Powered by Deep Web Technologies
Note: This page contains sample records for the topic "kemper county igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Kemper County IGCC (tm) Project Preliminary Public Design Report  

SciTech Connect

The Kemper County IGCC Project is an advanced coal technology project that is being developed by Mississippi Power Company (MPC). The project is a lignite-fueled 2-on-1 Integrated Gasification Combined-Cycle (IGCC) facility incorporating the air-blown Transport Integrated Gasification (TRIG™) technology jointly developed by Southern Company; Kellogg, Brown, and Root (KBR); and the United States Department of Energy (DOE) at the Power Systems Development Facility (PSDF) in Wilsonville, Alabama. The estimated nameplate capacity of the plant will be 830 MW with a peak net output capability of 582 MW. As a result of advanced emissions control equipment, the facility will produce marketable byproducts of ammonia, sulfuric acid, and carbon dioxide. 65 percent of the carbon dioxide (CO{sub 2}) will be captured and used for enhanced oil recovery (EOR), making the Kemper County facility’s carbon emissions comparable to those of a natural-gas-fired combined cycle power plant. The commercial operation date (COD) of the Kemper County IGCC plant will be May 2014. This report describes the basic design and function of the plant as determined at the end of the Front End Engineering Design (FEED) phase of the project.

Nelson, Matt; Rush, Randall; Madden, Diane; Pinkston, Tim; Lunsford, Landon

2012-07-01T23:59:59.000Z

2

CoalFleet User Design Basis Specification for Coal-Based Integrated Gasification Combined Cycle (IGCC) Power Plants  

Science Conference Proceedings (OSTI)

The Duke Edwardsport integrated gasification combined-cycle (IGCC) power plant started up in 2012, and Mississippi Power’s Kemper County IGCC plant is in construction. The capital cost of these initial commercial scale IGCC plants is high. The industry needs specifications that encourage greater standardization in IGCC design in order to bring down the investment cost for the next generation of plants. Standardization also supports repeatable, reliable performance and reduces the time and cost ...

2012-12-12T23:59:59.000Z

3

NREL: Computational Science - Travis Kemper  

NLE Websites -- All DOE Office Websites (Extended Search)

Travis Kemper Travis Kemper Post Doctoral Researcher Phone: (303) 275-3787 Email: Travis.Kemper@nrel.gov Dr. Travis Kemper is a post doctorate researcher in the Computational Science Center. He received his B.S. degree in applied physics from University of California, Santa Cruz, and his Ph.D. from the University of Florida where he developed reactive force fields. During his post doctorate work at Georgia Tech he conducted classical molecular dynamics simulations of small molecule thin films for organic electronics. Currently he is conducting classical molecular dynamics simulations and electronic structure calculations in relation to morphological effects on polymer-based batteries and photovoltaics. Printable Version NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

4

EIS-0409: Notice of Intent to Prepare an Environmental Impact...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statement and Notice of Proposed Floodplain and Wetlands Involvement Kemper County IGCC Project, Kemper County, Mississippi The Department of Energy announces its intent to...

5

Mississippi | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statement and Notice of Proposed Floodplain and Wetlands Involvement Kemper County IGCC Project, Kemper County, Mississippi June 18, 2008 2009 National Electric Transmission...

6

Mississippi | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 19, 2010 EIS-0409: Record of Decision and Statement of Findings Kemper County IGCC Project, Kemper County, Mississippi August 17, 2010 Hardening and Resiliency: U.S....

7

Secretary Moniz Tours Kemper Carbon Capture and Storage Facility |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Moniz Tours Kemper Carbon Capture and Storage Facility Secretary Moniz Tours Kemper Carbon Capture and Storage Facility Secretary Moniz Tours Kemper Carbon Capture and Storage Facility Addthis 1 of 5 A group including U.S. Secretary of Energy Ernest J. Moniz and Mississippi Gov. Phil Bryant tours the Kemper carbon capture and storage facility in Liberty, Mississippi, on Friday, Nov. 8. Kemper is the largest carbon capture and storage facility in the United States. | Photo Copyright 2013 Southern Company. 2 of 5 Southern Company CEO Tom Fanning, far right, and Mississippi Power CEO Ed Holland, second from right, greet U.S. Secretary of Energy Ernest J. Moniz, left, as he arrives to tour the Kemper carbon capture and storage facility in Liberty, Mississippi. | Photo Copyright 2013 Southern Company. 3 of 5 Southern Company CEO Tom Fanning, left, and U.S. Secretary of Energy Ernest

8

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Download EIS-0409: Final Environmental Impact Statement Kemper County Integrated Gasification Combined-Cycle (IGCC) Project http:energy.govnepadownloads...

9

IGCC+S Financing  

NLE Websites -- All DOE Office Websites (Extended Search)

II II William G. Rosenberg, Dwight C. Alpern, Michael R. Walker Energy Technology Innovation Project a joint project of the Science, Technology and Public Policy Program and the Environment and Natural Resources Program Belfer Center for Science and International Affairs 2 0 0 4 - 0 8 J U LY 2 0 0 4 Deploying IGCC in this Decade with 3Party Covenant Financing VOLUME II William G. Rosenberg, Dwight C. Alpern, and Michael R. Walker Energy Technology Innovation Project a joint project of the Science, Technology and Public Policy Program and the Environment and Natural Resources Program Belfer Center for Science and International Affairs and Center for Business and Government John F. Kennedy School of Government Harvard University July 2004 Financing IGCC - 3Party Covenant ii

10

IGCC vision  

SciTech Connect

In an Integrated Gasification Combined Cycle (IGCC), fuel gas, which is composed of hydrogen and carbon oxides, is generated in a gasifier by coal reacting with steam and air or oxygen. The pressurized fuel gas is then cleaned and fed to a high-efficiency combustion gas turbine to generate power. The hot exhaust gas from the gas turbine produces steam to drive a steam turbine to make additional power. Integration of the inherent advantages of coal gasification and combined cycles results in an ultra high-efficiency, super-clean, low-cost power plant. IGCC plants being demonstrated can achieve efficiencies of 42% (HHV) and with continuous improvements over the next 15 to 20 years, 52% efficiency is achievable. When compared to existing coal plants with flue gas desulfurization, which have efficiencies of about 34%, IGCC reduces by 35% the CO{sub 2} emission because less coal is required to generate an equivalent power. Commercialization of IGCC will result in low-cost power from coal without environmental compromise. These features are crucial to US competitiveness in the world.marketplace. Preservation and creation of jobs will depend on a strong mining and manufacturing sector enhanced by export markets for coal and power generation equipment.

1993-05-01T23:59:59.000Z

11

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0409: Final Environmental Impact Statement Kemper County Integrated Gasification Combined-Cycle (IGCC) Project http:energy.govnepadownloadseis-0409-final-environmenta...

12

EIS-0409: Final Environmental Impact Statement | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statement EIS-0409: Final Environmental Impact Statement Kemper County Integrated Gasification Combined-Cycle (IGCC) Project This Final EIS assesses the potential environmental...

13

Could IGCC swing  

SciTech Connect

A few big-name utilities are looking to make big-time power from gasified coal. AEP has utility-scale integrated gasification combined cycle (IGCC) plants in the works for Ohio and West Virginia. Duke Energy Indiana plans to build a 630 MW IGCC plant at Edwardsport to replace the existing 160 MW coal-fired unit there. NRG hopes to build utility-scale IGCC plants in New York and Delaware. Tampa Electric has announced plans to build a 630 MW IGCC at its Polk site, already the location of a 260 MW IGCC. In Taylorville, IL, another power-oriented IGCC is under development, owned by individuals from original developer ERORA and Omaha-based Tenaska. And yet another power producing IGCC is being proposed by Tondu Corporation at Corpus Christi, Texas to be fired by petroleum coke, also known as petcoke. The article gives an overview of these developments and moves on to discuss the popular question of the economic viability of IGCC making marketable byproducts in addition to power. Several projects are under way to make synthetic natural gas for coal. These are reported. Although the versatility of gasification may well give the ability to swing from various levels of power production to various levels of co-producing one or more products, for the time being it appears the IGCCs being built will produce power only, along with elemental sulphur and slag.

Blankinship, S.

2007-06-15T23:59:59.000Z

14

EIS-0409: EPA Notice of Availability of the Final Environmental Impact  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

409: EPA Notice of Availability of the Final Environmental 409: EPA Notice of Availability of the Final Environmental Impact Statement EIS-0409: EPA Notice of Availability of the Final Environmental Impact Statement Kemper County Integrated Gasification Combined-Cycle (IGCC) Project, Kemper County, Mississippi Kemper County Integrated Gasification Combined-Cycle (IGCC) Project, Construction and Operation of Advanced Power Generation Plant, U.S. Army COE Section 404 Permit, Kemper County, Mississippi Notice of Availability for the Final Environmental Impact Statement Kemper County Integrated Gasification Combined-Cycle (IGCC) Project, Kemper County, Mississippi(DOE/EIS-0409)(05/21/2010)(75FR28612) More Documents & Publications EIS-0456: EPA Notice of Availability of the Final Environmental Impact Statement EIS-0409: EPA Notice of Availability of the Draft Environmental Impact

15

EIS-0409: EPA Notice of Availability of the Final Environmental Impact  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Environmental Final Environmental Impact Statement EIS-0409: EPA Notice of Availability of the Final Environmental Impact Statement Kemper County Integrated Gasification Combined-Cycle (IGCC) Project, Kemper County, Mississippi Kemper County Integrated Gasification Combined-Cycle (IGCC) Project, Construction and Operation of Advanced Power Generation Plant, U.S. Army COE Section 404 Permit, Kemper County, Mississippi Notice of Availability for the Final Environmental Impact Statement Kemper County Integrated Gasification Combined-Cycle (IGCC) Project, Kemper County, Mississippi(DOE/EIS-0409)(05/21/2010)(75FR28612) More Documents & Publications EIS-0456: EPA Notice of Availability of the Final Environmental Impact Statement EIS-0409: EPA Notice of Availability of the Draft Environmental Impact

16

Coalfleet IGCC Permits Database  

Science Conference Proceedings (OSTI)

The CoalFleet IGCC Permits Database presents comprehensive information on permitting requirements and permit conditions for Integrated Gasification Combined Cycle (IGCC) power plants in an online database format. This Technical Update is a compilation of the Database contents as of April 1, 2009.

2009-05-01T23:59:59.000Z

17

Making IGCC slag valuable  

SciTech Connect

All indications are that integrated gasification combined-cycle (IGCC) technology will play a major role in tomorrow's generation industry. But before it does, some by-products of the process must be dealt with, for example unburned carbon that can make IGCC slag worthless. Charah Inc.'s processing system, used at Tampa Electric's Polk Station for years, segregates the slag's constituents by size, producing fuel and building materials. 3 figs.

Wicker, K.

2005-12-01T23:59:59.000Z

18

Worldwide activity in IGCC  

SciTech Connect

EPRI has pursued the development of integrated gasification-combined-cycle technology because it is the cleanest method available for making electricity from coal. Now, a decade after the establishment of the first IGCC demonstration plant, environmental regulations are encouraging the adoption of this technology in a number of countries. An unexpected innovation is the use of residual oil as an IGCC feedstock, a practice that evolved naturally as a result of market forces. Experts are hopeful that the current momentum in IGCC will trigger the introduction of the technology in developing countries, many of which rely heavily on coal and oil for power generation. Environmental regulations and a market glut of low-grade fossil fuels are spurring an unprecedented number of integrated gasification combined-cycle projects worldwide. These projects are described.

Lamarre, L.

1994-07-01T23:59:59.000Z

19

Toms Creek IGCC Demonstration Project  

SciTech Connect

The Toms Creek Integrated Gasification Combined Cycle (IGCC) Demonstration Project was selected by DOE in September 1991 to participate in Round Four of the Clean Coal Technology Demonstration Program. The project will demonstrate a simplified IGCC process consisting of an air-blown, fluidized-bed gasifier (Tampella U-Gas), a gas cooler/steam generator, and a hot gas cleanup system in combination with a gas turbine modified for use with a low-Btu content fuel and a conventional steam bottoming cycle. The demonstration plant will be located at the Toms Creek coal mine near Coeburn, Wise County, Virginia. Participants in the project are Tampella Power Corporation and Coastal Power Production Company. The plant will use 430 tons per day of locally mined bituminous coal to produce 55 MW of power from the gasification section of the project. A modern pulverized coal fired unit will be located adjacent to the Demonstration Project producing an additional 150 MW. A total 190 MW of power will be delivered to the electric grid at the completion of the project. In addition, 50,000 pounds per hour of steam will be exported to be used in the nearby coal preparation plant. Dolomite is used for in-bed gasifier sulfur capture and downs cleanup is accomplished in a fluidized-bed of regenerative zinc titanate. Particulate clean-up, before the gas turbine, will be performed by high temperature candle filters (1020{degree}F). The demonstration plant heat rate is estimated to be 8,700 Btu/kWh. The design of the project goes through mid 1995, with site construction activities commencing late in 1995 and leading to commissioning and start-up by the end of 1997. This is followed by a three year demonstration period.

Virr, M.J.

1992-11-01T23:59:59.000Z

20

Toms Creek IGCC Demonstration Project  

SciTech Connect

The Toms Creek Integrated Gasification Combined Cycle (IGCC) Demonstration Project was selected by DOE in September 1991 to participate in Round Four of the Clean Coal Technology Demonstration Program. The project will demonstrate a simplified IGCC process consisting of an air-blown, fluidized-bed gasifier (Tampella U-Gas), a gas cooler/steam generator, and a hot gas cleanup system in combination with a gas turbine modified for use with a low-Btu content fuel and a conventional steam bottoming cycle. The demonstration plant will be located at the Toms Creek coal mine near Coeburn, Wise County, Virginia. Participants in the project are Tampella Power Corporation and Coastal Power Production Company. The plant will use 430 tons per day of locally mined bituminous coal to produce 55 MW of power from the gasification section of the project. A modern pulverized coal fired unit will be located adjacent to the Demonstration Project producing an additional 150 MW. A total 190 MW of power will be delivered to the electric grid at the completion of the project. In addition, 50,000 pounds per hour of steam will be exported to be used in the nearby coal preparation plant. Dolomite is used for in-bed gasifier sulfur capture and downs cleanup is accomplished in a fluidized-bed of regenerative zinc titanate. Particulate clean-up, before the gas turbine, will be performed by high temperature candle filters (1020[degree]F). The demonstration plant heat rate is estimated to be 8,700 Btu/kWh. The design of the project goes through mid 1995, with site construction activities commencing late in 1995 and leading to commissioning and start-up by the end of 1997. This is followed by a three year demonstration period.

Virr, M.J.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "kemper county igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

IGCC system studies  

Science Conference Proceedings (OSTI)

Systems studies are performed on both the currently available, but not fully demonstrated, integrated gasification combined-cycle (IGCC) technologies and the future technologies. The objective of these studies is to support and guide the Morgantown Energy Technology Center`s METC Strategic Product Planning efforts. Through these efforts, the research, development and demonstration needs of various alternative gasification and power island components can be quantified and factored into the overall planning processes.

Rath, L.K.

1994-10-01T23:59:59.000Z

22

County  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pine County Pine County White Pine County Board of County Commissioners Board of County Commissioners February 10, 1998 W. Eric J. Fygi U.S. Department of Energy Office of General Counsel GC-52 1000 Independence Avenue SW Washington, DC 20585 Subject: Department of Energy (DOE) Price-Anderson Act Comments from White Pine County, Nevada Dear Mr. Fygi: Thank you for providing White Pine County with the opportunity to comment concerning the continuation or modifications of the provisions of the Price-Anderson Act. We understand that these comments will be used to assist the Department of Energy in preparing a required report to Congress. You will note in reviewing our comments that the views of many "Affected Units of Government" in Nevada are similar to each other and that we have worked together in developing

23

Air permitting of IGCC plants  

SciTech Connect

The IGCC process is, currently, the preferred choice over conventional thermal power production in regard to cleanup of fuel and significantly reduced contaminant emissions. The air permitting requirements include the review of: feed preparation and PM emissions; feed gasification and contaminant emissions; elemental sulfur recovery and SO{sub 2} emissions; options for carbon-dioxide recovery; syngas characteristics for combustion; CT design and combustion mechanisms; air contaminant emissions of CT; controlled CT emissions of nitrogen-oxides and carbon-monoxide gases using the SCR and oxidation catalysts, respectively; and, emission of volatile organic compounds (VOCs), and hazardous air pollutants (HAPs). However, the IGCC processes are being rigorously reviewed for the system integration and reliability, and significant reduction of air contaminant emissions (including the greenhouse gases). This paper included a review of IGCC air contaminant emission rates, and various applicable regulatory requirements, such as NSR (New Source Review), NSPS (New Source Performance Standards), and MACT (Maximum Achievable Control Technology). The IGCC facility's NOX, CO, SO{sub 2}, PM, VOCs, and HAPs emission rates would be significantly low. Thus, effective, construction and installation, and operation air permits would be necessary for IGCC facilities.

Chitikela, S.R.

2007-07-01T23:59:59.000Z

24

CoalFleet IGCC Permitting Guidelines  

Science Conference Proceedings (OSTI)

This report provides guidance to owners of planned Integrated Gasification Combined Cycle (IGCC) power plants in order to assist them in permitting these advanced coal power generation facilities. The CoalFleet IGCC Permitting Guidelines summarize U.S. federal requirements for obtaining air, water, and solid waste permits for a generic IGCC facility, as described in EPRI report 1012227, the CoalFleet User Design Basis Specification (UDBS). The Guidelines present characteristics of IGCC emissions that mus...

2006-11-16T23:59:59.000Z

25

COUNTY\  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BOARD OF COUNTY COMMISSIONERS BOARD OF COUNTY COMMISSIONERS ESMERALDA COUNTY, NEVADA MEMBERS STAFF SUSAN W. DUDLEY, CHAIRMAN BEVERLY J. RELYEA GARY O'CONNOR, VICE CHAIRMAN ADMINISTRATIVE ASSISTANT BEN VILJOEN, LIQUOR BOARD (702)485-3406 January 20, 1998 U.S. Department of Energy Office of General Counsel GCS-52 1000 Independence Ave. SW Washington, DC 20585 RE: COMMENT BY ESMERALDA COUNTY, NEVADA CONCERNING THE CONTINUATION OR MODIFICATION OF DOE PRICE-ANDERSON ACT Dear Sirs: The DOE Price-Anderson indemnification is intended to provide coverage for contractors for the benefit of any victims of a nuclear accident or incident or a precautionary evacuation arising from activity under a DOE contracts. The public perception is that if there is a nuclear accident resulting in a dispersal of

26

IGCC rides a regulatory seesaw  

SciTech Connect

The Mesaba Energy Project to build a 603 MW IGCC power plant in Minnesota's Iron Range may or may not go ahead. Developers have proposed incorporating carbon capture and sequestration (CCS), including a pipeline. Opponents insist Mesaba should not go ahead unless it uses CCS immediately. Until November the project looked on the road to recovery but then the regulators came close to derailing the project citing recent delays and cancellations of IGCC projects in Florida, Colorado and Arizona. The next step is to work with the US DOE to structure the loan guarantee and to work with regulators in Minnesota to structure an off-take plan. 1 photo.

Blankinship, S.

2007-11-15T23:59:59.000Z

27

Mercury Fate in IGCC Power Plants  

Science Conference Proceedings (OSTI)

Integrated Gasification Combined Cycle (IGCC) power plants are an alternative to conventional pulverized coal boilers. In an IGCC facility, coal or other feedstocks are converted to synthetic gas (syngas) at high temperature and pressure. The syngas can be used to produce electrical power in a combined cycle combustion turbine. One of the advantages of IGCC technology is that contaminants can be removed from the syngas prior to combustion, reducing the volume of gas that must be treated and leading to lo...

2006-12-21T23:59:59.000Z

28

IGCC offers diversity for competitive generation  

SciTech Connect

Over the last couple of years, integrated gasification combined-cycle (IGCC) power plants have begun penetrating competitive markets, Japan and Taiwan are applying IGCC technology in their first round of independent power producer bidding. The versatility of this technology is adding to its cachet, as it finds its niche in a variety of market segments and applications. In the US, the hottest niche for IGCC is seen in repowering of existing facilities. Increased use in the coal-powered portion of the market is projected in the next decade, as gas turbine technology advances are expected to drive the spread of IGCC beyond industrial applications.

Chambers, A.

1997-11-01T23:59:59.000Z

29

IGCC Dynamic Simulator and Training Center  

SciTech Connect

Integrated Gasification Combined Cycle (IGCC) is emerging as the technology of choice for providing clean, low-cost electricity for the next generation of coal-fired power plants and will play a central role in the development of high-efficiency, zero-emissions power plants such as FutureGen. Several major utilities and developers recently announced plans to build IGCC plants and other major utilities are evaluating IGCC’s suitability for base-load capacity additions. This recent surge of attention to IGCC power generation is creating a growing demand for experience with the analysis, operation, and control of commercial-scale IGCC plants. To meet this need, the National Energy Technology Laboratory (NETL) has launched a project to develop a generic, full-scope, IGCC dynamic plant simulator for use in establishing a state-of-the-art simulator training center at West Virginia University’s (WVU) National Research Center for Coal and Energy (NRCCE). The IGCC Dynamic Simulator & Training (DS&T) Center will be established under the auspices of the Collaboratory for Process & Dynamic Systems Modeling (“Collaboratory”) organized between NETL, WVU, the University of Pittsburgh, and Carnegie Mellon University.

Zitney, S.E.; Erbes, M.R. (Enginomix, LLC)

2006-10-01T23:59:59.000Z

30

Utilities split on readiness of IGCC  

SciTech Connect

For some generating companies, the dearth of operating experience for integrated gasification combined-cycle plants adds too much uncertainty to the risk/reward equation for new-capacity technology options. For others, the possibility of being able to comply with air pollution limits as far out as 2018, as well as to meet all-but-certain CO{sub 2} caps, makes IGCC well worth investing in now. The article compares the highest-level technical and economic characteristics of IGCC with those of pulverised coal combustion and other generating technologies. It then discusses the availability histories of six successful IGCC demonstration plants, presenting that for the Wabash River plant in some detail. The issue of financing IGCC is addressed. An insert on page 58 summarises a paper by Dave Stopek of Sangent and Lundy presented at Electric Power 2006. This discussed IGCC plant cost and factors to consider in selecting a technology supplier. 1 fig., 4 tabs.

Javetski, J.

2006-10-15T23:59:59.000Z

31

Filter systems for IGCC applications  

SciTech Connect

The objectives of this program were to identify metallic filter medium to be utilized in the Integrated Gasification Combined Cycle process (IGCC). In IGCC processes utilizing high efficiency desulfurizing technology, the traditional corrosion attack, sulfidation, is minimized so that metallic filters are viable alternatives over ceramic filters. Tampa Electric Company`s Polk Power Station is being developed to demonstrate Integrated Gasification Combined Cycle technology. The Pall Gas Solid Separation (GSS) System is a self cleaning filtration system designed to remove virtually all particulate matter from gas streams. The heart of the system is the filter medium used to collect the particles on the filter surface. The medium`s filtration efficiency, uniformity, permeability, voids volume, and surface characteristics are all important to establishing a permeable permanent cake. In-house laboratory blowback tests, using representative full scale system particulate, were used to confirm the medium selection for this project. Test elements constructed from six alloys were supplied for exposure tests: PSS 310SC (modified 310S alloy); PSS 310SC heat treated; PSS 310SC-high Cr; PSS 310SC-high Cr heat treated; PSS Hastelloy X; and PSS Hastelloy X heat treated.

Bevan, S.; Gieger, R.; Sobel, N.; Johnson, D.

1995-11-01T23:59:59.000Z

32

Improved sulfur removal processes evaluated for IGCC  

SciTech Connect

An inherent advantage of Integrated Coal Gasification Combined Cycle (IGCC) electric power generation is the ability to easily remove and recover sulfur. During the last several years, a number of new, improved sulfur removal and recovery processes have been commercialized. An assessment is given of alternative sulfur removal processes for IGCC based on the Texaco coal gasifier. The Selexol acid gas removal system, Claus sulfur recovery, and SCOT tail gas treating are currently used in Texaco-based IGCC. Other processes considered are: Purisol, Sulfinol-M, Selefning, 50% MDEA, Sulften, and LO-CAT. 2 tables.

1986-12-01T23:59:59.000Z

33

CURRENT AND FUTURE IGCC TECHNOLOGIES:  

NLE Websites -- All DOE Office Websites (Extended Search)

16, 2008 16, 2008 DOE/NETL-2008/1337 A Pathway Study Focused on Non-Carbon Capture Advanced Power Systems R&D Using Bituminous Coal - Volume 1 Current and Future IGCC Technologies Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or

34

EIS-0409: Final Environmental Impact Statement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Environmental Impact Statement Final Environmental Impact Statement EIS-0409: Final Environmental Impact Statement Kemper County Integrated Gasification Combined-Cycle (IGCC) Project This Final EIS assesses the potential environmental impacts that would result from a proposed DOE action to provide cost-shared funding and possibly a loan guarantee for construction and operation of advanced power generation plant in Kemper County, Mississippi. The project was selected under DOE's Clean Coal Power Initiative to demonstrate IGCC technology. DOE also invited Mississippi Power Company to submit an application for the Kemper County IGCC Project to the Loan Guarantee Program during 2008. Assessment of a prospective loan guarantee is currently in progress. The power genera- tion components (i.e., coal gasifiers, synthesis gas [syngas]

35

Avestar® - Integrated Gasification Combined Cycle (IGCC) Dynamic Simulator  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Gasification Combined Cycle (IGCC) Dynamic Simulator Integrated Gasification Combined Cycle (IGCC) Dynamic Simulator The AVESTAR® center offers courses using the Integrated Gasification Combined Cycle (IGCC) Dynamic Simulator. The IGCC simulator builds on and reaches beyond existing combined-cycle and conventional-coal power plant simulators to combine--for the first time--a Gasification with CO2 Capture process simulator with a Combined-Cycle power simulator together in a single dynamic simulation framework. The AVESTAR® center IGCC courses provide unique, comprehensive training on all aspects of an IGCC plant, illustrating the high-efficiency aspects of the gasifier, gas turbine, and steam turbine integration. IGCC Operator training station HMI display for overview of IGCC Plant - Train A Reference:

36

Getting IGCC a seat at the table  

SciTech Connect

A dominant theme at the Gasification Technologies Conference in Washington, DC in early October was how all parties need to step up to assure integrated gasification combined cycle (IGCC) technology finds a place at the power generation table. That included a call for utilities and their ratepayers to be willing to accept more risk than they are accustomed to assuming. John Hofmeister, president and CEO of Shell Oil Company chided lawmakers and regulators for hindering progress by not adopting uniform regulations for carbon dioxide emissions. Among Shell's IGCC projects is Australia's equivalent of the United States' FutureGen Project - a 275 MW power production facility in Queensland that is expected to achieve 99.8% CO{sub 2} capture with sequestration and produce hydrogen. Randy Zwirn, president nd CEO of Siemens Power Generation, said OEMs must develop a philosophy for IGCC that he terms RAM - reliability, availability and maintainability. Texas Railroad Commissioner, Mike Williams described how his state has welcomed IGCC plants that can capture carbon and has established the groundwork for using or sequestrating it. Presentations reviewed in this article include status updates of more than a dozen IGCC projects underway. 1 photo.

Blankinship, S.

2006-11-15T23:59:59.000Z

37

EIS-0409: Notice of Intent to Prepare an Environmental Impact Statement and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Notice of Intent to Prepare an Environmental Impact Notice of Intent to Prepare an Environmental Impact Statement and Notice of Proposed Floodplain and Wetlands Involvement EIS-0409: Notice of Intent to Prepare an Environmental Impact Statement and Notice of Proposed Floodplain and Wetlands Involvement Kemper County IGCC Project, Kemper County, Mississippi The Department of Energy announces its intent to prepare an environmental impact statement for the proposed Kemper County Integrated Gasification Combined Cycle Project in Kemper County, Mississippi to assess the potential environmental impacts associated with the construction and operation of a project proposed by Southern Power Company, through its affiliate Mississippi Power Company, which has been selected by DOE for consideration under the Clean Coal Power Initiative (CCPI) program..

38

Coal Fleet Integrated Gasification Combined Cycle (IGCC Permitting) Guidelines  

Science Conference Proceedings (OSTI)

This report provides guidance to owners of planned Integrated Gasification Combined Cycle (IGCC) power plants in order to assist them in permitting these advanced coal power generation facilities. The CoalFleet IGCC Permitting Guidelines summarize U.S. federal requirements for obtaining air, water, and solid waste permits for a generic IGCC facility, as described in the CoalFleet User Design Basis Specification (UDBS). The report presents characteristics of IGCC emissions that must be considered in the p...

2006-03-14T23:59:59.000Z

39

Design Options for Enhancing IGCC Flexible Operations Performance and Economics  

Science Conference Proceedings (OSTI)

This report describes the cycling experience of integrated gasification combined cycle (IGCC) plants, and the characteristics of IGCC and its component technologies that can make it particularly responsive to renewables-driven, flexible operation and cycling requirements. It also identifies a number of design options for optimizing IGCC cycling performance, and economics for such requirements to nearly meet natural gas combined cycle (NGCC) ramping ...

2013-12-13T23:59:59.000Z

40

Design optimization of IGCC power plants  

SciTech Connect

Integrated gasification-combined-cycle (IGCC) power plants have the potential for providing performance and cost improvements over conventional coal-fired steam power plants with flue-gas desulfurization. The major design options for IGCC power plants include the following: oxygen-blown versus air-blown gasification processes; entrained-flow, fluidized-bed, or fixed-bed gasifier; coal-slurry feed versus coal-dry feed; hot versus cold fuel-gas cleanup; gas turbine alternatives; and, design alternatives for the Heat Recovery Steam Generator (HRSG). This paper summarizes some results from these studies. The advanced thermoelectric techniques used at Tennessee Technological University (TTU) are very powerful tools for evaluating and optimizing IGCC power plants.

Tsatsaronis, G.; Lin, L.; Pisa, J.; Tawfik, T. (Tennessee Technological Univ., Cookeville, TN (United States))

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "kemper county igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

IGCC update: are we there yet?  

Science Conference Proceedings (OSTI)

If a number of technical, financial and regulatory hurdles can be overcome, power generated by integrated gasification combined-cycle technology could become an important source for US utilities. Our overview presents diverse perspectives from three industry experts about what it will take to move this technology off the design table and into the field. Well-known advantages are IGCC uses less water, creates a usable slag by-product and the technology required for pre-combustion CO{sub 2} capture has already been used successfully on coal gasification technology. These points, together with roadblocks to the deployment of IGCC technology in the USA, are discussed. 3 figs., 1 tab.

Neville, A.

2009-08-15T23:59:59.000Z

42

ConocoPhillips Sweeny IGCC/CCS Project  

SciTech Connect

Under its Industrial Carbon Capture and Sequestration (ICCS) Program, the United States (U.S.) Department of Energy (DOE) selected ConocoPhillips Company (ConocoPhillips) to receive funding through the American Recovery and Reinvestment Act (ARRA) of 2009 for the proposed Sweeny Integrated Gasification Combined Cycle (IGCC)/Carbon Capture and Storage (CCS) Project (Project) to be located in Brazoria County, Texas. Under the program, the DOE is partnering with industry to demonstrate the commercial viability and operational readiness of technologies that would capture carbon dioxide (CO{sub 2}) emissions from industrial sources and either sequester those emissions, or beneficially reuse them. The primary objective of the proposed Project was to demonstrate the efficacy of advanced technologies that capture CO{sub 2} from a large industrial source and store the CO{sub 2} in underground formations, while achieving a successful business venture for the entity (entities) involved. The Project would capture 85% of the CO{sub 2} produced from a petroleum coke (petcoke) fed, 703 MWnet (1,000 MWgross) IGCC power plant, using the ConocoPhillips (COP) proprietary and commercially proven E-Gas{trademark} gasification technology, at the existing 247,000 barrel per day COP Sweeny Refinery. In addition, a number of other commercially available technologies would be integrated into a conventional IGCC Plant in a unique, efficient, and reliable design that would capture CO{sub 2}. The primary destination for the CO{sub 2} would be a depleted natural gas field suitable for CO{sub 2} storage ('Storage Facility'). COP would also develop commercial options to sell a portion of the IGCC Plant's CO{sub 2} output to the growing Gulf Coast enhanced oil recovery (EOR) market. The IGCC Plant would produce electric power for sale in the Electric Reliability Council of Texas Houston Zone. The existing refinery effluent water would be treated and reused to fulfill all process water needs. The DOE ICCS program adopts a two-phase approach. During the 7-month Phase 1 period, ConocoPhillips further defined the Project by advancing the preliminary design, permits, and contracts. In addition, ConocoPhillips was developing a Phase 2 renewal application to seek continued DOE funding for the Project's design, construction, and early operations. The DOE and ConocoPhillips entered into a Phase1 Cooperative Agreement (DOE Award Number DE-FE0001859) on November 16, 2009, agreeing to share cost on a 50/50 basis during the Phase 1 period, with a DOE budget of $2,989,174. On April 7, 2010, ConocoPhillips informed the DOE that it would not participate in Phase 2 of the DOE ICCS program. The company believes that enabling legislation and regulations at both the federal and state levels will not be approved and implemented in time to make a final investment decision such that the Project would be substantially constructed by September 30, 2015, the end of the AARA funding period. Considering current price assumptions, the Project would not generate investment level returns. ConocoPhillips elected not to submit a Phase 2 renewal application, which was due on April 16, 2010. This Final Scientific/Technical Report provides an overview of the Project, including highlights and benefits of the proposed carbon capture and storage project scope, sites, and technologies. It also summarizes the work accomplishments during the Phase 1 period from November 16, 2009 to June 16, 2010. Due to ConocoPhillips decision not to submit the Phase 2 renewal application and not to enter into related agreements, certain information regarding the proposed CO{sub 2} storage facility cannot be publicly reported due to confidentiality agreements.

Paul Talarico; Charles Sugg; Thomas Hren; Lauri Branch; Joseph Garcia; Alan Rezigh; Michelle Pittenger; Kathleen Bower; Jonathan Philley; Michael Culligan; Jeremy Maslen; Michele Woods; Kevin Elm

2010-06-16T23:59:59.000Z

43

Combustion Engineering IGCC Repowering Project  

SciTech Connect

C-E gasification process uses an entrained-flow, two-stage, slagging bottom gasifier. Figure 1 shows a schematic of the gasifier concept. Some of the coal and all of the char is fed to the combustor section, while the remaining coal is fed to the reducter section of the gasifier. The coal and char in the combustor is mixed with air and the fuel-rich mixture is burned creating the high temperature necessary to gasify the coal and melt the mineral matter in the coal. The slag flows through a slag tap at the bottom of the combustor into a water-filled slag tank where it is quenched and transformed into an inert, glassy, granular material. This vitrified slag is non-leaching, making it easy to dispose of in an environmentally acceptable manner. The hot gas leaving the combustor enters the second stage called the reductor. In the reducter, the char gasification occurs along the length of the reductor zone until the temperature falls to a point where the gasification kinetics become too slow. Once the gas temperature reaches this level, essentially no further gasification takes place and the gases subsequently are cooled with convective surface to a temperature low enough to enter the cleanup system. Nearly all of the liberated energy from the coal that does not produce fuel gas is collected and recovered with steam generating surface either in the walls of the vessel or by conventional boiler convective surfaces in the backpass of the gasifier. A mixture of unburned carbon and ash (called char) is carried out of the gasifier with the product gas strewn. The char is collected and recycled back to the gasifier where it is consumed. Thus, there is no net production of char which results in negligible carbon loss. The product gas enters a desulfurization system where it is cleaned of sulfur compounds present in the fuel gas. The clean fuel gas is now available for use in the gas turbine combuster for an integrated coal gasification combined cycle (IGCC) application.

Andrus, H.E.; Thibeault, P.R.; Gibson, C.R.

1992-11-01T23:59:59.000Z

44

Combustion Engineering IGCC Repowering Project  

SciTech Connect

C-E gasification process uses an entrained-flow, two-stage, slagging bottom gasifier. Figure 1 shows a schematic of the gasifier concept. Some of the coal and all of the char is fed to the combustor section, while the remaining coal is fed to the reducter section of the gasifier. The coal and char in the combustor is mixed with air and the fuel-rich mixture is burned creating the high temperature necessary to gasify the coal and melt the mineral matter in the coal. The slag flows through a slag tap at the bottom of the combustor into a water-filled slag tank where it is quenched and transformed into an inert, glassy, granular material. This vitrified slag is non-leaching, making it easy to dispose of in an environmentally acceptable manner. The hot gas leaving the combustor enters the second stage called the reductor. In the reducter, the char gasification occurs along the length of the reductor zone until the temperature falls to a point where the gasification kinetics become too slow. Once the gas temperature reaches this level, essentially no further gasification takes place and the gases subsequently are cooled with convective surface to a temperature low enough to enter the cleanup system. Nearly all of the liberated energy from the coal that does not produce fuel gas is collected and recovered with steam generating surface either in the walls of the vessel or by conventional boiler convective surfaces in the backpass of the gasifier. A mixture of unburned carbon and ash (called char) is carried out of the gasifier with the product gas strewn. The char is collected and recycled back to the gasifier where it is consumed. Thus, there is no net production of char which results in negligible carbon loss. The product gas enters a desulfurization system where it is cleaned of sulfur compounds present in the fuel gas. The clean fuel gas is now available for use in the gas turbine combuster for an integrated coal gasification combined cycle (IGCC) application.

Andrus, H.E.; Thibeault, P.R.; Gibson, C.R.

1992-01-01T23:59:59.000Z

45

U.S. Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in cooperation with in cooperation with U.S. Army Corps of Engineers KEMPER COUNTY IGCC PROJECT DRAFT ENVIRONMENTAL IMPACT STATEMENT DOE/EIS-0409D VOLUME 1 November 2009 Office of Fossil Energy National Energy Technology Laboratory COVER SHEET November 2009 LEAD AGENCY U.S. Department of Energy (DOE) COOPERATING AGENCY U.S. Army Corps of Engineers (USACE) TITLE Kemper County Integrated Gasification Combined-Cycle (IGCC) Project, Draft Environmental Impact Statement (EIS) (DOE/EIS-0409D) LOCATION Kemper County, Mississippi CONTACTS Additional copies or information concerning this Draft EIS can be obtained from Mr. Richard A. Hargis, Jr., National Environmental Policy Act (NEPA) Document Manager, U.S. Department of Energy, National Ener- gy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, Pennsylvania, 15236-0940.

46

MITIGATION ACTION PLAN  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MITIGATION ACTION PLAN MITIGATION ACTION PLAN KEMPER COUNTY IGCC PROJECT KEMPER COUNTY, MISSISSIPPI U.S. Department of Energy National Energy Technology Laboratory September 2010 2 INTRODUCTION The Department of Energy (DOE) issued a Final Environmental Impact Statement (EIS) for the Kemper County IGCC Project (Project) (DOE/EIS-0409) in May 2010 and a Record of Decision (ROD) in August 2010 (75 FR 51248). The ROD identified commitments to mitigate potential adverse impacts associated with the project. This Mitigation Action Plan (MAP) describes the monitoring and mitigation actions the recipient must implement during the design, construction, and demonstration of the Project. DOE prepared this MAP in accordance with 10 CFR § 1021.331. PURPOSE Section 1021.331 of the DOE regulations implementing NEPA (10 CFR Part 1021) provides

47

COST OF MERCURY REMOVAL IN IGCC PLANTS  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost of Mercury Removal Cost of Mercury Removal in an IGCC Plant Final Report September 2002 Prepared for: The United States Department of Energy National Energy Technology Laboratory By: Parsons Infrastructure and Technology Group Inc. Reading, Pennsylvania Pittsburgh, Pennsylvania DOE Product Manager: Gary J. Stiegel DOE Task Manager: James R. Longanbach Principal Investigators: Michael G. Klett Russell C. Maxwell Michael D. Rutkowski PARSONS The Cost of Mercury Removal in an IGCC Plant Final Report i September 2002 TABLE OF CONTENTS Section Title Page 1 Summary 1 2 Introduction 3 3 Background 4 3.1 Regulatory Initiatives 4 3.2 Mercury Removal for Conventional Coal-Fired Plants 4 3.3 Mercury Removal Experience in Gasification 5 3.4 Variability of Mercury Content in Coal 6 4 Design Considerations 7 4.1 Carbon Bed Location

48

Commercial gasifier for IGCC applications study report  

SciTech Connect

This was a scoping-level study to identify and characterize the design features of fixed-bed gasifiers appearing most important for a gasifier that was to be (1) potentially commercially attractive, and (2) specifically intended for us in integrated coal gasification/combined-cycle (IGCC) applications. It also performed comparative analyses on the impact or value of these design features and on performance characteristics options of the whole IGCC system since cost, efficiency, environmental traits, and operability -- on a system basis -- are what is really important. The study also reviewed and evaluated existing gasifier designs, produced a conceptual-level gasifier design, and generated a moderately advanced system configuration that was utilized as the reference framework for the comparative analyses. In addition, technical issues and knowledge gaps were defined. 70 figs., 31 tabs.

Notestein, J.E.

1990-06-01T23:59:59.000Z

49

IGCC: Current Status and Future Potential  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact of Developing Technologies on the Impact of Developing Technologies on the Economics and Performance of Future IGCC Power Plants John Plunkett, Noblis David Gray, Noblis Charles White, Noblis Julianne Klara, NETL Copyright © 2008 Noblis, Inc. 2 Acknowledgement This work is sponsored by the U.S. Department of Energy, National Energy Technology Laboratory 3 Study Objective Starting with present-day baseline, evaluate improved IGCC performance and cost resulting from DOE-funded R&D over the next 18 years. Examine both with and without CO 2 capture. Study results will help to prioritize technology development based on relative impact. Results will also help to assess the impact of future potential CO 2 emissions restrictions. 4 Methodology * Use Aspen Plus simulator to provide model "transparency"

50

IGCC Design Considerations for CO2 Capture  

Science Conference Proceedings (OSTI)

This report contains technical design, plant performance, cost estimates, and economic analysis of IGCC power plants designed with future retrofit for full CO2 capture in mind. The gasification technologies supplied by General Electric, Shell, and Siemens studied in the report were designed to initially produce power without CO2 capture; but their designs included moderate pre-investment to economically accommodate retrofit of full CO2 capture at a later date. The base plant designs include deep sulfur r...

2009-03-31T23:59:59.000Z

51

Design Options for Enhancing IGCC Flexible Operations Performance and Economics  

Science Conference Proceedings (OSTI)

This report describes the cycling experience of integrated-gasification combined-cycle (IGCC) plants and the characteristics of IGCC and its component technologies that can make it particularly responsive to renewables-driven, flexible operation and cycling requirements. It also identifies a number of design options for optimizing IGCC cycling performance and economics for such requirements.BackgroundIntermittent renewable sources, such as wind and solar ...

2012-12-31T23:59:59.000Z

52

Excelsior Energy Mesaba IGCC Project Preliminary Design Specification  

Science Conference Proceedings (OSTI)

With Integrated Gasification Combined Cycle (IGCC) technology now entering commercial service, the industry needs specifications that encourage greater standardization in IGCC design. Standardization lowers initial capital cost; supports repeatable, reliable performance; and reduces the time and cost to develop decision-quality economics for potential IGCC plant owners. This CoalFleet Preliminary Design Specification (PDS) defines technical information provided in the permit application submitted by Exce...

2006-12-11T23:59:59.000Z

53

Technology qualification for IGCC power plant with CO2 Capture.  

E-Print Network (OSTI)

?? Summary:This thesis presents the technology qualification plan for the integrated gasification combined cycle power plant (IGCC) with carbon dioxide capture based on DNV recommendations.… (more)

Baig, Yasir

2011-01-01T23:59:59.000Z

54

AVESTAR® - Training - IGCC Orientation for Engineers and Managers  

NLE Websites -- All DOE Office Websites (Extended Search)

will introduce trainees to the IGCC simulator, process, and controls. During the training, trainees will startup and shutdown the simulated unit in an integrated manner and...

55

Comparison of Pratt and Whitney Rocketdyne IGCC and commercial IGCC performance  

Science Conference Proceedings (OSTI)

This report compares the performance and cost of commercial Integrated Gasification Combined Cycle (IGCC) plants using General Electric Energy (GEE) and Shell gasifiers with conceptual IGCC plant designs using the Pratt and Whitney Rocketdyne (PWR) compact gasifier. the PWR gasifier is also compared with the GEEE gasifier in hydrogen production and carbon capture mode. With the exception of the PWR gasifier, the plants are designed with commercially available equipment to be operational in approximately 2010. All results should be considered preliminary and dictated in large part by the selected design basis. 10 refs., 54 exhibits

Jeffrey Hoffmann; Jenny Tennant; Gary J. Stiegel [Office of Systems Analysis and Planning (United States)

2006-06-15T23:59:59.000Z

56

Impact of coal quality and gasifier technology on IGCC performance  

E-Print Network (OSTI)

1 Impact of coal quality and gasifier technology on IGCC performance Ola Maurstad1 *, Howard Herzog 02139, USA Abstract Integrated coal gasification combined cycle (IGCC) plants withpre different coals were used and alternatives with and without CO2 capture calculated. It was found

57

CoalFleet Advanced Combustion IGCC Permits Database  

Science Conference Proceedings (OSTI)

The CoalFleet Advanced Combustion IGCC Permits Database presents comprehensive information on permitting requirements and permit conditions for Integrated Gasification Combined Cycle (IGCC) power plants in an online database format. This Technical Update is a compilation of the Database contents as of March 31, 2008.

2008-04-11T23:59:59.000Z

58

Dynamic Simulation and Training for IGCC Power Plants  

SciTech Connect

Integrated Gasification Combined Cycle (IGCC) is emerging as the technology of choice for providing clean, low-cost electricity for the next generation of coal-fired power plants and will play a central role in the development of high-efficiency, zero-emissions power plants such as FutureGen. Several major utilities and developers recently announced plans to build IGCC plants and other major utilities are evaluating IGCC’s suitability for base-load capacity additions. This recent surge of attention to IGCC power generation is creating a growing demand for experience with the analysis, operation, and control of commercial-scale IGCC plants. To meet this need, the National Energy Technology Laboratory (NETL) has launched a project to develop a generic, full-scope, IGCC dynamic plant simulator for use in establishing a state-of-the-art simulator training center at West Virginia University’s (WVU) National Research Center for Coal and Energy (NRCCE). The IGCC Dynamic Simulator & Training (DS&T) Center will be established under the auspices of the Collaboratory for Process & Dynamic Systems Modeling (“Collaboratory”) organized between NETL, WVU, the University of Pittsburgh, and Carnegie Mellon University.

Erbes, M.R. (Enginomix, LLC); Zitney, S.E

2006-09-01T23:59:59.000Z

59

Integrated Gasification Combined Cycle (IGCC) Design Considerations for High Availability  

Science Conference Proceedings (OSTI)

This report analyses public domain availability data from Integrated Gasification Combined Cycles (IGCC) and other significant coal gasification facilities, backed up with additional data gained from interviews and discussions with plant operators. Predictions for the availability of future IGCCs are made based on the experience of the existing fleet and anticipated improvements from the implementation of lessons learned.

2007-03-26T23:59:59.000Z

60

A utility`s perspective of the market for IGCC  

SciTech Connect

I believe, in the short-term U. S. market that IGCC`s primary competition is, natural gas-fired combined cycle technology. I believe that in order for IGCC to compete on a commercial basis, that natural gas prices have to rise relative to coal prices, and that the capital cost of the technology must come down. While this statement may seem to be somewhat obvious, it raises two interesting points. The first is that while the relative pricing of natural gas and coal is not generally within the technology supplier`s control, the capital cost is. The reduction of capital cost represents a major challenge for the technology suppliers in order for this technology to become commercialized. The second point is that the improvements being achieved with IGCC efficiencies probably won`t help it outperform the effects of natural gas pricing. This is due to the fact that the combined cycle portion of the IGCC technology is experiencing the most significant improvements in efficiency. I do see, however, a significant advantage for IGCC technology compared to conventional pulverized coal-fired units. As IGCC efficiencies continue to improve, combined with their environmentally superior performance, I believe that IGCC will be the ``technology of choice`` for utilities that install new coal-fired generation. We have achieved economic justification of our project by virtue of the DOE`s funding of $120 million awarded in Round III of their Clean Coal Technology Program. This program provides the bridge between current technology economics and those of the future. And Tampa Electric is pleased to be taking a leadership position in furthering the IGCC knowledge base.

Black, C.R. [Tampa Electric Co., FL (United States)

1993-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "kemper county igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Comparison of Pratt and Whitney Rocketdyne IGCC and Commercial IGCC Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparison of Comparison of Pratt and Whitney Rocketdyne IGCC and Commercial IGCC Performance DOE/NETL-401/062006 Final Report June 2006 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States

62

New low cost IGCC designs for competitive power generation  

SciTech Connect

Design studies of coal based 450 MW new IGCC power plants reveal their ability to compete in today's power generation market. Single train unit designs coupled with significant improvements in IGCC net output and efficiency have brought down the installed costs to the range of 850--1,000 $/kW and net thermal efficiency up to 43--47%. These improvements are shown to result from IGCC design configurations integrating new generation gas turbine combined cycles with High Pressure Texaco Gasification Technology and Elevated Pressure Air Separation Units.

Brdar, D.R.; Depuy, R.A.; Gulko, G.; Jandrisevits, M.; Paolino, J.

1999-07-01T23:59:59.000Z

63

Mesaba next-generation IGCC plant  

Science Conference Proceedings (OSTI)

Through a US Department of Energy (DOE) cooperative agreement awarded in June 2006, MEP-I LLC plans to demonstrate a next generation integrated gasification-combined cycle (IGCC) electric power generating plant, the Mesaba Energy Project. The 606-MWe plant (the first of two similarly sized plants envisioned by project sponsors) will feature next-generation ConocoPhillips E-Gas{trademark} technology first tested on the DOE-funded Wabash River Coal Gasification Repowering project. Mesaba will benefit from recommendations of an industry panel applying the Value Improving Practices process to Wabash cost and performance results. The project will be twice the size of Wabash, while demonstrating better efficient, reliability and pollutant control. The $2.16 billion project ($36 million federal cost share) will be located in the Iron Range region north of Duluth, Minnesota. Mesaba is one of four projects selected under Round II of the Clean Coal Power Initiative. 1 fig.

NONE

2006-01-01T23:59:59.000Z

64

Market potential of IGCC for domestic power production  

SciTech Connect

Mitretek Systems and CONSOL Inc. have completed the first phase of a market potential study for Integrated Coal Gasification Combined Cycle (IGCC) domestic power production. The U. S. Department of Energy (DOE) funded this study. The objective of this study is to provide DOE with data to estimate the future domestic market potential of IGCC for electricity generation. Major drivers in this study are the state of technology development, feedstock costs, environmental control costs, demand growth, and dispatchability. This study examines IGCC potential for baseload power production in the Northeast U. S., an important market area by virtue of existing coal infrastructure and proximity to coal producing regions. IGCC market potential was examined for two levels of technology development as a function of natural gas price and carbon tax. This paper discusses the results of this study, including the levels of performance and cost necessary to insure competitiveness with natural gas combined cycle plants.

Gray, D.; Tomlinson, G.; Hawk, E.; Maskew, J.

1999-07-01T23:59:59.000Z

65

Enhancement of IGCC through clean by-product fuel coproduction  

SciTech Connect

The major objective of this paper is to first design a base case IGCC plant that is representative of a base-loaded power plant, and then to identify and to quantify the potential benefits of a spare gasifier and fuel-grade methanol coproduction as additions to the base case plant. This is significantly different than previous methanol coproduction IGCC studies which have assumed cyclic operation with undersized coal gasification capacity. The proposed IGCC plant will be at FPL's Martin Site, located near the eastern shore of Lake Okeechobee, Florida. The major components of the proposed IGCC plant are: dry-feed (Shell) or slurry-feed (Dow) gasifiers, GE advanced gas turbine (Model MS7001F), methanol plant based on liquid Phase Methanol (LPMeOH*) process.

Schmoe, L.A. (Bechtel Power Corp., Gaithersburg, MD (United States)); Tam, S.S. (Bechtel Group, Inc., San Francisco, CA (United States)); Walters, A.B. (Florida Power and Light Co., West Palm Beach, FL (US)); Weber, W. (Electric Power Research Inst., Palo Alto, CA (United States))

1991-01-01T23:59:59.000Z

66

Advanced IGCC power systems for the United States  

SciTech Connect

Integrated coal gasification combined-cycle (IGCC) power systems offer the potential of superior efficiency and environmental performance over power plants using pulverized coal-fired boilers with scrubbers to generate electricity in the United States. The Cool Water plant is demonstrating the feasibility of an IGCC system using an entrained-bed gasifier and ''cold'' gas cleanup technology. Technology is now being developed to simplify the IGCC system, increase its efficiency and reduce its capital costs. Hot gas sulfur and particulate cleanup is the most promising technology option for the gas supply block. Improved performance is also available from the power island by use of high-efficiency aircraft derivative turbines. Progress in these technologies and the exceptional match of these IGCC systems to the projected needs of the utility industry is presented.

Wieber, P.R.; Halow, J.S.

1986-01-01T23:59:59.000Z

67

Integrated gasification combined cycle -- A review of IGCC technology  

SciTech Connect

Over the past three decades, significant efforts have been made toward the development of cleaner and more efficient technology for power generation. Coal gasification technology received a big thrust with the concept of combined cycle power generation. The integration of coal gasification with combined cycle for power generation (IGCC) had the inherent characteristic of gas cleanup and waste minimization, which made this system environmentally preferable. Commercial-scale demonstration of a cool water plant and other studies have shown that the greenhouse gas and particulates emission from an IGCC plant is drastically lower than the recommended federal New Source Performance Standard levels. IGCC also offers a phased construction and repowering option, which allows multiple-fuel flexibility and the necessary economic viability. IGCC technology advances continue to improve efficiency and further reduce the emissions, making it the technology of the 21st century.

Joshi, M.M.; Lee, S. [Univ. of Akron, OH (United States)

1996-07-01T23:59:59.000Z

68

Microsoft Word - CurrentFutureIGCC2Revisionfinal.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

M T R - 2 0 0 4 - 0 5 Mitretek Technical Report Current and Future IGCC Technologies: Bituminous Coal to Power AUGUST 2004 David Gray Salvatore Salerno Glen Tomlinson Customer:...

69

PinonPine IGCC Power Project: A DOE Assesment  

NLE Websites -- All DOE Office Websites (Extended Search)

turbine, the IGCC process can also be modified to produce value-added chemicals or transportation fuels from coal by chemical processing of the CO and H 2 in the fuel gas...

70

IGCC Design and RAM Analysis for Near Zero Emissions  

Science Conference Proceedings (OSTI)

Concern over the continued availability of natural gas at competitive prices has led many power companies to initiate studies and projects on clean coal technologies as a strategic hedge against over-reliance on natural gas alone to provide future power needs. Integrated gasification combined cycle (IGCC) plants can meet very stringent emissions targets including those for mercury and carbon dioxide. Several years of commercial operation have been accumulated on coal-based IGCC plants in the United State...

2004-12-13T23:59:59.000Z

71

2012 Integrated Gasification Combined Cycle (IGCC) Research and Development Roadmap  

Science Conference Proceedings (OSTI)

BackgroundThe second generation of integrated gasification combined cycle (IGCC) power plants is now being built or planned following nearly two decades of commercial demonstration at multiple units. State-of-the-art IGCC plants have efficiencies equivalent to that of pulverized coal power plants while exhibiting equal or superior environmental performance and lower water usage. Precombustion CO2 capture technology is commercially available and has been ...

2012-10-30T23:59:59.000Z

72

New technology trends for improved IGCC system performance  

SciTech Connect

The application of gas turbine technology to IGCC systems requires careful consideration of the degree and type of integration used during the system design phase. Although gas turbines provide the primary output and efficiency gains for IGCC systems, as compared with conventional coal-fired power generation systems, they are commercially available only in specific size ranges. Therefore, it is up to the IGCC system designer to optimize the IGCC power plant within the required output, efficiency, and site conditions by selecting the system configuration carefully, particularly for air separation unit (ASU) integration incorporated with oxygen blown gasification systems. An IGCC system, based on a generic, entrained flow, oxygen blown gasification system and a GE STAG 109FA combined cycle has been evaluated with varying degrees of ASU integration, two fuel equivalent heating values and two gas turbine firing temperatures to provide net plant output and efficiency results. The data presented illustrate the system flexibility afforded by variation of ASU integration and the potential performance gains available through the continued use of gas turbine advances. Emphasis is placed on system design choices that favor either low initial investment cost or low operating cost for a given IGCC system output.

Anand, A.K.; Cook, C.S.; Corman, J.C. [GE Power Generation, Schenectady, NY (United States); Smith, A.R. [Air Products and Chemicals, Inc., Allentown, PA (United States)

1996-10-01T23:59:59.000Z

73

PINON PINE: An advanced IGCC demonstration  

SciTech Connect

The Pinon Pine Power Project is a second generation integrated gasification combined cycle (IGCC) power plant, located at Sierra Pacific Power Company`s (SPPC) Tracy Station, 17 miles east of Reno, Nevada. The project is being partially funded under the Department of Energy`s (DOE`s) Clean Coal Technology Program (CCT). SPPC intends to operate the plant in base-load mode to supply approximately 100 megawatts electric (MWe) to the transmission grid. This plant will be the first full-scale integration of several advanced technologies: an air-blown KRW gasifier; full-stream hot gas desulfurization using a transport reactor system with a zinc-based sorbent; full-stream, high-temperature ceramic filters for particulate removal; the General Electric Model MS6001FA (617A) Gas Turbine Engine/generator, and a 950 pound per square inch absolute (psia), 950{degrees}F steam turbine generator. This paper reviews the overall configuration and integration of the gasification and power islands components, which yield the plant`s high efficiency. Current status of the project is addressed.

Freier, M.D.; Jewell, D.M. [Morgantown Energy Technology Center, WV (United States); Motter, J.W. [Sierra Pacific Power Co., Reno, NV (United States)

1996-04-01T23:59:59.000Z

74

Microsoft Word - cvr-sht.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COVER SHEET COVER SHEET May 2010 LEAD AGENCY U.S. Department of Energy (DOE) COOPERATING AGENCY U.S. Army Corps of Engineers (USACE) TITLE Kemper County Integrated Gasification Combined-Cycle (IGCC) Project, Final Environmental Impact Statement (EIS) (DOE/EIS-0409) LOCATION Kemper County, Mississippi CONTACTS Additional copies or information concerning this Draft EIS can be obtained from Mr. Richard A. Hargis, Jr., National Environmental Policy Act (NEPA) Document Manager, U.S. Department of Energy, National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, Pennsylvania, 15236-0940. Telephone: 412-386-6065. E-mail: Kemper- EIS@netl.doe.gov. For general information on DOE's NEPA process, contact Ms. Carol M. Borgstrom, Director, Office of NEPA Policy

75

Process Engineering Division Texaco Gasifier IGCC Base Cases  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Division Engineering Division Texaco Gasifier IGCC Base Cases PED-IGCC-98-001 July 1998 Latest Revision June 2000 PREFACE This report presents the results of an analysis of three Texaco Gasifier IGCC Base Cases. The analyses were performed by W. Shelton and J. Lyons of EG&G. EXECUTIVE SUMMARY 1. Process Descriptions 1.1 Texaco Gasifier 1.2 Air Separation Plant (ASU) 1.3 Gas Cooling/Heat Recovery/Hydrolysis/Gas Saturation (Case 1 and Case 2) 1.4 Cold Gas Cleanup Unit (CGCU) (Case 1 and Case 2) 1.5 Fine Particulate Removal/ Chloride Guard Bed - Case 3 1.6 Transport Desulfurization HGCU - Case 3 1.7 Sulfuric Acid Plant - Case 3 1.8 Gas Turbine 1.9 Steam Cycle 1.10 Power Production 2. Simulation Development 3. Cost of Electricity Analysis

76

DOE/NETL IGCC Dynamic Simulator Research and Training Center  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL IGCC Dynamic Simulator NETL IGCC Dynamic Simulator Research and Training Center 01 Aug 2008 Volume 2: IGCC Process Descriptions DOE/NETL-2008/1324 NETL Collaboratory for Process & Dynamic Systems Research Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

77

Filter system cost comparison for IGCC and PFBC power systems  

SciTech Connect

A cost comparison was conducted between the filter systems for two advanced coal-based power plants. The results from this study are presented. The filter system is based on a Westinghouse advanced particulate filter concept, which is designed to operate with ceramic candle filters. The Foster Wheeler second-generation 453 MWe (net) pressurized fluidized-bed combustor (PFBC) and the KRW 458 MWe (net) integrated gasification combined cycle (IGCC) power plants are used for the comparison. The comparison presents the general differences of the two power plants and the process-related filtration conditions for PFBC and IGCC systems. The results present the conceptual designs for the PFBC and IGCC filter systems as well as a cost summary comparison. The cost summary comparison includes the total plant cost, the fixed operating and maintenance cost, the variable operating and maintenance cost, and the effect on the cost of electricity (COE) for the two filter systems.

Dennis, R.A.; McDaniel, H.M.; Buchanan, T. [and others

1995-12-01T23:59:59.000Z

78

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

This quarterly technical progress report will summarize work accomplished for Phase 2 Program during the quarter April to June 2004. In task 7, reactor cost analysis was performed to determine whether OTM technology when integrated with IGCC provides a commercially attractive process. In task 9, discussions with DOE regarding restructuring the program continued. The objectives of the second year of phase 2 of the program are to construct and operate an engineering pilot reactor for OTM oxygen. Work to support this objective is being undertaken in the following areas in this quarter: IGCC process analysis and economics.

John Sirman

2005-01-01T23:59:59.000Z

79

IGCC demonstration plant at Nakoso Power Station, Japan  

Science Conference Proceedings (OSTI)

The 250 MW IGCC demonstration plant at Nakoso Power Station is based on technology form Mitsubishi Heavy Industries (MHI) Ltd that uses a pressurized, air blown, two-stage, entrained-bed coal gasifier with a dry coal feed system. 5 figs., 1 tab.

Peltier, R.

2007-10-15T23:59:59.000Z

80

counties - Counties Data | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

- Counties Data Counties Data Apps Challenges Policies Counties You are here Data.gov Communities Counties Counties Data This page features datasets from participating...

Note: This page contains sample records for the topic "kemper county igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

PinonPine IGCC Power Project: A DOE Assesment  

NLE Websites -- All DOE Office Websites (Extended Search)

Piñon Pine IGCC Power Project Piñon Pine IGCC Power Project A DOE Assessment DOE/NETL-2003/1183 December 2002 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 West Third Street, Suite 1400 Tulsa, OK 74103-3519 website: www.netl.doe.gov 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

82

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

This quarterly technical progress report will summarize work accomplished for Phase 2 Program during the quarter April to June 2004. In task 1, long term testing of OTM elements at different temperatures and process conditions continued. In task 2, OTM elements were manufactured as necessary for task 1. In task 7, advanced OTM and cryogenic IGCC cases for near-term integration were developed, leading to cost requirements for commercial viability. In task 9, discussion with DOE regarding restructuring the program for subsequent phases were initiated. The objectives of the second year of phase 2 of the program are to construct and operate an engineering pilot reactor for OTM oxygen. Work to support this objective is being undertaken in the following areas in this quarter: Element reliability; Element fabrication; and IGCC process analysis and economics. The major accomplishments this quarter were: Long term life test of OTM element passed nine months at different testing conditions.

Ravi Prasad

2004-09-01T23:59:59.000Z

83

CE IGCC repowering project: Controls & instrumentation. Topical report, June 1993  

Science Conference Proceedings (OSTI)

The IGCC Control System is used to provide operator interface and controls for manual and auto operation of the IGCC Repowering Project Located at Springfield, Illinois. A Distributed Control System (DCS) is provided for analog (process control) loop functions and to provide the operator interface. A Data Acquisition System (DAS) is provided for gathering performance data and optimization. Programmable Logic Controllers will be provided for the following digital control systems: (a) GSSS (Gasifier Supervisory Safety System) including pulverized coal handling and char handling; (b) Coal Pulverization System; (c) HRSG (Heat Recovery Steam Generation); (d) Hot Gas Cleanup System; (e) Steam Turbine; and (f) Combined Cycle Operation. In general all systems are provided for auto/manual cascade operation; upstream equipment is interlocked to be proven in service operation and/or valve position before downstream equipment may operate.

Not Available

1993-12-01T23:59:59.000Z

84

Hydrogen Production from Hydrogen Sulfide in IGCC Power Plants  

SciTech Connect

IGCC power plants are the cleanest coal-based power generation facilities in the world. Technical improvements are needed to help make them cost competitive. Sulfur recovery is one procedure in which improvement is possible. This project has developed and demonstrated an electrochemical process that could provide such an improvement. IGCC power plants now in operation extract the sulfur from the synthesis gas as hydrogen sulfide. In this project H{sub 2}S has been electrolyzed to yield sulfur and hydrogen (instead of sulfur and water as is the present practice). The value of the byproduct hydrogen makes this process more cost effective. The electrolysis has exploited some recent developments in solid state electrolytes. The proof of principal for the project concept has been accomplished.

Elias Stefanakos; Burton Krakow; Jonathan Mbah

2007-07-31T23:59:59.000Z

85

Organization of IGCC processes with reduced order CFD models  

SciTech Connect

Integrated gasificationcombinedcycle(IGCC)plantshavesignificantadvantagesforefficientpowergen- eration withcarboncapture.Moreover,withthedevelopmentofaccurateCFDmodelsforgasificationand combined cyclecombustion,keyunitsoftheseprocessescannowbemodeledmoreaccurately.However, the integrationofCFDmodelswithinsteady-stateprocesssimulators,andsubsequentoptimizationof the integratedsystem,stillpresentssignificantchallenges.Thisstudydescribesthedevelopmentand demonstration ofareducedordermodeling(ROM)frameworkforthesetasks.Theapproachbuildson the conceptsofco-simulationandROMdevelopmentforprocessunitsdescribedinearlierstudies.Here we showhowtheROMsderivedfrombothgasificationandcombustionunitscanbeintegratedwithin an equation-orientedsimulationenvironmentfortheoveralloptimizationofanIGCCprocess.Inaddi- tion toasystematicapproachtoROMdevelopment,theapproachincludesvalidationtasksfortheCFD model aswellasclosed-looptestsfortheintegratedflowsheet.Thisapproachallowstheapplicationof equation-based nonlinearprogrammingalgorithmsandleadstofastoptimizationofCFD-basedprocess flowsheets. TheapproachisillustratedontwoflowsheetsbasedonIGCCtechnology.

Lang, Y.; Zitney, S.; Biegler, L.

2011-01-01T23:59:59.000Z

86

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

The objectives of the first year of phase 2 of the program are to construct and operate an engineering pilot reactor for OTM oxygen. Work to support this objective is being undertaken in the following areas in this quarter: Element reliability; Element fabrication; Systems technology; Power recovery; and IGCC process analysis and economics. The major accomplishments this quarter were Preferred OTM architectures have been identified through stress analysis; and The 01 reactor was operated at target flux and target purity for 1000 hours.

Ravi Prasad

2003-04-30T23:59:59.000Z

87

CERAMIC MEMBRANE ENABLING TECHNOLGOY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

This quarterly technical progress report will summarize work accomplished for Phase 2 Program during the quarter April to June 2003. In task 1 OTM development has led to improved flux and strength performance. In task 2, robust PSO1d elements have been fabricated for testing in the pilot reactor. In task 3, the lab-scale pilot reactor has been operated for 1000 hours with improved success. In task 7, economic models substantial benefit of OTM IGCC over CRYO based oxygen production.

Ravi Prasad

2003-07-01T23:59:59.000Z

88

A High Pressure Carbon Dioxide Separation Process for IGCC Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

High Pressure Carbon Dioxide Separation Process for IGCC Plants High Pressure Carbon Dioxide Separation Process for IGCC Plants 1 A High Pressure Carbon Dioxide Separation Process for IGCC Plants S.S. Tam 1 , M.E. Stanton 1 , S. Ghose 1 , G. Deppe 1 , D.F. Spencer 2 , R.P. Currier 3 , J.S. Young 3 , G.K. Anderson 3 , L.A. Le 3 , and D.J. Devlin 3 1 Nexant, Inc. (A Bechtel Technology & Consulting Company) 45 Fremont St., 7 th Fl., San Francisco, CA 94506 2 SIMTECHE 13474 Tierra Heights Road, Redding, CA 96003 3 Los Alamos National Laboratory P.O. Box 1663 (MS J567), Los Alamos, NM 87545 1.0 INTRODUCTION Under separate contracts from the U.S. Department of Energy, Office of Fossil Energy (DOE- FE), Los Alamos National Laboratory, and a team of SIMTECHE and Nexant (a Bechtel Technology and Consulting Company) are jointly working to develop the proprietary process for

89

Demonstration plant for IGCC using the U-GAS process  

SciTech Connect

Tampella, Ltd., in cooperation with the Institute of Gas Technology (IGT), is developing the gasification technology for U-GAS{reg_sign} to produce electricity from coal using the integrated gasification combined-cycle (IGCC). The concept of IGCC is to join the clean burning gasification island with a more efficient gas and stream turbine island to produce electric power with minimal environmental impact. IGT has developed the U-GAS process to produce a low- or medium-Btu gas from different types of coal feedstocks. The process uses a combination of fluidized=bed gasification and ash agglomeration in a single-stage reactor. A 30-tons/day-capacity pilot plant located in Chicago has been used to develop the process. Feedstocks ranging from relatively unreactive metallurgical coke to highly reactive peat have been gasified successfully in the this pilot plant, indicating its ability to handle a feedstock with widely varying properties. A new 10 megawatt pilot plant has been designed and is under construction in Tampere, Finland, as the first step toward the commercialization of this technology. Tampella is planning to design and deliver a commercial-scale IGCC demonstration plant by 1994. 7 refs., 5 figs.

Lau, F.S. [Institute of Gas Technology, Chicago, IL (United States); Salo, K. [Tampella Power, Tampere (Finland)

1991-12-01T23:59:59.000Z

90

Dynamic simulation for IGCC process and control design  

Science Conference Proceedings (OSTI)

Detailed dynamic simulation analysis is a valuable tool that increases the understanding of unit interactions and control system performance in a complex integrated gasification combined-cycle (IGCC) plant. The Sarlux integrated gasification combined cycle (IGCC) plant must simultaneously satisfy electrical power and refinery hydrogen and steam demands (trigeneration gasification). The plant`s gasifier, heat recovery, sulfur removal, hydrogen recovery and steam power generation units are highly integrated and require coordinated control. In this study, dynamic simulation provides insights into the behavior of the process and combined cycle units during normal and upset conditions. The dynamic simulation is used to design a control system that drives the gasifiers to satisfy power, steam and hydrogen demands before a load change or upset is detected by the syngas pressure controller. At the study conclusion, the model will demonstrate how the IGCC plant will respond to the contractual maximum load change rate and process upsets. The study tests the basic process and control system design during the project engineering phase to minimize startup troubleshooting and expensive field changes.

Depew, C.; Martinez, A. [Fluor Daniel, Irvine, CA (United States); Collodi, G.; Meloni, R. [Snamprogetti, Milan (Italy)

1998-01-01T23:59:59.000Z

91

DOE-Sponsored IGCC Project Could Lead to Lower-Cost Carbon Capture...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

manufactured catalysts can produce both power generation increases and significant cost savings at Integrated Gasification Combined Cycle (IGCC) power plants, according to...

92

Notices of Availability (NOA) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 21, 2010 May 21, 2010 EIS-0409: EPA Notice of Availability of the Final Environmental Impact Statement Kemper County Integrated Gasification Combined-Cycle (IGCC) Project, Kemper County, Mississippi April 9, 2010 EIS-0404: EPA Notice of Availability of the Final Environmental Impact Statement Los Vaqueros Reservoir Expansion Project, California April 9, 2010 EIS-0455: EPA Notice of Availability of the Draft Environmental Impact Statement Genesis Solar Energy Project, Riverside County, CA March 29, 2010 EIS-0384: Notice of Availability of the Record of Decision Chief Joseph Hatchery Program February 5, 2010 EIS-0183: Notice of Availability of the Record of Decision Electrical Interconnection of the Lower Snake River Wind Energy Project, Garfield and Columbia Counties, Washington

93

Kitsap County  

E-Print Network (OSTI)

Kitsap County Goals and Policies on Critical Areas........... 6 The BAS Process............................ 7

unknown authors

2004-01-01T23:59:59.000Z

94

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

The objective of this program is to conduct a technology development program to advance the state-of-the-art in ceramic Oxygen Transport Membranes (OTM) to the level required to produce step change improvements in process economics, efficiency, and environmental benefits for commercial IGCC systems and other applications. The IGCC program is focused on addressing key issues in materials, processing, manufacturing, engineering and system development that will make the OTM a commercial reality. The objective of the OTM materials development task is to identify a suitable material that can be formed into a thin film to produce the target oxygen flux. This requires that the material have an adequate permeation rate, and thermo-mechanical and thermo-chemical properties such that the material is able to be supported on the desired substrate and sufficient mechanical strength to survive the stresses involved in operation. The objective of the composite OTM development task is to develop the architecture and fabrication techniques necessary to construct stable, high performance, thin film OTMs supported on suitable porous, load bearing substrates. The objective of the process development task of this program to demonstrate the program objectives on a single OTM tube under test conditions simulating those of the optimum process cycle for the power plant. Good progress has been made towards achieving the DOE-IGCC program objectives. Two promising candidates for OTM materials have been identified and extensive characterization will continue. New compositions are being produced and tested which will determine if the material can be further improved in terms of flux, thermo-mechanical and thermo-chemical properties. Process protocols for the composite OTM development of high quality films on porous supports continues to be optimized. Dense and uniform PSO1 films were successfully applied on porous disc and tubular substrates with good bonding between the films and substrates, and no damage to the substrates or films.

Ravi Prasad

2000-04-01T23:59:59.000Z

95

Amid all the IGCC talk, PC remains the go-to-guy  

SciTech Connect

Globally, more than 100 sites have integrated gasification combined cycle (IGCC) installations, including more than a dozen locations that produce power. IGCC 'buzz' has now reached a crescendo, as evidenced by attendance of over 700 at the recent Gasification Technologies conference. However, coal plants currently being developed in the United States are mostly subcritical or supercritical pulverized coal plants, with a handful of CFBs. The article describes some recent developments in IGCC and goes on to address the debate between IGCC and PC. IGCC has the inherent ability to capture CO{sub 2} before combustion, but PC may well be able to capture just as well CO{sub 2} post combustion. More work is needed on a sequestering carbon in the ground, according to Nancy Mohn and others whose opinions are reported. 1 photo.

Blankinship, S.

2006-04-15T23:59:59.000Z

96

Refinery IGCC plants are exceeding 90% capacity factor after 3 years  

SciTech Connect

Steep learning curves for commercial IGCC plants in Italy show annual capacity factors of 55-60% in the first year of service and improvement to over 90% after the third year. The article reviews the success of three IGCC projects in Italy - those of ISAB Energy, Sarlux Saras and Api Energy. EniPower is commissioning a 250 MW IGCC plant that will burn syngas produced by gasification of residues at an adjacent Eni Sannazzaro refinery in north central Italy. The article lists 14 commercially operating IGCC plants worldwide that together provide close to 3900 MW of generating capacity. These use a variety of feedstock-coals, petroleum coke and refinery residues and biomass. Experience with commercial scale plants in Europe demonstrates that IGCC plants can operate at capacity factors comparable to if not better than conventional coal plants. 2 figs., 1 photo.

Jaeger, H.

2006-01-15T23:59:59.000Z

97

Pilot scale experience on IGCC hot gas cleanup  

SciTech Connect

In September 1993 Enviropower Inc. entered into a Cooperative Research and Development Agreement (CRADA) with the Department of Energy in order to develop and demonstrate the major components of an IGCC process such as hot gas cleanup systems. The objectives of the project are to develop and demonstrate: (1) hydrogen sulfide removal using regenerable metal oxide sorbent in pressurized fluidized bed reactors, (2) recovery of elemental sulfur from the tail-gas of the sorbent regenerator, and (3) hot gas particulate removal using ceramic candle filters.

Salo, K.; Ghazanfari, R.; Feher, G. [and others

1995-11-01T23:59:59.000Z

98

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

This quarterly technical progress report will summarize work accomplished for Phase 2 Program during the quarter January to March 2004. In task 1 OTM development has led to improved strength and composite design for lower temperatures. In task 2, the measurement system of OTM element dimensions was improved. In task 3, a 10-cycle test of a three-tube submodule was reproduced successfully. In task 5, sizing of several potential heat recovery systems was initiated. In task 7, advanced OTM and cryogenic IGCC cases for near-term integration were developed.

Ravi Prasad

2004-03-31T23:59:59.000Z

99

NETL: Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

in IGCC Projects in IGCC Projects The Great Plains Synfuels Plant has long been gasifying coal to produce synthetic natural gas and ammonia, and capturing CO2 which is pipelined to Canada for EOR in the Weyburn oil field. Several new IGCC-based projects in the United States will be greatly expanding the scope of CO2 capture and use/storage. Kemper County Energy Facility Mississippi Power's Kemper County facility is in late stages of construction. It will be a lignite-fuel IGCC plant, generating a net 524 MW of power from syngas, while capturing over 65% of CO2 generated. The CO2 will be sent by pipeline to depleted oil fields in Mississippi for enhanced oil recovery operations. Hydrogen Energy California (HECA) Project HECA will be a 300MW net, coal and petroleum coke-fueled IGCC polygeneration plant (producing hydrogen for both power generation and fertilizer manufacture). Ninety percent of the CO2 produced will be captured and transported to Elk Hills Oil Field for EOR, enabling recovery of 5 million additional barrels of domestic oil per year.

100

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

This quarterly technical progress report will summarize work accomplished for Phase 2 Program during the quarter July to September 2003. In task 1 OTM development has led to improved strength and composite design. In task 2, the manufacture of robust PSO1d elements has been scaled up. In task 3, operational improvements in the lab-scale pilot reactor have reduced turn-around time and increased product purity. In task 7, economic models show substantial benefit of OTM IGCC over CRYO based oxygen production. The objectives of the first year of phase 2 of the program are to construct and operate an engineering pilot reactor for OTM oxygen. Work to support this objective is being undertaken in the following areas in this quarter: Element reliability; Element fabrication; Systems technology; Power recovery; and IGCC process analysis and economics. The major accomplishments this quarter were Element production at Praxair's manufacturing facility is being scaled up and Substantial improvements to the OTM high temperature strength have been made.

Ravi Prasad

2003-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "kemper county igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Improved Refractory Materials for Slagging Gasifiers in IGCC Power Systems  

SciTech Connect

Gasifiers are the heart of Integrated Gasification Combined Cycle (IGCC) power system currently being developed as part of the DOE's Vision 21 Fossil Fuel Power Plant. A gasification chamber is a high pressure/high temperature reaction vessel used to contain a mixture of O2, H2O, and coal (or other carbon containing materials) while it is converted into thermal energy and chemicals (H2, CO, and CH4). IGCC systems are expected to play a dominant role in meeting the Nation's future energy needs. Gasifiers are also used to produce chemicals that serve as feedstock for other industrial processes, and are considered a potential source of H2 in applications such as fuel cells. A distinct advantage of gasifiers is their ability to meet or exceed current and anticipated future environmental emission regulations. Also, because gasification systems are part of a closed circuit, gasifiers are considered process ready to capture CO2 emissions for reuse or processing should that become necessary or economically feasible in the future. The service life of refractory liners for gasifiers has been identified by users as a critical barrier to IGC

Bennett, James P.; Kwong, Kyei-Sing; Powell, Cynthia A.; Krabbe, Rick; Thomas, Hugh

2005-01-01T23:59:59.000Z

102

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

The objective of this program is to conduct a technology development program to advance the state-of-the-art in ceramic Oxygen Transport Membranes (OTM) to the level required to produce step change improvements in process economics, efficiency, and environmental benefits for commercial IGCC systems and other applications. The IGCC program is focused on addressing key issues in materials, processing, manufacturing, engineering and system development that will make the OTM a commercial reality. The objective of the OTM materials development task is to identify a suitable material that can be formed into a thin film to produce the target oxygen flux. This requires that the material have an adequate permeation rate, and thermo-mechanical and thermo-chemical properties such that the material is able to be supported on the desired substrate and sufficient mechanical strength to survive the stresses involved in operation. The objective of the composite OTM development task is to develop the architecture and fabrication techniques necessary to construct stable, high performance, thin film OTMs supported on suitable porous, load bearing substrates. The objective of the process development task of this program to demonstrate the program objectives on a single OTM tube under test conditions simulating those of the optimum process cycle for the power plant.

Ravi Prasad

2000-04-01T23:59:59.000Z

103

Improved Refractory Materials for Slagging Gasifiers in IGCC Power Systems  

DOE Green Energy (OSTI)

Gasifiers are the heart of Integrated Gasification Combined Cycle (IGCC) power system currently being developed as part of the DOE's Vision 21 Fossil Fuel Power Plant. A gasification chamber is a high pressure/high temperature reaction vessel used to contain a mixture of O2, H2O, and coal (or other carbon containing materials) while it is converted into thermal energy and chemicals (H2, CO, and CH4). IGCC systems are expected to play a dominant role in meeting the Nation's future energy needs. Gasifiers are also used to produce chemicals that serve as feedstock for other industrial processes, and are considered a potential source of H2 in applications such as fuel cells. A distinct advantage of gasifiers is their ability to meet or exceed current and anticipated future environmental emission regulations. Also, because gasification systems are part of a closed circuit, gasifiers are considered process ready to capture CO2 emissions for reuse or processing should that become necessary or economically feasible in the future. The service life of refractory liners for gasifiers has been identified by users as a critical barrier to IGC

Bennett, James P.; Kwong, Kyei-Sing; Powell, Cynthia A.; Krabbe, Rick; Thomas, Hugh

2005-01-01T23:59:59.000Z

104

Environmental Impact Statements (EIS) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 2010 1, 2010 EIS-0409: Final Environmental Impact Statement Kemper County Integrated Gasification Combined-Cycle (IGCC) Project April 9, 2010 EIS-0404: Final Environmental Impact Statement Los Vaqueros Reservoir Expansion Project, California April 9, 2010 EIS-0455: Draft Environmental Impact Statement Genesis Solar Energy Project, Riverside County, CA April 1, 2010 EIS-0415: Final Environmental Impact Statement Deer Creek Station Energy Facility Project Brookings County, South Dakota February 19, 2010 EIS-0443: Final Environmental Impact Statement Project Financing for Southwest Intertie Project-South January 29, 2010 EIS-0423: Draft Environmental Impact Statement Long-Term Management and Storage of Elemental Mercury January 1, 2010 EIS-0418: Draft Environmental Impact Statement

105

Nuon Magnum Integrated-Gasification -Combined-Cycle (IGCC) Project Preliminary Design Specification  

Science Conference Proceedings (OSTI)

This is the second pre-design specification (PDS) in a projected series for integrated-gasificationcombined-cycle (IGCC) plants, sponsored by EPRIs CoalFleet for Tomorrow program and involving more than 50 power industry companies. A PDS represents the level of nonproprietary information available at the feasibility study stage in the development of an IGCC project. This PDS is based on the design of the 1200-MWe Magnum IGCC plant, which Nuon Power Generation B.V. has proposed to build on the northern co...

2008-03-31T23:59:59.000Z

106

The role of IGCC in USDOE clean coal research, development and demonstration  

SciTech Connect

For many years, the US Department of Energy (DOE) has been funding research, development, and demonstration (RD&D) projects to develop advanced power generation technologies. The goal of this RD&D is private sector commercialization of technologies that will provide reasonably priced electricity and still meet stringent environmental standards. Integrated Gasification Combined-Cycle (IGCC) systems are emerging as one of the more attractive candidate technologies to meet this goal. The Morgantown Energy Technology Center (METC) has been assigned the responsibility for implementing IGCC projects in DOE`s Clean Coal RD&D program. Projects related to IGCC are briefly described.

Schmidt, D.K.; Rath, L.K.

1993-09-01T23:59:59.000Z

107

Evaluation of Alternative IGCC Plant Designs for High Availability and Near Zero Emissions  

Science Conference Proceedings (OSTI)

This report examines the historical reliability and availability data of solids-fed integrated gasification combined cycle (IGCC) power plants and describes how these data can be used to analyze design options meant to improve the availability of new IGCCs. It also looks at the technical and economic impacts of adding a Selective Catalytical Reduction (SCR) system to an IGCC. Adding an SCR will result in a coal-based power plant with an emissions profile that is very close to a natural gas fired combined...

2005-12-20T23:59:59.000Z

108

Systems Study for Improving Gas Turbine Performance for Coal/IGCC Application  

SciTech Connect

This study identifies vital gas turbine (GT) parameters and quantifies their influence in meeting the DOE Turbine Program overall Integrated Gasification Combined Cycle (IGCC) plant goals of 50% net HHV efficiency, $1000/kW capital cost, and low emissions. The project analytically evaluates GE advanced F class air cooled technology level gas turbine conceptual cycle designs and determines their influence on IGCC plant level performance including impact of Carbon capture. This report summarizes the work accomplished in each of the following six Tasks. Task 1.0--Overall IGCC Plant Level Requirements Identification: Plant level requirements were identified, and compared with DOE's IGCC Goal of achieving 50% Net HHV Efficiency and $1000/KW by the Year 2008, through use of a Six Sigma Quality Functional Deployment (QFD) Tool. This analysis resulted in 7 GT System Level Parameters as the most significant. Task 2.0--Requirements Prioritization/Flow-Down to GT Subsystem Level: GT requirements were identified, analyzed and prioritized relative to achieving plant level goals, and compared with the flow down of power island goals through use of a Six Sigma QFD Tool. This analysis resulted in 11 GT Cycle Design Parameters being selected as the most significant. Task 3.0--IGCC Conceptual System Analysis: A Baseline IGCC Plant configuration was chosen, and an IGCC simulation analysis model was constructed, validated against published performance data and then optimized by including air extraction heat recovery and GE steam turbine model. Baseline IGCC based on GE 207FA+e gas turbine combined cycle has net HHV efficiency of 40.5% and net output nominally of 526 Megawatts at NOx emission level of 15 ppmvd{at}15% corrected O2. 18 advanced F technology GT cycle design options were developed to provide performance targets with increased output and/or efficiency with low NOx emissions. Task 4.0--Gas Turbine Cycle Options vs. Requirements Evaluation: Influence coefficients on 4 key IGCC plant level parameters (IGCC Net Efficiency, IGCC Net Output, GT Output, NOx Emissions) of 11 GT identified cycle parameters were determined. Results indicate that IGCC net efficiency HHV gains up to 2.8 pts (40.5% to 43.3%) and IGCC net output gains up to 35% are possible due to improvements in GT technology alone with single digit NOx emission levels. Task 5.0--Recommendations for GT Technical Improvements: A trade off analysis was conducted utilizing the performance results of 18 gas turbine (GT) conceptual designs, and three most promising GT candidates are recommended. A roadmap for turbine technology development is proposed for future coal based IGCC power plants. Task 6.0--Determine Carbon Capture Impact on IGCC Plant Level Performance: A gas turbine performance model for high Hydrogen fuel gas turbine was created and integrated to an IGCC system performance model, which also included newly created models for moisturized syngas, gas shift and CO2 removal subsystems. This performance model was analyzed for two gas turbine technology based subsystems each with two Carbon removal design options of 85% and 88% respectively. The results show larger IGCC performance penalty for gas turbine designs with higher firing temperature and higher Carbon removal.

Ashok K. Anand

2005-12-16T23:59:59.000Z

109

Systems Study for Improving Gas Turbine Performance for Coal/IGCC Application  

DOE Green Energy (OSTI)

This study identifies vital gas turbine (GT) parameters and quantifies their influence in meeting the DOE Turbine Program overall Integrated Gasification Combined Cycle (IGCC) plant goals of 50% net HHV efficiency, $1000/kW capital cost, and low emissions. The project analytically evaluates GE advanced F class air cooled technology level gas turbine conceptual cycle designs and determines their influence on IGCC plant level performance including impact of Carbon capture. This report summarizes the work accomplished in each of the following six Tasks. Task 1.0--Overall IGCC Plant Level Requirements Identification: Plant level requirements were identified, and compared with DOE's IGCC Goal of achieving 50% Net HHV Efficiency and $1000/KW by the Year 2008, through use of a Six Sigma Quality Functional Deployment (QFD) Tool. This analysis resulted in 7 GT System Level Parameters as the most significant. Task 2.0--Requirements Prioritization/Flow-Down to GT Subsystem Level: GT requirements were identified, analyzed and prioritized relative to achieving plant level goals, and compared with the flow down of power island goals through use of a Six Sigma QFD Tool. This analysis resulted in 11 GT Cycle Design Parameters being selected as the most significant. Task 3.0--IGCC Conceptual System Analysis: A Baseline IGCC Plant configuration was chosen, and an IGCC simulation analysis model was constructed, validated against published performance data and then optimized by including air extraction heat recovery and GE steam turbine model. Baseline IGCC based on GE 207FA+e gas turbine combined cycle has net HHV efficiency of 40.5% and net output nominally of 526 Megawatts at NOx emission level of 15 ppmvd{at}15% corrected O2. 18 advanced F technology GT cycle design options were developed to provide performance targets with increased output and/or efficiency with low NOx emissions. Task 4.0--Gas Turbine Cycle Options vs. Requirements Evaluation: Influence coefficients on 4 key IGCC plant level parameters (IGCC Net Efficiency, IGCC Net Output, GT Output, NOx Emissions) of 11 GT identified cycle parameters were determined. Results indicate that IGCC net efficiency HHV gains up to 2.8 pts (40.5% to 43.3%) and IGCC net output gains up to 35% are possible due to improvements in GT technology alone with single digit NOx emission levels. Task 5.0--Recommendations for GT Technical Improvements: A trade off analysis was conducted utilizing the performance results of 18 gas turbine (GT) conceptual designs, and three most promising GT candidates are recommended. A roadmap for turbine technology development is proposed for future coal based IGCC power plants. Task 6.0--Determine Carbon Capture Impact on IGCC Plant Level Performance: A gas turbine performance model for high Hydrogen fuel gas turbine was created and integrated to an IGCC system performance model, which also included newly created models for moisturized syngas, gas shift and CO2 removal subsystems. This performance model was analyzed for two gas turbine technology based subsystems each with two Carbon removal design options of 85% and 88% respectively. The results show larger IGCC performance penalty for gas turbine designs with higher firing temperature and higher Carbon removal.

Ashok K. Anand

2005-12-16T23:59:59.000Z

110

Life Cycle Analysis: Integrated Gasification Combined Cycle (IGCC) Power Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Life Cycle Analysis: Integrated Life Cycle Analysis: Integrated Gasification Combined Cycle (IGCC) Power Plant Revision 2, March 2012 DOE/NETL-2012/1551 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or

111

Microsoft Word - CurrentFutureIGCC2Revisionfinal.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

M M T R - 2 0 0 4 - 0 5 Mitretek Technical Report Current and Future IGCC Technologies: Bituminous Coal to Power AUGUST 2004 David Gray Salvatore Salerno Glen Tomlinson Customer: Concurrent Technology Corporation Customer Name Contract No.:001000045 Dept. No.: H050 H050 Project No.:0601CTC4 ©Year Mitretek Systems ©M Falls Church, Virginia ii Disclaimer This report was prepared as an account of work sponsored by an agency of the United States (U.S.) Government. Neither the U.S., nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process

112

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

This quarterly technical progress report will summarize work accomplished for Phase 1 Program during the quarter January to March 2002. In task 1 improvements to the membrane material have shown increased flux, and high temperature mechanical properties are being measured. In task 2, composite development has shown that alternative fabrication routes of the substrate can improve membrane performance under certain conditions. In task 3, scale-up issues associated with manufacturing large tubes have been identified and are being addressed. The work in task 4 has demonstrated that composite OTM elements can produce oxygen at greater than 95% purity for more than 1000 hours of the target flux under simulated IGCC operating conditions. In task 5 the multi-tube OTM reactor has been operated and produced oxygen.

Ravi Prasad

2002-05-01T23:59:59.000Z

113

Life Cycle Results from the IGCC LCI&C Study  

NLE Websites -- All DOE Office Websites (Extended Search)

Results from the IGCC LCI&C Study Results from the IGCC LCI&C Study Robert E. James III, Timothy J. Skone Office of Systems, Analyses and Planning National Energy Technology Laboratory (NETL), U.S. DOE Revision 2, June 2013 DOE/NETL-2012/1551 ‹#› Conceptual Study Boundary Integrated Gasification Combined Cycle (IGCC) ‹#› LCA's Expanded Boundary for IGCC Mine Construction Train & Rail Manufacturing Plant Construction/ Installation Coal Extraction/ Operation Train Operation Mine Decommissioning Stage #1 Raw Material Acquisition Stage #2 Raw Material Transport Plant Operation Carbon Capture (CC), Operation CO 2 Pipeline, Operation CO 2 Sequestration, Operation Plant Decommissioning Construction & Installation Deinstallation Transmission & Distribution, Operation

114

Secretary Chu Announces $14 Million for Six New Projects to Advance IGCC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 Million for Six New Projects to Advance 4 Million for Six New Projects to Advance IGCC Technology Secretary Chu Announces $14 Million for Six New Projects to Advance IGCC Technology September 9, 2011 - 6:16pm Addthis Washington, D.C. -U.S. Department of Energy Secretary Steven Chu announced today the selection of six projects aimed at developing technologies to lower the cost of producing electricity in integrated gasification combined cycle (IGCC) power plants using carbon capture, while maintaining the highest environmental standards. Supported with up to $14 million in total funding, the selected projects will improve the economics of IGCC plants and promote the use of the Nation's abundant coal resources to produce clean, secure, and affordable energy. The successful development of advanced technologies and innovative concepts

115

DOE-Sponsored IGCC Project in Texas Takes Important Step Forward |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-Sponsored IGCC Project in Texas Takes Important Step Forward DOE-Sponsored IGCC Project in Texas Takes Important Step Forward DOE-Sponsored IGCC Project in Texas Takes Important Step Forward June 20, 2011 - 1:00pm Addthis Washington, DC - A newly signed memorandum of understanding (MOU) for the purchase of electricity produced by the Texas Clean Energy Project (TCEP) is an important step forward for what will be one of the world's most advanced and cleanest coal-based power plants, funded in part by the U.S. Department of Energy (DOE). Under the MOU, CPS Energy - a municipally owned utility serving San Antonio, Texas - will purchase electricity generated by the first-of-a-kind commercial clean coal power plant, starting in mid 2014. TCEP, a 400-megawatt integrated gasification combined cycle (IGCC) facility located

116

Microsoft Word - 42651_UCI_ IGCC System Studies_rev060701.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2006 and will represent a reference case consisting of an "H technology" steam cooled gas turbine based near zero emission IGCC plant. Pittsburgh No. 8 coal will be gasified in...

117

Microsoft Word - 41889_GE_IGCC System Study_Factsheet_Rev0a_01...  

NLE Websites -- All DOE Office Websites (Extended Search)

System Study for Improved Gas Turbine Performance for Coal IGCC Application FACT SHEET Revision 0a Jan. 14, 2004 Page 1 of 3 I. PROJECT DESCRIPTION A. Objective: This study will...

118

Microsoft Word - 41889_GE_IGCC Syst Study_FactSheet_012405.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

GE Energy 1 December 2004 Project No. DE-FC26-03NT41889 System Study For Improved Gas Turbine Performance For Coal IGCC Application Fact Sheet I Project Participants: A. Prime...

119

Microsoft Word - 41889_GE_IGCC System Study_Factsheet_Rev01_07...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fact Sheet: "System Study For Improved Gas Turbine Performance For Coal IGCC Application" DOE Contract No: DE-FC26-03NT41889 I Project Description: A. Objective: This study will...

120

Secretary Chu Announces $14 Million for Six New Projects to Advance IGCC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

14 Million for Six New Projects to Advance 14 Million for Six New Projects to Advance IGCC Technology Secretary Chu Announces $14 Million for Six New Projects to Advance IGCC Technology September 9, 2011 - 1:00pm Addthis Washington, DC - U.S. Department of Energy Secretary Steven Chu announced today the selection of six projects aimed at developing technologies to lower the cost of producing electricity in integrated gasification combined cycle (IGCC) power plants using carbon capture, while maintaining the highest environmental standards. Supported with up to $14 million in total funding, the selected projects will improve the economics of IGCC plants and promote the use of the Nation's abundant coal resources to produce clean, secure, and affordable energy. The successful development of advanced technologies and innovative concepts

Note: This page contains sample records for the topic "kemper county igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants  

SciTech Connect

The ''Enabling & Information Technology To Increase RAM for Advanced Powerplants'' program, by DOE request, was re-directed, de-scoped to two tasks, shortened to a 2-year period of performance, and refocused to develop, validate and accelerate the commercial use of enabling materials technologies and sensors for coal/IGCC powerplants. The new program was re-titled ''Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants''. This final report summarizes the work accomplished from March 1, 2003 to March 31, 2004 on the four original tasks, and the work accomplished from April 1, 2004 to July 30, 2005 on the two re-directed tasks. The program Tasks are summarized below: Task 1--IGCC Environmental Impact on high Temperature Materials: The first task was refocused to address IGCC environmental impacts on high temperature materials used in gas turbines. This task screened material performance and quantified the effects of high temperature erosion and corrosion of hot gas path materials in coal/IGCC applications. The materials of interest included those in current service as well as advanced, high-performance alloys and coatings. Task 2--Material In-Service Health Monitoring: The second task was reduced in scope to demonstrate new technologies to determine the inservice health of advanced technology coal/IGCC powerplants. The task focused on two critical sensing needs for advanced coal/IGCC gas turbines: (1) Fuel Quality Sensor to rapidly determine the fuel heating value for more precise control of the gas turbine, and detection of fuel impurities that could lead to rapid component degradation. (2) Infra-Red Pyrometer to continuously measure the temperature of gas turbine buckets, nozzles, and combustor hardware. Task 3--Advanced Methods for Combustion Monitoring and Control: The third task was originally to develop and validate advanced monitoring and control methods for coal/IGCC gas turbine combustion systems. This task was refocused to address pre-mixed combustion phenomenon for IGCC applications. The work effort on this task was shifted to another joint GE Energy/DOE-NETL program investigation, High Hydrogen Pre-mixer Designs, as of April 1, 2004. Task 4--Information Technology (IT) Integration: The fourth task was originally to demonstrate Information Technology (IT) tools for advanced technology coal/IGCC powerplant condition assessment and condition based maintenance. The task focused on development of GateCycle. software to model complete-plant IGCC systems, and the Universal On-Site Monitor (UOSM) to collect and integrate data from multiple condition monitoring applications at a power plant. The work on this task was stopped as of April 1, 2004.

Kenneth A. Yackly

2005-12-01T23:59:59.000Z

122

Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants  

DOE Green Energy (OSTI)

The ''Enabling & Information Technology To Increase RAM for Advanced Powerplants'' program, by DOE request, was re-directed, de-scoped to two tasks, shortened to a 2-year period of performance, and refocused to develop, validate and accelerate the commercial use of enabling materials technologies and sensors for coal/IGCC powerplants. The new program was re-titled ''Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants''. This final report summarizes the work accomplished from March 1, 2003 to March 31, 2004 on the four original tasks, and the work accomplished from April 1, 2004 to July 30, 2005 on the two re-directed tasks. The program Tasks are summarized below: Task 1--IGCC Environmental Impact on high Temperature Materials: The first task was refocused to address IGCC environmental impacts on high temperature materials used in gas turbines. This task screened material performance and quantified the effects of high temperature erosion and corrosion of hot gas path materials in coal/IGCC applications. The materials of interest included those in current service as well as advanced, high-performance alloys and coatings. Task 2--Material In-Service Health Monitoring: The second task was reduced in scope to demonstrate new technologies to determine the inservice health of advanced technology coal/IGCC powerplants. The task focused on two critical sensing needs for advanced coal/IGCC gas turbines: (1) Fuel Quality Sensor to rapidly determine the fuel heating value for more precise control of the gas turbine, and detection of fuel impurities that could lead to rapid component degradation. (2) Infra-Red Pyrometer to continuously measure the temperature of gas turbine buckets, nozzles, and combustor hardware. Task 3--Advanced Methods for Combustion Monitoring and Control: The third task was originally to develop and validate advanced monitoring and control methods for coal/IGCC gas turbine combustion systems. This task was refocused to address pre-mixed combustion phenomenon for IGCC applications. The work effort on this task was shifted to another joint GE Energy/DOE-NETL program investigation, High Hydrogen Pre-mixer Designs, as of April 1, 2004. Task 4--Information Technology (IT) Integration: The fourth task was originally to demonstrate Information Technology (IT) tools for advanced technology coal/IGCC powerplant condition assessment and condition based maintenance. The task focused on development of GateCycle. software to model complete-plant IGCC systems, and the Universal On-Site Monitor (UOSM) to collect and integrate data from multiple condition monitoring applications at a power plant. The work on this task was stopped as of April 1, 2004.

Kenneth A. Yackly

2005-12-01T23:59:59.000Z

123

Integrated Gasification Combined Cycle (IGCC) Design Considerations for CO2 Capture and Storage (CCS)  

Science Conference Proceedings (OSTI)

The objectives of this research were to assess the performance and costs of coal-fired integrated gasification combined cycle (IGCC) power plants with Greenfield and retrofitted carbon dioxide (CO2) capture. The study is part of the CoalFleet Program, a collaborative research and development program that promotes deployment of advanced coal technologies, including IGCC, ultrasupercritical pulverized, oxy-fuel combustion, and supercritical circulating fluidized bed technologies. Two types of coalPittsburg...

2010-10-01T23:59:59.000Z

124

2012 Integrated Gasification Combined Cycle (IGCC) Research and Development Roadmap - PUBLIC  

Science Conference Proceedings (OSTI)

The second generation of integrated-gasification combined-cycle (IGCC) power plants is now being built or planned following nearly two decades of commercial demonstration at multiple units. State-of-the-art IGCC plants have efficiencies equivalent to that of pulverized coal power plants while exhibiting equal or superior environmental performance and lower water usage. Pre-combustion CO2 capture technology is commercially available and has been demonstrated in several gasification plants, ...

2012-12-20T23:59:59.000Z

125

Phased Construction of IGCC Plants for CO2 Capture - Effect of Pre-Investment  

Science Conference Proceedings (OSTI)

Currently, conceptual plant designs for integrated gasification-combined cycle (IGCC) have taken two approaches regarding the capture of CO2. Baseline plants have placed emphasis on producing power with a minimum cost and maximum efficiency without CO2 capture. The primary rationale for designing these plants without CO2 capture is that there have yet to be regulations promulgated that require the capture and sequestration of CO2. Conversely, grass roots IGCC designs with provisions for CO2 capture and c...

2003-12-31T23:59:59.000Z

126

Plant-Wide Performance and Cost Analysis of ITM-Based IGCC Power Generation Systems  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI), in conjunction with Air Products and Chemicals, Inc. (AP), and WorleyParsons, Inc. (WP), has reviewed and modeled integrated gasification combined cycle (IGCC) systems. IGCC is a method of burning coal in which the coal is gasified, creating a synthetic gas, or “syngas.” After being cleanedľincluding potentially of carbon dioxide (CO2)ľthis syngas can be used in a traditional combined cycle to produce power. This ...

2013-12-09T23:59:59.000Z

127

Advanced CO2 Capture Technology for Low Rank Coal Integrated Gasification Combined Cycle (IGCC) Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 Capture Technology for Low Rank Coal Integrated Gasification Combined Cycle (IGCC) Systems Background Gasification of coal or other solid feedstocks (wood waste, petroleum coke, etc.) is a clean way to produce electricity and produce or co-produce a variety of commercial products. The major challenge is cost reduction; current integrated gasification combined cycle (IGCC) technology is estimated to produce power at a cost higher than that of pulverized coal combustion. However, the Gasification

128

CoalFleet RD&D Augmentation Plan for Integrated Gasification Combined Cycle (IGCC) Power Plants  

Science Conference Proceedings (OSTI)

Advanced, clean coal technologies such as integrated gasification combined cycle (IGCC) offer societies around the world the promise of efficient, affordable power generation at markedly reduced levels of emissions8212including "greenhouse gases" linked to global climate change8212relative to today's current fleet of coal-fired power plants. To help accelerate the development, demonstration, and market introduction of IGCC and other clean coal technologies, EPRI formed the CoalFleet for Tomorrow initiati...

2007-01-24T23:59:59.000Z

129

EIS-0382: Mesaba Energy Project Itasca County, Minnesota | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0382: Mesaba Energy Project Itasca County, Minnesota EIS-0382: Mesaba Energy Project Itasca County, Minnesota EIS-0382: Mesaba Energy Project Itasca County, Minnesota Summary NOTE: All DOE funding has been expended. This EIS evaluates the environmental impacts of a proposal to construct and demonstrate a commercial utility-scale next-generation Integrated Gasification Combined Cycle (IGCC) electric power generating facility having a capacity of 606 MWe (net). It will incorporate over 1,600 design and operational lessons learned from the successful but smaller-scale 262 MWe (net) Wabash River Coal Gasification Repowering Project, located in Terre Haute, Indiana. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download November 20, 2009 EIS-0382: Final Environmental Impact Statement

130

Analysis of Biomass/Coal Co-Gasification for Integrated Gasification Combined Cycle (IGCC) Systems with Carbon Capture.  

E-Print Network (OSTI)

?? In recent years, Integrated Gasification Combined Cycle Technology (IGCC) has become more common in clean coal power operations with carbon capture and sequestration (CCS).… (more)

Long, Henry A, III

2011-01-01T23:59:59.000Z

131

CoalFleet RD&D augmentation plan for integrated gasification combined cycle (IGCC) power plants  

SciTech Connect

To help accelerate the development, demonstration, and market introduction of integrated gasification combined cycle (IGCC) and other clean coal technologies, EPRI formed the CoalFleet for Tomorrow initiative, which facilitates collaborative research by more than 50 organizations from around the world representing power generators, equipment suppliers and engineering design and construction firms, the U.S. Department of Energy, and others. This group advised EPRI as it evaluated more than 120 coal-gasification-related research projects worldwide to identify gaps or critical-path activities where additional resources and expertise could hasten the market introduction of IGCC advances. The resulting 'IGCC RD&D Augmentation Plan' describes such opportunities and how they could be addressed, for both IGCC plants to be built in the near term (by 2012-15) and over the longer term (2015-25), when demand for new electric generating capacity is expected to soar. For the near term, EPRI recommends 19 projects that could reduce the levelized cost-of-electricity for IGCC to the level of today's conventional pulverized-coal power plants with supercritical steam conditions and state-of-the-art environmental controls. For the long term, EPRI's recommended projects could reduce the levelized cost of an IGCC plant capturing 90% of the CO{sub 2} produced from the carbon in coal (for safe storage away from the atmosphere) to the level of today's IGCC plants without CO{sub 2} capture. EPRI's CoalFleet for Tomorrow program is also preparing a companion RD&D augmentation plan for advanced-combustion-based (i.e., non-gasification) clean coal technologies (Report 1013221). 7 refs., 30 figs., 29 tabs., 4 apps.

2007-01-15T23:59:59.000Z

132

Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in COAL IGCC Powerplants  

SciTech Connect

The ''Enabling & Information Technology To Increase RAM for Advanced Powerplants'' program, by DOE request, has been re-directed, de-scoped to two tasks, shortened to a 2-year period of performance, and refocused to develop, validate and accelerate the commercial use of enabling materials technologies and sensors for Coal IGCC powerplants. The new program has been re-titled as ''Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants'' to better match the new scope. This technical progress report summarizes the work accomplished in the reporting period April 1, 2004 to August 31, 2004 on the revised Re-Directed and De-Scoped program activity. The program Tasks are: Task 1--IGCC Environmental Impact on high Temperature Materials: This first materials task has been refocused to address Coal IGCC environmental impacts on high temperature materials use in gas turbines and remains in the program. This task will screen material performance and quantify the effects of high temperature erosion and corrosion of hot gas path materials in Coal IGCC applications. The materials of interest will include those in current service as well as advanced, high-performance alloys and coatings. Task 2--Material In-Service Health Monitoring: This second task develops and demonstrates new sensor technologies to determine the in-service health of advanced technology Coal IGCC powerplants, and remains in the program with a reduced scope. Its focus is now on only two critical sensor need areas for advanced Coal IGCC gas turbines: (1) Fuel Quality Sensor for detection of fuel impurities that could lead to rapid component degradation, and a Fuel Heating Value Sensor to rapidly determine the fuel heating value for more precise control of the gas turbine, and (2) Infra-Red Pyrometer to continuously measure the temperature of gas turbine buckets, nozzles, and combustor hardware.

Kenneth A. Yackly

2004-09-30T23:59:59.000Z

133

Pinon Pine IGCC project status update, August 1992  

Science Conference Proceedings (OSTI)

Since the recent (August, 1992) execution of the Cooperative Agreement, the major focus of work has been on critical-path environmental permitting activities, both related to the NEPA process as well as state and local activities. Pending approval of the project by the Nevada Public Service Commission, detailed engineering activities will commence in November. Federal funding of the project automatically invokes environmental review under the National Environmental Policy Act (NEPA). This project will require an Environmental Impact Statement, or EIS, with DOE as the lead agency for the NEPA reviews. The project must also be approved by the Nevada Public Service Commission (PSCN) in the state`s Resource Planning process. As shown in the project schedule, Figure 4 below, SPPCo. expects to have the combustion turbine portion of the plant on line by late 1994, configured as a simple-cycle natural gas machine with either No. 2 diesel or propane being utilized as backup fuel. By phasing construction in this manner, SPPCo. gains approximately 45 MWe of peaking power capacity to match projections of customer loads. The gasifier, heat recovery steam generator (HRSG), and the balance of the IGCC plant will be commissioned in late 1996. A DOE demonstration period of 42 months is planned.

Motter, J.W.; Pitcher, J.D.; Fankhanel, M.; Campbell, W.

1992-11-01T23:59:59.000Z

134

Pinon Pine IGCC project status update, August 1992  

Science Conference Proceedings (OSTI)

Since the recent (August, 1992) execution of the Cooperative Agreement, the major focus of work has been on critical-path environmental permitting activities, both related to the NEPA process as well as state and local activities. Pending approval of the project by the Nevada Public Service Commission, detailed engineering activities will commence in November. Federal funding of the project automatically invokes environmental review under the National Environmental Policy Act (NEPA). This project will require an Environmental Impact Statement, or EIS, with DOE as the lead agency for the NEPA reviews. The project must also be approved by the Nevada Public Service Commission (PSCN) in the state's Resource Planning process. As shown in the project schedule, Figure 4 below, SPPCo. expects to have the combustion turbine portion of the plant on line by late 1994, configured as a simple-cycle natural gas machine with either No. 2 diesel or propane being utilized as backup fuel. By phasing construction in this manner, SPPCo. gains approximately 45 MWe of peaking power capacity to match projections of customer loads. The gasifier, heat recovery steam generator (HRSG), and the balance of the IGCC plant will be commissioned in late 1996. A DOE demonstration period of 42 months is planned.

Motter, J.W.; Pitcher, J.D.; Fankhanel, M.; Campbell, W.

1992-01-01T23:59:59.000Z

135

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

The objectives of the second year of the program are to define a material composition and composite architecture that enable the oxygen flux and stability targets to be obtained in high-pressure flux tests. Composite technology will be developed to enable the production of high-quality, defect free membranes of a thickness that allows the oxygen flux target to be obtained. The fabrication technology will be scaled up to produce three feet composite tubes with the desired leak rate. A laboratory scale, multi-tube pilot reactor will be designed and constructed to produce oxygen. In the third quarter of the second year of the program, work has focused on materials optimization, composite and manufacturing development and oxygen flux testing at high pressures. This work has led to several major achievements, summarized by the following statements: Oxygen has been produced under conditions similar to IGCC operation using composite OTM elements at a flux greater than the 2001 target. Under conditions with a greater driving force the commercial target flux has been met. Methods to significantly increase the oxygen flux without compromise to its mechanical integrity have been identified. Composite OTM elements have demonstrated stable operation at {Delta}P > 250 psi Design of the pilot plant is complete and construction will begin next quarter.

Ravi Prasad

2001-08-01T23:59:59.000Z

136

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

The objectives of the first year of phase 2 of the program are to construct and operate an engineering pilot reactor for OTM oxygen. Work to support this objective is being undertaken in the following areas in this quarter: Element reliability; Element fabrication; Systems technology; Power recovery; and IGCC process analysis and economics. The major accomplishments this quarter were: (1) Methods to improve the strength and stability of PSO1x were identified. (2) The O1 reactor was operated at target flux and target purity for 1000 hours. This quarterly technical progress report will summarize work accomplished for Phase 2 Program during the quarter October to December 2002. In task 1 improvements to PSO1x have shown increased performance in strength and stability. In task 2, PSO1d and PSO1x elements have been fabricated for testing in the pilot reactor. In task 3, the lab-scale pilot reactor has been operated for 1000 hours. In task 6 initial power recovery simulation has begun. In task 7, HYSIS models have been developed to optimize the process for a future demonstration unit.

Ravi Prasad

2003-03-01T23:59:59.000Z

137

Refractory failure in IGCC fossil fuel power systems  

DOE Green Energy (OSTI)

Current generation refractory materials used in slagging gasifiers employed in Integrated Gasification Combined Cycle (IGCC) fossil fuel power systems have unacceptably short service lives, limiting the reliability and cost effectiveness of gasification as a means to generate power. The short service life of the refractory lining results from exposure to the extreme environment inside the operating gasifier, where the materials challenges include temperatures to 1650 C, thermal cycling, alternating reducing and oxidizing conditions, and the presence of corrosive slags and gases. Compounding these challenges is the current push within the industry for fuel flexibility, which results in slag chemistries and operating conditions that can vary widely as the feedstock for the gasifier is supplemented with alternative sources of carbon, such as petroleum coke and biomass. As a step toward our goal of developing improved refractory materials for this application, we have characterized refractory-slag interactions, under a variety of simulated gasifier conditions, utilizing laboratory exposure tests such as the static cup test and a gravimetric test. Combining this information with that gained from the post-mortem analyses of spent refractories removed from working gasifiers, we have developed a better understanding of refractory failure in gasifier environments. In this paper, we discuss refractory failures in slagging gasifiers and possible strategies to reduce them. Emphasis focuses on the refractories employed in gasifier systems which utilize coal as the primary feedstock.

Dogan, Cynthia P.; Kwong, Kyei-Sing; Bennett, James P.; Chinn, Richard E.

2001-01-01T23:59:59.000Z

138

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants July 13, 2009 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) announces a collaborative project with Research Triangle Institute (RTI) International to design, build, and test a warm gas cleanup system to remove multiple contaminants from coal-derived syngas. The 50-MWe system will include technologies to remove trace elements such as mercury and arsenic, capture the greenhouse gas carbon dioxide (CO2), and extract more than 99.9 percent of the sulfur from the syngas. A novel process to convert the extracted sulfur to a pure elemental sulfur product will also be tested. This project supports DOE's vision of coal power plants with near-zero

139

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants July 13, 2009 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) announces a collaborative project with Research Triangle Institute (RTI) International to design, build, and test a warm gas cleanup system to remove multiple contaminants from coal-derived syngas. The 50-MWe system will include technologies to remove trace elements such as mercury and arsenic, capture the greenhouse gas carbon dioxide (CO2), and extract more than 99.9 percent of the sulfur from the syngas. A novel process to convert the extracted sulfur to a pure elemental sulfur product will also be tested. This project supports DOE's vision of coal power plants with near-zero

140

Briefing Book, Interagency Geothermal Coordinating Council (IGCC) Meeting of April 28, 1988  

DOE Green Energy (OSTI)

The IGCC of the U.S. government was created under the intent of Public Law 93-410 (1974) to serve as a forum for the discussion of Federal plans, activities, and policies that are related to or impact on geothermal energy. Eight Federal Departments were represented on the IGCC at the time of this meeting. The main presentations in this report were on: Department of Energy Geothermal R&D Program, the Ormat binary power plant at East Mesa, CA, Potential for direct use of geothermal at Defense bases in U.S. and overseas, Department of Defense Geothermal Program at China Lake, and Status of the U.S. Geothermal Industry. The IGCC briefing books and minutes provide a historical snapshot of what development and impact issues were important at various time. (DJE 2005)

None

1988-04-28T23:59:59.000Z

Note: This page contains sample records for the topic "kemper county igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Selective Catalytic Oxidation of Hydrogen Sulfide--Systems Analysis for IGCC Applications  

SciTech Connect

Selective catalytic oxidation of hydrogen sulfide (SCOHS) has been evaluated conceptually for IGCC applications, and the theoretical limits of reaction performance, process performance, and economic potential in IGCC have been estimated. Syngas conditions that have high partial pressures of total sulfur result in substantial liquid sulfur retention within the catalyst bed, with relatively complex processing being required. Applications that have much lower total sulfur partial pressure in the process gas might permit SCOHS operation under conditions where little liquid sulfur is retained in the catalyst, reducing the processing complexity and possibly improving the desulfurization performance. The results from our recent IGCC process evaluations using the SCOHS technology and conventional syngas cleaning are presented, and alternative SCOHS process configurations and applications that provide greater performance and cost potential are identified.

Newby, R.A.; Keairns, D.L.; Alvin, M.A.

2006-09-01T23:59:59.000Z

142

Enhanced IGCC regulatory control and coordinated plant-wide control strategies for improving power ramp rates  

SciTech Connect

As part of ongoing R&D activities at the National Energy Technology Laboratory’s (NETL) Advanced Virtual Energy Simulation Training & Research (AVESTAR™) Center, this paper highlights strategies for enhancing low-level regulatory control and system-wide coordinated control strategies implemented in a high-fidelity dynamic simulator for an Integrated Gasification Combined Cycle (IGCC) power plant with carbon capture. The underlying IGCC plant dynamic model contains 20 major process areas, each of which is tightly integrated with the rest of the power plant, making individual functionally-independent processes prone to routine disturbances. Single-loop feedback control although adequate to meet the primary control objective for most processes, does not take into account in advance the effect of these disturbances, making the entire power plant undergo large offshoots and/or oscillations before the feedback action has an opportunity to impact control performance. In this paper, controller enhancements ranging from retuning feedback control loops, multiplicative feed-forward control and other control techniques such as split-range control, feedback trim and dynamic compensation, applicable on various subsections of the integrated IGCC plant, have been highlighted and improvements in control responses have been given. Compared to using classical feedback-based control structure, the enhanced IGCC regulatory control architecture reduces plant settling time and peak offshoots, achieves faster disturbance rejection, and promotes higher power ramp-rates. In addition, improvements in IGCC coordinated plant-wide control strategies for “Gasifier-Lead”, “GT-Lead” and “Plantwide” operation modes have been proposed and their responses compared. The paper is concluded with a brief discussion on the potential IGCC controller improvements resulting from using advanced process control, including model predictive control (MPC), as a supervisory control layer.

Mahapatra, P.; Zitney, S.

2012-01-01T23:59:59.000Z

143

IGCC+S Financing  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Center, Natural Resources Defense Counsel and Jeff Cohen, White House Taskforce on Energy Project Streamlining. The project would also like to offer special thanks...

144

IGCC+S Financing  

NLE Websites -- All DOE Office Websites (Extended Search)

regulatory commission's substitution of its own judgment for that of the company management. See, e.g., Indiana Gas Co. Inc. v. Office of Utility Consumer Counselor, 675 N.E.2d...

145

Cook County- LEED Requirements for County Buildings  

Energy.gov (U.S. Department of Energy (DOE))

In 2002, Cook County enacted an ordinance requiring all new county buildings and all retrofitted county buildings to be built to LEED standards. Specifically, all newly constructed buildings and...

146

Counties | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Counties Counties Data Apps Challenges Policies Counties Welcome to Counties.Data.gov Bridging information from across the United States. Look at the data, use the apps, join the...

147

Tampa electric company - IGCC project. Quarterly report, January 1, 1996--March 31, 1996  

SciTech Connect

This quarterly report consists of materials presented at a recent review of the project. The project is an IGCC project being conducted by Tampa Electric Company. The report describes the status of the facility construction, components, operations staff training, and discusses aspects of the project which may impact the final scheduled completion.

1998-02-01T23:59:59.000Z

148

Uncertainty analysis of an IGCC system with single-stage entrained-flow gasifier  

Science Conference Proceedings (OSTI)

Integrated Gasification Combined Cycle (IGCC) systems using coal gasification is an attractive option for future energy plants. Consequenty, understanding the system operation and optimizing gasifier performance in the presence of uncertain operating conditions is essential to extract the maximum benefits from the system. This work focuses on conducting such a study using an IGCC process simulation and a high-fidelity gasifier simulation coupled with stochastic simulation and multi-objective optimization capabilities. Coal gasifiers are the necessary basis of IGCC systems, and hence effective modeling and uncertainty analysis of the gasification process constitutes an important element of overall IGCC process design and operation. In this work, an Aspen Plus{reg_sign} steady-state process model of an IGCC system with carbon capture enables us to conduct simulation studies so that the effect of gasification variability on the whole process can be understood. The IGCC plant design consists of an single-stage entrained-flow gasifier, a physical solvent-based acid gas removal process for carbon capture, two model-7FB combustion turbine generators, two heat recovery steam generators, and one steam turbine generator in a multi-shaft 2x2x1 configuration. In the Aspen Plus process simulation, the gasifier is represented as a simplified lumped-parameter, restricted-equilibrium reactor model. In this work, we also make use of a distributed-parameter FLUENT{reg_sign} computational fluid dynamics (CFD) model to characterize the uncertainty for the entrained-flow gasifier. The CFD-based gasifer model is much more comprehensive, predictive, and hence better suited to understand the effects of uncertainty. The possible uncertain parameters of the gasifier model are identified. This includes input coal composition as well as mass flow rates of coal, slurry water, and oxidant. Using a selected number of random (Monte Carlo) samples for the different parameters, the CFD model is simulated to observe the variations in the output variables (such as syngas composition, gas and ash flow rates etc.). The same samples are then used to conduct simulations using the Aspen Plus IGCC model. The simulation results for the high-fidelity CFD-based gasifier model and the Aspen Plus equilibrium reactor model for selected uncertain parameters are then used to perform the estimation. Defining the ratio of CFD based results to the Aspen Plus result as the uncertainty factor (UF), the work quantifies the extent of uncertainty and then uses uniform* distribution to characterize the uncertainty factor distribution. The characterization and quantification of uncertainty is then used to conduct stochastic simulation of the IGCC system in Aspen Plus. The CAPE-OPEN compliant stochastic simulation capability allows one to conduct a rigorous analysis and generate the feasible space for the operation of the IGCC system. The stochastic simulation results can later be used to conduct multi-objective optimization of the gasifier using a set of identified decision variables. The CAPE-OPEN compliant multi-objective capability in Aspen Plus can be used to conduct the analysis. Since the analysis is based on the uncertainty modeling studies of the gasifier, the optimization accounts for possible uncertainties in the operation of the system. The results for the optimized IGCC system and the gasifier, obtained from the stochastic simulation results, are expected to be more rigorous and hence closer to those obtained from CFD-based rigorous modeling.

Shastri, Y.; Diwekar, U.; Zitney, S.

2008-01-01T23:59:59.000Z

149

Microsoft Word - 41889_GE_IGCC System Study_Factsheet_Rev01_07-20-04.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Fact Sheet: Fact Sheet: "System Study For Improved Gas Turbine Performance For Coal IGCC Application" DOE Contract No: DE-FC26-03NT41889 I Project Description: A. Objective: This study will identify improvements in gas turbine performance for coal Integrated Gasification Combined Cycle (IGCC) application. The study will identify vital gas turbine parameters and quantify their influence in meeting the DOE Turbine Program overall IGCC plant goals of 50% net HHV efficiency, $1000/kW capital cost, and low emissions. Focus will be on air-cooled gas turbines for near-term operation in coal fed oxygen blown IGCC power plants with commercially demonstrated gasification, gas cleaning, & air separation technologies. A roadmap towards achieving DOE's goals for

150

Control system design for maintaining CO{sub 2} capture in IGCC power plants while loading-following  

SciTech Connect

Load-following requirements for future integrated gasification combined cycle (IGCC) power plants with precombustion CO{sub 2} capture are expected to be far more challenging as electricity produced by renewable energy is connected to the grid and strict environmental limits become mandatory requirements. In this work, loadfollowing studies are performed using a comprehensive dynamic model of an IGCC plant with pre-combustion CO{sub 2} capture developed in Aspen Engineering Suite (AES). Considering multiple single-loop controllers for power demand load following, the preferred IGCC control strategy from the perspective of a power producer is gas turbine (GT) lead with gasifier follow. In this strategy, the GT controls the load by manipulating its firing rate while the slurry feed flow to the gasifier is manipulated to control the syngas pressure at the GT inlet. The syngas pressure control is an integrating process with significant time delay mainly because of the large piping and equipment volumes between the gasifier and the GT inlet. A modified proportional–integral–derivative (PID) control is considered for IGCC syngas pressure control. The desired CO{sub 2} capture rate must be maintained while the IGCC plant follows the load. For maintaining the desired CO{sub 2} capture rate, the control performance of PID control is compared with linear model predictive control (LMPC). The results show that the LMPC outperforms PID control for maintaining CO{sub 2} capture rates in an IGCC power plant while load following.

Bhattacharyya, D.; Turton, R.; Zitney, S.

2012-01-01T23:59:59.000Z

151

Microsoft Word - 42651_UCI_ IGCC System Studies_rev060701.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

1_UCI_ IGCC System Studies_rev060701.doc, Revised 7/06 1_UCI_ IGCC System Studies_rev060701.doc, Revised 7/06 Regents of the University of California, DE-FC26-05NT42652 (University of California Irvine, UCI) FACT SHEET I. PROJECT PARTICIPANTS A. Prime Participant: UCI, 300 University Tower, Irvine, CA 92697-7600 B. Sub-Award Participants: None II. PROJECT DESCRIPTION A. Objectives. Characterize advanced Brayton Cycles for coal derived fuels to be candidates for executing conceptual designs (systems studies). Develop conceptual plant designs for near term technologies followed by conceptual designs that integrate advanced technologies. In these studies identify key variables for purpose of sensitivity analysis used in a quest for establishing optimal cycles. Some examples of variables are firing temperature, pressure ratio, combustion

152

IGCC Immersive Training System Deploys at NETL AVESTAR(tm) Center  

NLE Websites -- All DOE Office Websites (Extended Search)

2, Issue 27 2, Issue 27 IGCC Immersive Training System Deploys at NETL AVESTAR(tm) Center page 3 NETL Report Series Assesses Primary Sources of U.S. Electricity page 2 Nanostructured Copper Catalysts Show Promise for CO 2 Reuse Applications page 7 the ENERGY lab NATIONAL ENERGY TECHNOLOGY LABORATORY 2 NETL Report Series Assesses the Current Role, Life Cycle Environmental Footprint, and Cost for Primary Sources of U.S. Electricity _________________________________2 IGCC Immersive Training System Deploys at NETL AVESTAR(tm) Center ________________________________3 Computational Modeling Software Applied to a Discrete Chemistry Model ________________________________3 Novel Sensor Provides Insight to Flow of Solids __________4 NETL Laser Spark Plug Featured in Photonics Spectra ______4

153

IGCC and PFBC By-Products: Generation, Characteristics, and Management Practices  

SciTech Connect

The following report is a compilation of data on by-products/wastes from clean coal technologies, specifically integrated gasification combined cycle (IGCC) and pressurized fluidized-bed combustion (PFBC). DOE had two objectives in providing this information to EPA: (1) to familiarize EPA with the DOE CCT program, CCT by-products, and the associated efforts by DOE contractors in the area of CCT by-product management and (2) to provide information that will facilitate EPA's effort by complementing similar reports from industry groups, including CIBO (Council of Industrial Boiler Owners) and EEI USWAG (Edison Electric Institute Utility Solid Waste Activities Group). The EERC cooperated and coordinated with DOE CCT contractors and industry groups to provide the most accurate and complete data on IGCC and PFBC by-products, although these technologies are only now being demonstrated on the commercial scale through the DOE CCT program.

Pflughoeft-Hassett, D.F.

1997-09-01T23:59:59.000Z

154

Model-Based Optimal Sensor Network Design for Condition Monitoring in an IGCC Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimal Sensor Network Optimal Sensor Network Design for Condition Monitoring in an IGCC Plant Background The U.S. Department of Energy's National Energy Technology Laboratory (NETL) develops affordable and clean energy from coal and other fossil fuels to secure a sustainable energy economy. To further this mission, NETL funds research and development of advanced sensor and control technologies that can function under the extreme operating conditions often found in advanced power systems,

155

Optimal control system design for IGCC power plants with CO2 capture  

Science Conference Proceedings (OSTI)

Designing an optimal control system for an integrated gasification combined cycle (IGCC) power plant with CO2 capture addresses the challenge of efficiently operating and controlling a coal-fed IGCC plant with the desired extent of CO2 capture in the face of disturbances without violating operational and environmental constraints. The control system design needs to optimize a desired scalar objective function while satisfying all the operational and environmental constraints in the presence of measured and unmeasured disturbances. Various objective functions can be considered for the control system design such as maximization of profit, maximization of the power produced, or minimization of the auxiliary power. The design of such a control system makes the plant suitable to play an active role in the smart grid era as the plant will have the required agility. In addition, other penalty function(s) such as emission penalties for CO2 or other criteria pollutants can be considered in the framework as well as losses associated with any hydrogen or carbon monoxide loses. The proposed control system design is performed in two stages. In the first stage, a top-down analysis is performed to generate a list of controlled, manipulated, and disturbance variables considering a scalar operational objective and other process constraints. In the second stage, a bottom-up approach for simultaneous design of the control structure and the controllers is used. In this paper, the first stage of the two-stage approach is applied to the IGCC’s acid gas removal (AGR) process which removes both H2S and CO2 from the shifted synthesis gas. While these results are still preliminary, they demonstrate the application of the proposed approach for a commercial-scale plant and show some interesting results related to controlled variable selection. Such an approach can be followed not only to design control systems for new power plants, but also to retrofit control systems for existing plants with suitable modifications.

Jones, D.; Bhattacharyya, D.; Turton, R.; Zitney, S.

2012-01-01T23:59:59.000Z

156

NETL: News Release - DOE-Sponsored IGCC Project in Texas Takes Important  

NLE Websites -- All DOE Office Websites (Extended Search)

1, 2011 1, 2011 DOE-Sponsored IGCC Project in Texas Takes Important Step Forward MOU Provides for Electricity Purchase from First-of-a-Kind Commercial IGCC Power Plant Washington, DC - A newly signed memorandum of understanding (MOU) for the purchase of electricity produced by the Texas Clean Energy Project (TCEP) is an important step forward for what will be one of the world's most advanced and cleanest coal-based power plants, funded in part by the U.S. Department of Energy (DOE). Under the MOU, CPS Energy - a municipally owned utility serving San Antonio, Texas - will purchase electricity generated by the first-of-a-kind commercial clean coal power plant, starting in mid 2014. TCEP, a 400-megawatt integrated gasification combined cycle (IGCC) facility located about 15 miles west of Odessa, will capture 90 percent of its carbon dioxide (CO2) - approximately 3 million tons annually - more than any power plant of commercial scale operating anywhere in the world.

157

Dorchester County- Renewable Zoning  

Energy.gov (U.S. Department of Energy (DOE))

Dorchester County zoning codes specifically permit solar arrays and small wind turbines in many zoning districts.

158

Advanced virtual energy simulation training and research: IGCC with CO2 capture power plant  

SciTech Connect

In this presentation, we highlight the deployment of a real-time dynamic simulator of an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture at the Department of Energy's (DOE) National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training and Research (AVESTARTM) Center. The Center was established as part of the DOE's accelerating initiative to advance new clean coal technology for power generation. IGCC systems are an attractive technology option, generating low-cost electricity by converting coal and/or other fuels into a clean synthesis gas mixture in a process that is efficient and environmentally superior to conventional power plants. The IGCC dynamic simulator builds on, and reaches beyond, conventional power plant simulators to merge, for the first time, a 'gasification with CO{sub 2} capture' process simulator with a 'combined-cycle' power simulator. Fueled with coal, petroleum coke, and/or biomass, the gasification island of the simulated IGCC plant consists of two oxygen-blown, downward-fired, entrained-flow, slagging gasifiers with radiant syngas coolers and two-stage sour shift reactors, followed by a dual-stage acid gas removal process for CO{sub 2} capture. The combined cycle island consists of two F-class gas turbines, steam turbine, and a heat recovery steam generator with three-pressure levels. The dynamic simulator can be used for normal base-load operation, as well as plant start-up and shut down. The real-time dynamic simulator also responds satisfactorily to process disturbances, feedstock blending and switchovers, fluctuations in ambient conditions, and power demand load shedding. In addition, the full-scope simulator handles a wide range of abnormal situations, including equipment malfunctions and failures, together with changes initiated through actions from plant field operators. By providing a comprehensive IGCC operator training system, the AVESTAR Center is poised to develop a workforce well-prepared to operate and control commercial-scale gasification-based power plants capable of 90% pre-combustion CO{sub 2} capture and compression, as well as low sulfur, mercury, and NOx emissions. With additional support from the NETL-Regional University Alliance (NETL-RUA), the Center will educate and train engineering students and researchers by providing hands-on 'learning by operating' experience The AVESTAR Center also offers unique collaborative R&D opportunities in high-fidelity dynamic modeling, advanced process control, real-time optimization, and virtual plant simulation. Objectives and goals are aimed at safe and effective management of power generation systems for optimal efficiency, while protecting the environment. To add another dimension of realism to the AVESTAR experience, NETL will introduce an immersive training system with innovative three-dimensional virtual reality technology. Wearing a stereoscopic headset or eyewear, trainees will enter an interactive virtual environment that will allow them to move freely throughout the simulated 3-D facility to study and learn various aspects of IGCC plant operation, control, and safety. Such combined operator and immersive training systems go beyond traditional simulation and include more realistic scenarios, improved communication, and collaboration among co-workers.

Zitney, S.; Liese, E.; Mahapatra, P.; Bhattacharyya, D.; Provost, G.

2011-01-01T23:59:59.000Z

159

Plant-wide dynamic simulation of an IGCC plant with CO2 capture  

Science Conference Proceedings (OSTI)

To eliminate the harmful effects of greenhouse gases, especially that of CO2, future coalfired power plants need to consider the option for CO2 capture. The loss in efficiency for CO2 capture is less in an Integrated Gasification Combined Cycle (IGCC) plant compared to other conventional coal combustion processes. However, no IGCC plant with CO2 capture currently exists in the world. Therefore, it is important to consider the operability and controllability issues of such a plant before it is commercially built. With this objective in mind, a detailed plant-wide dynamic simulation of an IGCC plant with CO2 capture has been developed. The plant considers a General Electric Energy (GEE)-type downflow radiant-only gasifier followed by a quench section. A two-stage water gas shift (WGS) reaction is considered for conversion of about 96 mol% of CO to CO2. A two-stage acid gas removal (AGR) process based on a physical solvent is simulated for selective capture of H2S and CO2. The clean syngas is sent to a gas turbine (GT) followed by a heat recovery steam generator (HRSG). The steady state results are validated with data from a commercial gasifier. A 5 % ramp increase in the flowrate of coal is introduced to study the system dynamics. To control the conversion of CO at a desired level in the WGS reactors, the steam/CO ratio is manipulated. This strategy is found to be efficient for this operating condition. In the absence of an efficient control strategy in the AGR process, the environmental emissions exceeded the limits by a great extent.

Bhattacharyya, D.; Turton, R.; Zitney, S.

2009-01-01T23:59:59.000Z

160

Advanced regulatory control and coordinated plant-wide control strategies for IGCC targeted towards improving power ramp-rates  

Science Conference Proceedings (OSTI)

As part of ongoing R&D activities at the National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training & Research (AVESTAR™) Center, this paper highlights strategies for enhancing low-level regulatory control and system-wide coordinated control strategies implemented in a high-fidelity dynamic simulator for an Integrated Gasification Combined Cycle (IGCC) power plant with carbon capture. The underlying IGCC plant dynamic model contains 20 major process areas, each of which is tightly integrated with the rest of the power plant, making individual functionally-independent processes prone to routine disturbances. Single-loop feedback control although adequate to meet the primary control objective for most processes, does not take into account in advance the effect of these disturbances, making the entire power plant undergo large offshoots and/or oscillations before the feedback action has an opportunity to impact control performance. In this paper, controller enhancements ranging from retuning feedback control loops, multiplicative feed-forward control and other control techniques such as split-range control, feedback trim and dynamic compensation, applicable on various subsections of the integrated IGCC plant, have been highlighted and improvements in control responses have been given. Compared to using classical feedback-based control structure, the enhanced IGCC regulatory control architecture reduces plant settling time and peak offshoots, achieves faster disturbance rejection, and promotes higher power ramp-rates. In addition, improvements in IGCC coordinated plant-wide control strategies for “Gasifier-Lead”, “GT-Lead” and “Plantwide” operation modes have been proposed and their responses compared. The paper is concluded with a brief discussion on the potential IGCC controller improvements resulting from using advanced process control, including model predictive control (MPC), as a supervisory control layer.

Mahapatra, P.; Zitney, S.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "kemper county igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Transient studies of an Integrated Gasification Combined Cycle (IGCC) plant with CO2 capture  

SciTech Connect

Next-generation coal-fired power plants need to consider the option for CO2 capture as stringent governmental mandates are expected to be issued in near future. Integrated gasification combined cycle (IGCC) plants are more efficient than the conventional coal combustion processes when the option for CO2 capture is considered. However, no IGCC plant with CO2 capture currently exists in the world. Therefore, it is important to consider the operability and controllability issues of such a plant before it is commercially built. To facilitate this objective, a detailed plant-wide dynamic simulation of an IGCC plant with 90% CO2 capture has been developed in Aspen Plus Dynamics{reg_sign}. The plant considers a General Electric Energy (GEE)-type downflow radiant-only gasifier followed by a quench section. A two-stage water gas shift (WGS) reaction is considered for conversion of CO to CO2. A two-stage acid gas removal (AGR) process based on a physical solvent is simulated for selective capture of H2S and CO2. Compression of the captured CO2 for sequestration, an oxy-Claus process for removal of H2S and NH3, black water treatment, and the sour water treatment are also modeled. The tail gas from the Claus unit is recycled to the SELEXOL unit. The clean syngas from the AGR process is sent to a gas turbine followed by a heat recovery steam generator. This turbine is modeled as per published data in the literature. Diluent N2 is used from the elevated-pressure ASU for reducing the NOx formation. The heat recovery steam generator (HRSG) is modeled by considering generation of high-pressure, intermediate-pressure, and low-pressure steam. All of the vessels, reactors, heat exchangers, and the columns have been sized. The basic IGCC process control structure has been synthesized by standard guidelines and existing practices. The steady state results are validated with data from a commercial gasifier. In the future grid-connected system, the plant should satisfy the environmental targets and quality of the feed to other sections, wherever applicable, without violating the operating constraints, and without sacrificing the efficiency. However, it was found that the emission of acid gases may far exceed the environmental targets and the overshoot of some of the key variables may be unacceptable under transient operation while following the load. A number of operational strategies and control configurations is explored for achieving these stringent requirements. The transient response of the plant is also studied by perturbing a number of key inputs.

Bhattacharyya, D.; Turton, R.; Zitney, S.

2010-01-01T23:59:59.000Z

162

AVESTAR Center for operational excellence of IGCC power plants with CO2 capture  

Science Conference Proceedings (OSTI)

This slideshow presentation begins by outlining US energy challenges, particularly with respect to power generation capacity and clean energy plant operations. It goes on to describe the Advanced Virtual Energy Simulation Training And Research (AVESTAR{sup TM}). Its mission and goals are given, followed by an overview of integrated gasification combined cycle (IGCC) with CO{sub 2} capture. The Dynamic Simulator/Operator Training System (OTS) and 3D Virtual Immersive Training System (ITS) are then presented. Facilities, training, education, and R&D are covered, followed by future simulators and directions.

Provost, G,

2012-01-01T23:59:59.000Z

163

AVESTAR Center for operational excellence of IGCC power plants with CO2 capture  

Science Conference Proceedings (OSTI)

This presentation begins with a description of U.S. Energy Challenges, particularly Power Generation Capacity and Clean Energy Plant Operations. It goes on to describe the missions and goals of the Advanced Virtual Energy Simulation Training And Research (AVESTARTM). It moves on to the subject of Integrated Gasification Combined Cycle (IGCC) with CO{sub 2} Capture, particularly a Process/Project Overview, Dynamic Simulator/Operator Training System (OTS), 3D Virtual Immersive Training System (ITS), Facilities, Training, Education, and R&D, and Future Simulators/Directions

Provost, G,

2012-01-01T23:59:59.000Z

164

Balance : Lancaster County's tragedy  

E-Print Network (OSTI)

Lancaster County, Pennsylvania residents are proud of their agricultural heritage. They do not want to see their farmland disappear. But the County continues to be developed into residential subdivisions. This thesis ...

Gingrich, Valerie (Valerie J.)

2007-01-01T23:59:59.000Z

165

Thermoeconomic design optimization of a KRW-based IGCC power plant. Final report  

SciTech Connect

This report discussed the cost and efficiency optimization of an integrated gasification-combined-cycle (IGCC) power plant design and the effects of important design options and parameters. Advanced thermoeconomic techniques were used to evaluate and optimize a given IGCC concept which uses Illinois No. 6 bituminous coal, air-blown KRW coal gasifiers, a hot gas cleanup system, and GE MS7001F gas turbines. Three optimal design concepts are presented and discussed in the report. Two of the concepts are characterized by minimum cost of electricity at two different values of the steam high pressure. The third concept represents the thermodynamic optimum. This study identified several differences between the original design and the design of the optimized cases. Compared with the original concept, significant annual savings are achieved in the cost optimal cases. Comparisons were made between results obtained using both the old and the new performance data for the MS7001F gas turbine. This report discusses the effects of gasification temperature, steam high pressure, coal moisture, and various design options on the overall plant efficiency and cost of electricity. Cost sensitivity studies were conducted and recommendations for future studies were made.

Tsatsaronis, G.; Lin, L.; Pisa, J.; Tawfik, T. [Tennessee Technological Univ., Cookeville, TN (United States). Center for Electric Power

1991-11-01T23:59:59.000Z

166

Thermoeconomic design optimization of a KRW-based IGCC power plant  

SciTech Connect

This report discussed the cost and efficiency optimization of an integrated gasification-combined-cycle (IGCC) power plant design and the effects of important design options and parameters. Advanced thermoeconomic techniques were used to evaluate and optimize a given IGCC concept which uses Illinois No. 6 bituminous coal, air-blown KRW coal gasifiers, a hot gas cleanup system, and GE MS7001F gas turbines. Three optimal design concepts are presented and discussed in the report. Two of the concepts are characterized by minimum cost of electricity at two different values of the steam high pressure. The third concept represents the thermodynamic optimum. This study identified several differences between the original design and the design of the optimized cases. Compared with the original concept, significant annual savings are achieved in the cost optimal cases. Comparisons were made between results obtained using both the old and the new performance data for the MS7001F gas turbine. This report discusses the effects of gasification temperature, steam high pressure, coal moisture, and various design options on the overall plant efficiency and cost of electricity. Cost sensitivity studies were conducted and recommendations for future studies were made.

Tsatsaronis, G.; Lin, L.; Pisa, J.; Tawfik, T. (Tennessee Technological Univ., Cookeville, TN (United States). Center for Electric Power)

1991-11-01T23:59:59.000Z

167

Development of a hot-gas desulfurization system for IGCC applications  

SciTech Connect

Integrated gasification combined cycle (IGCC) power plants are being advanced worldwide to produce electricity from coal because of their superior environmental performance, economics, and efficiency in comparison to conventional coal-based power plants. One key component of an advanced IGCC power plant is a hot-gas desulfurization system employing regenerable sorbents. To carry out hot-gas desulfurization in a fluidized-bed reactor, it is necessary that the sorbents have high attrition resistance, while still maintaining high chemical reactivity and sulfur absorption capacity. Also, efficient processes are needed for the treatment of SO{sub 2}-containing regeneration off-gas to produce environmentally benign waste or useful byproducts. A series of durable zinc titanate sorbents were formulated and tested in a bench-scale fluidized-bed reactor system. Reactive sorbents were developed with addition resistance comparable to fluid-bed cracking (FCC) catalysts used in petroleum refineries. In addition, progress continues on the development of the Direct Sulfur Recovery Process (DSRP) for converting SO{sub 2} in the regeneration off-gas to elemental sulfur. Plans are under way to test these bench-scale systems at gasifier sites with coal gas. This paper describes the status and future plans for the demonstration of these technologies.

Gupta, R.; McMichael, W.J.; Gangwal, S.K. [Research Triangle Inst., Research Triangle Park, NC (United States); Jain, S.C.; Dorchak, T.P. [USDOE Morgantown Energy Technology Center, WV (United States)

1992-12-31T23:59:59.000Z

168

Kiowa County Commons Building  

Energy.gov (U.S. Department of Energy (DOE))

This poster describes the energy efficiency features and sustainable materials used in the Kiowa County Commons Building in Greensburg, Kansas.

169

Carroll County- Wind Ordinance  

Energy.gov (U.S. Department of Energy (DOE))

This ordinance sets forth regulations for the zoning, erection, and operation of small wind energy systems in Carroll County, Maryland.

170

Kent County- Wind Ordinance  

Energy.gov (U.S. Department of Energy (DOE))

This ordinance establishes provisions and standards for small wind energy systems in various zoning districts in Kent County, Maryland.

171

Development of a plant-wide dynamic model of an integrated gasification combined cycle (IGCC) plant  

Science Conference Proceedings (OSTI)

In this presentation, development of a plant-wide dynamic model of an advanced Integrated Gasification Combined Cycle (IGCC) plant with CO2 capture will be discussed. The IGCC reference plant generates 640 MWe of net power using Illinois No.6 coal as the feed. The plant includes an entrained, downflow, General Electric Energy (GEE) gasifier with a radiant syngas cooler (RSC), a two-stage water gas shift (WGS) conversion process, and two advanced 'F' class combustion turbines partially integrated with an elevated-pressure air separation unit (ASU). A subcritical steam cycle is considered for heat recovery steam generation. Syngas is selectively cleaned by a SELEXOL acid gas removal (AGR) process. Sulfur is recovered using a two-train Claus unit with tail gas recycle to the AGR. A multistage intercooled compressor is used for compressing CO2 to the pressure required for sequestration. Using Illinois No.6 coal, the reference plant generates 640 MWe of net power. The plant-wide steady-state and dynamic IGCC simulations have been generated using the Aspen Plus{reg_sign} and Aspen Plus Dynamics{reg_sign} process simulators, respectively. The model is generated based on the Case 2 IGCC configuration detailed in the study available in the NETL website1. The GEE gasifier is represented with a restricted equilibrium reactor model where the temperature approach to equilibrium for individual reactions can be modified based on the experimental data. In this radiant-only configuration, the syngas from the Radiant Syngas Cooler (RSC) is quenched in a scrubber. The blackwater from the scrubber bottom is further cleaned in the blackwater treatment plant. The cleaned water is returned back to the scrubber and also used for slurry preparation. The acid gas from the sour water stripper (SWS) is sent to the Claus plant. The syngas from the scrubber passes through a sour shift process. The WGS reactors are modeled as adiabatic plug flow reactors with rigorous kinetics based on the mid-life activity of the shift-catalyst. The SELEXOL unit consists of the H2S and CO2 absorbers that are designed to meet the stringent environmental limits and requirements of other associated units. The model also considers the stripper for recovering H2S that is sent as a feed to a split-flow Claus unit. The tail gas from the Claus unit is recycled to the SELEXOL unit. The cleaned syngas is sent to the GE 7FB gas turbine. This turbine is modeled as per published data in the literature. Diluent N2 is used from the elevated-pressure ASU for reducing the NOx formation. The heat recovery steam generator (HRSG) is modeled by considering generation of high-pressure, intermediate-pressure, and low-pressure steam. All of the vessels, reactors, heat exchangers, and the columns have been sized. The basic IGCC process control structure has been synthesized by standard guidelines and existing practices. The steady-state simulation is solved in sequential-modular mode in Aspen Plus{reg_sign} and consists of more than 300 unit operations, 33 design specs, and 16 calculator blocks. The equation-oriented dynamic simulation consists of more than 100,000 equations solved using a multi-step Gear's integrator in Aspen Plus Dynamics{reg_sign}. The challenges faced in solving the dynamic model and key transient results from this dynamic model will also be discussed.

Bhattacharyya, D.; Turton, R.; Zitney, S.

2009-01-01T23:59:59.000Z

172

SCHUMACHER HOT GAS FILTER LONG-TERM OPERATING EXPERIENCE in the NUON POWER BUGGENUM IGCC POWER PLANT  

SciTech Connect

Coal is a main source of primary energy for power generation and it will remain indispensable in the future. In order to increase the efficiency and to meet environmental challenges new advanced coal-fired power systems were developed starting in the beginning of the 1990s. One of these efficient and clean technologies is the Integrated Gasification Combined Cycle (IGCC) process.

Scheibner, B.; Wolters, C.

2002-09-18T23:59:59.000Z

173

EIS-0409: Record of Decision and Statement of Findings | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

impact statement associated with a proposed project using Integrated Gasification Combined Cycle Technology in Kemper County, Mississippi. Record of Decision and Statement...

174

EIS-0409: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0409: EPA Notice of Availability of the Draft Environmental Impact Statement Kemper County Integrated...

175

EIS-0409: EPA Notice of Availability of the Final Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Final Environmental Impact Statement EIS-0409: EPA Notice of Availability of the Final Environmental Impact Statement Kemper County Integrated...

176

EIS-0409: EPA Notice of Availability of the Draft Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

409: EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0409: EPA Notice of Availability of the Draft Environmental Impact Statement Kemper County...

177

Mississippi | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kemper County, Mississippi May 13, 2010 CX-002299: Categorical Exclusion Determination Passive Acoustic Detection of Wind Turbine In-Flow Conditions for Active Control and...

178

Los Angeles County - LEED for County Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Los Angeles County - LEED for County Buildings Los Angeles County - LEED for County Buildings Los Angeles County - LEED for County Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Heating Buying & Making Electricity Water Heating Wind Program Info State California Program Type Energy Standards for Public Buildings Provider Los Angeles County In January 2007, the Los Angeles County Board of Supervisors adopted rules to require that all new county buildings greater than 10,000 square feet be LEED Silver certified. All buildings authorized and fully funded on or

179

counties - more challenges | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

- more challenges Counties Data Apps Challenges Policies Counties You are here Data.gov Communities Counties Challenge.gov...

180

Method and system to estimate variables in an integrated gasification combined cycle (IGCC) plant  

DOE Patents (OSTI)

System and method to estimate variables in an integrated gasification combined cycle (IGCC) plant are provided. The system includes a sensor suite to measure respective plant input and output variables. An extended Kalman filter (EKF) receives sensed plant input variables and includes a dynamic model to generate a plurality of plant state estimates and a covariance matrix for the state estimates. A preemptive-constraining processor is configured to preemptively constrain the state estimates and covariance matrix to be free of constraint violations. A measurement-correction processor may be configured to correct constrained state estimates and a constrained covariance matrix based on processing of sensed plant output variables. The measurement-correction processor is coupled to update the dynamic model with corrected state estimates and a corrected covariance matrix. The updated dynamic model may be configured to estimate values for at least one plant variable not originally sensed by the sensor suite.

Kumar, Aditya; Shi, Ruijie; Dokucu, Mustafa

2013-09-17T23:59:59.000Z

Note: This page contains sample records for the topic "kemper county igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Tampa Electric Company IGCC Project. Quarterly report, April 1 - June 30, 1996  

SciTech Connect

Tampa Electric Company continued efforts to complete construction and start-up of the Polk Power Station, Unit {number_sign}1 which will use Integrated Gasification Combined Cycle (IGCC) technology for power generation. From an overall standpoint, the Project continues to track well. The completion of construction system turnovers to Start-up is encouraging. Start-up will accept responsibility of the plant until turnover to operations. The major focus continues to be on the production of first Syngas, scheduled for July 17. All construction, engineering, and start-up activities are in support of Syngas production. Key activities toward this goal include final checkout and startup of remaining gasification systems, completion of punch list items required for first syngas, finalization of operating procedures, preparation of site and area access control plans, site- wide safety training, and other Process Safety management (PSM) requirements.

1996-12-31T23:59:59.000Z

182

CE IGCC repowering project preliminary hazard analysis. Topical report, November 1, 1990--May 31, 1993  

SciTech Connect

A preliminary hazard analysis was conducted on the CE IGCC unit by representatives from ABB Lummus Crest Process Systems, Lummus Technical Division, Combustion Engineering, and Lummus Initial Operations. As a basis for the review, available technical data and documentation was used. Two areas of the unit were reviewed, the coal yard delivery system and the gasifier island. The coal yard consists of the coal delivery and handling systems, both of these systems are conventional. The gasifier island encompasses the coal pulverizer and feed system, gasifier and syngas cooler, char removal system, char recycle system, and high temperature sulfur removal system. With first of a kind equipment incorporated in the gasifier island, most of the concerns of potential hazards were centered here. At the time of the review, there were no process flow diagrams for the rest of the combined cycle. To prevent detaining the review of the gasifier island, the remaining areas were not reviewed at this time. However, the remaining areas will be reviewed before final unit design is completed. In reviewing the above mentioned systems, the PHA identified several hazards which will be the basis for a subsequent detailed Hazard and Operability (HAZOP) study which will be performed at a later stage of this project. Results from the evaluation were documented by the team and then reviewed by engineers in the IGCC Product Development department. From the concerns of risks developed by the review team, rethinking of proposed operation and design of the plant during the preliminary design stages took place. (In doing so, cost and redesign time during final design phase will be reduced).

Peletz, L.J.

1993-06-01T23:59:59.000Z

183

Category:Counties | Open Energy Information  

Open Energy Info (EERE)

Counties Counties Jump to: navigation, search This category contains all counties in the United States of America. Contents: Top - 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Pages in category "Counties" The following 200 pages are in this category, out of 3,142 total. (previous 200) (next 200) A Abbeville County, South Carolina Acadia Parish, Louisiana Accomack County, Virginia Ada County, Idaho Adair County, Iowa Adair County, Kentucky Adair County, Missouri Adair County, Oklahoma Adams County, Colorado Adams County, Idaho Adams County, Illinois Adams County, Indiana Adams County, Iowa Adams County, Mississippi Adams County, Nebraska Adams County, North Dakota Adams County, Ohio Adams County, Pennsylvania Adams County, Washington Adams County, Wisconsin

184

Wicomico County- Wind Ordinance  

Energy.gov (U.S. Department of Energy (DOE))

Establishes zoning regulations for the installation and construction of small wind energy systems in Wicomico County for private landowners, subject to reasonable restrictions.

185

Washington County- Wind Ordinance  

Energy.gov (U.S. Department of Energy (DOE))

This ordinance establishes regulations to facilitate the installation and construction of Small Wind Energy Systems in Washington County for private landowners, subject to reasonable restrictions...

186

Montgomery County Public Schools  

Science Conference Proceedings (OSTI)

... Montgomery County Public Schools (MCPS) is the largest school district in the state of Maryland and the 16th-largest school district in the nation. ...

2011-04-19T23:59:59.000Z

187

The United States of America and the People`s Republic of China experts report on integrated gasification combined-cycle technology (IGCC)  

SciTech Connect

A report written by the leading US and Chinese experts in Integrated Gasification Combined Cycle (IGCC) power plants, intended for high level decision makers, may greatly accelerate the development of an IGCC demonstration project in the People`s Republic of China (PRC). The potential market for IGCC systems in China and the competitiveness of IGCC technology with other clean coal options for China have been analyzed in the report. Such information will be useful not only to the Chinese government but also to US vendors and companies. The goal of this report is to analyze the energy supply structure of China, China`s energy and environmental protection demand, and the potential market in China in order to make a justified and reasonable assessment on feasibility of the transfer of US Clean Coal Technologies to China. The Expert Report was developed and written by the joint US/PRC IGCC experts and will be presented to the State Planning Commission (SPC) by the President of the CAS to ensure consideration of the importance of IGCC for future PRC power production.

1996-12-01T23:59:59.000Z

188

San Diego County - Design Standards for County Facilities | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design Standards for County Facilities Design Standards for County Facilities San Diego County - Design Standards for County Facilities < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Energy Sources Solar Wind Other Program Info State California Program Type Energy Standards for Public Buildings Provider San Diego County The San Diego County Board of Supervisors established design standards for county facilities and property. Among other requirements, the policy requires that all new county buildings or major building renovations obtain U.S. Green Building Council (USGBC) LEED Building Certification.

189

Harris County - LEED Requirement for County Buildings | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Harris County - LEED Requirement for County Buildings Harris County - LEED Requirement for County Buildings Harris County - LEED Requirement for County Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Texas Program Type Energy Standards for Public Buildings Provider Harris County In 2009, the Harris County Commissioners Court approved a measure that requires all new county buildings to meet minimum LEED certification standards. Buildings do not have to register with the the U.S. Green Building Council. The Harris County Facilities and Property Management (FPM) Division also requires all county buildings to meet minimum energy efficiency and sustainability measures, as described in the

190

Frederick County- Green Building Program  

Energy.gov (U.S. Department of Energy (DOE))

Frederick County administers a green building program. It has two goals: (1) to ensure that County building projects implement strategies that enhance environmental performance and fiscal...

191

Regional Lead Agents and County Coordinators 2011 RESPONSIBILITY NAME COUNTY  

E-Print Network (OSTI)

Coordinator Jay Crouch Newberry County Coordinator Vicky Bertagnolli Aiken REGION 8 Regional Lead Karissa

Bolding, M. Chad

192

Suffolk County - LEED Program for County Construction | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Suffolk County - LEED Program for County Construction Suffolk County - LEED Program for County Construction Suffolk County - LEED Program for County Construction < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State New York Program Type Energy Standards for Public Buildings Provider Suffolk County In 2006, the Suffolk County Legislature enacted Resolution No. 126-2006, creating the Leadership in Energy and Environment Design (LEED) Program for county construction projects. The program requirements were revised in 2008 (Resolution No. 551-2008), and again in 2011 (Resolution No. 458-2011). The program requires the County Department of Public Works to apply the LEED

193

Tampa Electric Company - DOE IGCC project. Quarterly report, July 1 - September 30, 1996  

SciTech Connect

The third quarter of 1996 has resulted in the completion of over five (5) years of extensive project development, design, construction and start-up of the 250 MW Polk Power Station Unit {number_sign}1 IGCC Project. the combined cycle performance test was completed on June 18, 1996. This test demonstrated that on distillate fuel, the combined cycle achieved a net output of 222,299 KW with a net heat rate of 6,868 BTU/KW. This is about 3.86% and 2.76% better than the guaranteed values of 214,040 KW and 7,063 BTU/KW respectively. During the third quarter of 1996, the combustion turbine was run on syngas two (2) different times for a combined total of about seven hours. Attachment {number_sign}4 shows graphically the transfer from oil to syngas. Emission levels were generally acceptable even though no specific emissions tuning was completed by GE and the emissions monitoring equipment was not yet completely operational.

1996-12-31T23:59:59.000Z

194

Preparation of Metal Filter Element for Fail Safety in IGCC Filter Unit  

SciTech Connect

Metal filter elements as the fail safety filter are fabricated by the methods using cold isostatic pressure (compress method) and binder (binder method) to form the filter element and tested in a experimental and bench units. The fail safety filter on the filtration system is mounted additionally in order to intercept the particle leak when the main filter element is broken. So it should have two contrary functions of a high permeability and being plugged easily. The filter element having high porosity and high plugging property was fabricated by the bind method. It has the porosity more than 50%, showed very small pressure drop less than 10mmH2O at the face velocity of 0.15m/s, and plugged within 5 minutes with the inhibition of the particle leak larger than 4 {micro}m. The test result of corrosion tendency in IGCC gas stream at 500 C shows SUS310L material is very reasonable among SUS310, SUS316, Inconel 600, and Hastelloy X.

Choi, J-H.; Ahn, I-S.; Bak, Y-C.; Bae, S-Y.; Ha, S-J.; Jang, H-J.

2002-09-18T23:59:59.000Z

195

DOE IGCC Project. Fourth quarterly report, [October 1, 1993--December 31, 1993  

SciTech Connect

We have previously reported a decision to move the simple cycle commercial operation to a date coincident with the July 1, 1996 Integrated Gasification Combined Cycle (IGCC) commercial operation date. This necessitated a major rescheduling of the engineering and construction efforts to ensure a totally coordinated plan. This rescheduling was completed in mid October 1994 and resulted in an integrated engineering and construction schedule. The major effort in the fourth quarter of 1994 centered around equipment procurement to support the new integrated plan. This is required so that sufficient engineering details will be available to generate construction bid packages with at least 90% completed effort. During the reporting period 43 material requisitions (MR`s) were issued for bids. Also during-the reporting period a total of 14 purchase orders were issued including the generator step-up transformer and major columns and vessels. Bid packages were prepared, for bid submittal in January 1994, for a turnkey sulfuric acid plant and for the transportation/erection of the radiant syngas cooler (RSC). The original concept was for MAN GHH to deliver the RSC as part of their design and fabrication contract. However, in an attempt to improve coordination for the overall handling of this significant piece of equipment, it was decided to remove the transportation from MAN GHH`s scope of work and include the transportation with the RSC erection contract. Initial indication from prospective bidders and Bechtel are that lower total costs will be achieved in addition to the expected improved coordination.

1994-02-23T23:59:59.000Z

196

[Tampa Electric Company IGCC project]. 1996 DOE annual technical report, January--December 1996  

SciTech Connect

Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project uses a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,000 tons per day of coal to syngas. The gasification plant is coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 BTUs/cf (HHV). The syngas then flows through a high temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product. Approximately 10% of the raw, hot syngas at 900 F is designed to pass through an intermittently moving bed of metal-oxide sorbent which removes sulfur-bearing compounds from the syngas. PPS-1 will be the first unit in the world to demonstrate this advanced metal oxide hot gas desulfurization technology on a commercial unit. The emphasis during 1996 centered around start-up activities.

NONE

1997-12-31T23:59:59.000Z

197

Load-following control of an IGCC plant with CO2 capture  

SciTech Connect

In this paper, a decentralized control strategy is considered for load-following control of an integrated gasification combined cycle (IGCC) plant with CO2 capture without flaring the syngas. The control strategy considered is gas turbine (GT) lead with gasifier follow. In this strategy, the GT controls the power load by manipulating its firing rate while the slurry feed flow to the gasifier is manipulated to control the syngas pressure at the GT inlet. However, the syngas pressure control is an integrating process with significant timedelay. In this work, a modified proportional-integral-derivative (PID) control is considered for syngas pressure control given that conventional PID controllers show poor control performance for integrating processes with large time delays. The conventional PID control is augmented with an internal feedback loop. The P-controller used in this internal loop converts the integrating process to an open-loop stable process. The resulting secondorder plus time delay model uses a PID controller where the tuning parameters are found by minimizing the integral time-weighted absolute error (ITAE) for disturbance rejection. A plant model with single integrator and time delay is identified by a P-control method. When a ramp change is introduced in the set-point of the load controller, the performance of both the load and pressure controllers with the modified PID control strategy is found to be superior to that using a traditional PID controller. Key

Bhattacharyya, D.; Turton, R.; Zitney, S.

2011-01-01T23:59:59.000Z

198

CE IGCC Repowering plant sulfuric acid plant. Topical report, June 1993  

SciTech Connect

A goal of the CE IGCC Repowering project is to demonstrate a hot gas clean-up system (HGCU), for the removal of sulfur from the product gas stream exiting the gasifier island. Combustion Engineering, Inc. (ABB CE) intends to use a HGCU developed by General Electric Environmental Services (GEESI). The original design of this system called for the installation of the HGCU, with a conventional cold gas clean-up system included as a full-load operational back-up. Each of these systems removes sulfur compounds and converts them into an acid off-gas. This report deals with the investigation of equipment to treat this off-gas, recovering these sulfur compounds as elemental sulfur, sulfuric acid or some other form. ABB CE contracted ABB Lummus Crest Inc. (ABB LCI) to perform an engineering evaluation to compare several such process options. This study concluded that the installation of a sulfuric acid plant represented the best option from both a technical and economic point of view. Based on this evaluation, ABB CE specified that a sulfuric acid plant be installed to remove sulfur from off-gas exiling the gas clean-up system. ABB LCI prepared a request for quotation (RFQ) for the construction of a sulfuric acid production plant. Monsanto Enviro-Chem Inc. presented the only proposal, and was eventually selected as the EPC contractor for this system.

Chester, A.M.

1993-12-01T23:59:59.000Z

199

Coyotes in Cook County  

NLE Websites -- All DOE Office Websites (Extended Search)

Coyotes in Cook County Coyotes in Cook County Nature Bulletin No. 2 Forest Preserve District of Cook County -- July 31, 1969 George W. Dunne, President Roland F. Eisenbeis, Superintendent of Conversation COYOTES IN COOK COUNTY One winter night, a Forest Preserve Ranger heard the yapping howl of some animal that made his hair stand on end. A few days later, a farmer in the Sag valley saw what appeared to be a wolf lope across a road. Finally, the ranger, concealed within sight of a faint path apparently used by wild dogs or foxes, shot a coyote. The little bunch of black bristles at the base of its tail, covering a scent gland beneath the skin identified it as being of the wolf family. The animal was sent to the Illinois Natural History Survey, at Urbana, where it was pronounced to be a prairie wolf (also known as the "brush" wolf). In the west it is generally known by its Spanish name: coyote.

200

County\paa  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Eureka County Eureka County Yucca Mountain Information Office P.O. Box 257 Eureka, Nevada 89316 (702) 237-5372 FAX (702) 237-5708 January 29, 1998 U.S. Department of Energy Office of General Counsel, GC-52 1000 Independence Ave. SW Washington DC 20585 RE: Price-Anderson Act To Whom It May Concern: In response the Federal Register notice of December 31, 1997 requesting public comments on the Price-Anderson Act (PAA), Eureka County, Nevada is submitting these comments. Eureka County is one of the affected units of local government under the Nuclear Waste Policy Act of 1982 as amended. With potential socioeconomic, environmental and transportation impacts, we have a strong interest in oversight of the DOE's Yucca Mountain project activities, including transportation impacts and

Note: This page contains sample records for the topic "kemper county igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

County Wind Ordinance Standards  

Energy.gov (U.S. Department of Energy (DOE))

[http://www.leginfo.ca.gov/pub/09-10/bill/asm/ab_0001-0050/ab_45_bill_200... Assembly Bill 45] of 2009 authorized counties to adopt ordinances to provide for the installation of small wind systems ...

202

Caroline County- Wind Ordinance  

Energy.gov (U.S. Department of Energy (DOE))

This ordinance amends Chapter 175 of the Code of Public Local Laws of Caroline County, Maryland to provide for the erection, maintenance, and operation of small wind energy systems, as well as...

203

RECIPIENT:Placer County  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MANAGEMENfCENTER .. NEAnE:'l'ERlVIIN).'I:rQ1"l PROJECT TITLE: Placer County Biomass Utilization Pilot Project Page 1 of2 . .. . W STATE:CA Funding Opportunity...

204

Property:County | Open Energy Information  

Open Energy Info (EERE)

County County Jump to: navigation, search Property Name County Property Type String Description County Name Pages using the property "County" Showing 25 pages using this property. (previous 25) (next 25) A Akutan Geothermal Project + Aleutians East Borough, AK + Alligator Geothermal Geothermal Project + White Pine County, NV + Alum Geothermal Project + Esmerelda County, NV + Aurora Geothermal Project + Mineral County, NV + B Bald Mountain Geothermal Project + Lassen County, CA + Baltazor Springs Geothermal Project + Humboldt County, NV + Barren Hills Geothermal Project + Lyon, NV + Black Rock I Geothermal Project + Imperial County, OR + Black Rock II Geothermal Project + Imperial County, CA + Black Rock III Geothermal Project + Imperial County, CA +

205

Property:FIPS County Code | Open Energy Information  

Open Energy Info (EERE)

FIPS County Code FIPS County Code Jump to: navigation, search This is a property of type String. Pages using the property "FIPS County Code" Showing 25 pages using this property. (previous 25) (next 25) A Abbeville County, South Carolina + 001 + Acadia Parish, Louisiana + 001 + Accomack County, Virginia + 001 + Ada County, Idaho + 001 + Adair County, Iowa + 001 + Adair County, Kentucky + 001 + Adair County, Missouri + 001 + Adair County, Oklahoma + 001 + Adams County, Colorado + 001 + Adams County, Idaho + 003 + Adams County, Illinois + 001 + Adams County, Indiana + 001 + Adams County, Iowa + 003 + Adams County, Mississippi + 001 + Adams County, Nebraska + 001 + Adams County, North Dakota + 001 + Adams County, Ohio + 001 + Adams County, Pennsylvania + 001 +

206

Better Buildings Neighborhood Program: Sonoma County  

NLE Websites -- All DOE Office Websites (Extended Search)

County on Twitter Bookmark Better Buildings Neighborhood Program: Sonoma County on Google Bookmark Better Buildings Neighborhood Program: Sonoma County on Delicious Rank Better...

207

CE IGCC Repowering Project: Use of the Lockheed Kinetic Extruder for coal feeding; Topical report, June 1993  

SciTech Connect

ABB CE is evaluating alternate methods of coal feed across a pressure barrier for its pressurized coal gasification process. The Lockheed Kinetic Extruder has shown to be one of the most promising such developments. In essence, the Kinetic Extruder consists of a rotor in a pressure vessel. Coal enters the rotor and is forced outward to the surrounding pressure vessel by centrifugal force. The force on the coal passing across the rotor serves as a pressure barrier. Should this technology be successfully developed and tested, it could reduce the cost of IGCC technology by replacing the large lockhoppers conventionally used with a much smaller system. This will significantly decrease the size of the gasifier island. Kinetic Extruder technology needs testing over an extended period of time to develop and prove the long term reliability and performance needed in a commercial application. Major issues to be investigated in this program are component design for high temperatures, turn-down, scale-up factors, and cost. Such a test would only be economically feasible if it could be conducted on an existing plant. This would defray the cost of power and feedstock. Such an installation was planned for the CE IGCC Repowering Project in Springfield, Illinois. Due to budgetary constraints, however, this provision was dropped from the present plant design. It is believed that, with minor design changes, a small scale test version of the Kinetic Extruder could be installed parallel to an existing lockhopper system without prior space allocation. Kinetic Extruder technology represents significant potential cost savings to the IGCC process. For this reason, a test program similar to that specified for the Springfield project would be a worthwhile endeavor.

NONE

1994-02-01T23:59:59.000Z

208

EIS-0409: Mitigation Action Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mitigation Action Plan Mitigation Action Plan EIS-0409: Mitigation Action Plan Kemper County Integrated Gasification Combined Cycle Project, Kemper County, Mississippi The Department of Energy (DOE) issued a Final Environmental Impact Statement (EIS) for the Kemper County Integrated Gasification Combine Cycle Project (Project) (DOE/EIS-0409) in May 2010 and a Record of Decision (ROD) in August 2010 (75 FR 51248). The ROD identified commitments to mitigate potential adverse impacts associated with the project. This Mitigation Action Plan (MAP) describes the monitoring and mitigation actions the recipient must implement during the design, construction, and demonstration of the Project. Mitigation Action Plan Kemper County Iintegrated Gasification Combined Cycle Project, Kemper County, Mississippi, DOE/EIS-0409 (September 2010)

209

Snohomish County Biodiesel Project  

SciTech Connect

Snohomish County in western Washington State began converting its vehicle fleet to use a blend of biodiesel and petroleum diesel in 2005. As prices for biodiesel rose due to increased demand for this cleaner-burning fuel, Snohomish County looked to its farmers to ���¢��������grow���¢������� this fuel locally. Suitable seed crops that can be crushed to extract oil for use as biodiesel feedstock include canola, mustard, and camelina. The residue, or mash, has high value as an animal feed. County farmers began with 52 acres of canola and mustard crops in 2006, increasing to 250 acres and 356 tons in 2008. In 2009, this number decreased to about 150 acres and 300 tons due to increased price for mustard seed.

Terrill Chang; Deanna Carveth

2010-02-01T23:59:59.000Z

210

MINERAL COUNTY COMMISSIONERS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Board of Board of MINERAL COUNTY COMMISSIONERS Telephone: 702-945-2446 Fax: 702-945-0706 P.O. Box 4150 Hawthorne, Nevada 89415 JACKIE WALLIS, Chairman GOVERNING BOARD FOR THE TOWNS OF DAN DILLARD, Vice Chairman HAWTHORNE, LUNING AND MINA BOB LYBARGER, Member LIQUOR BOARD GAMING BOARD U.S. Department of Energy Office of General Counsel, GC-52 1000 Independence Ave. S.W. Washington, DC 20585 Dear Sirs: Attached are the comments for modification of the Price-Anderson Act Notice of Inquiry(NOI) provided to the Board of Mineral County Commissioners, in a letter dated January

211

Proceedings of the coal-fired power systems 94: Advances in IGCC and PFBC review meeting. Volume 2  

Science Conference Proceedings (OSTI)

The Coal-Fired Power Systems 94 -- Advances in IGCC and PFBC Review Meeting was held June 21--23, 1994, at the Morgantown Energy Center (METC) in Morgantown, West Virginia. This Meeting was sponsored and hosted by METC, the Office of Fossil Energy, and the US Department of Energy (DOE). METC annually sponsors this conference for energy executives, engineers, scientists, and other interested parties to review the results of research and development projects; to discuss the status of advanced coal-fired power systems and future plans with the industrial contractors; and to discuss cooperative industrial-government research opportunities with METC`s in-house engineers and scientists. Presentations included industrial contractor and METC in-house technology developments related to the production of power via coal-fired Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) systems, the summary status of clean coal technologies, and developments and advancements in advanced technology subsystems, such as hot gas cleanup. A keynote speaker and other representatives from the electric power industry also gave their assessment of advanced power systems. This meeting contained 11 formal sessions and one poster session, and included 52 presentations and 24 poster presentations. Volume II contains papers presented at the following sessions: filter technology issues; hazardous air pollutants; sorbents and solid wastes; and membranes. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

McDaniel, H.M.; Staubly, R.K.; Venkataraman, V.K. [eds.

1994-06-01T23:59:59.000Z

212

Arlington County - Green Building Incentive Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Savings Arlington County - Green Building Incentive Program Arlington County - Green Building Incentive Program...

213

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

091 - 6100 of 26,764 results. 091 - 6100 of 26,764 results. Download Electric Power Research Institute Cooperation to Increase Energy Efficiency, March 6, 2008 The U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI) strengthened cooperation for research, development and deployment of energy technologies aimed at promoting... http://energy.gov/oe/downloads/electric-power-research-institute-cooperation-increase-energy-efficiency-march-6-2008 Download EIS-0409: EPA Notice of Availability of the Draft Environmental Impact Statement Kemper County Integrated Gasification Combined-Cycle (IGCC) Project, Mississippi http://energy.gov/nepa/downloads/eis-0409-epa-notice-availability-draft-environmental-impact-statement Download EIS-0409: Draft Environmental Impact Statement

214

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31 - 5040 of 26,777 results. 31 - 5040 of 26,777 results. Download Audit Report: OAS-L-06-02 Property Transfers at the East Tennessee Technology Park http://energy.gov/ig/downloads/audit-report-oas-l-06-02 Download LG Electronics U.S.A. v. DOE, Stipulation of Voluntary Dismissal LG Electronics U.S.A., Inc. v. U.S. Dept. of Energy, Civil Action Number 1:09-cv-02297-JDB - LG voluntarily dismissed its claims against the DOE and agrees to remove the ENERGY STAR labels from various refrigerator-freezers. http://energy.gov/gc/downloads/lg-electronics-usa-v-doe-stipulation-voluntary-dismissal Download EIS-0409: Final Environmental Impact Statement Kemper County Integrated Gasification Combined-Cycle (IGCC) Project http://energy.gov/nepa/downloads/eis-0409-final-environmental-impact-statement

215

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21 - 1530 of 31,917 results. 21 - 1530 of 31,917 results. Download Document http://energy.gov/management/downloads/document-13 Download Document http://energy.gov/management/downloads/document-1 Download EIS-0409: Final Environmental Impact Statement Kemper County Integrated Gasification Combined-Cycle (IGCC) Project http://energy.gov/nepa/downloads/eis-0409-final-environmental-impact-statement Download Requirements to coordinate agreements, milestones and decision documents (AMDD) Environmental agreements, milestones and decision documents (AMDD) which meet certain thresholds are reviewed and approved by Headquarters (HQ) before entering into negotiations and commitments. http://energy.gov/em/downloads/requirements-coordinate-agreements-milestones-and-decision-documents-amdd Download Statement of Work-National Environmental Policy Act (NEPA) Support

216

Microsoft Word - vol3-comments.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

i i VOLUME 3 COMMENTS AND RESPONSES ON THE DRAFT ENVIRONMENTAL IMPACT STATEMENT TABLE OF CONTENTS Section Page 1. INTRODUCTION 1 2. METHODOLOGY 1 3. SUMMARY OF COMMENTS AND IDENTIFICATION OF COMMENTERS 2 4. COMMENTS AND DOE RESPONSES 6 This page intentionally left blank. 1 1. INTRODUCTION The Draft EIS for the Kemper County IGCC Project was published in November 2009. DOE distributed copies of the Draft EIS to officials, agencies, Native American tribes, organizations, libraries, and members of the public identified in the distribution list (Chapter 12 of Draft EIS, Volume 1). DOE announced the notice of avail- ability of the Draft EIS in the Federal Register (FR) on November 5, 2009 (74 FR 57297); and EPA published the notice of availability in the Federal Register on November 6, 2009 (74 FR 57466). This Volume 3 provides a

217

Microsoft Word - cvr-sht.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

S-1 S-1 SUMMARY The U.S. Department of Energy (DOE) has prepared this environmental impact statement (EIS) to eva- luate the potential impacts of a power generation project proposed by Mississippi Power Company in Kemper County, east-central Mississippi. The proposed power plant would demonstrate an advanced integrated gasifica- tion combined-cycle (IGCC) power generation system at a commercial scale. The facility would convert Mississippi lignite mined by North American Coal Corporation (NACC) into a synthesis gas (syngas), which would fuel the plant's combustion turbine (CT) gene- rating units. The new power plant would be capable of generating 582 megawatts (MW) (nominal capacity) of electricity while reduc- ing emissions of carbon dioxide (CO 2 ), sulfur

218

EIS-0441: Mohave County Wind Farm Project, Mohave County, Arizona |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41: Mohave County Wind Farm Project, Mohave County, Arizona 41: Mohave County Wind Farm Project, Mohave County, Arizona EIS-0441: Mohave County Wind Farm Project, Mohave County, Arizona Summary This EIS, prepared by the Bureau of Land Management with DOE's Western Area Power Administration as a cooperating agency, evaluated the environmental impacts of a proposed wind energy project on public lands in Mohave County, Arizona. Power generated by this project would tie to the electrical power grid through an interconnection to one of Western's transmission lines.The project website is http://www.blm.gov/az/st/en/prog/energy/wind/mohave.html. Public Comment Opportunities None available at this time. Documents Available for Download Draft EIS posted at http://www.blm.gov/az/st/en/prog/energy/wind/mohave/reports/DEIS.html.

219

Santa Clara County - Green Building Policy for County Government Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Building Policy for County Government Green Building Policy for County Government Buildings Santa Clara County - Green Building Policy for County Government Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Water Heating Program Info State California Program Type Energy Standards for Public Buildings Provider Santa Clara County Executive's Office In February 2006, the Santa Clara County Board of Supervisors approved a Green Building Policy for all county-owned or leased buildings. The standards were revised again in September 2009. All new buildings over 5,000 square feet are required to meet LEED Silver

220

Property:Building/County | Open Energy Information  

Open Energy Info (EERE)

County County Jump to: navigation, search This is a property of type Page. County Pages using the property "Building/County" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + Stockholm County, Sweden + Sweden Building 05K0002 + Stockholm County, Sweden + Sweden Building 05K0003 + Stockholm County, Sweden + Sweden Building 05K0004 + Stockholm County, Sweden + Sweden Building 05K0005 + Stockholm County, Sweden + Sweden Building 05K0006 + Stockholm County, Sweden + Sweden Building 05K0007 + Stockholm County, Sweden + Sweden Building 05K0008 + Stockholm County, Sweden + Sweden Building 05K0009 + Stockholm County, Sweden + Sweden Building 05K0010 + Stockholm County, Sweden + Sweden Building 05K0011 + Stockholm County, Sweden +

Note: This page contains sample records for the topic "kemper county igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Optimal control system design of an acid gas removal unit for an IGCC power plants with CO2 capture  

Science Conference Proceedings (OSTI)

Future IGCC plants with CO{sub 2} capture should be operated optimally in the face of disturbances without violating operational and environmental constraints. To achieve this goal, a systematic approach is taken in this work to design the control system of a selective, dual-stage Selexol-based acid gas removal (AGR) unit for a commercial-scale integrated gasification combined cycle (IGCC) power plant with pre-combustion CO{sub 2} capture. The control system design is performed in two stages with the objective of minimizing the auxiliary power while satisfying operational and environmental constraints in the presence of measured and unmeasured disturbances. In the first stage of the control system design, a top-down analysis is used to analyze degrees of freedom, define an operational objective, identify important disturbances and operational/environmental constraints, and select the control variables. With the degrees of freedom, the process is optimized with relation to the operational objective at nominal operation as well as under the disturbances identified. Operational and environmental constraints active at all operations are chosen as control variables. From the results of the optimization studies, self-optimizing control variables are identified for further examination. Several methods are explored in this work for the selection of these self-optimizing control variables. Modifications made to the existing methods will be discussed in this presentation. Due to the very large number of candidate sets available for control variables and due to the complexity of the underlying optimization problem, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel Computing® toolbox from Mathworks®. The second stage is a bottom-up design of the control layers used for the operation of the process. First, the regulatory control layer is designed followed by the supervisory control layer. Finally, an optimization layer is designed. In this paper, the proposed two-stage control system design approach is applied to the AGR unit for an IGCC power plant with CO{sub 2} capture. Aspen Plus Dynamics® is used to develop the dynamic AGR process model while MATLAB is used to perform the control system design and for implementation of model predictive control (MPC).

Jones, D.; Bhattacharyya, D.; Turton, R.; Zitney, S.

2012-01-01T23:59:59.000Z

222

Integrated Gasification Combined Cycle (IGCC) demonstration project, Polk Power Station -- Unit No. 1. Annual report, October 1993--September 1994  

SciTech Connect

This describes the Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project which will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,300 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 Btu/scf (LHV). The syngas then flows through a high temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product.

NONE

1995-05-01T23:59:59.000Z

223

Property:Incentive/AddlPlaceCounty | Open Energy Information  

Open Energy Info (EERE)

AddlPlaceCounty AddlPlaceCounty Jump to: navigation, search Property Name Incentive/AddlPlaceCounty Property Type Page Pages using the property "Incentive/AddlPlaceCounty" Showing 25 pages using this property. (previous 25) (next 25) A Allegany County Wind Ordinance (Maryland) + Allegany County, Maryland + Anne Arundel County - Solar and Geothermal Equipment Property Tax Credit (Maryland) + Anne Arundel County, Maryland + Anne Arundel County - Wind Ordinance (Maryland) + Anne Arundel County, Maryland + B Baltimore County - Solar and Geothermal Equipment Property Tax Credit (Maryland) + Baltimore County, Maryland + Baltimore County - Wind Ordinance (Maryland) + Baltimore County, Maryland + Brownfield Development Tax Abatements (Alabama) + Alabama + C Calvert County - Wind Ordinance (Maryland) + Calvert County, Maryland +

224

Queen Anne's County- Solar Zoning  

Energy.gov (U.S. Department of Energy (DOE))

Queen Anne's County zoning code allows for ground mounted solar arrays in areas zoned as "open space," "agricultural," and "countryside" districts.

225

Mono County geothermal activity  

SciTech Connect

Three geothermal projects have been proposed or are underway in Mono County, California. The Mammoth/Chance geothermal development project plans to construct a 10-MW geothermal binary power plant which will include 8 production and 3 injection wells. Pacific Lighting Energy Systems is also planning a 10-MW binary power plant consisting of 5 geothermal wells and up to 4 injection wells. A geothermal research project near Mammoth Lakes has spudded a well to provide a way to periodically measure temperature gradient, pressure, and chemistry of the thermal waters and to investigate the space-heating potential of the area in the vicinity of Mammoth Lakes. All three projects are briefly described.

Lyster, D.L.

1986-01-01T23:59:59.000Z

226

Stafford County The Kansas County Profile Report is published annually by the Institute for Policy & Social  

E-Print Network (OSTI)

Stafford County #12;Foreword The Kansas County Profile Report is published annually to http://www.census.gov. Kansas County Profile Stafford County, Kansas Page 1 of 58 Population DECENNIAL on these classification systems, please refer to http://www.census.gov. Kansas County Profile Stafford County, Kansas Page

Peterson, Blake R.

227

Canasawacta Creek Project: Chenango County, New York  

E-Print Network (OSTI)

County Soil and Water Conservation District, the U.S. ArmyCounty Soil and Water Conservation District (SWCD) • ArmyCounty (NY) soil and Water Conservation District, and as an

O’Reilly, Mary; MacEwan, David; Greco, Brandon; Nelson, Debra; Long, George; Rowen, John

2007-01-01T23:59:59.000Z

228

Better Buildings Neighborhood Program: Santa Barbara County,...  

NLE Websites -- All DOE Office Websites (Extended Search)

Santa Barbara County, California to someone by E-mail Share Better Buildings Neighborhood Program: Santa Barbara County, California on Facebook Tweet about Better Buildings...

229

Solar Maid Ventura County | Open Energy Information  

Open Energy Info (EERE)

search Logo: Solar Maid Ventura County Name Solar Maid Ventura County Place Lancaster, California Sector Solar Product Solar Operations and Maintenance Year founded 2012 Number...

230

Broome County Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon Broome County Biomass Facility Jump to: navigation, search Name Broome County Biomass Facility Facility...

231

Craven County Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon Craven County Biomass Facility Jump to: navigation, search Name Craven County Biomass Facility Facility...

232

Davis County Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon Davis County Biomass Facility Jump to: navigation, search Name Davis County Biomass Facility Facility...

233

Placer County Water Agency | Open Energy Information  

Open Energy Info (EERE)

Placer County Water Agency Jump to: navigation, search Name Placer County Water Agency Place California Utility Id 15127 Utility Location Yes Ownership P NERC Location WECC NERC...

234

Program on Technology Innovation: Drying of Low-Rank Coal with Supercritical Carbon Dioxide (CO2) in Integrated Gasification Combined Cycle (IGCC) Plants  

Science Conference Proceedings (OSTI)

This study is part of the Electric Power Research Institute (EPRI) Technology Innovation Program to assess the potential to achieve increased process efficiency and reduced capital cost by drying low-rank coal with supercritical carbon dioxide (SCCO2). This study follows the EPRI report Program on Technology Innovation: Assessment of the Applicability of Drying Low-Rank Coal With Supercritical Carbon Dioxide in IGCC Plants (1016216), which concluded that this system has potential benefits with respect to...

2010-07-30T23:59:59.000Z

235

County\PAAN  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 1998 9, 1998 U.S. Department of Energy Office of General Counsel, GC-52 1000 Independence Avenue, S.W. Washington, D.C. 20585 COMMENTS TO THE PRICE-ANDERSON ACT NOTICE OF INQUIRY To whom it may concern: The attached comments by the Clark County, Nevada Department of Comprehensive Planning, Nuclear Waste Division, are in reference to a Notice of Inquiry (NOI) released by the Department of Energy (DOE) pursuant to Section 170p of the Atomic Energy Act. From the perspective of local government and the public, we support continuing the comprehensive provisions of the Price-Anderson Act. The need to have available sufficient financial resources to ameliorate impacts from nuclear incidents will be increasingly important in the future. The potential for accidents, for example, will be

236

350 City County Building  

Office of Legacy Management (LM)

(. (. - ,- Department of Eilqgy Washington, DC20585 ,. i x \ .The Honorable Wellington E. Webb .' '. ' 350 City County Building / Denver, Colorado 80202 ., ; Dear Mayor Webb: ., ~, Secretary of Energy' Hazel O'Leary has announced's new approach to openness in the Department of Energy,(OOE) and its communications with the public. In support of this initiative, we,are pleased to forward the'enclosed'information related to the former Uhiversity of Denver Research Institute site in your, jurisdiction that performed work for DOE's predecessor,agencies. This' i~nformation'is provided for your.informatibn, use,,and retention.. ; DOE's Formerly Utilized Sites Remedial Action Program (FUSRAP) is responsible for identification of sitesused by DOE's predecessor agencies, determining

237

RECIPIENT:Monroe County  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

p,, '~~' p,, '~~' RECIPIENT:Monroe County u.s. DEP . .\RTlVIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERJl.1INATION PROJECT TITLE: Landfill Gas Utilization Plant Page 1 01'3 STATE: NY Funding Opportunity Announcement Number Pro<:urement Instrument Number NEPA Control Number elD Number CDP DE-EEOO3123 GFO-O003123-001 EE3123 Based on my review of the infonnation concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 4S1.IA), I have made the following determination : ex, EA, EIS APPENDIX AND NUMBER: Description: 85.21 Methane The installation, modification, operation, and removal of commercially available methane gas recovery and gas recovery utilization systems installed within a previously disturbed or developed area on or contiguous to an existlng

238

Heat Integration of the Water-Gas Shift Reaction System for Carbon Sequestration Ready IGCC Process with Chemical Looping  

SciTech Connect

Integrated gasification combined cycle (IGCC) technology has been considered as an important alternative for efficient power systems that can reduce fuel consumption and CO2 emissions. One of the technological schemes combines water-gas shift reaction and chemical-looping combustion as post gasification techniques in order to produce sequestration-ready CO2 and potentially reduce the size of the gas turbine. However, these schemes have not been energetically integrated and process synthesis techniques can be applied to obtain an optimal flowsheet. This work studies the heat exchange network synthesis (HENS) for the water-gas shift reaction train employing a set of alternative designs provided by Aspen energy analyzer (AEA) and combined in a process superstructure that was simulated in Aspen Plus (AP). This approach allows a rigorous evaluation of the alternative designs and their combinations avoiding all the AEA simplifications (linearized models of heat exchangers). A CAPE-OPEN compliant capability which makes use of a MINLP algorithm for sequential modular simulators was employed to obtain a heat exchange network that provided a cost of energy that was 27% lower than the base case. Highly influential parameters for the pos gasification technologies (i.e. CO/steam ratio, gasifier temperature and pressure) were calculated to obtain the minimum cost of energy while chemical looping parameters (oxidation and reduction temperature) were ensured to be satisfied.

Juan M. Salazara; Stephen E. Zitney; Urmila M. Diwekara

2010-01-01T23:59:59.000Z

239

CE IGCC repowering project: Clean Coal II Project. Annual report, 1 January, 1992--31 December, 1992  

SciTech Connect

CE is participating in a $270 million coal gasification combined cycle repowering project that will provide a nominal 60 MW of electricity to City, Water, light and Power (CWL and P) in Springfield, Illinois. The IGCC system will consist of CE`s air-blown entrained flow two-stage gasifier; an advanced hot gas cleanup system; a combustion turbine adapted to use low-Btu gas: and all necessary coal handling equipment. The project is currently in the second budget period of five. The major activities during this budgeted period are: Establishment of an approved for design (AFD) engineering package; development of a detailed cost estimate; resolution of project business issues; CWL and P renewal and replacement activities; and application for environmental air permits. The Project Management Plan was updated. The conceptual design of the plant was completed and a cost and schedule baseline for the project was established previously in Budget Period One. This information was used to establish AFD Process Flow Diagrams, Piping and Instrument Diagrams, Equipment Data Sheets, material take offs, site modification plans and other information necessary to develop a plus or minus 20% cost estimate. Environmental permitting activities are continuing. At the end of 1992 the major activities remaining for Budget Period two is to finish the cost estimate and complete the Continuation Request Documents.

Not Available

1993-12-01T23:59:59.000Z

240

Better Buildings Neighborhood Program: Fayette County, Pennsylvania  

NLE Websites -- All DOE Office Websites (Extended Search)

Fayette Fayette County, Pennsylvania to someone by E-mail Share Better Buildings Neighborhood Program: Fayette County, Pennsylvania on Facebook Tweet about Better Buildings Neighborhood Program: Fayette County, Pennsylvania on Twitter Bookmark Better Buildings Neighborhood Program: Fayette County, Pennsylvania on Google Bookmark Better Buildings Neighborhood Program: Fayette County, Pennsylvania on Delicious Rank Better Buildings Neighborhood Program: Fayette County, Pennsylvania on Digg Find More places to share Better Buildings Neighborhood Program: Fayette County, Pennsylvania on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO

Note: This page contains sample records for the topic "kemper county igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Gratiot County | Open Energy Information  

Open Energy Info (EERE)

Gratiot County Gratiot County Jump to: navigation, search Name Gratiot County Facility Gratiot County Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Ivenergy Developer Ivenergy Energy Purchaser Detroit Edison Location Breckenridge MI Coordinates 43.38009947°, -84.4896698° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.38009947,"lon":-84.4896698,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

242

Power County | Open Energy Information  

Open Energy Info (EERE)

County County Jump to: navigation, search Name Power County Facility Power County Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner CG Power Solutions Developer CG Power Solutions Energy Purchaser PacifiCorp Location American Falls ID Coordinates 42.66135774°, -112.9727554° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.66135774,"lon":-112.9727554,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

243

Geothermal development plan: Yuma county  

DOE Green Energy (OSTI)

One hot spring and 33 wells drilled in the county discharge water at temperatures sufficient for direct-use geothermal applications such as process heat and space heating and cooling. Currently, one industry within the county has been identified which may be able to use geothermal energy for its process heat requirements. Also, a computer simulation model was used to predict geothermal energy on line as a function of time under both private and city-owned utility development of the resource.

White, D.H.

1981-01-01T23:59:59.000Z

244

Geothermal Development Plan: Pima County  

DOE Green Energy (OSTI)

Pima County is located entirely within the Basin and Range physiographic province in which geothermal resources are known to occur. Continued growth as indicated by such factors as population growth, employment and income will require large amounts of energy. It is believed that geothermal energy could provide some of the energy that will be needed. Potential users of geothermal energy within the county are identified.

White, D.H.

1981-01-01T23:59:59.000Z

245

Funding for state, city, and county governments in the state...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funding for state, city, and county governments in the state includes: Funding for state, city, and county governments in the state includes: Funding for state, city, and county...

246

Anderson County, South Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Anderson County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anderson County, South Carolina ASHRAE Standard ASHRAE 169-2006...

247

Androscoggin County, Maine ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Androscoggin County, Maine ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Androscoggin County, Maine ASHRAE Standard ASHRAE 169-2006 Climate...

248

Allegan County, Michigan ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Allegan County, Michigan ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Allegan County, Michigan ASHRAE Standard ASHRAE 169-2006 Climate Zone...

249

Becker County, Minnesota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Becker County, Minnesota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Becker County, Minnesota ASHRAE Standard ASHRAE 169-2006 Climate Zone...

250

Bennington County, Vermont ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Bennington County, Vermont ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bennington County, Vermont ASHRAE Standard ASHRAE 169-2006 Climate...

251

Abbeville County, South Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Abbeville County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Abbeville County, South Carolina ASHRAE Standard ASHRAE 169-2006...

252

Baltimore County, Maryland ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Baltimore County, Maryland ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Baltimore County, Maryland ASHRAE Standard ASHRAE 169-2006 Climate...

253

Barnwell County, South Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Barnwell County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barnwell County, South Carolina ASHRAE Standard ASHRAE 169-2006...

254

Berkshire County, Massachusetts ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Berkshire County, Massachusetts ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Berkshire County, Massachusetts ASHRAE Standard ASHRAE 169-2006...

255

Arapahoe County, Colorado ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Arapahoe County, Colorado ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Arapahoe County, Colorado ASHRAE Standard ASHRAE 169-2006 Climate Zone...

256

Alexander County, North Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Alexander County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alexander County, North Carolina ASHRAE Standard ASHRAE 169-2006...

257

Albemarle County, Virginia ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Albemarle County, Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Albemarle County, Virginia ASHRAE Standard ASHRAE 169-2006 Climate...

258

Alfalfa County, Oklahoma ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Alfalfa County, Oklahoma ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alfalfa County, Oklahoma ASHRAE Standard ASHRAE 169-2006 Climate Zone...

259

Berks County, Pennsylvania ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Berks County, Pennsylvania ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Berks County, Pennsylvania ASHRAE Standard ASHRAE 169-2006 Climate...

260

Bayfield County, Wisconsin ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Bayfield County, Wisconsin ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bayfield County, Wisconsin ASHRAE Standard ASHRAE 169-2006 Climate...

Note: This page contains sample records for the topic "kemper county igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Augusta County, Virginia ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Augusta County, Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Augusta County, Virginia ASHRAE Standard ASHRAE 169-2006 Climate Zone...

262

Alamance County, North Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Alamance County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alamance County, North Carolina ASHRAE Standard ASHRAE 169-2006...

263

Archuleta County, Colorado ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Archuleta County, Colorado ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Archuleta County, Colorado ASHRAE Standard ASHRAE 169-2006 Climate...

264

Allendale County, South Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Allendale County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Allendale County, South Carolina ASHRAE Standard ASHRAE 169-2006...

265

Barron County, Wisconsin ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Barron County, Wisconsin ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barron County, Wisconsin ASHRAE Standard ASHRAE 169-2006 Climate Zone...

266

Baltimore City County, Maryland ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Baltimore City County, Maryland ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Baltimore City County, Maryland ASHRAE Standard ASHRAE 169-2006...

267

Berkeley County, South Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Berkeley County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Berkeley County, South Carolina ASHRAE Standard ASHRAE 169-2006...

268

Alameda County, California ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Edit History Facebook icon Twitter icon Alameda County, California ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alameda County,...

269

Bedford County, Tennessee ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Bedford County, Tennessee ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bedford County, Tennessee ASHRAE Standard ASHRAE 169-2006 Climate Zone...

270

Bedford City County, Virginia ASHRAE 169-2006 Climate Zone |...  

Open Energy Info (EERE)

Bedford City County, Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bedford City County, Virginia ASHRAE Standard ASHRAE 169-2006...

271

Beaufort County, North Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

History Facebook icon Twitter icon Beaufort County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Beaufort County, North...

272

Audrain County, Missouri ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Audrain County, Missouri ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Audrain County, Missouri ASHRAE Standard ASHRAE 169-2006 Climate Zone...

273

Anderson County, Kentucky ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Anderson County, Kentucky ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anderson County, Kentucky ASHRAE Standard ASHRAE 169-2006 Climate Zone...

274

Ballard County, Kentucky ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Ballard County, Kentucky ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Ballard County, Kentucky ASHRAE Standard ASHRAE 169-2006 Climate Zone...

275

Alleghany County, North Carolina ASHRAE 169-2006 Climate Zone...  

Open Energy Info (EERE)

Alleghany County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alleghany County, North Carolina ASHRAE Standard ASHRAE 169-2006...

276

Aitkin County, Minnesota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Aitkin County, Minnesota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Aitkin County, Minnesota...

277

Barbour County, West Virginia ASHRAE 169-2006 Climate Zone |...  

Open Energy Info (EERE)

Barbour County, West Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barbour County, West Virginia ASHRAE Standard ASHRAE 169-2006...

278

Beltrami County, Minnesota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Beltrami County, Minnesota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Beltrami County, Minnesota ASHRAE Standard ASHRAE 169-2006 Climate...

279

Ashland County, Wisconsin ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Ashland County, Wisconsin ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Ashland County, Wisconsin ASHRAE Standard ASHRAE 169-2006 Climate Zone...

280

Belknap County, New Hampshire ASHRAE 169-2006 Climate Zone |...  

Open Energy Info (EERE)

Belknap County, New Hampshire ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Belknap County, New Hampshire ASHRAE Standard ASHRAE 169-2006...

Note: This page contains sample records for the topic "kemper county igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Accomack County, Virginia ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Accomack County, Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Accomack County, Virginia ASHRAE Standard ASHRAE 169-2006 Climate Zone...

282

Bertie County, North Carolina ASHRAE 169-2006 Climate Zone |...  

Open Energy Info (EERE)

Bertie County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bertie County, North Carolina ASHRAE Standard ASHRAE 169-2006...

283

Arlington County, Virginia ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Arlington County, Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Arlington County, Virginia ASHRAE Standard ASHRAE 169-2006 Climate...

284

Asotin County, Washington ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Asotin County, Washington ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Asotin County, Washington ASHRAE Standard ASHRAE 169-2006 Climate Zone...

285

Bamberg County, South Carolina ASHRAE 169-2006 Climate Zone ...  

Open Energy Info (EERE)

Bamberg County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bamberg County, South Carolina ASHRAE Standard ASHRAE 169-2006...

286

Fairfax County - Green Power Purchase (Virginia) | Open Energy...  

Open Energy Info (EERE)

2010), wind power accounted for 10% of the general county's annual electricity consumption (and hence, the county met their stated goal of 10% by 2010). Fairfax County does...

287

111th Congressional Districts and Counties | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Districts and Counties Dataset Summary Description This dataset contains a nationwide inventory of all congressional districts and the counties or pieces of counties associated...

288

Winnebago County Landfill Gas Biomass Facility | Open Energy...  

Open Energy Info (EERE)

Winnebago County Landfill Gas Biomass Facility Jump to: navigation, search Name Winnebago County Landfill Gas Biomass Facility Facility Winnebago County Landfill Gas Sector Biomass...

289

PP-118 Hill County Electric Cooperative Inc | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

18 Hill County Electric Cooperative Inc PP-118 Hill County Electric Cooperative Inc Presidential permit authorizing Hill County Electric Cooperative Inc to construct, operate, and...

290

B  

NLE Websites -- All DOE Office Websites (Extended Search)

(2011MMBtu) Source: EIA's Annual Energy Outlook 2013 Reference Case, 2008-2040 Natural Gas Coal DOE S upported I GCC D emonstra0on P rojects Southern Company Kemper County...

291

Geothermal development plan: Yuma County  

DOE Green Energy (OSTI)

The Yuma County Area Development Plan evaluated the county-wide market potential for utilizing geothermal energy. The study identified four potential geothermal resource areas with temperatures less than 90/sup 0/C (194/sup 0/F), and in addition, two areas are inferred to contain geothermal resources with intermediate (90/sup 0/C to 150/sup 0/C, 194/sup 0/F to 300/sup 0/F) temperature potential. The resource areas are isolated, although one resource area is located near Yuma, Arizona. One resource site is inferred to contain a hot dry rock resource. Anticipated population growth in the county is expected to be 2 percent per year over the next 40 years. The primary employment sector is agriculture, though some light industry is located in the county. Water supplies are found to be adequate to support future growth without advese affect on agriculture. Six firms were found in Yuma County which may be able to utilize geothermal energy for process heat needs. In addition, several agricultural processors were found, concentrated in citrus processing and livestock raising. Geothermal energy utilization projections suggest that by the year 2000, geothermal energy may economically provide the energy equivalent of 53,000 barrels of oil per year to the industrial sector if developed privately. Geothermal utilization projections increase to 132,000 barrels of oil per year by 2000 if a municipal utility developed the resource.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

292

State estimation of an acid gas removal (AGR) plant as part of an integrated gasification combined cycle (IGCC) plant with CO2 capture  

Science Conference Proceedings (OSTI)

An accurate estimation of process state variables not only can increase the effectiveness and reliability of process measurement technology, but can also enhance plant efficiency, improve control system performance, and increase plant availability. Future integrated gasification combined cycle (IGCC) power plants with CO2 capture will have to satisfy stricter operational and environmental constraints. To operate the IGCC plant without violating stringent environmental emission standards requires accurate estimation of the relevant process state variables, outputs, and disturbances. Unfortunately, a number of these process variables cannot be measured at all, while some of them can be measured, but with low precision, low reliability, or low signal-to-noise ratio. As a result, accurate estimation of the process variables is of great importance to avoid the inherent difficulties associated with the inaccuracy of the data. Motivated by this, the current paper focuses on the state estimation of an acid gas removal (AGR) process as part of an IGCC plant with CO2 capture. This process has extensive heat and mass integration and therefore is very suitable for testing the efficiency of the designed estimators in the presence of complex interactions between process variables. The traditional Kalman filter (KF) (Kalman, 1960) algorithm has been used as a state estimator which resembles that of a predictor-corrector algorithm for solving numerical problems. In traditional KF implementation, good guesses for the process noise covariance matrix (Q) and the measurement noise covariance matrix (R) are required to obtain satisfactory filter performance. However, in the real world, these matrices are unknown and it is difficult to generate good guesses for them. In this paper, use of an adaptive KF will be presented that adapts Q and R at every time step of the algorithm. Results show that very accurate estimations of the desired process states, outputs or disturbances can be achieved by using the adaptive KF.

Paul, P.; Bhattacharyya, D.; Turton, R.; Zitney, S.

2012-01-01T23:59:59.000Z

293

RECIPIENT:Lake County, FL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake County, FL Lake County, FL u.s. DEPARTIIIEN T OF ENERGY EERE PROJECT MANAGEMENT CEN T ER NEPA DETERlIJJNATION PROJECf TITLE: Lake County, FL EECBG SOW (S) Page lof2 STATE: FL Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Numbcr CID Numbtr OE·FOA-OOOOO13 DE·EE00Q0786.001 0 Based on my review of the information concerning the proposed adion, as NEPA Compliance Officer (authorized undtr DOE Order 451.IA), I have made the following determination: ex. EA, EIS APPENDIX AND NUMBER: Description: 65.1 Actions to conserve energy, demonstrate potential energy conserva tion, and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful substances. These actions may involve financial and technical

294

Geothermal development plan: Maricopa county  

DOE Green Energy (OSTI)

Maricopa county is the area of Arizona receiving top priority since it contains over half of the state's population. The county is located entirely within the Basin and Range physiographic region in which geothermal resources are known to occur. Several approaches were taken to match potential users to geothermal resources. One approach involved matching some of the largest facilities in the county to nearby geothermal resources. Other approaches involved identifying industrial processes whose heat requirements are less than the average assessed geothermal reservoir temperature of 110/sup 0/C (230/sup 0/F). Since many of the industries are located on or near geothermal resources, geothermal energy potentially could be adapted to many industrial processes.

White, D.H.

1981-01-01T23:59:59.000Z

295

EIS-0441: Mohave County Wind Farm Project, Mohave County, Arizona  

Energy.gov (U.S. Department of Energy (DOE))

This EIS, prepared by the Bureau of Land Management with DOE’s Western Area Power Administration as a cooperating agency, evaluated the environmental impacts of a proposed wind energy project on public lands in Mohave County, Arizona. Power generated by this project would tie to the electrical power grid through an interconnection to one of Western’s transmission lines.

296

Montgomery County, Kentucky: Energy Resources | Open Energy Informatio...  

Open Energy Info (EERE)

County is a county in Kentucky. Its FIPS County Code is 173. It is classified as ASHRAE 169-2006 Climate Zone Number 4 Climate Zone Subtype A. Places in Montgomery County,...

297

Carroll County, Tennessee: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

County is a county in Tennessee. Its FIPS County Code is 017. It is classified as ASHRAE 169-2006 Climate Zone Number 4 Climate Zone Subtype A. Places in Carroll County,...

298

Knox County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Knox County is a county in Kentucky. Its FIPS County Code is 121. It is classified as ASHRAE 169-2006 Climate Zone Number 4 Climate Zone Subtype A. Places in Knox County, Kentucky...

299

Better Buildings Partners: Rutland County, Vermont  

NLE Websites -- All DOE Office Websites (Extended Search)

Rutland County, Vermont Rutland County, Vermont H.E.A.T. Squad Warms Homeowners up to Energy Efficiency Photo of an ornate historical building, with flowering trees beside it. A...

300

Ashe County- Wind Energy System Ordinance  

Energy.gov (U.S. Department of Energy (DOE))

In 2007 Ashe County adopted a wind ordinance to regulate the use of wind-energy systems in unincorporated areas of the county and to describe the conditions by which a permit for installing such a...

Note: This page contains sample records for the topic "kemper county igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Miami Dade County Public School Financing Profile  

NLE Websites -- All DOE Office Websites (Extended Search)

Profile of Success Miami-Dade County Public Schools Miami-Dade County Public Schools-Stats at a Glance Finance Vehicle Tax-exempt lease purchase agreement (via master lease)...

302

California Energy Commission - Electricity Consumption by County  

Open Energy Info (EERE)

County (2006-2009) Electricity consumption data from the California Energy Commission sorted by County for Residential and Non-residential from 2006 to 2009.


...

303

Baltimore County - Wind Ordinance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Baltimore County - Wind Ordinance Eligibility Agricultural Residential Savings For Wind Buying & Making Electricity Program Information Maryland Program Type Siting and...

304

San Diego County - Wind Regulations (California) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Regulations (California) San Diego County - Wind Regulations (California) < Back Eligibility Commercial Industrial Residential Savings Category Wind Buying & Making...

305

Sullivan County, Pennsylvania: Energy Resources | Open Energy...  

Open Energy Info (EERE)

Climate Zone Subtype A. Places in Sullivan County, Pennsylvania Dushore, Pennsylvania Eagles Mere, Pennsylvania Forksville, Pennsylvania Laporte, Pennsylvania Retrieved from...

306

San Bernardino County - Green Building Incentive | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

County's http:www.sbcounty.govgreencountysbbuildersgreenbuilding.aspx Green Building program will receive accelerated plan review, priority inspections, design...

307

Aspen & Pitkin County - Renewable Energy Mitigation Program ...  

Open Energy Info (EERE)

Colorado Name Aspen & Pitkin County - Renewable Energy Mitigation Program Incentive Type Building Energy Code Applicable Sector Commercial, Residential Eligible Technologies...

308

Marin County - Green Building Requirements | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marin County - Green Building Requirements Marin County - Green Building Requirements Eligibility Commercial Construction Residential Savings For Heating & Cooling Home...

309

Madison County - Wind Energy Systems Ordinance | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Madison County - Wind Energy Systems Ordinance Madison County - Wind Energy Systems Ordinance < Back Eligibility Agricultural Commercial Industrial Residential Savings Category...

310

Students from Stafford County University of Kansas  

E-Print Network (OSTI)

Page 1 10/10/12 15:23:31 Students from Stafford County Fall 2012 University of Kansas All Campuses Overall counts include students whose permanent residence or last high school attended is in Stafford from Stafford County. In Fall 2012, KU has 11 students from Stafford County: · 10 undergraduate · 1

Peterson, Blake R.

311

Students from Stafford County University of Kansas  

E-Print Network (OSTI)

Page 1 10/17/11 10:19:19 Students from Stafford County Fall 2011 University of Kansas All Campuses Overall counts include students whose permanent residence or last high school attended is in Stafford students from Stafford County. In Fall 2011, KU has 10 students from Stafford County: · 10 undergraduate KU

Peterson, Blake R.

312

SUFFOLK COUNTY DEPARTMENT OF HEALTH SERVICES  

E-Print Network (OSTI)

SUFFOLK COUNTY DEPARTMENT OF HEALTH SERVICES DIVISION OF ENVIRONMENTAL QUALITY ABOVEGROUND OUTDOOR, M.D., M.P.H. Commissioner SUFFOLK COUNTY DEPARTMENT OF HEALTH SERVICES #12;Suffolk County Department of Health Services' Aboveground Outdoor Tank and Associated Piping Design Standards _____________________ 1

Homes, Christopher C.

313

Geothermal development plan: Pima County  

DOE Green Energy (OSTI)

The Pima County Area Development evaluated the county-wide market potential for utilizing geothermal energy. The study identified four potential geothermal resource areas with temperatures less than 100{sup 0}C (212{sup 0}F), and in addition, one area is identified as having a temperature of 147{sup 0}F (297{sup 0}F). Geothermal resources are found to occur in Tucson where average population growth rates of two to three percent per year are expected over the next 40 years. Rapid growth in the manufacturing sector and the existence of major copper mines provide opportunities for the direct utilization of geothermal energy. However, available water supplies are identified as a major constraint to projected growth. The study also includes a regional energy analysis, future predictions for energy consumption and energy prices. A major section of the report is aimed at identifying potential geothermal users in Pima County and providing projections of maximum economic geothermal utilization. The study identifies 115 firms in 32 industrial classes that have some potential for geothermal use. In addition, 26 agribusiness firms were found in the county.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

314

County Wind Ordinance Standards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

County Wind Ordinance Standards County Wind Ordinance Standards County Wind Ordinance Standards < Back Eligibility Agricultural Commercial Industrial Local Government Residential Savings Category Wind Buying & Making Electricity Program Info State California Program Type Solar/Wind Permitting Standards Provider California Energy Commission [http://www.leginfo.ca.gov/pub/09-10/bill/asm/ab_0001-0050/ab_45_bill_200... Assembly Bill 45] of 2009 authorized counties to adopt ordinances to provide for the installation of small wind systems (50 kW or smaller) outside urbanized areas but within the county's jurisdiction. The bill also addressed specific aspects of a typical wind ordinance and established the limiting factors by which a county's wind ordinance can be no more restrictive. Counties may freely make more lenient ordinances, but AB 45

315

Eagle County - Eagle County Efficient Building Code (ECO-Green Build) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Eagle County - Eagle County Efficient Building Code (ECO-Green Eagle County - Eagle County Efficient Building Code (ECO-Green Build) Eagle County - Eagle County Efficient Building Code (ECO-Green Build) < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Colorado Program Type Building Energy Code Provider Eagle County In an effort to reduce county-wide energy consumption and improve the environment, Eagle County established their own efficient building code (ECO-Green Build) which applies to all new construction and renovations/additions over 50% of the existing floor area of single-family and multifamily residences, and commercial buildings.

316

R[CIPIENT:Loudoun County  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Loudoun County Loudoun County u.s. DEPARTl\ IENT OF ENER GY EERE PROJECT MANAG EMENT CENTER NEPA DETERl\lINATION PROJEcr TITLE: EECBG Funded Projects - SOW (S) Page I of2 STATE: VA Funding Opportunity Announcement Number Pr(l(urement Instrument Number NEPA Control Number elD Number DE-EEOO00868 0 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 45t.IA), I have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: B5.1 Actions to conserve energy, demonstrate potential energy conservation, and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful substances. These actions may involve financial and technical assistance to individuals (such as builders, owners, consultants, designers), organizations (such as utilities), and state

317

R[CIPIENT:Pima County  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pima County Pima County u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERlHINATION PROJECf TITLE: Activity#13 Garage and Shops Page 1 01'2 STATE: AZ. Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number em Number DE-FOA-OOOOD13 DE-EEOOO08S2 GFO-O000852-OO8 0 Based on my review orlhe information concerning the proposed action, as NEPA CompliJmce Officer (authorized under DOE Order 45I.1A), I have made the following determination: ex, EA, EIS APPENDIX AND NUMBER: Description: 85.1 Actions to conserve energy, demonstrate potential energy conservation, and promote energy-efficiency that do not increase the indoor concentrations of polentiatly harmful substances. These actions may involve financial and technical

318

Benton County | Open Energy Information  

Open Energy Info (EERE)

Benton County Benton County Place Tennessee Utility Id 1578 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GSA 1 General Power Commercial GSA 2 General Power Commercial GSA 3 General Power Commercial GSB Industrial General Power Service- TDGSA-VULCAN Industrial Outdoor Lighting Service Lighting RS Residential Residential SMSB Industrial SMSC Industrial SMSD Industrial WS-DE Commercial WS-MTOU Wholesale Average Rates Residential: $0.1030/kWh Commercial: $0.1110/kWh Industrial: $0.0875/kWh References

319

Dynamic simulation and load-following control of an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture  

Science Conference Proceedings (OSTI)

Load-following control of future integrated gasification combined cycle (IGCC) plants with pre-combustion CO{sub 2} capture is expected to be far more challenging as electricity produced by renewable energy is connected to the grid and strict environmental limits become mandatory requirements. To study control performance during load following, a plant-wide dynamic simulation of a coal-fed IGCC plant with CO{sub 2} capture has been developed. The slurry-fed gasifier is a single-stage, downward-fired, oxygen-blown, entrained-flow type with a radiant syngas cooler (RSC). The syngas from the outlet of the RSC goes to a scrubber followed by a two-stage sour shift process with inter-stage cooling. The acid gas removal (AGR) process is a dual-stage physical solvent-based process for selective removal of H{sub 2}S in the first stage and CO{sub 2} in the second stage. Sulfur is recovered using a Claus unit with tail gas recycle to the AGR. The recovered CO{sub 2} is compressed by a split-shaft multistage compressor and sent for sequestration after being treated in an absorber with triethylene glycol for dehydration. The clean syngas is sent to two advanced “F”-class gas turbines (GTs) partially integrated with an elevated-pressure air separation unit. A subcritical steam cycle is used for heat recovery steam generation. A treatment unit for the sour water strips off the acid gases for utilization in the Claus unit. The steady-state model developed in Aspen Plus® is converted to an Aspen Plus Dynamics® simulation and integrated with MATLAB® for control studies. The results from the plant-wide dynamic model are compared qualitatively with the data from a commercial plant having different configuration, operating condition, and feed quality than what has been considered in this work. For load-following control, the GT-lead with gasifier-follow control strategy is considered. A modified proportional–integral–derivative (PID) control is considered for the syngas pressure control. For maintaining the desired CO{sub 2} capture rate while load-following, a linear model predictive controller (LMPC) is implemented in MATLAB®. A combined process and disturbance model is identified by considering a number of model forms and choosing the final model based on an information-theoretic criterion. The performance of the LMPC is found to be superior to the conventional PID control for maintaining CO{sub 2} capture rates in an IGCC power plant while load following.

Bhattacharyya, D,; Turton, R.; Zitney, S.

2012-01-01T23:59:59.000Z

320

Rigorous Kinetic Modeling, Optimization, and Operability Studies of a Modified Claus Unit for an Integrated Gasification Combined Cycle (IGCC) Power Plant with CO{sub 2} Capture  

Science Conference Proceedings (OSTI)

The modified Claus process is one of the most common technologies for sulfur recovery from acid gas streams. Important design criteria for the Claus unit, when part of an Integrated Gasification Combined Cycle (IGCC) power plant, are the ability to destroy ammonia completely and the ability to recover sulfur thoroughly from a relatively low purity acid gas stream without sacrificing flame stability. Because of these criteria, modifications to the conventional process are often required, resulting in a modified Claus process. For the studies discussed here, these modifications include the use of a 95% pure oxygen stream as the oxidant, a split flow configuration, and the preheating of the feeds with the intermediate pressure steam generated in the waste heat boiler (WHB). In the future, for IGCC plants with CO{sub 2} capture, the Claus unit must satisfy emission standards without sacrificing the plant efficiency in the face of typical disturbances of an IGCC plant, such as rapid change in the feed flow rates due to load-following and wide changes in the feed composition because of changes in the coal feed to the gasifier. The Claus unit should be adequately designed and efficiently operated to satisfy these objectives. Even though the Claus process has been commercialized for decades, most papers concerned with the modeling of the Claus process treat the key reactions as equilibrium reactions. Such models are validated by manipulating the temperature approach to equilibrium for a set of steady-state operating data, but they are of limited use for dynamic studies. One of the objectives of this study is to develop a model that can be used for dynamic studies. In a Claus process, especially in the furnace and the WHB, many reactions may take place. In this work, a set of linearly independent reactions has been identified, and kinetic models of the furnace flame and anoxic zones, WHB, and catalytic reactors have been developed. To facilitate the modeling of the Claus furnace, a four-stage method was devised so as to determine which set of linearly independent reactions would best describe the product distributions from available plant data. Various approaches are taken to derive the kinetic rate expressions, which are either missing in the open literature or found to be inconsistent. A set of plant data is used for optimal estimation of the kinetic parameters. The final model agrees well with the published plant data. Using the developed kinetics models of the Claus reaction furnace, WHB, and catalytic stages, two optimization studies are carried out. The first study shows that there exists an optimal steam pressure generated in the WHB that balances hydrogen yield, oxygen demand, and power generation. In the second study, it is shown that an optimal H{sub 2}S/SO{sub 2} ratio exists that balances single-pass conversion, hydrogen yield, oxygen demand, and power generation. In addition, an operability study has been carried out to examine the operating envelope in which both the H{sub 2}S/SO{sub 2} ratio and the adiabatic flame temperature can be controlled in the face of disturbances typical for the operation of an IGCC power plant with CO{sub 2} capture. Impact of CO{sub 2} capture on the Claus process has also been discussed.

Jones, Dustin; Bhattacharyya, Debangsu; Turton, Richard; Zitney, Stephen E

2011-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "kemper county igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Rigorous Kinetic Modeling and Optimization Study of a Modified Claus Unit for an Integrated Gasification Combined Cycle (IGCC) Power Plant with CO{sub 2} Capture  

SciTech Connect

The modified Claus process is one of the most common technologies for sulfur recovery from acid gas streams. Important design criteria for the Claus unit, when part of an Integrated Gasification Combined Cycle (IGCC) power plant, are the ability to destroy ammonia completely and the ability to recover sulfur thoroughly from a relatively low purity acid gas stream without sacrificing flame stability. Because of these criteria, modifications to the conventional process are often required, resulting in a modified Claus process. For the studies discussed here, these modifications include the use of a 95% pure oxygen stream as the oxidant, a split flow configuration, and the preheating of the feeds with the intermediate pressure steam generated in the waste heat boiler (WHB). In the future, for IGCC plants with CO{sub 2} capture, the Claus unit must satisfy emission standards without sacrificing the plant efficiency in the face of typical disturbances of an IGCC plant, such as rapid change in the feed flow rates due to load-following and wide changes in the feed composition because of changes in the coal feed to the gasifier. The Claus unit should be adequately designed and efficiently operated to satisfy these objectives. Even though the Claus process has been commercialized for decades, most papers concerned with the modeling of the Claus process treat the key reactions as equilibrium reactions. Such models are validated by manipulating the temperature approach to equilibrium for a set of steady-state operating data, but they are of limited use for dynamic studies. One of the objectives of this study is to develop a model that can be used for dynamic studies. In a Claus process, especially in the furnace and the WHB, many reactions may take place. In this work, a set of linearly independent reactions has been identified, and kinetic models of the furnace flame and anoxic zones, WHB, and catalytic reactors have been developed. To facilitate the modeling of the Claus furnace, a four-stage method was devised so as to determine which set of linearly independent reactions would best describe the product distributions from available plant data. Various approaches are taken to derive the kinetic rate expressions, which are either missing in the open literature or found to be inconsistent. A set of plant data is used for optimal estimation of the kinetic parameters. The final model agrees well with the published plant data. Using the developed kinetics models of the Claus reaction furnace, WHB, and catalytic stages, two optimization studies are carried out. The first study shows that there exists an optimal steam pressure generated in the WHB that balances hydrogen yield, oxygen demand, and power generation. In the second study, it is shown that an optimal H{sub 2}S/SO{sub 2} ratio exists that balances single-pass conversion, hydrogen yield, oxygen demand, and power generation. In addition, an operability study has been carried out to examine the operating envelope in which both the H{sub 2}S/SO{sub 2} ratio and the adiabatic flame temperature can be controlled in the face of disturbances typical for the operation of an IGCC power plant with CO{sub 2} capture. Impact of CO{sub 2} capture on the Claus process has also been discussed.

Jones, Dustin; Bhattacharyya, Debangsu; Turton, Richard; Zitney, Stephen E.

2012-02-08T23:59:59.000Z

322

Modeling and optimization of a modified claus process as part of an integrted gasification combined cycle (IGCC) power plant with CO2 capture  

DOE Green Energy (OSTI)

The modified Claus process is one of the most common technologies for sulfur recovery from acid gas streams. Important design criteria for the Claus unit, when part of an Integrated Gasification Combined Cycle (IGCC) power plant, are the ability to destroy ammonia completely and recover sulfur thoroughly from a relatively low purity acid gas stream without sacrificing flame stability. Due to these criteria, modifications are often required to the conventional process, resulting in a modified Claus process. For the studies discussed here, these modifications include the use of a 95% pure oxygen stream as the oxidant, a split flow configuration, and the preheating of the feeds with the intermediate pressure steam generated in the waste heat boiler (WHB). In the future, for IGCC plants with CO2 capture, the Claus unit must satisfy emission standards without sacrificing the plant efficiency in the face of typical disturbances of an IGCC plant such as rapid change in the feed flowrates due to load-following and wide changes in the feed composition because of changes in the coal feed to the gasifier. The Claus unit should be adequately designed and efficiently operated to satisfy these objectives. Even though the Claus process has been commercialized for decades, most papers concerned with the modeling of the Claus process treat the key reactions as equilibrium reactions. Such models are validated by manipulating the temperature approach to equilibrium for a set of steady-state operating data, but are of limited use for dynamic studies. One of the objectives of this study is to develop a model that can be used for dynamic studies. In a Claus process, especially in the furnace and the WHB, many reactions may take place. In this work, a set of linearly independent reactions has been identified and kinetic models of the furnace flame and anoxic zones, WHB, and catalytic reactors have been developed. To facilitate the modeling of the Claus furnace, a four-stage method was devised so as to determine which set of linearly independent reactions would best describe the product distributions from available plant data. Various approaches are taken to derive the kinetic rate expressions which are either missing in the open literature or found to be inconsistent. A set of plant data is used for optimal estimation of the kinetic parameters. The final model agrees well with the published plant data. Using the developed kinetics models of the Claus reaction furnace, WHB, and catalytic stages, two optimization studies are carried out. The first study shows that there exists an optimal steam pressure generated in the WHB that balances hydrogen yield, oxygen demand, and power generation. In the second study, it is shown that an optimal H2S/SO2 ratio exists that balances single-pass conversion, hydrogen yield, oxygen demand, and power generation. In addition, an operability study has been carried out to examine the operating envelope in which both H2S/SO2 ratio and adiabatic flame temperature can be controlled in the face of disturbances typical for the operation of an IGCC power plant with CO2 capture. Impact of CO2 capture on the Claus process has also been discussed.

Jones, D.; Bhattacharyya, D.; Turton, R.; Zitney, S.

2011-01-01T23:59:59.000Z

323

EIS-0461: Hyde County Wind Energy Center Project, Hyde and Buffalo...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

here Home EIS-0461: Hyde County Wind Energy Center Project, Hyde and Buffalo Counties, South Dakota EIS-0461: Hyde County Wind Energy Center Project, Hyde and Buffalo Counties,...

324

Franklin County Wind LLC | Open Energy Information  

Open Energy Info (EERE)

Franklin County Wind LLC Franklin County Wind LLC Facility Franklin County Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Franklin County Wind LLC Developer Franklin County Wind LLC Energy Purchaser Merchant (MISO) Location Franklin County IA Coordinates 42.61481487°, -93.36564124° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.61481487,"lon":-93.36564124,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

325

Talbot County DPW | Open Energy Information  

Open Energy Info (EERE)

Talbot County DPW Talbot County DPW Jump to: navigation, search Name Talbot County DPW Facility Talbot County DPW Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Talbot County DPW Energy Purchaser Talbot County DPW Location Easton MD Coordinates 38.8182443°, -76.0331583° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8182443,"lon":-76.0331583,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

326

Montgomery County - Green Power Purchasing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Montgomery County - Green Power Purchasing Montgomery County - Green Power Purchasing Montgomery County - Green Power Purchasing < Back Eligibility Local Government Savings Category Bioenergy Buying & Making Electricity Solar Water Wind Program Info State Maryland Program Type Green Power Purchasing Provider Montgomery County In October 2000, a group six county agencies, consisting of Montgomery County, Montgomery County Public Schools, Montgomery County Housing Opportunities Commission, Montgomery College, the Washington Suburban Sanitary Commission, and the Maryland-National Capital Park and Planning Commission, began purchasing power on a competitive basis. In March 2003, the county's energy policy was amended to incorporate the purchase of renewable energy and to expand energy-efficiency efforts. This resolution

327

Building Green in Greensburg: Kiowa County Courthouse  

Energy.gov (U.S. Department of Energy (DOE))

This poster highlights energy efficiency, renewable energy, and sustainable features of the renovated high-performing Kiowa County Courthouse building in Greensburg, Kansas.

328

Aspen & Pitkin County - Renewable Energy Mitigation Program ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buying & Making Electricity Water Heating Wind Program Information Colorado Program Type Building Energy Code The City of Aspen and Pitkin County have adopted the 2009...

329

County Land Preservation and Use Commissions (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

This ordinance creates Land Preservation and Use Commissions in each county to provide for the orderly use and development of land, to protect agricultural land from nonagricultural development,...

330

Charles County - Agricultural Preservation Districts - Renewable...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Type Siting & Permitting Charles County provides that producing energy "from solar, wind, biomass, and farm waste and residue crops" is a permitted agricultural use in areas...

331

Clallam County PUD- Residential Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Clallam County PUD offers a variety of rebates for residential customers for energy efficiency improvements. Eligible measures and incentives include window upgrades, insulation, air and duct...

332

Biostratigraphy of Jonah quadrangle, Williamson County, Texas.  

E-Print Network (OSTI)

??This paper presents a zonation of the Austin chalk and the Burditt marl, divisions of the Austin group in the Jonah quadrangle, Williamson County, Texas.… (more)

Marks, Edward, 1926-

2011-01-01T23:59:59.000Z

333

Forrest County Geothermal Energy Project Geothermal Project ...  

Open Energy Info (EERE)

of replacing the existing air cooled chiller with geothermal water to water chillers for energy savings at the Forrest County Multi Purpose Center. The project will also replace...

334

Humboldt County RESCO Project | Open Energy Information  

Open Energy Info (EERE)

RESCO Project RESCO Project Jump to: navigation, search Name Humboldt County RESCO Project Agency/Company /Organization Redwood Coast Energy Authority Focus Area People and Policy, Renewable Energy, Biomass - Anaerobic Digestion, Biomass - Biofuels, Biomass, Biomass - Biomass Combustion, Biomass - Biomass Gasification, Biomass - Biomass Pyrolysis, Biomass - Landfill Gas, Solar, - Solar Pv, Biomass - Waste To Energy, Wind Phase Create a Vision Resource Type Technical report Availability Free - Publicly Available Publication Date 4/1/2010 Website http://cal-ires.ucdavis.edu/fi Locality Humboldt County References Humboldt County RESCO Project[1] Contents 1 Overview 2 Highlights 3 Environmental Aspects 4 Related Tools 5 References Overview This introductory document outline's Humboldt county's vision for a local

335

Geothermal development plan: Pinal county  

DOE Green Energy (OSTI)

Wells drilled in the county provide evidence of geothermal energy sufficient for process heat and space heating and cooling applications. Annual energy consumption was estimated for industries whose process heat requirements are less than 105/sup 0/C (221/sup 0/F). This information was then used to model the introduction of geothermal energy into the process heat market. Also, agriculture and agribusiness industries were identified. Many of these are located on or near a geothermal resource and might be able to utilize geothermal energy in their operations.

White, D.H.

1981-01-01T23:59:59.000Z

336

Geothermal development plan: Pinal County  

SciTech Connect

The Pinal County Area Development Plan evaluated the county-wide market potential for utilizing geothermal energy. The study identified three suspected geothermal resource areas with potential 70/sup 0/C (158/sup 0/F) temperatures. In addition, one geothermal test well near Coolidge encountered bottom hole temperatures of 120/sup 0/C (248/sup 0/F) at a depth of 2440 m (8005 ft) and produced 18.3 l/sec (290 gpm). Geothermal resources are found to occur near population centers where average growth rates of 1.5% to 2% per year are expected over the next 40 years. Mining, agriculture and manufacturing are all important sectors of the regional economy and provide opportunities for direct utilization of geothermal energy. A regional energy use analysis includes energy use projections and regional energy price information. Agriculture accounts for 95% of the annual water consumption and predicted decreases in water availability will result in less future agricultural activity. The analysis contains a detailed section matching geothermal resources to potential industrial users. Fourteen firms in 10 industrial classes were identified as having some potential for geothermal energy use. In addition, 25 agricultural firms were identified as having some potential for geothermal use, including the prepared feeds industry.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

337

Richmond City County, Virginia: Energy Resources | Open Energy...  

Open Energy Info (EERE)

City County is a county in Virginia. Its FIPS County Code is 760. It is classified as ASHRAE 169-2006 Climate Zone Number 4 Climate Zone Subtype A. Retrieved from "http:...

338

Bristol County, Rhode Island: Energy Resources | Open Energy...  

Open Energy Info (EERE)

County is a county in Rhode Island. Its FIPS County Code is 001. It is classified as ASHRAE 169-2006 Climate Zone Number 5 Climate Zone Subtype A. Registered Energy Companies in...

339

2008 Florida Youth Tobacco Survey, County Data Book  

E-Print Network (OSTI)

Tobacco Survey County Data Book Florida Department of HealthFlorida County FYTS Data Book Map 2. Percentage of FloridaFlorida County FYTS Data Book Map 3. Percentage of Florida

Florida Department of Health, Brueau of Epidemiology; Crist, Charlie; Viamonte Ros, Ana M M.D., M.P.H.

2009-01-01T23:59:59.000Z

340

Geothermal development issues: Recommendations to Deschutes County  

DOE Green Energy (OSTI)

This report discusses processes and issues related to geothermal development. It is intended to inform planners and interested individuals in Deschutes County about geothermal energy, and advise County officials as to steps that can be taken in anticipation of resource development. (ACR)

Gebhard, C.

1982-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "kemper county igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Commodity Flow Study - Clark County, Nevada, USA  

Science Conference Proceedings (OSTI)

The United States Department of Energy has designated Clark County, Nevada as an 'Affected Unit of Local Government' due to the potential for impacts by activities associated with the Yucca Mountain High Level Nuclear Waste Repository project. Urban Transit, LLC has led a project team of transportation including experts from the University of Nevada Las Vegas Transportation Research Center to conduct a hazardous materials community flow study along Clark County's rail and truck corridors. In addition, a critical infrastructure analysis has also been carried out in order to assess the potential impacts of transportation within Clark County of high level nuclear waste and spent nuclear fuel to a proposed repository 90 miles away in an adjacent county on the critical infrastructure in Clark County. These studies were designed to obtain information relating to the transportation, identification and routing of hazardous materials through Clark County. Coordinating with the United States Department of Energy, the U.S. Department of Agriculture, the U. S. Federal Highway Administration, the Nevada Department of Transportation, and various other stakeholders, these studies and future research will examine the risk factors along the entire transportation corridor within Clark County and provide a context for understanding the additional vulnerability associated with shipping spent fuel through Clark County. (authors)

Conway, S.Ph.D. [Urban Environmental Research LLC, Las Vegas, NV (United States); Navis, I. [AICP Planning Manager, Clark County Nuclear Waste Division, Department of Comprehensive Planning, Las Vegas, NV (United States)

2008-07-01T23:59:59.000Z

342

Factors influencing county level household fuelwood use  

Science Conference Proceedings (OSTI)

This study explains household fuelwood consumption behavior at the county level by linking it to economic and demographic conditions in counties. Using this link, counties are identified where potential fuelwood use problems and benefits are greatest. A probit equation estimates household probability of wood use (percent woodburners in a county heating degree days, household income, nonwood fuel price, fuelwood price, percent forest land, population density, and fraction of households using various types of heating equipment. A linear-in-parameters equation estimates average wood consumed by a woodburner based on county heating degree days, household income, percent forest land, and price of nonwood fuel divided by fuelwood price. Parameters are estimated using fuelwood use data for individual households from a 1908-81 nationwide survey. The probit equation predicts percentage of wood burns well over a wide range of county conditions. The wood consumption equation overpredicts for counties with high income and high population density (over 6000 persons per square mile). The model shows average woodburning per household over all households decreases with increasing population density, and the influence of county economic characteristics varies with density.

Skog, K.E.

1986-01-01T23:59:59.000Z

343

EA-1852: Cloud County Community College Wind Energy Project, Cloud County,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: Cloud County Community College Wind Energy Project, Cloud 2: Cloud County Community College Wind Energy Project, Cloud County, Kansas EA-1852: Cloud County Community College Wind Energy Project, Cloud County, Kansas Summary This EA evaluates the environmental impacts of a proposal to authorize the expenditure of federal funds by Cloud County Community College (CCCC) for a wind energy project. CCCC has installed three wind turbines and proposes to install a fourth turbine on their campus in Concordia, Kansas, for use in their wind energy training curriculum and to provide electricity for their campus. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download January 10, 2011 EA-1852: Notice of Scoping Cloud County Community College Wind Energy Technology Project, Cloud

344

Dane County Landfill | Open Energy Information  

Open Energy Info (EERE)

Dane County Landfill Dane County Landfill Jump to: navigation, search Name Dane County Landfill Facility Dane County Landfill #2 Rodefeld Sector Biomass Facility Type Landfill Gas Location Dane County, Wisconsin Coordinates 43.0186073°, -89.5497632° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0186073,"lon":-89.5497632,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

345

Imperial County geothermal development annual meeting: summary  

DOE Green Energy (OSTI)

All phases of current geothermal development in Imperial County are discussed and future plans for development are reviewed. Topics covered include: Heber status update, Heber binary project, direct geothermal use for high-fructose corn sweetener production, update on county planning activities, Brawley and Salton Sea facility status, status of Imperial County projects, status of South Brawley Prospect 1983, Niland geothermal energy program, recent and pending changes in federal procedures/organizations, plant indicators of geothermal fluid on East Mesa, state lands activities in Imperial County, environmental interests in Imperial County, offshore exploration, strategic metals in geothermal fluids rebuilding of East Mesa Power Plant, direct use geothermal potential for Calipatria industrial Park, the Audubon Society case, status report of the Cerro Prieto geothermal field, East Brawley Prospect, and precision gravity survey at Heber and Cerro Prieto geothermal fields. (MHR)

Not Available

1983-01-01T23:59:59.000Z

346

Environmental assessment: Deaf Smith County site, Texas  

SciTech Connect

In February 1983, the US Department of Energy (DOE) identified a location in Deaf Smith County, Texas, as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Deaf Smith County site and the eight other potentially sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. The Deaf Smith County site is in the Permian Basin, which is one of five distinct geohydrologic settings considered for the first repository. On the basis of the evaluations reported in this EA, the DOE has found that the Deaf Smith County site is not disqualified under the guidelines. On the basis of these findings, the DOE is nominating the Deaf Smith County site as one of the five sites suitable for characterization. 591 refs., 147 figs., 173 tabs.

1986-05-01T23:59:59.000Z

347

SHASTA COUNTY The Shasta County Jail is a 115,035 square-foot facility located in Redding. Built in  

E-Print Network (OSTI)

SHASTA COUNTY The Shasta County Jail is a 115,035 square-foot facility located in Redding. Built in 1984, this facility has an 11-story jail wing attached to a two-story County administrative wing

348

Grundy County Rural Elec Coop | Open Energy Information  

Open Energy Info (EERE)

County Rural Elec Coop Jump to: navigation, search Name Grundy County Rural Elec Coop Place Iowa Utility Id 7864 Utility Location Yes Ownership C NERC Location MRO Activity...

349

Funding for state, city, and county governments in the state...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funding for state, city, and county governments in the state includes: Funding for state, city, and county governments in the state includes: A chart detailling the funding for...

350

RECIPIENT:Utah County STATE: UT PROJECT TITLE:  

NLE Websites -- All DOE Office Websites (Extended Search)

Utah County STATE: UT PROJECT TITLE: EECBG - Utah County Energy Efficiency Retrofits Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number cm...

351

Florida County Helping Homeowners Save Energy and Money | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida County Helping Homeowners Save Energy and Money Florida County Helping Homeowners Save Energy and Money March 9, 2011 - 1:23pm Addthis Jennifer Holman Project Officer,...

352

Elko County School District District Heating Low Temperature...  

Open Energy Info (EERE)

County School District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Elko County School District District Heating Low Temperature Geothermal...

353

Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado, USA Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado, USA August 2010 Jody K. Nelson Vascular...

354

Pages that link to "Camas County, Idaho" | Open Energy Information  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Pages that link to "Camas County, Idaho" Camas County, Idaho Jump to: navigation, search What links here Page: Camas...

355

Pages that link to "Bonner County, Idaho" | Open Energy Information  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Pages that link to "Bonner County, Idaho" Bonner County, Idaho Jump to: navigation, search What links here Page: Bonner...

356

Pages that link to "Clearwater County, Idaho" | Open Energy Informatio...  

Open Energy Info (EERE)

this page on Facebook icon Twitter icon Pages that link to "Clearwater County, Idaho" Clearwater County, Idaho Jump to: navigation, search What links here Page:...

357

Pages that link to "Clark County, Idaho" | Open Energy Information  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Pages that link to "Clark County, Idaho" Clark County, Idaho Jump to: navigation, search What links here Page: Clark...

358

Wabash County REMC - Residential Geothermal and Air-source Heat...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Savings Wabash County REMC - Residential Geothermal and Air-source Heat Pump Rebate Program Wabash County REMC - Residential Geothermal...

359

White County REMC - Residential Geothermal Heat Pump Rebate Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Savings White County REMC - Residential Geothermal Heat Pump Rebate Program White County REMC - Residential Geothermal Heat Pump Rebate...

360

Baltimore County - Property Tax Credit for Solar and Geothermal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here Home Savings Baltimore County - Property Tax Credit for Solar and Geothermal Devices (Maryland) Baltimore County - Property Tax Credit for Solar and Geothermal...

Note: This page contains sample records for the topic "kemper county igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Anne Arundel County - Solar and Geothermal Equipment Property...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Savings Anne Arundel County - Solar and Geothermal Equipment Property Tax Credit Anne Arundel County - Solar and Geothermal Equipment...

362

Anne Arundel County - Solar and Geothermal Equipment Property...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Savings Anne Arundel County - Solar and Geothermal Equipment Property Tax Credits Anne Arundel County - Solar and Geothermal Equipment...

363

Benton County, Tennessee ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Tennessee ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Benton County, Tennessee ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate...

364

Benton County, Minnesota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Minnesota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Benton County, Minnesota ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate...

365

Adams County, Pennsylvania ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Pennsylvania ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Pennsylvania ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

366

Benton County, Washington ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Washington ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Benton County, Washington ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate...

367

Broward County - Green Building Policy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Broward County - Green Building Policy Broward County - Green Building Policy Eligibility Local Government Savings For Heating & Cooling Home Weatherization Construction Commercial...

368

A Design-Builder's Perspective: Anaerobic Digestion, Forest County...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Design-Builder's Perspective: Anaerobic Digestion, Forest County Potawatomi Community - A Case Study A Design-Builder's Perspective: Anaerobic Digestion, Forest County Potawatomi...

369

EA-1960: Townsite Solar Project Transmission Line, Clark County...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

60: Townsite Solar Project Transmission Line, Clark County, Nevada EA-1960: Townsite Solar Project Transmission Line, Clark County, Nevada SUMMARY The Bureau of Land Management,...

370

Luce County, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Climate Zone Number 7 Climate Zone Subtype A. Places in Luce County, Michigan Newberry, Michigan Retrieved from "http:en.openei.orgwindex.php?titleLuceCounty,Michiga...

371

Rebuilding it Better: Greensburg, Kansas, Kiowa County Memorial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

it Better: Greensburg, Kansas, Kiowa County Memorial Hospital (Brochure) (Revised) Rebuilding it Better: Greensburg, Kansas, Kiowa County Memorial Hospital (Brochure) (Revised)...

372

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...  

Open Energy Info (EERE)

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County...

373

Broward County - Green Building Policy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Savings Broward County - Green Building Policy Broward County - Green Building Policy Eligibility Local Government...

374

Carroll County - Green Building Property Tax Credit | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Savings Carroll County - Green Building Property Tax Credit Carroll County - Green Building Property Tax Credit...

375

Antu County Hengxin Hydro Power Development Co Ltd | Open Energy...  

Open Energy Info (EERE)

Up Search Page Edit with form History Facebook icon Twitter icon Antu County Hengxin Hydro Power Development Co Ltd Jump to: navigation, search Name Antu County Hengxin Hydro...

376

Cutting Electricity Costs in Miami-Dade County, Florida | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home Cutting Electricity Costs in Miami-Dade County, Florida Cutting Electricity Costs in Miami-Dade County,...

377

Boulder County - EnergySmart Residential Energy Efficiency Loan...  

Open Energy Info (EERE)

to Summary by DSIRE 04302012 References DSIRE1 Summary Boulder County homeowners participating in the county's EnergySmart program may be eligible for microloans of...

378

Distributed energy resources at naval base ventura county building 1512  

E-Print Network (OSTI)

Naval Base Ventura County Standby Generator OptimizationC&H Engineering performed a standby generator optimizationOn Naval Base Ventura County Standby Generator Optimization

Bailey, Owen C.; Marnay, Chris

2004-01-01T23:59:59.000Z

379

EA-1969: Clark Fork River Delta Restoration Project, Bonner County...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1969: Clark Fork River Delta Restoration Project, Bonner County, Idaho EA-1969: Clark Fork River Delta Restoration Project, Bonner County, Idaho Summary Bonneville Power...

380

EA-1097: Solid waste Disposal - Nevada Test Site, Nye County...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Solid waste Disposal - Nevada Test Site, Nye County, Nevada EA-1097: Solid waste Disposal - Nevada Test Site, Nye County, Nevada SUMMARY This EA evaluates the environmental...

Note: This page contains sample records for the topic "kemper county igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Boulder County - EnergySmart Commercial Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Boulder County - EnergySmart Commercial Energy Efficiency Rebate Program (Colorado) Boulder County - EnergySmart Commercial Energy Efficiency Rebate Program (Colorado) Eligibility...

382

Harris County - Green Building Tax Abatement for New Commercial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Harris County - Green Building Tax Abatement for New Commercial Construction (Texas) Harris County - Green Building Tax Abatement for New Commercial Construction (Texas) < Back...

383

Better Buildings Neighborhood Program: St. Lucie County, Florida  

NLE Websites -- All DOE Office Websites (Extended Search)

*Progress is reported through December 2012. Learn more about earlier program milestones Solar and Energy Loan Fund Location: St. Lucie County; Brevard County; City of Fellsmere;...

384

EA-1955: Campbell County Wind Project, Pollock, South Dakota...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home EA-1955: Campbell County Wind Project, Pollock, South Dakota EA-1955: Campbell County Wind Project, Pollock, South Dakota SUMMARY DOE's...

385

EIS-0376: White Wind Farm Brookings County, South Dakota | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home EIS-0376: White Wind Farm Brookings County, South Dakota EIS-0376: White Wind Farm Brookings County, South Dakota Summary This EIS...

386

Pages that link to "Codington County, South Dakota" | Open Energy...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Pages that link to "Codington County, South Dakota" Codington County, South Dakota Jump to: navigation, search What links...

387

Los Alamos County Completes Abiquiu Hydropower Project, Bringing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alamos County Completes Abiquiu Hydropower Project, Bringing New Clean Energy Resources to New Mexico Los Alamos County Completes Abiquiu Hydropower Project, Bringing New Clean...

388

EA-1812: Haxtun Wind Energy Project, Logan and Phillips County...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12: Haxtun Wind Energy Project, Logan and Phillips County, Colorado EA-1812: Haxtun Wind Energy Project, Logan and Phillips County, Colorado Summary This EA evaluates the...

389

Costilla County Biodiesel Pilot Project  

DOE Green Energy (OSTI)

The Costilla County Biodiesel Pilot Project has demonstrated the compatibility of biodiesel technology and economics on a local scale. The project has been committed to making homegrown biodiesel a viable form of community economic development. The project has benefited by reducing risks by building the facility gradually and avoiding large initial outlays of money for facilities and technologies. A primary advantage of this type of community-scale biodiesel production is that it allows for a relatively independent, local solution to fuel production. Successfully using locally sourced feedstocks and putting the fuel into local use emphasizes the feasibility of different business models under the biodiesel tent and that there is more than just a one size fits all template for successful biodiesel production.

Doon, Ben; Quintana, Dan

2011-08-25T23:59:59.000Z

390

One Grant, Nine Energy Efficiency Programs for Illinois County | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

One Grant, Nine Energy Efficiency Programs for Illinois County One Grant, Nine Energy Efficiency Programs for Illinois County One Grant, Nine Energy Efficiency Programs for Illinois County August 3, 2010 - 12:32pm Addthis The Kane County Judicial Center is one building that received retrofits to save the county energy with a Recovery Act-funded block grant. | Photo courtesy of Kane County The Kane County Judicial Center is one building that received retrofits to save the county energy with a Recovery Act-funded block grant. | Photo courtesy of Kane County Joshua DeLung What are the key facts? $2.2 million Recovery Act grant awarded to Kane County, Illinios. $150,000 estimated annual savings from retrofits at county buildings 424,000 square feet of building to be retrofitted West of Chicago, one Illinois municipality is putting its $2.2 million

391

One Grant, Nine Energy Efficiency Programs for Illinois County | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

One Grant, Nine Energy Efficiency Programs for Illinois County One Grant, Nine Energy Efficiency Programs for Illinois County One Grant, Nine Energy Efficiency Programs for Illinois County August 3, 2010 - 12:32pm Addthis The Kane County Judicial Center is one building that received retrofits to save the county energy with a Recovery Act-funded block grant. | Photo courtesy of Kane County The Kane County Judicial Center is one building that received retrofits to save the county energy with a Recovery Act-funded block grant. | Photo courtesy of Kane County Joshua DeLung What are the key facts? $2.2 million Recovery Act grant awarded to Kane County, Illinios. $150,000 estimated annual savings from retrofits at county buildings 424,000 square feet of building to be retrofitted West of Chicago, one Illinois municipality is putting its $2.2 million

392

Category:County Climate Zones | Open Energy Information  

Open Energy Info (EERE)

County Climate Zones County Climate Zones Jump to: navigation, search This category contains county climate zone information in the United States of America. Contents: Top - 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Pages in category "County Climate Zones" The following 200 pages are in this category, out of 3,141 total. (previous 200) (next 200) A Abbeville County, South Carolina ASHRAE 169-2006 Climate Zone Acadia Parish, Louisiana ASHRAE 169-2006 Climate Zone Accomack County, Virginia ASHRAE 169-2006 Climate Zone Ada County, Idaho ASHRAE 169-2006 Climate Zone Adair County, Iowa ASHRAE 169-2006 Climate Zone Adair County, Kentucky ASHRAE 169-2006 Climate Zone Adair County, Missouri ASHRAE 169-2006 Climate Zone Adair County, Oklahoma ASHRAE 169-2006 Climate Zone

393

Sensor placement algorithm development to maximize the efficiency of acid gas removal unit for integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture  

Science Conference Proceedings (OSTI)

Future integrated gasification combined cycle (IGCC) power plants with CO{sub 2} capture will face stricter operational and environmental constraints. Accurate values of relevant states/outputs/disturbances are needed to satisfy these constraints and to maximize the operational efficiency. Unfortunately, a number of these process variables cannot be measured while a number of them can be measured, but have low precision, reliability, or signal-to-noise ratio. In this work, a sensor placement (SP) algorithm is developed for optimal selection of sensor location, number, and type that can maximize the plant efficiency and result in a desired precision of the relevant measured/unmeasured states. In this work, an SP algorithm is developed for an selective, dual-stage Selexol-based acid gas removal (AGR) unit for an IGCC plant with pre-combustion CO{sub 2} capture. A comprehensive nonlinear dynamic model of the AGR unit is developed in Aspen Plus Dynamics® (APD) and used to generate a linear state-space model that is used in the SP algorithm. The SP algorithm is developed with the assumption that an optimal Kalman filter will be implemented in the plant for state and disturbance estimation. The algorithm is developed assuming steady-state Kalman filtering and steady-state operation of the plant. The control system is considered to operate based on the estimated states and thereby, captures the effects of the SP algorithm on the overall plant efficiency. The optimization problem is solved by Genetic Algorithm (GA) considering both linear and nonlinear equality and inequality constraints. Due to the very large number of candidate sets available for sensor placement and because of the long time that it takes to solve the constrained optimization problem that includes more than 1000 states, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel Computing® toolbox from Mathworks®. In this presentation, we will share our experience in setting up parallel computing using GA in the MATLAB® environment and present the overall approach for achieving higher computational efficiency in this framework.

Paul, P.; Bhattacharyya, D.; Turton, R.; Zitney, S.

2012-01-01T23:59:59.000Z

394

Combustion Engineering Integrated Gasification Combined Cycle (IGCC) Repowering Project -- Clean Coal II Project. Annual report, November 20, 1990--December 31, 1991  

SciTech Connect

The IGCC system will consist of CE`s air-blown, entrained-flow, two-stage, pressurized coal gasifier; an advanced hot gas cleanup process; a combustion turbine adapted to use low-Btu coal gas; and all necessary coal handling equipment. The IGCC will include CE`s slogging, entrained-flow, gasifier operating in a pressurized mode and using air as the oxidant. The hot gas will be cleaned of particulate matter (char) which is recycled back to the gasifier. After particulate removal, the product gas will be cleaned of sulfur prior to burning in a gas turbine. The proposed project includes design and demonstration of two advanced hot gas cleanup processes for removal of sulfur from the product gas of the gasifier. The primary sulfur removal method features a newly developed moving-bed zinc ferrite system downstream of the gasifier. The process data from these pilot tests is expected to be sufficient for the design of a full-scale system to be used in the proposed demonstration. A second complementary process is in situ desulfurization achieved by adding limestone or dolomite directly to the coal feed. The benefit, should such an approach prove viable, is that the downstream cleanup system could be reduced in size. In this plant, the gasifier will be producing a low-Btu gas (LBG). The LBG will be used as fuel in a standard GE gas turbine to produce power. This gas turbine will have the capability to fire LBG and natural gas (for start-up). Since firing LBG uses less air than natural gas, the gas turbine air compressor will have extra capacity. This extra compressed air will be used to pressurize the gasifier and supply the air needed in the gasification process. The plant is made of three major blocks of equipment as shown in Figure 2. They are the fuel gas island which includes the gasifier and gas cleanup, gas turbine power block, and the steam turbine block which includes the steam turbine and the HRSG.

1993-03-01T23:59:59.000Z

395

Michigan County's Energy Upgrades Back on Track  

Energy.gov (U.S. Department of Energy (DOE))

Qhen officials in Michigan’s Shiawassee County were faced with fiscal challenges, they had no choice but to put off recommendations from a 2007 report highlighting energy problems at county government buildings. But after receiving an Energy Efficiency and Conservation Block Grant from the U.S. Department of Energy (DOE) worth $302,000 from the American Recovery and Reinvestment Act and $900,000 in low-interest bonds with the government, the county is giving the report a second look.

396

Clark County - Energy Conservation Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clark County - Energy Conservation Code Clark County - Energy Conservation Code Clark County - Energy Conservation Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Nevada Program Type Building Energy Code Provider Clark County In September 2010, Clark County adopted Ordinance 3897, implementing the Southern Nevada version of the 2009 International Energy Conservation Code for both residential and commercial buildings located within Clark County. The code was developed by the Southern Nevada Building Officials' International Energy Conservation Committee, comprised of seven municipalities throughout Nevada (including Clark County, Las Vegas, North

397

Better Buildings Neighborhood Program: Fayette County Training Makes All  

NLE Websites -- All DOE Office Websites (Extended Search)

Fayette County Fayette County Training Makes All the Difference for Pennsylvania Business Owner to someone by E-mail Share Better Buildings Neighborhood Program: Fayette County Training Makes All the Difference for Pennsylvania Business Owner on Facebook Tweet about Better Buildings Neighborhood Program: Fayette County Training Makes All the Difference for Pennsylvania Business Owner on Twitter Bookmark Better Buildings Neighborhood Program: Fayette County Training Makes All the Difference for Pennsylvania Business Owner on Google Bookmark Better Buildings Neighborhood Program: Fayette County Training Makes All the Difference for Pennsylvania Business Owner on Delicious Rank Better Buildings Neighborhood Program: Fayette County Training Makes All the Difference for Pennsylvania Business Owner on Digg

398

Better Buildings Neighborhood Program: Santa Barbara County, California  

NLE Websites -- All DOE Office Websites (Extended Search)

Santa Barbara Santa Barbara County, California to someone by E-mail Share Better Buildings Neighborhood Program: Santa Barbara County, California on Facebook Tweet about Better Buildings Neighborhood Program: Santa Barbara County, California on Twitter Bookmark Better Buildings Neighborhood Program: Santa Barbara County, California on Google Bookmark Better Buildings Neighborhood Program: Santa Barbara County, California on Delicious Rank Better Buildings Neighborhood Program: Santa Barbara County, California on Digg Find More places to share Better Buildings Neighborhood Program: Santa Barbara County, California on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA

399

Linn County Rural Electric Cooperative - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Linn County Rural Electric Cooperative - Residential Energy Linn County Rural Electric Cooperative - Residential Energy Efficiency Rebate Program Linn County Rural Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Construction Design & Remodeling Sealing Your Home Windows, Doors, & Skylights Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Varies by technology Provider Linn County Rural Electric Cooperative Association Linn County Rural Electric Cooperative Association (Linn County RECA) is a member-owned cooperative. To encourage energy efficiency, Linn County

400

Montgomery County to the Rescue! - Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Montgomery County to the Rescue! Montgomery County to the Rescue! Summary Scenario Student Pages Index of Projects Subject: Investigating Ethnic/Cultural Diversity in the Community Grade Level: 2 Abstract: The hometown of the Power Rangers, popular TV and movie action characters, has been destroyed by evil forces. The Rangers post an Internet plea for help in locating a new home base that is ethnically and culturally diverse. In order to convince the Rangers to adopt Montgomery County as their new home base, students must find out specific facts about different ethnic and cultural groups in the community, and present these facts in a persuasive case to the Rangers. Students use the Internet and e-mail to obtain current facts about Montgomery County, and send their invitation back to the Rangers.

Note: This page contains sample records for the topic "kemper county igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Los Alamos County | Open Energy Information  

Open Energy Info (EERE)

Alamos County Alamos County Place New Mexico Utility Id 11204 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lighting Service - Metered Commercial TOU Lighting Area Lighting Service - Metered County TOU Lighting Area Lighting Service - Metered Large Commercial Lighting Area Lighting Service - Metered Large County Lighting

402

Story County Wind Farm | Open Energy Information  

Open Energy Info (EERE)

County Wind Farm County Wind Farm Facility Story County Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Location Story and Hardin Counties IA Coordinates 42.301351°, -93.45156° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.301351,"lon":-93.45156,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

403

Recipient: County of San Bernadino,CA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recipient: County of San Bernadino,CA Recipient: County of San Bernadino,CA Award #: EE 000 0903 ENERGY EFFICIENCY AND CONSERVATION BLOCK GRANTS NEPA COMPLIANCE FORM Activities Determination/ Categorical Exclusion Reviewer's Specific Instructions and Rationale (Restrictions and Allowable Activity) Greenhouse Gas Emissions Reduction Plan Environmental Impact Report (EECS) A9, All None - this NEPA determination is for the report only. Solar Electric System for Rancho Cucamonga County Office Building A9, All Waste Stream Clause Historic Preservation Clause Engineering Clause **This NEPA determination is limited to a roof-mounted system only. County Heating Ventilation and Air-Condition (HVAC) Retrofit Program B5.1 Waste Stream Clause Historic Preservation Clause Engineering clause Solar Electric System for High Desert Government Center

404

Fannin County Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Fannin County Electric Coop Fannin County Electric Coop Jump to: navigation, search Name Fannin County Electric Coop Place Texas Utility Id 6173 Utility Location Yes Ownership C NERC Location TRE NERC ERCOT Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Residential Residential Security Lighting-175 Watt Mercury Vapor Lighting Small Commercial Commercial Average Rates Residential: $0.1210/kWh Commercial: $0.1010/kWh Industrial: $0.1320/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Fannin_County_Electric_Coop&oldid=410679

405

County Employment Of West Virginia Higher  

E-Print Network (OSTI)

.................................................................................................1 Results By Region, County, And Summary Degree ................................................3 I: Detailed Description Of Employment Data .........................................26 Appendix II: List of Institutions, Degrees, And Areas Of Concentration................28 #12;List Of Tables 1

Mohaghegh, Shahab

406

Better Buildings Neighborhood Program: Eagle County, Colorado  

NLE Websites -- All DOE Office Websites (Extended Search)

VA WA | WI Eagle County, Colorado Three Resort Communities in Colorado Get Smart With Energy Upgrades Photo of a ski lodge with snow surrounding it. An image of a map of the...

407

Western Baldwin County, AL Grid Interconnection Project  

SciTech Connect

The Objective of this Project was to provide an additional supply of electricity to the affected portions of Baldwin County, AL through the purchase, installation, and operation of certain substation equipment.

Thomas DeBell

2011-09-30T23:59:59.000Z

408

Quaternary faulting of Deschutes County, Oregon.  

E-Print Network (OSTI)

??Sixty-one normal faults were identified in a 53-kilometer long by 21-kilometer wide northwest-trending zone in central and northern Deschutes County, Oregon. The faults are within… (more)

Wellik, John M.

2008-01-01T23:59:59.000Z

409

Environmental assessment: Deaf Smith County site, Texas  

Science Conference Proceedings (OSTI)

In February 1983, the US Department of Energy (DOE) identified a location in Deaf Smith County, Texas, as one of the nine potentially acceptable sites for mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Deaf Smith County site and eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. The Deaf Smith County site is in the Permian Basin, which is one of five distinct geohydrologic settings considered for the first repository. On the basis of the evaluations reported in this EA, the DOE has found that the Deaf Smith County site is not disqualified under the guidelines.

Not Available

1986-05-01T23:59:59.000Z

410

Marin County- Wood Stove Replacement Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

The County of Marin has created a rebate program to encourage homeowners to remove or replace non-EPA certified wood-burning heaters (wood stoves and fireplace inserts) with cleaner burning stoves...

411

Energy Efficient County Buildings Realizing Money  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficient County Buildings Realizing Money and Energy-Saving Opportunities About IBTS IBTS is a 501(c)(3) non-profit organization that helps governments provide high-quality,...

412

County, Arizona RECORD OF CATEGORICAL EXCLUSION DETERMINATION...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for a double circuit upgrade along the existing Empire-EDS 11S-kV transmission line, Pinal County, Arizona RECORD OF CATEGORICAL EXCLUSION DETERMINATION: Amendment No.2 A....

413

Inter-County Energy Efficiency Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

Inter-County Energy Cooperative offers loans for members that install Electric Thermal Storage units, geothermal and air-to-air heat pump heating and cooling equipment in their homes. Loans are...

414

Geothermal development plan: northern Arizona counties  

Science Conference Proceedings (OSTI)

The Northern Counties Area Development Plan evaluated the regional market potential for utilizing geothermal energy. This study identified five potential geothermal resource areas, four of which have low temperature (Arizona.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

415

County Solid Waste Control Act (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this chapter is to authorize a cooperative effort by counties, public agencies, and other persons for the safe and economical collection, transportation, and disposal of solid waste...

416

Environmental assessment, Deaf Smith County site, Texas  

SciTech Connect

The Nuclear Waste Policy Act of 1982 (42 USC sections 10101-10226) requires the environmental assessment of a proposed site to include a statement of the basis for nominating a site as suitable for characterization. Volume 2 provides a detailed statement evaluating the site suitability of the Deaf Smith County Site under DOE siting guidelines, as well as a comparison of the Deaf Smith County Site to the other sites under consideration. The evaluation of the Deaf Smith County Site is based on the impacts associated with the reference repository design, but the evaluation will not change if based on the Mission Plan repository concept. The second part of this document compares the Deaf Smith County Site to Davis Canyon, Hanford, Richton Dome and Yucca Mountain. This comparison is required under DOE guidelines and is not intended to directly support subsequent recommendation of three sites for characterization as candidate sites. 259 refs., 29 figs., 66 refs. (MHB)

Not Available

1986-05-01T23:59:59.000Z

417

Winona County Wind | Open Energy Information  

Open Energy Info (EERE)

Winona County Wind Winona County Wind Jump to: navigation, search Name Winona County Wind Facility Winona County Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Juhl Wind Developer Juhl Wind Energy Purchaser NSP/Xcel Energy Location 3 miles northwest of Altura MN Coordinates 44.101281°, -91.975715° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.101281,"lon":-91.975715,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

418

A Joint Workshop on Promoting the Development and Deployment of IGCC/Co-Production/CCS Technologies in China and the United States. Workshop report  

SciTech Connect

With both China and the United States relying heavily on coal for electricity, senior government officials from both countries have urged immediate action to push forward technology that would reduce carbon dioxide emissions from coal-fired plants. They discussed possible actions at a high-level workshop in April 2009 at the Harvard Kennedy School jointly sponsored by the Belfer Center's Energy Technology Innovation Policy (ETIP) research group, China's Ministry of Science and Technology, and the Chinese Academy of Sciences. The workshop examined issues surrounding Integrated Gasification Combined Cycle (IGCC) coal plants, which turn coal into gas and remove impurities before the coal is combusted, and the related carbon capture and sequestration, in which the carbon dioxide emissions are captured and stored underground to avoid releasing carbon dioxide into the atmosphere. Though promising, advanced coal technologies face steep financial and legal hurdles, and almost certainly will need sustained support from governments to develop the technology and move it to a point where its costs are low enough for widespread use.

Zhao, Lifeng; Ziao, Yunhan; Gallagher, Kelly Sims

2009-06-03T23:59:59.000Z

419

A Joint Workshop on Promoting the Development and Deployment of IGCC/Co-Production/CCS Technologies in China and the United States. Workshop report  

SciTech Connect

With both China and the United States relying heavily on coal for electricity, senior government officials from both countries have urged immediate action to push forward technology that would reduce carbon dioxide emissions from coal-fired plants. They discussed possible actions at a high-level workshop in April 2009 at the Harvard Kennedy School jointly sponsored by the Belfer Center's Energy Technology Innovation Policy (ETIP) research group, China's Ministry of Science and Technology, and the Chinese Academy of Sciences. The workshop examined issues surrounding Integrated Gasification Combined Cycle (IGCC) coal plants, which turn coal into gas and remove impurities before the coal is combusted, and the related carbon capture and sequestration, in which the carbon dioxide emissions are captured and stored underground to avoid releasing carbon dioxide into the atmosphere. Though promising, advanced coal technologies face steep financial and legal hurdles, and almost certainly will need sustained support from governments to develop the technology and move it to a point where its costs are low enough for widespread use.

Zhao, Lifeng; Ziao, Yunhan; Gallagher, Kelly Sims

2009-06-03T23:59:59.000Z

420

Forsyth County Slashes Energy Bills with Upgrades | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Forsyth County Slashes Energy Bills with Upgrades Forsyth County Slashes Energy Bills with Upgrades Forsyth County Slashes Energy Bills with Upgrades September 30, 2010 - 12:04pm Addthis A new energy management system in Forsyth County’s 52,057 square foot courthouse is expected to save about $9,000 annually. | Photo courtesy of Forsyth County A new energy management system in Forsyth County's 52,057 square foot courthouse is expected to save about $9,000 annually. | Photo courtesy of Forsyth County Maya Payne Smart Former Writer for Energy Empowers, EERE What are the key facts? Four large projects funded through Recovery Act grant Energy efficient retrofits to save county about $72,000 annually Forsyth County, Georgia has been among the nation's fastest growing counties for the past ten years. Given the growth, officials are working

Note: This page contains sample records for the topic "kemper county igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Forsyth County Slashes Energy Bills with Upgrades | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Forsyth County Slashes Energy Bills with Upgrades Forsyth County Slashes Energy Bills with Upgrades Forsyth County Slashes Energy Bills with Upgrades September 30, 2010 - 12:04pm Addthis A new energy management system in Forsyth County’s 52,057 square foot courthouse is expected to save about $9,000 annually. | Photo courtesy of Forsyth County A new energy management system in Forsyth County's 52,057 square foot courthouse is expected to save about $9,000 annually. | Photo courtesy of Forsyth County Maya Payne Smart Former Writer for Energy Empowers, EERE What are the key facts? Four large projects funded through Recovery Act grant Energy efficient retrofits to save county about $72,000 annually Forsyth County, Georgia has been among the nation's fastest growing counties for the past ten years. Given the growth, officials are working

422

Retrofit Savings for Brazos County  

E-Print Network (OSTI)

This report presents the energy and dollar savings for the period May 2000 - April 2001 for 10 of the Brazos County facilities that have been retrofit. The electricity use saved was 555,170 kWh and the demand was 1062 kW, which is equivalent to a $31,743 dollars savings, $24,650 from electricity use and $7,093 from the electric demand. These savings represent a 60.8% of the audit-estimated savings and a 93.7% of the audit-estimated savings if just the positive one were taken in account. The savings have improved somewhat from the previous report that included the billing periods for January to August 1999. The savings for the earlier period were 48.0% of the audit-estimated savings that means compared with 60.8% for the current period. In general has been an improvement in the energy saving in most of the facilities. The cases where are observed negative savings are the Minimum Security Jail, where is known that the area was increased significantly, the Arena Hall, where the modeling can be normalized due to kind of use of this facility, and the Road and bridges Shop, which looks to be operated more time in this period.

Baltazar-Cervantes, J. C.; Shao, X.; Claridge, D. E.

2001-01-01T23:59:59.000Z

423

Geothermal development plan: Maricopa County  

DOE Green Energy (OSTI)

The Maricopa County Geothermal Development Plan evaluated the market potential for utilizing geothermal energy. The study identified six potential geothermal resource areas with temperatures less than 100{sup 0}C (212{sup 0}F) and in addition, four suspected intermediate temperature areas (90{sup 0} to 150{sup 0}C, 194{sup 0} to 300{sup 0}F). Geothermal resources are found to occur in and near the Phoenix metropolitan area where average population growth rates of two to three percent per year are expected over the next 40 years. Rapid growth in the manufacturing, trade and service sectors of the regional economy provides opportunities for the direct utilization of geothermal energy. A regional energy use analysis is included containing energy use and price projections. Water supplies are found to be adequate to support this growth, though agricultural water use is expected to diminish. The study also contains a detailed section matching geothermal resources to potential users. Two comparative analyses providing economic details for space heating projects are incorporated.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

424

Energy Secretary Moniz Visits Clean Coal Facility in Mississippi |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Moniz Visits Clean Coal Facility in Mississippi Secretary Moniz Visits Clean Coal Facility in Mississippi Energy Secretary Moniz Visits Clean Coal Facility in Mississippi November 8, 2013 - 3:36pm Addthis On Friday, Nov. 8, 2013, Secretary Moniz and international energy officials toured Kemper, the nation's largest carbon capture and storage facility, in Liberty, Mississippi. On Friday, Nov. 8, 2013, Secretary Moniz and international energy officials toured Kemper, the nation's largest carbon capture and storage facility, in Liberty, Mississippi. Allison Lantero Allison Lantero Public Affairs Specialist, Office of Public Affairs See a photo gallery of the Secretary's visit to Kemper. Liberty, Mississippi, a small town in the eastern county of Kemper, is quietly making energy history. Liberty is the home of the largest carbon capture and storage (CCS) plant

425

A Michigan County Unearths Savings with Geothermal Energy | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Michigan County Unearths Savings with Geothermal Energy A Michigan County Unearths Savings with Geothermal Energy A Michigan County Unearths Savings with Geothermal Energy January 22, 2013 - 9:55am Addthis Kent County Correctional Facility is saving energy and money with a new closed-loop geothermal system. | Photo courtesy of Kent County Administrator's Office. Kent County Correctional Facility is saving energy and money with a new closed-loop geothermal system. | Photo courtesy of Kent County Administrator's Office. Christina Stowers Communications Specialist in the Office of Weatherization and Intergovernmental Program What are the key facts? Kent County Correctional Facility installed a 96-well geothermal system to help reduce its energy consumption. The new heating and cooling system is expected to save the county an

426

Category:Eagle County, CO | Open Energy Information  

Open Energy Info (EERE)

Eagle County, CO Eagle County, CO Jump to: navigation, search Go Back to PV Economics By Location Media in category "Eagle County, CO" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Eagle County CO Public Service Co of Colorado.png SVFullServiceRestauran... 63 KB SVMidriseApartment Eagle County CO Public Service Co of Colorado.png SVMidriseApartment Eag... 67 KB SVQuickServiceRestaurant Eagle County CO Public Service Co of Colorado.png SVQuickServiceRestaura... 63 KB SVSecondarySchool Eagle County CO Public Service Co of Colorado.png SVSecondarySchool Eagl... 68 KB SVStandAloneRetail Eagle County CO Public Service Co of Colorado.png SVStandAloneRetail Eag... 67 KB SVHospital Eagle County CO Public Service Co of Colorado.png SVHospital Eagle Count...

427

A Michigan County Unearths Savings with Geothermal Energy | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Michigan County Unearths Savings with Geothermal Energy A Michigan County Unearths Savings with Geothermal Energy A Michigan County Unearths Savings with Geothermal Energy January 22, 2013 - 9:55am Addthis Kent County Correctional Facility is saving energy and money with a new closed-loop geothermal system. | Photo courtesy of Kent County Administrator's Office. Kent County Correctional Facility is saving energy and money with a new closed-loop geothermal system. | Photo courtesy of Kent County Administrator's Office. Christina Stowers Communications Specialist in the Office of Weatherization and Intergovernmental Program What are the key facts? Kent County Correctional Facility installed a 96-well geothermal system to help reduce its energy consumption. The new heating and cooling system is expected to save the county an

428

Baraga County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Baraga County, Michigan ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Baraga County, Michigan ASHRAE Standard ASHRAE 169-2006 Climate Zone...

429

Arthur County, Nebraska ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Arthur County, Nebraska ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Arthur County, Nebraska...

430

Bee County, Texas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Search Page Edit History Facebook icon Twitter icon Bee County, Texas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bee County, Texas...

431

Berrien County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Berrien County, Georgia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Berrien County, Georgia ASHRAE Standard ASHRAE 169-2006 Climate Zone...

432

Barbour County, Alabama ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Barbour County, Alabama ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barbour County, Alabama ASHRAE Standard ASHRAE 169-2006 Climate Zone...

433

Banner County, Nebraska ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Banner County, Nebraska ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Banner County, Nebraska ASHRAE Standard ASHRAE 169-2006 Climate Zone...

434

Amelia County, Virginia ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Amelia County, Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Amelia County, Virginia ASHRAE Standard ASHRAE 169-2006 Climate Zone...

435

Andrew County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Andrew County, Missouri ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Andrew County, Missouri ASHRAE Standard ASHRAE 169-2006 Climate Zone...

436

Ashley County, Arkansas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Ashley County, Arkansas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Ashley County, Arkansas...

437

Aroostook County, Maine ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Aroostook County, Maine ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Aroostook County, Maine ASHRAE Standard ASHRAE 169-2006 Climate Zone...

438

Bates County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Bates County, Missouri ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bates County, Missouri...

439

Baldwin County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Baldwin County, Georgia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Baldwin County, Georgia ASHRAE Standard ASHRAE 169-2006 Climate Zone...

440

Adams County, Ohio ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Adams County, Ohio ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Ohio ASHRAE...

Note: This page contains sample records for the topic "kemper county igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Alpena County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Alpena County, Michigan ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alpena County, Michigan ASHRAE Standard ASHRAE 169-2006 Climate Zone...

442

Alcona County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Alcona County, Michigan ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alcona County, Michigan ASHRAE Standard ASHRAE 169-2006 Climate Zone...

443

Belmont County, Ohio ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Belmont County, Ohio ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Belmont County, Ohio...

444

Armstrong County, Texas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Armstrong County, Texas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Armstrong County, Texas ASHRAE Standard ASHRAE 169-2006 Climate Zone...

445

Atchison County, Kansas ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Atchison County, Kansas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Atchison County, Kansas ASHRAE Standard ASHRAE 169-2006 Climate Zone...

446

Barnes County, North Dakota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Edit History Facebook icon Twitter icon Barnes County, North Dakota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barnes County, North...

447

Addison County, Vermont ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Addison County, Vermont ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Addison County, Vermont ASHRAE Standard ASHRAE 169-2006 Climate Zone...

448

Antrim County, Michigan ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Antrim County, Michigan ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Antrim County, Michigan ASHRAE Standard ASHRAE 169-2006 Climate Zone...

449

Adams County, North Dakota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Edit History Facebook icon Twitter icon Adams County, North Dakota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, North...

450

Anoka County, Minnesota ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Anoka County, Minnesota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anoka County, Minnesota ASHRAE Standard ASHRAE 169-2006 Climate Zone...

451

Alachua County, Florida ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Alachua County, Florida ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alachua County, Florida ASHRAE Standard ASHRAE 169-2006 Climate Zone...

452

Barton County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Barton County, Missouri ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barton County, Missouri ASHRAE Standard ASHRAE 169-2006 Climate Zone...

453

Beaver County, Oklahoma ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Beaver County, Oklahoma ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Beaver County, Oklahoma ASHRAE Standard ASHRAE 169-2006 Climate Zone...

454

COMMENT BY ESMERALDA COUNTY, NEVADA RE PRICE-ANDERSON ACT | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COMMENT BY ESMERALDA COUNTY, NEVADA RE PRICE-ANDERSON ACT COMMENT BY ESMERALDA COUNTY, NEVADA RE PRICE-ANDERSON ACT COMMENT BY ESMERALDA COUNTY, NEVADA CONCERNING THE CONTINUATION...

455

Gray County Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Gray County Wind Farm Gray County Wind Farm Jump to: navigation, search Name Gray County Wind Farm Facility Gray County Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Aquila Location Gray County KS Coordinates 37.5855°, -100.384° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.5855,"lon":-100.384,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

456

San Bernardino County - Green Building Requirement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bernardino County - Green Building Requirement Bernardino County - Green Building Requirement San Bernardino County - Green Building Requirement < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State California Program Type Energy Standards for Public Buildings In August 2007, the San Bernardino County Board of Supervisors approved a policy requiring that all new county buildings and major renovations be built to LEED Silver standards. The decision was part of the Green County San Bernardino project, which also includes incentives to encourage residents, builders, and businesses to adopt more sustainable practices. Source http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=CA73R

457

St. Louis County - Residential Energy Efficiency Loan Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

St. Louis County - Residential Energy Efficiency Loan Program St. Louis County - Residential Energy Efficiency Loan Program St. Louis County - Residential Energy Efficiency Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Ventilation Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Water Heating Maximum Rebate $15,000 Program Info Funding Source St. Louis County State Missouri Program Type Local Loan Program Rebate Amount $2,500-$15,000 Provider St. Louis County St. Louis County SAVES offers loans to residents for energy efficiency improvements in owner-occupied, single-family homes. Loans are available

458

Solano County Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Farm Farm Jump to: navigation, search Name Solano County Wind Farm Facility Solano County Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Kenetech Windpower Energy Purchaser Pacific Gas & Electric Co Location Solano County CA Coordinates 38.1535°, -121.858° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.1535,"lon":-121.858,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

459

Franklin County Wind Project | Open Energy Information  

Open Energy Info (EERE)

Franklin County Wind Project Franklin County Wind Project Facility Franklin County Sector Wind energy Facility Type Community Wind Coordinates 37.014702°, -79.895096° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.014702,"lon":-79.895096,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

460

Crisp County Power Comm | Open Energy Information  

Open Energy Info (EERE)

Crisp County Power Comm Crisp County Power Comm Jump to: navigation, search Name Crisp County Power Comm Place Georgia Utility Id 4538 Utility Location Yes Ownership P NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Agriculture Process Service Commercial Farm Service Commercial Fuel Cost Recovery Schedule- Primary Distribution Commercial Fuel Cost Recovery Schedule- Secondary Distribution Commercial Fuel Cost Recovery Schedule- Transmission Commercial

Note: This page contains sample records for the topic "kemper county igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Quad County Corn Processors | Open Energy Information  

Open Energy Info (EERE)

Quad County Corn Processors Quad County Corn Processors Jump to: navigation, search Name Quad County Corn Processors Place Galva, Iowa Zip 51020 Product Farmer owned corn processing facility management company. Coordinates 38.38422°, -97.537539° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.38422,"lon":-97.537539,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

462

Brown County Wind | Open Energy Information  

Open Energy Info (EERE)

Brown County Wind Brown County Wind Facility Brown County Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Adams Electric Cooperative Developer Adams Electric Cooperative Energy Purchaser Adams Electric Cooperative Location Mt. Sterling IL Coordinates 39.97340387°, -90.69939137° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.97340387,"lon":-90.69939137,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

463

Northern Wasco County PUD | Open Energy Information  

Open Energy Info (EERE)

County PUD County PUD Jump to: navigation, search Name Northern Wasco County PUD Place Oregon Utility Id 13788 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL DEMAND RATE - Schedule 250 Commercial COMMERCIAL PRIMARY SERVICE - Schedule 300 Commercial Commercial Commercial Residential Residential Average Rates Residential: $0.0581/kWh

464

Lincoln County Wind Farms | Open Energy Information  

Open Energy Info (EERE)

Name Lincoln County Wind Farms Facility Lincoln County Wind Farms Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Jay Gislason Developer Diversified Energy Solutions Energy Purchaser Otter Tail Power Location Lincoln County MN Coordinates 44.4039°, -96.2646° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.4039,"lon":-96.2646,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

465

Dunn County Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Dunn County Electric Coop Dunn County Electric Coop Place Wisconsin Utility Id 5417 Utility Location Yes Ownership C NERC Location MRO NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Dusk/Dawn Lighting HPS 100 W Lighting Industrial Industrial Residential Residential Average Rates Residential: $0.1210/kWh Commercial: $0.1030/kWh Industrial: $0.0716/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Dunn_County_Electric_Coop&oldid=410605" Categories: EIA Utility Companies and Aliases

466

Yuba County Water Agency | Open Energy Information  

Open Energy Info (EERE)

Yuba County Water Agency Yuba County Water Agency Place California Utility Id 21140 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes ISO CA Yes Operates Generating Plant Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Yuba_County_Water_Agency&oldid=412223" Categories: EIA Utility Companies and Aliases Utility Companies Organizations

467

Ralls County Electric Coop | Open Energy Information  

Open Energy Info (EERE)

County Electric Coop County Electric Coop Jump to: navigation, search Name Ralls County Electric Coop Place Missouri Utility Id 15672 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Dual Fuel General Service Large - Over 300 kW Geothermal Heat Pump Large Power (100 kW to 300 kW) Security Light Lighting Single Phase Under 100 kW Three Phase Under 100 kW Average Rates Residential: $0.1240/kWh Commercial: $0.1060/kWh Industrial: $0.0596/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

468

Mississippi County Electric Coop | Open Energy Information  

Open Energy Info (EERE)

County Electric Coop County Electric Coop Jump to: navigation, search Name Mississippi County Electric Coop Place Arkansas Utility Id 12681 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Load Control of Irrigation Service I - Alternate Commercial Load Control of Irrigation Service II - Alternate Commercial Rate # 11-- Industrial Power Service Industrial Rate #1- Single Service Residential Rate #2- Three Phase Service Under 50 kW Commercial Rate #3- Large Commercial Service Commercial

469

Appling County Pellets | Open Energy Information  

Open Energy Info (EERE)

Appling County Pellets Appling County Pellets Jump to: navigation, search Name Appling County Pellets Place Graham, Georgia Zip 31513 Sector Biomass Product Producer of wood pellets and other biomass products located in Georgia. Coordinates 47.055765°, -122.294774° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.055765,"lon":-122.294774,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

470

Energy Efficient Buildings, Salt Lake County, Utah  

SciTech Connect

Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars, site tours, presentations, and written correspondence.

Barnett, Kimberly

2012-04-30T23:59:59.000Z

471

Clyde Thurman of Monroe County, Tennessee, and  

NLE Websites -- All DOE Office Websites (Extended Search)

Clyde Thurman of Monroe County, Tennessee, and Clyde Thurman of Monroe County, Tennessee, and his 76 acres of switchgrass. Thurman was among the first farmers to grow switchgrass as part of the University of Tennessee Biofuels Initiative. (Photo: Ken Goddard, UT Extension) a BIOENERGY ecosystem ecosystem." "We are working with the biotech firm Ceres to develop more efficient feedstocks based on our science. Once regu- latory hurdles are satisfied, we can see a day where Ceres will in turn work with Genera, a University of Tennessee bioenergy spinoff company, to grow those feedstocks with the cooperation of a consortium of Tennessee

472

Sac County Rural Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Sac County Rural Electric Coop Jump to: navigation, search Name Sac County Rural Electric Coop Place Iowa Utility Id 16529 Ownership C NERC Location MRO NERC MRO Yes Activity...

473

Newton County Rural E M C | Open Energy Information  

Open Energy Info (EERE)

Newton County Rural E M C Jump to: navigation, search Name Newton County Rural E M C Place Indiana Utility Id 13566 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes...

474

Woodbury County Rural E C A | Open Energy Information  

Open Energy Info (EERE)

Woodbury County Rural E C A Jump to: navigation, search Name Woodbury County Rural E C A Place Iowa Utility Id 20951 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes...

475

Jasper County Rural E M C | Open Energy Information  

Open Energy Info (EERE)

Jasper County Rural E M C Jump to: navigation, search Name Jasper County Rural E M C Place Indiana Utility Id 9665 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes...

476

Software Helps Kentucky County Gauge Energy Use | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Software Helps Kentucky County Gauge Energy Use Software Helps Kentucky County Gauge Energy Use Software Helps Kentucky County Gauge Energy Use July 27, 2010 - 1:00pm Addthis How does it work? Software tracks energy usage, greenhouse gas levels and analyzes utility bills. County could see savings and cost recoveries of $100,000 to $200,000. Information allows county to make energy usage changes and identify retrofit needs. For county officials conscious of energy efficiency, deciphering complex utility bills and identifying both municipal energy-use trends and potential savings opportunities can be complex without sophisticated software. "We knew we needed a better system," says James Bush, energy manager for Lexington-Fayette Urban County, Kentucky. Last month, the county invested $140,000 of a $2.7 million Energy

477

Solar Projects Provide Energy to County Fairgrounds | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Projects Provide Energy to County Fairgrounds Projects Provide Energy to County Fairgrounds Solar Projects Provide Energy to County Fairgrounds September 23, 2010 - 1:01pm Addthis Solar panels have been installed at a shelter facility near Ulster County Fairgrounds. | Photo courtesy of Ulster County Solar panels have been installed at a shelter facility near Ulster County Fairgrounds. | Photo courtesy of Ulster County Kevin Craft What are the key facts? This project is expected to save local taxpayers $4,000 a year. All supplies and labor came from local, private contractors. Fairs, food festivals -- and solar panels. Every year, thousands of people attend events at the Ulster County Fairgrounds in New York State. This year visitors to the fairgrounds will get a first-hand look at two solar energy installations that are saving

478

Manager Helps Washington County Develop Energy Efficiency Projects |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manager Helps Washington County Develop Energy Efficiency Projects Manager Helps Washington County Develop Energy Efficiency Projects Manager Helps Washington County Develop Energy Efficiency Projects August 11, 2010 - 1:01pm Addthis An Energy Department grant funded Autumn Salamack's new job as resource conservation manager for Kitsap County, Washington, and the energy efficient windows framed behind her. | Photo courtesy of Kitsap County, WA | An Energy Department grant funded Autumn Salamack's new job as resource conservation manager for Kitsap County, Washington, and the energy efficient windows framed behind her. | Photo courtesy of Kitsap County, WA | Maya Payne Smart Former Writer for Energy Empowers, EERE Autumn Salamack's career moved in a welcome new direction when she became the resource conservation manager for Kitsap County, Washington, in

479

Final Environmental Assessment, Burleigh County Wind Energy Center  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1542 August 2005 Environmental Assessment Environmental Assessment Environmental Assessment Environmental Assessment Environmental Assessment Burleigh County Wind Energy Center Burleigh County, North Dakota Final Burleigh County Wind, LLC BASIN ELECTRIC POWER COOPERATIVE Central Power Electric Cooperative, Inc. Introduction 1-1 Burleigh County Wind Energy Center Environmental Assessment CHAPTER 1 INTRODUCTION The Burleigh County Wind Energy Center is a wind generation project proposed by FPL Energy Burleigh County Wind, LLC (Burleigh County Wind). The proposed project would produce up to 50 megawatts (MW) of electricity, averaged annually. The proposed project is located in Burleigh County, North Dakota, approximately 3 miles south and 2 miles east of the town of Wilton, North Dakota (Figures 1-1

480

Big Horn County Elec Coop, Inc (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

Twitter icon Big Horn County Elec Coop, Inc (Wyoming) Jump to: navigation, search Name Big Horn County Elec Coop, Inc Place Wyoming Utility Id 1683 References EIA Form EIA-861...

Note: This page contains sample records for the topic "kemper county igcc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...  

Open Energy Info (EERE)

4-County Electric Power Assn for March 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-03 Utility Company 4-County Electric Power Assn (Mississippi) Place...

482

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...  

Open Energy Info (EERE)

4-County Electric Power Assn for December 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-12 Utility Company 4-County Electric Power Assn (Mississippi) Place...

483

4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...  

Open Energy Info (EERE)

4-County Electric Power Assn for October 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-10 Utility Company 4-County Electric Power Assn (Mississippi) Place...

484

The Jury's In: Hillsborough County Courthouse Goes Solar | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

County. On Friday, the county formally flipped the switch of an extensive array of solar panels mounted on the rooftop of the Old Main Courthouse Building in downtown Tampa....

485

Park County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming. Its FIPS County Code is 029. It is classified as ASHRAE 169-2006 Climate Zone Number 6 Climate Zone Subtype B. Registered Energy Companies in Park County, Wyoming Nacel...

486

Park County, Montana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Montana. Its FIPS County Code is 067. It is classified as ASHRAE 169-2006 Climate Zone Number 6 Climate Zone Subtype B. Places in Park County, Montana Clyde Park, Montana Cooke...

487

Solar Projects Provide Energy to County Fairgrounds | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Projects Provide Energy to County Fairgrounds Solar Projects Provide Energy to County Fairgrounds September 23, 2010 - 1:01pm Addthis Solar panels have been installed at a...

488

EA-1136: Double Tracks Test Site, Nye County, Nevada | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: Double Tracks Test Site, Nye County, Nevada EA-1136: Double Tracks Test Site, Nye County, Nevada SUMMARY This EA evaluates the environmental impacts of the proposal for the U.S....

489

California Energy Commission - Natural Gas Consumption by County  

Open Energy Info (EERE)

County (2006-2009) Natural gas consumption data from the California Energy Commission sorted by County for Residential and Non-residential from 2006 to 2009. 2010-12-21T23:17:54Z...

490

UNIVERSITY OF CALIFORNIA (ALAMEDA COUNTY BUILDING AND CONSTRUCTION TRADES COUNCIL)  

E-Print Network (OSTI)

1 UNIVERSITY OF CALIFORNIA AND ACBCTC (ALAMEDA COUNTY BUILDING AND CONSTRUCTION TRADES COUNCIL, a corporation (hereinafter referred to as the "UNIVERSITY" or "MANAGEMENT"), and the Alameda County Building OPERATING ENGINEER LEADWORKER 8141 INSULATION WORKER 8142 MACHINIST LEADWORKER 8143 MACHINIST 8147

Walker, Matthew P.

491

Aiken County Center for Hydrogen Research | Open Energy Information  

Open Energy Info (EERE)

County Center for Hydrogen Research County Center for Hydrogen Research Jump to: navigation, search Name Aiken County Center for Hydrogen Research Place South Carolina Zip 29803 Sector Hydro, Hydrogen Product Aiken County Center for Hydrogen Reseach will launch its activities in 2005, involving with industrial and academic stakeholders. References Aiken County Center for Hydrogen Research[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Aiken County Center for Hydrogen Research is a company located in South Carolina . References ↑ "Aiken County Center for Hydrogen Research" Retrieved from "http://en.openei.org/w/index.php?title=Aiken_County_Center_for_Hydrogen_Research&oldid=341931"

492

Better Buildings Neighborhood Program: Los Angeles County's Green Idea  

NLE Websites -- All DOE Office Websites (Extended Search)

County's Green Idea House Achieves Efficient Goals to someone by E-mail County's Green Idea House Achieves Efficient Goals to someone by E-mail Share Better Buildings Neighborhood Program: Los Angeles County's Green Idea House Achieves Efficient Goals on Facebook Tweet about Better Buildings Neighborhood Program: Los Angeles County's Green Idea House Achieves Efficient Goals on Twitter Bookmark Better Buildings Neighborhood Program: Los Angeles County's Green Idea House Achieves Efficient Goals on Google Bookmark Better Buildings Neighborhood Program: Los Angeles County's Green Idea House Achieves Efficient Goals on Delicious Rank Better Buildings Neighborhood Program: Los Angeles County's Green Idea House Achieves Efficient Goals on Digg Find More places to share Better Buildings Neighborhood Program: Los Angeles County's Green Idea House Achieves Efficient Goals on

493

Day County Wind Project | Open Energy Information  

Open Energy Info (EERE)

County Wind Project County Wind Project Jump to: navigation, search Name Day County Wind Project Facility Day County Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Basin Electric Location East of Groton SD Coordinates 45.457157°, -97.754831° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.457157,"lon":-97.754831,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

494

Hancock County Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Hancock County Wind Farm Hancock County Wind Farm Facility Hancock County Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Alliant Energy (44 MW); rest purchased by Corn Belt Cooperative and Cedar Falls Location Hancock County IA Coordinates 43.066524°, -93.70481° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.066524,"lon":-93.70481,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

495

Grant County Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Grant County Wind Farm Grant County Wind Farm Jump to: navigation, search Name Grant County Wind Farm Facility Grant County Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Olympus Power Developer Suzlon and Juhl Wind Location 5 miles west of Hoffman and 6 miles south of Barrett MN Coordinates 45.82868°, -95.795288° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.82868,"lon":-95.795288,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

496

Geothermal development plan: northern Arizona counties  

DOE Green Energy (OSTI)

The Northern Counties Area Development Plan evaluated the regional market potential for utilizing geothermal energy. This study identified five potential geothermal resource areas, four of which have low temperature (<90{sup 0}C, 194{sup 0}F) potential and one possible igneous system. The average population growth rate in the Northern Counties is expected to be five percent per year over the next 40 years, with Mohave and Yavapai Counties growing the fastest. Rapid growth is anticipated in all major employment sectors, including trade, service, manufacturing, mining and utilities. A regional energy use analysis is included, containing information on current energy use patterns for all user classes. Water supplies are expected to be adequate for expected growth generally, though Yavapai and Gila Counties will experience water deficiencies. A preliminary district heating analysis is included for the towns of Alpine and Springerville. Both communities are believed located on geothermal resource sites. The study also contains a section identifying potential geothermal resource users in northern Arizona.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

497

Wind Energy Guide for County Commissioners  

DOE Green Energy (OSTI)

One of the key stakeholders associated with economic development are local government officials, who are often required to evaluate and vote on commercial wind energy project permits, as well as to determine and articulate what wind energy benefits accrue to their counties. Often these local officials lack experience with large-scale wind energy and need to make important decisions concerning what may be a complicated and controversial issue. These decisions can be confounded with diverse perspectives from various stakeholders. This project is designed to provide county commissioners, planners, and other local county government officials with a practical overview of information required to successfully implement commercial wind energy projects in their county. The guidebook provides readers with information on the following 13 topics: Brief Wind Energy Overview; Environmental Benefits; Wind Energy Myths and Facts; Economic Development Benefits; Wind Economics; The Development Process; Public Outreach; Siting Issues; Property Tax Incentives; Power System Impacts; Permitting, Zoning, and Siting Processes; Case Studies; and Further Information. For each of the above topics, the guidebook provides an introduction that identifies the topic, why local government should care, a topic snapshot, how the topic will arise, and a list of resources that define and assess the topic.

Costanti, M.

2006-10-01T23:59:59.000Z

498

Clark County REMC- Clark County REMC- Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Clark County REMC provides incentives for residential members to upgrade to more efficient household equipment. Rebates are available for air-source heat pumps, geothermal heat pumps, central air...

499

Energy Efficient Buildings, Salt Lake County, Utah  

DOE Green Energy (OSTI)

Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project a