various pollutants, composition of wastes to flares, emissions estimates from particular operations, origin of baseline information, mathematical models, storage tanks, dusts, etc. (LTN)

  1. Site Specific Metal Criteria Developed Using Kentucky Division of Water Procedures

    SciTech Connect (OSTI)

    Kszos, L.A.; Phipps, T.L.

    1999-10-09

    Alternative limits for Cu, Ni, Pb, and Zn were developed for treated wastewater from four outfalls at a Gaseous Diffusion Plant. Guidance from the Kentucky Division of Water (KDOW) was used to (1) estimate the toxicity of the effluents using water fleas (Ceriodaphnia dubia) and fathead minnow (Pimephales promelas) larvae; (2) determine total recoverable and dissolved concentrations of Cu, Pb, Ni, and Zn ; (3) calculate ratios of dissolved metal (DM) to total recoverable metal (TRM); and (4) assess chemical characteristics of the effluents. Three effluent samples from each outfall were collected during each of six test periods; thus, a total of 18 samples from each outfall were evaluated for toxicity, DM and TRM. Subsamples were analyzed for alkalinity, hardness, pH, conductivity, and total suspended solids. Short-term (6 or 7 d), static renewal toxicity tests were conducted according to EPA methodology. Ceriodaphnia reproduction was reduced in one test of effluent from Outfall A , and effluent from Outfall B was acutely toxic to both test species during one test. However, the toxicity was not related to the metals present in the effluents. Of the 18 samples from each outfall, more than 65% of the metal concentrations were estimated quantities. With the exception of two total recoverable Cu values in Outfall C, all metal concentrations were below the permit limits and the federal water quality criteria. Ranges of TR for all outfalls were: Cd, ,0.1-0.4 {micro}g/L; Cr,1.07-3.93 {micro}g/L; Cu, 1.59-7.24 {micro}g/L; Pb, <0.1-3.20 {micro}g/L; Ni, 0.82-10.7 {micro}g/L, Zn, 4.75-67.3 {micro}g/L. DM:TRM ratios were developed for each outfall. The proportion of dissolved Cu in the effluents ranged from 67 to 82%; the proportion of dissolved Ni ranged from 84 to 91%; and the proportion of dissolved Zn ranged from 74 to 94%. The proportion of dissolved Pb in the effluents was considerably lower (37-51%). TRM and/or DM concentrations of Cu, Ni, Pb, or Zn differed significantly from outfall to outfall but the DM:TRM ratios for Cu, Ni, and Pb did not. Through the use of the KDOW method, the total recoverable metal measured in an effluent is adjusted by the proportion of dissolved metal present. The resulting alternative total recoverable metal concentration is reported in lieu of the measured total recoverable concentration for determining compliance with permit limits. For example, the monthly average permit limit for Pb in Outfall B (3 {micro}g/L) was exceeded at the Gaseous Diffusion Plant. Through the use of the KDOW method for calculating an alternative total recoverable metal concentration, 4.98 {micro}g Pb/L in Outfall B would be reported as 3.00 {micro}g/L, a difference of > 39%. Thus, the alternative, calculated total recoverable metal concentration provides the discharger with a ''cushion'' for meeting permit limits.

  2. Fast Track Reservoir Modeling of Shale Formations in the Appalachian Basin. Application to Lower Huron Shale in Eastern Kentucky

    SciTech Connect (OSTI)

    Grujic, Ognjen; Mohaghegh, Shahab; Bromhal, Grant

    2010-07-01

    In this paper a fast track reservoir modeling and analysis of the Lower Huron Shale in Eastern Kentucky is presented. Unlike conventional reservoir simulation and modeling which is a bottom up approach (geo-cellular model to history matching) this new approach starts by attempting to build a reservoir realization from well production history (Top to Bottom), augmented by core, well-log, well-test and seismic data in order to increase accuracy. This approach requires creation of a large spatial-temporal database that is efficiently handled with state of the art Artificial Intelligence and Data Mining techniques (AI & DM), and therefore it represents an elegant integration of reservoir engineering techniques with Artificial Intelligence and Data Mining. Advantages of this new technique are a) ease of development, b) limited data requirement (as compared to reservoir simulation), and c) speed of analysis. All of the 77 wells used in this study are completed in the Lower Huron Shale and are a part of the Big Sandy Gas field in Eastern Kentucky. Most of the wells have production profiles for more than twenty years. Porosity and thickness data was acquired from the available well logs, while permeability, natural fracture network properties, and fracture aperture data was acquired through a single well history matching process that uses the FRACGEN/NFFLOW simulator package. This technology, known as Top-Down Intelligent Reservoir Modeling, starts with performing conventional reservoir engineering analysis on individual wells such as decline curve analysis and volumetric reserves estimation. Statistical techniques along with information generated from the reservoir engineering analysis contribute to an extensive spatio-temporal database of reservoir behavior. The database is used to develop a cohesive model of the field using fuzzy pattern recognition or similar techniques. The reservoir model is calibrated (history matched) with production history from the most recently drilled wells. The calibrated model is then further used for field development strategies to improve and enhance gas recovery.

  3. Butler Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    energy Facility Type Commercial Scale Wind Facility Status In Service Owner Babcock & Brown Developer Midwest Wind EnergyEurus Energy Purchaser WPPI Location Dodge County WI...

  4. Butler Rural Electric Cooperative- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Members must use an approved HVAC dealer (listed on the Cooperative's web site) to qualify for the rebates....

  5. DOE/EA-1927, Paducah Gaseous Diffusion Plant Final Environmental Assessment for Potential Land and Facilities Transfers, McCracken County, Kentucky

    Energy Savers [EERE]

    Paducah Gaseous Diffusion Plant Final Environmental Assessment for Potential Land and Facilities Transfers, McCracken County, Kentucky U.S. Department of Energy Portsmouth/Paducah Project Office December 2015 DOE/EA-1927 ACRONYMS AND ABBREVIATIONS CEQ Council on Environmental Quality CERCLA Comprehensive Environmental Response, Compensation, and Liability Act of 1980 CFR Code of Federal Regulations dBA A-weighted decibel DOE U.S. Department of Energy DUF 6 depleted uranium hexafluoride EA

  6. Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site

    SciTech Connect (OSTI)

    N /A

    2003-11-28

    This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Paducah site in northwestern Kentucky (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Paducah to a more stable chemical form suitable for use or disposal. In a Notice of Intent (NOI) published in the ''Federal Register'' (FR) on September 18, 2001 (''Federal Register'', Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (''United States Code'', Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (''Code of Federal Regulations'', Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a ''Federal Register'' Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Paducah site; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride-containing conversion products (hydrogen fluoride [HF] or calcium fluoride [CaF{sub 2}]). Although not part of the proposed action, an option of shipping all cylinders (DUF{sub 6}, low-enriched UF{sub 6} [LEU-UF{sub 6}], and empty) stored at the East Tennessee Technology Park (ETTP) near Oak Ridge, Tennessee, to Paducah rather than to Portsmouth is also considered. In addition, this EIS evaluates a no action alternative, which assumes continued storage of DUF{sub 6} in cylinders at the Paducah site. A separate EIS (DOE/EIS-0360) evaluates the potential environmental impacts for the proposed Portsmouth conversion facility.

  7. Geologic Controls of Hydrocarbon Occurrence in the Appalachian Basin in Eastern Tennessee, Southwestern Virginia, Eastern Kentucky, and Southern West Virginia

    SciTech Connect (OSTI)

    Hatcher, Robert D

    2005-11-30

    This report summarizes the accomplishments of a three-year program to investigate the geologic controls of hydrocarbon occurrence in the southern Appalachian basin in eastern Tennessee, southwestern Virginia, eastern Kentucky, and southern West Virginia. The project: (1) employed the petroleum system approach to understand the geologic controls of hydrocarbons; (2) attempted to characterize the P-T parameters driving petroleum evolution; (3) attempted to obtain more quantitative definitions of reservoir architecture and identify new traps; (4) is worked with USGS and industry partners to develop new play concepts and geophysical log standards for subsurface correlation; and (5) geochemically characterized the hydrocarbons (cooperatively with USGS). Third-year results include: All project milestones have been met and addressed. We also have disseminated this research and related information through presentations at professional meetings, convening a major workshop in August 2003, and the publication of results. Our work in geophysical log correlation in the Middle Ordovician units is bearing fruit in recognition that the criteria developed locally in Tennessee and southern Kentucky are more extendible than anticipated earlier. We have identified a major 60 mi-long structure in the western part of the Valley and Ridge thrust belt that has been successfully tested by a local independent and is now producing commercial amounts of hydrocarbons. If this structure is productive along strike, it will be one of the largest producing structures in the Appalachians. We are completing a more quantitative structural reconstruction of the Valley and Ridge and Cumberland Plateau than has been made before. This should yield major dividends in future exploration in the southern Appalachian basin. Our work in mapping, retrodeformation, and modeling of the Sevier basin is a major component of the understanding of the Ordovician petroleum system in this region. Prior to our undertaking this project, this system was the least understood in the Appalachian basin. This project, in contrast to many if not most programs undertaken in DOE laboratories, has a major educational component wherein three Ph.D. students have been partially supported by this grant, one M.S. student partially supported, and another M.S. student fully supported by the project. These students will be well prepared for professional careers in the oil and gas industry.

  8. Stratigraphy and organic petrography of Mississippian and Devonian oil shale at the Means Project, East-Central Kentucky

    SciTech Connect (OSTI)

    Solomon, B.J.; Hutton, A.C.; Henstridge, D.A.; Ivanac, J.F.

    1985-02-01

    The Means Oil Shale Project is under consideration for financial assistance by the US Synthetic Fuels Corporation. The project site is located in southern Montgomery County, about 45 miles east of Lexington, Kentucky. In the site area the Devonian Ohio Shale and the Mississippian Sunbury Shale are under study; these oil shales were deposited in the Appalachian Basin. The objective of the Means Project is to mine, using open pit methods, an ore zone which includes the Sunbury and upper Cleveland and which excludes the Bedford interburden. The thick lower grade oil shale below this ore zone renders the higher grade shale at the base of the Huron commercially unattractive. The oil shale at Means has been classified as a marinite, an oil shale containing abundant alginite of marine origin. Lamalginite is the dominant liptinite and comprises small, unicellular alginite with weak to moderate fluorescence at low rank and a distinctive lamellar form. Telalginite, derived from large colonial or thick-walled, unicellular algae, is common in several stratigraphic intervals.

  9. Tri-State Synfuels Project Review: Volume 12. Fluor project status. [Proposed Henderson, Kentucky coal to gasoline plant; engineering

    SciTech Connect (OSTI)

    Not Available

    1982-06-01

    The purpose of this report is to document and summarize activities associated with Fluor's efforts on the Tri-State Synfuels Project. The proposed facility was to be coal-to-transport fuels facility located in Henderson, Kentucky. Tri-State Synfuels Company was participating in the project as a partner of the US Department of Energy per terms of a Cooperative Agreement resulting from DOE's synfuel's program solicitation. Fluor's initial work plan called for preliminary engineering and procurement services to the point of commitment for construction for a Sasol Fischer-Tropsch plant. Work proceeded as planned until October 1981 when results of alternative coal-to-methanol studies revealed the economic disadvantage of the Synthol design for US markets. A number of alternative process studies followed to determine the best process configuration. In January 1982 Tri-State officially announced a change from Synthol to a Methanol to Gasoline (MTG) design basis. Further evaluation and cost estimates for the MTG facility eventually led to the conclusion that, given the depressed economic outlook for alternative fuels development, the project should be terminated. Official announcement of cancellation was made on April 13, 1982. At the time of project cancellation, Fluor had completed significant portions of the preliminary engineering effort. Included in this report are descriptions and summaries of Fluor's work during this project. In addition location of key project data and materials is identified and status reports for each operation are presented.

  10. Kentucky-Kentucky Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    60,941 67,568 61,463 56,226 2011-2014 Total Liquids Extracted (Thousand Barrels) 3,625 3,593 3,606 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 5,006

  11. Geochemical Analyses of Surface and Shallow Gas Flux and Composition Over a Proposed Carbon Sequestration Site in Eastern Kentucky

    SciTech Connect (OSTI)

    Thomas Parris; Michael Solis; Kathryn Takacs

    2009-12-31

    Using soil gas chemistry to detect leakage from underground reservoirs (i.e. microseepage) requires that the natural range of soil gas flux and chemistry be fully characterized. To meet this need, soil gas flux (CO{sub 2}, CH{sub 4}) and the bulk (CO{sub 2}, CH{sub 4}) and isotopic chemistry ({delta}{sup 13}C-CO2) of shallow soil gases (<1 m, 3.3 ft) were measured at 25 locations distributed among two active oil and gas fields, an active strip mine, and a relatively undisturbed research forest in eastern Kentucky. The measurements apportion the biologic, atmospheric, and geologic influences on soil gas composition under varying degrees of human surface disturbance. The measurements also highlight potential challenges in using soil gas chemistry as a monitoring tool where the surface cover consists of reclaimed mine land or is underlain by shallow coals. For example, enrichment of ({delta}{sup 13}C-CO2) and high CH{sub 4} concentrations in soils have been historically used as indicators of microseepage, but in the reclaimed mine lands similar soil chemistry characteristics likely result from dissolution of carbonate cement in siliciclastic clasts having {delta}{sup 13}C values close to 0{per_thousand} and degassing of coal fragments. The gases accumulate in the reclaimed mine land soils because intense compaction reduces soil permeability, thereby impeding equilibration with the atmosphere. Consequently, the reclaimed mine lands provide a false microseepage anomaly. Further potential challenges arise from low permeability zones associated with compacted soils in reclaimed mine lands and shallow coals in undisturbed areas that might impede upward gas migration. To investigate the effect of these materials on gas migration and composition, four 10 m (33 ft) deep monitoring wells were drilled in reclaimed mine material and in undisturbed soils with and without coals. The wells, configured with sampling zones at discrete intervals, show the persistence of some of the aforementioned anomalies at depth. Moreover, high CO{sub 2} concentrations associated with coals in the vadose zone suggest a strong affinity for adsorbing CO{sub 2}. Overall, the low permeability of reclaimed mine lands and coals and CO2 adsorption by the latter is likely to reduce the ability of surface geochemistry tools to detect a microseepage signal.

  12. Floodplain/wetland assessment of the effects of construction and operation ofa depleted uranium hexafluoride conversion facility at the Paducah, Kentucky,site.

    SciTech Connect (OSTI)

    Van Lonkhuyzen, R.

    2005-09-09

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This floodplain/wetland assessment has been prepared by DOE, pursuant to Executive Order 11988 (''Floodplain Management''), Executive Order 11990 (Protection of Wetlands), and DOE regulations for implementing these Executive Orders as set forth in Title 10, Part 1022, of the ''Code of Federal Regulations'' (10 CFR Part 1022 [''Compliance with Floodplain and Wetland Environmental Review Requirements'']), to evaluate potential impacts to floodplains and wetlands from the construction and operation of a conversion facility at the DOE Paducah site. Reconstruction of the bridge crossing Bayou Creek would occur within the Bayou Creek 100-year floodplain. Replacement of bridge components, including the bridge supports, however, would not be expected to result in measurable long-term changes to the floodplain. Approximately 0.16 acre (0.064 ha) of palustrine emergent wetlands would likely be eliminated by direct placement of fill material within Location A. Some wetlands that are not filled may be indirectly affected by an altered hydrologic regime, due to the proximity of construction, possibly resulting in a decreased frequency or duration of inundation or soil saturation and potential loss of hydrology necessary to sustain wetland conditions. Indirect impacts could be minimized by maintaining a buffer near adjacent wetlands. Wetlands would likely be impacted by construction at Location B; however, placement of a facility in the northern portion of this location would minimize wetland impacts. Construction at Location C could potentially result in impacts to wetlands, however placement of a facility in the southeastern portion of this location may best avoid direct impacts to wetlands. The hydrologic characteristics of nearby wetlands could be indirectly affected by adjacent construction. Executive Order 11990, ''Protection of Wetlands'', requires federal agencies to minimize the destruction, loss, or degradation of wetlands, and to preserve and enhance the natural and beneficial uses of wetlands. DOE regulations for implementing Executive Order 11990 as well as Executive Order 11988, ''Floodplain Management'', are set forth in 10 CFR Part 1022. Mitigation for unavoidable impacts may be developed in coordination with the appropriate regulatory agencies. Unavoidable impacts to wetlands that are within the jurisdiction of the USACE may require a CWA Section 404 Permit, which would trigger the requirement for a CWA Section 401 Water Quality Certification from the Commonwealth of Kentucky. A mitigation plan may be required prior to the initiation of construction. Cumulative impacts to floodplains and wetlands are anticipated to be negligible to minor under the proposed action, in conjunction with the effects of existing conditions and other activities. Habitat disturbance would involve settings commonly found in this part of Kentucky, which in many cases involve previously disturbed habitats.

  13. Groundwater Sampling and Soil Gas Data Analysis, Distler Brickyard Superfund Site, Hardin County, Kentucky -- June - August 2000

    SciTech Connect (OSTI)

    Martin, Jennifer Pauline; Peterson, Lance Nutting; Taylor, C. J.

    2000-11-01

    This report describes the results of groundwater and soil gas sampling conducted at the Distler Brickyard Site, Hardin County, Kentucky, June-August, 2000. The purpose of the sampling activities was to address remaining data gaps regarding the feasibility of monitored natural attenuation (MNA) for remediation of chloroethene/ane contamination. Specifically, data gaps fall into four categories: 1) effect of seasonal recharge on contaminant concentrations, 2) geochemical conditions in the Fine Grained Alluvium (FGA), 3) conditions along the flowpath between Wells GW-11 and MW-3, and 4) the extent of aerobic degradation in the Coarse Grained Alluvium (CGA). A data collection strategy composed of both groundwater sampling and passive soil vapor sampling devices (Gore-Sorbers?) was used. The Gore-Sorber? technology was used to collect data from the FGA, which because of its low hydraulic conductivity and variable saturation makes collection of groundwater samples problematic. Gore-Sorbers were deployed in 15 wells, most of them being in the FGA, and groundwater samples were collected in 17 wells, which were mostly in the CGA. Both sampling methods were utilized in a subset of wells (7) in order to determine the general comparability of results obtained from each method. Results indicate that water levels in both the FGA and CGA were higher in June-August 2000 than in October 1999, likely due to increased infiltration of precipitation through the FGA during the wetter months. Redox conditions in the FGA and downgradient CGA were iron-reducing, less reducing than in October-1999. In general, concentrations of chloroethenes/anes were higher in June-August 2000 than October 1999. Trichloroethene (TCE) was present at concentrations as high as 65 µg/L in the FGA and 19 µg/L in the CGA. This is substantially higher than the maximum concentration in October 1999 of 11 µg/L. The following conclusions were drawn from these data collection activities: 1) two potential contaminant source areas remain at the site, 2) redox conditions are less reducing than October 1999, 3) anaerobic reductive dechlorination (ARD) continues to take place in the FGA, and 4) seasonal fluctuations in recharge affect water levels, redox conditions, contaminant concentrations, and ARD reactions. Possible final remedial response actions include 1) monitored natural attenuation, 2) monitored natural attenuation with physical source removal, or 3) monitored natural attenuation with source removal via enhanced ARD. All of these remedies will require the collection of additional data in three areas: 1) the nature and extent of the GW-3/UDBW-11 source area and the flux rate and fate of contaminants from it, 2) the magnitude and timing of recharge fluctuations, and 3) the local hydraulic gradient and groundwater flow directions. Each remedy may also have specific additional data collection requirements. This document will serve as the basis for the selection of the appropriate remedy by the state and federal regulators.

  14. Biological assessment of the effects of construction and operation of a depleted uranium hexafluoride conversion facility at the Paducah, Kentucky, site.

    SciTech Connect (OSTI)

    Van Lonkhuyzen, R.

    2005-09-09

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF6 inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This biological assessment (BA) has been prepared by DOE, pursuant to the National Environmental Policy Act of 1969 (NEPA) and the Endangered Species Act of 1974, to evaluate potential impacts to federally listed species from the construction and operation of a conversion facility at the DOE Paducah site.

  15. Kentucky Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet) Gross Withdrawals NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas ...

  16. Kentucky Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price 1967-2005 Citygate Price 5.69 5.18 4.17 4.47 5.16 NA 1984-2015 Residential Price 10.02 10.44 10.19 9.80 10.62 10.94 1967-2015 Percentage of ...

  17. ,"Kentucky Natural Gas Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","04292016" ,"Excel File Name:","ngprisumdcuskym.xls" ,"Available from Web Page:","http:www.eia.govdnavngngprisumdcuskym.htm" ,"Source:","Energy ...

  18. Kentucky Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    47 1967-2010 Pipeline and Distribution Use 1967-2005 Citygate 5.69 5.18 4.17 4.47 5.16 NA 1984-2015 Residential 10.02 10.44 10.19 9.80 10.62 10.94 1967-2015 Commercial 8.61 8.79 8.28 8.32 9.04 8.80 1967-2015 Industrial 5.57 5.16 3.96 4.84 5.80 4.36 1997-2015 Vehicle Fuel -- -- -- 1992-2012 Electric Power W W W W W W 1997-2015 Dry Proved Reserves (Billion Cubic Feet) Proved Reserves as of 12/31 2,613 2,006 1,408 1,663 1,611 1977-2014 Adjustments -58 -34 -282 103 -9 1977-2014 Revision Increases

  19. Kentucky Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Citygate Price 3.34 3.41 3.21 3.85 3.24 3.26 1989-2016 Residential Price 21.14 16.21 11.07 9.41 7.88 7.65 1989-2016 Percentage of Total Residential Deliveries included in Prices 97.2 97.6 97.4 96.7 97.2 96.4 2002-2016 Commercial Price 10.55 9.42 8.63 7.72 6.72 6.37 1989-2016 Percentage of Total Commercial Deliveries included in Prices 68.0 72.3 76.0 80.6 83.2 83.4 1989-2016 Industrial Price 3.86 3.78 3.44 3.58 3.79 3.64 2001-2016 Percentage

  20. Kentucky Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    0 0 0 1 0 1996-2014 Lease Condensate (million bbls) 0 0 0 0 0 0 1998-2014 Total Gas (billion cu ft) 149 106 75 6 3 6 1996-2014 Nonassociated Gas (billion cu ft) 149 106 75 6 3 6 1996-2014 Associated Gas (billion cu ft) 0 0 0 0 0 0

  1. ,"Kentucky Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    5,"Monthly","22016","1151989" ,"Data 2","Production",10,"Monthly","22016","1151991" ,"Data 3","Underground Storage",7,"Monthly","22016","1151990" ,"Data ...

  2. Geologic Controls of Hydrocarbon Occurrence in the Southern Appalachian Basin in Eastern Tennessee, Southwestern Virginia, Eastern Kentucky, and Southern West Virginia

    SciTech Connect (OSTI)

    Robert D. Hatcher

    2003-05-31

    This report summarizes the first-year accomplishments of a three-year program to investigate the geologic controls of hydrocarbon occurrence in the southern Appalachian basin in eastern Tennessee, southwestern Virginia, eastern Kentucky, and southern West Virginia. The project: (1) employs the petroleum system approach to understand the geologic controls of hydrocarbons; (2) attempts to characterize the T-P parameters driving petroleum evolution; (3) attempts to obtain more quantitative definitions of reservoir architecture and identify new traps; (4) is working with USGS and industry partners to develop new play concepts and geophysical log standards for subsurface correlation; and (5) is geochemically characterizing the hydrocarbons (cooperatively with USGS). First-year results include: (1) meeting specific milestones (determination of thrust movement vectors, fracture analysis, and communicating results at professional meetings and through publication). All milestones were met. Movement vectors for Valley and Ridge thrusts were confirmed to be west-directed and derived from pushing by the Blue Ridge thrust sheet, and fan about the Tennessee salient. Fracture systems developed during Paleozoic, Mesozoic, and Cenozoic to Holocene compressional and extensional tectonic events, and are more intense near faults. Presentations of first-year results were made at the Tennessee Oil and Gas Association meeting (invited) in June, 2003, at a workshop in August 2003 on geophysical logs in Ordovician rocks, and at the Eastern Section AAPG meeting in September 2003. Papers on thrust tectonics and a major prospect discovered during the first year are in press in an AAPG Memoir and published in the July 28, 2003, issue of the Oil and Gas Journal. (2) collaboration with industry and USGS partners. Several Middle Ordovician black shale samples were sent to USGS for organic carbon analysis. Mississippian and Middle Ordovician rock samples were collected by John Repetski (USGS) and RDH for conodont alteration index determination to better define regional P-T conditions. Efforts are being made to calibrate and standardize geophysical log correlation, seismic reflection data, and Ordovician lithologic signatures to better resolve subsurface stratigraphy and structure beneath the poorly explored Plateau in Tennessee and southern Kentucky. We held a successful workshop on Ordovician rocks geophysical log correlation August 7, 2003 that was cosponsored by the Appalachian PTTC, the Kentucky and Tennessee geological surveys, the Tennessee Oil and Gas Association, and small independents. Detailed field structural and stratigraphic mapping of a transect across part of the Ordovician clastic wedge in Tennessee was begun in January 2003 to assist in 3-D reconstruction of part of the southern Appalachian basin and better assess the nature of a major potential source rock assemblage. (3) Laying the groundwork through (1) and (2) to understand reservoir architecture, the petroleum systems, ancient fluid migration, and conduct 3-D analysis of the southern Appalachian basin.

  3. Dose Modeling Evaluations and Technical Support Document For the Authorized Limits Request for the DOE-Owned Property Outside the Limited Area, Paducah Gaseous Diffusion Plant Paducah, Kentucky

    SciTech Connect (OSTI)

    Boerner, A. J.; Maldonado, D. G.; Hansen, Tom

    2012-09-01

    Environmental assessments and remediation activities are being conducted by the U.S. Department of Energy (DOE) at the Paducah Gaseous Diffusion Plant (PGDP), Paducah, Kentucky. The Oak Ridge Institute for Science and Education (ORISE), a DOE prime contractor, was contracted by the DOE Portsmouth/Paducah Project Office (DOE-PPPO) to conduct radiation dose modeling analyses and derive single radionuclide soil guidelines (soil guidelines) in support of the derivation of Authorized Limits (ALs) for 'DOE-Owned Property Outside the Limited Area' ('Property') at the PGDP. The ORISE evaluation specifically included the area identified by DOE restricted area postings (public use access restrictions) and areas licensed by DOE to the West Kentucky Wildlife Management Area (WKWMA). The licensed areas are available without restriction to the general public for a variety of (primarily) recreational uses. Relevant receptors impacting current and reasonably anticipated future use activities were evaluated. In support of soil guideline derivation, a Conceptual Site Model (CSM) was developed. The CSM listed radiation and contamination sources, release mechanisms, transport media, representative exposure pathways from residual radioactivity, and a total of three receptors (under present and future use scenarios). Plausible receptors included a Resident Farmer, Recreational User, and Wildlife Worker. single radionuclide soil guidelines (outputs specified by the software modeling code) were generated for three receptors and thirteen targeted radionuclides. These soil guidelines were based on satisfying the project dose constraints. For comparison, soil guidelines applicable to the basic radiation public dose limit of 100 mrem/yr were generated. Single radionuclide soil guidelines from the most limiting (restrictive) receptor based on a target dose constraint of 25 mrem/yr were then rounded and identified as the derived soil guidelines. An additional evaluation using the derived soil guidelines as inputs into the code was also performed to determine the maximum (peak) dose for all receptors. This report contains the technical basis in support of the DOE?s derivation of ALs for the 'Property.' A complete description of the methodology, including an assessment of the input parameters, model inputs, and results is provided in this report. This report also provides initial recommendations on applying the derived soil guidelines.

  4. Task 16 -- Sampling and analysis at the Vortec vitrification facility in Paducah, Kentucky. Semi-annual report, April 1--September 30, 1997

    SciTech Connect (OSTI)

    Laudal, D.L.; Lilemoen, C.M.; Hurley, J.P.; Ness, S.R.; Stepan, D.J.; Thompson, J.S.

    1997-05-01

    The Vortec Cyclone Melting System (CMS{reg_sign}) facility, to be located at the US Department of Energy (DOE) Paducah Gaseous Diffusion Plant, is designed to treat soil contaminated with low levels of heavy metals and radioactive elements, as well as organic waste. To assure that costs of sampling and analysis are contained, Vortec and the DOE Federal Energy Technology Center (FETC) have decided that initially the primary focus of the sampling activities will be on meeting permitting requirements of the state of Kentucky. Therefore, sampling will be limited to the feedstock entering the system, and the glass, flue gas, and water leaving the system. The authors provide suggestions for optional sampling points and procedures in case there is later interest in operations or mass balance data. The permits do not require speciation of the materials in the effluents, only opacity, total radioactivity, total particulate, and total HCl emissions for the gaseous emissions and total radioactivity in the water and solid products. In case future testing to support operations or mass balances is required, the authors include in this document additional information on the analyses of some species of interest. They include heavy metals (RCRA [Resource Conservation and Recovery Act] and Cu and Ni), radionuclides (Th{sub 230}, U{sub 235}, Tc{sup 99}, Cs{sup 137}, and Pu{sup 239}), and dioxins/furans.

  5. Argonne celebrates Margaret Butler at inaugural event | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to her creation of the Argonne Code Center, which later expanded into the National Energy Software Center (NESC)-a central repository for the testing and exchange of DOE-sponsored...

  6. Butler County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Andover, Kansas Augusta, Kansas Benton, Kansas Cassoday, Kansas Douglass, Kansas El Dorado, Kansas Elbing, Kansas Latham, Kansas Leon, Kansas Potwin, Kansas Rose Hill, Kansas...

  7. Butler County, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Middletown, Ohio Millville, Ohio Monroe, Ohio New Miami, Ohio Olde West Chester, Ohio Oxford, Ohio Ross, Ohio Seven Mile, Ohio Sharonville, Ohio Somerville, Ohio South Middletown,...

  8. Borough of Butler, New Jersey (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    9582715086?rf174728566050713 Outage Hotline: (973) 838-0063 Green Button Access: None References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form 861 Data...

  9. Microsoft Word - Caldwell EBIF_JPCCresub-1 11-16-2010

    Office of Scientific and Technical Information (OSTI)

    ... or more local temperature rise can be anticipated under imaging conditions, but moderately higher thermal conductivities ( 1-10 Wm-K) reduce this estimate to tens of degrees. ...

  10. DOE Zero Energy Ready Home Case Study: Caldwell and Johnson, Charlestown, RI

    Broader source: Energy.gov [DOE]

    Case study of a DOE Zero Energy Ready affordable home in Charlestown, RI, that achieved a HERS Index of 47 without PV. The 2,244-ft2 two-story home with basement has 2x6 walls filled with 5.5 in. ...

  11. DOE Zero Energy Ready Home Case Study 2013: Caldwell and Johnson...

    Energy Savers [EERE]

    ... outside * Hot water: 2.4 EF air-source heat-pump water heater in basement * Lighting: >50% LED recessed lights * Appliances: ENERGY STAR-rated clothes washer, dishwasher, ...

  12. DOE Tour of Zero: The Church Community Housing Corp. 1 by Caldwell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    includes a high-efficiency heat pump water heater and high-efficient closed-cell spray foam insulation. 6 of 9 The home uses energy-saving advanced wall framing with thicker...

  13. Assessment of the influences of groundwater colloids on the migration of technetium-99 at the Paducah Gaseous Diffusion Plant Site in Paducah, Kentucky

    SciTech Connect (OSTI)

    Gu, B.; McDonald, J.A.; McCarthy, J.F.; Clausen, J.L.

    1994-07-01

    This short report summarizes the influences of groundwater colloids on the migration/transport of {sup 99}Tc at the Paducah Gaseous Diffusion Plant (PGDP) site in Paducah, Kentucky. Limited data suggest that inorganic colloidal materials (e.g., aluminosilicate clay minerals) may not play a significant role in the retention and transport of Tc. Studies by size fractionation reveal that both Tc and natural organic matter (NOM) are largely present in the <3K fraction. The role of NOM on Tc retention and transport is not conclusive on the basis of this study. However, a literature review suggests that Tc is very likely associated with the groundwater organics. The presence of the organic matter could have increased the solubility and cotransport of Tc at the PGDP site. Further studies, applying such techniques as gel chromatography, size exclusion, and spectroscopy, may be useful to determine the association of organic matter with Tc. If Tc is associated with groundwater organics, appropriate protocols for removal of organic matter associated with Tc may be developed. Time and resources were limited so this study is not comprehensive with respect to the role of mobile organic and inorganic colloidal materials on Tc transport in subsurface soils. The redox conditions (DO) of groundwaters reported may not represent the true groundwater conditions, which could have influenced the association and dissociation of Tc with groundwater colloidal materials. Because Tc concentrations in the groundwater (on the order of nCi/L) at the PGDP site is much lower than the solubility of reduced Tc (IV) (on the order of {approximately}10{sup {minus}8} mol/L or parts per billion), regardless of the redox conditions, Tc will stay in solution phase as TC(IV) or Tc(VII). The mechanisms of adsorption/association vs precipitation must be understood under reduced and low Tc conditions so that strategic plans for remediation of Tc contaminated soils and groundwaters can be developed.

  14. Design and construction of coal/biomass to liquids (CBTL) process development unit (PDU) at the University of Kentucky Center for Applied Energy Research (CAER)

    SciTech Connect (OSTI)

    Placido, Andrew; Liu, Kunlei; Challman, Don; Andrews, Rodney; Jacques, David

    2015-10-30

    This report describes a first phase of a project to design, construct and commission an integrated coal/biomass-to-liquids facility at a capacity of 1 bbl. /day at the University of Kentucky Center for Applied Energy Research (UK-CAER) – specifically for construction of the building and upstream process units for feed handling, gasification, and gas cleaning, conditioning and compression. The deliverables from the operation of this pilot plant [when fully equipped with the downstream process units] will be firstly the liquid FT products and finished fuels which are of interest to UK-CAER’s academic, government and industrial research partners. The facility will produce research quantities of FT liquids and finished fuels for subsequent Fuel Quality Testing, Performance and Acceptability. Moreover, the facility is expected to be employed for a range of research and investigations related to: Feed Preparation, Characteristics and Quality; Coal and Biomass Gasification; Gas Clean-up/ Conditioning; Gas Conversion by FT Synthesis; Product Work-up and Refining; Systems Analysis and Integration; and Scale-up and Demonstration. Environmental Considerations - particularly how to manage and reduce carbon dioxide emissions from CBTL facilities and from use of the fuels - will be a primary research objectives. Such a facility has required significant lead time for environmental review, architectural/building construction, and EPC services. UK, with DOE support, has advanced the facility in several important ways. These include: a formal EA/FONSI, and permits and approvals; construction of a building; selection of a range of technologies and vendors; and completion of the upstream process units. The results of this project are the FEED and detailed engineering studies, the alternate configurations and the as-built plant - its equipment and capabilities for future research and demonstration and its adaptability for re-purposing to meet other needs. These are described in some detail in this report, along with lessons learned.

  15. Kentucky Natural Gas Processed in Kentucky (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 W W W W W W W W W 4.91 4.91 5.24 2003 W W W W W W W W W W W W 2004 W W W W W W W W W W W W 2005 W W W 9.04 W W W W W W W W 2006 W 9.57 W W W W W 8.62 W W W W 2007 W W W W W W W W W W W W 2008 9.16 9.60 W W W W W W W W W W 2009 W W W 6.74 11.32 W W W W W W W 2010 W W W W W W W W W W 5.25 W 2011 W W W W 5.98 W 5.41 W W W W W 2012 W 5.38 W W W W W W W W W 6.84 2013 5.98 6.54 W 5.96 W W W W W W 5.28 W 2014 W W W W W W

  16. Kentucky Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    60,167 66,579 60,941 92,883 85,549 79,985 1967-2014 Total Liquids Extracted (Thousand Barrels) 2,469 3,317 3,398 4,740 4,651 4,668 1983-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 3,270 4,576 4,684 6,571 6,443 6,471

  17. Recovery Act State Memos Kentucky

    Broader source: Energy.gov (indexed) [DOE]

    including coal, oil, gas, and hydroelectric power. ... and Conservation Block Grants (EECBG) to develop, ... Program, which offers consumer rebates for purchasing ...

  18. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Kentucky. Preliminary background report

    SciTech Connect (OSTI)

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    Until April 1, 1979, the Public Service Commission had been vested with exclusive jurisdiction over the regulation of rates and service of utilities. As of that date two new agencies, the Energy Regulatory Commission (ERC) and the Utility Regulatory Commission (URC), have replaced the Public Service Commission. The ERC consists of three full-time members appointed by the governor for four year terms and is responsible for enforcing the provisions of the Kentucky statutes relating to electric and gas utilities. The three-member URC is responsible for enforcing the provisions relating to non-energy utilities such as telephone, sewer, and water utilities. The statutes vest all regulatory authority over public utilities in either the ERC or the URC. Local governments retain only the power to grant local franchises. However, it should be noted, that any utility owned or operated by a political subdivision of the state is exempt from regulation. Thus, local government has complete authority over utilities which are self-owned. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  19. DOE Zero Energy Ready Home Case Study: Caldwell and Johnson — Church Community and Housing Corporation, Charlestown, RI

    SciTech Connect (OSTI)

    none,

    2014-09-01

    This DOE Zero Energy Ready Home garnered an Affordable Builder award in the 2014 Housing Innovation Awards, for its highly insulated construction, minisplit heat pump and water heater, and triple pane windows.

  20. Browse by Discipline -- E-print Network Subject Pathways: Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of California at San Diego Calder, Muffy (Muffy Calder) - Department of Computing Science, University of Glasgow Caldwell, James (James Caldwell) - Department of Computer ...

  1. Kentucky Utilities Co | Open Energy Information

    Open Energy Info (EERE)

    EIA Form 861 Data Utility Id 10171 Utility Location Yes Ownership I NERC SERC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes...

  2. Kentucky Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions 713 383 4 0 132 0 1977-2014 New Field Discoveries 0 0 1 0 0 0 1977-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 1 1977-2014 Estimated Production 108 96 101 83 ...

  3. ,"Kentucky Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcuskym.xls" ...

  4. Kentucky Natural Gas Consumption by End Use

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1,294 858 858 912 845 1,565 1989-2015 Commercial 1,336 1,075 1,139 1,330 1,154 1,709 1989-2015 Industrial 8,722 8,564 8,478 8,791 8,464 8,840 2001-2015 Vehicle Fuel 0 2 2 2...

  5. ,"Kentucky Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  6. Kentucky Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    ,938 2,159 -12,704 1,982 21,264 -5,015 1967-2014 Injections 71,972 85,167 77,526 64,483 60,782 80,129 1967-2014 Withdrawals 67,034 87,326 64,822 66,464 82,045 75,114...

  7. Kentucky DOE-EPSCoR Program

    SciTech Connect (OSTI)

    Stencel, J.M.; Ochsenbein, M.P.

    2003-04-14

    The KY DOE EPSCoR Program included efforts to impact positively the pipeline of science and engineering students and to establish research, education and business infrastructure, sustainable beyond DOE EPSCoR funding.

  8. Kentucky Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 ...

  9. Kentucky Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Kansas Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 2 3 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 Kansas Shale Gas Proved Reserves, Reserves Changes, and Proved Reserves

  10. Kentucky Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 68 70 218 241 324 388 872 1,078 426 267 178 302 2002 293 537 811 629 560 2,192 4,626 1,996 1,262 296 261 251 2003 627 173 152 189 302 155 464 958 158 101 105 282 2004 406 277 311 554 475 551 511 526 233 141 219 627 2005 886 323 596 483 1,332 3,265 2,647 3,340 1,900 585 762 1,063 2006 344 411 575 224 1,084 1,504 3,274 3,669 273 179 302 447 2007 399 1,322 710 1,529 1,221 1,671 1,156 6,535 2,015 1,481 579 758 2008 1,346 942 655 275

  11. Stimulating Energy Efficiency in Kentucky: An Implementation...

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon Presentation More Documents & Publications DOE Perspectives on Sustainable Bioenergy Landscapes HIA ZERH Judge Bios The 2nd US-China Energy Efficiency Forum Agenda - ...

  12. Dragline mining returns to western Kentucky

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2009-05-15

    Armstrong Coal Co. now owns three Page draglines-one now operating at the Midway Surface mine, one due to go into operation at the Equality surface mine and a third that is being rebuilt also for use there. Armstrong is banking on the economics of scale to once again prove that these older machines are still the most efficient way to move large volumes of overburden. 4 photos.

  13. Kentucky Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    09 2010 2011 2012 2013 2014 View History Gross Withdrawals 113,300 135,330 124,243 106,122 94,665 78,737 1967-2014 From Gas Wells 111,782 133,521 122,578 106,122 94,665 78,737 1967-2014 From Oil Wells 1,518 1,809 1,665 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 2006-2014 Vented and Flared 0 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2014 Marketed Production 113,300 135,330 124,243 106,122

  14. Kentucky Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    07,126 216,591 218,322 210,369 190,694 181,000 1990-2016 Base Gas 112,971 112,969 112,966 112,965 112,965 112,964 1990-2016 Working Gas 94,155 103,623 105,355 97,404 77,729 68,036 1990-2016 Net Withdrawals -7,783 -9,465 -1,730 7,953 19,675 9,656 1990-2016 Injections 8,646 10,282 4,072 2,105 575 1,883 1990-2016 Withdrawals 863 817 2,342 10,058 20,250 11,540 1990-2016 Change in Working Gas from Same Period Previous Year Volume 21,477 19,192 23,473 17,237 11,014 21,500 1990-2016 Percent 29.6 22.7

  15. Kentucky Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    21,723 221,722 221,722 221,722 221,722 221,722 2002-2016 Total Working Gas Capacity 107,572 107,571 107,571 107,571 107,571 107,571 2012-2016 Total Number of Existing Fields 23 23 23 23 23 23

  16. Kentucky Power Co | Open Energy Information

    Open Energy Info (EERE)

    1-800-572-1113 Outage Map: www.kentuckypower.comoutages Green Button Access: Planned Green Button Reference Page: www.aep.comnewsroomnews References: EIA Form EIA-861 Final...

  17. Kentucky Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 3,591 7,852 5,644 4,269 4,991 5,462 7,829 7,379 7,268 5,324 3,591 2,996 1991 1,910 2,777 4,468 4,883 2,671 3,345 5,395 4,818 4,660 4,074 4,315 4,110 1992 5,509 3,635 2,314 2,151 1,697 2,787 4,724 4,202 5,539 10,882 3,272 2,656 1993 1,967 990 928 2,687 7,049 7,985 7,838 5,873 7,014 3,907 1,397 482 1994 431 928 1,526 6,100 10,571 9,346 9,742 7,138 4,696 4,684 3,438 1,230 1995 1,189 478 2,868 4,780 13,288 7,749 8,687 5,375 6,889

  18. Kentucky Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0

  19. Kentucky Supplemental Supplies of Natural Gas

    Gasoline and Diesel Fuel Update (EIA)

    8 5 8 1 29 52 1967-2014 Propane-Air 18 5 8 1 29 52 1980-2014

  20. Indiana, Illinois and Kentucky Refinery Yield

    Gasoline and Diesel Fuel Update (EIA)

    Miscellaneous Products 0.4 0.4 0.4 0.4 0.4 0.4 1993-2015 Processing Gain(-) or Loss(+) -6.0 -6.0 -5.5 -5.9 -5.8 -5.6 1993-2015 - No Data Reported; -- Not Applicable;...

  1. Kentucky Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    20,368 221,751 221,751 221,751 221,723 221,723 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 9,567 9,567 9,567 9,567 9,567 6,567 1999-2014 Depleted Fields 210,801 212,184 212,184...

  2. ,"Kentucky Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  3. Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 84,379,768 MWh Gas Power 843,725 MWh Petroleum Power 2,028,175 MWh Nuclear Power 0 MWh Other 12,629 MWh Total Energy Production 90,997,966 MWh Percent of...

  4. Categorical Exclusion Determinations: Kentucky | Department of...

    Office of Environmental Management (EM)

    ... May 14, 2013 CX-010281: Categorical Exclusion Determination Low Temperature Nitrous Oxide ... Determination Cost-Effective Treatment of Flowback and Produced Water via an ...

  5. ,"Kentucky Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Excel File Name:","ngconssumdcuskym.xls" ,"Available from Web Page:","http:www.eia.govdnavngngconssumdcuskym.htm" ,"Source:","Energy Information ...

  6. Kentucky Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,030 1,027 1,030 1,028 1,028 1,025 2007-2015

  7. Kentucky Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,020 1,024 1,021 1,024 1,027 1,025 2013-2016

  8. Electric Energy Inc (Kentucky) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 5748 This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Average Rates Industrial: 0.0355kWh...

  9. Prioritizing and Managing Risk Across the Organization

    Broader source: Energy.gov [DOE]

    Presenter: Cindy Caldwell, Senior Technical Advisor, Environment, Safety, and Health Directorate, Pacific Northwest National Laboratory

  10. An Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins: Part 1: Evaluation of Phase 2 CO{sub 2} Injection Testing in the Deep Saline Gunter Sandstone Reservoir (Cambro-Ordovician Knox Group), Marvin Blan No. 1 Hancock County, Kentucky Part 2: Time-lapse Three-Dimensional Vertical Seismic Profile (3D-VSP) of Sequestration Target Interval with Injected Fluids

    SciTech Connect (OSTI)

    Richard Bowersox; John Hickman; Hannes Leetaru

    2012-12-01

    Part 1 of this report focuses on results of the western Kentucky carbon storage test, and provides a basis for evaluating injection and storage of supercritical CO{sub 2} in Cambro-Ordovician carbonate reservoirs throughout the U.S. Midcontinent. This test demonstrated that the Cambro- Ordovician Knox Group, including the Beekmantown Dolomite, Gunter Sandstone, and Copper Ridge Dolomite in stratigraphic succession from shallowest to deepest, had reservoir properties suitable for supercritical CO{sub 2} storage in a deep saline reservoir hosted in carbonate rocks, and that strata with properties sufficient for long-term confinement of supercritical CO{sub 2} were present in the deep subsurface. Injection testing with brine and CO{sub 2} was completed in two phases. The first phase, a joint project by the Kentucky Geological Survey and the Western Kentucky Carbon Storage Foundation, drilled the Marvin Blan No. 1 carbon storage research well and tested the entire Knox Group section in the open borehole â?? including the Beekmantown Dolomite, Gunter Sandstone, and Copper Ridge Dolomite â?? at 1152â??2255 m, below casing cemented at 1116 m. During Phase 1 injection testing, most of the 297 tonnes of supercritical CO{sub 2} was displaced into porous and permeable sections of the lowermost Beekmantown below 1463 m and Gunter. The wellbore was then temporarily abandoned with a retrievable bridge plug in casing at 1105 m and two downhole pressure-temperature monitoring gauges below the bridge plug pending subsequent testing. Pressure and temperature data were recorded every minute for slightly more than a year, providing a unique record of subsurface reservoir conditions in the Knox. In contrast, Phase 2 testing, this study, tested a mechanically-isolated dolomitic-sandstone interval in the Gunter. Operations in the Phase 2 testing program commenced with retrieval of the bridge plug and long-term pressure gauges, followed by mechanical isolation of the Gunter by plugging the wellbore with cement below the injection zone at 1605.7 m, then cementing a section of a 14-cm casing at 1470.4â??1535.6. The resultant 70.1-m test interval at 1535.6â??1605.7 m included nearly all of the Gunter sandstone facies. During the Phase 2 injection, 333 tonnes of CO{sub 2} were injected into the thick, lower sand section in the sandy member of the Gunter. Following the completion of testing, the injection zone below casing at 1116 m in the Marvin Blan No. 1 well, and wellbore below 305 m was permanently abandoned with cement plugs and the wellsite reclaimed. The range of most-likely storage capacities found in the Knox in the Marvin Blan No. 1 is 1000 tonnes per surface hectare in the Phase 2 Gunter interval to 8685 tonnes per surface hectare if the entire Knox section were available including the fractured interval near the base of the Copper Ridge. By itself the Gunter lacks sufficient reservoir volume to be considered for CO{sub 2} storage, although it may provide up to 18% of the reservoir volume available in the Knox. Regional extrapolation of CO{sub 2} storage potential based on the results of a single well test can be problematic, although indirect evidence of porosity and permeability can be demonstrated in the form of active saltwater-disposal wells injecting into the Knox. The western Kentucky region suitable for CO{sub 2} storage in the Knox is limited updip, to the east and south, by the depth at which the base of the Maquoketa shale lies above the depth required to ensure storage of CO{sub 2} in its supercritical state and the deepest a commercial well might be drilled for CO{sub 2} storage. The resulting prospective region has an area of approximately 15,600 km{sup 2}, beyond which it is unlikely that suitable Knox reservoirs may be developed. Faults in the subsurface, which serve as conduits for CO{sub 2} migration and compromise sealing strata, may mitigate the area with Knox reservoirs suitable for CO{sub 2} storage. The results of the injection tests in the Marvin Blan No. 1, however, provide a basis for evaluating supercritical CO{sub 2} storage in Cambro-Ordovician carbonate reservoirs throughout the Midcontinent. Reservoir seals were evaluated in the Knox and overlying strata. Within the Knox, permeabilities measured in vertical core plugs from the Beekmantown and Copper Ridge suggest that intraformational seals may problematic. Three stratigraphic intervals overlying the Knox in the Marvin Blan No. 1 well may provide seals for potential CO{sub 2} storage reservoirs in western Kentucky: Dutchtown Limestone, Black River Group, and Maquoketa Shale. The Dutchtown and Black River had permeabilities suggest that these intervals may act as secondary sealing strata. The primary reservoir seal for the Knox, however, is the Maquoketa. Maximum seal capacity calculated from permeabilities measured in vertical core plugs from the Maquoketa exceeded the net reservoir height in the Knox by about two orders of magnitude. Rock strength measured in core plugs from the Maquoketa suggest that it is unlikely that any CO{sub 2} migrating from the Knox would have sufficient pressure to fracture the Maquoketa. Part 2 of this report reviews the results of vertical seismic profiling in the Marvin Blan No. 1 well to model post-injection CO{sub 2} plume migration. Two three-dimensional vertical seismic profiles (3D-VSPâ??s) were acquired at the Kentucky Geological Survey Marvin Blan No. 1 CO{sub 2} sequestration research well, Hancock County, Kentucky. The initial (pre-injection) survey was performed on September 15â??16, 2010. This was followed by the injection of 333 tonnes of supercritical CO{sub 2} and then 584 m3 of 2% KCl water (to displace the remaining CO{sub 2} in the wellbore) on September 22, 2010. After injection, the well was shut in with a downhole pressure of 17.5 MPa at the injected reservoir depth of 1545.3 m. The second 3D-VSP was acquired on September 25â??26, 2010. These two 3D-VSP's were combined to produce a time-lapse 3D-VSP data volume in an attempt to monitor and image the subsurface changes caused by the injection. Less than optimum surface access and ambient subsurface noise from a nearby active petroleum pipeline hampered quality of the data, resulting in the inability to image the CO{sub 2} plume in the subsurface. However, some changes in the seismic response post-injection (both wavelet character and an apparent seismic "pull-down" within the injection zone) are interpreted to be a result of the injection process and imply that the technique could still be valid under different circumstances.

  11. CX-004373: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Caldwell County Landfill Gas ProjectCX(s) Applied: B5.1Date: 11/01/2010Location(s): Caldwell County, North CarolinaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  12. Alternative Fuels Data Center: Kentucky Transportation Data for...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Gasoline Diesel Propane Natural Gas Transportation Fuel Consumption Source: State Energy Data System based on beta data converted to gasoline gallon equivalents of petroleum (GGEs) ...

  13. Kentucky Save Energy Now Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Technologies Program), has developed multiple resources and a suite of tools focused on best practices to help industrial manufacturers reduce their energy intensity. ...

  14. Department of Energy Cites LATA Environmental Services of Kentucky...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gaseous Diffusion Plant. The violations are associated with a March 9, 2011, heat stress event during which an employee lost consciousness; and a May 22, 2011, event resulting...

  15. South Kentucky Rural Electric Cooperative Corporation Smart Grid...

    Open Energy Info (EERE)

    Communications Meter Data Management System Customer Web Portal Access Up to 500 In-Home DisplaysEnergy Management Systems About 7,500 Direct Load Control Devices Targeted...

  16. City of Princeton, Kentucky (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    @PrincetonEPB Facebook: https:www.facebook.compagesPrinceton-EPB118073408207017?refts Outage Hotline: 270-365-2031 References: EIA Form EIA-861 Final Data File for 2010 -...

  17. Kentucky Associated-Dissolved Natural Gas Proved Reserves, Wet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions 0 8 0 0 0 0 2000-2014 Extensions 0 0 0 0 0 0 1979-2014 New Field Discoveries 0 0 0 0 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 1979-2014 ...

  18. Kentucky Coalbed Methane Proved Reserves, Reserves Changes, and...

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions 0 0 0 0 0 0 2009-2014 Extensions 0 0 0 0 0 0 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 ...

  19. Kentucky Crude Oil plus Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions 0 6 4 0 0 0 2009-2014 Extensions 0 0 0 0 1 1 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 ...

  20. TEAM CUMBERLAND Kentucky Dam Village State Resort Park

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    attendees are invited to gather in the lobby of the lodge at 5:30 PM CDT prior to traveling to a Dutch-treat group dinner at Patti's 1880's Settlement, 1793 JH O'Bryan Avenue, ...

  1. Kentucky Coalbed Methane Proved Reserves, Reserves Changes, and...

    Gasoline and Diesel Fuel Update (EIA)

    0 0 0 0 0 0 2005-2013 Adjustments 0 0 0 0 0 2009-2013 Revision Increases 0 0 0 0 0 2009-2013 Revision Decreases 0 0 0 0 0 2009-2013 Sales 0 0 0 0 0 2009-2013 Acquisitions 0 0 0 0 0...

  2. Natural Gas Delivered to Consumers in Kentucky (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 31,659 23,182 21,670 14,953 9,527 8,890 9,668 9,881 10,024 12,591 16,271 23,216 2002 26,131 24,533 23,241 14,879 12,317 11,623 13,804 10,869 11,129 14,628 21,069 27,646 2003 34,776 29,032 20,580 14,017 10,797 9,334 9,467 10,296 10,390 13,196 16,933 27,218 2004 32,640 27,566 21,630 15,771 12,331 11,249 10,810 11,428 10,883 13,355 17,689 27,203 2005 29,373 24,036 24,578 15,557 13,614 13,693 12,658 14,134 12,122

  3. Kentucky Natural Gas Withdrawals from Gas Wells (Million Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 88,817 88,709 81,086 1970's 77,695 72,546 63,648 62,396 71,876 60,511 66,137 60,902 70,044 59,520...

  4. Kentucky Natural Gas Deliveries to Electric Power Consumers ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,194 5,782 5,686 2000's 4,202 4,433 13,712 3,667 4,833 17,181 12,287 19,376 9,584 8,399 2010's...

  5. Kentucky Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 5,697 7,677 8,520 8,183 7,489 9,115 5,881 6,968 11,760 2,755 7,527 11,496 2007 3,406 11,177 11,028 2,999 9,590 13,070 1,236 8,146 7,953 7,263 7,873 9,740 2008 5,222 7,491 8,501 8,780 9,590 9,270 14,157 11,552 8,504 8,568 14,157 5,923 2009 7,603 12,215 4,388 4,959 12,194 10,773 3,106 10,861 11,461 10,245 9,907 12,318 2010 9,912 17,124 4,128 10,287 10,652 9,940 11,821 9,979 11,091 18,920 4,638 12,261 2011 9,162 9,704 11,350 10,611 8,658

  6. Kentucky Natural Gas Deliveries to Electric Power Consumers (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 68 70 218 241 324 388 872 1,078 426 267 178 302 2002 293 537 811 629 560 2,192 4,626 1,996 1,262 296 261 251 2003 627 173 152 189 302 155 464 958 158 101 105 282 2004 406 277 311 554 475 551 511 526 233 141 219 627 2005 886 323 596 483 1,332 3,265 2,647 3,340 1,900 585 762 1,063 2006 344 411 575 224 1,084 1,504 3,274 3,669 273 179 302 447 2007 399 1,322 710 1,529 1,221 1,671 1,156 6,535 2,015 1,481 579 758 2008 1,346 942 655 275

  7. Kentucky Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 89,174 89,039 81,304 1970's 77,892 72,723 63,648 62,396 71,876 60,511 66,137 60,902 70,044 59,520 1980's 57,180 61,312 51,924 46,720 61,518 73,126 80,195 70,125 73,629 72,417 1990's 75,333 78,904 79,690 86,966 73,081 74,754 81,435 79,547 81,869 76,770 2000's 81,545 81,723 88,259 87,608 94,259 92,795 95,320 95,437 114,116 113,300 2010's 135,330 124,243 106,122 94,665 78,737

  8. Kentucky Natural Gas Industrial Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 11,054 8,742 7,395 9,901 6,629 6,460 6,740 6,597 7,074 7,364 8,090 8,851 2002 10,214 9,404 9,297 8,186 8,277 7,314 7,074 6,669 7,743 9,145 9,856 9,932 2003 11,702 9,996 8,913 7,847 7,552 6,781 6,777 7,226 7,568 8,569 8,686 10,655 2004 11,629 10,760 10,598 9,045 8,910 8,413 8,094 8,712 8,332 9,496 9,776 10,526 2005 11,242 10,146 10,519 9,307 8,613 8,097 7,726 8,471 8,177 9,076 9,805 10,826 2006 10,029 9,456 9,754 9,263 9,134 8,377 7,610

  9. Kentucky Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 8.55 8.47 8.09 7.29 6.31 5.90 5.58 5.10 4.29 4.78 5.09 4.77 2002 4.88 4.69 4.15 4.57 4.50 4.26 4.14 3.99 4.25 4.66 5.46 5.36 2003 5.80 6.30 8.68 6.38 6.42 6.88 6.54 6.03 6.40 5.88 6.42 6.92 2004 7.65 7.53 6.89 6.77 6.84 7.39 7.27 7.21 6.61 6.97 8.58 8.08 2005 7.92 8.11 7.89 8.38 8.17 7.79 8.32 8.91 11.11 13.42 14.35 12.71 2006 14.01 12.04 10.47 9.40 9.66 8.17 8.08 8.48 8.12 7.19 9.00 9.40 2007 7.92 8.56 8.64 8.57 8.72 8.70 8.31 7.65 6.91

  10. Kentucky Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 3,591 7,852 5,644 4,269 4,991 5,462 7,829 7,379 7,268 5,324 3,591 2,996 1991 1,910 2,777 4,468 4,883 2,671 3,345 5,395 4,818 4,660 4,074 4,315 4,110 1992 5,509 3,635 2,314 2,151 1,697 2,787 4,724 4,202 5,539 10,882 3,272 2,656 1993 1,967 990 928 2,687 7,049 7,985 7,838 5,873 7,014 3,907 1,397 482 1994 431 928 1,526 6,100 10,571 9,346 9,742 7,138 4,696 4,684 3,438 1,230 1995 1,189 478 2,868 4,780 13,288 7,749 8,687 5,375 6,889

  11. Kentucky Natural Gas Marketed Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 89,168 89,024 81,304 1970's 77,892 72,723 63,648 62,396 71,876 60,511 66,137 60,902 70,044 59,520 1980's 57,180 61,312 51,924 46,720 61,518 73,126 80,195 70,125 73,629 72,417 1990's 75,333 78,904 79,690 86,966 73,081 74,754 81,435 79,547 81,869 76,770 2000's 81,545 81,723 88,259 87,608 94,259 92,795 95,320 95,437 114,116 113,300 2010's 135,330 124,243 106,122 94,665 78,737

  12. Kentucky Natural Gas Marketed Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 6,865 6,165 6,721 6,372 6,316 6,135 6,256 6,243 6,056 6,593 6,590 6,862 1992 5,282 6,953 6,539 7,078 7,001 6,197 6,153 7,102 5,852 6,633 6,507 6,287 1993 7,126 7,054 6,582 6,122 6,756 9,362 6,600 7,314 5,820 6,232 5,981 9,444 1994 5,988 5,928 5,531 5,145 5,677 7,867 5,546 6,146 4,891 5,237 5,026 7,937 1995 6,148 6,086 5,679 5,282 5,828 8,077 5,694 6,310 5,021 5,377 5,160 8,148 1996 5,582 7,045 8,544 6,090 8,103 6,482 5,377 6,384 5,762

  13. Kentucky Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 9,700 10,403 8,293 5,319 3,161 1,809 1,332 1,337 1,446 3,109 6,141 13,034 1990 9,736 8,409 6,367 5,007 2,448 1,599 1,376 1,288 1,375 3,306 5,741 9,412 1991 11,629 9,644 7,168 3,430 1,805 1,378 1,278 1,168 1,487 3,120 7,676 9,682 1992 11,805 8,511 7,813 4,179 2,626 1,835 1,326 1,416 1,413 3,376 6,997 10,617 1993 11,143 11,145 9,198 4,989 1,908 1,710 1,289 1,137 1,410 3,858 7,612 11,510 1994 15,487 10,560 8,417 3,601 2,314 1,260 1,178 1,211

  14. Kentucky Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 219,914 219,914 219,914 219,914 219,914 219,914 219,914 219,914 219,914 219,914 220,597 220,597 2003 220,597 220,597 220,597 220,597 220,597 220,597 220,597 220,597 220,597 220,597 220,597 220,597 2004 220,211 220,211 220,211 220,211 220,211 220,211 220,211 220,211 220,211 220,804 220,804 220,804 2005 220,804 220,804 220,804 220,804 220,804 220,804 220,804 220,804 220,804 220,804 220,804 220,804 2006 220,804 220,804 220,804 220,804

  15. Kentucky Natural Gas Underground Storage Net Withdrawals (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 7,009 -3,443 1,276 -952 -4,745 -5,360 -7,787 -7,006 -7,202 -3,309 4,438 5,964 1991 6,950 3,513 2,589 -3,809 -2,358 -3,297 -5,327 -3,162 -3,437 460 6,590 2,686 1992 1,568 1,211 4,848 1,675 1,236 -1,546 -3,544 -1,610 -4,201 -10,704 1,514 2,982 1993 5,891 11,750 10,031 793 -6,525 -7,919 -7,627 -4,866 -6,440 -1,042 6,228 11,351 1994 17,253 12,349 4,617 -4,752 -9,666 -9,326 -9,628 -6,832 -3,590 -3,346 -324 8,399 1995 13,264 12,572

  16. Kentucky Natural Gas Underground Storage Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 10,599 4,409 6,919 3,317 246 103 42 373 67 2,015 8,029 8,960 1991 8,860 6,289 7,057 1,074 312 48 67 1,656 1,223 4,534 10,905 6,797 1992 7,077 4,846 7,161 3,826 2,932 1,241 1,179 2,592 1,338 178 4,787 5,638 1993 7,859 12,739 10,959 3,480 524 66 211 1,007 574 2,866 7,624 11,833 1994 17,685 13,277 6,143 1,347 905 21 115 306 1,106 1,338 3,113 9,630 1995 14,453 13,050 7,368 1,304 511 123 1,872 1,529 123 2,356 10,288 12,762 1996 15,032 14,240

  17. Kentucky Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 2 2 2 2 2 2 2 2 2 2 2 2 2014 2 2 2 2 2 2 2 2 2 2 2 2 2015 0 0 0 0 0 2 2 2 2 2 2 2 2016 3 2

  18. Kentucky Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0

  19. Kentucky Natural Gas Withdrawals from Oil Wells (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0

  20. Kentucky Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0

  1. Kentucky Price of Natural Gas Delivered to Residential Consumers (Dollars

    U.S. Energy Information Administration (EIA) Indexed Site

    per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 4.48 4.49 4.46 4.71 5.03 5.50 5.98 6.12 5.98 5.12 4.68 4.39 1990 4.71 4.76 4.62 4.79 5.51 5.86 6.48 6.29 5.94 5.21 4.67 4.75 1991 4.60 4.69 4.65 5.12 5.73 6.36 6.75 6.62 5.71 4.88 4.67 4.67 1992 4.67 4.46 4.54 4.69 4.98 5.79 6.25 6.42 6.96 6.34 5.14 5.04 1993 5.06 4.70 4.81 5.26 6.69 6.75 7.41 7.65 7.49 5.62 5.15 5.04 1994 4.92 4.96 5.11 5.91 7.17 7.45 8.56 7.88 7.25 6.43 5.44 5.14 1995 4.88 4.68 4.71 5.85

  2. Kentucky Natural Gas Withdrawals from Oil Wells (Million Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 357 330 218 1970's 197 177 0 0 0 0 0 0 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0...

  3. Synthesis Gas Demonstration Plant, Baskett, Kentucky: environmental report

    SciTech Connect (OSTI)

    1980-01-01

    A summary of the potential environmental impacts of the construction and operation of the proposed plant is presented. The construction and operation of the plant are discussed in detail.

  4. Kentucky Natural Gas Liquids Lease Condensate, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 11,054 8,742 7,395 9,901 6,629 6,460 6,740 6,597 7,074 7,364 8,090 8,851 2002 10,214 9,404 9,297 8,186 8,277 7,314 7,074 6,669 7,743 9,145 9,856 9,932 2003 11,702 9,996 8,913 7,847 7,552 6,781 6,777 7,226 7,568 8,569 8,686 10,655 2004 11,629 10,760 10,598 9,045 8,910 8,413 8,094 8,712 8,332 9,496 9,776 10,526 2005 11,242 10,146 10,519 9,307 8,613 8,097 7,726 8,471 8,177 9,076 9,805 10,826 2006 10,029 9,456 9,754 9,263 9,134 8,377 7,610

  5. Kentucky Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 89,168 89,024 81,304 1970's 77,892 72,723 63,648 62,396 71,876 60,511 66,137 60,902 70,044 59,520 1980's 57,180 61,312 51,924 46,720 61,518 73,126 80,195 70,125 73,629 72,417 1990's 75,333 78,904 79,690 86,966 73,081 74,754 81,435 79,547 81,869 76,770 2000's 81,545 81,723 88,259 87,608 94,259 92,795 95,320 95,437 114,116 113,300 2010's 135,330 124,243 106,122 94,665 78,737

    Year Jan Feb Mar Apr May Jun Jul Aug

  6. Kentucky Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 9,700 10,403 8,293 5,319 3,161 1,809 1,332 1,337 1,446 3,109 6,141 13,034 1990 9,736 8,409 6,367 5,007 2,448 1,599 1,376 1,288 1,375 3,306 5,741 9,412 1991 11,629 9,644 7,168 3,430 1,805 1,378 1,278 1,168 1,487 3,120 7,676 9,682 1992 11,805 8,511 7,813 4,179 2,626 1,835 1,326 1,416 1,413 3,376 6,997 10,617 1993 11,143 11,145 9,198 4,989 1,908 1,710 1,289 1,137 1,410 3,858 7,612 11,510 1994 15,487 10,560 8,417 3,601 2,314 1,260 1,178 1,211

  7. Transitioning Kentucky Off Oil: An Interview with Clean Cities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cave Campground and the Visitor Center area. | Photo courtesy of Victor Peek Photography. ... Cave Campground and the Visitor Center area. | Photo courtesy of Victor Peek Photography. ...

  8. Kentucky Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 7,021 6,303 6,870 6,515 6,458 6,272 6,394 6,382 6,194 6,740 6,739 7,017 1992 5,425 7,142 6,716 7,270 7,191 6,365 6,320 7,295 6,011 6,813 6,684 6,458 1993 7,343 7,269 6,783 6,309 6,962 9,647 6,801 7,537 5,997 6,422 6,163 9,732 1994 6,171 6,109 5,700 5,302 5,850 8,107 5,715 6,333 5,040 5,397 5,179 8,179 1995 6,312 6,249 5,831 5,423 5,984 8,293 5,846 6,478 5,155 5,521 5,298 8,366 1996 5,729 7,191 8,680 6,217 8,243 6,676 5,513 6,535 5,882

  9. Alliance moves forward with expansion plans in Kentucky

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2008-09-15

    General Mine Contracting's work for Alliance's Elk Creek and Warrior preparation plants, and the River View mine is described. 4 photos.

  10. Kentucky Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 45,070 40,507 55,002 66,792 75,729 68,122 71,487 70,973 1990's 73,434 76,723 77,348 84,714 71,057 72,451 79,050 77,143 79,606 74,483 2000's 80,129 80,165 86,423 86,145 91,846 91,079 93,068 93,480 111,715 110,030 2010's 130,754 119,559 99,551 88,221 72,266

  11. Kentucky Lease Condensate Proved Reserves, Reserve Changes, and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    4 1 5 4 5 5 1979-2014 Adjustments -1 0 1 -1 0 -1 2009-2014 Revision Increases 3 0 4 1 1 1 2009-2014 Revision Decreases 2 3 1 1 0 0 2009-2014 Sales 0 0 3 0 0 0 2009-2014 Acquisitions 0 0 3 0 0 0 2009-2014 Extensions 0 0 0 0 0 0 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 0 0 0 0 0 0

  12. Kentucky Natural Gas % of Total Residential - Sales (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 100.0 1990's 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1.0 100.0 2000's 99.5 95.8 93.2 93.9 94.1 94.9 96.2 96.1 96.0 95.4 2010's 95.7 95.5 95.9 96.2 96.3 96.3

  13. Kentucky Natural Gas % of Total Residential - Sales (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 92.9 92.8 93.1 92.8 91.4 93.2 94.3 94.4 95.3 91.9 93.4 94.2 2003 93.8 94.2 93.1 93.4 96.9 95.2 94.6 94.5 95.7 92.2 93.9 94.0 2004 94.0 93.9 92.9 92.7 96.0 94.9 95.0 95.3 95.6 93.7 93.7 95.1 2005 94.5 94.5 94.6 94.0 95.7 95.3 95.9 95.8 96.1 93.8 95.3 95.7 2006 96.2 95.5 95.8 98.0 95.5 97.7 96.8 97.3 97.2 95.6 96.4 96.2 2007 96.2 95.9 96.2 95.8 96.4 96.6 96.7 96.9 97.0 95.7 95.8 96.3 2008 96.4 95.9 96.1 96.1 96.0 96.8 97.0 96.5 96.4 95.4

  14. Kentucky Natural Gas Industrial Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 95,724 93,217 98,750 2000's 101,251 94,896 103,112 102,272 114,292 112,004 108,094 109,241 106,054 93,360 2010's 101,497 103,517 105,554 110,260 116,582 115,916

  15. Kentucky Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4.19 4.00 3.32 2000's 4.82 6.51 4.63 6.54 7.38 9.90 9.64 8.37 10.41 6.04 2010's 5.57 5.16 3.96 4.84 5.80 4.36

  16. Kentucky Natural Gas Injections into Underground Storage (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 26,084 28,993 31,726 1970's 38,968 46,139 51,437 54,392 50,903 70,609 69,954 69,097 72,674 68,961 1980's 49,142 67,518 64,789 42,090 63,617 62,202 43,698 42,388 55,774 55,277 1990's 66,195 47,425 49,367 48,117 59,831 58,561 69,498 57,073 65,267 55,134 2000's 55,348 75,165 49,577 70,497 66,037 61,190 65,956 70,682 77,503 71,972 2010's 85,167 77,526 64,483 60,782 80,129 80,247

  17. Kentucky Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 69,542 75,824 83,815 1970's 86,473 84,197 85,881 80,233 76,129 79,156 96,351 94,646 84,436 77,438 1980's 74,235 70,538 67,590 63,049 66,895 60,086 59,372 59,094 64,027 65,086 1990's 56,064 59,465 61,911 66,909 62,533 66,149 70,232 66,033 55,545 59,220 2000's 64,662 56,947 59,104 61,886 56,443 56,142 47,379 51,534 55,025 51,821 2010's 54,391 50,696 43,065 54,208 57,589 47,712

  18. Kentucky Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 206,572 206,603 1990's 312,061 307,235 210,242 210,242 209,753 215,351 216,351 219,907 219,907 219,907 2000's 219,913 220,000 220,596 220,804 220,844 218,927 218,394 220,359 220,359 220,368 2010's 221,751 221,751 221,751 221,723 221,723

  19. Kentucky Natural Gas Underground Storage Net Withdrawals (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's -2,236 -944 -3,760 1970's -10,376 -16,220 -8,299 -16,245 -1,856 -12,038 5,520 -15,840 537 -5,834 1980's 16,547 -9,915 -8,178 17,543 -12,841 -4,895 -2,278 -3,608 12,902 14,147 1990's -21,117 1,397 -6,573 11,625 -4,845 7,178 -7,530 3,013 -11,700 2,725 2000's 30,198 -38,209 9,445 -2,547 -179 1,274 -3,610 5,440 4,694 -4,938 2010's 2,159 -12,704 1,982 21,264 -5,015 -17,554

  20. Kentucky Natural Gas Underground Storage Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 23,848 28,049 27,966 1970's 28,592 29,919 43,138 38,147 49,047 58,571 75,397 55,497 72,960 63,328 1980's 65,689 57,603 56,611 59,633 50,776 57,307 41,420 38,780 68,676 69,423 1990's 45,078 48,822 42,795 59,742 54,986 65,739 61,968 60,086 53,567 57,859 2000's 85,546 36,957 59,022 67,949 65,858 62,464 62,345 76,122 82,197 67,034 2010's 87,326 64,822 66,464 82,045 75,114 62,694

  1. Kentucky Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 1990's 0 0 0 1 2 2 8 42 46 56 2000's 63 77 80 98 110 27 11 9 7 4 2010's 3 0 25 29 17

  2. Kentucky Natural Gas Withdrawals from Gas Wells (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 88,817 88,709 81,086 1970's 77,695 72,546 63,648 62,396 71,876 60,511 66,137 60,902 70,044 59,520 1980's 57,180 61,312 51,924 46,720 61,518 73,126 80,195 70,125 73,629 72,417 1990's 75,333 78,904 79,690 86,966 73,081 74,754 81,435 79,547 81,869 76,770 2000's 81,545 81,723 88,259 87,608 94,259 92,795 95,320 95,437 112,587 111,782 2010's 133,521 122,578 106,122 94,665 78,737

  3. Kentucky Natural Gas Withdrawals from Oil Wells (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 357 330 218 1970's 197 177 0 0 0 0 0 0 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 1,529 1,518 2010's 1,809 1,665 0 0 0

  4. Kentucky Nonassociated Natural Gas Proved Reserves, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation 2,887 2,674 2,030 1,422 1,750 1,704 1979-2014 Adjustments 103 -17 -48 -271 115 6 1979-2014 Revision Increases 130 40 183 45 170 67 1979-2014 Revision Decreases 793 576 661 294 12 46 1979-2014 Sales 0 0 106 0 1 0 2000-2014 Acquisitions 0 34 89 0 1 0 2000-2014 Extensions 748 408 4 0 142 0 1979-2014 New Field Discoveries 0 0 2 0 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 1 1979-2014 Estimated Production 113 102 107 88 87 74

  5. Kentucky Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0

  6. Kentucky Price of Natural Gas Delivered to Residential Consumers (Dollars

    U.S. Energy Information Administration (EIA) Indexed Site

    per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.84 0.79 0.80 1970's 0.83 0.88 0.93 0.99 1.10 1.23 1.32 1.79 1.94 2.35 1980's 3.03 3.49 4.46 5.30 5.20 5.31 4.93 4.53 4.48 4.68 1990's 4.93 4.87 5.01 5.25 5.46 5.05 5.54 6.37 6.03 5.72 2000's 7.41 9.54 7.52 9.17 10.97 13.09 14.14 12.05 13.84 11.97 2010's 10.02 10.44 10.19 9.80 10.62 10.94

  7. Kentucky Shale Gas Proved Reserves, Reserves Changes, and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    55 10 41 34 46 50 2007-2014 Adjustments -1 -1 0 0 0 2 2009-2014 Revision Increases 44 3 44 1 16 4 2009-2014 Revision Decreases 3 43 11 4 0 0 2009-2014 Sales 0 0 45 0 0 0 2009-2014 Acquisitions 0 0 45 0 0 0 2009-2014 Extensions 0 0 2 0 0 0 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 5 4 4 4 4 2

  8. Kentucky Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    2,919 2,785 2,128 1,515 1,794 1,753 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 2,887 2,674 2,030 1,422 1,750 1,704 1979-2014 Natural Gas Associated-Dissolved, ...

  9. Natural Gas Delivered to Consumers in Kentucky (Including Vehicle...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year-8 Year-9 1990's 202,620 187,054 199,511 2000's 208,848 191,608 211,950 206,134 212,666 222,249 200,361 214,546 207,837 189,023 2010's 211,993 204,380 210,584 216,451 241,151...

  10. Michael W. Hancock, P.E., President Secretary, Kentucky Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...ial.transportation.org Statement of Chris Smith Senior Program Manager for Freight ... you have additional questions. Sincerely, Chris Smith Senior Program Manager for Freight

  11. Kentucky Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Exports to Taiwan Liquefied Natural Gas (Million Cubic Feet) Kenai, AK Exports to Taiwan Liquefied Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 2,748 2,754 2,755 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Liquefied Natural Gas Exports by Point of Exit Kenai, AK Liquefied Natural Gas Exports to

  12. Kentucky Natural Gas Delivered for the Account of Others

    Gasoline and Diesel Fuel Update (EIA)

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,020 1,024 1,021 1,024 1,027 1,025 2013-2016

    4 1 5 4 5 5 1979-2014 Adjustments -1 0 1 -1 0 -1 2009-2014 Revision Increases 3 0 4 1 1 1 2009-2014 Revision Decreases 2 3 1 1 0 0 2009-2014 Sales 0 0 3 0 0 0 2009-2014 Acquisitions 0 0 3 0 0 0 2009-2014 Extensions 0 0 0 0 0 0 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 0 0 0 0 0

  13. Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,194 5,782 5,686 2000's 4,202 4,433 13,712 3,667 4,833 17,181 12,287 19,376 9,584 8,399 2010's 19,284 15,575 31,194 14,536 26,919 52,015

    09 2010 2011 2012 2013 2014 View History Gross Withdrawals 113,300 135,330 124,243 106,122 94,665 78,737 1967-2014 From Gas Wells 111,782 133,521 122,578 106,122 94,665 78,737 1967-2014 From Oil Wells 1,518 1,809 1,665 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0

  14. Kentucky Natural Gas Injections into Underground Storage (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 NA NA NA NA NA NA NA NA NA NA NA NA 2015 NA NA NA NA NA NA NA NA NA NA NA NA 2016 NA NA

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 95,724 93,217 98,750 2000's 101,251 94,896 103,112 102,272

  15. Kentucky Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    2,919 2,785 2,128 1,515 1,794 1,753 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 2,887 2,674 2,030 1,422 1,750 1,704 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 32 111 98 93 44 49 1979-2014 Dry Natural Gas 2,782 2,613 2,006 1,408 1,663 1,611

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 69,542 75,824 83,815 1970's 86,473 84,197 85,881 80,233 76,129 79,156 96,351 94,646 84,436 77,438 1980's 74,235 70,538 67,590

  16. Kentucky Natural Gas Underground Storage Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's -2,236 -944 -3,760 1970's -10,376 -16,220 -8,299 -16,245 -1,856 -12,038 5,520 -15,840 537 -5,834 1980's 16,547 -9,915 -8,178 17,543 -12,841 -4,895 -2,278 -3,608 12,902 14,147 1990's -21,117 1,397 -6,573 11,625 -4,845 7,178 -7,530 3,013 -11,700 2,725 2000's 30,198 -38,209 9,445 -2,547 -179 1,274 -3,610 5,440 4,694 -4,938 2010's 2,159 -12,704 1,982 21,264 -5,015 -17,554

    Decade Year-0 Year-1 Year-2

  17. Kentucky Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 10,599 4,409 6,919 3,317 246 103 42 373 67 2,015 8,029 8,960 1991 8,860 6,289 7,057 1,074 312 48 67 1,656 1,223 4,534 10,905 6,797 1992 7,077 4,846 7,161 3,826 2,932 1,241 1,179 2,592 1,338 178 4,787 5,638 1993 7,859 12,739 10,959 3,480 524 66 211 1,007 574 2,866 7,624 11,833 1994 17,685 13,277 6,143 1,347 905 21 115 306 1,106 1,338 3,113 9,630 1995 14,453 13,050 7,368 1,304 511 123 1,872 1,529 123 2,356 10,288 12,762 1996 15,032 14,240

  18. Kentucky Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0

  19. Kentucky-West Virginia Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    22,637 25,315 24,086 23,759 2011-2014 Total Liquids Extracted (Thousand Barrels) 1,115 1,058 1,062 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 1,465

  20. Kentucky Hybrid Electric School Bus Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Katy Christiansen. Specialization: Biology Focus at BETO: Biochemical conversion, renewable carbon fiber Prior Experience: Postdoctoral Fellowship at Joint BioEnergy Institute in Emeryville, California; Ph.D. in Plant Sciences from Indiana University Duration of Fellowship: September 2012-September 2014 Career Interests: Enabling high-quality research, determining priority research pathways, and developing new bioenergy markets Favorite Thing About Living and Working in Washington, D.C.:

  1. Kentucky Hybrid Electric School Bus Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt062_ti_settle_2011_p

  2. City of Paducah, Kentucky (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    pagesPaducah-Power-System158534167504742 Outage Hotline: 270.575.4010 Outage Map: paducahpower.comoutagesoutag References: EIA Form EIA-861 Final Data File for 2010...

  3. Renewable Energy Opportunities at Fort Campbell, Tennessee/Kentucky

    SciTech Connect (OSTI)

    Hand, James R.; Horner, Jacob A.; Kora, Angela R.; Orrell, Alice C.; Russo, Bryan J.; Weimar, Mark R.; Nesse, Ronald J.

    2011-03-31

    This document provides an overview of renewable resource potential at Fort Campbell, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and also on ground source heat pumps for heating and cooling buildings. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment. The site visit to Fort Campbell took place on June 10, 2010.

  4. Kentucky Shale Gas Proved Reserves, Reserves Changes, and Production

    Gasoline and Diesel Fuel Update (EIA)

    20 55 10 41 34 46 2007-2013 Adjustments -1 -1 0 0 0 2009-2013 Revision Increases 44 3 44 1 16 2009-2013 Revision Decreases 3 43 11 4 0 2009-2013 Sales 0 0 45 0 0 2009-2013...

  5. Kentucky Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    National Science Bowl U.S. Department of Energy SC-27 Forrestal Building 1000 ... Regional High School Science Bowl Green County Greater Cincinnati Regional High ...

  6. Department of Energy Cites LATA Environmental Services of Kentucky...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The violations are associated with a March 9, 2011, heat stress event during which an employee lost consciousness; and a May 22, 2011, event resulting in the release of uranium ...

  7. Rockets 2 Race Cars Teacher Program at Kentucky Speedway (NASA)

    Broader source: Energy.gov [DOE]

    Register here. Go Green Edition / The Heat is ON! Get your students revved up about science, technology, engineering and mathematics with NASA's Rockets 2 Race Cars STEM Education program....

  8. Mr. Todd Mullins Federal Facility Agreement Manager Kentucky...

    Energy Savers [EERE]

    If you have any questions or require additional information, please contact Robert Smith ....blumenfeld@lex.doe.gov, PPPOIP AD robert.smith@lex.doe.gov, PPPOIP AD ...

  9. TVA - Solar Solutions Initiative (Kentucky) | Open Energy Information

    Open Energy Info (EERE)

    Weather-stripping, DuctAir sealing, Building Insulation, Windows, Doors, Siding, Roofs, Photovoltaics Active Incentive Yes Implementing Sector Utility Energy Category Renewable...

  10. Kentucky/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    coefficient, ranging from 0.25 to 0.45, dimension less (theoretical maximum 0.59) Air density, kgm A Rotor swept area, m or D 4 (D is the rotor diameter in m,...

  11. ,"Kentucky Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  12. Preliminary Notice of Violation, LATA Environmental Services of Kentucky,

    Office of Environmental Management (EM)

    Department of Energy EA-2007-05 Preliminary Notice of Violation, Bechtel National, Inc. - EA-2007-05 October 4, 2007 Issued to Bechtel National, Inc., related to Design and Procurement Deficiencies at the Waste Treatment and Immobilization Plant at the Hanford Site On October 4, 2007, the U.S. Department of Energy (DOE) issued a Preliminary Notice of Violation (EA-2007-05) to Bechtel National, Inc. for violations of 10 C.F.R. 830 associated with design and procurement deficiencies at the

  13. ,"Kentucky Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    8,"Annual",2015,"6/30/1967" ,"Data 2","Dry Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Data 3","Production",13,"Annual",2014,"6/30/1967" ,"Data 4","Underground Storage",4,"Annual",2015,"6/30/1967" ,"Data 5","Consumption",11,"Annual",2015,"6/30/1967" ,"Release Date:","4/29/2016" ,"Next

  14. Kentucky Heat Content of Natural Gas Deliveries to Consumers...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,023 1,022 1,023 1,025 1,026 1,027 1,028 1,030 1,031 1,028 1,028 1,033 2014 1,029 1,024 1,026 1,028 1,031 1,037 1,034 ...

  15. Kentucky Heat Content of Natural Gas Deliveries to Consumers...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,027 1,035 1,036 2010's 1,030 1,027 1,030 1,028 1,028

  16. Software Helps Kentucky County Gauge Energy Use | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    purchase EnergyCAP software. The energy management software currently being installed in ... data analysis, the county can take action to spur change in energy usage and behavior. ...

  17. Sherwin-Williams Richmond, Kentucky, Facility Achieves 26%...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    dozens of energy-savings projects over the past few years. The facility is a Lean Manufacturing Leader, adhering to the lean manufacturing business- management strategy, ...

  18. Keith Bradley | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Keith A. Caldwell About Us Keith A. Caldwell - Administrative Support Specialist Keith A. Caldwell Keith Caldwell is an Administrative Support Specialist with BCS, Inc. and is currently working with the Department of Energy's Office of Small and Disadvantaged Business Utilization. Keith is a recent graduate of Penn State University, where he earned his B.A. in political science and philosophy. He previously worked at the Department of Agriculture, Food and Nutrition Services. Keith currently

  19. Adoption Assistance Claim Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Admiral James Frank Caldwell Jr. Deputy Administrator for NNSA's Office of Naval Reactors Admiral James Frank Caldwell Jr. Admiral James Caldwell received his commission graduating with distinction from the United States Naval Academy in 1981 with a Bachelor of Science in Marine Engineering. He also holds a Master of Science in Operations Research from the Naval Postgraduate School. Caldwell commanded USS Jacksonville (SSN 699) homeported in Norfolk, Virginia; Submarine Development Squadron

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    CaulkingWeather-stripping, DuctAir sealing, Building Insulation, Windows, Doors Butler Rural Electric Cooperative- Energy Efficiency Improvement Loan Program Butler Rural...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DuctAir sealing, Building Insulation, Windows, Other EE, Personal Computing Equipment Butler Rural Electric Cooperative- Energy Efficiency Improvement Loan Program Butler Rural...

  2. EIS-0318: Record of Decision

    Broader source: Energy.gov [DOE]

    Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project, Trapp, Clark County, Kentucky

  3. Origin State Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9.80 3.32 -17.1 -66.1 Kentucky Maryland - W - - - Kentucky Minnesota W W - - - Kentucky North Carolina - - 34.18 - - Kentucky Pennsylvania - - W - - Kentucky South Carolina - -...

  4. Origin State Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    8.93 2.99 -18.0 -66.5 Kentucky Maryland - W - - - Kentucky Minnesota W W - - - Kentucky North Carolina - - 30.79 - - Kentucky Pennsylvania - - W - - Kentucky South Carolina - -...

  5. Misinterpretation of Electrical Resistivity Data in Geothermal...

    Open Energy Info (EERE)

    T.G. Caldwell and S.L. Bennie Conference World Geothermal Congress 2005; Antalya, Turkey; 20050424 Published ?, 2005 DOI Not Provided Check for DOI availability: http:...

  6. Press Pass - Press Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    attribute for dark matter. The neutralino's predicted abundance and rate of interaction also make it a likely dark matter candidate, and Caldwell noted the impact that...

  7. ARM - Publications: Science Team Meeting Documents: Abstracts...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 2. The Vertical Redistribution of Radiant Energy by Clouds* Evaluation of GFDL SCM ... Caldwell, T. Global, Multi-Year Analysis of Clouds and Earth's Radiant Energy System Terra ...

  8. Vehicle Use of Recycled Natural Gas Derived from Wastewater Biosolids

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Petersburg, FL: Vehicle Use of Recycled Natural Gas Derived from Wastewater Biosolids U.S ... Petersburg City Project Manager Eron Jacobson, PE Brown and Caldwell Gas Upgrade Systems ...

  9. Microsoft Word - V-ESR-G-00003_R1.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    T. B. Caldwell 15 June 2011 Savannah River Remediation, LLC Closure Project ... Level Waste Tank at the Savannah River Plant, (DP-1471), p. 18. 27 John A. Dean, ...

  10. shaleusa4.pdf

    Gasoline and Diesel Fuel Update (EIA)

    ... Bossier Caddo Webster Claiborne Union ood Morehouse Upshur Marion Harrison Lincoln Ouachita Smith Richland Gregg Bienville Jackson Rusk Franklin Panola De Soto Caldwell Red River ...

  11. Canyon County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    B. Places in Canyon County, Idaho Caldwell, Idaho Greenleaf, Idaho Melba, Idaho Middleton, Idaho Nampa, Idaho Notus, Idaho Parma, Idaho Wilder, Idaho Retrieved from "http:...

  12. CfA4: LIGHT CURVES FOR 94 TYPE Ia SUPERNOVAE (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Authors: Hicken, Malcolm ; Challis, Peter ; Kirshner, Robert P. ; Bakos, Gaspar ; Berlind, Perry ; Brown, Warren R. ; Caldwell, Nelson ; Calkins, Mike ; Falco, Emilio ; Fernandez, ...

  13. All 2015 Tables_2014 Dollars.xlsx

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Illinois Indiana W W - - - - - Illinois Minnesota W W - - - - - Illinois Missouri 25.85 ... Kentucky Maryland - W - - - - - Kentucky Minnesota W W - - - - - Kentucky North Carolina - ...

  14. CX-000322: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-000322: Categorical Exclusion Determination Kentucky Revision 2 - Green Bank of Kentucky Date: 11232009 Location(s): Kentucky Office(s): Energy Efficiency and Renewable ...

  15. National Nuclear Security Administration Official Tours Cleanup Operations for Navy

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – Adm. James F. Caldwell Jr., director of the DOE National Nuclear Security Administration’s Naval Nuclear Propulsion Program, recently toured the Hanford Site cleanup activities managed by EM’s Richland Operations Office (RL). RL Manager Stacy Charboneau welcomed Caldwell to the site.

  16. Property:Incentive/AddlPlaceStates | Open Energy Information

    Open Energy Info (EERE)

    Energy Development Fund (Kentucky) + Kentucky + Alternative Energy Zone (Ohio) + Ohio + Alternative Renewable Fuels 'Plus' Research and Development Fund (Ontario, Canada) +...

  17. Percent of Commercial Natural Gas Deliveries in Kentucky Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 97.1 96.6 96.4 94.9 91.0 89.2 89.5 88.2 89.8 90.7 94.4 97.0 1990 97.2 96.9 96.3 94.8 91.6 91.6 89.5 89.5 89.1 93.3 95.0 96.2 1991 97.1 95.7 94.7 89.8 86.4 85.5 87.5 88.0 91.1 91.5 95.7 95.5 1992 95.4 94.2 93.6 91.9 87.9 86.9 86.7 87.4 87.9 93.0 94.6 94.9 1993 91.6 91.6 95.3 93.5 92.4 93.5 89.9 81.6 88.1 88.5 94.5 95.4 1994 93.6 95.9 94.6 92.1 88.2 85.4 83.0 83.5 83.4 87.6 87.9 89.9 1995 90.8 91.2 89.9 86.3 87.4 80.6

  18. INDEPENDENT TECHNICAL REVIEW OF THE C-400 INTERIM REMEDIAL PROJECT PHASE I RESULTS, PADUCAH, KENTUCKY

    SciTech Connect (OSTI)

    Looney, B.; Rossabi, J.; Stewart,L.; Richards, W.

    2010-10-29

    The groundwater and soil in the vicinity of the C-400 Building at the Paducah Gaseous Diffusion Plant (PGDP), is contaminated with substantial quantities of industrial solvents, primarily trichoroethene (TCE). This solvent 'source' is recognized as a significant challenge and an important remediation target in the overall environmental cleanup strategy for PGDP. Thus, the cleanup of the C-400 TCE Source is a principal focus for the Department of Energy (DOE) and its contractors, and for PGDP regulators and stakeholders. Using a formal investigation, feasibility study and decision process, Electrical Resistance Heating (ERH) was selected for the treatment of the soil and groundwater in the vicinity of C-400. ERH was selected as an interim action to remove 'a significant portion of the contaminant mass of TCE at the C-400 Cleaning Building area through treatment' with the longer term goal of reducing 'the period the TCE concentration in groundwater remains above its Maximum Contaminant Level (MCL).' ERH is a thermal treatment that enhances the removal of TCE and related solvents from soil and groundwater. The heterogeneous conditions at PGDP, particularly the high permeability regional gravel aquifer (RGA), are challenging to ERH. Thus, a phased approach is being followed to implement this relatively expensive and complex remediation technology. Conceptually, the phased approach encourages safety and efficiency by providing a 'lessons learned' process and allowing appropriate adjustments to be identified and implemented prior to follow-on phase(s) of treatment. More specifically, early deployment targeted portions of the challenging RGA treatment zone with relatively little contamination reducing the risk of adverse collateral impacts from underperformance in terms of heating and capture. Because of the importance and scope of the C-400 TCE source remediation activities, DOE chartered an Independent Technical Review (ITR) in 2007 to assess the C-400 ERH plans prior to deployment and a second ITR to evaluate Phase I performance in September 2010. In this report, these ITR efforts are referenced as the '2007 ITR' and the 'current ITR', respectively. The 2007 ITR document (Looney et al., 2007) provided a detailed technical evaluation that remains relevant and this report builds on that analysis. The primary objective of the current ITR is to provide an expedited assessment of the available Phase I data to assist the PGDP team as they develop the lessons learned from Phase I and prepare plans for Phase II.

  19. Natural Gas Citygate Price in Kentucky (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3.19 3.11 3.10 3.12 3.15 3.09 2.92 2.76 2.66 2.74 3.10 3.00 1990 3.45 3.36 3.34 3.29 3.29 3.05 2.74 2.48 2.38 2.57 3.04 3.13 1991 2.97 2.89 2.90 3.26 3.35 3.11 2.48 2.34 2.32 2.64 2.83 3.00 1992 2.95 2.89 2.85 2.89 2.89 2.98 2.57 2.74 2.76 3.53 3.28 3.26 1993 3.11 3.08 3.22 3.24 3.88 3.38 2.97 3.05 3.25 3.10 3.28 3.28 1994 3.25 3.37 3.42 3.32 3.56 3.06 3.04 2.72 2.32 2.74 3.16 2.99 1995 2.80 2.72 2.95 3.14 3.32 3.18 2.92 2.80 2.51 2.61

  20. Delegation Order No. 0204-60 to the Governor of the State of Kentucky

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-06-03

    Rescinded by: 57 FR 23932, effective June 3, 1992 The statutory bases for this regulation no longer exist.

  1. Kentucky Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 NA NA NA NA NA NA NA NA NA NA NA NA 2015 NA NA NA NA NA NA NA NA NA NA NA NA 2016 NA NA

  2. Kentucky Natural Gas Price Sold to Electric Power Consumers (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 W W W W W W W W W 4.91 4.91 5.24 2003 W W W W W W W W W W W W 2004 W W W W W W W W W W W W 2005 W W W 9.04 W W W W W W W W 2006 W 9.57 W W W W W 8.62 W W W W 2007 W W W W W W W W W W W W 2008 9.16 9.60 W W W W W W W W W W 2009 W W W 6.74 11.32 W W W W W W W 2010 W W W W W W W W W W 5.25 W 2011 W W W W 5.98 W 5.41 W W W W W 2012 W 5.38 W W W W W W W W W 6.84 2013 5.98 6.54 W 5.96 W W W W W W 5.28 W 2014 W W W W W W

  3. Kentucky Price of Natural Gas Sold to Commercial Consumers (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 4.30 4.28 4.32 4.30 4.48 4.48 4.63 4.76 4.66 4.43 4.39 4.23 1990 4.54 4.53 4.42 4.40 4.72 4.76 5.00 4.71 4.78 4.45 4.30 4.50 1991 4.41 4.42 4.43 4.64 4.62 4.72 5.09 4.75 4.19 4.16 4.34 4.42 1992 4.43 4.27 4.16 4.27 4.19 4.46 4.50 4.75 4.61 4.52 4.77 4.78 1993 4.90 4.58 4.59 4.61 4.99 3.97 5.27 5.10 5.50 4.89 4.94 5.13 1994 4.93 4.82 4.77 4.96 5.46 5.37 5.48 5.53 5.19 5.00 5.05 4.98 1995 4.78 4.65 4.60 4.77 4.78

  4. EA-1927: Paducah Gaseous Diffusion Plant Potential Land and Facilities Transfers; McCracken County, Kentucky

    Broader source: Energy.gov [DOE]

    DOE’s Portsmouth/Paducah Project Office prepared an EA that assesses the potential environmental impacts of the proposed transfer of land and facilities at the Paducah Gaseous Diffusion Plant from DOE to other entities for economic development.

  5. Proposed sale of radioactively contaminated nickel ingots located at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    1995-10-01

    The U.S. Department of Energy (DOE) proposes to sell 8,500 radioactively contaminated nickel ingots (9.350 short tons), currently in open storage at the Paducah Gaseous Diffusion Plant (PGDP), to Scientific Ecology Group, Inc. (SEG) for decontamination and resale on the international market. SEG would take ownership of the ingots when they are loaded for transport by truck to its facility in Oak Ridge, Tennessee. SEG would receive approximately 200 short tons per month over approximately 48 months (an average of 180 ingots per month). The nickel decontamination process specified in SEG`s technical proposal is considered the best available technology and has been demonstrated in prototype at SEG. The resultant metal for resale would have contamination levels between 0.3 and 20 becquerel per gram (Bq/g). The health hazards associated with release of the decontaminated nickel are minimal. The activity concentration of the end product would be further reduced when the nickel is combined with other metals to make stainless steel. Low-level radioactive waste from the SEG decontamination process, estimated to be approximately 382 m{sup 3} (12,730 ft), would be shipped to a licensed commercial or DOE disposal facility. If the waste were packaged in 0.23 m{sup 3}-(7.5 ft{sup 3}-) capacity drums, approximately 1,500 to 1,900 drums would be transported over the 48-month contract period. Impacts from the construction of decontamination facilities and the selected site are minimal.

  6. Inorganic soil and groundwater chemistry near Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    Moore, G.K.

    1995-03-01

    Near-surface soils, boreholes, and sediments near the Paducah Gaseous Diffusion Plant (PGDP) were sampled in 1989-91 as were monitoring wells, TVA wells, and privately-owned wells. Most wells were sampled two or three times. The resulting chemical analyses have been published in previous reports and have been previously described (CH2M HILL 1991, 1992; Clausen et al. 1992). The two reports by CH2M HILL are controversial, however, because, the concentrations of some constituents were reported to exceed background levels or drinking water standards and because both on-site (within the perimeter fence at PGDP) and off-site pollution was reported to have occurred. The groundwater samples upon which these interpretations were based may not be representative, however. The CH2M HILL findings are discussed in the report. The purpose of this report is to characterize the inorganic chemistry of groundwater and soils near PGDP, using data from the CH2M HILL reports (1991, 1992), and to determine whether or not any contamination has occurred. The scope is limited to analysis and interpretation of data in the CH2M HILL reports because previous interpretations of these data may not be valid, because samples were collected in a relatively short period of time at several hundred locations, and because the chemical analyses are nearly complete. Recent water samples from the same wells were not considered because the characterization of inorganic chemistry for groundwater and soil requirements only one representative sample and an accurate analysis from each location.

  7. Final environmental impact assessment of the Paducah Gaseous Diffusion Plant site, Paducah, Kentucky

    SciTech Connect (OSTI)

    Not Available

    1982-08-01

    This document considers: the need for uranium enrichment facilities; site location; plant description; and describes the power generating facilities in light of its existing environment. The impacts from continuing operations are compared with alternatives of shutdown, relocation, and alternative power systems. (PSB)

  8. Percent of Commercial Natural Gas Deliveries in Kentucky Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 95.0 94.0 93.1 92.6 91.4 89.2 90.8 90.0 87.4 87.9 2000's 85.6 81.8 78.9 79.2 78.7 79.7 81.3 81.7 82.0 80.1 2010's 80.5 79.2 77.4 78.8 80.5 79.2

  9. Percent of Industrial Natural Gas Deliveries in Kentucky Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 19.2 17.8 17.5 2000's 19.0 18.7 17.7 18.8 16.9 16.9 15.8 16.6 17.5 18.1 2010's 17.9 17.6 17.8 18.3 17.2 16.0

  10. Percent of Industrial Natural Gas Deliveries in Kentucky Represented by the

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 27.3 21.8 18.9 13.8 17.8 15.8 17.4 17.4 17.3 19.6 16.5 16.9 2002 16.8 18.2 18.9 17.2 15.5 16.5 18.0 19.1 16.3 18.0 18.8 18.4 2003 20.6 20.1 18.7 19.5 19.2 20.3 16.6 16.0 18.1 18.2 18.1 18.4 2004 18.8 18.3 16.3 16.0 14.6 16.6 16.2 15.2 15.5 15.6 17.5 20.3 2005 16.5 17.5 17.3 16.0 15.8 15.2 16.1 14.9 17.4 17.9 17.2 19.7 2006 15.6 16.9 17.6 14.8 14.9 14.2 16.0 15.7 14.6 15.7 15.5 17.6 2007 16.6 18.1 17.0 17.7 16.1 17.5

  11. EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky Site

    Broader source: Energy.gov [DOE]

    This site-specific EIS considers the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three locations within the Paducah site; transportation of depleted uranium conversion products and waste materials to a disposal facility; transportation and sale of the hydrogen fluoride (HF) produced as a conversion co-product; and neutralization of HF to calcium fluoride and its sale or disposal in the event that the HF product is not sold.

  12. West Kentucky Regional High School Science Bowl | U.S. DOE Office...

    Office of Science (SC) Website

    Regional Contact Information Regional Coordinator: Don Dihel Email: Don.Dihel@lex.doe.gov Phone: 270-441-6824 Co-Coordinator: Robert "Buz" Smith Email: Robert.Smith@lex.doe.gov ...

  13. West Kentucky Regional Middle School Science Bowl | U.S. DOE...

    Office of Science (SC) Website

    Regional Contact Information Regional Coordinator: Don Dihel Email: Don.Dihel@lex.doe.gov Phone: 270-441-6824 Co-Coordinator: Robert "Buz" Smith Email: Robert.Smith@lex.doe.gov ...

  14. Kentucky Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,027 1,035 1,036 2010's 1,030 1,027 1,030 1,028 1,028

  15. Kentucky Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 0 0 0 0 0

  16. Kentucky Natural Gas Price Sold to Electric Power Consumers (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.45 3.40 3.49 2000's 5.08 4.70 3.60 W W W 7.96 W W W 2010's W W W W

  17. Kentucky Price of Natural Gas Sold to Commercial Consumers (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.68 0.64 0.65 1970's 0.67 0.71 0.75 0.81 0.91 1.06 1.15 1.66 1.83 2.20 1980's 2.92 3.39 4.39 5.16 5.04 5.10 4.73 4.26 4.21 4.35 1990's 4.52 4.44 4.47 4.82 4.98 4.60 5.09 5.79 5.43 5.14 2000's 6.68 9.20 7.05 8.62 10.18 12.27 13.22 11.29 13.25 10.89 2010's 8.61 8.79 8.28 8.32 9.04 8.80

  18. Natural Gas Citygate Price in Kentucky (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3.94 3.76 3.32 2.98 2.94 3.01 1990's 3.07 2.83 3.02 3.21 3.13 2.80 3.41 3.83 3.23 3.27 2000's 4.93 6.32 4.45 6.11 7.28 9.69 9.07 8.22 10.14 5.98 2010's 5.69 5.18 4.17 4.47 5.16 NA

  19. Ohio-Kentucky-Indiana Regional Council of Governments Solar Ready Construction Guidelines

    Broader source: Energy.gov [DOE]

    These voluntary guidelines are developed for the local governments of the OKI region to provide guidance for residential developers, home builders, and architects in the design and construction of new residential buildings. These guidelines are intended to guide a developer, architect, or other interested party through the components of building design required to prepare a building for future solar installation. These guidelines include best practices for solar-ready building design to minimize the costs of future solar installation while maximizing potential system efficiency and apply to site selection, building design, and building construction.

  20. New Whole-House Solutions Case Study: Urbane Homes, Louisville, Kentucky

    SciTech Connect (OSTI)

    none,

    2013-09-01

    This builder worked with National Association of Home Builders Research Center to build HERS-57 homes with rigid foam insulated slabs and foundation walls, advanced framed walls, high-efficiency heat pumps, and ducts in conditioned space.