Sample records for kent bioenergy lightsource

  1. Kent BioEnergy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii |Island,Kas Farms WindKemp,Kenston SchoolKent

  2. Bioenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioenergy Bioenergy Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Babetta...

  3. Bioenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioenergy Los Alamos developing next-generation of biofuels from renewable resources Read caption + Los Alamos scientists used genetic engineering to develop magnetic algae, thus...

  4. Bioenergy

    SciTech Connect (OSTI)

    None

    2014-11-20T23:59:59.000Z

    Scientists and engineers at Idaho National Laboratory are working with partners throughout the bioenergy industry in preprocessing and characterization to ensure optimum feedstock quality. This elite team understands that addressing feedstock variability is a critical component in the biofuel production process.

  5. Kent County- Wind Ordinance

    Broader source: Energy.gov [DOE]

    This ordinance establishes provisions and standards for small wind energy systems in various zoning districts in Kent County, Maryland.

  6. Sustainable Bioenergy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainable Bioenergy Sustainable Bioenergy Argonne's research in bioenergy includes topics associated with feedstock production and biomass conversion. Argonne scientists also...

  7. Lighting affects appearance LightSource emits photons

    E-Print Network [OSTI]

    Jacobs, David

    1 Lighting affects appearance #12;2 LightSource emits photons Photons travel in a straight line). And then some reach the eye/camera. #12;3 Basic fact: Light is linear Double intensity of sources, double photons reaching eye. Turn on two lights, and photons reaching eye are same as sum of number when each

  8. Lighting affects appearance LightSource emits photons

    E-Print Network [OSTI]

    Jacobs, David

    1 Lighting affects appearance #12;2 LightSource emits photons Photons travel in a straight line). And then some reach the eye/camera. #12;3 Reflectance Model how objects reflect light. Model light sources Algorithms for computing Shading: computing intensities within polygons Determine what light strikes what

  9. Bioenergy Walkthrough

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform isEnergyMeeting | DepartmentBioenergy Technologies OfficeOVERVIEW

  10. Bioenergy Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplexMaterial Science |MaterialsNaturalBioenergy

  11. Bioenergy with Carbon Capture and Sequestration WorkshopBioenergy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy with Carbon Capture and Sequestration WorkshopBioenergy with Carbon Capture and Sequestration (BECCS) Workshop Bioenergy with Carbon Capture and Sequestration...

  12. Bioenergy 2015 Press Room

    Broader source: Energy.gov [DOE]

    This U.S. Department of Energy Bioenergy 2015 online press room provides contacts, information, and resources to members of the media who cover Bioenergy 2015 conference-related news.

  13. National Bioenergy Day 2014

    Broader source: Energy.gov [DOE]

    Bioenergy, the use of agricultural waste and forestry byproducts to generate heat and energy, will be celebrated during the second annual National Bioenergy Day on October 22, 2014. This is an...

  14. Hawaii Bioenergy Master Plan Bioenergy Technology

    E-Print Network [OSTI]

    technology assessment was conducted as part of the Hawaii Bioenergy Master Plan mandated by Act 253 collected in preparing this task and include: 1. The State should continue a bioenergy technology assessment-oil production X Y Charcoal production X X Y Bio-oil production for fuels X X Y Combustion X Y Renewable diesel

  15. IT user guide Using the Kent network

    E-Print Network [OSTI]

    Banaji,. Murad

    to save files and print using your own computer/laptop #12;2 Protect your own computer Security advice and links to free anti-virus software for Windows or Mac: www.kent.ac.uk/itservices/secure Saving to the Kent network As a student or staff member, you have a folder on the Kent network for saving your work

  16. Streamlining Bioenergy Feedstock Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Streamlining Bioenergy Feedstock Engineering The DOE Biomass Program's feedstock research and development tools enable collaboration and sharing of feedstock development knowledge...

  17. Bioenergy: America's Energy Future

    ScienceCinema (OSTI)

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2014-08-12T23:59:59.000Z

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  18. Bioenergy: America's Energy Future

    SciTech Connect (OSTI)

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2014-07-31T23:59:59.000Z

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  19. Bioenergy Impact on Wisconsin's Workforce

    Broader source: Energy.gov [DOE]

    Troy Runge, Wisconsin Bioenergy Initiative, presents on bioenergy's impact on Wisconsin's workforce development for the Biomass/Clean Cities States webinar.

  20. New and emerging bioenergy technologies

    E-Print Network [OSTI]

    or fisheries. Examples of bioenergy resources are fuel wood, bagasse, organic waste, biogas and bioethanol

  1. Bioenergy & Clean Cities

    Broader source: Energy.gov [DOE]

    DOE's Bioenergy Technologies Office and the Clean Cities program regularly conduct a joint Web conference for state energy office representatives and Clean Cities coordinators. The Web conferences...

  2. Gasification Research BIOENERGY PROGRAM

    E-Print Network [OSTI]

    Gasification Research BIOENERGY PROGRAM Description Researchers inthe@tamu.edu Skid-mounted gasifier: 1.8 tons-per-day pilot unit Gasification of cotton gin trash The new Texas A

  3. Kent Hibben | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732on ArmedManufacturingJune 17, 2015 - SEABSmallKen T. VenutoKent

  4. Hawaii Bioenergy Master Plan Business Partnering

    E-Print Network [OSTI]

    Hawaii Bioenergy Master Plan Business Partnering Steven Chiang, Director Agribusiness Incubator a productive bioenergy industry, successful partnering amongst industry "players" is essential. This section of the Hawaii Bioenergy Master Plan specifically evaluates facilitating the bioenergy industry through

  5. Bioenergy Key Publications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-OilBioenergy 2015 AgendaBioenergyKEY

  6. Bioenergy Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-OilBioenergy 2015Bioenergy Pumps

  7. Factors for Bioenergy Market Development

    SciTech Connect (OSTI)

    Roos, A.; Hektor, B.; Graham, R.L.; Rakos, C.

    1998-10-04T23:59:59.000Z

    Focusing on the development of the whole bioenergy market rather than isolated projects, this paper contributes to the identification of barriers and drivers behind bioenergy technology implementation. It presents a framework for the assessment of the potentials for bioenergy market growth to be used by decision makers in administration and industry. The conclusions are based on case studies of operating bioenergy markets in Austria, US and Sweden. Six important factors for bioenergy market growth have been identified: (1) Integration with other business, e.g. for biomass procurement, (2) Scale effects of bioenergy market, (3) Competition on bioenergy market, (4) Competition with other business, (5) National policy, (6) Local policy and local opinion. Different applications of the framework are discussed.

  8. Communicating about bioenergy sustainability

    SciTech Connect (OSTI)

    Dale, Virginia H [ORNL] [ORNL; Kline, Keith L [ORNL] [ORNL; Perla, Dr. Donna [US Environmental Protection Agency] [US Environmental Protection Agency; Lucier, Dr. Al [National Council on Air and Stream Improvement] [National Council on Air and Stream Improvement

    2013-01-01T23:59:59.000Z

    Defining and measuring sustainability of bioenergy systems are difficult because the systems are complex, the science is in early stages of development, and there is a need to generalize what are inherently context-specific enterprises. These challenges, and the fact that decisions are being made now, create a need for improved communications among scientists as well as between scientists and decision makers. In order for scientists to provide information that is useful to decision makers, they need to come to an agreement on how to measure and report potential risks and benefits of diverse energy alternatives, including problems and opportunities in various bioenergy production pathways. Scientists also need to develop approaches that contribute information relevant to policy and decision making. The need for clear communication is especially important at this time when there is a plethora of scientific papers and reports, and it is difficult for the public or decision makers to assess the merits of each analysis. We propose three communication guidelines for scientists whose work can contribute to decision making: (1) relationships between the question and the analytical approach should be clearly defined and make common sense; (2) the information should be presented in a manner that nonscientists can understand; and (3) the implications of methods, assumptions and limitations should be clear. The scientists job is to analyze information in order to build a better understanding of environmental, cultural and socioeconomic aspects of the sustainability of energy alternatives. The scientific process requires transparency, debate, review, and collaboration across disciplines and time. This paper serves as an introduction to the papers in the special issue on Sustainability of Bioenergy Systems: Cradle to Grave because scientific communication is essential to developing more sustainable energy systems. Together these four papers provide a framework under which the effects of bioenergy can be assessed and compared to other energy alternatives in order to foster sustainability.

  9. Bioenergy Success Stories

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartmentWindConversion BiochemicalDepartment ofBioenergy News61

  10. The Future of Bioenergy Feedstock Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Future of Bioenergy Feedstock Production Cornell University June, 2013 John Ferrell Feedstock Technology Lead Bioenergy Technologies Office US Department of Energy 2...

  11. The Endurance Bioenergy Reactor | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Endurance Bioenergy Reactor Share Description Argonne biophysicist Dr. Philip Laible and Air Force Major Matt Michaud talks about he endurance bioenergy reactor-a device that...

  12. Biofuel and Bioenergy implementation scenarios

    E-Print Network [OSTI]

    Biofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies #12;Biofuel and Bioenergy implementation scenarios Final report of VIEWLS WP5, modelling studies By André of this project are to provide structured and clear data on the availability and performance of biofuels

  13. NREL: Innovation Impact - Bioenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit |Infrastructure The foundationBioenergy Menu Home

  14. KENT SCHOOL OF ARCHITECTURE DEGREE CATALOGUE

    E-Print Network [OSTI]

    Banaji,. Murad

    Architecture & Urban Design Prof. Gordana Fontana-Giusti MSc Architecture & Sustainable Environment ProfKENT SCHOOL OF ARCHITECTURE DEGREE CATALOGUE 2014 #12;#12;#12;/01 /03 /02 WELCOME BA (HONS) M(ARCH) Head of School Foreword Prof. Don Gray BA (Hons) Architecture Introduction Prof. Gerald Adler Stage 03

  15. National Bioenergy Center Biochemical Platform Integration Project

    SciTech Connect (OSTI)

    Not Available

    2008-07-01T23:59:59.000Z

    April through June 2008 update on activities of the National Bioenergy Center's Biochemical Platform Integration Project.

  16. BIOENERGI ER BLEVET MODERNE 4DECEMBER 2003

    E-Print Network [OSTI]

    , biogas og bioethanol. Bioenergi er den eneste vedvarende energikilde, der findes i fast, flydende og

  17. Moderne bioenergi -et nyt dansk vkstomrde?

    E-Print Network [OSTI]

    ), organisk affald, biogas og bioethanol Bioenergi er den eneste vedvarende energikilde, der findes i fast

  18. Sustainable Forest Bioenergy Initiative

    SciTech Connect (OSTI)

    Breger, Dwayne; Rizzo, Rob

    2011-09-20T23:59:59.000Z

    In the state’s Electricity Restructuring Act of 1998, the Commonwealth of Massachusetts recognized the opportunity and strategic benefits to diversifying its electric generation capacity with renewable energy. Through this legislation, the Commonwealth established one of the nation’s first Renewable Energy Portfolio Standard (RPS) programs, mandating the increasing use of renewable resources in its energy mix. Bioenergy, meeting low emissions and advanced technology standards, was recognized as an eligible renewable energy technology. Stimulated by the state’s RPS program, several project development groups have been looking seriously at building large woody biomass generation units in western Massachusetts to utilize the woody biomass resource. As a direct result of this development, numerous stakeholders have raised concerns and have prompted the state to take a leadership position in pursuing a science based analysis of biomass impacts on forest and carbon emissions, and proceed through a rulemaking process to establish prudent policy to support biomass development which can contribute to the state’s carbon reduction commitments and maintain safeguards for forest sustainability. The Massachusetts Sustainable Forest Bioenergy Initiative (SFBI) was funded by the Department of Energy and started by the Department of Energy Resources before these contentious biomass issues were fully raised in the state, and continued throughout the substantive periods of this policy development. Thereby, while SFBI maintained its focus on the initially proposed Scope of Work, some aspects of this scope were expanded or realigned to meet the needs for groundbreaking research and policy development being advanced by DOER. SFBI provided DOER and the Commonwealth with a foundation of state specific information on biomass technology and the biomass industry and markets, the most comprehensive biomass fuel supply assessment for the region, the economic development impact associated with biomass usage, an understanding of forest management trends including harvesting and fuel processing methods, and the carbon profile of utilizing forest based woody biomass for the emerging biomass markets. Each of the tasks and subtasks have provided an increased level of understanding to support new directives, policies and adaptation of existing regulations within Massachusetts. The project has provided the essential information to allow state policymakers and regulators to address emerging markets, while ensuring forest sustainability and understanding the complex science on CO2 accounting and impacts as a result of biomass harvesting for power generation. The public at large and electricity ratepayers in Massachusetts will all benefit from the information garnered through this project. This is a result of the state’s interest to provide financial incentives to only biomass projects that demonstrate an acceptable carbon profile, an efficient use of the constrained supply of fuel, and the harvest of biomass to ensure forest sustainability. The goals of the Massachusetts Sustainable Forest Bioenergy Initiative as proposed in 2006 were identified as: increase the diversity of the Massachusetts energy mix through biomass; promote economic development in the rural economy through forest industry job creation; help fulfill the state’s energy and climate commitments under the Renewable Energy Portfolio Standard and Climate Protection Plan; assist the development of a biomass fuel supply infrastructure to support energy project demands; provide education and outreach to the public on the benefits and impacts of bioenergy; improve the theory and practice of sustainable forestry in the Commonwealth. Completed project activities summarized below will demonstrate the effectiveness of the project in meeting the above goals. In addition, as discussed above, Massachusetts DOER needed to make some modifications to its work plan and objectives during the term of this project due to changing public policy demands brought forth in the course of the public discours

  19. Abengoa Bioenergy Biomass of Kansas LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Abengoa Bioenergy Biomass of Kansas LLC Abengoa Bioenergy Biomass of Kansas LLC Abengoa Bioenergy Biomass of Kansas LLC Location: Hugoton, KS Eligibility: 1705 Snapshot In...

  20. Bioenergy 2015 Call for Posters

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Bioenergy Technologies Office (BETO) invites students, researchers, public and private organizations, and members of the general public to submit abstracts that BETO will review and consider for inclusion in the poster session at BETO’s eighth annual conference, Bioenergy 2015: Opportunities in a Changing Energy Landscape. The conference will be held June 23–24, 2015, at the Walter E. Washington Convention Center in Washington, D.C.

  1. Hawaii Bioenergy Master Plan Potential Environmental Impacts of

    E-Print Network [OSTI]

    Hawaii Bioenergy Master Plan Potential Environmental Impacts of Bioenergy Development in Hawaii of the potential environmental impacts associated with bioenergy development in Hawaii was conducted as part included the characterization of the general environmental impacts and issues associated with bioenergy

  2. Bioenergy Business Partner Information Gathering Form

    E-Print Network [OSTI]

    Bioenergy Business Partner Information Gathering Form Fax completed form to the Agribusiness.hnei.hawaii.edu/bmpp/stakeholders.asp Partners are organizations that perform, intend to perform, or should perform bioenergy processes and/or requirements. Please tell us about your organization and the role it plays in bioenergy production in Hawaii

  3. NREL National Bioenergy Center Overview

    SciTech Connect (OSTI)

    Foust, Thomas; Pienkos, Phil; Sluiter, Justin; Magrini, Kim; McMillan, Jim

    2014-07-28T23:59:59.000Z

    The demand for clean, sustainable, secure energy is growing... and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is answering the call. NREL's National Bioenergy Center is pioneering biofuels research and development and accelerating the pace these technologies move into the marketplace.

  4. NREL National Bioenergy Center Overview

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    The demand for clean, sustainable, secure energy is growing... and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is answering the call. NREL's National bioenergy Center is pioneering biofuels research and development and accelerating the pace these technologies move into the marketplace.

  5. implementing bioenergy applied research & development

    E-Print Network [OSTI]

    Northern British Columbia, University of

    1 A Northern Centre for Renewable Energy implementing bioenergy applied research & development to develop local solutions to these challenges by integrating campus operations, education, and research will help the University meet its current and future energy needs, reduce or eliminate our greenhouse gas

  6. Bioenergy 2015: Attendee Networking Tool

    Broader source: Energy.gov [DOE]

    For the Bioenergy 2015 Conference, this tool offers a concise listing of participants' background, areas of expertise, areas of need, and business contact information. Users can sort the information by clicking on the arrows in the header rows. Users can also filter by keywords by typing them into the search field in order to find individuals with skill sets complementary to their own.

  7. November 2013 www.kent.ac.uk/library

    E-Print Network [OSTI]

    Banaji,. Murad

    November 2013 www.kent.ac.uk/library Information Services Templeman Library SCONUL Access scheme) to the Templeman Library. I am a registered member of the Sconul Access scheme and hold a valid card. If given ............................... ................................................................................................................ Home library

  8. Ris Energy Report 2 Bioenergy is energy of biological and renewable origin,

    E-Print Network [OSTI]

    of bioenergy resources are fuel wood, bagasse, organic waste, biogas and bioethanol. Bioenergy is the only

  9. STAFFREPORT Prepared for the Bioenergy Interagency Working Group

    E-Print Network [OSTI]

    STAFFREPORT Prepared for the Bioenergy Interagency Working Group: Air Resources Board 2010 2009 PROGRESS TO PLAN BIOENERGY ACTION PLAN FOR CALIFORNIA CALIFORNIA ENERGY COMMISSION #12, and et. al. 2010. 2009 Progress to Plan Bioenergy Action Plan for California. California Energy

  10. Bird Communities and Biomass Yields in Potential Bioenergy Grasslands

    E-Print Network [OSTI]

    Turner, Monica G.

    providing bird habitat. Bioenergy grasslands promote agricultural multifunctionality and conservationBird Communities and Biomass Yields in Potential Bioenergy Grasslands Peter J. Blank1 *, David W, Wisconsin, United States of America Abstract Demand for bioenergy is increasing, but the ecological

  11. NETWORK OF EXCELLENCE The CAP & Bioenergy

    E-Print Network [OSTI]

    -cultural · Research Energy for SD Products & Services SD & Buildings · Education · Outreach #12;BIOENERGY NETWORK residues, waste streams and energy crops. Heat, electricity and biofuels for transport. · Suggests

  12. BioEnergy Blog | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department's Bioenergy Technologies Office engages with the U.S. Department of Agriculture on many projects, including guidance on the proper removal of corn stover...

  13. International Market Opportunities in Bioenergy: Leveraging U...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Biomass 2014: Breakout Speaker Biographies Bioenergy Technologies Office Overview U.S. and Brazil Bilateral Collaboration on Biofuels...

  14. Bioenergy Knowledge Discovery Framework Recognized at National...

    Broader source: Energy.gov (indexed) [DOE]

    research. In 2014, the Bioenergy KDF released new tools, including the Legislative Library, Biomass Scenario Model Tool, and DOE-Funded Content Page. This award is significant...

  15. BioEnergy Science Center (BESC) | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Media News and Awards Supporting Organizations Redefining The Frontiers of Bioenergy Home | Science & Discovery | Clean Energy | Facilities and Centers | BioEnergy...

  16. Bioenergy Technologies Office Multi-Year Program Plan: November...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Technologies Office Multi-Year Program Plan: November 2014 Update Bioenergy Technologies Office Multi-Year Program Plan: November 2014 Update This Multi-Year Program Plan...

  17. Office of the Biomass Program Educational Opportunities in Bioenergy...

    Office of Environmental Management (EM)

    the New Bioenergy KDF for Data Discovery and Research Sustainability for the Global Biofuels Industry: Minimizing Risks and Maximizing Opportunities Bioenergy Technologies Office...

  18. ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues...

    Energy Savers [EERE]

    ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues In a Densified Large Square Bale Format ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues In a...

  19. Breakthrough in Bioenergy: American Process Sells First RIN-qualified...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakthrough in Bioenergy: American Process Sells First RIN-qualified Cellulosic Ethanol Shipment Breakthrough in Bioenergy: American Process Sells First RIN-qualified Cellulosic...

  20. analysing bioenergy demand: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sorghum program that boasts about 40 6 Hawaii Bioenergy Master Plan Bioenergy Technology Renewable Energy Websites Summary: technology assessment was conducted as part of the...

  1. assessing bioenergy options: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are reviewed Vermont, University of 9 Hawaii Bioenergy Master Plan Bioenergy Technology Renewable Energy Websites Summary: technology assessment was conducted as part of the...

  2. alaska bioenergy program: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and function of managed, semi 23 Hawaii Bioenergy Master Plan Bioenergy Technology Renewable Energy Websites Summary: technology assessment was conducted as part of the...

  3. agency bioenergy agreement: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carolina; Sponsorad Epa 1994-01-01 13 Hawaii Bioenergy Master Plan Bioenergy Technology Renewable Energy Websites Summary: technology assessment was conducted as part of the...

  4. Washington, D.C. and Tennessee: Bioenergy Technologies Office...

    Energy Savers [EERE]

    National Bioenergy Day 2014 Project Overview Positive Impact The KDF supports the development of a sustainable bioenergy industry by providing unique value for researchers,...

  5. Bioenergy technology balancing energy output with environmental

    E-Print Network [OSTI]

    Levi, Ran

    E2.3 Bioenergy technology ­ balancing energy output with environmental benefitsbenefits John bioenergy Farmers historically used 25% land for horse feed #12;Energy crops are `solar panels' Solar energy° 50° #12;Same climate data (A1F1 scenario for 2050 - 2080) but the genotype is one which is less

  6. Bioenergy Knowledge Discovery Framework (KDF)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-OilBioenergy 2015

  7. Osage Bioenergy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympia GreenThesource History ViewOrmatOsage Bioenergy

  8. Bioenergy

    Broader source: Energy.gov [DOE]

    Learn how the Energy Department is working to sustainably transform the nation's abundant renewable resources into biomass energy.

  9. Bioenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find Find More Like This ReturnBioactiveBSD

  10. Bioenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplexMaterial Science |MaterialsNatural

  11. Webinar: Using the New Bioenergy KDF for Data Discovery and Research...

    Energy Savers [EERE]

    Using the New Bioenergy KDF for Data Discovery and Research Webinar: Using the New Bioenergy KDF for Data Discovery and Research Webinar Slides about the new Bioenergy KDF...

  12. Sorghum bioenergy genotypes, genes and pathways

    E-Print Network [OSTI]

    Plews, Ian Kenneth

    2009-05-15T23:59:59.000Z

    and this plant is a potentially important bioenergy crop for Texas. The diversity of the twelve high biomass sorghum genotypes was analyzed using 50 simple sequence repeats (SSR) markers with genome coverage. The accumulation of biomass during sorghum development...

  13. Achieving Water-Sustainable Bioenergy Production

    Broader source: Energy.gov [DOE]

    Breakout Session 3-A: Growing a Water-Smart Bioeconomy Achieving Water-Sustainable Bioenergy ProductionMay Wu, Principal Environmental System Analyst in the Energy Systems Division, Argonne...

  14. Bioenergy with Carbon Capture and Sequestration Workshop

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy (FE) and the Bioenergy Technologies Office (BETO) in the Office of Energy Efficiency and Renewable Energy (EERE) at the U.S. Department of Energy (DOE) is hosting a...

  15. Sorghum bioenergy genotypes, genes and pathways 

    E-Print Network [OSTI]

    Plews, Ian Kenneth

    2009-05-15T23:59:59.000Z

    and this plant is a potentially important bioenergy crop for Texas. The diversity of the twelve high biomass sorghum genotypes was analyzed using 50 simple sequence repeats (SSR) markers with genome coverage. The accumulation of biomass during sorghum development...

  16. Bioenergy Research at BNL: Increasing Productivity Using

    E-Print Network [OSTI]

    Homes, Christopher C.

    Bioenergy Research at BNL: Increasing Productivity Using Biological Interactions Lee Newman With D consequences: ­ Price of corn has doubled ­ Farmers are planting more corn for ethanol · Increase alternative

  17. Bioenergy in Energy Transformation and Climate Management

    SciTech Connect (OSTI)

    Rose, Steven K.; Kriegler, Elmar; Bibas, Ruben; Calvin, Katherine V.; Popp, Alexander; van Vuuren, Detlef; Weyant, John

    2014-04-01T23:59:59.000Z

    Unlike fossil fuels, biomass is a renewable resource that can sequester carbon during growth, be converted to energy, and then re-grown. Biomass is also a flexible fuel that can service many end-uses. This paper explores the importance of bioenergy to potential future energy transformation and climate change management. Using a model comparison of fifteen models, we characterize and analyze future dependence on, and the value of, bioenergy in achieving potential long-run climate objectives—reducing radiative forcing to 3.7 and 2.8 W/m2 in 2100 (approximately 550 and 450 ppm carbon dioxide equivalent atmospheric concentrations). Model scenarios project, by 2050, bioenergy growth of 2 to 10% per annum reaching 5 to 35 percent of global primary energy, and by 2100, bioenergy becoming 15 to 50 percent of global primary energy. Non-OECD regions are projected to be the dominant suppliers of biomass, as well as consumers, with up to 35 percent of regional electricity from biopower by 2050, and up to 70 percent of regional liquid fuels from biofuels by 2050. Bioenergy is found to be valuable to many models with significant implications for mitigation costs and world consumption. The availability of bioenergy, in particular biomass with carbon dioxide capture and storage (BECCS), notably affects the cost-effective global emissions trajectory for climate management by accommodating prolonged near-term use of fossil fuels. We also find that models cost-effectively trade-off land carbon and nitrous oxide emissions for the long-run climate change management benefits of bioenergy. Overall, further evaluation of the viability of global large-scale bioenergy is merited.

  18. Bioenergy with Carbon Capture and Sequestration WorkshopBioenergy with Carbon Capture and Sequestration (BECCS) Workshop

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy (FE) and the Bioenergy Technologies Office (BETO) in the Office of Energy Efficiency and Renewable Energy (EERE) at the U.S. Department of Energy (DOE) is hosting a Bioenergy with Carbon Capture and Sequestration (BECCS) Workshop on Monday, May 18, 2015 in Washington, DC.

  19. Draft Bioenergy Master Plan for the State of Hawaii

    E-Print Network [OSTI]

    Draft Bioenergy Master Plan for the State of Hawaii Prepared for the U.S. Department of Energy DRAFT Hawaii Bioenergy Master Plan Volume I Prepared for State of Hawaii Department of Business

  20. Bioenergy Technologies Office Multi-Year Program Plan: July 2014...

    Energy Savers [EERE]

    Bioenergy Technologies Office Multi-Year Program Plan: July 2014 Update Bioenergy Technologies Office Multi-Year Program Plan: July 2014 Update This Multi-Year Program Plan (MYPP)...

  1. Bioenergy Technologies Office Multi-Year Program Plan: May 2013...

    Energy Savers [EERE]

    Bioenergy Technologies Office Multi-Year Program Plan: May 2013 Update Bioenergy Technologies Office Multi-Year Program Plan: May 2013 Update This is the May 2013 Update to the...

  2. Bioenergy 2015: Opportunities in a Changing Energy Landscape

    Broader source: Energy.gov [DOE]

    On June 23–24, 2015, the U.S. Department of Energy's (DOE’s) Bioenergy Technologies Office (BETO) will host its eighth annual conference—Bioenergy 2015: Opportunities in a Changing Energy Landscape...

  3. Bioenergy 2015: Opportunities in a Changing Energy Landscape

    Broader source: Energy.gov [DOE]

    On June 23–24, 2015, the U.S. Department of Energy's (DOE’s) Bioenergy Technologies Office (BETO) will host its eighth annual conference—Bioenergy 2015: Opportunities in a Changing Energy Landscape.

  4. Biomass as Feedstock for a Bioenergy and Bioproducts Industry...

    Energy Savers [EERE]

    Industry Biomass Program Peer Review Sustainability Platform Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting...

  5. Special issue: bioenergy Don-Hee Park Sang Yup Lee

    E-Print Network [OSTI]

    . As the field of bioenergy is rapidly moving forward with rather traditional bioethanol and biodiesel to more

  6. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2005-04-30T23:59:59.000Z

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

  7. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2004-10-31T23:59:59.000Z

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

  8. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2004-07-28T23:59:59.000Z

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

  9. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2005-01-31T23:59:59.000Z

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

  10. State Bioenergy Primer: Information and Resources for States on Issues, Opportunities, and Options for Advancing Bioenergy

    SciTech Connect (OSTI)

    Byrnett, D. S.; Mulholland, D.; Zinsmeister, E.; Doris, E.; Milbrandt, A.; Robichaud. R.; Stanley, R.; Vimmerstedt, L.

    2009-09-01T23:59:59.000Z

    One renewable energy option that states frequently consider to meet their clean energy goals is the use of biomass resources to develop bioenergy. Bioenergy includes bioheat, biopower, biofuels, and bioproducts. This document provides an overview of biomass feedstocks, basic information about biomass conversion technologies, and a discussion of benefits and challenges of bioenergy options. The Primer includes a step-wise framework, resources, and tools for determining the availability of feedstocks, assessing potential markets for biomass, and identifying opportunities for action at the state level. Each chapter contains a list of selected resources and tools that states can use to explore topics in further detail.

  11. Bioenergy Production Pathways and Value-Chain Components

    E-Print Network [OSTI]

    Bioenergy Production Pathways and Value-Chain Components Prepared for the U.S. Department of Energy on Life Cycle Analyses of Bioenergy Systems Prepared by Hawai`i Natural Energy Institute School of Ocean or reflect those of the United States Government or any agency thereof. #12;Bioenergy Production Pathways

  12. Bioenergy Review Mapping Work Resource efficiency science programme

    E-Print Network [OSTI]

    Bioenergy Review ­ Mapping Work Resource efficiency science programme Science report: SC070001/SR2 #12;ii Science Report ­ Bioenergy Review ­ Mapping Work The Environment Agency is the leading public, biomass, bioenergy, waste, wood-fuel, land, land-take, mapping, 2010, GIS Research Contractor: Forest

  13. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2003-01-15T23:59:59.000Z

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

  14. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2003-10-31T23:59:59.000Z

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

  15. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2001-10-31T23:59:59.000Z

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

  16. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2002-01-31T23:59:59.000Z

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

  17. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2004-04-30T23:59:59.000Z

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

  18. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2002-07-31T23:59:59.000Z

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

  19. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2002-04-30T23:59:59.000Z

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

  20. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2002-11-01T23:59:59.000Z

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

  1. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2001-07-31T23:59:59.000Z

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

  2. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2003-04-15T23:59:59.000Z

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

  3. Pacific Rim Summit on Industrial Biotechnology & Bioenergy

    Broader source: Energy.gov [DOE]

    The ninth annual Pacific Rim Summit on Industrial Biotechnology and Bioenergy will be held from December 7–9, 2014, in San Diego, California, at the Westin Gaslamp Quarter. Bringing together representatives from various countries all around the Pacific Rim, this event will focus on the growth of the industrial biotechnology and bioenergy sectors in North America and the Asia-Pacific region. Glenn Doyle, BETO's Deployment & Demonstration Technology Manager, will be moderating and speaking at a session on entitled "Utilizing Strategic Partnerships to Grow Your Business" on December 9.

  4. Bioenergy 2015 Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-OilBioenergy 2015 Agenda Bioenergy

  5. Bioenergy Science Center KnowledgeBase

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Syed, M. H.; Karpinets, T. V.; Parang, M.; Leuze, M. R.; Park, B. H.; Hyatt, D.; Brown, S. D.; Moulton, S. Galloway, M.D.; Uberbacher, E. C.

    The challenge of converting cellulosic biomass to sugars is the dominant obstacle to cost effective production of biofuels in s capable of significant enough quantities to displace U. S. consumption of fossil transportation fuels. The BioEnergy Science Center (BESC) tackles this challenge of biomass recalcitrance by closely linking (1) plant research to make cell walls easier to deconstruct, and (2) microbial research to develop multi-talented biocatalysts tailor-made to produce biofuels in a single step. [from the 2011 BESC factsheet] The BioEnergy Science Center (BESC) is a multi-institutional, multidisciplinary research (biological, chemical, physical and computational sciences, mathematics and engineering) organization focused on the fundamental understanding and elimination of biomass recalcitrance. The BESC Knowledgebase and its associated tools is a discovery platform for bioenergy research. It consists of a collection of metadata, data, and computational tools for data analysis, integration, comparison and visualization for plants and microbes in the center.The BESC Knowledgebase (KB) and BESC Laboratory Information Management System (LIMS) enable bioenergy researchers to perform systemic research. [http://bobcat.ornl.gov/besc/index.jsp

  6. Reaction Systems Engineering of Kent | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook iconQuito,JumpReaction Systems Engineering of Kent

  7. Kent City, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa: EnergyKanabecKenduskeag,Connecticut: EnergyNewKent City,

  8. Kent County Waste to Energy Facility Biomass Facility | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa: EnergyKanabecKenduskeag,Connecticut: EnergyNewKent

  9. New Kent County, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: EnergyEnergyPPCR)NevisInformation 4thInformation 8thKent

  10. Webinar: Landscape Design for Sustainable Bioenergy Systems

    Broader source: Energy.gov [DOE]

    The Energy Department’s Bioenergy Technologies Office will present a live informational webcast on the Landscape Design for Sustainable Bioenergy Systems Funding Opportunity (DE-FOA-0001179) on November 3, 2014, 1:30 p.m.–3:00 p.m. Eastern Standard Time. This FOA seeks interdisciplinary projects that apply landscape design approaches to integrate cellulosic feedstock production into existing agricultural and forestry systems while maintaining or enhancing environmental and socio-economic sustainability including ecosystem services and food, feed, and fiber production. For the purposes of this FOA, cellulosic feedstock production refers to dedicated annual and perennial energy crops, use of agricultural and forestry residues, or a combination of these options.

  11. Bioenergy Technologies Office Multi-Year Program Plan: July 2014...

    Broader source: Energy.gov (indexed) [DOE]

    July 2014 Update -- Sections Bioenergy Technologies Office Multi-Year Program Plan: July 2014 Update -- Sections This Multi-Year Program Plan (MYPP) sets forth the goals and...

  12. In Search of Spatial Opportunities for Sustainable Bioenergy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Institute for Mathematical and Biological Syntheses , ORNL Center for Bioenergy Sustainability Seminar Building 1505, Ocoee Room (189) CONTACT : Email: Jennifer Smith...

  13. GREET Bioenergy Life Cycle Analysis and Key Issues for Woody...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems, Argonne National Laboratory wangbiomass2014.pdf More Documents & Publications Resource Assessment and Land Use Change Bioenergy Technologies Office Multi-Year Program...

  14. Bioenergy Technologies Office: Association of Fish and Wildlife...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Bioenergy Technologies Office Association of Fish & Wildlife Agencies Agricultural Conservation Committee Meeting March 29, 2013 Kristen Johnson Sustainability...

  15. Bioenergy Technologies Office: Association of Fish and Wildlife...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural...

  16. EIS-0407: Abengoa Biomass Bioenergy Project near Hugoton, Stevens...

    Broader source: Energy.gov (indexed) [DOE]

    6, 2011 EIS-0407: Record of Decision Issuance of a Loan Guarantee to Abengoa Bioenergy Biomass of Kansas, LLC for the Abengoa Biorefinery Project Near Hugoton, Stevens County,...

  17. ORNL researchers contribute to major UN bioenergy and sustainability...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Communications 865.574.4399 ORNL researchers contribute to major bioenergy and sustainability report ORNL researchers Keith Kline and Virginia Dale contributed to a major...

  18. CHP and Bioenergy for Landfills and Wastewater Treatment Plants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Landfills and Wastewater Treatment Plants: Market Opportunities CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities This document explores...

  19. Bioenergy Technologies Office R&D Pathways: Algal Lipid Upgrading...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Biofuels Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae Hydrothermal Liquefaction...

  20. Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Whole Algae Hydrothermal Liquefaction Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae Hydrothermal Liquefaction Whole algae hydrothermal liquefaction is one of...

  1. Sandia Energy - "Bionic" Liquids from Lignin: Joint BioEnergy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liquids from Lignin: Joint BioEnergy Institute Results Pave the Way for Closed-Loop Biofuel Refineries Home Renewable Energy Energy Transportation Energy Biofuels Facilities...

  2. Carbon Offsets for Forestry and Bioenergy: Researching Opportunities...

    Open Energy Info (EERE)

    Researching Opportunities for Poor Rural Communities Jump to: navigation, search Name Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for Poor Rural...

  3. Bioenergy Technologies Office Conversion R&D Pathway: Syngas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Syngas Upgrading to Hydrocarbon Fuels Bioenergy Technologies Office Conversion R&D Pathway: Syngas Upgrading to Hydrocarbon Fuels Syngas upgrading to hydrocarbon fuels is one of...

  4. CHP and Bioenergy Systems for Landfills and Wastewater Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    following CHP technologies: Reciprocating Engine, Microturbine, Combustion Turbines, Stirling Engine, and Fuel Cell. CHP and Bioenergy Systems for Landfills and Wastewater...

  5. BIOENERGY AND BIOFUELS Performance of a pilot-scale continuous flow microbial

    E-Print Network [OSTI]

    BIOENERGY AND BIOFUELS Performance of a pilot-scale continuous flow microbial electrolysis cell fed performance. Keywords Biohydrogen . Biomethane . Bioelectricity. Microbial electrolysis cell . Bioenergy

  6. animal manure-based bioenergy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sorghum program that boasts about 40 3 Hawaii Bioenergy Master Plan Bioenergy Technology Renewable Energy Websites Summary: technology assessment was conducted as part of the...

  7. Biomass and Bioenergy 31 (2007) 638645 Forest bioenergy system to reduce the hazard of wildfires

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    Contract'' for utilization in small power plants (o3 MW), and a wood-heating pellet manufacturing facility. The outlet for the wood fuel pellets is the growing market for house and business heating, and co for bioenergy. The start-up project is in the Nutrioso area of the Alpine Ranger District, Apache

  8. 2012 Bioenergy Action Plan Prepared by the Bioenergy Interagency Working Group

    E-Print Network [OSTI]

    and the California Energy Commission with input from the Bioenergy Interagency Working Group. This report to Governor Edmund G. Brown Karen Ross Secretary, Department of Food and Agriculture Matthew Rodriquez, California Energy Commission Ken Pimlott Director, Department of Forestry and Fire Protection Caroll

  9. Cascade Apartments - Deep Energy Multifamily Retrofit , Kent, Washington (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01T23:59:59.000Z

    In December of 2009-10, King County Housing Authority (KCHA) implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington (marine climate.)This research effort involved significant coordination from stakeholders KCHA, WA State Department of Commerce, utility Puget Sound Energy, and Cascade tenants. This report focuses on the following three primary BA research questions : 1. What are the modeled energy savings using DOE low income weatherization approved TREAT software? 2. How did the modeled energy savings compare with measured energy savings from aggregate utility billing analysis? 3. What is the Savings to Investment Ratio (SIR) of the retrofit package after considering utility window incentives and KCHA capitol improvement funding.

  10. Promoting Sustainable Bioenergy Production and Trade Issue Paper No. 17

    E-Print Network [OSTI]

    Promoting Sustainable Bioenergy Production and Trade Issue Paper No. 17 June 2009 l ICTSD Programme School of Agriculture, Policy and Development University of Reading EU Support for Biofuels and Bioenergy on Agricultural Trade and Sustainable Development By Professor Alan Swinbank School of Agriculture, Policy

  11. 20 PLANET EARTH Autumn 2014 Bioenergy the name alone

    E-Print Network [OSTI]

    Brierley, Andrew

    speaking. But everything has a carbon footprint and some biofuels might not be so great if their carbon that the carbon footprint of bioenergy may be worse than some fossil fuels. But the truth is we didn't know that many of the assessments Called to account ­ bioenergy's carbon footprint #12;PLANET EARTH Autumn 2014

  12. Evaluating ecosystem processes in willow short rotation coppice bioenergy plantations

    E-Print Network [OSTI]

    cultivation of biomass for biofuels (trans- port fuels) and bioenergy (heat and power) has pro- voked much of the northern hemisphere, how- ever, a small, but growing proportion of biomass crops consist of tree species generation bioenergy crop in Europe, with the area cultivated expected to increase greatly by 2050 (Rowe et

  13. Bioenergy Deployment Consortium (BDC) 2014 Fall Symposium

    Broader source: Energy.gov [DOE]

    The 2014 BDC Fall Symposium will be held on October 21–22, 2014 in Fort Myers, Florida. The event will include a tour of the Algenol facility on Wednesday morning. The symposium will have panels for progress reports from current cellulosic bio-product companies, updates on government policy from several agencies, scale-up strategies,and lessons learned. POET-DSM will provide the after dinner success story. Neil Rossmeissl, Program Manager, Algal Program, Bioenergy Technologies Office, will be delivering the keynote address on expanding the bioeconomy.

  14. Bioenergy 2015 Speaker Biographies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-OilBioenergy 2015 Agenda

  15. Bioenergy Technologies Office Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-OilBioenergyMicroalgal--

  16. Emergence BioEnergy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to: navigation,ElectrosolarElmhurst MutualEmergence BioEnergy

  17. Orchid Bioenergy Group Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympia GreenThe communityOrchid Bioenergy Group Ltd

  18. Bioenergy Technologies Office | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesville Energy ResearchAchieving Them. ABeyondBioenergy Technologies

  19. Solarvest BioEnergy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingapore JumpSolarezo JumpSolarvest BioEnergy Jump to:

  20. Bioenergy: America's Energy Future | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find Find More Like ThisBioenergy

  1. BioEnergy Blog | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform isEnergyMeeting | Department of Energy BigNews » BioEnergy

  2. Bioenergy Upcoming Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform isEnergyMeeting | DepartmentBioenergy Technologies Office HOMEMay

  3. Bioenergy Upcoming Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform isEnergyMeeting | DepartmentBioenergy Technologies Office

  4. Fundamental & Applied Bioenergy | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof Energy ForrestalPrincetonF2:Bioenergy SHARE Fundamental

  5. A Virtual Visit to Bioenergy Research at the National Laboratories

    Office of Energy Efficiency and Renewable Energy (EERE)

    For National Bioenergy Day on October 22, bioenergy facilities across the country are holding open houses to increase public awareness of bioenergy and its role in the clean energy landscape. By the same token, the Bioenergy Technologies Office (BETO) is offering this virtual open house of its national laboratories—the facilities at the core of BETO’s research and development. If you want to know how Energy Department bioenergy funding is making an impact, be sure to take a look at our national labs—47% of BETO funding this past year went to the national laboratories. Of that funding, about half went to the National Renewable Energy Laboratory. Pacific Northwest National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory also received a large share.

  6. An ultrastructural study of the holdfast organ of the strigeoid metacercaria Diplostomulum sirensis Kent, 1940

    E-Print Network [OSTI]

    Christensen, Mark Edward

    1974-01-01T23:59:59.000Z

    AN ULTRASTRUCTURAL STUDY OF THE HOLDFAST ORGAN OF THE STRIGEOID METACERCARIA DIPLOSTOMULUM SIRENSIS KENT, 1940 A Thesis by MARK EDWARD CHRISTENSEN Submitted to the Graduate College of Texas A&N University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1974 Major Subject: Biology AN ULTRASTRUCTURAL STUDY OF THE HOLDFAST ORGAN OF THE STRIGEOID METACERCARIA DIPLOSTOMULUM SIRENSIS KENT, 1940 A Thesis by MARK EDWARD CHRISTENSEN Approved as to style...

  7. 2011 Bioenergy Action Plan Prepared by the California Energy Commission for the

    E-Print Network [OSTI]

    2011 Bioenergy Action Plan Prepared by the California Energy Commission for the Bioenergy Commission Renewables Committee as part of the Preparation of the 2011 Bioenergy Action Plan ­ docket # 10 policy of the Energy Commission until the report is adopted. #12;i ACKNOWLEDGEMENTS The 2011 Bioenergy

  8. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #22, January - March 2009

    SciTech Connect (OSTI)

    Not Available

    2009-04-01T23:59:59.000Z

    January to March, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

  9. Special issue: current status of bioenergy research Don-Hee Park Sang Yup Lee

    E-Print Network [OSTI]

    processes are presented. As the field of bioenergy is rapidly growing from traditional forms of bioethanol

  10. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #25, October - December 2009

    SciTech Connect (OSTI)

    Schell, D.

    2010-01-01T23:59:59.000Z

    October to December, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

  11. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #20, July-September 2008

    SciTech Connect (OSTI)

    Schell, D. J.

    2008-12-01T23:59:59.000Z

    July to September, 2008 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

  12. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #24, July-September 2009

    SciTech Connect (OSTI)

    Schell, D.

    2009-10-01T23:59:59.000Z

    July to September, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

  13. National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #15, April - June 2007

    SciTech Connect (OSTI)

    Schell, D.

    2007-07-01T23:59:59.000Z

    July quarterly update for the National Bioenergy Center's Biochemical Processing Platform Integration Project.

  14. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #23, April-June 2009

    SciTech Connect (OSTI)

    Schell, D.

    2009-08-01T23:59:59.000Z

    April to June, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

  15. Interactions among bioenergy feedstock choices, landscape dynamics, and land use

    SciTech Connect (OSTI)

    Dale, Virginia H [ORNL; Kline, Keith L [ORNL; Wright, Lynn L [ORNL; Perlack, Robert D [ORNL; Downing, Mark [ORNL; Graham, Robin Lambert [ORNL

    2011-01-01T23:59:59.000Z

    Landscape implications of bioenergy feedstock choices are significant and depend on land-use practices and their environmental impacts. Although land-use changes and carbon emissions associated with bioenergy feedstock production are dynamic and complicated, lignocellulosic feedstocks may offer opportunities that enhance sustainability when compared to other transportation fuel alternatives. For bioenergy sustainability, major drivers and concerns revolve around energy security, food production, land productivity, soil carbon and erosion, greenhouse gas emissions, biodiversity, air quality, and water quantity and quality. The many implications of bioenergy feedstock choices require several indicators at multiple scales to provide a more complete accounting of effects. Ultimately, the long-term sustainability of bioenergy feedstock resources (as well as food supplies) throughout the world depends on land-use practices and landscape dynamics. Land-management decisions often invoke trade-offs among potential environmental effects and social and economic factors as well as future opportunities for resource use. The hypothesis being addressed in this paper is that sustainability of bioenergy feedstock production can be achieved via appropriately designed crop residue and perennial lignocellulosic systems. We find that decision makers need scientific advancements and adequate data that both provide quantitative and qualitative measures of the effects of bioenergy feedstock choices at different spatial and temporal scales and allow fair comparisons among available options for renewable liquid fuels.

  16. Bioenergy Feedstock Development Program Status Report

    SciTech Connect (OSTI)

    Kszos, L.A.

    2001-02-09T23:59:59.000Z

    The U.S. Department of Energy's (DOE's) Bioenergy Feedstock Development Program (BFDP) at Oak Ridge National Laboratory (ORNL) is a mission-oriented program of research and analysis whose goal is to develop and demonstrate cropping systems for producing large quantities of low-cost, high-quality biomass feedstocks for use as liquid biofuels, biomass electric power, and/or bioproducts. The program specifically supports the missions and goals of DOE's Office of Fuels Development and DOE's Office of Power Technologies. ORNL has provided technical leadership and field management for the BFDP since DOE began energy crop research in 1978. The major components of the BFDP include energy crop selection and breeding; crop management research; environmental assessment and monitoring; crop production and supply logistics operational research; integrated resource analysis and assessment; and communications and outreach. Research into feedstock supply logistics has recently been added and will become an integral component of the program.

  17. Three Essays on Bioenergy Production in the United States

    E-Print Network [OSTI]

    Wlodarz, Marta

    2013-12-02T23:59:59.000Z

    This dissertation examines future prospects of bioenergy production in the United States. The analysis examines three issues on liquid fuel and cellulosic ethanol. First, the amount that costs need to decrease in order to make cellulosic ethanol...

  18. STATEMENT OF CONSIDERATIONS REQUEST BY ABENGOA BIOENERGY CORPORATION...

    Broader source: Energy.gov (indexed) [DOE]

    ABENGOA BIOENERGY CORPORATION FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER A DOE COOPERATIVE AGREEMENT INITIALLY IDENTIFIED AS GOV WORKS NO. 04-03- CA-79759...

  19. Feedstock Production Datasets from the Bioenergy Knowledge Discovery Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about] Holdings include datasets, models, and maps and the collections are growing due to both DOE contributions and data uploads from individuals.

  20. Biofuel Distribution Datasets from the Bioenergy Knowledge Discovery Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about] Holdings include datasets, models, and maps and the collections are growing due to both DOE contributions and individuals' data uploads.

  1. Biofuel Production Datasets from DOE's Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about]

    Holdings include datasets, models, and maps and the collections arel growing due to both DOE contributions and data uploads from individuals.

  2. Feedstock Logistics Datasets from DOE's Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. Holdings include datasets, models, and maps. [from https://www.bioenergykdf.net/content/about

  3. Seizing our Bioenergy Opportunities in a Changing Energy Landscape

    Office of Energy Efficiency and Renewable Energy (EERE)

    At the Bioenergy Technologies Office, we’re working with public and private partners to develop an industry of advanced biofuels and bioproducts from non-food biomass sources that is commercially...

  4. Bioenergy Technologies Office R&D Pathways: Fast Pyrolysis and...

    Broader source: Energy.gov (indexed) [DOE]

    in a fluidized bed to create bio-oils, which can then be used to create hydrocarbon biofuel blendstocks. Bioenergy Technologies Office R&D Pathways: Fast Pyrolysis and...

  5. OSU Potential Bioenergy Mentors Version 2, 11/13/13

    E-Print Network [OSTI]

    Tullos, Desiree

    electrochemical technologies for bioenergy generation and waste/wastewater treatment. More of methane from wastewater treatment plant anaerobic digesters through the co interests are a good match for their projects. Biological Conversion

  6. Bioenergy 2015: Opportunities in a Changing Energy Landscape...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015: Opportunities in a Changing Energy Landscape June 23-24, 2015 Bioenergy 2015 Logo Walter E. Washington Convention Center 801 Mt. Vernon Place, NW Washington, DC 20001 On...

  7. BioEnergy Research ISSN 1939-1234

    E-Print Network [OSTI]

    1 23 BioEnergy Research ISSN 1939-1234 Volume 5 Number 2 Bioenerg. Res. (2012) 5:341-362 DOI 10, the EROI was adjusted using quality factors that were calculated according to the price of each input

  8. Opportunities and barriers for sustainable international bioenergy trade and strategies to overcome them -A report prepared by IEA Bioenergy Task 40

    E-Print Network [OSTI]

    Opportunities and barriers for sustainable international bioenergy trade and strategies to overcome them - A report prepared by IEA Bioenergy Task 40 1 Opportunities and barriers for sustainable international bioenergy trade and strategies to overcome them Martin Junginger, André Faaij, Peter

  9. Functional Genomics of Drought Tolerance in Bioenergy Crops

    SciTech Connect (OSTI)

    Yin, Hengfu [ORNL; Chen, Rick [ORNL; Yang, Jun [ORNL; Weston, David [ORNL; Chen, Jay [ORNL; Muchero, Wellington [ORNL; Ye, Ning [ORNL; Tschaplinski, Timothy J [ORNL; Wullschleger, Stan D [ORNL; Cheng, Zong-Ming [ORNL; Tuskan, Gerald A [ORNL; Yang, Xiaohan [ORNL

    2014-01-01T23:59:59.000Z

    With the predicted trends in climate change, drought will increasingly impose a grand challenge to biomass production. Most of the bioenergy crops have some degree of drought susceptibility with low water-use efficiency (WUE). It is imperative to improve drought tolerance and WUE in bioenergy crops for sustainable biomass production in arid and semi-arid regions with minimal water input. Genetics and functional genomics can play a critical role in generating knowledge to inform and aid genetic improvement of drought tolerance in bioenergy crops. The molecular aspect of drought response has been extensively investigated in model plants like Arabidopsis, yet our understanding of the molecular mechanisms underlying drought tolerance in bioenergy crops are limited. Crops exhibit various responses to drought stress depending on species and genotype. A rational strategy for studying drought tolerance in bioenergy crops is to translate the knowledge from model plants and pinpoint the unique features associated with individual species and genotypes. In this review, we summarize the general knowledge about drought responsive pathways in plants, with a focus on the identification of commonality and specialty in drought responsive mechanisms among different species and/or genotypes. We describe the genomic resources developed for bioenergy crops and discuss genetic and epigenetic regulation of drought responses. We also examine comparative and evolutionary genomics to leverage the ever-increasing genomics resources and provide new insights beyond what has been known from studies on individual species. Finally, we outline future exploration of drought tolerance using the emerging new technologies.

  10. REU 2010: SCHEDULE FOR WEEKS THREE AND FOUR Apprentice talks are in R251. Afternoon talks are in E206 or Kent 101.

    E-Print Network [OSTI]

    May, J. Peter

    REU 2010: SCHEDULE FOR WEEKS THREE AND FOUR Apprentice talks are in R251. Afternoon talks are in E206 or Kent 101. THIRD WEEK: Date YSP Babai Souganidis Masur Montalban May Anno/May Babai Apprentice Apprentice Probability Geometry Logic Topology Alg IBL DiscreteASM R251 E206 E206 E206 E206 Kent 101 Kent 101

  11. Savannah River BioEnergy Integration Center Savannah River BioEnergy Integration Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principal Investigators PostdoctoralSasha BioEnergy

  12. Chapter 9, Land and Bioenergy in Scientific Committee on Problems of the Environment (SCOPE), Bioenergy & Sustainability: bridging the gaps.

    SciTech Connect (OSTI)

    Woods J, Lynd LR [Imperial College London, UK; Laser, M [Dartmouth College; Batistella M, De Castro D [EMBRAPA Monitoramento por Satelite, Campinas, Brasil; Kline, Keith L [ORNL; Faaij, Andre [Energy Academy Europe, Netherlands

    2015-01-01T23:59:59.000Z

    In this chapter we address the questions of whether and how enough biomass could be produced to make a material contribution to global energy supply on a scale and timeline that is consistent with prominent low carbon energy scenarios. We assess whether bioenergy provision necessarily conflicts with priority ecosystem services including food security for the world s poor and vulnerable populations. In order to evaluate the potential land demand for bioenergy, we developed a set of three illustrative scenarios using specified growth rates for each bioenergy sub-sector. In these illustrative scenarios, bioenergy (traditional and modern) increases from 62 EJ/yr in 2010 to 100, 150 and 200 EJ/yr in 2050. Traditional bioenergy grows slowly, increasing by between 0.75% and 1% per year, from 40 EJ/yr in 2010 to 50 or 60 EJ/ yr in 2050, continuing as the dominant form of bioenergy until at least 2020. Across the three scenarios, total land demand is estimated to increase by between 52 and 200 Mha which can be compared with a range of potential land availability estimates from the literature of between 240 million hectares to over 1 billion hectares. Biomass feedstocks arise from combinations of residues and wastes, energy cropping and increased efficiency in supply chains for energy, food and materials. In addition, biomass has the unique capability of providing solid, liquid and gaseous forms of modern energy carriers that can be transformed into analogues to existing fuels. Because photosynthesis fixes carbon dioxide from the atmosphere, biomass supply chains can be configured to store at least some of the fixed carbon in forms or ways that it will not be reemitted to the atmosphere for considerable periods of time, so-called negative emissions pathways. These attributes provide opportunities for bioenergy policies to promote longterm and sustainable options for the supply of energy for the foreseeable future.

  13. Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes

    E-Print Network [OSTI]

    Landis, Doug

    of ecosystem functions, promoting the creation of multifunctional agricultural landscapes. We foundPerennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes, Michigan State University, East Lansing, MI 48824; b Great Lakes Bioenergy Research Center, US Department

  14. LANL capabilities towards bioenergy and biofuels programs

    SciTech Connect (OSTI)

    Olivares, Jose A [Los Alamos National Laboratory; Park, Min S [Los Alamos National Laboratory; Unkefer, Clifford J [Los Alamos National Laboratory; Bradbury, Andrew M [Los Alamos National Laboratory; Waldo, Geoffrey S [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    LANL invented technology for increasing growth and productivity of photosysnthetic organisms, including algae and higher plants. The technology has been extensively tested at the greenhouse and field scale for crop plants. Initial bioreactor testing of its efficacy on algal growth has shown promising results. It increases algal growth rates even under optimwn nutrient supply and careful pH control with CO{sub 2} continuously available. The technology uses a small organic molecule, applied to the plant surfaces or added to the algal growth medium. CO{sub 2} concentration is necessary to optimize algal production in either ponds or reactors. LANL has successfully designed, built and demonstrated an effective, efficient technology using DOE funding. Such a system would be very valuable for capitalizing on local inexpensive sources of CO{sub 2} for algal production operations. Furthermore, our protein engineering team has a concept to produce highly stable carbonic anhydyrase (CA) enzyme, which could be very useful to assure maximum utilization of the CO{sub 2} supply. Stable CA could be used either imnlobilized on solid supports or engineered into the algal strain. The current technologies for harvesting the algae and obtaining the lipids do not meet the needs for rapid, low cost separations for high volumes of material. LANL has obtained proof of concept for the high volume flowing stream concentration of algae, algal lysis and separation of the lipid, protein and water fractions, using acoustic platforms. This capability is targeted toward developing biosynthetics, chiral syntheses, high throughput protein expression and purification, organic chemistry, recognition ligands, and stable isotopes geared toward Bioenergy applications. Areas of expertise include stable isotope chemistry, biomaterials, polymers, biopolymers, organocatalysis, advanced characterization methods, and chemistry of model compounds. The ultimate realization of the ability to design and synthesize materials that mimic or are inspired by natural systems will lead to entirely new applications in the bioenergy areas. In addition, there are new developments in this capability that involve development of catalytic methods for the production of carbon chains from the most abundant carbohydrate on the planet, glucose. These carbon chains will be useful in the production of high density fuels which defined characteristics. In addition, these methods/capabilities will be used to generate feedstocks for industrial processes. LANL is the second largest partner institution of the Department of Energy's Joint Genome Institute (DOE-JGI), and specializes in high throughput genome finishing and analysis in support of DOE missions in energy, bioremediation and carbon sequestration. This group is comprised of molecular biology labs and computational staff who together focus on the high-throughput DNA sequencing of whole microbial genomes, computational finishing and bioinformatics. The applications team focuses on the use of new sequencing technologies to address questions in environmental science. In addition to supporting the DOE mission, this group supports the Nation's national security mission by sequencing critical pathogens and near neighbors in support of relevent application areas.

  15. Linear theory for optimal control of molecular wave packets Jianshu Cao and Kent R. Wilson

    E-Print Network [OSTI]

    Cao, Jianshu

    Linear theory for optimal control of molecular wave packets Jianshu Cao and Kent R. Wilson optimization procedures for quan- tum control of wave packets in the linear-response regime. One particularly-0339 Received 14 August 1996 A linear theory for optimizing optical fields to achieve a molecular configuration

  16. MODELING OF POROSITY FORMATION IN ALUMINUM ALLOYS Kent D. Carlson1

    E-Print Network [OSTI]

    Beckermann, Christoph

    MODELING OF POROSITY FORMATION IN ALUMINUM ALLOYS Kent D. Carlson1 , Zhiping Lin1 , Christoph Aachen, Germany Keywords: porosity, aluminum alloys, hydrogen diffusion Abstract A new approach based illustrate that the model captures important phenomena observed in porosity formation in aluminum alloys

  17. Writing Hygienic Macros in Scheme with Syntax-Case R. Kent Dybvig

    E-Print Network [OSTI]

    Dybvig, R. Kent

    Writing Hygienic Macros in Scheme with Syntax-Case R. Kent Dybvig Indiana University Computer Abstract This article describes a pattern-based hygienic macro system for Scheme and provides numerous examples of its use. Macros defined using this system are automatically hygienic and referentially

  18. Feeding of High-Nickel Alloy Castings KENT D. CARLSON, SHOUZHU OU, and CHRISTOPH BECKERMANN

    E-Print Network [OSTI]

    Beckermann, Christoph

    Feeding of High-Nickel Alloy Castings KENT D. CARLSON, SHOUZHU OU, and CHRISTOPH BECKERMANN Feeding of the nickel-based alloys CZ-100, M-35-1, and CW-12MW, as well as of the austenitic stainless steel CN-7M are shown to provide accurate FDs for the casting trial plates. The FDs of the high-nickel alloys (except CZ

  19. An Infrastructure for Profile-Driven Dynamic Recompilation Robert G. Burger R. Kent Dybvig

    E-Print Network [OSTI]

    Dybvig, R. Kent

    An Infrastructure for Profile-Driven Dynamic Recompilation Robert G. Burger R. Kent Dybvig Indiana that can support a wide range of dynamic optimizations including profile-driven optimizations active procedures. The infrastructure incorporates a low-overhead edge- count profiling strategy

  20. The OffPAD: Requirements and Usage Kent Are Varmedal1

    E-Print Network [OSTI]

    Boyer, Edmond

    The OffPAD: Requirements and Usage Kent Are Varmedal1 , Henning Klevjer1 , Joakim Hovlandsv°ag1 by descriptions of different applications that can be implemented with contemporary technology. Finally platform". This certainly provides great flexibility and support for many new business models, but it also

  1. DNA Damage by Fasicularin Sanjay Dutta, Hideki Abe, Sakae Aoyagi, Chihiro Kibayashi, and Kent S. Gates*,

    E-Print Network [OSTI]

    Gates, Kent. S.

    DNA Damage by Fasicularin Sanjay Dutta, Hideki Abe, Sakae Aoyagi, Chihiro Kibayashi, and Kent S that a DNA repair- deficient cell line is hypersensitive to fasicularin suggest that an ability to damage DNA a putative aziridinium ion intermediate.2 Aziridinium ions are well-known DNA-alkylating species.3

  2. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #13, October-December 2006

    SciTech Connect (OSTI)

    Schell, D. J.

    2007-01-01T23:59:59.000Z

    Volume 13 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Biochemical Processing Integration Task.

  3. National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #10, January-March 2006

    SciTech Connect (OSTI)

    Not Available

    2006-04-01T23:59:59.000Z

    Volume 10 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

  4. National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #9, October-December 2005

    SciTech Connect (OSTI)

    Schell, D. J.

    2006-01-01T23:59:59.000Z

    Volume 9 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

  5. National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #12, July-September 2006

    SciTech Connect (OSTI)

    Schell, D.

    2006-10-01T23:59:59.000Z

    Volume 12 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

  6. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproduct...

    Energy Savers [EERE]

    WORKSHOP Biomass Program Peer Review Sustainability Platform Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting...

  7. National Bioenergy Center Biochemical Platform Process Integration Project: Quarterly Update #18, January-March 2008

    SciTech Connect (OSTI)

    Schell, D.

    2008-04-01T23:59:59.000Z

    January-March, 2008 edition of the quarterly update for the National Bioenergy Center's Biochemical Platform Integration Project.

  8. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #21, October - December 2008

    SciTech Connect (OSTI)

    Schell, D.

    2009-01-01T23:59:59.000Z

    October to December, 2008 edition of the National Bioenergy Center?s Biochemical Platform Integration Project quarterly newsletter.

  9. Research questions How could the conversion of marginal agricultural lands to bioenergy switchgrass

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    .R. and Schemske, D.W. 2010. Perennial biomass feedstocks enhance avian diversity. GCB Bioenergy 1080:1-12. Samson

  10. International Conference on Wood-based Bioenergy LIGNA+Hannover, Germany, 17-18 May 2007

    E-Print Network [OSTI]

    International Conference on Wood-based Bioenergy LIGNA+Hannover, Germany, 17-18 May 2007 Photo: NTC+Hannover, Germany, 17-18 May 2007 Photo: NTC Photo: Stora Enso Photo: Stora Enso Topics I. Background for bioenergy;International Conference on Wood-based Bioenergy LIGNA+Hannover, Germany, 17-18 May 2007 Photo: NTC Photo: Stora

  11. *** Draft: do not cite or distribute -COP7 Bioenergy Document: October 18, 2001 *** Address Correspondence to

    E-Print Network [OSTI]

    Kammen, Daniel M.

    *** Draft: do not cite or distribute - COP7 Bioenergy Document: October 18, 2001 *** Address;*** Draft: do not cite or distribute - COP7 Bioenergy Document: October 18, 2001 *** 10/23/01 Page 2 of 111 omasera@ate.oikos.unam.mx #12;*** Draft: do not cite or distribute - COP7 Bioenergy Document: October 18

  12. Ris har udgivet en rapport om moderne bioenergi. Den slr fast, at

    E-Print Network [OSTI]

    Risø har udgivet en rapport om moderne bioenergi. Den slår fast, at biomasse er en ligeså værdifuld teknologi, der skal til for at udnytte hele dens potentiale. RIS�NYT N O 42003 MODERNE BIOENERGI HAR STORE MULIGHEDER Moderne bioenergi har store muligheder Af Hans Larsen, Jens Kossmann og Leif Sønderberg Petersen

  13. SLU, Spring 2012 Bioenergy and social sciences: economics and sociology, 5hp

    E-Print Network [OSTI]

    SLU, Spring 2012 1/6 Bioenergy and social sciences: economics and sociology, 5hp PNS0083 Bioenergy and social sciences: economics and sociology, 5hp The course is given as part of the postgraduate research school "Bioenergy". The overall objective of the course is: 1. to enable the students

  14. Multi Criteria Analysis for bioenergy systems assessments Thomas Buchholz a,, Ewald Rametsteiner b

    E-Print Network [OSTI]

    Vermont, University of

    Multi Criteria Analysis for bioenergy systems assessments Thomas Buchholz a,Ă?, Ewald Rametsteiner b Available online 11 November 2008 Keywords: Multi Criteria Analysis Bioenergy Sustainability a b s t r a c t Sustainable bioenergy systems are, by definition, embedded in social, economic, and environmental contexts

  15. Concorso Tesi di Laurea e Concorso Tesi di Dottorato di Ricerca BioEnergy Italy 2014

    E-Print Network [OSTI]

    Segatti, Antonio

    Concorso Tesi di Laurea e Concorso Tesi di Dottorato di Ricerca BioEnergy Italy 2014 Bioenergie, Chimica Verde e Agricoltura Destinato ai laureati di qualsiasi FacoltĂ  che hanno dell'uso delle bioenergie o della chimica verde in agricoltura I Concorsi - promossi da Cremona

  16. Carbon and nitrogen dynamics in bioenergy ecosystems: 2. Potential greenhouse gas emissions and global

    E-Print Network [OSTI]

    Zhuang, Qianlai

    Carbon and nitrogen dynamics in bioenergy ecosystems: 2. Potential greenhouse gas emissions) from bioenergy ecosystems with a biogeochemical model AgTEM, assuming maize (Zea mays L.), switchgrass haĂ?1 yrĂ?1 . Among all three bioenergy crops, Miscanthus is the most biofuel productive and the least

  17. Small-Scale Bioenergy Alternatives for Industry, Farm, and Institutions : A User`s Perspective.

    SciTech Connect (OSTI)

    Folk, Richard [ed.] [Idaho Univ., Moscow, ID (United States). Dept. of Forest Products

    1991-12-31T23:59:59.000Z

    This report presents research on biomass as an energy source. Topics include: bioenergy development and application; bioenergy combustion technology; and bioenergy from agricultural, forest, and urban resources. There are a total of 57 individual reports included. Individual reports are processed separately for the databases.

  18. Minimizing invasive potential of Miscanthus 3 giganteus grown for bioenergy: identifying

    E-Print Network [OSTI]

    Sims, Gerald K.

    proportion of energy to be derived from biofuels (Robertson et al. 2008). Dedicated bioenergy crops are hence with grain-based biofuels. By cultivating bioenergy crops on marginal lands unfit for food crops, it may, USA Summary 1. Many species prioritized for bioenergy crop development possess traits associated

  19. An integrated biogeochemical and economic analysis of bioenergy crops in the Midwestern United States

    E-Print Network [OSTI]

    Jain, Atul K.

    -specific economic analysis of breakeven prices of bioenergy crop production to assess the biophysical and economicAn integrated biogeochemical and economic analysis of bioenergy crops in the Midwestern United potential of biofuel production in the Midwestern United States. The bioenergy crops considered

  20. Dear Participant, Welcome to the symposium `Bioenergy Research within SLU' on Tuesday, September 25, at

    E-Print Network [OSTI]

    Dear Participant, Welcome to the symposium `Bioenergy Research within SLU' on Tuesday, September 25 on the web page of the Research school Bioenergy (http://www.slu.se/sv/forskarskolor/bioenergy/) on Monday the arrival hall. · Journey time: about 30 minutes · Cost: about SEK 460. Ask the driver for a fixed price

  1. Bioenergy Feedstock Library and Least-Cost Formulation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-OilBioenergy 2015 AgendaBioenergy

  2. Bioenergy Sustainability: How to Define & Measure It

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-OilBioenergy 2015Bioenergy Pumps New

  3. Bioenergy Technologies Office (BETO) Announces Renewable Carbon Fiber

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-OilBioenergy 2015Bioenergy

  4. Lateral Flow Capillary Concentration for Rapid Bacterial Identification Aaron V. Mull, Dr. Kent Voorhees, Dr. Christopher Cox

    E-Print Network [OSTI]

    Lateral Flow Capillary Concentration for Rapid Bacterial Identification Aaron V. Mull, Dr. Kent 80401 Introduc)on Materials and Methods Abstract Future Work Acknowledgments Immunoassay Design and Spectra Results Eliminate false positives and false negatives

  5. Review of Sorghum Production Practices: Applications for Bioenergy

    SciTech Connect (OSTI)

    Turhollow Jr, Anthony F [ORNL; Webb, Erin [ORNL; Downing, Mark [ORNL

    2010-06-01T23:59:59.000Z

    Sorghum has great potential as an annual energy crop. While primarily grown for its grain, sorghum can also be grown for animal feed and sugar. Sorghum is morphologically diverse, with grain sorghum being of relatively short stature and grown for grain, while forage and sweet sorghums are tall and grown primarily for their biomass. Under water-limited conditions sorghum is reliably more productive than corn. While a relatively minor crop in the United States (about 2% of planted cropland), sorghum is important in Africa and parts of Asia. While sorghum is a relatively efficient user of water, it biomass potential is limited by available moisture. The following exhaustive literature review of sorghum production practices was developed by researchers at Oak Ridge National Laboratory to document the current state of knowledge regarding sorghum production and, based on this, suggest areas of research needed to develop sorghum as a commercial bioenergy feedstock. This work began as part of the China Biofuels Project sponsored by the DOE Energy Efficiency and Renewable Energy Program to communicate technical information regarding bioenergy feedstocks to government and industry partners in China, but will be utilized in a variety of programs in which evaluation of sorghum for bioenergy is needed. This report can also be used as a basis for data (yield, water use, etc.) for US and international bioenergy feedstock supply modeling efforts.

  6. Bioenergy to Biodiversity: Downscaling scenarios of land use change 

    E-Print Network [OSTI]

    MacKenzie, Ian

    2009-11-26T23:59:59.000Z

    Bioenergy crops are a key component of Scotland’s strategy to meet 2050 carbon emissions targets. The introduction of these crops could have large scale impacts on the biodiversity of lowland farmland. These impacts depend on the change in land use...

  7. Biofuel Enduse Datasets from the Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about]

    Holdings include datasets, models, and maps. This is a very new resource, but the collections will grow due to both DOE contributions and individualsĆ data uploads. Currently the Biofuel Enduse collection includes 133 items. Most of these are categorized as literature, but 36 are listed as datasets and ten as models.

  8. Canada Biomass-Bioenergy Report May 31, 2006

    E-Print Network [OSTI]

    Canada Biomass-Bioenergy Report May 31, 2006 Doug Bradley President Climate Change Solutions;2 Table of Contents 1. Policy Setting 2. Biomass Volumes 2.1. Woody Biomass 2.1.1. Annual Residue Production 2.1.2. Pulp Chips 2.1.3. Existing Hog Fuel Piles 2.1.4. Forest Floor Biomass 2.2. Agricultural

  9. Hawaii Bioenergy Master Plan Marc. M. Siah & Associates, Inc.

    E-Print Network [OSTI]

    energy future require an expeditious and broad implementation of clean and renewable energy applications of promising bioenergy projects in the state. To meet its clean energy goals, Hawaii cannot afford the perception that investment and green energy initiatives are hindered by a lack of support from State

  10. Review of Bioenergy Research A report for BBSRC Strategy Board

    E-Print Network [OSTI]

    Edinburgh, University of

    as part of a multi-faceted low-carbon solution for the UK's future energy supply. There are powerful, longReview of Bioenergy Research A report for BBSRC Strategy Board March 2006 [© BBSRC, 2006] 1 #12 Summary ________________________________________________________ 4 CHAPTER 1: DRIVERS FOR RENEWABLE ENERGY

  11. Environmental Life Cycle Comparison of Algae to Other Bioenergy

    E-Print Network [OSTI]

    Clarens, Andres

    Environmental Life Cycle Comparison of Algae to Other Bioenergy Feedstocks A N D R E S F . C L A R December 6, 2009. Accepted December 15, 2009. Algae are an attractive source of biomass energy since. In spite of these advantages, algae cultivation has not yet been compared with conventional crops from

  12. Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM

    E-Print Network [OSTI]

    Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM The Texas AgriLife Research Center for the biofuels industry. This program recognizes that the ideal combination of traits required for an economically and energetically sustainable biofuels industry does not yet exist in a single plant spe- cies

  13. Hawaii Bioenergy Master Plan Financial Incentives And Barriers; And

    E-Print Network [OSTI]

    at levels sufficient to contribute a significant renewable energy resource to the State of HawaiHawaii Bioenergy Master Plan Financial Incentives And Barriers; And Other Funding Sources Prepared for: Hawai`i Natural Energy Institute University of Hawai`i at Manoa 1680 East West Road, POST 109

  14. Production of bioenergy and biochemicals from industrial and

    E-Print Network [OSTI]

    Angenent, Lars T.

    and agricultural wastewater, includ- ing methanogenic anaerobic digestion, biological hydro- gen production on wastewater treatment from pollution control to resource exploitation. Many bioprocesses can provide bioenergy. Recovery of energy and valuable materials might reduce the cost of wastewater treatment, and somewhat

  15. Archaeological investigations at the Kent Creek site (41HL66): evidence of Mogollon influence on the Southern Plains

    E-Print Network [OSTI]

    Cruse, Jimmy Brett

    1989-01-01T23:59:59.000Z

    in Hall County, Texas. . . . . 4 2. Contour map of the Kent Creek site. 3. Relief map of the Llano Estacado and surrounding areas. . . , 10 4. Cultural chronology chart of the Southern Plains and eastern New Mexico. 19 5. Map of the Llano Estacado... ideas about houses and horticulture. Evidence which may support Hughes' suggestion comes from archaeological excavations recently conducted at the Kent Creek site (41HL66) located in Hall County of the southeastern Texas panhandle (Figure 1...

  16. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LLC 2019-06-06 ADVANCED MATERIALS RESEARCH CTR MEXICO 2018-05-14 AGENCIA ESTATAL CSIC SPAIN 2017-10-17 AIST NATIONAL METROLOGY INSTITUTE OF JAP 2020-01-05 AIST-ELECTRONICS &...

  17. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 Special Report:Spotlight:California Laboratory

  18. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 Special Report:Spotlight:California LaboratoryThe

  19. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 Special Report:Spotlight:California

  20. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 Special Report:Spotlight:CaliforniaBotulinum Neurotoxin

  1. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 Special Report:Spotlight:CaliforniaBotulinum

  2. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 Special Report:Spotlight:CaliforniaBotulinumNanoscale

  3. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 Special

  4. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 SpecialNanoparticulate FeS as an Effective Redox Buffer

  5. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 SpecialNanoparticulate FeS as an Effective Redox

  6. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 SpecialNanoparticulate FeS as an Effective

  7. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 SpecialNanoparticulate FeS as an EffectiveThe Structure

  8. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 SpecialNanoparticulate FeS as an EffectiveThe

  9. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 SpecialNanoparticulate FeS as an

  10. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 SpecialNanoparticulate FeS as anThe Lassa Virus

  11. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 SpecialNanoparticulate FeS as anThe Lassa VirusMesoscale

  12. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 SpecialNanoparticulate FeS as anThe Lassa

  13. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 SpecialNanoparticulate FeS as anThe LassaUsing X-rays to

  14. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 SpecialNanoparticulate FeS as anThe LassaUsing X-rays

  15. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 SpecialNanoparticulate FeS as anThe LassaUsing

  16. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 SpecialNanoparticulate FeS as anThe LassaUsingNavigating

  17. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 SpecialNanoparticulate FeS as anThe

  18. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 SpecialNanoparticulate FeS as anTheCompeting Phases Found

  19. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 SpecialNanoparticulate FeS as anTheCompeting Phases

  20. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 SpecialNanoparticulate FeS as anTheCompeting

  1. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 SpecialNanoparticulate FeS as anTheCompetingAids

  2. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 SpecialNanoparticulate FeS as anTheCompetingAidsX-rays

  3. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 SpecialNanoparticulate FeS as anTheCompetingAidsX-raysThe

  4. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 SpecialNanoparticulate FeS as

  5. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 SpecialNanoparticulate FeS asEnzyme Created in Test Tube

  6. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 SpecialNanoparticulate FeS asEnzyme Created in Test

  7. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 SpecialNanoparticulate FeS asEnzyme Created in

  8. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 SpecialNanoparticulate FeS asEnzyme Created

  9. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 SpecialNanoparticulate FeS asEnzyme CreatedStructural

  10. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 SpecialNanoparticulate FeS asEnzyme

  11. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 SpecialNanoparticulate FeS asEnzyme2 MEIS XAS Rapid

  12. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 SpecialNanoparticulate FeS asEnzyme2 MEIS XAS Rapid3 XRD

  13. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 SpecialNanoparticulate FeS asEnzyme2 MEIS XAS Rapid3

  14. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 SpecialNanoparticulate FeS asEnzyme2 MEIS XAS Rapid3BL7-2

  15. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 SpecialNanoparticulate FeS asEnzyme2 MEIS XAS

  16. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 SpecialNanoparticulate FeS asEnzyme2 MEIS XASSSRL Science

  17. Light-Source Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatestCenter (LMI-EFRC) - EliCenterCenterCenterSafety

  18. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarshipSpiraling Laser Pulses CouldStanford

  19. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarshipSpiraling Laser Pulses CouldStanfordAdvance notification

  20. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarshipSpiraling Laser Pulses CouldStanfordAdvance

  1. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarshipSpiraling Laser Pulses CouldStanfordAdvanceSSRL Gas

  2. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarshipSpiraling Laser Pulses CouldStanfordAdvanceSSRL

  3. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarshipSpiraling Laser Pulses CouldStanfordAdvanceSSRLAccess to

  4. 10 Questions for a Bioenergy Expert: Melinda Hamilton

    Broader source: Energy.gov [DOE]

    Meet Melinda Hamilton – she’s a bioenergy expert and the Director of Education Programs at Idaho National Laboratory. She recently took some time to share what she’s doing to help ramp-up U.S. competitiveness in science and technology, why Jane Goodall led her to a career in science and what can happen in a lab if you don’t start with a good plan.

  5. Bioenergy Technologies Office FY 2016 Budget At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartmentWindConversion BiochemicalDepartmentBIOENERGY

  6. Invasive plant species as potential bioenergy producers and carbon contributors.

    SciTech Connect (OSTI)

    Young, S.; Gopalakrishnan, G.; Keshwani, D. (Energy Systems); (Univ. of Nebraska)

    2011-03-01T23:59:59.000Z

    Current cellulosic bioenergy sources in the United States are being investigated in an effort to reduce dependence on foreign oil and the associated risks to national security and climate change (Koh and Ghazoul 2008; Demirbas 2007; Berndes et al. 2003). Multiple sources of renewable plant-based material have been identified and include agricultural and forestry residues, municipal solid waste, industrial waste, and specifically grown bioenergy crops (Demirbas et al. 2009; Gronowska et al. 2009). These sources are most commonly converted to energy through direct burning, conversion to gas, or conversion to ethanol. Annual crops, such as corn (Zea Mays L.) and sorghum grain, can be converted to ethanol through fermentation, while soybean and canola are transformed into fatty acid methyl esters (biodiesel) by reaction with an alcohol (Demirbas 2007). Perennial grasses are one of the more viable sources for bioenergy due to their continuous growth habit, noncrop status, and multiple use products (Lewandowski el al. 2003). In addition, a few perennial grass species have very high water and nutrient use efficiencies producing large quantities of biomass on an annual basis (Dohleman et al. 2009; Grantz and Vu 2009).

  7. Dynamic analysis of policy drivers for bioenergy commodity markets

    SciTech Connect (OSTI)

    Robert F. Jeffers; Jacob J. Jacobson; Erin M. Searcy

    2001-01-01T23:59:59.000Z

    Biomass is increasingly being considered as a feedstock to provide a clean and renewable source of energy in the form of both liquid fuels and electric power. In the United States, the biofuels and biopower industries are regulated by different policies and have different drivers which impact the maximum price the industries are willing to pay for biomass. This article describes a dynamic computer simulation model that analyzes future behavior of bioenergy feedstock markets given policy and technical options. The model simulates the long-term dynamics of these markets by treating advanced biomass feedstocks as a commodity and projecting the total demand of each industry as well as the market price over time. The model is used for an analysis of the United States bioenergy feedstock market that projects supply, demand, and market price given three independent buyers: domestic biopower, domestic biofuels, and foreign exports. With base-case assumptions, the biofuels industry is able to dominate the market and meet the federal Renewable Fuel Standard (RFS) targets for advanced biofuels. Further analyses suggest that United States bioenergy studies should include estimates of export demand in their projections, and that GHG-limiting policy would partially shield both industries from exporter dominance.

  8. Sandia Energy - Joint BioEnergy Institute Oxime-NIMS Work Featured...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BioEnergy Institute Oxime-NIMS Work Featured on the Cover of ACS Chemical Biology Home Renewable Energy Energy Transportation Energy Biofuels Facilities Capabilities JBEI News News...

  9. Evaluating environmental consequences of producing herbaceous crops for bioenergy

    SciTech Connect (OSTI)

    McLaughlin, S.B.

    1995-12-31T23:59:59.000Z

    The environmental costs and benefits of producing bioenergy crops can be measured both in kterms of the relative effects on soil, water, and wildlife habitat quality of replacing alternate cropping systems with the designated bioenergy system, and in terms of the quality and amount of energy that is produced per unit of energy expended. While many forms of herbaceous and woody energy crops will likely contribute to future biofuels systems, The Dept. of Energy`s Biofuels Feedstock Development Program (BFDP), has chosen to focus its primary herbaceous crops research emphasis on a perennial grass species, switchgrass (Panicum virgatum), as a bioenergy candidate. This choice was based on its high yields, high nutrient use efficiency, and wide geographic distribution, and also on its poistive environmental attributes. The latter include its positive effects on soil quality and stabiity, its cover value for wildlife, and the lower inputs of enerty, water, and agrochemicals required per unit of energy produced. A comparison of the energy budgets for corn, which is the primary current source of bioethanol, and switchgrass reveals that the efficiency of energy production for a perennial grass system can exceed that for an energy intensive annual row crop by as much as 15 times. In additions reductions in CO{sub 2} emission, tied to the energetic efficiency of producing transportation fuels, are very efficient with grasses. Calculated carbon sequestration rates may exceed those of annual crops by as much as 20--30 times, due in part to carbon storage in the soil. These differences have major implications for both the rate and efficiency with which fossil energy sources can be replaced with cleaner burning biofuels.

  10. Forest Products Supply Chain --Availability of Woody Biomass in Indiana for Bioenergy Production

    E-Print Network [OSTI]

    Forest Products Supply Chain -- Availability of Woody Biomass in Indiana for Bioenergy Production or wood waste biomass · Map Indiana's wood waste for each potential bioenergy supply chain · Develop break-even analyses for transportation logistics of wood waste biomass Isaac S. Slaven Abstract: The purpose

  11. 30 Robust og bredygtig bioenergi september 2012 Af Brian Vad Mathiesen, Henrik Lund,

    E-Print Network [OSTI]

    Pillai, Jayakrishnan Radhakrishna

    30 Robust og bæredygtig bioenergi · september 2012 Af Brian Vad Mathiesen, Henrik Lund, Frede K erstatte de fossile brændsler med biobrændsler og bioenergi, og/eller i hvor høj grad vi skal satse på

  12. IEA-Renewable Energy Technologies, Bioenergy Agreement Task 37: Energy from Biogas and Landfill Gas

    E-Print Network [OSTI]

    EFP-06 IEA- Renewable Energy Technologies, Bioenergy Agreement Task 37: Energy from Biogas-Bioenergy, Task 37- Energy from Biogas and Landfill Gas", via samarbejde, informationsudveksling, fćlles analyser. biogas fra anaerob udrĺdning (AD) som en integreret gylle og affalds behandlings teknologi. Arbejdet

  13. RESEARCH Open Access Short and long-term carbon balance of bioenergy

    E-Print Network [OSTI]

    by offsetting fossil fuel electricity generation emissions, and potentially by avoided pyrogenic emissions dueRESEARCH Open Access Short and long-term carbon balance of bioenergy electricity production fueled bioenergy electricity production are offset by avoided fossil fuel electricity emissions. The carbon benefit

  14. Biomass and Bioenergy 31 (2007) 646655 Estimating biomass of individual pine trees using airborne lidar

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    Biomass and Bioenergy 31 (2007) 646­655 Estimating biomass of individual pine trees using airborne biomass and bio-energy feedstocks. The overall goal of this study was to develop a method for assessing aboveground biomass and component biomass for individual trees using airborne lidar data in forest settings

  15. Bioenergy Potential of the United States Constrained by Satellite Observations of Existing Productivity

    E-Print Network [OSTI]

    Montana, University of

    liters ethanol, which implies an even larger increase in biomass demand (primary energy), from roughly 2 billion liters of ethanol (secondary bioenergy) in 2009, approximately half of the world's total ethanol ethanol production of 136 billion liters by 2022.2 Yet, these bioenergy targets are largely derived from

  16. Reducing effluent discharge and recovering bioenergy in an osmotic microbial fuel cell treating domestic wastewater

    E-Print Network [OSTI]

    to osmotic water extraction. Bioenergy recovered from wastewater can potentially support pumping system osmosis into an MFC for simultaneous wastewater treatment, bioenergy recovery, and water extraction and water extraction [9]. An MFC using an FO membrane as a separator between its anode and cathode is called

  17. Net carbon fluxes at stand and landscape scales from wood bioenergy harvests in the US Northeast

    E-Print Network [OSTI]

    Vermont, University of

    gas emissions implications of wood biomass (`bioenergy') harvests are highly uncer- tain yet of great') on long-term green- house gas emissions are uncertain (McKechnie et al., 2011), yet demand for wood (C) emitted from wood bioenergy may eventually be re-sequestered through regeneration and increased

  18. Extension Bulletin E-3164 New January 2012 Biodiversity Services and Bioenergy Landscapes

    E-Print Network [OSTI]

    Landis, Doug

    Bioenergy Research Center, Michigan State University b Kellogg Biological Station (KBS) Land and Water Program, Michigan State University Extension Growing bioenergy crops will transform agricultural://water.usgs.gov/nawqa). At the same time, the footprint of agriculture has expanded to cover nearly 40 percent of the earth's ice

  19. Stakeholder Database from the Center for Bioenergy Sustainability (Learn who the experts are)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Center for BioEnergy Sustainability (CBES) is a leading resource for dealing with the environmental impacts and the ultimate sustainability of biomass production for conversion to biofuels and bio-based products. Its purpose is to use science and analysis to understand the sustainability (environmental, economic, and social) of current and potential future bioenergy production and distribution; to identify approaches to enhance bioenergy sustainability; and to serve as an independent source of the highest quality data and analysis for bioenergy stakeholders and decision makers. ... On the operational level, CBES is a focal point and business-development vehicle for ORNL’s capabilities related to bioenergy sustainability and socioeconomic analyses. As such, it complements the BioEnergy Science Center (BESC), also located at ORNL, which focuses on the problem of converting lignocellulosic biomass into reactive intermediaries necessary for the cellulosic biofuel industry. Together, these centers provide a strong integrating mechanism and business-development tool for ORNL's science and technology portfolio in bioenergy [taken and edited from http://web.ornl.gov/sci/ees/cbes/. The Stakeholder Database allows you to find experts in bioenergy by their particular type of expertise, their affiliations or locations, their specific research areas or research approaches, etc.

  20. International Market Opportunities in Bioenergy: Leveraging U.S. Government Resources

    Broader source: Energy.gov [DOE]

    Breakout Session 3C—Fostering Technology Adoption III: International Market Opportunities in Bioenergy International Market Opportunities in Bioenergy: Leveraging U.S. Government Resources Cora Dickson, Senior International Trade Specialist, Office of Energy and Environmental Industries, International Trade Administration, U.S. Department of Commerce

  1. USDA Projections of Bioenergy-Related Corn and Soyoil Use for 2010-2019

    E-Print Network [OSTI]

    biofuel policy and trends, and e) bioenergy impacts on U.S. grain prices are explained below. EconomicUSDA Projections of Bioenergy-Related Corn and Soyoil Use for 2010-2019 Daniel M. O through 2019 period included estimates of world and U.S. energy prices, ethanol and biodiesel production

  2. Golbal Economic and Environmental Impacts of Increased Bioenergy Production

    SciTech Connect (OSTI)

    Wallace Tyner

    2012-05-30T23:59:59.000Z

    The project had three main objectives: to build and incorporate an explicit biomass energy sector within the GTAP analytical framework and data base; to provide an analysis of the impact of renewable fuel standards and other policies in the U.S. and E.U, as well as alternative biofuel policies in other parts of the world, on changes in production, prices, consumption, trade and poverty; and to evaluate environmental impacts of alternative policies for bioenergy development. Progress and outputs related to each objective are reported.

  3. Bioenergy Technologies Office Judges Washington State University Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-OilBioenergyMicroalgal biomass

  4. Bioenergy Technologies Office New Directions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-OilBioenergyMicroalgal-- Sections

  5. DOE's Bioenergy Technologies Office Supports Military-Grade Biofuels |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014ContributingDOE ContractDepartment of Energy DOE's Bioenergy

  6. Carbon Green BioEnergy LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermitsGreen BioEnergy LLC Jump to: navigation, search

  7. The Bioenergy Knowledge Discovery Framework (KDF) | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy Solar Decathlon2001 Power PlantAPRIL 1,TheThe Bioenergy

  8. Bioenergy expert Ragauskas named fourteenth Governor's Chair | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find Find More Like ThisBioenergy Technologies

  9. Bioenergy Technologies FY14 Budget At-a-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform isEnergyMeeting | Department ofTransportation Fuels BIOENERGY

  10. Biomass Basics: The Facts About Bioenergy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform isEnergyMeeting | DepartmentBioenergyUS0 ConferenceBiomass

  11. Biomass IBR Fact Sheet: Abengoa Bioenergy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform isEnergyMeeting | DepartmentBioenergyUS0IBR Fact Sheet: Abengoa

  12. Western BioEnergy Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmweltVillageGraphWellton-Mohawk IrrWestWestNewWestern BioEnergy

  13. G K Bioenergy Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604°Wisconsin:FyreStorm Inc Jump to:K.Bioenergy Pvt.

  14. Genomics:GTL Bioenergy Research Centers White Paper

    SciTech Connect (OSTI)

    Mansfield, Betty Kay [ORNL; Alton, Anita Jean [ORNL; Andrews, Shirley H [ORNL; Bownas, Jennifer Lynn [ORNL; Casey, Denise [ORNL; Martin, Sheryl A [ORNL; Mills, Marissa [ORNL; Nylander, Kim [ORNL; Wyrick, Judy M [ORNL; Drell, Dr. Daniel [Office of Science, Department of Energy; Weatherwax, Sharlene [U.S. Department of Energy; Carruthers, Julie [U.S. Department of Energy

    2006-08-01T23:59:59.000Z

    In his Advanced Energy Initiative announced in January 2006, President George W. Bush committed the nation to new efforts to develop alternative sources of energy to replace imported oil and fossil fuels. Developing cost-effective and energy-efficient methods of producing renewable alternative fuels such as cellulosic ethanol from biomass and solar-derived biofuels will require transformational breakthroughs in science and technology. Incremental improvements in current bioenergy production methods will not suffice. The Genomics:GTL Bioenergy Research Centers will be dedicated to fundamental research on microbe and plant systems with the goal of developing knowledge that will advance biotechnology-based strategies for biofuels production. The aim is to spur substantial progress toward cost-effective production of biologically based renewable energy sources. This document describes the rationale for the establishment of the centers and their objectives in light of the U.S. Department of Energy's mission and goals. Developing energy-efficient and cost-effective methods of producing alternative fuels such as cellulosic ethanol from biomass will require transformational breakthroughs in science and technology. Incremental improvements in current bioenergy-production methods will not suffice. The focus on microbes (for cellular mechanisms) and plants (for source biomass) fundamentally exploits capabilities well known to exist in the microbial world. Thus 'proof of concept' is not required, but considerable basic research into these capabilities remains an urgent priority. Several developments have converged in recent years to suggest that systems biology research into microbes and plants promises solutions that will overcome critical roadblocks on the path to cost-effective, large-scale production of cellulosic ethanol and other renewable energy from biomass. The ability to rapidly sequence the DNA of any organism is a critical part of these new capabilities, but it is only a first step. Other advances include the growing number of high-throughput techniques for protein production and characterization; a range of new instrumentation for observing proteins and other cell constituents; the rapid growth of commercially available reagents for protein production; a new generation of high-intensity light sources that provide precision imaging on the nanoscale and allow observation of molecular interactions in ultrafast time intervals; major advances in computational capability; and the continually increasing numbers of these instruments and technologies within the national laboratory infrastructure, at universities, and in private industry. All these developments expand our ability to elucidate mechanisms present in living cells, but much more remains to be done. The Centers are designed to accomplish GTL program objectives more rapidly, more effectively, and at reduced cost by concentrating appropriate technologies and scientific expertise, from genome sequence to an integrated systems understanding of the pathways and internal structures of microbes and plants most relevant to developing bioenergy compounds. The Centers will seek to understand the principles underlying the structural and functional design of selected microbial, plant, and molecular systems. This will be accomplished by building technological pathways linking the genome-determined components in an organism with bioenergy-relevant cellular systems that can be characterized sufficiently to generate realistic options for biofuel development. In addition, especially in addressing what are believed to be nearer-term approaches to renewable energy (e.g., producing cellulosic ethanol cost-effectively and energy-efficiently), the Center research team must understand in depth the current industrial-level roadblocks and bottlenecks (see section, GTL's Vision for Biological Energy Alternatives, below). For the Centers, and indeed the entire BER effort, to be successful, Center research must be integrated with individual investigator research, and coordination of activities,

  15. Pacific Northwest and Alaska Regional Bioenergy Program : Five Year Report, 1985-1990.

    SciTech Connect (OSTI)

    Pacific Northwest and Alaska Bioenergy Program (U.S.)

    1991-02-01T23:59:59.000Z

    This five-year report describes activities of the Pacific Northwest and Alaska Regional Bioenergy Program between 1985 and 1990. Begun in 1979, this Regional Bioenergy Program became the model for the nation's four other regional bioenergy programs in 1983. Within the time span of this report, the Pacific Northwest and Alaska Regional Bioenergy Program has undertaken a number of applied research and technology projects, and supported and guided the work of its five participating state energy programs. During this period, the Regional Bioenergy Program has brought together public- and private-sector organizations to promote the use of local biomass and municipal-waste energy resources and technologies. This report claims information on the mission, goals and accomplishments of the Regional Bioenergy Program. It describes the biomass projects conducted by the individual states of the region, and summarizes the results of the programs technical studies. Publications from both the state and regional projects are listed. The report goes on to consider future efforts of the Regional Bioenergy Program under its challenging assignment. Research activities include: forest residue estimates; Landsat biomass mapping; woody biomass plantations; industrial wood-fuel market; residential space heating with wood; materials recovery of residues; co-firing wood chips with coal; biomass fuel characterization; wood-boosted geothermal power plants; wood gasification; municipal solid wastes to energy; woodstove study; slash burning; forest depletion; and technology transfer. 9 figs., 6 tabs.

  16. Environmental and economic evaluation of bioenergy in Ontario, Canada

    SciTech Connect (OSTI)

    Yimin Zhang; Shiva Habibi; Heather L. MacLean [University of Toronto, Toronto, ON (Canada)

    2007-08-15T23:59:59.000Z

    We examined life cycle environmental and economic implications of two near-term scenarios for converting cellulosic biomass to energy, generating electricity from cofiring biomass in existing coal power plants, and producing ethanol from biomass in stand-alone facilities in Ontario, Canada. The study inventories near-term biomass supply in the province, quantifies environmental metrics associated with the use of agricultural residues for producing electricity and ethanol, determines the incremental costs of switching from fossil fuels to biomass, and compares the cost-effectiveness of greenhouse gas (GHG) and air pollutant emissions abatement achieved through the use of the bioenergy. Implementing a biomass cofiring rate of 10% in existing coal-fired power plants would reduce annual GHG emissions by 2.3 million metric tons (t) of CO{sub 2} equivalent (7% of the province's coal power plant emissions). The substitution of gasoline with ethanol/gasoline blends would reduce annual provincial light-duty vehicle fleet emissions between 1.3 and 2.5 million t of CO{sub 2} equivalent (3.5-7% of fleet emissions). If biomass sources other than agricultural residues were used, additional emissions reductions could be realized. At current crude oil prices ($70/barrel) and levels of technology development of the bioenergy alternatives, the biomass electricity cofiring scenario analyzed is more cost-effective for mitigating GHG emissions ($22/t of CO{sub 2} equivalent for a 10% cofiring rate) than the stand-alone ethanol production scenario ($92/t of CO{sub 2} equivalent). 67 refs., 5 figs., 7 tabs.

  17. Short-Rotation Crops for Bioenergy: Proceedings of IEA, Bioenergy, Task 17 Meeting in Auburn, Alabama, USA, September 6-9, 1999

    SciTech Connect (OSTI)

    Wright, L.L.

    2001-01-30T23:59:59.000Z

    These proceedings are the results of the third meeting of Task 17 (Short-Rotation Crops for Bioenergy) within the framework of International Energy Agency (IEA), Bioenergy. (Minutes from the meeting can be seen at page 91.) The meeting was held in Auburn, Alabama, USA, September 6--9, 1999. The meeting was held soon after President Clinton of the United States signed Executive Order No.13134: DEVELOPING AND PROMOTING BIOBASED PRODUCTS AND BIOENERGY on August 12, 1999. Executive orders in the US are official documents, through which the President of the US manages the operation of the Federal Government. This order outlines the administration's goal of tripling the use of biomass products and bioenergy in the US by the year 2010. During the time of this meeting, it was also known from sources in Europe that the European Union (EU) commission was working on draft instructions to its member countries on how to increase the use of renewable energy from six to twelve percent in Europe within 10 years. The objectives of Task 17 support the goals of member countries for bioenergy production and use. These objectives are as follows: to stimulate the full-scale implementation of energy crops in the participating countries; to strengthen the contacts and co-operation between participating countries, scientists, biomass producers, machine developers, entrepreneurs, and end users to select the most urgent research and development areas and suggest projects of co-operation; to inform Ex-Co- members; and to deliver proceedings from the meetings.

  18. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #26, January - March 2010

    SciTech Connect (OSTI)

    Schell, D.

    2010-04-01T23:59:59.000Z

    January-March, 2010 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: understanding and improving sugar measurements in biomass hydrolysates; expansion of the NREL/DOE Biochemical Pilot Plant.

  19. National Bioenergy Center--Biochemical Platform Integration Project: Quarterly Update, Fall 2010

    SciTech Connect (OSTI)

    Schell, D.

    2010-12-01T23:59:59.000Z

    Fall 2010 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: rapid analysis models for compositional analysis of intermediate process streams; engineered arabinose-fermenting Zymomonas mobilis strain.

  20. Effect of Harvest Dates on Biomass Accumulation and Composition in Bioenergy Sorghum

    E-Print Network [OSTI]

    Borden, Dustin Ross

    2012-02-14T23:59:59.000Z

    for use as a feedstock for ethanol production. Other factors such as water use efficiency, drought tolerance, yield potential, composition, and established production systems also make sorghum a logical choice as a feedstock for bioenergy production...

  1. Effect of Harvest Dates on Biomass Accumulation and Composition in Bioenergy Sorghum 

    E-Print Network [OSTI]

    Borden, Dustin Ross

    2012-02-14T23:59:59.000Z

    followed by dedicated bioenergy sorghums (that are full photo-period sensitive), allowing for a more constant supply of feedstock to processing plants. Sweet sorghums would also allow the end user to obtain biomass when needed, however these types...

  2. Effects of Biochar Recycling on Switchgrass Growth and Soil and Water Quality in Bioenergy Production Systems 

    E-Print Network [OSTI]

    Husmoen, Derek Howard

    2012-07-16T23:59:59.000Z

    Intensive biomass production in emerging bioenergy systems could increase nonpoint-source sediment and nutrient losses and impair surface and groundwater quality. Recycling biochar, a charcoal byproduct from pyrolysis of biomass, provides potential...

  3. Bioenergy Technologies Office R&D Pathways: In-Situ Catalytic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    heating biomass with a catalyst to create bio-oils, which can be used to produce biofuel blendstocks. Bioenergy Technologies Office R&D Pathways: In-Situ Catalytic Fast...

  4. Bioenergy Technologies Office R&D Pathways: Ex-Situ Catalytic...

    Broader source: Energy.gov (indexed) [DOE]

    biomass is heated with catalysts to create bio-oils, which are then used to produce biofuel blendstocks. Bioenergy Technologies Office R&D Pathways: Ex-Situ Catalytic Fast...

  5. Trade-offs of different land and bioenergy policies on the path to achieving climate targets.

    SciTech Connect (OSTI)

    Calvin, Katherine V.; Wise, Marshall A.; Kyle, G. Page; Patel, Pralit L.; Clarke, Leon E.; Edmonds, James A.

    2014-04-16T23:59:59.000Z

    Many papers have shown that bioenergy and land-use are potentially important elements in a strategy to limit anthropogenic climate change. But, significant expansion of bioenergy production can have a large terrestrial footprint. In this paper, we test the implications for land use, the global energy system, carbon cycle, and carbon prices of meeting a specific climate target, using a single fossil fuel and industrial sector policy instrument—the carbon tax, but with five alternative bioenergy and land-use policy architectures. We find that the policies we examined have differing effects on the different segments of the economy. Comprehensive land policies can reduce land-use change emissions, increasing allowable emissions in the energy system, but have implications for the cost of food. Bioenergy taxes and constraints, on the other hand, have little effect on food prices, but can result in increased carbon and energy prices.

  6. Integrated Photo-Bioelectrochemical System for Contaminants Removal and Bioenergy Production

    E-Print Network [OSTI]

    Berges, John A.

    cycling. INTRODUCTION Municipal wastewater treatment plants play a critical role in environmental represents an important, electricity-demanding step in most municipal wastewater treatment facilities fuel cells (MFCs)3 with algal bioreactors4 for wastewater treatment and bioenergy production. MFCs

  7. The Center for BioEnergy Sustainability (CBES) at Oak Ridge National Laboratory (ORNL)

    E-Print Network [OSTI]

    , renovation and management effects on pasture productivity and quality under rotational grazing, and promoting Sustainable Bioenergy Practices Jackson's program focuses on structure and function of managed, semi cropping systems. Projects include comparing grass species' C-sequestration ability, ecosystem provisioning

  8. The Center for BioEnergy Sustainability (CBES) at Oak Ridge National Laboratory (ORNL)

    E-Print Network [OSTI]

    The Center for BioEnergy Sustainability (CBES) at Oak Ridge National Laboratory (ORNL) is pleased of Ethanol on Fuel Price Behavior and the Viability of Cellulosic Biofuels" presented by Jacob La

  9. Indicators for assessing socioeconomic sustainability of bioenergy systems: A short list of practical measures.

    SciTech Connect (OSTI)

    Davis, Maggie R [ORNL; Downing, Mark [ORNL; Dale, Virginia H [ORNL; Efroymson, Rebecca Ann [ORNL; Hilliard, Michael R [ORNL; Kline, Keith L [ORNL; Langholtz, Matthew H [ORNL; Leiby, Paul Newsome [ORNL; Oladosu, Gbadebo A [ORNL

    2013-01-01T23:59:59.000Z

    Indicators are needed to assess both socioeconomic and environmental sustainability of bioenergy systems. Effective indicators can help to identify and quantify the sustainability attributes of bioenergy options. We identify 16 socioeconomic indicators that fall into the categories of social well-being, energy security, trade, profitability, resource conservation, and social acceptability. The suite of indicators is predicated on the existence of basic institutional frameworks to provide governance, legal, regulatory and enforcement services. Indicators were selected to be practical, sensitive to stresses, unambiguous, anticipatory, predictive, calibrated with known variability, and sufficient when considered collectively. The utility of each indicator, methods for its measurement, and applications appropriate for the context of particular bioenergy systems are described along with future research needs. Together, this suite of indicators is hypothesized to reflect major socioeconomic effects of the full supply chain for bioenergy, including feedstock production and logistics, conversion to biofuels, biofuel logistics and biofuel end uses. Ten of those 16 indicators are proposed to be the minimum list of practical measures of socioeconomic aspects of bioenergy sustainability. Coupled with locally-prioritized environmental indicators, we propose that these socioeconomic indicators can provide a basis to quantify and evaluate sustainability of bioenergy systems across many regions in which they will be deployed.

  10. Advancing sustainable bioenergy: Evolving stakeholder interests and the relevance of research

    SciTech Connect (OSTI)

    Johnson, Timothy L [U.S. Environmental Protection Agency, Raleigh, North Carolina; Bielicki, Dr Jeffrey M [University of Minnesota; Dodder, Rebecca [U.S. Environmental Protection Agency; Hilliard, Michael R [ORNL; Kaplan, Ozge [U.S. Environmental Protection Agency; Miller, C. Andy [U.S. Environmental Protection Agency

    2013-01-01T23:59:59.000Z

    The sustainability of future bioenergy production rests on more than continual improvements in its environmental, economic, and social impacts. The emergence of new biomass feedstocks, an expanding array of conversion pathways, and expected increases in overall bioenergy production are connecting diverse technical, social, and policy communities. These stakeholder groups have different and potentially conflicting values and cultures, and therefore different goals and decision making processes. Our aim is to discuss the implications of this diversity for bioenergy researchers. The paper begins with a discussion of bioenergy stakeholder groups and their varied interests, and illustrates how this diversity complicates efforts to define and promote sustainable bioenergy production. We then discuss what this diversity means for research practice. Researchers, we note, should be aware of stakeholder values, information needs, and the factors affecting stakeholder decision making if the knowledge they generate is to reach its widest potential use. We point out how stakeholder participation in research can increase the relevance of its products, and argue that stakeholder values should inform research questions and the choice of analytical assumptions. Finally, we make the case that additional natural science and technical research alone will not advance sustainable bioenergy production, and that important research gaps relate to understanding stakeholder decision making and the need, from a broader social science perspective, to develop processes to identify and accommodate different value systems. While sustainability requires more than improved scientific and technical understanding, the need to understand stakeholder values and manage diversity presents important research opportunities.

  11. d. 11. dec. 2003 Moderne bioenergi -et nyt dansk vkstomrde 1 Har forbrnding og forgasning af biomasse en

    E-Print Network [OSTI]

    d. 11. dec. 2003 Moderne bioenergi - et nyt dansk vækstområde 1 Har forbrænding og forgasning af biomasse en fremtid ? Charles Nielsen Elsam A/S #12;d. 11. dec. 2003 Moderne bioenergi - et nyt dansk vækstområde 2 JaJa #12;d. 11. dec. 2003 Moderne bioenergi - et nyt dansk vækstområde 3 Disposition

  12. IEA Bioenergy Task 40Sustainable International Bioenergy Trade:Securing Supply and Demand Country Report 2014—United States

    SciTech Connect (OSTI)

    J. Richard Hess; Patrick Lamers; Mohammad S. Roni; Jacob J. Jacobson; Brendi Heath

    2015-01-01T23:59:59.000Z

    Logistical barrier are tied to feedstock harvesting, collection, storage and distribution. Current crop harvesting machinery is unable to selectively harvest preferred components of cellulosic biomass while maintaining acceptable levels of soil carbon and minimizing erosion. Actively managing biomass variability imposes additional functional requirements on biomass harvesting equipment. A physiological variation in biomass arises from differences in genetics, degree of crop maturity, geographical location, climatic events, and harvest methods. This variability presents significant cost and performance risks for bioenergy systems. Currently, processing standards and specifications for cellulosic feedstocks are not as well-developed as for mature commodities. Biomass that is stored with high moisture content or exposed to moisture during storage is susceptible to spoilage, rotting, spontaneous combustion, and odor problems. Appropriate storage methods and strategies are needed to better define storage requirements to preserve the volume and quality of harvested biomass over time and maintain its conversion yield. Raw herbaceous biomass is costly to collect, handle, and transport because of its low density and fibrous nature. Existing conventional, bale-based handling equipment and facilities cannot cost-effectively deliver and store high volumes of biomass, even with improved handling techniques. Current handling and transportation systems designed for moving woodchips can be inefficient for bioenergy processes due to the costs and challenges of transporting, storing, and drying high-moisture biomass. The infrastructure for feedstock logistics has not been defined for the potential variety of locations, climates, feedstocks, storage methods, processing alternatives, etc., which will occur at a national scale. When setting up biomass fuel supply chains, for large-scale biomass systems, logistics are a pivotal part in the system. Various studies have shown that long-distance international transport by ship is feasible in terms of energy use and transportation costs, but availability of suitable vessels and meteorological conditions (e.g., winter time in Scandinavia and Russia) need to be considered. However, local transportation by truck (both in biomass exporting and importing countries) may be a high-cost factor, which can influence the overall energy balance and total biomass costs.

  13. Urban Wood-Based Bio-Energy Systems in Seattle

    SciTech Connect (OSTI)

    Stan Gent, Seattle Steam Company

    2010-10-25T23:59:59.000Z

    Seattle Steam Company provides thermal energy service (steam) to the majority of buildings and facilities in downtown Seattle, including major hospitals (Swedish and Virginia Mason) and The Northwest (Level I) Regional Trauma Center. Seattle Steam has been heating downtown businesses for 117 years, with an average length of service to its customers of 40 years. In 2008 and 2009 Seattle Steam developed a biomass-fueled renewable energy (bio-energy) system to replace one of its gas-fired boilers that will reduce greenhouse gases, pollutants and the amount of waste sent to landfills. This work in this sub-project included several distinct tasks associated with the biomass project development as follows: a. Engineering and Architecture: Engineering focused on development of system control strategies, development of manuals for start up and commissioning. b. Training: The project developer will train its current operating staff to operate equipment and facilities. c. Flue Gas Clean-Up Equipment Concept Design: The concept development of acid gas emissions control system strategies associated with the supply wood to the project. d. Fuel Supply Management Plan: Development of plans and specifications for the supply of wood. It will include potential fuel sampling analysis and development of contracts for delivery and management of fuel suppliers and handlers. e. Integrated Fuel Management System Development: Seattle Steam requires a biomass Fuel Management System to track and manage the delivery, testing, processing and invoicing of delivered fuel. This application will be web-based and accessed from a password-protected URL, restricting data access and privileges by user-level.

  14. Role of Bioenergy in the Kyoto Protocol, in the EU-ETS and in future Climate Agreements

    E-Print Network [OSTI]

    of bioenergy use through: Internal emission reductions within the Greenhouse Gas capped sectors Offsetting/CDM CDM project pipeline: > 1000 projects of which: Registered projects: 334 Expected CERs (from RISOE Distribution of projects Bioenergy #12;The EU-ETS and biomass (1) In January 2005 the European

  15. Factors contributing to carbon fluxes from bioenergy harvests in the U.S. Northeast: an analysis using

    E-Print Network [OSTI]

    Vermont, University of

    not statistically significant. Bioenergy harvests using WTH generated fewer wood products and resulted in more of fossil fuels for energy production (`bioenergy' such as combusting woodchips or pellets for electricity to the atmo- sphere) into and out of the forest system, as well as C transferred to wood products, the life

  16. Bioenergy Watershed Restoration in Regions of the West: What are the Environmental/Community Issues?

    SciTech Connect (OSTI)

    Graham, R.L.; Huff, D.D.; Kaufmann, M.R.; Shepperd, W.D.; Sheehan, J.

    1999-07-01T23:59:59.000Z

    Throughout the western mountainous regions, wildfire risks are elevated due to both fire suppression activities which have changed the forest structure making it more susceptible to stand-killing fires and the expansion of human structures (houses, light commercial) into these same forests, By providing a market for currently noncommercial but flammable materials (small trees, tops, and branches), new and existing bioenergy industries could be a key factor in reducing the regional forest fuel loads. Although bioenergy would appear to be an ideal answer to the problem in many ways, the situation is complicated and numerous issues need resolution. A public fearful of logging in these regions needs assurance that harvesting for bioenergy is an environmentally and socially responsible solution to the current fuel build up in these forests. This is especially important given that biomass harvesting cannot pay its own way under current energy market conditions and would have to be supported in some fashion.

  17. Pacific Northwest and Alaska Bioenergy Program Year Book; 1992-1993 Yearbook with 1994 Activities.

    SciTech Connect (OSTI)

    Pacific Northwest and Alaska Bioenergy Program (U.S.); United States. Bonneville Power Administration.

    1994-04-01T23:59:59.000Z

    The U.S. Department of Energy administers five Regional Bioenergy Programs to encourage regionally specific application of biomass and municipal waste-to-energy technologies to local needs, opportunities and potentials. The Pacific Northwest and Alaska region has taken up a number of applied research and technology projects, and supported and guided its five participating state energy programs. This report describes the Pacific Northwest and Alaska Regional Bioenergy Program, and related projects of the state energy agencies, and summarizes the results of technical studies. It also considers future efforts of this regional program to meet its challenging assignment.

  18. Bioenergy Pumps New Life into Pulp and Paper Mills | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-OilBioenergy 2015Bioenergy Pumps New

  19. lightsource_data_challenge-analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parkinson (ALS), Nobumichi Tamura (ALS), Craig E. Tull (CRD) Advanced Light Source, LBNL; Computing Research Division, LBNL BES facilities (Light Sources and Neutron Sources)...

  20. lightsource_data_challenge-analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , (Energy9 Evaluation ofGCMEddy7 ASource Data

  1. Team | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposedPAGESafety Tag:8, 2013Teachers Prepare2014Team Current

  2. Theses | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2DandEnergyThermostabilizedAstrophysics

  3. Biomass and Bioenergy 30 (2006) 316320 How to recover more value from small pine trees

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    . Preliminary results support the proposition there is an available, large supply of biomass with highBiomass and Bioenergy 30 (2006) 316­320 How to recover more value from small pine trees: Essential USDA Forest Service, Rocky Mountain Research Station, 2500 South Pine Knoll Drive, Flagstaff, AZ 86001

  4. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #27, April - June 2010

    SciTech Connect (OSTI)

    Schell, D.

    2010-07-01T23:59:59.000Z

    April-June, 2010 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: understanding performance of alternative process configurations for producing ethanol from biomass; investigating Karl Fischer Titration for measuring water content of pretreated biomass slurries.

  5. Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison

    SciTech Connect (OSTI)

    Lotze-Campen, Hermann; von Lampe, Martin; Kyle, G. Page; Fujimori, Shinichiro; Havlik, Petr; van Meijl, Hans; Hasegawa, Tomoko; Popp, Alexander; Schmitz, Christoph; Tabeau, Andrzej; Valin, Hugo; Willenbockel, Dirk; Wise, Marshall A.

    2014-01-01T23:59:59.000Z

    Integrated Assessment studies have shown that meeting ambitious greenhouse gas mitigation targets will require substantial amounts of bioenergy as part of the future energy mix. In the course of the Agricultural Model Comparison and Improvement Project (AgMIP), five global agro-economic models were used to analyze a future scenario with global demand for ligno-cellulosic bioenergy rising to about 100 ExaJoule in 2050. From this exercise a tentative conclusion can be drawn that ambitious climate change mitigation need not drive up global food prices much, if the extra land required for bioenergy production is accessible or if the feedstock, e.g. from forests, does not directly compete for agricultural land. Agricultural price effects across models by the year 2050 from high bioenergy demand in an RCP2.6-type scenario appear to be much smaller (+5% average across models) than from direct climate impacts on crop yields in an RCP8.5-type scenario (+25% average across models). However, potential future scarcities of water and nutrients, policy-induced restrictions on agricultural land expansion, as well as potential welfare losses have not been specifically looked at in this exercise.

  6. National Bioenergy Center, Biochemical Platform Integration Project: Quarterly Update, Summer 2011 (Newsletter)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01T23:59:59.000Z

    Summer 2011 issue of the National Bioenergy Center Biochemical Platform Integration Project quarterly update. Issue topics: evaluating new analytical techniques for measuring soluble sugars in the liquid portion of biomass hydrolysates, and measurement of the fraction of insoluble solids in biomass slurries.

  7. BIOENERGY AND BIOFUELS A multi-electrode continuous flow microbial fuel cell

    E-Print Network [OSTI]

    BIOENERGY AND BIOFUELS A multi-electrode continuous flow microbial fuel cell with separator microbial fuel cells (MFCs) requires the development of compact reactors with multiple electro- des continuous flow treatment using actual wastewaters. Keywords Microbial fuel cell . Scaling up . Separator

  8. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #28, Spring 2011

    SciTech Connect (OSTI)

    Schell, D. J.

    2011-04-01T23:59:59.000Z

    Spring 2011 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: 33rd Symposium on Biotechnology for Fuels and Chemicals program sessions and special topic sessions; assessment of waste water treatment needs; and an update on new arabinose-to-ethanol fermenting Zymomonas mobilis strains.

  9. National Bioenergy Center - Biochemical Platform Integration Project: Quarterly Update, Winter 2010

    SciTech Connect (OSTI)

    Schell, D.

    2011-02-01T23:59:59.000Z

    Winter 2011 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: 33rd Symposium on Biotechnology for Fuels and Chemicals program topic areas; results from reactive membrane extraction of inhibitors from dilute-acid pretreated corn stover; list of 2010 task publications.

  10. Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy

    E-Print Network [OSTI]

    Knowles, David William

    . Currently, biofuels such as ethanol are produced largely from grains, but there is a large, untapped of the grain into sugars that can be fermented to ethanol. The energy efficiency of starch-based biofuels of Energy (DOE) Bioenergy Research Center that will address these roadblocks in biofuels production. JBEI

  11. Switchgrass for Bioenergy held at the University of NebraskaLincoln

    E-Print Network [OSTI]

    Farritor, Shane

    * Pest Management * Soil and Water Management Held at a site developed exclu- sively for the clinics. Cenusa bioenergy, a USDA-funded research initiative, is investigating the creation of a sustainable at: In-FieldTrainingforAgribusinessProfessionals Know how. Know now. Crop Management Diagnostic

  12. Importance of bioenergy markets for the development of the global energy system

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    international bioenergy markets are still in their infancy, international trade of biofuels, wood pellets are the large resources potential and low production costs of biomass in export countries such as Brazil are not the same as the countries that could become important biomass users. The largest biomass production

  13. The Pennsylvania State University www.BioEnergyBridge.psu.edu 1 BioEnergy Bridge

    E-Print Network [OSTI]

    Lee, Dongwon

    and Fermentation Facilities · TechnoEconomic Analysis · Life Cycle Assessment · Sustainability Analysis · Engine engine testing Services · Field Trials · Onsite Saccharification and Fermentation Facilities · TechnoEconomic# trichard@psu.edu rtw103@psu.edu www.bioenergy.psu.edu Biomass Energy Center #12;© The Pennsylvania State

  14. Essays on Economic and Environmental Analysis of Taiwanese Bioenergy Production on Set-Aside Land 

    E-Print Network [OSTI]

    Kung, Chih-Chun

    2012-02-14T23:59:59.000Z

    . This dissertation examines Taiwan’s potential for bioenergy production using feedstocks grown on set-aside land and discusses the consequent effects on Taiwan’s energy security plus benefits and greenhouse gas (GHG) emissions. The Taiwan Agricultural Sector Model...

  15. Climate implications of algae-based bioenergy systems Andres Clarens, PhD

    E-Print Network [OSTI]

    Walter, M.Todd

    Climate implications of algae-based bioenergy systems Andres Clarens, PhD Assistant Professor Civil of algae and other nonconventional feedstocks, are being developed. This talk will explore several systems priorities. This is an especially challenging problem for algae-based biofuels because production pathways

  16. Hawai'i Bioenergy Master Plan Green Jobs, Biofuels Development, and

    E-Print Network [OSTI]

    Hawai'i Bioenergy Master Plan Green Jobs, Biofuels Development, and Hawaii's Labor Market associated with biofuels in Hawai'i. In particular, it discusses how a potential biofuels industry might policy makers and leaders consider how best to support biofuels. One major labor market question

  17. Essays on Economic and Environmental Analysis of Taiwanese Bioenergy Production on Set-Aside Land

    E-Print Network [OSTI]

    Kung, Chih-Chun

    2012-02-14T23:59:59.000Z

    . This dissertation examines Taiwan’s potential for bioenergy production using feedstocks grown on set-aside land and discusses the consequent effects on Taiwan’s energy security plus benefits and greenhouse gas (GHG) emissions. The Taiwan Agricultural Sector Model...

  18. Texas AgriLife Research with General Atomics Pilots Microalgae Ponds in Pecos BIOENERGY PROGRAM

    E-Print Network [OSTI]

    Texas AgriLife Research with General Atomics Pilots Microalgae Ponds in Pecos BIOENERGY PROGRAM systems for microalgae capable of producing biofuels. Diesel and jet fuels are critical to our nation from renewable sources by 2020. Energy and financial analysts acknowledge that the world has entered

  19. Climate impacts of bioenergy: Inclusion of carbon cycle and albedo dynamics in life cycle impact assessment

    SciTech Connect (OSTI)

    Bright, Ryan M., E-mail: ryan.m.bright@ntnu.no; Cherubini, Francesco; Stromman, Anders H.

    2012-11-15T23:59:59.000Z

    Life cycle assessment (LCA) can be an invaluable tool for the structured environmental impact assessment of bioenergy product systems. However, the methodology's static temporal and spatial scope combined with its restriction to emission-based metrics in life cycle impact assessment (LCIA) inhibits its effectiveness at assessing climate change impacts that stem from dynamic land surface-atmosphere interactions inherent to all biomass-based product systems. In this paper, we focus on two dynamic issues related to anthropogenic land use that can significantly influence the climate impacts of bioenergy systems: i) temporary changes to the terrestrial carbon cycle; and ii) temporary changes in land surface albedo-and illustrate how they can be integrated within the LCA framework. In the context of active land use management for bioenergy, we discuss these dynamics and their relevancy and outline the methodological steps that would be required to derive case-specific biogenic CO{sub 2} and albedo change characterization factors for inclusion in LCIA. We demonstrate our concepts and metrics with application to a case study of transportation biofuel sourced from managed boreal forest biomass in northern Europe. We derive GWP indices for three land management cases of varying site productivities to illustrate the importance and need to consider case- or region-specific characterization factors for bioenergy product systems. Uncertainties and limitations of the proposed metrics are discussed. - Highlights: Black-Right-Pointing-Pointer A method for including temporary surface albedo and carbon cycle changes in Life Cycle Impact Assessment (LCIA) is elaborated. Black-Right-Pointing-Pointer Concepts are applied to a single bioenergy case whereby a range of feedstock productivities are shown to influence results. Black-Right-Pointing-Pointer Results imply that case- and site-specific characterization factors can be essential for a more informed impact assessment. Black-Right-Pointing-Pointer Uncertainties and limitations of the proposed methodologies are elaborated.

  20. Developing a Portfolio of Sustainable Bioenergy Feedstock Production Systems for the US Midwest: A Research and Demonstration Project

    E-Print Network [OSTI]

    Debinski, Diane M.

    a growing portion of our bioenergy feedstocks. While such second generation feedstocks show numerous on fossil fuels. In response, the demand for feedstocks for liquid biofuels will continue to grow

  1. Developing a Portfolio of Sustainable Bioenergy Feedstock Production Systems for the US Midwest: A Research and Demonstration Project

    E-Print Network [OSTI]

    Jager, Henriette I.

    a growing portion of our bioenergy feedstocks. While such "second generation" feedstocks show numerous on fossil fuels. In response, the demand for feedstocks for liquid biofuels will continue to grow

  2. Feedstock Logistics of a Mobile Pyrolysis System and Assessment of Soil Loss Due to Biomass Removal for Bioenergy Production 

    E-Print Network [OSTI]

    Bumguardner, Marisa

    2012-10-19T23:59:59.000Z

    The purpose of this study was to assess feedstock logistics for a mobile pyrolysis system and to quantify the amount of soil loss caused by harvesting agricultural feedstocks for bioenergy production. The analysis of feedstock logistics...

  3. Bioenergy Technologies FY14 Budget At-a-Glance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartmentWindConversion BiochemicalDepartment ofBioenergy

  4. Smithers-Oasis Company, with its Corporate headquarters and U.S. division located in Kent, OH, is a global leader in the manufacturing and marketing of floral foam products

    E-Print Network [OSTI]

    Smithers-Oasis Company, with its Corporate headquarters and U.S. division located in Kent, OH effectiveness in supplying local markets. Thus, Smithers-Oasis can act both as a local and global company

  5. Global Simulation of Bioenergy Crop Productivity: Analytical Framework and Case Study for Switchgrass

    SciTech Connect (OSTI)

    Kang, Shujiang [ORNL; Kline, Keith L [ORNL; Nair, S. Surendran [University of Tennessee, Knoxville (UTK); Nichols, Dr Jeff A [ORNL; Post, Wilfred M [ORNL; Brandt, Craig C [ORNL; Wullschleger, Stan D [ORNL; Wei, Yaxing [ORNL; Singh, Nagendra [ORNL

    2013-01-01T23:59:59.000Z

    A global energy crop productivity model that provides geospatially explicit quantitative details on biomass potential and factors affecting sustainability would be useful, but does not exist now. This study describes a modeling platform capable of meeting many challenges associated with global-scale agro-ecosystem modeling. We designed an analytical framework for bioenergy crops consisting of six major components: (i) standardized natural resources datasets, (ii) global field-trial data and crop management practices, (iii) simulation units and management scenarios, (iv) model calibration and validation, (v) high-performance computing (HPC) simulation, and (vi) simulation output processing and analysis. The HPC-Environmental Policy Integrated Climate (HPC-EPIC) model simulated a perennial bioenergy crop, switchgrass (Panicum virgatum L.), estimating feedstock production potentials and effects across the globe. This modeling platform can assess soil C sequestration, net greenhouse gas (GHG) emissions, nonpoint source pollution (e.g., nutrient and pesticide loss), and energy exchange with the atmosphere. It can be expanded to include additional bioenergy crops (e.g., miscanthus, energy cane, and agave) and food crops under different management scenarios. The platform and switchgrass field-trial dataset are available to support global analysis of biomass feedstock production potential and corresponding metrics of sustainability.

  6. Global Simulation of Bioenergy Crop Productivity: Analytical framework and Case Study for Switchgrass

    SciTech Connect (OSTI)

    Nair, S. Surendran [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Nichols, Jeff A. {Cyber Sciences} [ORNL; Post, Wilfred M [ORNL] [ORNL; Wang, Dali [ORNL] [ORNL; Wullschleger, Stan D [ORNL] [ORNL; Kline, Keith L [ORNL] [ORNL; Wei, Yaxing [ORNL] [ORNL; Singh, Nagendra [ORNL] [ORNL; Kang, Shujiang [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Contemporary global assessments of the deployment potential and sustainability aspects of biofuel crops lack quantitative details. This paper describes an analytical framework capable of meeting the challenges associated with global scale agro-ecosystem modeling. We designed a modeling platform for bioenergy crops, consisting of five major components: (i) standardized global natural resources and management data sets, (ii) global simulation unit and management scenarios, (iii) model calibration and validation, (iv) high-performance computing (HPC) modeling, and (v) simulation output processing and analysis. A case study with the HPC- Environmental Policy Integrated Climate model (HPC-EPIC) to simulate a perennial bioenergy crop, switchgrass (Panicum virgatum L.) and global biomass feedstock analysis on grassland demonstrates the application of this platform. The results illustrate biomass feedstock variability of switchgrass and provide insights on how the modeling platform can be expanded to better assess sustainable production criteria and other biomass crops. Feedstock potentials on global grasslands and within different countries are also shown. Future efforts involve developing databases of productivity, implementing global simulations for other bioenergy crops (e.g. miscanthus, energycane and agave), and assessing environmental impacts under various management regimes. We anticipated this platform will provide an exemplary tool and assessment data for international communities to conduct global analysis of biofuel biomass feedstocks and sustainability.

  7. Bioenergy market competition for biomass: A system dynamics review of current policies

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Robert Jeffers

    2013-07-01T23:59:59.000Z

    There is growing interest in the United States and abroad to increase the use of biomass as an energy source due to environmental and energy security benefits. In the United States, the biofuel and biopower industries are regulated by different policies and different agencies and have different drivers, which impact the maximum price the industries are willing to pay for biomass. This article describes a dynamic computer simulation model that analyzes future behavior of bioenergy feedstock markets based on varying policy and technical options. The model simulates the long-term dynamics of these markets by treating advanced biomass feedstocks as a commodity and projecting the total demand of each industry, as well as the market price over time. The model is used for an analysis of the United States bioenergy feedstock market that projects supply, demand, and market price given three independent buyers: domestic biopower, domestic biofuels, and foreign exports. With base-case assumptions, the biofuels industry is able to dominate the market and meet the federal Renewable Fuel Standard (RFS) targets for advanced biofuels. Further analyses suggest that United States bioenergy studies should include estimates of export demand for biomass in their projections, and that GHG-limiting policy would partially shield both industries from export dominance.

  8. U.S. Department of Energy's Bioenergy Research Centers An Overview of the Science

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    Alternative fuels from renewable cellulosic biomass - plant stalks, trunks, stems, and leaves - are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs that can't be outsourced.' Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain - the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 30 years. The DOE Genomic Science program is advancing a new generation of research focused on achieving whole-systems understanding of biology. This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. For more information on the Genomic Science program, see p. 26. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs are providing the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use (see sidebar, Bridging the Gap from Fundamental Biology to Industrial Innovation for Bioenergy, p. 6). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations - the Southeast, the Midwest, and the West Coast - with partners across the nation (see U.S. map, DOE Bioenergy Research Centers and Partners, on back cover). DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California; DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; and the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC). Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and bioinformatics, and engineering. Institutional partners include DOE national laboratories, universities, private companies, and nonprofit organizations.

  9. “AT HOME, I’M CLARK KENT. AT CAMP, I’M SUPERMAN:” OUTCOMES AND PROCESSES OF A CAMP FOR YOUTH WITH HIV/AIDS 

    E-Print Network [OSTI]

    Gillard, Ann

    2010-01-16T23:59:59.000Z

    Committee Members, M. Deborah Bialeschki Jan Hughes Corliss Outley David Scott Head of Department, Gary Ellis May 2009 Major Subject: Recreation, Park, and Tourism Sciences iii ABSTRACT ?At Home, I?m Clark Kent. At Camp, I?m Superman... and external assets that build strength (Scales, Benson, Leffert, & Blyth, 2000) form the foundation for preparing youth for adulthood, and ultimately their full engagement in society. This preparation necessitates supports and opportunities for positive...

  10. Advantages and limitations of exergy indicators to assess sustainability of bioenergy and biobased materials

    SciTech Connect (OSTI)

    Maes, Dries, E-mail: Dries.Maes@uhasselt.be; Van Passel, Steven, E-mail: Steven.Vanpassel@uhasselt.be

    2014-02-15T23:59:59.000Z

    Innovative bioenergy projects show a growing diversity in biomass pathways, transformation technologies and end-products, leading to complex new processes. Existing energy-based indicators are not designed to include multiple impacts and are too constrained to assess the sustainability of these processes. Alternatively, indicators based on exergy, a measure of “qualitative energy”, could allow a more holistic view. Exergy is increasingly applied in analyses of both technical and biological processes. But sustainability assessments including exergy calculations, are not very common and are not generally applicable to all types of impact. Hence it is important to frame the use of exergy for inclusion in a sustainability assessment. This paper reviews the potentials and the limitations of exergy calculations, and presents solutions for coherent aggregation with other metrics. The resulting approach is illustrated in a case study. Within the context of sustainability assessment of bioenergy, exergy is a suitable metric for the impacts that require an ecocentric interpretation, and it allows aggregation on a physical basis. The use of exergy is limited to a measurement of material and energy exchanges with the sun, biosphere and lithosphere. Exchanges involving services or human choices are to be measured in different metrics. This combination provides a more inclusive and objective sustainability assessment, especially compared to standard energy- or carbon-based indicators. Future applications of this approach in different situations are required to clarify the potential of exergy-based indicators in a sustainability context. -- Highlights: • Innovative bioenergy projects require more advanced sustainability assessments to incorporate all environmental impacts. • Exergy-based indicators provide solutions for objective and robust measurements. • The use of exergy in a sustainability assessment is limited to material exchanges, excluding exchanges with society. • The combination of exergy-based indicators with other indicators is very appropriate. • But this is only rarely applied.

  11. China-US Workshop on Biotechnology of Bioenergy Plants, Nov. 16-17, 2009, Knoxville, Tennessee, USA Page 1 CChhiinnaa--UUSS WWoorrkksshhoopp oonn BBiiootteecchhnnoollooggyy ooff BBiiooeenneerrggyy PPllaannttss

    E-Print Network [OSTI]

    Ginzel, Matthew

    China-US Workshop on Biotechnology of Bioenergy Plants, Nov. 16-17, 2009, Knoxville, Tennessee, USA://isse.utk.edu/jrceec/). The focus of this agreement is to promote research collaboration, academic exchange, student education) environmental sustainability of bioenergy production, (3) ecological foundations of water resources and quality

  12. Bioenergy: how much can we expect for 2050? This content has been downloaded from IOPscience. Please scroll down to see the full text.

    E-Print Network [OSTI]

    Montana, University of

    forage production to provide that amount of energy. Such a high level of bioenergy supply would roughly Hall, Princeton, NJ 08544, USA helmut.haberl@aau.at Abstract Estimates of global primary bioenergy has doubled in the last century. We estimate the maximum physical potential of the world's total land

  13. National Bioenergy Center, Biochemical Platform Integration Project: Quarterly Update, Winter 2011-2012 (Newsletter)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    Winter 2011-2012 issue of the National Bioenergy Center Biochemical Platform Integration Project quarterly update. Issue topics: 34th Symposium on Biotechnology for Fuels and Chemicals; feasibility of NIR spectroscopy-based rapid feedstock reactive screening; demonstrating integrated pilot-scale biomass conversion. The Biochemical Process Integration Task focuses on integrating the processing steps in enzyme-based lignocellulose conversion technology. This project supports the U.S. Department of Energy's efforts to foster development, demonstration, and deployment of 'biochemical platform' biorefineries that economically produce ethanol or other fuels, as well as commodity sugars and a variety of other chemical products, from renewable lignocellulosic biomass.

  14. Microarray Transcriptomics Data from the BioEnergy Science Center (BESC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The BioEnergy Science Center (BESC) is a multi-institutional (18 partner), multidisciplinary research (biological, chemical, physical and computational sciences, mathematics and engineering) organization focused on the fundamental understanding and elimination of biomass recalcitrance. BESC's approach to improve accessibility to the sugars within biomass involves 1) designing plant cell walls for rapid deconstruction and 2) developing multitalented microbes for converting plant biomass into biofuels in a single step (consolidated bioprocessing). Addressing the roadblock of biomass recalcitrance will require a multiscale understanding of plant cell walls from biosynthesis to deconstruction pathways. This integrated understanding would generate models, theories and finally processes that will be used to understand and overcome biomass recalcitrance.

  15. Proceedings of the Bio-Energy '80 world congress and exposition

    SciTech Connect (OSTI)

    None

    1980-01-01T23:59:59.000Z

    Many countries are moving with increasing urgency to obtain larger fractions of their energy from biomass. Over 1800 leading experts from 70 countries met on April 21 to 24 in Atlanta to conduct a World Congress and Exposition on Bio-Energy. This summary presents highlights of the Congress and thoughts stimulated by the occasion. Topics addressed include a comparison of international programs, world and country regionalism in the development of energy supplies, fuel versus food or forest products, production of ethyl alcohol, possibilities for expanded production of terrestrial vegetation and marine flora, and valuable chemicals from biomass. Separate abstracts have been prepared for 164 papers for inclusion in the Energy Data Base.

  16. Bioenergy Technologies Office Conversion R&D Pathway: Syngas Upgrading to Hydrocarbon Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-OilBioenergy

  17. Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae Hydrothermal Liquefaction

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-OilBioenergyMicroalgal biomass grown

  18. Bioenergy Technologies Office Multi-Year Program Plan: July 2014 Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-OilBioenergyMicroalgal biomassi Last

  19. Bioenergy Technologies Office Multi-Year Program Plan: July 2014 Update --

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-OilBioenergyMicroalgal biomassi

  20. Bioenergy Technologies Office Multi-Year Program Plan: May 2013 Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-OilBioenergyMicroalgal biomassiOFFICE

  1. Bioenergy Technologies Office Multi-Year Program Plan: November 2014 Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-OilBioenergyMicroalgal

  2. Bioenergy Technologies Office Multi-Year Program Plan: November 2014 Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-OilBioenergyMicroalgal-- Sections |

  3. Bioenergy Technologies Office R&D Pathways: Algal Lipid Upgrading

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-OilBioenergyMicroalgal--Following

  4. American Recovery and Reinvestment Act of 2009: Bioenergy Technologies Office Investments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NM -AliciaBioenergy Technologies Office has awarded

  5. Bioenergy and the importance of land use policy in a carbon-constrained world

    SciTech Connect (OSTI)

    Calvin, Katherine V.; Edmonds, James A.; Wise, Marshall A.

    2010-06-01T23:59:59.000Z

    Policies aimed at limiting anthropogenic climate change would result in significant transformations of the energy and land-use systems. However, increasing the demand for bioenergy could have a tremendous impact on land use, and can result in land clearing and deforestation. Wise et al. (2009a,b) analyzed an idealized policy to limit the indirect land use change emissions from bioenergy. The policy, while effective, would be difficult, if not impossible, to implement in the real world. In this paper, we consider several different land use policies that deviate from this first-best, using the Joint Global Change Research Institute’s Global Change Assessment Model (GCAM). Specifically, these new frameworks are (1) a policy that focuses on just the above-ground or vegetative terrestrial carbon rather than the total carbon, (2) policies that focus exclusively on incentivizing and protecting forestland, and (3) policies that apply an economic penalty on the use of biomass as a proxy to limit indirect land use change emissions. For each policy, we examine its impact on land use, land-use change emissions, atmospheric CO2 concentrations, agricultural supply, and food prices.

  6. Assessing the potential of bioenergy. Final report, October 1, 1997--September 30, 1998

    SciTech Connect (OSTI)

    Kirschner, J.; Badin, J.

    1998-12-31T23:59:59.000Z

    As electricity restructuring proceeds, traditional concepts of how energy is produced, transported, and utilized are likely to change dramatically. Marketplace, policy, and regulatory changes will shape both the domestic and global energy industry, improving opportunities for clean, low-cost energy, competitively priced fuels, and environmentally responsible power systems. Many of these benefits may be obtained by commercial deployment of advanced biomass power conversion technologies. The United BioEnergy Commercialization Association represents the US biomass power industry. Its membership includes investor-owned and public utilities, independent power producers, state and regional bioenergy, equipment manufacturers, and biomass energy developers. To carry out its mission, UBECA has been carrying out the following activities: production of informational and educational materials on biomass energy and distribution of such materials at public forums; technical and market analyses of biomass energy fuels, conversion technologies, and market issues; monitoring of issues affecting the biomass energy community; and facilitating cooperation among members to leverage the funds available for biomass commercialization activities.

  7. Sustainable Agricultural Residue Removal for Bioenergy: A Spatially Comprehensive National Assessment

    SciTech Connect (OSTI)

    D. Muth, Jr.; K. M. Bryden; R. G. Nelson

    2013-02-01T23:59:59.000Z

    This study provides a spatially comprehensive assessment of sustainable agricultural residue removal potential across the United States. Earlier assessments determining the quantity of agricultural residue that could be sustainably removed for bioenergy production at the regional and national scale faced a number of computational limitations. These limitations included the number of environmental factors, the number of land management scenarios, and the spatial fidelity and spatial extent of the assessment. This study utilizes integrated multi-factor environmental process modeling and high fidelity land use datasets to perform a spatially comprehensive assessment of sustainably removable agricultural residues across the conterminous United States. Soil type represents the base spatial unit for this study and is modeled using a national soil survey database at the 10 – 100 m scale. Current crop rotation practices are identified by processing land cover data available from the USDA National Agricultural Statistics Service Cropland Data Layer database. Land management and residue removal scenarios are identified for each unique crop rotation and crop management zone. Estimates of county averages and state totals of sustainably available agricultural residues are provided. The results of the assessment show that in 2011 over 150 million metric tons of agricultural residues could have been sustainably removed across the United States. Projecting crop yields and land management practices to 2030, the assessment determines that over 207 million metric tons of agricultural residues will be able to be sustainably removed for bioenergy production at that time.

  8. High-solids enrichment of thermophilic microbial communities and their enzymes on bioenergy feedstocks

    SciTech Connect (OSTI)

    Reddy, A. P.; Allgaier, M.; Singer, S.W.; Hazen, T.C.; Simmons, B.A.; Hugenholtz, P.; VanderGheynst, J.S.

    2011-04-01T23:59:59.000Z

    Thermophilic microbial communities that are active in a high-solids environment offer great potential for the discovery of industrially relevant enzymes that efficiently deconstruct bioenergy feedstocks. In this study, finished green waste compost was used as an inoculum source to enrich microbial communities and associated enzymes that hydrolyze cellulose and hemicellulose during thermophilic high-solids fermentation of the bioenergy feedstocks switchgrass and corn stover. Methods involving the disruption of enzyme and plant cell wall polysaccharide interactions were developed to recover xylanase and endoglucanase activity from deconstructed solids. Xylanase and endoglucanase activity increased by more than a factor of 5, upon four successive enrichments on switchgrass. Overall, the changes for switchgrass were more pronounced than for corn stover; solids reduction between the first and second enrichments increased by a factor of four for switchgrass while solids reduction remained relatively constant for corn stover. Amplicon pyrosequencing analysis of small-subunit ribosomal RNA genes recovered from enriched samples indicated rapid changes in the microbial communities between the first and second enrichment with the simplified communities achieved by the third enrichment. The results demonstrate a successful approach for enrichment of unique microbial communities and enzymes active in a thermophilic high-solids environment.

  9. U.S, Department of Energy's Bioenergy Research Centers An Overview of the Science

    SciTech Connect (OSTI)

    None

    2009-07-01T23:59:59.000Z

    Alternative fuels from renewable cellulosic biomass--plant stalks, trunks, stems, and leaves--are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs that can't be outsourced'. In the United States, the Energy Independence and Security Act (EISA) of 2007 is an important driver for the sustainable development of renewable biofuels. As part of EISA, the Renewable Fuel Standard mandates that 36 billion gallons of biofuels are to be produced annually by 2022, of which 16 billion gallons are expected to come from cellulosic feedstocks. Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain--the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 25 years. The DOE Genomic Science Program is advancing a new generation of research focused on achieving whole-systems understanding for biology. This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. New interdisciplinary research communities are emerging, as are knowledgebases and scientific and computational resources critical to advancing large-scale, genome-based biology. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs will provide the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use. The scientific rationale for these centers and for other fundamental genomic research critical to the biofuel industry was established at a DOE workshop involving members of the research community (see sidebar, Biofuel Research Plan, below). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations--the Southeast, the Midwest, and the West Coast--with partners across the nation. DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC); and DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California. Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and bioinformatics, and engineering. Institutional partners include DOE national laboratories, universities, private companies,

  10. BIOENERGY PROGRAM Agronomics is the science of soil management and the production of field crops. Key ele-

    E-Print Network [OSTI]

    Processing To meet United States Department of Energy projections, 110, 000 truckloads per day of feedstocksAgronomics BIOENERGY PROGRAM Agronomics is the science of soil management and the production of field crops. Key ele- ments of a production and delivery system include high-tonnage feedstocks, proven

  11. Bioenergy and emerging biomass conversion technologies Hanne stergrd, Ris National Laboratory, Technical University of Denmark DTU, Denmark

    E-Print Network [OSTI]

    Bioenergy and emerging biomass conversion technologies Hanne Řstergĺrd, Risř National Laboratory in the Agricultural Outlook from OECD-FAO, these predictions may be misleading and biomass may increase more rapidly Biomass and waste Hydro Nuclear Gas Oil Coal Fig 1 Total primary energy supply3 · The transport sector

  12. Feedstock Logistics of a Mobile Pyrolysis System and Assessment of Soil Loss Due to Biomass Removal for Bioenergy Production

    E-Print Network [OSTI]

    Bumguardner, Marisa

    2012-10-19T23:59:59.000Z

    in surface runoff caused by sorghum residue removal for bioenergy production in the Oso Creek Watershed in Nueces County. The model simulated the removal of 25, 50, 75, and 100 percent residue removal. The WEPS model was used to quantify wind erosion soil...

  13. Bioenergy News

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The Big Green Bus rolled intoShannonThis

  14. Bioenergy and Bioproducts BIOENERGY PROGRAM

    E-Print Network [OSTI]

    as an ethanol and bioproduct feedstock· Wide hybridization of energy crops to custom tailor composition

  15. Bio-energy feedstock yields and their water quality benefits in Mississippi

    SciTech Connect (OSTI)

    Parajuli, Prem B.

    2011-08-10T23:59:59.000Z

    Cellulosic and agricultural bio-energy crops can, under careful management, be harvested as feedstock for bio-fuels production and provide environmental benefits. However, it is required to quantify their relative advantages in feedstock production and water quality. The primary objective of this research was to evaluate potential feedstock yield and water quality benefit scenarios of bioenergy crops: Miscanthus (Miscanthus-giganteus), Switchgrass (Panicum virgatum), Johnsongrass (Sorghum halepense), Alfalfa (Medicago sativa L.), Soybean {Glycine max (L.) Merr.}, and Corn (Lea mays) in the Upper Pearl River watershed (UPRW), Mississippi using a Soil and Water Assessment Tool (SWAT). The SWAT model was calibrated (January 1981 to December 1994) and validated (January 1995 to September 2008) using monthly measured stream flow data. The calibrated and validated model determined good to very good performance for stream flow prediction (R2 and E from 0.60 to 0.86). The RMSE values (from 14 m3 s-1 to 37 m3 s-1) were estimated at similar levels of errors during model calibration and validation. The long-term average annual potential feedstock yield as an alternative energy source was determined the greatest when growing Miscanthus grass (373,849 Mg) as followed by Alfalfa (206,077 Mg), Switchgrass (132,077 Mg), Johnsongrass (47,576 Mg), Soybean (37,814 Mg), and Corn (22,069 Mg) in the pastureland and cropland of the watershed. Model results determined that average annual sediment yield from the Miscanthus grass scenario determined the least (1.16 Mg/ha) and corn scenario the greatest (12.04 Mg/ha). The SWAT model simulated results suggested that growing Miscanthus grass in the UPRW would have the greatest potential feedstock yield and water quality benefits.

  16. Geek-Up[10.01.10]-- Mapping Bioenergy and Magnetic Vector Potential, New Atmosphere-Monitoring Tools and "Sour" Gas Streams

    Broader source: Energy.gov [DOE]

    Geeks, pay attention! We've got a BioEnergy Atlas, aerosols and climate, sour stuff, and 3D magnetic interactions in this edition of the Geek Up!

  17. To advance and share knowledge, discover solutions and promote opportunities in food and agriculture, bioenergy, health, the environment and human well-

    E-Print Network [OSTI]

    Sheridan, Jennifer

    and agriculture, bioenergy, health, the environment and human well- being. Vision: To lead in science, innovationMission: To advance and share knowledge, discover solutions and promote opportunities in food

  18. www.planetearth.nerc.ac.uk Autumn 2014 Trout in hot water Biodiversity and big data Bioenergy's carbon footprint Sustainable drainage

    E-Print Network [OSTI]

    Brierley, Andrew

    's carbon footprint · Sustainable drainage Intothe #12;Front cover image courtesy Ben Langford About us NERC to account ­ bioenergy's carbon footprint What's the true cost of growing our fuel? 22 The science

  19. A Multi-Model Analysis of the Regional and Sectoral Roles of Bioenergy in Near- and Long-Term CO2 Emissions

    SciTech Connect (OSTI)

    Calvin, Katherine V.; Wise, Marshall A.; Klein, David; McCollum, David; Tavoni, Massimo; van der Zwaan, Bob; Van Vuuren, Detlef

    2013-11-01T23:59:59.000Z

    We study the near term and the longer term the contribution of bioenergy in different LIMITS scenarios as modeled by the participating models in the LIMITS project. With These scenarios have proven useful for exploring a range of outcomes for bioenergy use in response to both regionally diverse near term policies and the transition to a longer-term global mitigation policy and target. The use of several models has provided a source of heterogeneity in terms of incorporating uncertain assumptions about future socioeconomics and technology, as well as different paradigms for how the world may respond to policies. The results have also highlighted the heterogeneity and versatility of bioenergy itself, with different types of resources and applications in several energy sectors. In large part due to this versatility, the contribution of bioenergy to climate mitigation is a robust response across all models, despite their differences.

  20. Kent_AIMD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home as ReadyAppointed toCAMD Targets CancerKennethPartial

  1. An Integrated Model for Assessment of Sustainable Agricultural Residue Removal Limits for Bioenergy Systems

    SciTech Connect (OSTI)

    D. Muth; K. M. Bryden

    2003-12-01T23:59:59.000Z

    Agricultural residues have been identified as a significant potential resource for bioenergy production, but serious questions remain about the sustainability of harvesting residues. Agricultural residues play an important role in limiting soil erosion from wind and water and in maintaining soil organic carbon. Because of this, multiple factors must be considered when assessing sustainable residue harvest limits. Validated and accepted modeling tools for assessing these impacts include the Revised Universal Soil Loss Equation Version 2 (RUSLE2), the Wind Erosion Prediction System (WEPS), and the Soil Conditioning Index. Currently, these models do not work together as a single integrated model. Rather, use of these models requires manual interaction and data transfer. As a result, it is currently not feasible to use these computational tools to perform detailed sustainable agricultural residue availability assessments across large spatial domains or to consider a broad range of land management practices. This paper presents an integrated modeling strategy that couples existing datasets with the RUSLE2 water erosion, WEPS wind erosion, and Soil Conditioning Index soil carbon modeling tools to create a single integrated residue removal modeling system. This enables the exploration of the detailed sustainable residue harvest scenarios needed to establish sustainable residue availability. Using this computational tool, an assessment study of residue availability for the state of Iowa was performed. This study included all soil types in the state of Iowa, four representative crop rotation schemes, variable crop yields, three tillage management methods, and five residue removal methods. The key conclusions of this study are that under current management practices and crop yields nearly 26.5 million Mg of agricultural residue are sustainably accessible in the state of Iowa, and that through the adoption of no till practices residue removal could sustainably approach 40 million Mg. However, when considering the economics and logistics of residue harvest, yields below 2.25 Mg ha-1 are generally considered to not be viable for a commercial bioenergy system. Applying this constraint, the total agricultural residue resource available in Iowa under current management practices is 19 million Mg. Previously published results have shown residue availability from 22 million Mg to over 50 million Mg in Iowa.

  2. About the Stanford Synchrotron Radiation Lightsource | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The material will likely enable broader use of fuel cells that produce emissions-free energy, which could eventually replace gasoline engines and the batteries found in small...

  3. Stanford Synchrotron Radiation Lightsource December 2008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M. Cohen, A. SPEAR3 Accelerator Division Schmerge, J. Safranek, J. Structural Genomics Division Deacon, A. Hard X-rays Toney, M. Soft X-rays Lu, D. SMB XAS Hedman, B....

  4. Director's Office | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date: Contact: ShelleyDirector's Corner ADirector's

  5. Forms & Applications | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall ATours, ProgramsFIRSTClean EnergyForms

  6. Stanford Synchrotron Radiation Lightsource: SPEAR3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 SpecialNanoparticulate FeS asEnzyme2 MEIS XASSSRL

  7. Stanford Synchrotron Radiation Lightsource: SPEAR3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 SpecialNanoparticulate FeS asEnzyme2 MEIS

  8. Celebrating Artie Bienenstock | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess StoriesFebruaryMetal nanoparticles supported

  9. Computer Accounts | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting theCommercialization and Innovation2010CompositionalChemistry QueueComputer

  10. Computer Networking Group | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting theCommercialization and Innovation2010CompositionalChemistryComputer

  11. Scientific Advisory Committee | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principalfuel cells"03,ScientificScientific Advisory

  12. LightSource Renewables | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarmsPower Co LtdTNLianyungang

  13. Administrative Contacts | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related LinksATHENAAdministrative Contacts Business and

  14. Photon Source Parameters | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear AstrophysicsPayroll, TaxesSeparationsRelevant

  15. Press Releases | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press Releases Archive Publications Princeton Journal

  16. SLAC Access Update | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn theTreatment inTechnologies |SC InSLAC

  17. SPEAR History | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn theTreatment inTechnologies |SCSNSSPEAR

  18. SPEAR3 Accelerator | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn theTreatment inTechnologies

  19. SSRL Deadlines | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn theTreatmentSRS Economic ImpactDeadlines

  20. SSRL Imaging Group | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn theTreatmentSRS Economic0 - June 2015

  1. SSRL Presents Series | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn theTreatmentSRS Economic0 - JuneSSRL

  2. SSRL Science | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn theTreatmentSRS Economic0Science in

  3. SSRL Site Map | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn theTreatmentSRS Economic0Science inSite Map

  4. SLAC Lightsource User Access Guidelines and Agreement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobs RunningSEABRV2/01/12

  5. SSRL Users' Organization | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJuly throughR E Q U E N C4Safety Office

  6. Staff Resources | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomelandMultivariateSite MapCrimeCornell Policies

  7. Stanford Synchrotron Radiation Lightsource December 2008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomelandMultivariateSite MapCrimeCornell January 2015

  8. 2005 Publications | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartment of Energy with6, 2014, 6:32 p.m.January55 20055

  9. UF Access List | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence may bedieselsummer gasoline price to averageUF Access

  10. User Agreements | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAbout Us

  11. User Financial Accounts | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAbout UsUser2/20/13 User

  12. User Research Administration | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAbout UsUser2/20/13UserResearch

  13. User Shipments | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAboutUser Services

  14. Proposal Review Panel | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News,Program DirectionProjectPromiseProperty -

  15. Proprietary Research | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News,Program90803 Responsiveness SummaryProprietary

  16. Welcome to Stanford Synchrotron Radiation Lightsource | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are ABOUT US ITER | WHY

  17. Advisory Panels | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Become agovEducationWelcomestructuresAdvisory

  18. Contact Us | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGas SeparationsRelevant toSite MapContact Us Contact Us

  19. 2006 Publications | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartment of Energy with6, 2014, 6:326 User Survey666

  20. 2007 Publications | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartment of Energy with6, 2014,7 Tue,7 2007 ORNL Press77

  1. 2008 Publications | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartment of Energy with6, 2014,7MayOctober8ORISE8 200888

  2. 2009 Publications | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartment of Energy09 Tue, 12/22/2009 - 1:00am9 200909

  3. 2010 Publications | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartment of Energy09 Tue,September0 Wed,2010 2010

  4. 2011 Publications | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartment ofAugust 2011 Thu, 08/18/2011March 2011 â—‹11

  5. 2012 Publications | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartment ofAugust 2011October 2012 Thu,12Results »22 201222

  6. 2013 Publications | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartment ofAugust 2011OctoberSeptember 201333 20133

  7. 2014 Publications | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartment ofAugustDecember 2014 Fri, 12/05/2014 -44 20144

  8. The Research Program | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in the Earth's LowerFacilityThe Research Program What is

  9. Floor Support | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget(DANCE) Target 1 Flight Path°Floor Support

  10. Food Options | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget(DANCE) Target 1 FlightFlynnFood Options

  11. Foreign Users | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget(DANCE) Target 1Annual Waste Forecast andForeign

  12. Emergency Exit Maps | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContractElectron-State Hybridization inperspectivesCommunications |Emergency

  13. Experimental Equipment | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /EmailMolecular Solids |5Expanded

  14. Stanford Synchrotron Radiation Lightsource: SPEAR3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarshipSpiraling Laser Pulses CouldStanfordAdvanceSSRLAccess

  15. THE STANFORD SYNCHROTRON RADIATION LIGHTSOURCE STRATEGIC PLAN:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solid ...SuccessSurprisingSynchrotronsPlasmaSTANFORD SYNCHROTRON

  16. 08-ERD-071 Final Report: New Molecular Probes and Catalysts for Bioenergy Research

    SciTech Connect (OSTI)

    Thelen, M P; Rowe, A A; Siebers, A K; Jiao, Y

    2011-03-07T23:59:59.000Z

    A major thrust in bioenergy research is to develop innovative methods for deconstructing plant cell wall polymers, such as cellulose and lignin, into simple monomers that can be biologically converted to ethanol and other fuels. Current techniques for monitoring a broad array of cell wall materials and specific degradation products are expensive and time consuming. To monitor various polymers and assay their breakdown products, molecular probes for detecting specific carbohydrates and lignins are urgently needed. These new probes would extend the limited biochemical techniques available, and enable realtime imaging of ultrastructural changes in plant cells. Furthermore, degradation of plant biomass could be greatly accelerated by the development of catalysts that can hydrolyze key cell wall polysaccharides and lignin. The objective of this project was to develop cheap and efficient DNA reagents (aptamers) used to detect and quantify polysaccharides, lignin, and relevant products of their breakdown. A practical goal of the research was to develop electrochemical aptamer biosensors, which could be integrated into microfluidic devices and used for high-throughput screening of enzymes or biological systems that degrade biomass. Several important model plant cell wall polymers and compounds were targeted for specific binding and purification of aptamers, which were then tested by microscopic imaging, circular dichroism, surface plasmon resonance, fluorescence anisotropy, and electrochemical biosensors. Using this approach, it was anticiated that we could provide a basis for more efficient and economically viable biofuels, and the technologies established could be used to design molecular tools that recognize targets sought in medicine or chemical and biological defense projects.

  17. A Review on Biomass Densification Systems to Develop Uniform Feedstock Commodities for Bioenergy Application

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru; Christopher T. Wright; J. Richard Hess; Kevin L. Kenney

    2011-11-01T23:59:59.000Z

    Developing uniformly formatted, densified feedstock from lignocellulosic biomass is of interest to achieve consistent physical properties like size and shape, bulk and unit density, and durability, which significantly influence storage, transportation and handling characteristics, and, by extension, feedstock cost and quality. A variety of densification systems are considered for producing a uniform format feedstock commodity for bioenergy applications, including (a) baler, (b) pellet mill, (c) cuber, (d) screw extruder, (e) briquette press, (f) roller press, (g) tablet press, and (g) agglomerator. Each of these systems has varying impacts on feedstock chemical and physical properties, and energy consumption. This review discusses the suitability of these densification systems for biomass feedstocks and the impact these systems have on specific energy consumption and end product quality. For example, a briquette press is more flexible in terms of feedstock variables where higher moisture content and larger particles are acceptable for making good quality briquettes; or among different densification systems, a screw press consumes the most energy because it not only compresses but also shears and mixes the material. Pretreatment options like preheating, grinding, steam explosion, torrefaction, and ammonia fiber explosion (AFEX) can also help to reduce specific energy consumption during densification and improve binding characteristics. Binding behavior can also be improved by adding natural binders, such as proteins, or commercial binders, such as lignosulphonates. The quality of the densified biomass for both domestic and international markets is evaluated using PFI (United States Standard) or CEN (European Standard).

  18. Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute

    SciTech Connect (OSTI)

    Blanch, Harvey; Adams, Paul; Andrews-Cramer, Katherine; Frommer, Wolf; Simmons, Blake; Keasling, Jay

    2008-01-18T23:59:59.000Z

    Today, carbon-rich fossil fuels, primarily oil, coal, and natural gas, provide 85% of the energy consumed in the U.S. As world demand increases, oil reserves may become rapidly depleted. Fossil fuel use increases CO{sub 2} emissions and raises the risk of global warming. The high energy content of liquid hydrocarbon fuels makes them the preferred energy source for all modes of transportation. In the U.S. alone, transportation consumes >13.8 million barrels of oil per day and generates 0.5 gigatons of carbon per year. This release of greenhouse gases has spurred research into alternative, nonfossil energy sources. Among the options (nuclear, concentrated solar thermal, geothermal, hydroelectric, wind, solar, and biomass), only biomass has the potential to provide a high-energy-content transportation fuel. Biomass is a renewable resource that can be converted into carbon-neutral transporation fuels. Currently, biofuels such as ethanol are produced largely from grains, but there is a large, untapped resource (estimated at more than a billion tons per year) of plant biomass that could be utilized as a renewable, domestic source of liquid fuels. Well-established processes convert the starch content of the grain into sugars that can be fermented to ethanol. The energy efficiency of starch-based biofuels is however not optimal, while plant cell walls (lignocellulose) represent a huge untapped source of energy. Plant-derived biomass contains cellulose, which is more difficult to convert to sugars; hemicellulose, which contains a diversity of carbohydrates that have to be efficiently degraded by microorganisms to fuels; and lignin, which is recalcitrant to degradation and prevents cost-effective fermentation. The development of cost-effective and energy-efficient processes to transform lignocellulosic biomass into fuels is hampered by significant roadblocks, including the lack of specifically developed energy crops, the difficulty in separating biomass components, low activity of enzymes used to deconstruct biomass, and the inhibitory effect of fuels and processing byproducts on organisms responsible for producing fuels from biomass monomers. The Joint BioEnergy Institute (JBEI) is a U.S. Department of Energy (DOE) Bioenergy Research Center that will address these roadblocks in biofuels production. JBEI draws on the expertise and capabilities of three national laboratories (Lawrence Berkeley National Laboratory (LBNL), Sandia National Laboratories (SNL), and Lawrence Livermore National Laboratory (LLNL)), two leading U.S. universities (University of California campuses at Berkeley (UCB) and Davis (UCD)), and a foundation (Carnegie Institute for Science, Stanford) to develop the scientific and technological base needed to convert the energy stored in lignocellulose into transportation fuels and commodity chemicals. Established scientists from the participating organizations are leading teams of researchers to solve the key scientific problems and develop the tools and infrastructure that will enable other researchers and companies to rapidly develop new biofuels and scale production to meet U.S. transportation needs and to develop and rapidly transition new technologies to the commercial sector. JBEI's biomass-to-biofuels research approach is based in three interrelated scientific divisions and a technologies division. The Feedstocks Division will develop improved plant energy crops to serve as the raw materials for biofuels. The Deconstruction Division will investigate the conversion of this lignocellulosic plant material to sugar and aromatics. The Fuels Synthesis Division will create microbes that can efficiently convert sugar and aromatics into ethanol and other biofuels. JBEI's cross-cutting Technologies Division will develop and optimize a set of enabling technologies including high-throughput, chipbased, and omics platforms; tools for synthetic biology; multi-scale imaging facilities; and integrated data analysis to support and integrate JBEI's scientific program.

  19. LANDSCAPE MANAGEMENT FOR SUSTAINABLE SUPPLIES OF BIOENERGY FEEDSTOCK AND ENHANCED SOIL QUALITY

    SciTech Connect (OSTI)

    Douglas L. Karlen; David J. Muth, Jr.

    2012-09-01T23:59:59.000Z

    Agriculture can simultaneously address global food, feed, fiber, and energy challenges provided our soil, water, and air resources are not compromised in doing so. As we embark on the 19th Triennial Conference of the International Soil and Tillage Research Organization (ISTRO), I am pleased to proclaim that our members are well poised to lead these endeavors because of our comprehensive understanding of soil, water, agricultural and bio-systems engineering processes. The concept of landscape management, as an approach for integrating multiple bioenergy feedstock sources, including biomass residuals, into current crop production systems, is used as the focal point to show how these ever-increasing global challenges can be met in a sustainable manner. Starting with the 2005 Billion Ton Study (BTS) goals, research and technology transfer activities leading to the 2011 U.S. Department of Energy (DOE) Revised Billion Ton Study (BT2) and development of a residue management tool to guide sustainable crop residue harvest will be reviewed. Multi-location USDA-Agricultural Research Service (ARS) Renewable Energy Assessment Project (REAP) team research and on-going partnerships between public and private sector groups will be shared to show the development of landscape management strategies that can simultaneously address the multiple factors that must be balanced to meet the global challenges. Effective landscape management strategies recognize the importance of nature’s diversity and strive to emulate those conditions to sustain multiple critical ecosystem services. To illustrate those services, the soil quality impact of harvesting crop residues are presented to show how careful, comprehensive monitoring of soil, water and air resources must be an integral part of sustainable bioenergy feedstock production systems. Preliminary analyses suggest that to sustain soil resources within the U.S. Corn Belt, corn (Zea mays L.) stover should not be harvested if average grain yields are less than 11 Mg ha-1 (175 bu ac-1) unless more intensive landscape management practices are implemented. Furthermore, although non-irrigated corn grain yields east and west of the primary Corn Belt may not consistently achieve the 11 Mg ha-1 yield levels, corn can still be part of an overall landscape approach for sustainable feedstock production. Another option for producers with consistently high yields (> 12.6 Mg ha-1 or 200 bu ac-1) that may enable them to sustainably harvest even more stover is to decrease their tillage intensity which will reduce fuel use, preserve rhizosphere carbon, and/or help maintain soil structure and soil quality benefits often attributed to no-till production systems. In conclusion, I challenge all ISTRO scientists to critically ask if your research is contributing to improved soil and crop management strategies that effectively address the complexity associated with sustainable food, feed, fiber and fuel production throughout the world.

  20. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry

    SciTech Connect (OSTI)

    Downing, Mark [ORNL; Eaton, Laurence M [ORNL; Graham, Robin Lambert [ORNL; Langholtz, Matthew H [ORNL; Perlack, Robert D [ORNL; Turhollow Jr, Anthony F [ORNL; Stokes, Bryce [Navarro Research & Engineering; Brandt, Craig C [ORNL

    2011-08-01T23:59:59.000Z

    The report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of 'potential' biomass based on numerous assumptions about current and future inventory, production capacity, availability, and technology. The analysis was made to determine if conterminous U.S. agriculture and forestry resources had the capability to produce at least one billion dry tons of sustainable biomass annually to displace 30% or more of the nation's present petroleum consumption. An effort was made to use conservative estimates to assure confidence in having sufficient supply to reach the goal. The potential biomass was projected to be reasonably available around mid-century when large-scale biorefineries are likely to exist. The study emphasized primary sources of forest- and agriculture-derived biomass, such as logging residues, fuel treatment thinnings, crop residues, and perennially grown grasses and trees. These primary sources have the greatest potential to supply large, reliable, and sustainable quantities of biomass. While the primary sources were emphasized, estimates of secondary residue and tertiary waste resources of biomass were also provided. The original Billion-Ton Resource Assessment, published in 2005, was divided into two parts-forest-derived resources and agriculture-derived resources. The forest resources included residues produced during the harvesting of merchantable timber, forest residues, and small-diameter trees that could become available through initiatives to reduce fire hazards and improve forest health; forest residues from land conversion; fuelwood extracted from forests; residues generated at primary forest product processing mills; and urban wood wastes, municipal solid wastes (MSW), and construction and demolition (C&D) debris. For these forest resources, only residues, wastes, and small-diameter trees were considered. The 2005 BTS did not attempt to include any wood that would normally be used for higher-valued products (e.g., pulpwood) that could potentially shift to bioenergy applications. This would have required a separate economic analysis, which was not part of the 2005 BTS. The agriculture resources in the 2005 BTS included grains used for biofuels production; crop residues derived primarily from corn, wheat, and small grains; and animal manures and other residues. The cropland resource analysis also included estimates of perennial energy crops (e.g., herbaceous grasses, such as switchgrass, woody crops like hybrid poplar, as well as willow grown under short rotations and more intensive management than conventional plantation forests). Woody crops were included under cropland resources because it was assumed that they would be grown on a combination of cropland and pasture rather than forestland. In the 2005 BTS, current resource availability was estimated at 278 million dry tons annually from forestlands and slightly more than 194 million dry tons annually from croplands. These annual quantities increase to about 370 million dry tons from forestlands and to nearly 1 billion dry tons from croplands under scenario conditions of high-yield growth and large-scale plantings of perennial grasses and woody tree crops. This high-yield scenario reflects a mid-century timescale ({approx}2040-2050). Under conditions of lower-yield growth, estimated resource potential was projected to be about 320 and 580 million dry tons for forest and cropland biomass, respectively. As noted earlier, the 2005 BTS emphasized the primary resources (agricultural and forestry residues and energy crops) because they represent nearly 80% of the long-term resource potential. Since publication of the BTS in April 2005, there have been some rather dramatic changes in energy markets. In fact, just prior to the actual publication of the BTS, world oil prices started to increase as a result of a burgeoning worldwide demand and concerns about long-term supplies. By the end of the summer, oil pri

  1. Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options

    SciTech Connect (OSTI)

    Popp, Alexander; Rose, Steven K.; Calvin, Katherine V.; Van Vuuren, Detlef; Dietrich, Jan P.; Wise, Marshall A.; Stehfest, Eike; Humpenoder, Florian; Kyle, G. Page; Van Vliet, Jasper; Bauer, Nico; Lotze-Campen, Hermann; Klein, David; Kriegler, Elmar

    2014-04-01T23:59:59.000Z

    This study is a model comparison assessing the drivers and impacts of bioenergy production on the global land system and the interaction with other land use based mitigation options in the context of the EMF 27 project. We compare and evaluate results from three integrated assessment models (GCAM, IMAGE, and ReMIND/MAgPIE). All three models project that dedicated bioenergy crops and biomass residues are a potentially important and cost-effective component of the energy system. But bioenergy deployment levels and feedstock composition vary notably across models as do the implications for land-use and greenhouse gas emissions and the interaction with other land use based mitigation measures. Despite numerous model differences, we identify a few that are likely contributing to differences in land-use and emissions attributable to energy crop deployment.

  2. MODEL BASED BIOMASS SYSTEM DESIGN OF FEEDSTOCK SUPPLY SYSTEMS FOR BIOENERGY PRODUCTION

    SciTech Connect (OSTI)

    David J. Muth, Jr.; Jacob J. Jacobson; Kenneth M. Bryden

    2013-08-01T23:59:59.000Z

    Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package PowersimTM. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short- rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the BLM evaluates economic performance of the engineered system, as well as determining energy consumption and green house gas performance of the design. This paper presents a BLM case study delivering corn stover to produce cellulosic ethanol. The case study utilizes the BLM to model the performance of several feedstock supply system designs. The case study also explores the impact of temporal variations in climate conditions to test the sensitivity of the engineering designs. Results from the case study show that under certain conditions corn stover can be delivered to the cellulosic ethanol biorefinery for $35/dry ton.

  3. Sustainable Energy Research Team publications Whittaker, C., Adams, P., McManus, M.C Securing a Bioenergy Supply: UK and US in

    E-Print Network [OSTI]

    Martin, Ralph R.

    .C Securing a Bioenergy Supply: UK and US in Perspectives on Biofuels: Potential Benefits and Possible case studies. World Renewable Energy Congress. Sweden, May 8 ­ 13 · Griffin, P.W., Hammond, G.P., Ng, R.P. (2011) Greenhouse gas reporting for biofuels: A comparison between the RED, RTFO and PAS2050

  4. Monthly Highlights from Rutgers New Jersey Agricultural Experiment Station November 2009 Finding Conservation and Using Bio-Energy on Urban Fringe Farms

    E-Print Network [OSTI]

    Goodman, Robert M.

    methods for conducting on-farm energy audits. While utility companies and consultants have tools little about monitoring energy use on farms. While conservation is where farmers and the university make Conservation and Using Bio-Energy on Urban Fringe Farms Zane Helsel, Ph.D., Extension Specialist in Agriculture

  5. Research Note The removal of tree stumps and coarse roots from felling sites as a source of woody biomass for bioenergy generation

    E-Print Network [OSTI]

    biomass for bioenergy generation is well established in parts of Europe, and interest has been expressed, current interest in renewable energy, including that from woody biomass, has generated interest and practitioners should be aware. Conifer stumps and associated roots can represent nearly 25% stem biomass

  6. STANFORD SYNCHROTRON RADIATION LIGHTSOURCE The Stanford Synchrotron Radiation Lightsource at SLAC National Accelerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn theTreatmentSRS Economic0Science inSite

  7. Development of Genomic and Genetic Tools for Foxtail Millet, and Use of These Tools in the Improvement of Biomass Production for Bioenergy Crops

    SciTech Connect (OSTI)

    Doust, Andrew, N.

    2011-11-11T23:59:59.000Z

    The overall aim of this research was to develop genomic and genetic tools in foxtail millet that will be useful in improving biomass production in bioenergy crops such as switchgrass, napier grass, and pearl millet. A variety of approaches have been implemented, and our lab has been primarily involved in genome analysis and quantitative genetic analysis. Our progress in these activities has been substantially helped by the genomic sequence of foxtail millet produced by the Joint Genome Institute (Bennetzen et al., in prep). In particular, the annotation and analysis of candidate genes for architecture, biomass production and flowering has led to new insights into the control of branching and flowering time, and has shown how closely related flowering time is to vegetative architectural development and biomass accumulation. The differences in genetic control identified at high and low density plantings have direct relevance to the breeding of bioenergy grasses that are tolerant of high planting densities. The developmental analyses have shown how plant architecture changes over time and may indicate which genes may best be manipulated at various times during development to obtain required biomass characteristics. This data contributes to the overall aim of significantly improving genetic and genomic tools in foxtail millet that can be directed to improvement of bioenergy grasses such as switchgrass, where it is important to maximize vegetative growth for greatest biomass production.

  8. Environmental assessment of the atlas bio-energy waste wood fluidized bed gasification power plant. Final report

    SciTech Connect (OSTI)

    Holzman, M.I.

    1995-08-01T23:59:59.000Z

    The Atlas Bio-Energy Corporation is proposing to develop and operate a 3 MW power plant in Brooklyn, New York that will produce electricity by gasification of waste wood and combustion of the produced low-Btu gas in a conventional package steam boiler coupled to a steam-electric generator. The objectives of this project were to assist Atlas in addressing the environmental permit requirements for the proposed power plant and to evaluate the environmental and economic impacts of the project compared to more conventional small power plants. The project`s goal was to help promote the commercialization of biomass gasification as an environmentally acceptable and economically attractive alternative to conventional wood combustion. The specific components of this research included: (1) Development of a permitting strategy plan; (2) Characterization of New York City waste wood; (3) Characterization of fluidized bed gasifier/boiler emissions; (4) Performance of an environmental impact analysis; (5) Preparation of an economic evaluation; and (6) Discussion of operational and maintenance concerns. The project is being performed in two phases. Phase I, which is the subject of this report, involves the environmental permitting and environmental/economic assessment of the project. Pending NYSERDA participation, Phase II will include development and implementation of a demonstration program to evaluate the environmental and economic impacts of the full-scale gasification project.

  9. Developing an Integrated Model Framework for the Assessment of Sustainable Agricultural Residue Removal Limits for Bioenergy Systems

    SciTech Connect (OSTI)

    David Muth, Jr.; Jared Abodeely; Richard Nelson; Douglas McCorkle; Joshua Koch; Kenneth Bryden

    2011-08-01T23:59:59.000Z

    Agricultural residues have significant potential as a feedstock for bioenergy production, but removing these residues can have negative impacts on soil health. Models and datasets that can support decisions about sustainable agricultural residue removal are available; however, no tools currently exist capable of simultaneously addressing all environmental factors that can limit availability of residue. The VE-Suite model integration framework has been used to couple a set of environmental process models to support agricultural residue removal decisions. The RUSLE2, WEPS, and Soil Conditioning Index models have been integrated. A disparate set of databases providing the soils, climate, and management practice data required to run these models have also been integrated. The integrated system has been demonstrated for two example cases. First, an assessment using high spatial fidelity crop yield data has been run for a single farm. This analysis shows the significant variance in sustainably accessible residue across a single farm and crop year. A second example is an aggregate assessment of agricultural residues available in the state of Iowa. This implementation of the integrated systems model demonstrates the capability to run a vast range of scenarios required to represent a large geographic region.

  10. Kent J. Bradford Curriculum Vita

    E-Print Network [OSTI]

    Bradford, Kent

    , CSIRO, Division of Plant Industry, Canberra, ACT, Australia, April-August 1990 (with P.M. Chandler Wales, Australia, September 1990-February 1991 (with E.W.R. Barlow and A.M. Haigh). Visiting scientist - Research School of Biological Sciences, Australian National University, Canberra, 1981-1982 (with G

  11. Kent J. Bradford Curriculum Vita

    E-Print Network [OSTI]

    Bradford, Kent

    of Plant Industry, Canberra, ACT, Australia, April-August 1990. Associate Professor - Department, Richmond, New South Wales, Australia, September 1990-February 1991. Visiting scientist, CSIRO, Division Sciences, Australian National University, Canberra, 1981-1982. Ph.D. advisors, U.C. Davis - T.C. Hsiao

  12. UNIVERSITY OF KENT Financial Statements

    E-Print Network [OSTI]

    Banaji,. Murad

    Quigley Professor Abdol Tavabie Mark Watts His Honour Judge Anthony Webb The Very Reverend Robert Willis 1 committees were as follows: Audit Committee: Anthony Quigley Finance and Resources Committee: John Simmonds

  13. Transformative Wave Technologies Kent, Washington

    E-Print Network [OSTI]

    California at Davis, University of

    space humidity, temperature, and IAQ. ·Non-proprietary, open architecture, open source license, vendor downtime ·Maximizes productivity ·Predictive maintenance ·Lowers total cost of ownership ·Reduced wear

  14. Analysis of Global Economic and Environmental Impacts of a Substantial Increase in Bioenergy Wallace E. Tyner (wtyner@purdue.edu), Thomas W. Hertel, Farzad Taheripour*, and Dileep K. Birur

    E-Print Network [OSTI]

    Analysis of Global Economic and Environmental Impacts of a Substantial Increase in Bioenergy have profound global economic, environmental, and social consequences. Current studies do not provide of biofuels and lack of comprehensive studies on global impacts have opened up several research avenues. Since

  15. Biomass & Bioenergy, 2010, 34(5), 602-609, doi : 10.1016/j.biombioe.2010.01.002 MMMooodddeeelllllliiinnnggg aaannnhhhyyydddrrrooouuusss wwweeeiiiggghhhttt lllooossssss ooofff wwwooooooddd ccchhhiiipppsss ddduuurrriiinnnggg tttooorrrrrreeefffaaaccctttiiioo

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Biomass & Bioenergy, 2010, 34(5), 602-609, doi : 10.1016/j.biombioe.2010.01.002 1 treatment ; Torrefaction ; Wood chips ; Reaction kinetics ; Wood fuels I. Introduction Biomass, it becomes also crucial to enhance the use of biomass as a source of energy. To use biomass as a source

  16. Bioenergy 2015 Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    potential to increase fuel efficiency, improve vehicle performance, and reduce greenhouse gas emissions. This session will explore opportunities and challenges with bringing...

  17. ORNL Bioenergy technologies

    ScienceCinema (OSTI)

    Davison, Brian; Narula, Chaintanya; Langholtz, Matt; Dale, Virginia

    2014-07-15T23:59:59.000Z

    ORNL researchers discuss breakthroughs in biomass conversion, feedstocks, logistics and sustainability

  18. ORNL Bioenergy technologies

    SciTech Connect (OSTI)

    Davison, Brian; Narula, Chaintanya; Langholtz, Matt; Dale, Virginia

    2014-07-02T23:59:59.000Z

    ORNL researchers discuss breakthroughs in biomass conversion, feedstocks, logistics and sustainability

  19. Bioenergy 2015 Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dr. Robert Graham, Chief Executive Officer and Chairman, Ensyn Corporation 2-C: Biogas and Beyond: Challenges and Opportunities for Advanced Biofuels from Wet-Waste...

  20. Sorghum Program BIOENERGY PROGRAM

    E-Print Network [OSTI]

    feedstocks include high-tonnage sorghums, sugarcane, energy cane, forest prod- ucts, sweet sorghum, switchgrass, crop residues, oilseed crops, microalgae, municipal solid waste, and urban waste. Lignocellulosic accumulation (5­10 tons/acre) Energy Canes (Perennial) Subtropical production High water demand High biomass

  1. Bioenergy 2015 Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-Oil

  2. Bioenergy for Sustainable Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximately 10 wt% moisture, and theAprilGerard

  3. Bioenergy Frequently Asked Questions

    Broader source: Energy.gov [DOE]

    Advanced biofuels will help to provide benefits that are of strategic importance to the United States, including economic growth, energy security, environmental quality, and technology leadership....

  4. Bioenergy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJune 17,Agenda AgendaDepartment ofBenVice-Presidentfunds

  5. International Bioenergy Trade

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartmentEnergyDemonstrationInteragency2,Energy 29, 2008

  6. Bioenergy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher HomesLyons Biomass Facility

  7. Bioenergy | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries An errorA Mostbio BioFuels

  8. BioEnergy Blog

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform isEnergyMeeting | Department of Energy Big

  9. Bioenergy Technologies Office: Publications

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments Energy RatingsDepartmentRevs Up ItsInformation Resources Site Map

  10. Streamlining Bioenergy Feedstock Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol

  11. Shining Light on Catalysis | Stanford Synchrotron Radiation Lightsourc...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shining Light on Catalysis Tuesday, July 19, 2011 - 4:38pm SSRL Conference Room 137-322 Jeroen A. van Bokhoven, Professor for Heterogeneous Catalysis Institute for Chemical and...

  12. History of the Stanford Synchrotron Radiation Lightsource | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNot Logged3EducationCenter

  13. New Glass Vial Procedure | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilverNephelineNeuralNew AdvancesNewNewEnergyAsANew

  14. Data Management at SSRL | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOfficeOctoberDaniel WoodIDManagement at SSRL

  15. STANFORD SYNCHROTRON RADIATION LIGHTSOURCE LINAC COHERENT LIGHT SOURCE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton n u May 23, 200122/04

  16. Shining Light on Catalysis | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund scholarshipsShedding Light

  17. Photon Science Seminar Series | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear AstrophysicsPayroll, TaxesSeparationsRelevant toPhoton

  18. SSRL Beam Lines Map | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn theTreatmentSRS Economic Impact StudySSRL

  19. SSRL Beam Lines by Technique | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn theTreatmentSRS Economic Impact

  20. SSRL Experimental Run Schedule | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn theTreatmentSRS Economic

  1. SSRL News & Events | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn theTreatmentSRS Economic0 - JuneSSRL News

  2. SSRL Publications & Reports | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn theTreatmentSRS Economic0 -

  3. SSRL Science in SLAC Today | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn theTreatmentSRS Economic0Science in SLAC

  4. SLAC Science Focus Area | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobs RunningSEABRV2/01/12 Linac CoherentSLAC

  5. SSRL End of Run Party - 2015 | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJuly throughR E Q U E N C Y Back toCNGEnd

  6. SSRL Events & Presentations | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJuly throughR E Q U E N C Y Back

  7. While You Are Here | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRuraltheWelcomeAnalytics | ArgonneWhenWhile You

  8. Crystal Structure of Cascade | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution4 Department of Weekly Download2009OnboardSerRS

  9. User Facility Access Policy | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAbout UsUser Agreements

  10. Radioactive Materials at SSRL | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnicalPurchase, Delivery, andSmartRadiationRadiation

  11. About the Stanford Synchrotron Radiation Lightsource | Stanford Synchrotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Become agovEducationWelcome toAboutAboutUs

  12. Gate Hours & Services | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey Campbelllong version) The U.S.short version)Gate

  13. Experimental Station 1-5 | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /EmailMolecular Solids |5ExpandedNovemberRadiation-5

  14. Experimental Station 10-1 | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /EmailMolecular Solids |5ExpandedNovemberRadiation-51

  15. Experimental Station 10-2B | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /EmailMolecular Solids |5ExpandedNovemberRadiation-51B

  16. Experimental Station 10-2a | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /EmailMolecular Solids

  17. Experimental Station 11-1 | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /EmailMolecular Solids1 Beamline 11-1 is a PRT

  18. Experimental Station 11-2 | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /EmailMolecular Solids1 Beamline 11-1 is a PRT2 Beam

  19. Experimental Station 11-3 | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /EmailMolecular Solids1 Beamline 11-1 is a PRT2 Beam3

  20. Experimental Station 12-2 | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /EmailMolecular Solids1 Beamline 11-1 is a PRT2