Sample records for keith emery removes

  1. EXTERIOR POWERS KEITH CONRAD

    E-Print Network [OSTI]

    Lozano-Robledo, Alvaro

    form on a manifold is related to exterior powers of the dual space of the tangent space of a manifoldEXTERIOR POWERS KEITH CONRAD 1. Introduction Let R be a commutative ring. Unless indicated the alternating multilinear functions on Mk: the exterior power k(M). It is a certain quotient module of Mk

  2. Keith Hardy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Keith Hardy Director - U.S. EV-Smart Grid Interoperability Center E-mail khardy@anl.gov Projects Specifications and Test Procedures...

  3. Keith Benson/Sam Goody Entertainment Internship

    E-Print Network [OSTI]

    Engelhardt, John F.

    Keith Benson/Sam Goody Entertainment Internship Scholarship Summer 2012 Keith Benson, founder of Musicland/Sam Goody has established the: Keith Benson/Sam Goody Internship Support Fund which provides financial assistance to students who intern in the entertainment industry. Two internship scholarships

  4. Organizers: Marianne Krasny and Keith Tidball December 8, 2011

    E-Print Network [OSTI]

    Angenent, Lars T.

    Organizers: Marianne Krasny and Keith Tidball December 8, 2011 Attendance: Keith Tidball, Marianne Krasny, Thomas Elmqvist, Lauren Chambliss, Frank DiSalvo, David Wolfe, Johannes Lehmann, Rich Stedman

  5. MODULES OVER A PID KEITH CONRAD

    E-Print Network [OSTI]

    Lozano-Robledo, Alvaro

    MODULES OVER A PID KEITH CONRAD Every vector space over a field K that has a finite spanning set modules have bases. But when A is a PID, we get something nearly as good as that: (1) Every submodule a PID sits inside the free module. Then we'll learn how to count with ideals in place of positive

  6. The case for Geoengineering Research David Keith

    E-Print Network [OSTI]

    Polz, Martin

    .ucalgary.ca/~keith Director, Energy and Environmental Systems Group Institute for Sustainable Energy, Environment and Economy power · Coal with CO2 capture and storage · Centralstation solar thermal (with long distance: Electricity accounts for 40% of global emissions We can make nearzero emissions power today. With strong

  7. Spatiotemporal wavelet analysis for functional MRI Chris Long,a,* Emery N. Brown,b,c

    E-Print Network [OSTI]

    Manoach, Dara S.

    Spatiotemporal wavelet analysis for functional MRI Chris Long,a,* Emery N. Brown,b,c Dara Manoach in their statistical formulations. To address these issues, we present a novel spatiotemporal wavelet procedure that uses a stimulus-convolved hemodynamic signal plus correlated noise model. The wavelet fits, computed

  8. Garbage Collection Without Paging Matthew Hertz Yi Feng Emery D. Berger

    E-Print Network [OSTI]

    Berger, Emery

    survival rate, generational collection reduces the frequency of full-heap garbage collections. HoweverGarbage Collection Without Paging Matthew Hertz Yi Feng Emery D. Berger Department of Computer Garbage collection offers numerous software engineering advan- tages, but interacts poorly with virtual

  9. A Natural Definition of Random Language Keith Wansbrough*

    E-Print Network [OSTI]

    Wansbrough, Keith

    Introduction Algorithmic Information Theory (AIT) provides definitions of randomness for strings A Natural Definition of Random Language Keith Wansbrough* October 13, 1995 Abstract We propose a natural definition

  10. GE Software Expert Julian Keith Loren Discusses Innovation and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GE Software Expert Julian Keith Loren Discusses Innovation and the Industrial Internet Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window)...

  11. On the residual entropy of the BlumeEmeryGri#ths Gastao A. Braga and Paulo C. Lima

    E-Print Network [OSTI]

    Lima, Paulo C.

    of residual entropy was pointed out by Linus Pauling [3] to describe water ice, which is an exampleOn the residual entropy of the Blume­Emery­Gri#ths model Gast�ao A. Braga and Paulo C. Lima Abstract By means of a transfer matrix method, we show that the residual entropy S of the two dimensional

  12. Nanofluidic tuning of photonic crystal circuits David Erickson,* Troy Rockwood, Teresa Emery, Axel Scherer, and Demetri Psaltis

    E-Print Network [OSTI]

    Erickson, David

    Nanofluidic tuning of photonic crystal circuits David Erickson,* Troy Rockwood, Teresa Emery, Axel; accepted September 16, 2005 By integrating soft-lithography-based nanofluidics with silicon nanophotonics spectral filtering through nanofluidic targeting of a single row of holes within a planar photonic crystal

  13. Glass Needs for a Growing Photovoltaics Industry Keith Burrows1

    E-Print Network [OSTI]

    1 Glass Needs for a Growing Photovoltaics Industry Keith Burrows1 and Vasilis Fthenakis1,2* 1 Center for Life Cycle Analysis, Columbia University, New York, NY 2 Photovoltaics Environmental Research Center, Brookhaven National Lab, Upton, NY Abstract With the projected growth in photovoltaics

  14. Nuclear Energy: Where do we go from here? Keith Bradley

    E-Print Network [OSTI]

    Levi, Anthony F. J.

    11.30am Nuclear Energy: Where do we go from here? Keith Bradley Argonne National Laboratories Abstract For the past several decades, nuclear energy has proven to be one of the most reliable and cost's so-called carbon footprint suggested a resurgence in modern nuclear power -- a renaissance period

  15. Sea Ice Enhancements to Polar WRF* Keith M. Hines1**

    E-Print Network [OSTI]

    Howat, Ian M.

    of Arctic multi-year ice is30 decreasing with more of the ice pack represented by seasonal sea iceSea Ice Enhancements to Polar WRF* Keith M. Hines1** , David H. Bromwich,1,2 , Lesheng Bai1 to6 WRF Version 3.4 include modified Noah land surface model sea ice treatment, allowing7 specified

  16. POET: Parameterized Optimizations for Empirical Tuning Keith Seymour

    E-Print Network [OSTI]

    Texas at San Antonio, University of

    POET: Parameterized Optimizations for Empirical Tuning Qing Yi Keith Seymour Haihang You Richard in performance tuning using empirical techniques. We present a new embedded scripting language, POET that they can be empirically tuned. The POET language aims to significantly improve the generality, flexibility

  17. Managing Wind Power Forecast Uncertainty in Electric Brandon Keith Mauch

    E-Print Network [OSTI]

    i Managing Wind Power Forecast Uncertainty in Electric Grids Brandon Keith Mauch Co for the modeled wind- CAES system would not cover annualized capital costs. We also estimate market prices-ahead market is roughly $100, with large variability due to electric power prices. Wind power forecast errors

  18. EXTENDING UFDS TO PIDS WITHOUT ADDING UNITS KEITH A. KEARNES

    E-Print Network [OSTI]

    Kearnes, Keith A.

    EXTENDING UFDS TO PIDS WITHOUT ADDING UNITS KEITH A. KEARNES ABSTRACT. If U is a UFD, then there is a PID P containing U that has the same unit group as U. Moreover, P can be taken so that its field there is a PID P such that (i) P is a proper subring of the real numbers, (ii) P properly contains the ring

  19. A Natural Definition of Random Language Keith Wansbrough \\Lambda

    E-Print Network [OSTI]

    Wansbrough, Keith

    definition. 1 Introduction Algorithmic Information Theory (AIT) provides definitions of randomnessA Natural Definition of Random Language Keith Wansbrough \\Lambda October 13, 1995 Abstract We propose a natural definition of random language, based on the standard AIT definitions of random string

  20. Creating energy-efficient, affordable housing Joel Fischer, Ana Hawkins, Keith Lindgren, Ceci Marn

    E-Print Network [OSTI]

    Netoff, Theoden

    UMore Park Creating energy-efficient, affordable housing 5/9/2011 Joel Fischer, Ana Hawkins, Keith........................................................................................................5 Energy Efficiency.......................................................................................................................................5 Energy Efficiency Standards in Affordable Housing

  1. Keith Bartolomei and Anita Reddy, `03 Las Matas de Farfn, Dominican Republic

    E-Print Network [OSTI]

    Keith Bartolomei and Anita Reddy, `03 Las Matas de Farfán, Dominican Republic Keith Bartolomei for malnourished children. We worked in Las Matas de Farfán, Dominican Republic, on the western side of the country with great love." At the close of our six-week trip to the Dominican Republic, I realized that the people we

  2. Keith County, Nebraska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa: EnergyKanabec County,Kaolin ADKaw(CTIKeegoKeith County,

  3. Asphaltene Aggregation: Techniques for Analysis Keith L. Gawrys and Peter K. Kilpatrick*

    E-Print Network [OSTI]

    Kilpatrick, Peter K.

    Asphaltene Aggregation: Techniques for Analysis Keith L. Gawrys and Peter K. Kilpatrick* North Carolina State University, Raleigh, North Carolina, USA ABSTRACT The study of asphaltene colloidal, hence, pose considerable challenges for the petroleum industry. Asphaltenes are defined as the toluene

  4. The Eternity of the World and Renaissance Historical Thought

    E-Print Network [OSTI]

    Connell, William J.

    2011-01-01T23:59:59.000Z

    Jan A. Aertsen and Andreas Speer, 31-53. Berlin: De Gruyter.See also Aertsen, Emery and Speer eds. (2001). were devotedA. , Keith Emery, Jr. and Andreas Speer, eds. 2001. Nach der

  5. Distributed Artificial Intelligence, Vol. II Pitman-London Keith S. Decker, Edmund H. Durfee & Victor R. Lesser 1989

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Distributed Artificial Intelligence, Vol. II Pitman-London © Keith S. Decker, Edmund H. Durfee & Victor R. Lesser 1989 #12;Distributed Artificial Intelligence, Vol. II Pitman-London © Keith S. Decker, Edmund H. Durfee & Victor R. Lesser 1989 #12;Distributed Artificial Intelligence, Vol. II Pitman

  6. A FREEWARE 1D EMITTER MODEL FOR SILICON SOLAR CELLS Keith R. McIntosh

    E-Print Network [OSTI]

    Centre for Sustainable Energy Systems, Australian National University, Canberra, ACT 0200, AUSTRALIA 2 Leibniz University of Hannover, Inst. of Solid-State Physics, Dep. Solar Energy, Appelstrasse 2, 30167A FREEWARE 1D EMITTER MODEL FOR SILICON SOLAR CELLS Keith R. McIntosh 1 and Pietro P. Altermatt 2 1

  7. AMMONIA RECEIVER DESIGN FOR A 500m2 Rebecca Dunn, Keith Lovegrove, and Greg Burgess

    E-Print Network [OSTI]

    decomposition of ammonia to store solar energy. Ammonia passes alternately between energy-storing (dissociationAMMONIA RECEIVER DESIGN FOR A 500m2 DISH Rebecca Dunn, Keith Lovegrove, and Greg Burgess Solar 0200, Australia. Phone: +61 2 6125 4046. rebecca.dunn@anu.edu.au Abstract Previous ammonia receiver

  8. Using Imported Graphics in LATEX and pdfLATEX Keith Reckdahl

    E-Print Network [OSTI]

    Chapman, Robin

    Using Imported Graphics in LATEX and pdfLATEX Keith Reckdahl epslatex at yahoo dot com Version 3.0.1 January 12, 2006 This document describes first how to import graphics into LATEX documents and then covers of Contents starting on page 5 or the Index starting on page 122. Importing graphics begins with specifying

  9. Using Imported Graphics in L A T E X 2 '' Keith Reckdahl

    E-Print Network [OSTI]

    Stein, William

    Using Imported Graphics in L A T E X 2 '' Keith Reckdahl reckdahl@am­sun2.stanford.edu Version 2.0 December 15, 1997 Summary This document explains how to use imported graphics in L A T E X 2 '' documents A T E X can import virtually any graphics format, Encapsulated PostScript (eps) is the easiest graphics

  10. Adaptive Optimizing Compilers for the 21st Keith D. Cooper Devika Subramanian Linda Torczon

    E-Print Network [OSTI]

    Historically, compilers have operated by applying a fixed set of optimizations in a predetermined order. WeAdaptive Optimizing Compilers for the 21st Century Keith D. Cooper Devika Subramanian Linda Torczon call such an ordered list of optimizations a compilation sequence. This paper describes a prototype

  11. A Temporal Model for Multi-Level Undo and Redo W. Keith Edwards

    E-Print Network [OSTI]

    Edwards, Keith

    A Temporal Model for Multi-Level Undo and Redo W. Keith Edwards Xerox PARC 3333 Coyote Hill Road Palo Alto, CA 94304 kedwards@parc.xerox.com Takeo Igarashi1 Brown University CS Dept., Box 1910 of the application as a whole can allow users to work locally on a document, project source code, et cetera

  12. Transportation Planning & Decision Science Group Transportation Systems Research Group Diane Davidson Keith Kahl

    E-Print Network [OSTI]

    Transportation Planning & Decision Science Group Transportation Systems Research Group Diane Davidson Keith Kahl 865-946-1475 865-946-1236 Center for Transportation Analysis News Oak Ridge National to members of the Kentucky Transportation Cabinet and the Kentucky Transportation Center. The purpose

  13. Transportation Planning & Decision Science Group Transportation Systems Research Group Diane Davidson Keith Kahl

    E-Print Network [OSTI]

    Transportation Planning & Decision Science Group Transportation Systems Research Group Diane Davidson Keith Kahl 865-946-1475 865-946-1236 Center for Transportation Analysis News Oak Ridge National, during the Chairman's Luncheon at the 92nd Annual Transportation Research Board (TRB) Meeting

  14. Keith Beven Hydrol. Earth Syst. Sci., 11(1), 460467, 2007

    E-Print Network [OSTI]

    Boyer, Edmond

    water resources are managed for the foreseeable future (see, for example, http://www.defra.gov. uk/460/2007 © Author(s) 2007. This work is licensed under a Creative Commons License. Towards integrated environmental models of everywhere: uncertainty, data and modelling as a learning process Keith Beven Environmental

  15. Kohout, R. J. 2007. Revision of the subgenus Aulacomyrma Emery of the genus Polyrhachis F. Smith, with descriptions of new species, pp. 186-253. In Snelling, R. R., B. L. Fisher, and P. S.

    E-Print Network [OSTI]

    Villemant, Claire

    Kohout, R. J. 2007. Revision of the subgenus Aulacomyrma Emery of the genus Polyrhachis F. Smith FR. SMITH, WITH DESCRIPTIONS OF NEW SPECIES Rudolf J. Kohout Higher Entomology Section, Queensland Archipelago, Indonesia, systematics, new species, distribution. #12;Kohout: Revision of subgenus Aulacomyrma

  16. Report on the Discrete Analysis Programme at INI. Keith Ball, Franck Barthe, Ben Green and Assaf Naor

    E-Print Network [OSTI]

    Report on the Discrete Analysis Programme at INI. Keith Ball, Franck Barthe, Ben Green and Assaf. The INI decided to experiment with streaming the lectures of the first INI workshop to Paris so

  17. PARABOLOIDAL DISH SOLAR CONCENTRATORS FOR MULTI-MEGAWATT POWER GENERATION Keith Lovegrove , Tui Taumoefolau, Sawat Paitoonsurikarn, Piya Siangsukone, Greg Burgess, Andreas Luzzi,

    E-Print Network [OSTI]

    PARABOLOIDAL DISH SOLAR CONCENTRATORS FOR MULTI-MEGAWATT POWER GENERATION Keith Lovegrove , Tui, Wie Joe and Geoff Major. Centre for Sustainable Energy Systems, Department of Engineering, Australian National University, Canberra ACT 0200, AUSTRALIA ph:+61 02 6125 8299 fax: +61 02 6125 0506 E-mail: keith

  18. Keith O. Hodgson, 2002 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron beamJoin2015JustKate BannanNational|Keith O.

  19. Initial Performance Evaluation of the Cray SeaStar Interconnect Ron Brightwell Kevin Pedretti Keith D. Underwood

    E-Print Network [OSTI]

    Brightwell, Ron

    Initial Performance Evaluation of the Cray SeaStar Interconnect Ron Brightwell Kevin Pedretti Keith supercomputer. The SeaStar was designed specifically to meet the performance and reliability needs of a large-scale, distributed-memory scientific computing platform. In this paper, we present an initial performance evaluation

  20. 785 nm Raman Spectroscopy of CVD Diamond Films Paul William May, James A Smith, and Keith N Rosser

    E-Print Network [OSTI]

    Bristol, University of

    . Here, we report that when using 785 nm excitation, the Raman spectra from thin polycrystalline diamond785 nm Raman Spectroscopy of CVD Diamond Films Paul William May, James A Smith, and Keith N Rosser Raman spectroscopy is a powerful technique often used to study CVD diamond films, however, very little

  1. Patterns of fish invasions in the Great Plains of North America Keith B. Gido a,*, Jacob F. Schaefer b

    E-Print Network [OSTI]

    Gido, Keith B.

    Patterns of fish invasions in the Great Plains of North America Keith B. Gido a,*, Jacob F 66506, USA b Department of Biology, Southern Illinois University at Edwardsville, Edwardsville, IL 62026 in Oklahoma and Kansas to examine spatial patterns of species invasions in the Great Plains region of the US

  2. Using Imported Graphics in L A T E X and pdfL A T E X Keith Reckdahl

    E-Print Network [OSTI]

    Chapman, Robin

    Using Imported Graphics in L A T E X and pdfL A T E X Keith Reckdahl epslatex at yahoo dot com Version 3.0.1 January 12, 2006 This document describes first how to import graphics into L A T E X by checking the Table of Contents starting on page 5 or the Index starting on page 122. Importing graphics

  3. V. Sajaev, L. Emery Motivation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solving equation (1), consists of two main parts. First, the inverse derivative of the response matrix is calculated. This step is time consuming and can take up to several...

  4. Patterns of geographic variation in green ash (Fraxinus pennsylvanica Marsh.) in the Western Gulf region: by Keith William Hendrix.

    E-Print Network [OSTI]

    Hendrix, Keith William

    1986-01-01T23:59:59.000Z

    for the degree of MASTER OF SCIENCE December 1986 Major Subject: Forest Science P~S OF GECGRAPHIC VARIATION IN GREEN ASH (FRAXIWS PENNSYLVANICA MARSH. ) IN THE WESTERN G)LF REGION A Thesis by Approved as to style and content by: Wil ' X Lcwe (Chais...(nan of Ccnmittee) J. Charles Lee (Head of Department) . v Buijtenen (Mmnber ) J. D. Snu. th (Member ) December 1986 ABSTRACT Patterns of Geographic Variation G As (F ~i' M h. ) in the Western Gulf Region. (December 1986) Keith William Hendrix, B. S...

  5. REES 410/510: Post-Cold War Eastern Europe Fall 2012 (CRN 18065/18066) Instructor: Keith Eddins eddinska@uoregon.edu

    E-Print Network [OSTI]

    Oregon, University of

    REES 410/510: Post-Cold War Eastern Europe Fall 2012 (CRN 18065/18066) Instructor: Keith Eddins eddinska@uoregon.edu Mondays and Wednesdays: 5:30 p.m. to 6:50 p.m. As the Cold War concluded, hopes

  6. Issue 05 February 2010 This issue: 1 Bug battling firm Byotrol relocates R&D to STFC Daresbury Laboratory's Innovations Technology Access Centre 2 Keith Masons

    E-Print Network [OSTI]

    Laboratory's Innovations Technology Access Centre 2 Keith Masons opinion on the relocation 3 RSE? 87654321 The Science and Technology Facilities Council's (STFC's) pioneering Innovations Technology Access Innovations Technology Access Centre (I-TAC) following the recent relocation of their principle microbiology R

  7. A Tungsten(VI) Nitride Having a W2(-N)2 Core Zachary J. Tonzetich, Richard R. Schrock,* Keith M. Wampler, Brad C. Bailey,

    E-Print Network [OSTI]

    Müller, Peter

    A Tungsten(VI) Nitride Having a W2(µ-N)2 Core Zachary J. Tonzetich, Richard R. Schrock,* Keith M-331, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 Received September 27, 2007 The tungsten that the tungsten alkylidyne species W(C-t-Bu)(CH2-t-Bu)(OAr)2 (Ar ) 2,6-diisopropylphenyl) can be prepared readily

  8. Geometrical contributions to secret sharing theory WenAi Jackson 1 , Keith M. Martin 2 \\Lambda and Christine M. O'Keefe 1y

    E-Print Network [OSTI]

    Martin, Keith

    Geometrical contributions to secret sharing theory Wen­Ai Jackson 1 , Keith M. Martin 2 \\Lambda­ sider one such application, to the theory of secret sharing, where finite geometry has proved to be very useful, both as a modelling tool and as a means to establish interesting results. A secret sharing scheme

  9. CA in the Wild. Last edited 28/10/07 22:11 1 Preprint: final version of paper available as: BLANDFORD, A., KEITH, S. & FIELDS, B. (2006)

    E-Print Network [OSTI]

    Blandford, Ann

    CA in the Wild. Last edited 28/10/07 22:11 1 Preprint: final version of paper available as: BLANDFORD, A., KEITH, S. & FIELDS, B. (2006) Claims Analysis `in the wild': a case study on digital library.1207/s15327590ijhc2102_5. Claims Analysis `in the wild': a case study on Digital Library development Ann

  10. Silica Scaling Removal Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sidestreams of cooling tower water by providing a substrate for the deposition and adsorption of silica. The removal of the silica prevents scaling deposition on heat transfer...

  11. KEITH SCHAEFER brings more than 25 years of leadership experience to his position of Chairman, City Paper Box, an international manufacturer of paper products serving the food service industry. Throughout his career, he has held a

    E-Print Network [OSTI]

    Sibille, Etienne

    as Chief Executive Officer and President of BPL Global, Ltd., a smart grid, clean technology company heKEITH SCHAEFER brings more than 25 years of leadership experience to his position of Chairman, City

  12. Differentiation of C2C12 myoblasts expressing lamin A mutated at a site responsible for Emery-Dreifuss muscular dystrophy is improved by inhibition of the MEK-ERK pathway and stimulation of the PI3-kinase pathway

    SciTech Connect (OSTI)

    Favreau, Catherine [Institut Jacques Monod, UMR7592, CNRS et Universites Paris 6 et 7, 2 Place Jussieu, 75251 Paris Cedex 05 (France); Delbarre, Erwan [Institute of Basic Medical Sciences, Department of Biochemistry, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, 0317 Oslo (Norway); Courvalin, Jean-Claude [Institut Jacques Monod, UMR7592, CNRS et Universites Paris 6 et 7, 2 Place Jussieu, 75251 Paris Cedex 05 (France); Buendia, Brigitte [Institut Jacques Monod, UMR7592, CNRS et Universites Paris 6 et 7, 2 Place Jussieu, 75251 Paris Cedex 05 (France)], E-mail: buendia@ijm.jussieu.fr

    2008-04-01T23:59:59.000Z

    Mutation R453W in A-type lamins, that are major nuclear envelope proteins, generates Emery-Dreifuss muscular dystrophy. We previously showed that mouse myoblasts expressing R453W-lamin A incompletely exit the cell cycle and differentiate into myocytes with a low level of multinucleation. Here we attempted to improve differentiation by treating these cells with a mixture of PD98059, an extracellular-regulated kinase (ERK) kinase (also known as mitogen-activated kinase, MEK) inhibitor, and insulin-like growth factor-II, an activator of phosphoinositide 3-kinase. We show that mouse myoblasts expressing R453W-lamin A were sensitive to the drug treatment as shown by (i) an increase in multinucleation, (ii) downregulation of proliferation markers (cyclin D1, hyperphosphorylated Rb), (iii) upregulation of myogenin, and (iv) sustained activation of p21 and cyclin D3. However, nuclear matrix anchorage of p21 and cyclin D3 in a complex with hypophosphorylated Rb that is critical to trigger cell cycle arrest and myogenin induction was deficient and incompletely restored by drug treatment. As the turn-over of R453W-lamin A at the nuclear envelope was greatly enhanced, we propose that R453W-lamin A impairs the capacity of the nuclear lamina to serve as scaffold for substrates of the MEK-ERK pathway and for MyoD-induced proteins that play a role in the differentiation process.

  13. Reactor for removing ammonia

    DOE Patents [OSTI]

    Luo, Weifang (Livermore, CA); Stewart, Kenneth D. (Valley Springs, CA)

    2009-11-17T23:59:59.000Z

    Disclosed is a device for removing trace amounts of ammonia from a stream of gas, particularly hydrogen gas, prepared by a reformation apparatus. The apparatus is used to prevent PEM "poisoning" in a fuel cell receiving the incoming hydrogen stream.

  14. Continuous sulfur removal process

    DOE Patents [OSTI]

    Jalan, V.; Ryu, J.

    1994-04-26T23:59:59.000Z

    A continuous process for the removal of hydrogen sulfide from a gas stream using a membrane comprising a metal oxide deposited on a porous support is disclosed. 4 figures.

  15. Arsenic removal from water

    DOE Patents [OSTI]

    Moore, Robert C. (Edgewood, NM); Anderson, D. Richard (Albuquerque, NM)

    2007-07-24T23:59:59.000Z

    Methods for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical methods for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A method for continuous removal of arsenic from water is provided. Also provided is a method for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.

  16. Drum lid removal tool

    DOE Patents [OSTI]

    Pella, Bernard M. (Martinez, GA); Smith, Philip D. (North Augusta, SC)

    2010-08-24T23:59:59.000Z

    A tool for removing the lid of a metal drum wherein the lid is clamped over the drum rim without protruding edges, the tool having an elongated handle with a blade carried by an angularly positioned holder affixed to the midsection of the handle, the blade being of selected width to slice between lid lip and the drum rim and, when the blade is so positioned, upward motion of the blade handle will cause the blade to pry the lip from the rim and allow the lid to be removed.

  17. Removable feedwater sparger assembly

    DOE Patents [OSTI]

    Challberg, R.C.

    1994-10-04T23:59:59.000Z

    A removable feedwater sparger assembly includes a sparger having an inlet pipe disposed in flow communication with the outlet end of a supply pipe. A tubular coupling includes an annular band fixedly joined to the sparger inlet pipe and a plurality of fingers extending from the band which are removably joined to a retention flange extending from the supply pipe for maintaining the sparger inlet pipe in flow communication with the supply pipe. The fingers are elastically deflectable for allowing engagement of the sparger inlet pipe with the supply pipe and for disengagement therewith. 8 figs.

  18. Condensate removal device

    DOE Patents [OSTI]

    Maddox, James W. (Newport News, VA); Berger, David D. (Alexandria, VA)

    1984-01-01T23:59:59.000Z

    A condensate removal device is disclosed which incorporates a strainer in unit with an orifice. The strainer is cylindrical with its longitudinal axis transverse to that of the vapor conduit in which it is mounted. The orifice is positioned inside the strainer proximate the end which is remoter from the vapor conduit.

  19. Pneumatic soil removal tool

    DOE Patents [OSTI]

    Neuhaus, J.E.

    1992-10-13T23:59:59.000Z

    A soil removal tool is provided for removing radioactive soil, rock and other debris from the bottom of an excavation, while permitting the operator to be located outside of a containment for that excavation. The tool includes a fixed jaw, secured to one end of an elongate pipe, which cooperates with a movable jaw pivotably mounted on the pipe. Movement of the movable jaw is controlled by a pneumatic cylinder mounted on the pipe. The actuator rod of the pneumatic cylinder is connected to a collar which is slidably mounted on the pipe and forms part of the pivotable mounting assembly for the movable jaw. Air is supplied to the pneumatic cylinder through a handle connected to the pipe, under the control of an actuator valve mounted on the handle, to provide movement of the movable jaw. 3 figs.

  20. Pneumatic soil removal tool

    DOE Patents [OSTI]

    Neuhaus, John E. (Newport News, VA)

    1992-01-01T23:59:59.000Z

    A soil removal tool is provided for removing radioactive soil, rock and other debris from the bottom of an excavation, while permitting the operator to be located outside of a containment for that excavation. The tool includes a fixed jaw, secured to one end of an elongate pipe, which cooperates with a movable jaw pivotably mounted on the pipe. Movement of the movable jaw is controlled by a pneumatic cylinder mounted on the pipe. The actuator rod of the pneumatic cylinder is connected to a collar which is slidably mounted on the pipe and forms part of the pivotable mounting assembly for the movable jaw. Air is supplied to the pneumatic cylinder through a handle connected to the pipe, under the control of an actuator valve mounted on the handle, to provide movement of the movable jaw.

  1. KKG Group Paraffin Removal

    SciTech Connect (OSTI)

    Schulte, Ralph

    2001-12-01T23:59:59.000Z

    The Rocky Mountain Oilfield Testing Center (RMOTC) has recently completed a test of a paraffin removal system developed by the KKG Group utilizing the technology of two Russian scientists, Gennady Katzyn and Boris Koggi. The system consisting of chemical ''sticks'' that generate heat in-situ to melt the paraffin deposits in oilfield tubing. The melted paraffin is then brought to the surface utilizing the naturally flowing energy of the well.

  2. Geothermal hydrogen sulfide removal

    SciTech Connect (OSTI)

    Urban, P.

    1981-04-01T23:59:59.000Z

    UOP Sulfox technology successfully removed 500 ppM hydrogen sulfide from simulated mixed phase geothermal waters. The Sulfox process involves air oxidation of hydrogen sulfide using a fixed catalyst bed. The catalyst activity remained stable throughout the life of the program. The product stream composition was selected by controlling pH; low pH favored elemental sulfur, while high pH favored water soluble sulfate and thiosulfate. Operation with liquid water present assured full catalytic activity. Dissolved salts reduced catalyst activity somewhat. Application of Sulfox technology to geothermal waters resulted in a straightforward process. There were no requirements for auxiliary processes such as a chemical plant. Application of the process to various types of geothermal waters is discussed and plans for a field test pilot plant and a schedule for commercialization are outlined.

  3. Rubber stopper remover

    DOE Patents [OSTI]

    Stitt, Robert R. (Arvada, CO)

    1994-01-01T23:59:59.000Z

    A device for removing a rubber stopper from a test tube is mountable to an upright wall, has a generally horizontal splash guard, and a lower plate spaced parallel to and below the splash guard. A slot in the lower plate has spaced-apart opposing edges that converge towards each other from the plate outer edge to a narrowed portion, the opposing edges shaped to make engagement between the bottom of the stopper flange and the top edge of the test tube to wedge therebetween and to grasp the stopper in the slot narrowed portion to hold the stopper as the test tube is manipulated downwardly and pulled from the stopper. The opposing edges extend inwardly to adjoin an opening having a diameter significantly larger than that of the stopper flange.

  4. Removing Arsenic from Drinking Water

    ScienceCinema (OSTI)

    None

    2013-05-28T23:59:59.000Z

    See how INL scientists are using nanotechnology to remove arsenic from drinking water. For more INL research, visit http://www.facebook.com/idahonationallaboratory

  5. Emery Energy Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,Energy Information ElkhornElwood,EmcoreEmergentNewEnergy

  6. Interview of Keith Thomas

    E-Print Network [OSTI]

    Thomas, Keith

    2010-01-01T23:59:59.000Z

    - not the Annales of hard quantitative history, but the Annales of Lucien Febvre and what is now called cultural history but wasn't then; I think Peter Burke was the first professor of cultural history; I happened to find that temperamentally more sympathetic...

  7. Multipollutant Removal with WOWClean® System 

    E-Print Network [OSTI]

    Romero, M.

    2010-01-01T23:59:59.000Z

    from the flue gas of a power plant and demonstrate the technology. The system integrates proven emission reduction techniques into a single, multi-pollutant reduction system and is designed to remove Mercury, SOx, NOx, particulates, heavy metals...

  8. Large Component Removal/Disposal

    SciTech Connect (OSTI)

    Wheeler, D. M.

    2002-02-27T23:59:59.000Z

    This paper describes the removal and disposal of the large components from Maine Yankee Atomic Power Plant. The large components discussed include the three steam generators, pressurizer, and reactor pressure vessel. Two separate Exemption Requests, which included radiological characterizations, shielding evaluations, structural evaluations and transportation plans, were prepared and issued to the DOT for approval to ship these components; the first was for the three steam generators and one pressurizer, the second was for the reactor pressure vessel. Both Exemption Requests were submitted to the DOT in November 1999. The DOT approved the Exemption Requests in May and July of 2000, respectively. The steam generators and pressurizer have been removed from Maine Yankee and shipped to the processing facility. They were removed from Maine Yankee's Containment Building, loaded onto specially designed skid assemblies, transported onto two separate barges, tied down to the barges, th en shipped 2750 miles to Memphis, Tennessee for processing. The Reactor Pressure Vessel Removal Project is currently under way and scheduled to be completed by Fall of 2002. The planning, preparation and removal of these large components has required extensive efforts in planning and implementation on the part of all parties involved.

  9. Removal of phosphorus from mud

    SciTech Connect (OSTI)

    Nield, M.A.; Robbins, B.N.

    1988-08-09T23:59:59.000Z

    This patent describes a method of processing an aqueous phosphorous-containing solids-containing waste material containing about 5 to about 75 wt.% of elemental phosphorus and which is phosphorus mud obtained as a by-product in the electrothermal production of elemental phosphorus by removing the water and phosphorus substantially completely therefrom, the improvement in the processing which consists essentially of the steps of: first boiling off the water from the waste material to effect the substantially-complete removal of water therefrom, next boiling-off yellow phosphorus from the waste material, and finally burning off residual phosphorus remaining from the boiling-off of yellow phosphorus from the waste material, whereby the boiling-off of yellow phosphorus and the burning-off of the residual phosphorus effects substantially complete removal of phosphorus from the waste material to produce a substantially phosphorus-free solid residue.

  10. Actinide removal from spent salts

    DOE Patents [OSTI]

    Hsu, Peter C. (Pleasanton, CA); von Holtz, Erica H. (Livermore, CA); Hipple, David L. (Livermore, CA); Summers, Leslie J. (Livermore, CA); Adamson, Martyn G. (Danville, CA)

    2002-01-01T23:59:59.000Z

    A method for removing actinide contaminants (uranium and thorium) from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents are added to precipitate the thorium as thorium oxide and/or the uranium as either uranium oxide or as a diuranate salt. The precipitated materials are filtered, dried and packaged for disposal as radioactive waste. About 90% of the thorium and/or uranium present is removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 0.1 ppm of thorium or uranium.

  11. Metals removal from spent salts

    DOE Patents [OSTI]

    Hsu, Peter C. (Pleasanton, CA); Von Holtz, Erica H. (Livermore, CA); Hipple, David L. (Livermore, CA); Summers, Leslie J. (Livermore, CA); Brummond, William A. (Livermore, CA); Adamson, Martyn G. (Danville, CA)

    2002-01-01T23:59:59.000Z

    A method and apparatus for removing metal contaminants from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents may be added to precipitate the metal oxide and/or the metal as either metal oxide, metal hydroxide, or as a salt. The precipitated materials are filtered, dried and packaged for disposal as waste or can be immobilized as ceramic pellets. More than about 90% of the metals and mineral residues (ashes) present are removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be spray-dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 1.0 ppm of contaminants.

  12. Multipollutant Removal with WOWClean® System

    E-Print Network [OSTI]

    Romero, M.

    2010-01-01T23:59:59.000Z

    such as petcoke, coal, wood, diesel and natural gas. In addition to significant removal of CO2, test results demonstrate the capability to reduce 99.5% SOx (from levels as high as 2200 ppm), 90% reduction of NOx, and > 90% heavy metals. The paper will include...

  13. High-efficiency solution processable polymer photovoltaic cells by

    E-Print Network [OSTI]

    ,8 consisting of an interpenetrating network of electron donor and acceptor materials. This concept has alsoARTICLES High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends GANG LI1 , VISHAL SHROTRIYA1 , JINSONG HUANG1 , YAN YAO1 , TOM MORIARTY2 , KEITH EMERY2

  14. IDENTIFYING CANDIDATE PROTEIN FOR REMOVAL OF ENVIRONMENTALLY

    E-Print Network [OSTI]

    Uppsala Universitet

    IDENTIFYING CANDIDATE PROTEIN FOR REMOVAL OF ENVIRONMENTALLY HAZARDOUS SUBSTANCES Pharem Biotech products and technologies for removing environmental hazardous substances in our everyday life. The products can be applied in areas from the private customer up to the global corporate perspective

  15. Arsenic removal and stabilization by synthesized pyrite

    E-Print Network [OSTI]

    Song, Jin Kun

    2009-05-15T23:59:59.000Z

    hydride generation atomic absorption spectrometry method for measuring arsenic species (As(III), As(V)). The synthesized pyrite was applied to remove arsenic and its maximum capacity for arsenic removal was measured in batch adsorption experiments to be 3...

  16. Automatic Eyeglasses Removal from Face Images

    E-Print Network [OSTI]

    Narasayya, Vivek

    Automatic Eyeglasses Removal from Face Images Chenyu Wu, Ce Liu, Heung-Yueng Shum, Member, IEEE an intelligent image editing and face synthesis system that automatically removes eyeglasses from an input frontal face image. Although conventional image editing tools can be used to remove eyeglasses by pixel

  17. Laser-based coatings removal

    SciTech Connect (OSTI)

    Freiwald, J.G.; Freiwald, D.

    1995-12-01T23:59:59.000Z

    Over the years as building and equipment surfaces became contaminated with low levels of uranium or plutonium dust, coats of paint were applied to stabilize the contaminants in place. Most of the earlier paint used was lead-based paint. More recently, various non-lead-based paints, such as two-part epoxy, are used. For D & D (decontamination and decommissioning), it is desirable to remove the paints or other coatings rather than having to tear down and dispose of the entire building.

  18. Removing Stains from Washable Fabrics.

    E-Print Network [OSTI]

    Beard, Ann Vanderpoorten

    1988-01-01T23:59:59.000Z

    Page Numbers Stain Page Numbers Acne medicine Blueberry Special 9 Wet 8 Adhesive tape Dye 8 Special 9 Butter Alcoholic beverages Dry 8 Wet 8 Oil 8 Tannin 8 Calamine lotion Asphalt Combination 8 Combination 8 Dye 8 Dye 8 Candle wax Automotive... the most gentle to the most harsh, so always stop treatments as soon as the stain has been removed. Dry Type Stains Dissolve the stain with a grease solvent. Lubricate the stain with dry spotter, coconut oil or mineral oil (sold in health food...

  19. Melter Glass Removal and Dismantlement

    SciTech Connect (OSTI)

    Richardson, BS

    2000-10-31T23:59:59.000Z

    The U.S. Department of Energy (DOE) has been using vitrification processes to convert high-level radioactive waste forms into a stable glass for disposal in waste repositories. Vitrification facilities at the Savannah River Site (SRS) and at the West Valley Demonstration Project (WVDP) are converting liquid high-level waste (HLW) by combining it with a glass-forming media to form a borosilicate glass, which will ensure safe long-term storage. Large, slurry fed melters, which are used for this process, were anticipated to have a finite life (on the order of two to three years) at which time they would have to be replaced using remote methods because of the high radiation fields. In actuality the melters useable life spans have, to date, exceeded original life-span estimates. Initial plans called for the removal of failed melters by placing the melter assembly into a container and storing the assembly in a concrete vault on the vitrification plant site pending size-reduction, segregation, containerization, and shipment to appropriate storage facilities. Separate facilities for the processing of the failed melters currently do not exist. Options for handling these melters include (1) locating a facility to conduct the size-reduction, characterization, and containerization as originally planned; (2) long-term storing or disposing of the complete melter assembly; and (3) attempting to refurbish the melter and to reuse the melter assembly. The focus of this report is to look at methods and issues pertinent to size-reduction and/or melter refurbishment in particular, removing the glass as a part of a refurbishment or to reduce contamination levels (thus allowing for disposal of a greater proportion of the melter as low level waste).

  20. Removal of metal ions from aqueous solution

    DOE Patents [OSTI]

    Jackson, Paul J. (both Los Alamos, NM); Delhaize, Emmanuel (both Los Alamos, NM); Robinson, Nigel J. (Durham, GB2); Unkefer, Clifford J. (Los Alamos, NM); Furlong, Clement (Seattle, WA)

    1990-11-13T23:59:59.000Z

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat unit for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heayv metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  1. Removal of metal ions from aqueous solution

    DOE Patents [OSTI]

    Jackson, Paul J. (Los Alamos, NM); Delhaize, Emmanuel (Los Alamos, NM); Robinson, Nigel J. (Durham, GB2); Unkefer, Clifford J. (Los Alamos, NM); Furlong, Clement (Seattle, WA)

    1990-01-01T23:59:59.000Z

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  2. Method for removing contaminants from plastic resin

    DOE Patents [OSTI]

    Bohnert, George W. (Harrisonville, MO); Hand, Thomas E. (Lee's Summit, MO); DeLaurentiis, Gary M. (Jamestown, CA)

    2008-12-09T23:59:59.000Z

    A resin recycling method that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The method includes receiving the resin in container form. The containers are then ground into resin particles. The particles are exposed to a solvent, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. After separating the particles and the resin, a solvent removing agent is used to remove any residual solvent remaining on the resin particles after separation.

  3. PRTR ion exchange vault water removal

    SciTech Connect (OSTI)

    Ham, J.E.

    1995-11-01T23:59:59.000Z

    This report documents the removal of radiologically contaminated water from the Plutonium Recycle Test Reactor (PRTR) ion exchange vault. Approximately 57,000 liters (15,000 gallons) of water had accumulated in the vault due to the absence of a rain cover. The water was removed and the vault inspected for signs of leakage. No evidence of leakage was found. The removal and disposal of the radiologically contaminated water decreased the risk of environmental contamination.

  4. General Counsel Legal Interpretation Regarding Medical Removal...

    Energy Savers [EERE]

    Regarding Medical Removal Protection Benefits Pursuant to 10 CFR Part 850, Chronic Beryllium Disease Prevention Program General Counsel Legal Interpretation Regarding Medical...

  5. System for removing contaminants from plastic resin

    DOE Patents [OSTI]

    Bohnert, George W. (Harrisonville, MO); Hand, Thomas E. (Lee's Summit, MO); DeLaurentiis, Gary M. (Jamestown, CA)

    2010-11-23T23:59:59.000Z

    A resin recycling system that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The system includes receiving the resin in container form. A grinder grinds the containers into resin particles. The particles are exposed to a solvent in one or more solvent wash vessels, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. A separator is used to separate the resin particles and the solvent. The resin particles are then placed in solvent removing element where they are exposed to a solvent removing agent which removes any residual solvent remaining on the resin particles after separation.

  6. Slag capture and removal during laser cutting

    DOE Patents [OSTI]

    Brown, Clyde O. (Newington, CT)

    1984-05-08T23:59:59.000Z

    Molten metal removed from a workpiece in a laser cutting operation is blown away from the cutting point by a gas jet and collected on an electromagnet.

  7. Method of removing contaminants from plastic resins

    DOE Patents [OSTI]

    Bohnert, George W. (Harrisonville, MO); Hand, Thomas E. (Lee's Summit, MO); DeLaurentiis, Gary M. (Jamestown, CA)

    2008-11-18T23:59:59.000Z

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  8. Method for removing contaminants from plastic resin

    DOE Patents [OSTI]

    Bohnert, George W. (Harrisonville, MO); Hand, Thomas E. (Lee's Summit, MO); DeLaurentiis, Gary M. (Jamestown, CA)

    2008-12-30T23:59:59.000Z

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  9. Method of removing contaminants from plastic resins

    DOE Patents [OSTI]

    Bohnert,George W. (Harrisonville, MO); Hand,Thomas E. (Lee's Summit, MO); Delaurentiis,Gary M. (Jamestown, CA)

    2007-08-07T23:59:59.000Z

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  10. Method for changing removable bearing for a wind turbine generator

    DOE Patents [OSTI]

    Bagepalli, Bharat Sampathkumaran (Niskayuna, NY); Jansen, Patrick Lee (Scotia, NY); Gadre, Aniruddha Dattatraya (Rexford, NY)

    2008-04-22T23:59:59.000Z

    A wind generator having removable change-out bearings includes a rotor and a stator, locking bolts configured to lock the rotor and stator, a removable bearing sub-assembly having at least one shrunk-on bearing installed, and removable mounting bolts configured to engage the bearing sub-assembly and to allow the removable bearing sub-assembly to be removed when the removable mounting bolts are removed.

  11. Removable bearing arrangement for a wind turbine generator

    DOE Patents [OSTI]

    Bagepalli, Bharat Sampathkumaran; Jansen, Patrick Lee; Gadre, Aniruddha Dattatraya

    2010-06-15T23:59:59.000Z

    A wind generator having removable change-out bearings includes a rotor and a stator, locking bolts configured to lock the rotor and stator, a removable bearing sub-assembly having at least one shrunk-on bearing installed, and removable mounting bolts configured to engage the bearing sub-assembly and to allow the removable bearing sub-assembly to be removed when the removable mounting bolts are removed.

  12. David Keith, Academic CV (Feb-13) Page 1 David Keith

    E-Print Network [OSTI]

    sensitivity to solar PV. Environmental impacts of energy technologies including the development of Canada and Environmental Systems Group; Professor, Department of Chemical and Petroleum Engineering; Adjunct Professor, Faculty of Environmental Design, 2007-present, Faculty of Physics and Astronomy, 2010-present

  13. In situ removal of contamination from soil

    DOE Patents [OSTI]

    Lindgren, Eric R. (Albuquerque, NM); Brady, Patrick V. (Albuquerque, NM)

    1997-01-01T23:59:59.000Z

    A process of remediation of cationic heavy metal contamination from soil utilizes gas phase manipulation to inhibit biodegradation of a chelating agent that is used in an electrokinesis process to remove the contamination, and further gas phase manipulation to stimulate biodegradation of the chelating agent after the contamination has been removed. The process ensures that the chelating agent is not attacked by bioorganisms in the soil prior to removal of the contamination, and that the chelating agent does not remain as a new contaminant after the process is completed.

  14. In situ removal of contamination from soil

    DOE Patents [OSTI]

    Lindgren, E.R.; Brady, P.V.

    1997-10-14T23:59:59.000Z

    A process of remediation of cationic heavy metal contamination from soil utilizes gas phase manipulation to inhibit biodegradation of a chelating agent that is used in an electrokinesis process to remove the contamination. The process also uses further gas phase manipulation to stimulate biodegradation of the chelating agent after the contamination has been removed. The process ensures that the chelating agent is not attacked by bioorganisms in the soil prior to removal of the contamination, and that the chelating agent does not remain as a new contaminant after the process is completed. 5 figs.

  15. Method of removing polychlorinated biphenyl from oil

    DOE Patents [OSTI]

    Cook, G.T.; Holshouser, S.K.; Coleman, R.M.; Harless, C.E.; Whinnery, W.N. III

    1982-03-17T23:59:59.000Z

    Polychlorinated biphenyls are removed from oil by extracting the biphenyls into methanol. The mixture of methanol and extracted biphenyls is distilled to separate methanol therefrom, and the methanol is recycled for further use in extraction of biphenyls from oil.

  16. Install Removable Insulation on Valves and Fittings

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on installing removable insulation on valves and fittings provides how-to advice for improving the system using low-cost, proven practices and technologies.

  17. Part removal of 3D printed parts

    E-Print Network [OSTI]

    Peńa Doll, Mateo

    2014-01-01T23:59:59.000Z

    An experimental study was performed to understand the correlation between printing parameters in the FDM 3D printing process, and the force required to remove a part from the build platform of a 3D printing using a patent ...

  18. Method of removing polychlorinated biphenyl from oil

    DOE Patents [OSTI]

    Cook, Gus T. (Paducah, KY); Holshouser, Stephen K. (Boaz, KY); Coleman, Richard M. (Paducah, KY); Harless, Charles E. (Smithland, KY); Whinnery, III, Walter N. (Paducah, KY)

    1983-01-01T23:59:59.000Z

    Polychlorinated biphenyls are removed from oil by extracting the biphenyls into methanol. The mixture of methanol and extracted biphenyls is distilled to separate methanol therefrom, and the methanol is recycled for further use in extraction of biphenyls from oil.

  19. THE SCHURZASSENHAUS THEOREM KEITH CONRAD

    E-Print Network [OSTI]

    Lozano-Robledo, Alvaro

    , if P N then P G. Proof. Pick g G. Since P N and N G, gPg-1 N. Then by Sylow II for the group N, there is an n N such that gPg-1 = nPn-1, so n-1gPg-1n = P. That means n-1g NG(P), so g n NG(P). Thus G = N

  20. Newsletter web exclusive Professor Keith

    E-Print Network [OSTI]

    Dahlberg, E. Dan

    as a high energy experimental physicist at Minnesota. He is still involved with the MINOS and NOA chambers to study high energy interactions. This technique of making the interactions visible had already to Egypt, Spain and Italy. They have a long road trip in the U.S. planned for later this year. Professor

  1. Laser removal of sludge from steam generators

    DOE Patents [OSTI]

    Nachbar, Henry D. (Ballston Lake, NY)

    1990-01-01T23:59:59.000Z

    A method of removing unwanted chemical deposits known as sludge from the metal surfaces of steam generators with laser energy is provided. Laser energy of a certain power density, of a critical wavelength and frequency, is intermittently focused on the sludge deposits to vaporize them so that the surfaces are cleaned without affecting the metal surface (sludge substrate). Fiberoptic tubes are utilized for laser beam transmission and beam direction. Fiberoptics are also utilized to monitor laser operation and sludge removal.

  2. Oil removal from water via adsorption 

    E-Print Network [OSTI]

    Jacobs, William Edward

    1973-01-01T23:59:59.000Z

    . TABLE OF CONTENTS CHAPTER I. INTRODUCTION I I. LITERATURE REVIEW Significance of Oil Spill Proble. ". . s Growth of Marine Commerce Superport Oil Spills Oil Spills and the Law Oil Spill Control Methods Physical Removal of Oil III. MATERIALS... IV Table V Table VI Significant Facts about Major Oil Spills Viscosity of Test Oils Determined by Capillary Viscometer Percent of Oil Remaining in Water After Removal of Oil-Carrier Combination Maximum Oil Adsorption Capacity for Light Crude...

  3. Workers Remove Glove Boxes from Ventilation at Hanford's Plutonium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remove Glove Boxes from Ventilation at Hanford's Plutonium Finishing Plant Workers Remove Glove Boxes from Ventilation at Hanford's Plutonium Finishing Plant January 28, 2015 -...

  4. Functionalized Nanoporous Silica for Removal of Heavy Metals...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoporous Silica for Removal of Heavy Metals from Biological Systems; Adsorption and Application. Functionalized Nanoporous Silica for Removal of Heavy Metals from Biological...

  5. Removing Barriers to Innovations: Related Codes and Standards...

    Energy Savers [EERE]

    Removing Barriers to Innovations: Related Codes and Standards CSI Team Removing Barriers to Innovations: Related Codes and Standards CSI Team This presentation was delivered at the...

  6. Y-12 Removes Nuclear Materials from Two Facilities to Reduce...

    National Nuclear Security Administration (NNSA)

    Home Field Offices Welcome to the NNSA Production Office NPO News Releases Y-12 Removes Nuclear Materials from Two Facilities ... Y-12 Removes Nuclear Materials from...

  7. Field Demonstration Of Permeable Reactive Barriers To Remove

    E-Print Network [OSTI]

    Field Demonstration Of Permeable Reactive Barriers To Remove Dissolved Uranium From Groundwater-001 November 2000 FIELD DEMONSTRATION OF PERMEABLE REACTIVE BARRIERS TO REMOVE DISSOLVED URANIUM FROM

  8. New Research Facility to Remove Hurdles to Offshore Wind and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Facility to Remove Hurdles to Offshore Wind and Water Power Development New Research Facility to Remove Hurdles to Offshore Wind and Water Power Development January 10,...

  9. Selective Removal of Lanthanides from Natural Waters, Acidic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Removal of Lanthanides from Natural Waters, Acidic Streams and Dialysate. Selective Removal of Lanthanides from Natural Waters, Acidic Streams and Dialysate. Abstract: The...

  10. Oak Ridge Removes Laboratory's Greatest Source of Groundwater...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Removes Laboratory's Greatest Source of Groundwater Contamination Oak Ridge Removes Laboratory's Greatest Source of Groundwater Contamination May 1, 2012 - 12:00pm Addthis Workers...

  11. United States, International Partners Remove Last Remaining Weapons...

    Broader source: Energy.gov (indexed) [DOE]

    removed HEU under this effort are Austria, Chile, Czech Republic, Libya, Mexico, Romania, Serbia, Taiwan, Turkey, Ukraine, and Vietnam. To date, the Department has removed or...

  12. 241-AZ-101 pump removal trough analysis

    SciTech Connect (OSTI)

    Coverdell, B.L.

    1995-10-17T23:59:59.000Z

    As part of the current Hanford mission of environmental cleanup, various long length equipment must be removed from highly radioactive waste tanks. The removal of equipment will utilize portions of the Equipment Removal System for Project W320 (ERS-W320), specifically the 50 ton hydraulic trailer system. Because the ERS-W320 system was designed to accommodate much heavier equipment it is adequate to support the dead weight of the trough, carriage and related equipment for 241AZ101 pump removal project. However, the ERS-W320 components when combined with the trough and its` related components must also be analyzed for overturning due to wind loads. Two troughs were designed, one for the 20 in. diameter carriage and one for the 36 in. diameter carriage. A proposed 52 in. trough was not designed and, therefore is not included in this document. In order to fit in the ERS-W320 strongback the troughs were design with the same widths. Structurally, the only difference between the two troughs is that more material was removed from the stiffener plates on the 36 in trough. The reduction in stiffener plate material reduces the allowable load. Therefore, only the 36 in. trough was analyzed.

  13. System for removal of arsenic from water

    DOE Patents [OSTI]

    Moore, Robert C.; Anderson, D. Richard

    2004-11-23T23:59:59.000Z

    Systems for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical systems for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A system for continuous removal of arsenic from water is provided. Also provided is a system for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.

  14. Process for removing metals from water

    DOE Patents [OSTI]

    Napier, J.M.; Hancher, C.M.; Hackett, G.D.

    1987-06-29T23:59:59.000Z

    A process for removing metals from water including the steps of prefiltering solids from the water, adjusting the pH to between about 2 and 3, reducing the amount of dissolved oxygen in the water, increasing the pH to between about 6 and 8, adding water-soluble sulfide to precipitate insoluble sulfide- and hydroxide-forming metals, adding a containing floc, and postfiltering the resultant solution. The postfiltered solution may optionally be eluted through an ion exchange resin to remove residual metal ions. 2 tabs.

  15. Process for removing metals from water

    DOE Patents [OSTI]

    Napier, John M. (Oak Ridge, TN); Hancher, Charles M. (Oak Ridge, TN); Hackett, Gail D. (Knoxville, TN)

    1989-01-01T23:59:59.000Z

    A process for removing metals from water including the steps of prefiltering solids from the water, adjusting the pH to between about 2 and 3, reducing the amount of dissolved oxygen in the water, increasing the pH to between about 6 and 8, adding water-soluble sulfide to precipitate insoluble sulfide- and hydroxide-forming metals, adding a flocculating agent, separating precipitate-containing floc, and postfiltering the resultant solution. The postfiltered solution may optionally be eluted through an ion exchange resin to remove residual metal ions.

  16. Removal of uranium from aqueous HF solutions

    DOE Patents [OSTI]

    Pulley, Howard (West Paducah, KY); Seltzer, Steven F. (Paducah, KY)

    1980-01-01T23:59:59.000Z

    This invention is a simple and effective method for removing uranium from aqueous HF solutions containing trace quantities of the same. The method comprises contacting the solution with particulate calcium fluoride to form uranium-bearing particulates, permitting the particulates to settle, and separting the solution from the settled particulates. The CaF.sub.2 is selected to have a nitrogen surface area in a selected range and is employed in an amount providing a calcium fluoride/uranium weight ratio in a selected range. As applied to dilute HF solutions containing 120 ppm uranium, the method removes at least 92% of the uranium, without introducing contaminants to the product solution.

  17. Sorbents for mercury removal from flue gas

    SciTech Connect (OSTI)

    Granite, Evan J.; Hargis, Richard A.; Pennline, Henry W.

    1998-01-01T23:59:59.000Z

    A review of the various promoters and sorbents examined for the removal of mercury from flue gas is presented. Commercial sorbent processes are described along with the chemistry of the various sorbent-mercury interactions. Novel sorbents for removing mercury from flue gas are suggested. Since activated carbons are expensive, alternate sorbents and/or improved activated carbons are needed. Because of their lower cost, sorbent development work can focus on base metal oxides and halides. Additionally, the long-term sequestration of the mercury on the sorbent needs to be addressed. Contacting methods between the flue gas and the sorbent also merit investigation.

  18. Heat treatment of exchangers to remove coke

    SciTech Connect (OSTI)

    Turner, J.D.

    1990-02-20T23:59:59.000Z

    This patent describes a process for preparing furfural coke for removal from metallic surfaces. It comprises: heating the furfural coke without causing an evolution of heat capable of undesirably altering metallurgical properties of the surfaces in the presence of a gas containing molecular oxygen at a sufficient temperature below 800{degrees}F (427{degrees}C) for a sufficient time to change the crush strength of the coke so as to permit removal with a water jet at a pressure of five thousand pounds per square inch.

  19. Joshua P. Emery Earth and Planetary Sciences, University of Tennessee

    E-Print Network [OSTI]

    Perfect, Ed

    Sciences Building 1412 Circle Dr Knoxville, TN 37996-1410 (865) 974-8039 jemery2@utk.edu Education December is to contribute to the understanding of the formation and evolution of the Solar System and the distribution research because they are a key group for distinguishing several models of Solar System evolution

  20. Emery County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,Energy Information ElkhornElwood,EmcoreEmergentNew

  1. Recommendation 183: Preferred Alternative for the Removal of Hexavalent Chromium

    Broader source: Energy.gov [DOE]

    The ORSSAB Recommendation to DOE on the Preferred Alternative for the Removal of Hexavalent Chromium.

  2. ASBESTOS PIPE-INSULATION REMOVAL ROBOT SYSTEM

    SciTech Connect (OSTI)

    Unknown

    2000-09-15T23:59:59.000Z

    This final topical report details the development, experimentation and field-testing activities for a robotic asbestos pipe-insulation removal robot system developed for use within the DOE's weapon complex as part of their ER and WM program, as well as in industrial abatement. The engineering development, regulatory compliance, cost-benefit and field-trial experiences gathered through this program are summarized.

  3. Removed Barriers: 3.32 Knowledge

    E-Print Network [OSTI]

    Fabrikant, Sara Irina

    Students Average Values from Entry and Exit Surveys for Participants in 2006 Workshops ENTRY 1 BarriersResults EXIT 2 Removed Barriers: 3.32 Knowledge 3.67 GIS 3.46 Data Access 3.68 Software Use 3

  4. Method of preparation of removable syntactic foam

    DOE Patents [OSTI]

    Arnold, Jr., Charles (Albuquerque, NM); Derzon, Dora K. (Albuquerque, NM); Nelson, Jill S. (Albuquerque, NM); Rand, Peter B. (Albuquerque, NM)

    1995-01-01T23:59:59.000Z

    Easily removable, environmentally safe, low-density, syntactic foams are disclosed which are prepared by mixing insoluble microballoons with a solution of water and/or alcohol-soluble polymer to produce a pourable slurry, optionally vacuum filtering the slurry in varying degrees to remove unwanted solvent and solute polymer, and drying to remove residual solvent. The properties of the foams can be controlled by the concentration and physical properties of the polymer, and by the size and properties of the microballoons. The suggested solute polymers are non-toxic and soluble in environmentally safe solvents such as water or low-molecular weight alcohols. The syntactic foams produced by this process are particularly useful in those applications where ease of removability is beneficial, and could find use in packaging recoverable electronic components, in drilling and mining applications, in building trades, in art works, in the entertainment industry for special effects, in manufacturing as temporary fixtures, in agriculture as temporary supports and containers and for delivery of fertilizer, in medicine as casts and splints, as temporary thermal barriers, as temporary protective covers for fragile objects, as filters for particulate matter, which matter may be easily recovered upon exposure to a solvent, as in-situ valves (for one-time use) which go from maximum to minimum impedance when solvent flows through, and for the automatic opening or closing of spring-loaded, mechanical switches upon exposure to a solvent, among other applications.

  5. Method of preparation of removable syntactic foam

    DOE Patents [OSTI]

    Arnold, C. Jr.; Derzon, D.K.; Nelson, J.S.; Rand, P.B.

    1995-07-11T23:59:59.000Z

    Easily removable, environmentally safe, low-density, syntactic foams are disclosed which are prepared by mixing insoluble microballoons with a solution of water and/or alcohol-soluble polymer to produce a pourable slurry, optionally vacuum filtering the slurry in varying degrees to remove unwanted solvent and solute polymer, and drying to remove residual solvent. The properties of the foams can be controlled by the concentration and physical properties of the polymer, and by the size and properties of the microballoons. The suggested solute polymers are non-toxic and soluble in environmentally safe solvents such as water or low-molecular weight alcohols. The syntactic foams produced by this process are particularly useful in those applications where ease of removability is beneficial, and could find use in packaging recoverable electronic components, in drilling and mining applications, in building trades, in art works, in the entertainment industry for special effects, in manufacturing as temporary fixtures, in agriculture as temporary supports and containers and for delivery of fertilizer, in medicine as casts and splints, as temporary thermal barriers, as temporary protective covers for fragile objects, as filters for particulate matter, which matter may be easily recovered upon exposure to a solvent, as in-situ valves (for one-time use) which go from maximum to minimum impedance when solvent flows through, and for the automatic opening or closing of spring-loaded, mechanical switches upon exposure to a solvent, among other applications. 1 fig.

  6. Bioreactors for Removing Methyl Bromide following Contained

    E-Print Network [OSTI]

    Bioreactors for Removing Methyl Bromide following Contained Fumigations L A U R E N C E G . M I L L contributes to the depletion of stratospheric ozone. A closed-system bioreactor consisting of 0.5 L recirculating air. Strain IMB-1 grew slowly to high cell densities in the bioreactor using MeBr as its sole

  7. Plastic bottles > Remove lids (not recyclable)

    E-Print Network [OSTI]

    Brierley, Andrew

    Plastic bottles Please: > Remove lids (not recyclable) > Empty bottles > Rinse milk bottles, & other bottles if possible > Squash bottles www.st-andrews.ac.uk/estates/environment All types of plastic bottle accepted Clear, opaque and coloured bottles Labels can remain on X No plastic bags X No plastics

  8. MODELING OF PARTICULATE REMOVAL IN MIXED MEDIA

    E-Print Network [OSTI]

    Clark, Shirley E.

    versus Downflow Modes DATA COLLECTION #12;4 UPFLOW CONTRUCTION #12;5 UPFLOW FILTRATION RESULTS · Drawback to downflow filtration is the need for pretreatment. Upflow filtration may remove need for pretreatment-specific, and transfer of data from lab-scale to field is not applicable. ACKNOWLEDGMENTS Anitha Balakrishnan, UAB Renee

  9. Pentek metal coating removal system: Baseline report

    SciTech Connect (OSTI)

    NONE

    1997-07-31T23:59:59.000Z

    The Pentek coating removal technology was tested and is being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The Pentek coating removal system consisted of the ROTO-PEEN Scaler, CORNER-CUTTER{reg_sign}, and VAC-PAC{reg_sign}. They are designed to remove coatings from steel, concrete, brick, and wood. The Scaler uses 3M Roto Peen tungsten carbide cutters while the CORNER-CUTTER{reg_sign} uses solid needles for descaling activities. These hand tools are used with the VAC-PAC{reg_sign} vacuum system to capture dust and debris as removal of the coating takes place. The safety and health evaluation during the testing demonstration focused on two main areas of exposure: dust and noise. Dust exposure minimal, but noise exposure was significant. Further testing for each exposure is recommended because of the environment where the testing demonstration took place. It is feasible that the dust and noise levels will be higher in an enclosed operating environment of different construction. In addition, other areas of concern found were arm-hand vibration, whole-body, ergonomics, heat stress, tripping hazards, electrical hazards, machine guarding, and lockout/tagout.

  10. NNSA B-Roll: Fuel Removals

    SciTech Connect (OSTI)

    2010-05-21T23:59:59.000Z

    The National Nuclear Security Administration established the Global Threat Reduction Initiative (GTRI) to identify, secure, remove and/or facilitate the disposition of high risk vulnerable nuclear and radiological materials around the world, as quickly as possible, that pose a threat to the United States and the international community.

  11. ADVANCED OXIDATION PROCESSES FOR THE REMOVAL OF

    E-Print Network [OSTI]

    Boyer, Edmond

    ADVANCED OXIDATION PROCESSES FOR THE REMOVAL OF RESIDUAL NON-STEROIDAL ANTI- INFLAMMATORY. G. Esposito, PhD, MSc Associate Professor of Sanitary and Environmental Engineering University in Biogeochemistry University of Paris-Est Paris, France Prof. dr. ir P.N.L. Lens Professor of Biotechnology UNESCO

  12. Method of removing cesium from steam

    DOE Patents [OSTI]

    Carson, Jr., Neill J. (Clarendon Hills, IL); Noland, Robert A. (Oak Park, IL); Ruther, Westly E. (Skokie, IL)

    1991-01-01T23:59:59.000Z

    Method for removal of radioactive cesium from a hot vapor, such as high temperature steam, including the steps of passing input hot vapor containing radioactive cesium into a bed of silicate glass particles and chemically incorporating radioactive cesium in the silicate glass particles at a temperature of at least about 700.degree. F.

  13. Decontaminating Human Judgments by Removing Sequential Dependencies

    E-Print Network [OSTI]

    Mozer, Michael C.

    Decontaminating Human Judgments by Removing Sequential Dependencies Michael C. Mozer, Harold, and thereby decontaminate a series of ratings to obtain more meaningful human judgments. In our formulation, decontamination is fun- damentally a problem of inferring latent states (internal sensations) which, be- cause

  14. Forecast Technical Document Felling and Removals

    E-Print Network [OSTI]

    of local investment and business planning. Timber volume production will be estimated at sub. Planning of operations. Control of the growing stock. Wider reporting (under UKWAS). The calculation fellings and removals are handled in the 2011 Production Forecast system. Tom Jenkins Robert Matthews Ewan

  15. Removal of a Permanent IVC Filter

    SciTech Connect (OSTI)

    Kumar, Bangalore C. Anil [Queen's Medical Centre, Department of Radiology (United Kingdom)], E-mail: anil.kumar@doctors.org.uk; Chakraverty, Sam; Zealley, Ian [Ninewells Hospital, Department of Radiology (United Kingdom)

    2006-02-15T23:59:59.000Z

    Inferior vena cava (IVC) filters are increasingly used for prevention of life-threatening pulmonary emboli in patients who have contraindications to anticoagulation therapy. We report a case of the removal of a permanent IVC filter, which was inadvertently inserted due to an incorrect ultrasound report.

  16. Hydraulic dredging, a sediment removal technique

    SciTech Connect (OSTI)

    Spotts, J.W.

    1980-12-01T23:59:59.000Z

    Sediment was successfully removed from a Peabody Coal Company pond near Macon, Missouri, by a Mud Cat Model SP-810 hydraulic dredge. Previous attempts using land-based equipment had been unsatisfactory. The hydraulic-powered auger and submerged pump easily removed 882 m/sup 3/ (1154 yd/sup 3/) and pumped the slurry a distance of 305 m (1000 ft) to a disposal area. The hydraulic dredge was more effective and cheaper to operate than land-based equipment. The dredge cost was $1.31/m/sup 3/ ($1.00/yd/sup 3/), the dragline cost was $6.54/m/sup 3/ ($5.00/yd/sup 3/) and the front-end loader cost was $15.70/m/sup 3/ ($12.00/yd/sup 3/), under optimum conditions.

  17. Method of arsenic removal from water

    DOE Patents [OSTI]

    Gadgil, Ashok (El Cerrito, CA)

    2010-10-26T23:59:59.000Z

    A method for low-cost arsenic removal from drinking water using chemically prepared bottom ash pre-treated with ferrous sulfate and then sodium hydroxide. Deposits on the surface of particles of bottom ash form of activated iron adsorbent with a high affinity for arsenic. In laboratory tests, a miniscule 5 grams of pre-treated bottom ash was sufficient to remove the arsenic from 2 liters of 2400 ppb (parts per billion) arsenic-laden water to a level below 50 ppb (the present United States Environmental Protection Agency limit). By increasing the amount of pre-treated bottom ash, even lower levels of post-treatment arsenic are expected. It is further expected that this invention supplies a very low-cost solution to arsenic poisoning for large population segments.

  18. Removal of fluoride from aqueous nitric acid

    SciTech Connect (OSTI)

    Pruett, D.J.; Howerton, W.B.; Mailen, J.C.

    1981-06-01T23:59:59.000Z

    Several methods for removing fluoride from aqueous nitric acid were investigated and compared with the frequently used aluminum nitrate-calcium nitrate (Ca/sup 2 +/-Al/sup 3 +/) chemical trap-distillation system. Zirconium oxynitrate solutions were found to be superior in preventing volatilization of fluoride during distillation of the nitric acid, producing decontamination factors (DFs) on the order of 2 x 10/sup 3/ (vs approx. 500 for the Ca/sup 2 +/-Al/sup 3 +/ system). Several other metal nitrate systems were tested, but they were less effective. Alumina and zirconia columns proved highly effective in removing HF from HF-HNO/sub 3/ vapors distilled through the columns; fluoride DFs on the order of 10/sup 6/ and 10/sup 4/, respectively, were obtained. A silica gel column was very effective in adsorbing HF from HF-HNO/sub 3/ solutions, producing a fluoride DF of approx. 10/sup 4/.

  19. Fly ash enhanced metal removal process

    SciTech Connect (OSTI)

    Nonavinakere, S. [Plexus Scientific Corp., Annapolis, MD (United States); Reed, B.E. [West Virginia Univ., Morgantown, WV (United States). Dept. of Civil Engineering

    1995-12-31T23:59:59.000Z

    The primary objective of the study was to evaluate the effectiveness of fly ashes from local thermal power plants in the removal of cadmium, nickel, chromium, lead, and copper from aqueous waste streams. Physical and chemical characteristics of fly ashes were determined, batch isotherm studies were conducted. A practical application of using fly ash in treating spent electroless nickel (EN) plating baths by modified conventional precipitation or solid enhanced metal removal process (SEMR) was investigated. In addition to nickel the EN baths also contains completing agents such as ammonium citrate and succinic acid reducing agents such as phosphate and hypophosphite. SEMR experiments were conducted at different pHs, fly ash type and concentrations, and settling times.

  20. Acid treatment removes zinc sulfide scale restriction

    SciTech Connect (OSTI)

    Biggs, K. (Kerr McGee Corp., Lafayette, LA (US)); Allison, D. (Otis Engineering Corp., Lafayette, LA (US)); Ford, W.G.F. (Halliburton Co., Duncan, OK (United States))

    1992-08-31T23:59:59.000Z

    This paper reports that removal of zinc sulfide (ZnS) scale with acid restored an offshore Louisiana well's production to original rates. The zinc sulfide scale was determined to be in the near well bore area. The selected acid had been proven to control iron sulfide (FeS) scales in sour wells without causing harm to surface production equipment, tubing, and other downhole hardware. The successful removal of the blockage re-established previous production rates with a 105% increase in flowing tubing pressure. On production for a number of months, a high rate, high-pressure offshore well was experiencing unusually rapid pressure and rate declines. A small sample of the restrictive material was obtained during the wire line operations. The well was subsequently shut in while a laboratory analysis determined that zinc sulfide was the major component of the obstruction.

  1. Photoacoustic removal of occlusions from blood vessels

    DOE Patents [OSTI]

    Visuri, Steven R. (Livermore, CA); Da Silva, Luiz B. (Danville, CA); Celliers, Peter M. (Berkeley, CA); London, Richard A. (Orinda, CA); Maitland, IV, Duncan J. (Lafayette, CA); Esch, Victor C. (San Francisco, CA)

    2002-01-01T23:59:59.000Z

    Partial or total occlusions of fluid passages within the human body are removed by positioning an array of optical fibers in the passage and directing treatment radiation pulses along the fibers, one at a time, to generate a shock wave and hydrodynamics flows that strike and emulsify the occlusions. A preferred application is the removal of blood clots (thrombin and embolic) from small cerebral vessels to reverse the effects of an ischemic stroke. The operating parameters and techniques are chosen to minimize the amount of heating of the fragile cerebral vessel walls occurring during this photo acoustic treatment. One such technique is the optical monitoring of the existence of hydrodynamics flow generating vapor bubbles when they are expected to occur and stopping the heat generating pulses propagated along an optical fiber that is not generating such bubbles.

  2. Process for removing sulfur from coal

    DOE Patents [OSTI]

    Aida, Tetsuo (Ames, IA); Squires, Thomas G. (Gilbert, IA); Venier, Clifford G. (Ames, IA)

    1985-02-05T23:59:59.000Z

    A process for the removal of divalent organic and inorganic sulfur compounds from coal and other carbonaceous material. A slurry of pulverized carbonaceous material is contacted with an electrophilic oxidant which selectively oxidizes the divalent organic and inorganic compounds to trivalent and tetravalent compounds. The carbonaceous material is then contacted with a molten caustic which dissolves the oxidized sulfur compounds away from the hydrocarbon matrix.

  3. Oil removal from water via adsorption

    E-Print Network [OSTI]

    Jacobs, William Edward

    1973-01-01T23:59:59.000Z

    . Inorganic adsorbents, such as perlite and glass wool, do not have high oil adsorption capacities compared to organ- ics and the capacities are dependent on the viscosity of the oils. The inorganic adsorbents have higher oil adsorption capacities in more... IV Table V Table VI Significant Facts about Major Oil Spills Viscosity of Test Oils Determined by Capillary Viscometer Percent of Oil Remaining in Water After Removal of Oil-Carrier Combination Maximum Oil Adsorption Capacity for Light Crude...

  4. REMOVAL OF LEGACY PLUTONIUM MATERIALS FROM SWEDEN

    SciTech Connect (OSTI)

    Dunn, Kerry A. [Savannah River National Laboratory; Bellamy, J. Steve [Savannah River National Laboratory; Chandler, Greg T. [Savannah River National Laboratory; Iyer, Natraj C. [U.S. Department of Energy, National Nuclear Security Administration, Office of; Koenig, Rich E.; Leduc, D. [Savannah River National Laboratory; Hackney, B. [Savannah River National Laboratory; Leduc, Dan R. [Savannah River National Laboratory

    2013-08-18T23:59:59.000Z

    U.S. Department of Energy’s National Nuclear Security Administration (NNSA) Office of Global Threat Reduction (GTRI) recently removed legacy plutonium materials from Sweden in collaboration with AB SVAFO, Sweden. This paper details the activities undertaken through the U.S. receiving site (Savannah River Site (SRS)) to support the characterization, stabilization, packaging and removal of legacy plutonium materials from Sweden in 2012. This effort was undertaken as part of GTRI’s Gap Materials Program and culminated with the successful removal of plutonium from Sweden as announced at the 2012 Nuclear Security Summit. The removal and shipment of plutonium materials to the United States was the first of its kind under NNSA’s Global Threat Reduction Initiative. The Environmental Assessment for the U.S. receipt of gap plutonium material was approved in May 2010. Since then, the multi-year process yielded many first time accomplishments associated with plutonium packaging and transport activities including the application of the of DOE-STD-3013 stabilization requirements to treat plutonium materials outside the U.S., the development of an acceptance criteria for receipt of plutonium from a foreign country, the development and application of a versatile process flow sheet for the packaging of legacy plutonium materials, the identification of a plutonium container configuration, the first international certificate validation of the 9975 shipping package and the first intercontinental shipment using the 9975 shipping package. This paper will detail the technical considerations in developing the packaging process flow sheet, defining the key elements of the flow sheet and its implementation, determining the criteria used in the selection of the transport package, developing the technical basis for the package certificate amendment and the reviews with multiple licensing authorities and most importantly integrating the technical activities with the Swedish partners.

  5. Process for removing sulfur from coal

    DOE Patents [OSTI]

    Aida, T.; Squires, T.G.; Venier, C.G.

    1983-08-11T23:59:59.000Z

    A process is disclosed for the removal of divalent organic and inorganic sulfur compounds from coal and other carbonaceous material. A slurry of pulverized carbonaceous material is contacted with an electrophilic oxidant which selectively oxidizes the divalent organic and inorganic compounds to trivalent and tetravalent compounds. The carbonaceous material is then contacted with a molten caustic which dissolves the oxidized sulfur compounds away from the hydrocarbon matrix.

  6. Removal of copper from ferrous scrap

    DOE Patents [OSTI]

    Blander, M.; Sinha, S.N.

    1987-07-30T23:59:59.000Z

    A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.

  7. Removal of copper from ferrous scrap

    DOE Patents [OSTI]

    Blander, M.; Sinha, S.N.

    1990-05-15T23:59:59.000Z

    A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.

  8. Removal of copper from ferrous scrap

    DOE Patents [OSTI]

    Blander, Milton (12833 S. 82nd Ct., Palos Park, IL 60464); Sinha, Shome N. (5748 Drexel, 2A, Chicago, IL 60637)

    1990-01-01T23:59:59.000Z

    A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.

  9. Moab Mill Tailings Removal Project Celebrates 5 Years of Success...

    Office of Environmental Management (EM)

    Moab Mill Tailings Removal Project Celebrates 5 Years of Success Moab Mill Tailings Removal Project Celebrates 5 Years of Success October 3, 2012 - 12:00pm Addthis Pictured here is...

  10. Removing nuclear waste, one shipment at a time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stories Removing nuclear waste, one shipment at a time Removing nuclear waste, one shipment at a time The Lab's 1,000th shipment of transuranic waste recently left Los Alamos,...

  11. Process for selected gas oxide removal by radiofrequency catalysts

    DOE Patents [OSTI]

    Cha, Chang Y. (3807 Reynolds St., Laramie, WY 82070)

    1993-01-01T23:59:59.000Z

    This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO.sub.2 and NO.sub.x.

  12. Process for removing technetium from iron and other metals

    DOE Patents [OSTI]

    Leitnaker, James M. (Kingston, TN); Trowbridge, Lee D. (Oak Ridge, TN)

    1999-01-01T23:59:59.000Z

    A process for removing technetium from iron and other metals comprises the steps of converting the molten, alloyed technetium to a sulfide dissolved in manganese sulfide, and removing the sulfide from the molten metal as a slag.

  13. Process for removing technetium from iron and other metals

    DOE Patents [OSTI]

    Leitnaker, J.M.; Trowbridge, L.D.

    1999-03-23T23:59:59.000Z

    A process for removing technetium from iron and other metals comprises the steps of converting the molten, alloyed technetium to a sulfide dissolved in manganese sulfide, and removing the sulfide from the molten metal as a slag. 4 figs.

  14. Removal of Heavy Metals from Aqueous Systems with Thiol Functionalized...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heavy Metals from Aqueous Systems with Thiol Functionalized Superparamagnetic Nanoparticles. Removal of Heavy Metals from Aqueous Systems with Thiol Functionalized...

  15. Method for removing fluoride contamination from nitric acid

    SciTech Connect (OSTI)

    Howerton, W.B.; Pruett, D.J.

    1982-07-13T23:59:59.000Z

    Fluoride ions are removed from nitric acid solution by contacting the vaporized solution with alumina or zirconium.

  16. Electrostatic Dust Detection and Removal for ITER

    SciTech Connect (OSTI)

    C.H. Skinner; A. Campos; H. Kugel; J. Leisure; A.L. Roquemore; S. Wagner

    2008-09-01T23:59:59.000Z

    We present some recent results on two innovative applications of microelectronics technology to dust inventory measurement and dust removal in ITER. A novel device to detect the settling of dust particles on a remote surface has been developed in the laboratory. A circuit board with a grid of two interlocking conductive traces with 25 ?m spacing is biased to 30 – 50 V. Carbon particles landing on the energized grid create a transient short circuit. The current flowing through the short circuit creates a voltage pulse that is recorded by standard nuclear counting electronics and the total number of counts is related to the mass of dust impinging on the grid. The particles typically vaporize in a few seconds restoring the previous voltage standoff. Experience on NSTX however, showed that in a tokamak environment it was still possible for large particles or fibers to remain on the grid causing a long term short circuit. We report on the development of a gas puff system that uses helium to clear such particles. Experiments with varying nozzle designs, backing pressures, puff durations, and exit flow orientations have given an optimal configuration that effectively removes particles from an area up to 25 cm˛ with a single nozzle. In a separate experiment we are developing an advanced circuit grid of three interlocking traces that can generate a miniature electrostatic traveling wave for transporting dust to a suitable exit port. We have fabricated such a 3-pole circuit board with 25 micron insulated traces that operates with voltages up to 200 V. Recent results showed motion of dust particles with the application of only 50 V bias voltage. Such a device could potentially remove dust continuously without dedicated interventions and without loss of machine availability for plasma operations.

  17. 9. Analysis a. Analysis tools for dam removal

    E-Print Network [OSTI]

    Tullos, Desiree

    (Randle 2003). Mechanical removal, or dredging, involves removing some or all of the reservoir sediment infrastructure and landowners, downstream confinement, presence of threatened and endangered species, and cost in stages) and type (fine or contaminated sediment can be removed through dredging prior to sediment release

  18. INVESTIGATION OF IONIC CONTAMINATION REMOVAL FROM SILICON DIOXIDE SURFACES

    E-Print Network [OSTI]

    Suni, Ian Ivar

    INVESTIGATION OF IONIC CONTAMINATION REMOVAL FROM SILICON DIOXIDE SURFACES H. Lin, A. A. Busnaina, and I. I. Suni T he removal of ionic contaminants from silicon surfaces surface contamination level canM Communications L td. INTRODUCTION with increasing frequency and power, and decreases Contamination removal is one

  19. Ultracapacitor having residual water removed under vacuum

    DOE Patents [OSTI]

    Wei, Chang (Niskayuna, NY); Jerabek, Elihu Calvin (Glenmont, NY); Day, James (Scotia, NY)

    2002-10-15T23:59:59.000Z

    A multilayer cell is provided that comprises two solid, nonporous current collectors, two porous electrodes separating the current collectors, a porous separator between the electrodes and an electrolyte occupying pores in the electrodes and separator. The mutilayer cell is electrolyzed to disassociate water within the cell to oxygen gas and hydrogen gas. A vacuum is applied to the cell substantially at the same time as the electrolyzing step, to remove the oxygen gas and hydrogen gas. The cell is then sealed to form a ultracapacitor substantially free from water.

  20. Specific energy for laser removal of rocks.

    SciTech Connect (OSTI)

    Xu, Z.; Kornecki, G.; Reed, C. B.; Gahan, B. C.; Parker, R. A.; Batarseh, S.; Graves, R. M.

    2001-08-16T23:59:59.000Z

    Application of advanced high power laser technology into oil and gas well drilling has been attracting significant research interests recently among research institutes, petroleum industries, and universities. Potential laser or laser-aided oil and gas well drilling has many advantages over the conventional rotary drilling, such as high penetration rate, reduction or elimination of tripping, casing, and bit costs, and enhanced well control, perforating and side-tracking capabilities. The energy required to remove a unit volume of rock, namely the specific energy (SE), is a critical rock property data that can be used to determine both the technical and economic feasibility of laser oil and gas well drilling.

  1. TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 2 DF WASTE LINE REMOVAL, BNL

    SciTech Connect (OSTI)

    P.C. Weaver

    2010-07-09T23:59:59.000Z

    5098-SR-02-0 PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 2 DF WASTE LINE REMOVAL, BROOKHAVEN NATIONAL LABORATORY

  2. Saeltzer Dam Removal on Clear Creek 11 years later: An assessment of upstream channel changes since the dam's removal

    E-Print Network [OSTI]

    Simons, Crystal; Walker, Katelyn; Zimring, Mark

    2011-01-01T23:59:59.000Z

    Boulder BLDR Bedrock BDRK Dam Rubble DMRB Table B1. 2011pages. Brown, M. (n.d. ). Clear Creek—McCormick-Saeltzer DamRemoval: Dam removal re-opens spring run salmon habitat. US

  3. Tailoring hydrocarbon streams for asphaltene removal

    SciTech Connect (OSTI)

    Del Bianco, A.; Stroppa, F.; Bertero, L.

    1995-11-01T23:59:59.000Z

    Oilfield production is often hindered by asphaltene precipitation which tends to fill the pores of the reservoir rocks and plug the wellbore tubing as well as the other auxiliary equipment used during crude oil recovery. Several remedies to remove these deposits have been proposed and patented but the injection of aromatic solvents such as toluene and light petroleum distillates is normally preferred. Previous studies with a number of pure aromatic hydrocarbons have shown that the solvent capacity of these molecules may be very different and that the degree of condensation plays an important role. In this regard, tetralins and naphthalenes are superior to alkylbenzenes. However, because the use of pure compounds is not economically feasible, the authors examined various industrial streams and the authors correlated their chemical composition to the solvent capacity. This work allowed the identification of the pseudo-components whose relative concentration is crucial for evaluating the solvent performances. Based on these data, the authors were able to find new products with ideal characteristics. The efficiency of one of these products was confirmed by the analysis of the data obtained when using this new solvent to remove asphaltene in damaged wells of an Italian field.

  4. Process for removing polychlorinated biphenyls from soil

    DOE Patents [OSTI]

    Hancher, C.W.; Saunders, M.B.; Googin, J.M.

    1984-11-16T23:59:59.000Z

    The present invention relates to a method of removing polychlorinated biphenyls from soil. The polychlorinated biphenyls are extracted from the soil by employing a liquid organic solvent dispersed in water in the ratio of about 1:3 to 3:1. The organic solvent includes such materials as short-chain hydrocarbons including kerosene or gasoline which are immiscible with water and are nonpolar. The organic solvent has a greater affinity for the PCB's than the soil so as to extract the PCB's from the soil upon contact. The organic solvent phase is separated from the suspended soil and water phase and distilled for permitting the recycle of the organic solvent phase and the concentration of the PCB's in the remaining organic phase. The present process can be satisfactorily practiced with soil containing 10 to 20% petroleum-based oils and organic fluids such as used in transformers and cutting fluids, coolants and the like which contain PCB's. The subject method provides for the removal of a sufficient concentration of PCB's from the soil to provide the soil with a level of PCB's within the guidelines of the Environmental Protection Agency.

  5. Removal of arsenic compounds from petroliferous liquids

    DOE Patents [OSTI]

    Fish, R.H.

    1984-04-06T23:59:59.000Z

    The present invention in one aspect comprises a process for removing arsenic from petroliferous-derived liquids by contacting said liquid with a divinylbenzene-crosslinked polystyrene polymer (i.e. PS-DVB) having catechol ligands anchored to said polymer, said contacting being at an elevated temperature. In another aspect, the invention is a process for regenerating spent catecholated polystyrene polymer by removal of the arsenic bound to it from contacting petroliferous liquid in accordance with the aspect described above which regenerating process comprises: (a) treating said spent catecholated polystyrene polymer with an aqueous solution of at least one member selected from the group consisting of carbonates and bicarbonates of ammonium, alkali metals, and alkaline earth metals, said solution having a pH between about 8 and 10, and said treating being at a temperature in the range of about 20/sup 0/ to 100/sup 0/C; (b) separating the solids and liquids from each other. In a preferred embodiment the regeneration treatment is in two steps wherein step: (a) is carried out with an aqueous alcoholic carbonate solution which includes at least one lower alkyl alcohol, and, steps (c) and (d) are added. Steps (c) and (d) comprise: (c) treating the solids with an aqueous alcoholic solution of at least one ammonium, alkali or alkaline earth metal bicarbonate at a temperature in the range of about 20 to 100/sup 0/C; and (d) separating the solids from the liquids.

  6. EVOLVING EXPECTATIONS OF DAM REMOVAL OUTCOMES: DOWNSTREAM GEOMORPHIC EFFECTS FOLLOWING REMOVAL OF A SMALL, GRAVEL-FILLED DAM1

    E-Print Network [OSTI]

    Tullos, Desiree

    EVOLVING EXPECTATIONS OF DAM REMOVAL OUTCOMES: DOWNSTREAM GEOMORPHIC EFFECTS FOLLOWING REMOVAL OF A SMALL, GRAVEL-FILLED DAM1 Kelly Kibler, Desiree Tullos, and Mathias Kondolf 2 ABSTRACT: Dam removal is a promising river restoration technique, particularly for the vast number of rivers impounded by small dams

  7. Apparatus for removing micronized coal from steam

    SciTech Connect (OSTI)

    Vlnaty, J.

    1981-12-15T23:59:59.000Z

    Micronized coal is removed from coal-bearing steam by spraying stabilized petroleum oil into the steam and directing the resultant stream at a separation surface on which a coal-oil slurry is deposited and collected. Apparatus includes conduits which direct the resultant stream downward into a housing and normal to a surface on which the slurry is deposited by impact forces. In additional apparatus disclosed, the resultant stream is directed from a horizontal conduit circumferentially along the interior wall of a horizontally disposed cylindrical chamber at the top of the chamber and the coal-oil slurry deposited on the wall by centrifugal force is collected in a trough situated below a longitudinal slot at the bottom of the chamber. In both types of apparatus, after separation of the slurry the velocity of the steam is reduced to settle out remaining oil droplets and is then discharged to the atmosphere.

  8. IMPROVED PROCESSES TO REMOVE NAPHTHENIC ACIDS

    SciTech Connect (OSTI)

    Aihua Zhang; Qisheng Ma; William A. Goddard; Yongchun Tang

    2004-04-28T23:59:59.000Z

    In the first year of this project, we have established our experimental and theoretical methodologies for studies of the catalytic decarboxylation process. We have developed both glass and stainless steel micro batch type reactors for the fast screening of various catalysts with reaction substrates of model carboxylic acid compounds and crude oil samples. We also developed novel product analysis methods such as GC analyses for organic acids and gaseous products; and TAN measurements for crude oil. Our research revealed the effectiveness of several solid catalysts such as NA-Cat-1 and NA-Cat-2 for the catalytic decarboxylation of model compounds; and NA-Cat-5{approx}NA-Cat-9 for the acid removal from crude oil. Our theoretical calculations propose a three-step concerted oxidative decarboxylation mechanism for the NA-Cat-1 catalyst.

  9. Fluoride removal from water with spent catalyst

    SciTech Connect (OSTI)

    Lai, Y.D.; Liu, J.C. [National Taiwan Institute of Technology, Taipei (Taiwan, Province of China)

    1996-12-01T23:59:59.000Z

    The adsorption of fluoride from water with spent catalyst was studied. Adsorption density of fluoride decreased with increasing pH. Linear adsorption isotherm was utilized to describe the adsorption reaction. The adsorption was a first-order reaction, and the rate constant increased with decreasing surface loading. Adsorption reaction of fluoride onto spent catalyst was endothermic, and the reaction rate increased slightly with increasing temperature. Fluoro-alumino complex and free fluoride ion were involved in the adsorption reaction. It is proposed that both the silica and alumina fractions of spent catalyst contribute to the removal of fluoride from aqueous solution. Coulombic interaction is proposed as the major driving force of the adsorption reaction of fluoride onto spent catalyst.

  10. AX Tank Farm tank removal study

    SciTech Connect (OSTI)

    SKELLY, W.A.

    1999-02-24T23:59:59.000Z

    This report examines the feasibility of remediating ancillary equipment associated with the 241-AX Tank Farm at the Hanford Site. Ancillary equipment includes surface structures and equipment, process waste piping, ventilation components, wells, and pits, boxes, sumps, and tanks used to make waste transfers to/from the AX tanks and adjoining tank farms. Two remedial alternatives are considered: (1) excavation and removal of all ancillary equipment items, and (2) in-situ stabilization by grout filling, the 241-AX Tank Farm is being employed as a strawman in engineering studies evaluating clean and landfill closure options for Hanford single-shell tanks. This is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  11. AX Tank Farm tank removal study

    SciTech Connect (OSTI)

    SKELLY, W.A.

    1998-10-14T23:59:59.000Z

    This report considers the feasibility of exposing, demolishing, and removing underground storage tanks from the 241-AX Tank Farm at the Hanford Site. For the study, it was assumed that the tanks would each contain 360 ft{sup 3} of residual waste (corresponding to the one percent residual Inventory target cited in the Tri-Party Agreement) at the time of demolition. The 241-AX Tank Farm is being employed as a ''strawman'' in engineering studies evaluating clean and landfill closure options for Hanford single-shell tank farms. The report is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  12. Removing sulphur oxides from a fluid stream

    DOE Patents [OSTI]

    Katz, Torsten; Riemann, Christian; Bartling, Karsten; Rigby, Sean Taylor; Coleman, Luke James Ivor; Lail, Marty Alan

    2014-04-08T23:59:59.000Z

    A process for removing sulphur oxides from a fluid stream, such as flue gas, comprising: providing a non-aqueous absorption liquid containing at least one hydrophobic amine, the liquid being incompletely miscible with water; treating the fluid stream in an absorption zone with the non-aqueous absorption liquid to transfer at least part of the sulphur oxides into the non-aqueous absorption liquid and to form a sulphur oxide-hydrophobic amine-complex; causing the non-aqueous absorption liquid to be in liquid-liquid contact with an aqueous liquid whereby at least part of the sulphur oxide-hydrophobic amine-complex is hydrolyzed to release the hydrophobic amine and sulphurous hydrolysis products, and at least part of the sulphurous hydrolysis products is transferred into the aqueous liquid; separating the aqueous liquid from the non-aqueous absorption liquid. The process mitigates absorbent degradation problems caused by sulphur dioxide and oxygen in flue gas.

  13. PRECOMBUSTION REMOVAL OF HAZARDOUS AIR POLLUTANT PRECURSORS

    SciTech Connect (OSTI)

    Unknown

    2000-10-09T23:59:59.000Z

    In response to growing environmental concerns reflected in the 1990 Clean Air Act Amendment (CAAA), the United States Department of Energy (DOE) sponsored several research and development projects in late 1995 as part of an initiative entitled Advanced Environmental Control Technologies for Coal-Based Power Systems. The program provided cost-shared support for research and development projects that could accelerate the commercialization of affordable, high-efficiency, low-emission, coal-fueled electric generating technologies. Clean coal technologies developed under this program would serve as prototypes for later generations of technologies to be implemented in the industrial sector. In order to identify technologies with the greatest potential for commercial implementation, projects funded under Phase I of this program were subject to competitive review by DOE before being considered for continuation funding under Phase II. One of the primary topical areas identified under the DOE initiative relates to the development of improved technologies for reducing the emissions of air toxics. Previous studies have suggested that many of the potentially hazardous air pollutant precursors (HAPPs) occur as trace elements in the mineral matter of run-of-mine coals. As a result, these elements have the potential to be removed prior to combustion at the mine site by physical coal cleaning processes (i.e., coal preparation). Unfortunately, existing coal preparation plants are generally limited in their ability to remove HAPPs due to incomplete liberation of the mineral matter and high organic associations of some trace elements. In addition, existing physical coal cleaning plants are not specifically designed or optimized to ensure that high trace element rejections may be achieved.

  14. High SO2 Removal Efficiency Testing

    SciTech Connect (OSTI)

    Gary Blythe

    1997-02-12T23:59:59.000Z

    This document provides a discussion of the technical progress on DOE/PETC project number DE-AC22-92PC91338, "High Efficiency SO Removal Testing," for 2 the time period 1 October through 31 December 1996. The project involves testing at six full-scale utility flue gas desulfurization (FGD) systems, to evaluate low capital cost upgrades that may allow these systems to achieve up to 98% SO removal efficiency. The upgrades being 2 evaluated mostly involve using performance additives in the FGD systems. The "base" project involved testing at the Tampa Electric Company?s Big Bend Station. All five potential options to the base program have been exercised by DOE, involving testing at Hoosier Energy?s Merom Station (Option I), Southwestern Electric Power Company?s Pirkey Station (Option II), PSI Energy?s Gibson Station (Option III), Duquesne Light?s Elrama Station (Option IV), and New York State Electric and Gas Corporation?s Kintigh Station (Option V). The originally planned testing has been completed for all six sites. However, additional testing has been planned at the Big Bend Station, and that testing commenced during the current quarter. The remainder of this document is divided into four sections. Section 2, Project Summary, provides a brief overview of the status of technical efforts on this project. Section 3, Results, summarizes the outcome from technical efforts during the quarter, or results from prior quarters that have not been previously reported. In Section 4, Plans for the Next Reporting Period, an overview is provided of the technical efforts that are anticipated for the first quarter of calendar year 1996. Section 5 contains a brief acknowledgment.

  15. High SO2 Removal Efficiency Testing

    SciTech Connect (OSTI)

    Gary Blythe

    1997-04-23T23:59:59.000Z

    This document provides a discussion of the technical progress on DOE/PETC project number DE-AC22-92PC91338, "High Efficiency SO2 Removal Testing", for the time period 1 January through 31 March 1997. The project involves testing at six full-scale utility flue gas desulfurization (FGD) systems, to evaluate low capital cost upgrades that may allow these systems to achieve up to 98% SO2 removal efficiency. The upgrades being evaluated mostly involve using performance additives in the FGD systems. The "base" project involved testing at the Tampa Electric Company?s Big Bend Station. All five potential options to the base program have been exercised by DOE, involving testing at Hoosier Energy?s Merom Station (Option I), Southwestern Electric Power Company?s Pirkey Station (Option II), PSI Energy?s Gibson Station (Option III), Duquesne Light?s Elrama Station (Option IV), and New York State Electric and Gas Corporation?s (NYSEG) Kintigh Station (Option V). The originally planned testing has been completed for all six sites. However, additional testing is planned at the Big Bend Station. The remainder of this document is divided into four sections. Section 2, Project Summary, provides a brief overview of the status of technical efforts on this project. Section 3, Results, summarizes the outcome from technical efforts during the quarter, or results from prior quarters that have not been previously reported. In Section 4, Plans for the Next Reporting Period, an overview is provided of the technical efforts that are anticipated for the second quarter of calendar year 1997. Section 5 contains a brief acknowledgement.

  16. High SO2 Removal Efficiency Testing

    SciTech Connect (OSTI)

    Gary Blythe

    1997-07-29T23:59:59.000Z

    This document provides a discussion of the technical progress on DOE/PETC project number DE-AC22-92PC91338, "High Efficiency SO2 Removal Testing", for the time period 1 April through 30 June 1997. The project involves testing at six full-scale utility flue gas desulfurization (FGD) systems to evaluate low capital cost upgrades that may allow these systems to achieve up to 98% SO2 removal efficiency. The upgrades being evaluated mostly involve using performance additives in the FGD systems. The "base" project involved testing at the Tampa Electric Company?s Big Bend Station. All five potential options to the base program have been exercised by DOE, involving testing at Hoosier Energy?s Merom Station (Option I), Southwestern Electric Power Company?s Pirkey Station (Option II), PSI Energy?s Gibson Station (Option III), Duquesne Light?s Elrama Station (Option IV), and New York State Electric and Gas Corporation?s Kintigh Station (Option V). The originally planned testing has been completed for all six sites. However, additional testing is being conducted at the Big Bend Station. The remainder of this document is divided into four sections. Section 2, Project Summary, provides a brief overview of the status of technical efforts on this project. Section 3, Results, summarizes the outcome from technical efforts during the quarter, or results from prior quarters that have not been previously reported. In Section 4, Plans for the Next Reporting Period, an overview is provided of the technical efforts that are anticipated for the third quarter of calendar year 1997. Section 5 contains a brief acknowledgment.

  17. Heat recirculating cooler for fluid stream pollutant removal

    DOE Patents [OSTI]

    Richards, George A. (Morgantown, WV); Berry, David A. (Morgantown, WV)

    2008-10-28T23:59:59.000Z

    A process by which heat is removed from a reactant fluid to reach the operating temperature of a known pollutant removal method and said heat is recirculated to raise the temperature of the product fluid. The process can be utilized whenever an intermediate step reaction requires a lower reaction temperature than the prior and next steps. The benefits of a heat-recirculating cooler include the ability to use known pollutant removal methods and increased thermal efficiency of the system.

  18. Removal of radioactive and other hazardous material from fluid waste

    DOE Patents [OSTI]

    Tranter, Troy J. (Idaho Falls, ID); Knecht, Dieter A. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Burchfield, Larry A. (W. Richland, WA); Anshits, Alexander G. (Krasnoyarsk, RU); Vereshchagina, Tatiana (Krasnoyarsk, RU); Tretyakov, Alexander A. (Zheleznogorsk, RU); Aloy, Albert S. (St. Petersburg, RU); Sapozhnikova, Natalia V. (St. Petersburg, RU)

    2006-10-03T23:59:59.000Z

    Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

  19. Thiacrown polymers for removal of mercury from waste streams

    DOE Patents [OSTI]

    Baumann, Theodore F.; Reynolds, John G.; Fox, Glenn A.

    2004-02-24T23:59:59.000Z

    Thiacrown polymers immobilized to a polystyrene-divinylbenzene matrix react with Hg.sup.2+ under a variety of conditions to efficiently and selectively remove Hg.sup.2+ ions from acidic aqueous solutions, even in the presence of a variety of other metal ions. The mercury can be recovered and the polymer regenerated. This mercury removal method has utility in the treatment of industrial wastewater, where a selective and cost-effective removal process is required.

  20. Thiacrown polymers for removal of mercury from waste streams

    DOE Patents [OSTI]

    Baumann, Theodore F. (Tracy, CA); Reynolds, John G. (San Ramon, CA); Fox, Glenn A. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    Thiacrown polymers immobilized to a polystyrene-divinylbenzene matrix react with Hg.sup.2+ under a variety of conditions to efficiently and selectively remove Hg.sup.2+ ions from acidic aqueous solutions, even in the presence of a variety of other metal ions. The mercury can be recovered and the polymer regenerated. This mercury removal method has utility in the treatment of industrial wastewater, where a selective and cost-effective removal process is required.

  1. Organic removal from domestic wastewater by activated alumina adsorption

    E-Print Network [OSTI]

    Yang, Pe-Der

    1982-01-01T23:59:59.000Z

    of the major groups of pollutants in wastewaters. Adsorption by granular activated carbon, a non-polar adsorbent, is now the primary treatment process for removal of residual organics from biologically treated wastewater. The ability of activated alumina... to human health if they exist in the water supply at relatively high concentrations. A wide variety of treatment processes are available to remove organic matter from wastewater. Biological treatment is the most cost effective method for removing oxygen...

  2. Use, Maintenance, Removal, Inspections, and Safety of Dams (Iowa)

    Broader source: Energy.gov [DOE]

    This section describes operating plans for dams with movable structures, as well as procedures for raising or lowering of impoundment levels, dam removal, and dam safety inspections.

  3. actinide removal process: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plants (WWTPs) with biological nitrogen removal processes, using a life cycle assessment (LCA) approach. Literature ... Xu, Xin, S.M. Massachusetts Institute of Technology...

  4. ammonium nitrogen removal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plants (WWTPs) with biological nitrogen removal processes, using a life cycle assessment (LCA) approach. Literature ... Xu, Xin, S.M. Massachusetts Institute of Technology...

  5. autotrophic nitrogen removal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    treatment plants (WWTPs) with biological nitrogen removal processes, using a life cycle assessment (LCA) approach. Literature ... Xu, Xin, S.M. Massachusetts Institute of...

  6. Annex IV Environmental Webinar: Effects of Energy Removal on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    tidal energy from estuaries; and Jesse Roberts, Sandia National Laboratory - Modeling energy removal by wave energy extraction. Participant Instructions: Webinar Login: You may...

  7. Safety evaluation for packaging (onsite) product removal can containers

    SciTech Connect (OSTI)

    Boettger, J.S.

    1997-04-29T23:59:59.000Z

    This safety evaluation for packaging allows the transport of nine Product Removal (PR) Cans with their Containers from the PUREX Facility to the Plutonium Finishing Plant.

  8. active debris removal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rebecca Bendick a , Kevin D. Hyde b March 2013 Keywords: Debris flow Frequency Magnitude Fire Forecasting debris flow hazard is challenging Montana, University of 110 Removing...

  9. REMOVAL OF THE CALIFORNIUM SOURCES FROM THE 222-S LABORATORY

    SciTech Connect (OSTI)

    LINSTRUM D; BAUNE HL

    2009-07-23T23:59:59.000Z

    This document develops a proposal for removal of 2-Californium sources from the 222-S Laboratory. Included in this document are assessments of shipping packages and decay calculations.

  10. Process to remove rare earth from IFR electrolyte

    DOE Patents [OSTI]

    Ackerman, John P. (Downers Grove, IL); Johnson, Terry R. (Wheaton, IL)

    1994-01-01T23:59:59.000Z

    The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner.

  11. Process to remove rare earth from IFR electrolyte

    DOE Patents [OSTI]

    Ackerman, J.P.; Johnson, T.R.

    1994-08-09T23:59:59.000Z

    The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner. 1 fig.

  12. NNSA's Global Threat Reduction Initiative Removes More Than One...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Press Releases Video Gallery Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home NNSA Blog NNSA's Global Threat Reduction Initiative Removes More ......

  13. Performance evaluation of organic emulsion liquid membrane on phenol removal

    E-Print Network [OSTI]

    Ng, Y S; Hashim, M A

    2014-01-01T23:59:59.000Z

    The percentage removal of phenol from aqueous solution by emulsion liquid membrane and emulsion leakage was investigated experimentally for various parameters such as membrane:internal phase ratio, membrane:external phase ratio, emulsification speed, emulsification time, carrier concentration, surfactant concentration and internal agent concentration. These parameters strongly influence the percentage removal of phenol and emulsion leakage. Under optimum membrane properties, the percentage removal of phenol was as high as 98.33%, with emulsion leakage of 1.25%. It was also found that the necessity of carrier for enhancing phenol removal was strongly dependent on the internal agent concentration.

  14. Process to remove rare earth from IFR electrolyte

    DOE Patents [OSTI]

    Ackerman, J.P.; Johnson, T.R.

    1992-01-01T23:59:59.000Z

    The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner.

  15. Removal of carbon tetrachloride from a layered porous medium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon tetrachloride from a layered porous medium by means of soil vapor extraction enhanced by desiccation and water Removal of carbon tetrachloride from a layered porous medium...

  16. Removal of Carbon Tetrachloride from a Layered Porous Medium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Tetrachloride from a Layered Porous Medium by Means of Soil Vapor Extraction Enhanced by Desiccation and Water Removal of Carbon Tetrachloride from a Layered Porous Medium...

  17. Study of Alternative Approaches for Transite Panel Removal

    Broader source: Energy.gov [DOE]

    Bechtel Jacobs Company LLC (BJC) assembled an experienced team from both sites to evaluate both the manual and mechanical methods of transite panel removal.

  18. anesthesia optimizing removal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    de 7 Multiplicative Noise Removal Using Variable Splitting and Constrained Optimization CERN Preprints Summary: Multiplicative noise (also known as speckle noise) models...

  19. Method of removal of sulfur from coal and petroleum products

    DOE Patents [OSTI]

    Verkade, John G. (Ames, IA); Mohan, Thyagarajan (Ames, IA); Angelici, Robert J. (Ames, IA)

    1995-01-01T23:59:59.000Z

    A method for the removal of sulfur from sulfur-bearing materials such as coal and petroleum products using organophosphine and organophosphite compounds is provided.

  20. Metagenomic analysis of phosphorus removing sludgecommunities

    SciTech Connect (OSTI)

    Garcia Martin, Hector; Ivanova, Natalia; Kunin, Victor; Warnecke,Falk; Barry, Kerrie; McHardy, Alice C.; Yeates, Christine; He, Shaomei; Salamov, Asaf; Szeto, Ernest; Dalin, Eileen; Putnam, Nik; Shapiro, HarrisJ.; Pangilinan, Jasmyn L.; Rigoutsos, Isidore; Kyrpides, Nikos C.; Blackall, Linda Louise; McMahon, Katherine D.; Hugenholtz, Philip

    2006-02-01T23:59:59.000Z

    Enhanced Biological Phosphorus Removal (EBPR) is not wellunderstood at the metabolic level despite being one of the best-studiedmicrobially-mediated industrial processes due to its ecological andeconomic relevance. Here we present a metagenomic analysis of twolab-scale EBPR sludges dominated by the uncultured bacterium, "CandidatusAccumulibacter phosphatis." This analysis resolves several controversiesin EBPR metabolic models and provides hypotheses explaining the dominanceof A. phosphatis in this habitat, its lifestyle outside EBPR and probablecultivation requirements. Comparison of the same species from differentEBPR sludges highlights recent evolutionary dynamics in the A. phosphatisgenome that could be linked to mechanisms for environmental adaptation.In spite of an apparent lack of phylogenetic overlap in the flankingcommunities of the two sludges studied, common functional themes werefound, at least one of them complementary to the inferred metabolism ofthe dominant organism. The present study provides a much-needed blueprintfor a systems-level understanding of EBPR and illustrates thatmetagenomics enables detailed, often novel, insights into evenwell-studied biological systems.

  1. Method of removing oxidized contaminants from water

    DOE Patents [OSTI]

    Amonette, J.E.; Fruchter, J.S.; Gorby, Y.A.; Cole, C.R.; Cantrell, K.J.; Kaplan, D.I.

    1998-07-21T23:59:59.000Z

    The present invention is a method for removing oxidized contaminant(s) from water. More specifically, the invention has the steps of contacting water containing the oxidized contaminant(s) with a layered aluminosilicate having Fe(II). The aluminosilicate may contain naturally occurring Fe(II), or the Fe(II) may be produced by reducing Fe(III) that is initially present. Reduction may be either by exposure to a chemical or biological reductant. Contacting the water containing oxidized contaminant(s) may be by (1) injection of Fe(II)-containing layered aluminosilicate, via a well, into a saturated zone where it is likely to intercept the contaminated water; (2) injection of contaminated water into a vessel containing the Fe(II)-bearing layered aluminosilicate; and (3) first reducing Fe(III) in the layered aluminosilicate to Fe(II) by injection of a biological or chemical reductant, into an aquifer or vessel having sufficient Fe(III)-bearing aluminosilicate to produce the necessary Fe(II). 8 figs.

  2. Improved Processes to Remove Naphthenic Acids

    SciTech Connect (OSTI)

    Aihua Zhang; Qisheng Ma; Kangshi Wang; Yongchun Tang; William A. Goddard

    2005-12-09T23:59:59.000Z

    In the past three years, we followed the work plan as we suggested in the proposal and made every efforts to fulfill the project objectives. Based on our large amount of creative and productive work, including both of experimental and theoretic aspects, we received important technical breakthrough on naphthenic acid removal process and obtained deep insight on catalytic decarboxylation chemistry. In detail, we established an integrated methodology to serve for all of the experimental and theoretical work. Our experimental investigation results in discovery of four type effective catalysts to the reaction of decarboxylation of model carboxylic acid compounds. The adsorption experiment revealed the effectiveness of several solid materials to naphthenic acid adsorption and acidity reduction of crude oil, which can be either natural minerals or synthesized materials. The test with crude oil also received promising results, which can be potentially developed into a practical process for oil industry. The theoretical work predicted several possible catalytic decarboxylation mechanisms that would govern the decarboxylation pathways depending on the type of catalysts being used. The calculation for reaction activation energy was in good agreement with our experimental measurements.

  3. The washability of lignites for clay removal

    SciTech Connect (OSTI)

    Oteyaka, B.; Yamik, A.; Ucar, A.; Sahbaz, O.; Demir, U. [Dumlupinar University, Kutahya (Turkey). Dept. of Mining Engineering

    2008-07-01T23:59:59.000Z

    In the washability research of the Seyitomer Lignites (Kutahya-Turkey), with lower calorific value (1,863 kcal/kg) and high ash content (51.91%), by heavy medium separation, it was found out that middling clay in the coal had an effect to change the medium density. To prevent this problem, a trommel sieve with 18 and 5 mm aperture diameter was designed, and the clay in the coal was tried to be removed using it before the coal was released to heavy medium. Following that, the obtained coal in -100 + 18 mm and -18 + 5 mm fractions was subjected to sink and float test having 1.4 gcm{sup -3} and 1.7 gcm{sup -3} medium densities (-5 mm fraction will be evaluated in a separate work). Depending on the raw coal, with the floating of -100 + 18 mm and -18 + 5 mm size fraction in 1.4 gcm{sup -3} medium density, clean coal with 60.10% combustible matter recovery, 19.12% ash, and 3,150 kcal/kg was obtained. Also floating of the samples sinking in 1.4 gcm{sup -3} in the medium density (1.7 gcm{sup -3}), middling with 18.70% combustible matter recovery, 41.93% ash, 2,150 kcal/kg, and tailing having 78.31% ash were obtained.

  4. HIGH SO2 REMOVAL EFFICIENCY TESTING

    SciTech Connect (OSTI)

    Gary M. Blythe; James L. Phillips

    1997-10-15T23:59:59.000Z

    This final report describes the results of performance tests at six full-scale wet lime- and limestone-reagent flue gas desulfurization (FGD) systems. The objective of these tests was to evaluate the effectiveness of low capital cost sulfur dioxide (SO{sub 2}) removal upgrades for existing FGD systems as an option for complying with the provisions of the Clean Air Act Amendments of 1990. The upgrade options tested at the limestone-reagent systems included the use of organic acid additives (dibasic acid (DBA) and/or sodium formate) as well as increased reagent ratio (higher excess limestone levels in the recirculating slurry solids) and absorber liquid-to-gas ratio. One system also tested operating at higher flue gas velocities to allow the existing FGD system to treat flue gas from an adjacent, unscrubbed unit. Upgrade options for the one lime-based system tested included increased absorber venturi pressure drop and increased sulfite concentration in the recirculating slurry liquor.

  5. Mechanisms of virus removal during transport in unsaturated porous media

    E-Print Network [OSTI]

    Flury, Markus

    Mechanisms of virus removal during transport in unsaturated porous media Yanjie Chu and Yan Jin retention and retardation during transport in unsaturated systems. In this study, bacteriophages X174 and MS at the solid-water interface rather than at the air-water interface dominates in virus removal and transport

  6. An Adaptive Kalman Filter for Removing Baseline Wandering in ECG

    E-Print Network [OSTI]

    Povinelli, Richard J.

    An Adaptive Kalman Filter for Removing Baseline Wandering in ECG Signals MA Mneimneh, EE Yaz, MT to baseline removal. This paper proposes an adaptive Kalman filter for the real time re- moval of baseline is used with an adaptive Kalman filter to estimate the state variables, including the baseline wandering

  7. Continuous cryopump with a method for removal of solidified gases

    DOE Patents [OSTI]

    Carlson, L.W.; Herman, H.

    1988-05-05T23:59:59.000Z

    An improved cryopump for the removal of gases from a high vacuum, comprising a cryopanel incorporating honeycomb structure, refrigerant means thermally connected to the cryopanel, and a rotatable channel moving azimuthally around an axis located near the center of the cryopanel, removing gases adsorbed within the honeycomb structure by subliming them and conducting them outside the vacuum vessel. 4 figs.

  8. Method for removing chlorine compounds from hydrocarbon mixtures

    DOE Patents [OSTI]

    Janoski, E.J.; Hollstein, E.J.

    1984-09-29T23:59:59.000Z

    A process for removing halide ions from a hydrocarbon feedstream containing halogenated hydrocarbons wherein the contaminated feedstock is contacted with a solution of a suitable oxidizing acid containing a lanthanide oxide, the acid being present in a concentration of at least about 50 weight percent for a time sufficient to remove substantially all of the halide ion from the hydrocarbon feedstock.

  9. Process for removing pyritic sulfur from bituminous coals

    DOE Patents [OSTI]

    Pawlak, Wanda (Edmonton, CA); Janiak, Jerzy S. (Edmonton, CA); Turak, Ali A. (Edmonton, CA); Ignasiak, Boleslaw L. (Edmonton, CA)

    1990-01-01T23:59:59.000Z

    A process is provided for removing pyritic sulfur and lowering ash content of bituminous coals by grinding the feed coal, subjecting it to micro-agglomeration with a bridging liquid containing heavy oil, separating the microagglomerates and separating them to a water wash to remove suspended pyritic sulfur. In one embodiment the coal is subjected to a second micro-agglomeration step.

  10. Removal of Estrogenic Pollutants from Contaminated Water Using

    E-Print Network [OSTI]

    Chen, Wilfred

    Removal of Estrogenic Pollutants from Contaminated Water Using Molecularly Imprinted Polymers Z I H that this material may be appropriate for treating a complex mixture of estrogenic pollutants. The feasibility of removing estrogenic compounds from environmental water by the MIP was demonstrated using lake water spiked

  11. Process for selected gas oxide removal by radiofrequency catalysts

    DOE Patents [OSTI]

    Cha, C.Y.

    1993-09-21T23:59:59.000Z

    This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO[sub 2] and NO[sub x]. 1 figure.

  12. UNL/OSU Researchers Try Promising Technique to Remove Groundwater

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    UNL/OSU Researchers Try Promising Technique to Remove Groundwater Contamination Under Former Oklahoma State University have joined to test promising new methods of removing longstanding groundwater into specially drilled injection wells, where it mixes with contaminants in the groundwater under the former

  13. Atmospheric Environment 41 (2007) 31513160 Ozone removal by HVAC filters

    E-Print Network [OSTI]

    Siegel, Jeffrey

    Atmospheric Environment 41 (2007) 3151­3160 Ozone removal by HVAC filters P. Zhao, J.A. Siegel�, R May 2006; accepted 14 June 2006 Abstract Residential and commercial HVAC filters that have been loaded of the relative importance of HVAC filters as a removal mechanism for ozone in residential and commercial

  14. Removal of residual particulate matter from filter media

    DOE Patents [OSTI]

    Almlie, Jay C; Miller, Stanley J

    2014-11-11T23:59:59.000Z

    A method for removing residual filter cakes that remain adhered to a filter after typical particulate removal methodologies have been employed, such as pulse-jet filter element cleaning, for all cleanable filters used for air pollution control, dust control, or powder control.

  15. Aluminum Removal from Photographic Waste Submitted to Dr. Tony Bi

    E-Print Network [OSTI]

    Aluminum Removal from Photographic Waste Submitted to Dr. Tony Bi By: Kristen Favel, Tiffany Jung, and Kenny Tam CHBE 484 University of British Columbia April 15, 2009 #12;ii "Aluminum Removal from photographic waste has shown elevated levels of aluminum in the fixer, which exceed sewer discharge standards

  16. Fuzzy predictive control for nitrogen removal in biological wastewater treatment

    E-Print Network [OSTI]

    Fuzzy predictive control for nitrogen removal in biological wastewater treatment S. Marsili predictive control; wastewater treatment plant Introduction The problem of improving the nitrogen removal wastewater is too low, full denitrification is difficult to obtain and an additional source of organic carbon

  17. Method for removing metals from a cleaning solution

    DOE Patents [OSTI]

    Deacon, Lewis E. (Waverly, OH)

    2002-01-01T23:59:59.000Z

    A method for removing accumulated metals from a cleaning solution is provided. After removal of the metals, the cleaning solution can be discharged or recycled. The process manipulates the pH levels of the solution as a means of precipitating solids. Preferably a dual phase separation at two different pH levels is utilized.

  18. Passive shut-down heat removal system

    DOE Patents [OSTI]

    Hundal, Rolv (Greensburg, PA); Sharbaugh, John E. (Bullskin Township, Fayette County, PA)

    1988-01-01T23:59:59.000Z

    An improved shut-down heat removal system for a liquid metal nuclear reactor of the type having a vessel for holding hot and cold pools of liquid sodium is disclosed herein. Generally, the improved system comprises a redan or barrier within the reactor vessel which allows an auxiliary heat exchanger to become immersed in liquid sodium from the hot pool whenever the reactor pump fails to generate a metal-circulating pressure differential between the hot and cold pools of sodium. This redan also defines an alternative circulation path between the hot and cold pools of sodium in order to equilibrate the distribution of the decay heat from the reactor core. The invention may take the form of a redan or barrier that circumscribes the inner wall of the reactor vessel, thereby defining an annular space therebetween. In this embodiment, the bottom of the annular space communicates with the cold pool of sodium, and the auxiliary heat exchanger is placed in this annular space just above the drawn-down level that the liquid sodium assumes during normal operating conditions. Alternatively, the redan of the invention may include a pair of vertically oriented, concentrically disposed standpipes having a piston member disposed between them that operates somewhat like a pressure-sensitive valve. In both embodiments, the cessation of the pressure differential that is normally created by the reactor pump causes the auxiliary heat exchanger to be immersed in liquid sodium from the hot pool. Additionally, the redan in both embodiments forms a circulation flow path between the hot and cold pools so that the decay heat from the nuclear core is uniformly distributed within the vessel.

  19. Demonstrations and commercial applications of innovative sediment removal technologies

    SciTech Connect (OSTI)

    Pelletier, J.P. [Environment Canada, Toronto, Ontario (Canada)

    1995-12-31T23:59:59.000Z

    The Contaminated Sediment Removal Program (CSRP) of Environment Canada was founded in November 1990 following a request from the Great Lakes Cleanup Fund to the Environmental Protection Service-Ontario Region to provide the leadership in the identification of removal technologies and procedures for contaminated sediments in the Great Lakes. Following a request for proposal issued by the CSRP, proposals were received from vendors of innovative sediment removal technologies to conduct contaminated sediment removal demonstrations in different Areas of Concern (AOCs) on the Canadian side of the Great Lakes. In 1992, the CSRP conducted the demonstration of two innovative sediment removal technologies at three different sites. The Cable Arm 100E clamshell bucket was demonstrated in Toronto and Hamilton Harbors, while the Pneuma Pump was demonstrated in Collingwood Harbor. Those three demonstrations led to the first Canadian commercial applications of the Cable Arm 100E clamshell bucket in Pickering, Ontario, and of the Pneuma Pump in Collingwood, Ontario.

  20. Regenerable hydrogen chloride removal sorbent and regenerable multi-functional hydrogen sulfide and hydrogen chloride removal sorbent for high temperature gas streams

    DOE Patents [OSTI]

    Siriwardane, Ranjani (Morgantown, WV)

    2010-08-03T23:59:59.000Z

    Regenerable hydrogen chloride removal sorbent and regenerable multi-functional hydrogen sulfide and hydrogen chloride removal sorbent for high temperature gas streams

  1. Passive removal of manganese from acid mine drainage

    SciTech Connect (OSTI)

    Brant, D.L.; Ziemkiewicz, P.F. [West Virginia Univ., Morgantown, WV (United States)

    1997-12-31T23:59:59.000Z

    Removal of manganese (Mn) from mine drainage is difficult due to the abnormal chemistry of the element. The removal requires the oxidation of Mn(II) (the form found in mine drainage) to the more oxidized forms (Mn(III) or Mn(IV)). The more oxidized forms exist only as solids and will not return to Mn(II) spontaneously. Chemical treatment of Mn often requires a pH near 10 to initiate the oxidation quickly. A stabilized pH of 10 normally causes more harm to aquatic organisms than the Mn and is not desirable, making additional steps in the treatment necessary. Biological removal of Mn can be achieved at near neutral pH levels. The Shade Mining site in Somerset County, PA has been treating Mn to discharge limits since the early 1990`s (reducing Mn concentrations from 12 - 25 mg/L in the influent to <2 mg/L in the effluent). The treatment system consists of an anoxic limestone drain discharging into a wetland to remove iron, aluminum, and acidity, while increasing pH and alkalinity. The wetland effluent flows into two limestone beds (Mn removal). The limestone beds developed a black slime coating as the Mn removal increased. This system continues to remove Mn in all weather conditions and has not required chemical treatment since the black coating appeared on the limestone. A laboratory study was conducted using limestone collected from the Shade site to use the same naturally occurring Mn oxidizing microbes. The lab study compared W removal rates of microbial oxidation, MnO{sub 2} catalyzed limestone, and fresh uncoated limestone. The microbial removal performed the best (25 mg/L Mn reduced to <2 mg/L in 72 hours).

  2. Tank 241-CX-70 waste removal and packaging

    SciTech Connect (OSTI)

    DuVon, D.K.

    1993-06-01T23:59:59.000Z

    Tank 241-CX-70, located on the Hanford Site in Washington State, is a 30,000 gal single-shell storage tank built in 1952 to hold high-level process waste from pilot tests of the reduction-oxidation process. In 1979 decommissioning operations were begun by pumping liquid waste from the tank to the double-shell tank (DST) 101-AY. Not all the waste was removed at that time. Approximately 10,300 gal of sludge remained. On September 25, 1987, operations were resumed to remove the remaining waste using a sluicing and pumping method. This report documents the final removal of waste from Tank 241-CX-70.

  3. Tank 241-CX-70 waste removal and packaging

    SciTech Connect (OSTI)

    DuVon, D.K.

    1993-01-01T23:59:59.000Z

    Tank 241-CX-70, located on the Hanford Site in Washington State, is a 30,000 gal single-shell storage tank built in 1952 to hold high-level process waste from pilot tests of the reduction-oxidation process. In 1979 decommissioning operations were begun by pumping liquid waste from the tank to the double-shell tank (DST) 101-AY. Not all the waste was removed at that time. Approximately 10,300 gal of sludge remained. On September 25, 1987, operations were resumed to remove the remaining waste using a sluicing and pumping method. This report documents the final removal of waste from Tank 241-CX-70.

  4. Solid materials for removing metals and fabrication method

    DOE Patents [OSTI]

    Coronado, Paul R.; Reynolds, John G.; Coleman, Sabre J.

    2004-10-19T23:59:59.000Z

    Solid materials have been developed to remove contaminating metals and organic compounds from aqueous media. The contaminants are removed by passing the aqueous phase through the solid materials which can be in molded, granular, or powder form. The solid materials adsorb the metals and the organics leaving a purified aqueous stream. The materials are sol-gel and or sol-gel and granulated activated carbon (GAC) mixtures. The species-specific adsorption occurs through specific chemical modifications of the solids tailored towards the contaminant(s). The contaminated solid materials can then be disposed of or the contaminant can be removed and the solids recycled.

  5. High Energy Laser for Space Debris Removal

    SciTech Connect (OSTI)

    Barty, C; Caird, J; Erlandson, A; Beach, R; Rubenchik, A

    2009-10-30T23:59:59.000Z

    The National Ignition Facility (NIF) and Photon Science Directorate at Lawrence Livermore National Laboratory (LLNL) has substantial relevant experience in the construction of high energy lasers, and more recently in the development of advanced high average power solid state lasers. We are currently developing new concepts for advanced solid state laser drivers for the Laser Inertial Fusion Energy (LIFE) application, and other high average power laser applications that could become central technologies for use in space debris removal. The debris population most readily addressed by our laser technology is that of 0.1-10 cm sized debris in low earth orbit (LEO). In this application, a ground based laser system would engage an orbiting target and slow it down by ablating material from its surface which leads to reentry into the atmosphere, as proposed by NASA's ORION Project. The ORION concept of operations (CONOPS) is also described in general terms by Phipps. Key aspects of this approach include the need for high irradiance on target, 10{sup 8} to 10{sup 9} W/cm{sup 2}, which favors short (i.e., picoseconds to nanoseconds) laser pulse durations and high energy per pulse ({approx} > 10 kJ). Due to the target's orbital velocity, the potential duration of engagement is only of order 100 seconds, so a high pulse repetition rate is also essential. The laser technology needed for this application did not exist when ORION was first proposed, but today, a unique combination of emerging technologies could create a path to enable deployment in the near future. Our concepts for the laser system architecture are an extension of what was developed for the National Ignition Facility (NIF), combined with high repetition rate laser technology developed for Inertial Fusion Energy (IFE), and heat capacity laser technology developed for military applications. The 'front-end' seed pulse generator would be fiber-optics based, and would generate a temporally, and spectrally tailored pulse designed for high transmission through the atmosphere, as well as efficient ablative coupling to the target. The main amplifier would use either diode-pumped or flashlamp-pumped solid state gain media, depending on budget constraints of the project. A continuously operating system would use the gas-cooled amplifier technology developed for Mercury, while a burst-mode option would use the heat capacity laser technology. The ground-based system that we propose is capable of rapid engagement of targets whose orbits cross over the site, with potential for kill on a single pass. Very little target mass is ablated per pulse so the potential to create additional hazardous orbiting debris is minimal. Our cost estimates range from $2500 to $5000 per J depending on choices for laser gain medium, amplifier pump source, and thermal management method. A flashlamp-pumped, Nd:glass heat-capacity laser operating in the burst mode would have costs at the lower end of this spectrum and would suffice to demonstrate the efficacy of this approach as a prototype system. A diode-pumped, gas-cooled laser would have higher costs but could be operated continuously, and might be desirable for more demanding mission needs. Maneuverability can be incorporated in the system design if the additional cost is deemed acceptable. The laser system would need to be coupled with a target pointing and tracking telescope with guide-star-like wavefront correction capability.

  6. Ozone Removal by Filters Containing Activated Carbon: A Pilot Study

    SciTech Connect (OSTI)

    Fisk, William; Spears, Mike; Sullivan, Douglas; Mendell, Mark

    2009-09-01T23:59:59.000Z

    This study evaluated the ozone removal performance of moderate-cost particle filters containing activated carbon when installed in a commercial building heating, ventilating, and air conditioning (HVAC) system. Filters containing 300 g of activated carbon per 0.09 m2 of filter face area were installed in two 'experimental' filter banks within an office building located in Sacramento, CA. The ozone removal performance of the filters was assessed through periodic measurements of ozone concentrations in the air upstream and downstream of the filters. Ozone concentrations were also measured upstream and downstream of a 'reference' filter bank containing filters without any activated carbon. The filter banks with prefilters containing activated carbon were removing 60percent to 70percent of the ozone 67 and 81 days after filter installation. In contrast, there was negligible ozone removal by the reference filter bank without activated carbon.

  7. CPP-603 Chloride Removal System Decontamination and Decommissioning. Final report

    SciTech Connect (OSTI)

    Moser, C.L.

    1993-02-01T23:59:59.000Z

    The CPP-603 (annex) Chloride Removal System (CRS) Decontamination and Decommissioning (D&D) Project is described in this report. The CRS was used for removing Chloride ions and other contaminants that were suspended in the waters of the underwater fuel storage basins in the CPP-603 Fuel Receiving and Storage Facility (FRSF) from 1975 to 1981. The Environmental Checklist and related documents, facility characterization, decision analysis`, and D&D plans` were prepared in 1991. Physical D&D activities were begun in mid summer of 1992 and were completed by the end of November 1992. All process equipment and electrical equipment were removed from the annex following accepted asbestos and radiological contamination removal practices. The D&D activities were performed in a manner such that no radiological health or safety hazard to the public or to personnel at the Idaho National Engineering Laboratory (INEL) occurred.

  8. apu controller removal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    contamination control 12;10 Transfer of Graphite to Supersack (V) 12;11 Moving graphite pile Complete shipment of graphite to DOE's Nevada Test Site Removal of biological shield...

  9. azo dye removal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    contamination control 12;10 Transfer of Graphite to Supersack (V) 12;11 Moving graphite pile Complete shipment of graphite to DOE's Nevada Test Site Removal of biological shield...

  10. acetic acid removal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    contamination control 12;10 Transfer of Graphite to Supersack (V) 12;11 Moving graphite pile Complete shipment of graphite to DOE's Nevada Test Site Removal of biological shield...

  11. aromatic hydrocarbon removal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    contamination control 12;10 Transfer of Graphite to Supersack (V) 12;11 Moving graphite pile Complete shipment of graphite to DOE's Nevada Test Site Removal of biological shield...

  12. aeruginosa requiring removal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    contamination control 12;10 Transfer of Graphite to Supersack (V) 12;11 Moving graphite pile Complete shipment of graphite to DOE's Nevada Test Site Removal of biological shield...

  13. after-heat removal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    contamination control 12;10 Transfer of Graphite to Supersack (V) 12;11 Moving graphite pile Complete shipment of graphite to DOE's Nevada Test Site Removal of biological shield...

  14. acid dye removal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    contamination control 12;10 Transfer of Graphite to Supersack (V) 12;11 Moving graphite pile Complete shipment of graphite to DOE's Nevada Test Site Removal of biological shield...

  15. Considering removing "Show Preview" button on utility rate form...

    Open Energy Info (EERE)

    Rmckeel's picture Submitted by Rmckeel(297) Contributor 22 April, 2013 - 13:55 Utility Rates I'm considering removing the "Show Preview" button, since it does not work (javascript...

  16. Comparison of proton and neutron carrier removal rates

    SciTech Connect (OSTI)

    Pease, R.L.; Enlow, E.W.; Dinger, G.L.; Marshall, P.

    1987-12-01T23:59:59.000Z

    Displacement damage induced carrier removal rates for proton irradiations in the energy range 10-175 MeV were compared to 1 MeV equivalent neutrons using power MOSFETs as a test vehicle. The results showed that, within experimental error, the degradation mechanisms were qualitatively similar and the ratio of proton to neutron carrier removal rates as a function of proton energy correlate with a calculation based on nonionization energy loss in silicon. For exposures under junction bias, p-type silicon was found to have a smaller carrier removal rate for both proton and neutron irradiations, whereas, for n-type silicon, junction bias had little effect on the carrier removal rate.

  17. Method to remove uranium/vanadium contamination from groundwater

    DOE Patents [OSTI]

    Metzler, Donald R. (DeBeque, CO); Morrison, Stanley (Grand Junction, CO)

    2004-07-27T23:59:59.000Z

    A process for removing uranium/vanadium-based contaminants from groundwater using a primary in-ground treatment media and a pretreatment media that chemically adjusts the groundwater contaminant to provide for optimum treatment by the primary treatment media.

  18. Oil and Gas- Leases to remove or recover (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This act states that a lease or agreement conveying the right to remove or recover oil, natural gas or gas of any other designation from lessor to lessee shall not be valid if such lease does not...

  19. Energy Savings for CO2 Removal in Ammonia Plants 

    E-Print Network [OSTI]

    Pouilliart, R.; Van Hecke, F. C.

    1981-01-01T23:59:59.000Z

    of approx. 27 GJ/h (GHV) of natural gas is possible by using exhaust steam from a back pressure turbine instead of L.T. shift gas as the heat supply source for a Carsol C02 removal system....

  20. Channel response to Dam Removal, Clear Creek, California

    E-Print Network [OSTI]

    Miller, Peter; Vizcaino, Pilar

    2004-01-01T23:59:59.000Z

    to Dam Removal, Clear Creek, California Peter Miller and9, 2004 Abstract Clear Creek drains 720 km 2 , joining the2002) Saeltzer Dam on Clear Creek was a good candidate for

  1. Massive Hanford Test Reactor Removed - Plutonium Recycle Test...

    Broader source: Energy.gov (indexed) [DOE]

    on the U.S. Department of Energy's (DOE) Hanford Site by removing a 1,082-ton nuclear test reactor from the 300 Area. The River Corridor is a 220-square-mile section of land...

  2. Web Indexing on a Diet: Template Removal with the

    E-Print Network [OSTI]

    Thomas, Paul

    April 2009 Web Indexing on a Diet: Template Removal with the Sandwich Algorithm Stephen Wan stephen.wan@csiro.au Paul Thomas paul.thomas@csiro.au Tom Rowlands tom.rowlands@csiro.au #12;Copyright and Disclaimer

  3. Method to Remove Uranium/Vanadium Contamination from Groundwater

    DOE Patents [OSTI]

    Metzler, Donald R.; Morrison Stanley

    2004-07-27T23:59:59.000Z

    A process for removing uranium/vanadium-based contaminants from groundwater using a primary in-ground treatment media and a pretreatment media that chemically adjusts the groundwater contaminant to provide for optimum treatment by the primary treatment media.

  4. Removal of phenols from wastewater by soluble and immobilized tyrosinase

    SciTech Connect (OSTI)

    Wada, Shinji; Ichikawa, Hiroyasu; Tatsumi, Kenji (National Inst. for Resources and Environment, Ibaraki (Japan))

    1993-09-20T23:59:59.000Z

    An enzymatic method for removal of phenols from industrial wastewater was investigated. Phenols in an aqueous solution were removed after treatment with mushroom tyrosinase. The reduction order of substituted phenols is catechol > p-cresol > p-chlorophenol > phenol > p-methoxyphenol. In the treatment of tyrosinase alone, no precipitate was formed but a color change from colorless to dark-brown was observed. The colored products were removed by chitin and chitosan which are available abundantly as shellfish waste. In addition, the reduction rate of phenols was observed to be accelerated in the presence of chitosan. Tyrosinase, immobilized by using amino groups in the enzyme on cation exchange resins, can be used repeatedly. By treatment with immobilized tyrosinase, 100% of phenol was removed after 2 h, and the activity was reduced very little even after 10 repeat treatments.

  5. Removal of testa from food grade copra by air classification

    E-Print Network [OSTI]

    Lopitakwong, Rommanee

    1975-01-01T23:59:59.000Z

    REMOVAL OF TESTA FROM FOOD GRADE COPRA BY AIR CLASSIFICATION A Thesi. s by ROMMANEE LOPITAKWONG Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December... 1975 Major Subject: Food Technology REMOVAL OF TESTA FROM FOOD GRADE COPRA BY AIR CLASSIFICATION A Thesis by ROMMANEE LOPITAKWONG Approved as to style and content by: (Ch irman of Comm'ttee) ad of Dep tment) Member) (Member) December 1975...

  6. Method for removing oxide contamination from titanium diboride powder

    DOE Patents [OSTI]

    Brynestad, Jorulf (Oak Ridge, TN); Bamberger, Carlos E. (Oak Ridge, TN)

    1984-01-01T23:59:59.000Z

    A method for removing oxide contamination from titanium diboride powder involves the direct chemical treatment of TiB.sub.2 powders with a gaseous boron halide, such as BCl.sub.3, at temperatures in the range of 500.degree.-800.degree. C. The BCl.sub.3 reacts with the oxides to form volatile species which are removed by the BCl.sub.3 exit stream.

  7. Process for removing heavy metal compounds from heavy crude oil

    DOE Patents [OSTI]

    Cha, Chang Y. (Golden, CO); Boysen, John E. (Laramie, WY); Branthaver, Jan F. (Laramie, WY)

    1991-01-01T23:59:59.000Z

    A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

  8. Assessing Arsenic Removal By Zero-Valent Iron Under

    E-Print Network [OSTI]

    6 8 10 12 14 ­.5 0 .5 1 pH Eh(volts) SO4 -- HS - H2S(aq) HSO4 - 20°C Dell Fri Feb 08 2008 DiagramSO4Assessing Arsenic Removal By Zero-Valent Iron Under Various Water Quality Conditions Paul Pepler and operate. #12;7 Best Available Technologies for As Removal (USEPA 2003) Ion exchange Activated alumina

  9. Fluidized bed gasification ash reduction and removal process

    DOE Patents [OSTI]

    Schenone, Carl E. (Madison, PA); Rosinski, Joseph (Vanderbilt, PA)

    1984-12-04T23:59:59.000Z

    In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

  10. Fluidized bed gasification ash reduction and removal system

    DOE Patents [OSTI]

    Schenone, Carl E. (Madison, PA); Rosinski, Joseph (Vanderbilt, PA)

    1984-02-28T23:59:59.000Z

    In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

  11. Solid materials for removing arsenic and method thereof

    SciTech Connect (OSTI)

    Coronado, Paul R. (Livermore, CA); Coleman, Sabre J. (Oakland, CA); Sanner, Robert D. (Livermore, CA); Dias, Victoria L. (Livermore, CA); Reynolds, John G. (San Ramon, CA)

    2010-09-28T23:59:59.000Z

    Solid materials have been developed to remove arsenic compounds from aqueous media. The arsenic is removed by passing the aqueous phase through the solid materials which can be in molded, granular, or powder form. The solid materials adsorb the arsenic leaving a purified aqueous stream. The materials are aerogels or xerogels and aerogels or xerogels and solid support structure, e.g., granulated activated carbon (GAC), mixtures. The species-specific adsorption occurs through specific chemical modifications of the solids tailored towards arsenic.

  12. Solid materials for removing arsenic and method thereof

    DOE Patents [OSTI]

    Coronado, Paul R. (Livermore, CA); Coleman, Sabre J. (Oakland, CA); Sanner, Robert D. (Livermore, CA); Dias, Victoria L. (Livermore, CA); Reynolds, John G. (San Ramon, CA)

    2008-07-01T23:59:59.000Z

    Solid materials have been developed to remove arsenic compounds from aqueous media. The arsenic is removed by passing the aqueous phase through the solid materials which can be in molded, granular, or powder form. The solid materials adsorb the arsenic leaving a purified aqueous stream. The materials are aerogels or xerogels and aerogels or xerogels and solid support structure, e.g., granulated activated carbon (GAC), mixtures. The species-specific adsorption occurs through specific chemical modifications of the solids tailored towards arsenic.

  13. Modeling Sustainable Agricultural Residue Removal at the Subfield Scale

    SciTech Connect (OSTI)

    Muth, D.J.; McCorkle, D.S.; Koch, J.B.; Bryden, K.M.

    2012-05-02T23:59:59.000Z

    This study developed a computational strategy that utilizes data inputs from multiple spatial scales to investigate how variability within individual fields can impact sustainable residue removal for bioenergy production. Sustainable use of agricultural residues for bioenergy production requires consideration of the important role that residues play in limiting soil erosion and maintaining soil C, health, and productivity. Increased availability of subfield-scale data sets such as grain yield data, high-fidelity digital elevation models, and soil characteristic data provides an opportunity to investigate the impacts of subfield-scale variability on sustainable agricultural residue removal. Using three representative fields in Iowa, this study contrasted the results of current NRCS conservation management planning analysis with subfield-scale analysis for rake-and-bale removal of agricultural residue. The results of the comparison show that the field-average assumptions used in NRCS conservation management planning may lead to unsustainable residue removal decisions for significant portions of some fields. This highlights the need for additional research on subfield-scale sustainable agricultural residue removal including the development of real-time variable removal technologies for agricultural residue.

  14. Updated 1-12 David Keith Sanders

    E-Print Network [OSTI]

    their precision weapons and electronic warfare systems. Included were thirty of the Department's largest Major, Technology and Logistics where he served as the Deputy Director for Air Warfare. He was the senior official

  15. Geological Sciences Jeffrey D. Keith, Chair

    E-Print Network [OSTI]

    Hart, Gus

    , such as assessment and forecasting of natural hazards, environmental change, and discovery of energy and mineral resources. Some of the diverse disciplines that can be studied in this department include general geology Catalog. Global Geology Program Each year the department provides opportunities for advanced

  16. Interview of Keith Hart, part two

    E-Print Network [OSTI]

    Hart, Keith

    2009-05-05T23:59:59.000Z

    years; in the course of this the World Wide Web was invented and began to be disseminated and I realized that I had got onto this revolution at the wrong end, through print publication, before mastering the potential of online dissemination... is reworking text; now because of word processing, if I am going to write an essay I start by accumulating everything that I have written on the subject, and make a file of maybe fifty pages and then start using that as a resource; I very rarely now write...

  17. Dr. Keith Schiager, Director Radiological Health

    Office of Legacy Management (LM)

    On Navexnber 29, 1977, Edward J. Jascewsky, Department of Energy (DOE), and Walter H. Smith, Argonne h'etional Laboratory (ML), visited the University of Utah's Medical Research...

  18. Integrative Biology Keith A. Crandall, Chair

    E-Print Network [OSTI]

    Hart, Gus

    . The bioinformatics major is for students with interests in both the computer and the biological sciences. The degree merges these interests in the areas of bioinformatics and computational biology, giving students Programs and Degrees BS Bioinformatics BS Biology Composite Teaching BS Integrative Biology Students should

  19. Dr. Keith Schiager, Director Radiological Health

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNew 1325.8.

  20. Dr. Keith Schiager, Director Radiological Health

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNew 1325.8.Enaineer District and the Atomic

  1. Removable pellicle for lithographic mask protection and handling

    DOE Patents [OSTI]

    Klebanoff, Leonard E. (Dublin, CA); Rader, Daniel J. (Albuquerque, NM); Hector, Scott D. (Oakland, CA); Nguyen, Khanh B. (Sunnyvale, CA); Stulen, Richard H. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    A removable pellicle for a lithographic mask that provides active and robust particle protection, and which utilizes a traditional pellicle and two deployments of thermophoretic protection to keep particles off the mask. The removable pellicle is removably attached via a retaining structure to the mask substrate by magnetic attraction with either contacting or non-contacting magnetic capture mechanisms. The pellicle retaining structural is composed of an anchor piece secured to the mask substrate and a frame member containing a pellicle. The anchor piece and the frame member are in removable contact or non-contact by the magnetic capture or latching mechanism. In one embodiment, the frame member is retained in a floating (non-contact) relation to the anchor piece by magnetic levitation. The frame member and the anchor piece are provided with thermophoretic fins which are interdigitated to prevent particles from reaching the patterned area of the mask. Also, the anchor piece and mask are maintained at a higher temperature than the frame member and pellicle which also prevents particles from reaching the patterned mask area by thermophoresis. The pellicle can be positioned over the mask to provide particle protection during mask handling, inspection, and pumpdown, but which can be removed manually or robotically for lithographic use of the mask.

  2. Treatment Facility F: Accelerated Removal and Validation Project

    SciTech Connect (OSTI)

    Sweeney, J.J.; Buettner, M.H.; Carrigan, C.R. [and others

    1994-04-01T23:59:59.000Z

    The Accelerated Removal and Validation (ARV) phase of remediation at the Treatment Facility F (TFF) site at Lawrence Livermore National Laboratory (LLNL) was designed to accelerate removal of gasoline from the site when compared to normal, single shift, pump-and-treat operations. The intent was to take advantage of the in-place infrastructure plus the increased underground temperatures resulting from the Dynamic Underground Stripping Demonstration Project (DUSDP). Operations continued 24-hours (h) per day between October 4 and December 12, 1993. Three contaminant removal rate enhancement approaches were explored during the period of continuous operation. First, we tried several configurations of the vapor pumping system to maximize the contaminant removal rate. Second, we conducted two brief trials of air injection into the lower steam zone. Results were compared with computer models, and the process was assessed for contaminant removal rate enhancement. Third, we installed equipment to provide additional electrical heating of contaminated low-permeability soil. Four new electrodes were connected into the power system. Diagnostic capabilities at the TFF site were upgraded so that we could safely monitor electrical currents, soil temperatures, and water treatment system processes while approximately 300 kW of electrical energy was being applied to the subsurface.

  3. Mobile system for microwave removal of concrete surfaces

    DOE Patents [OSTI]

    White, Terry L. (Oak Ridge, TN); Bigelow, Timothy S. (Knoxville, TN); Schaich, Charles R. (Lenoir City, TN); Foster, Jr., Don (Knoxville, TN)

    1997-01-01T23:59:59.000Z

    A method and apparatus for the microwave removal of contaminated concrete surfaces. The apparatus comprises a housing adapted to pass over a support surface. The housing includes a waveguide for directing microwave energy to the surface at an angle maximizing absorption of microwave energy by the surface. The apparatus is further provided with a source of microwave energy operably associated with the waveguide, wherein the microwave energy has a frequency of between about 10.6 GHz and about 24 GHz and acts to remove the uppermost layer from the surface. The apparatus further includes a debris containment assembly comprising a vacuum assembly operably associated with the housing. The vacuum assembly is adapted to remove debris from the area adjacent the surface.

  4. Removal of impurities from dry scrubbed fluoride enriched alumina

    SciTech Connect (OSTI)

    Schuh, L. [ABB Corporate Research Center, Heidelberg (Germany); Wedde, G. [ABB Environmental, Oslo (Norway)

    1996-10-01T23:59:59.000Z

    The pot-gas from an aluminum electrolytic cell is cleaned by a dry scrubbing process using fresh alumina as a scrubbing agent. This alumina is enriched with fluorides and trace impurities in a closed loop system with the pots. The only significant removal of the impurities is due to metal tapping. An improved technique has been developed that is more effective than earlier stripper systems. The impurity-rich fine fraction (< 10 {micro}m) of the enriched alumina is partly attached to the coarser alumina. That attachment has to be broken. Selective impact milling under special moderate conditions and air classifying have shown to be a cost effective process for the removal of impurities. For iron (Fe) and phosphorus (P) about 30--70% can be removed by the separation of 0.5--1% of the alumina. Full scale tests have successfully confirmed these results.

  5. Metal chelate process to remove pollutants from fluids

    DOE Patents [OSTI]

    Chang, S.G.T.

    1994-12-06T23:59:59.000Z

    The present invention relates to improved methods using an organic iron chelate to remove pollutants from fluids, such as flue gas. Specifically, the present invention relates to a process to remove NO[sub x] and optionally SO[sub 2] from a fluid using a metal ion (Fe[sup 2+]) chelate wherein the ligand is a dimercapto compound wherein the --SH groups are attached to adjacent carbon atoms (HS--C--C--SH) or (SH--C--CCSH) and contain a polar functional group so that the ligand of DMC chelate is water soluble. Alternatively, the DMC is covalently attached to a water insoluble substrate such as a polymer or resin, e.g., polystyrene. The chelate is regenerated using electroreduction or a chemical additive. The dimercapto compound bonded to a water insoluble substrate is also useful to lower the concentration or remove hazardous metal ions from an aqueous solution. 26 figures.

  6. Mobile system for microwave removal of concrete surfaces

    DOE Patents [OSTI]

    White, T.L.; Bigelow, T.S.; Schaich, C.R.; Foster, D. Jr.

    1997-06-03T23:59:59.000Z

    A method and apparatus are disclosed for the microwave removal of contaminated concrete surfaces. The apparatus comprises a housing adapted to pass over a support surface. The housing includes a waveguide for directing microwave energy to the surface at an angle maximizing absorption of microwave energy by the surface. The apparatus is further provided with a source of microwave energy operably associated with the waveguide, wherein the microwave energy has a frequency of between about 10.6 GHz and about 24 GHz and acts to remove the uppermost layer from the surface. The apparatus further includes a debris containment assembly comprising a vacuum assembly operably associated with the housing. The vacuum assembly is adapted to remove debris from the area adjacent the surface. 7 figs.

  7. Removal of fluoride impurities from UF/sub 6/ gas

    DOE Patents [OSTI]

    Beitz, J.V.

    1984-01-06T23:59:59.000Z

    A method of purifying a UF/sub 6/ gas stream containing one or more metal fluoride impurities composed of a transuranic metal, transition metal or mixtures thereof, is carried out by contacting the gas stream with a bed of UF/sub 5/ in a reaction vessel under conditions where at least one impurity reacts with the UF/sub 5/ to form a nongaseous product and a treated gas stream, and removing the treated gas stream from contact with the bed. The nongaseous products are subsequently removed in a reaction with an active fluorine affording agent to form a gaseous impurity which is removed from the reaction vessel. The bed of UF/sub 5/ is formed by the reduction of UF/sub 6/ in the presence of uv light. One embodiment of the reaction vessel includes a plurality of uv light sources as tubes on which UF/sub 5/ is formed. 2 figures.

  8. Savannah River Site Waste Removal Program - Past, Present and Future

    SciTech Connect (OSTI)

    Saldivar, E.

    2002-02-25T23:59:59.000Z

    The Savannah River Site has fifty-one high level waste tanks in various phases of operation and closure. These tanks were originally constructed to receive, store, and treat the high level waste (HLW) created in support of the missions assigned by the Department of Energy (DOE). The Federal Facilities Agreement (FFA) requires the high level waste to be removed from the tanks and stabilized into a final waste form. Additionally, closure of the tanks following waste removal must be completed. The SRS HLW System Plan identifies the interfaces of safe storage, waste removal, and stabilization of the high level waste and the schedule for the closure of each tank. HLW results from the dissolution of irradiated fuel components. Desired nuclear materials are recovered and the byproducts are neutralized with NaOH and sent to the High Level Waste Tank Farms at the SRS. The HLW process waste clarifies in the tanks as the sludge settles, resulting in a layer of dense sludge with salt supernate settling above the sludge. Salt supernate is concentrated via evaporation into saltcake and NaOH liquor. This paper discusses the history of SRS waste removal systems, recent waste removal experiences, and the challenges facing future removal operations to enhance efficiency and cost effectiveness. Specifically, topics will include the evolution and efficiency of systems used in the 1960's which required large volumes of water to current systems of large centrifugal slurry pumps, with significant supporting infrastructure and safety measures. Interactions of this equipment with the waste tank farm operations requirements will also be discussed. The cost and time improvements associated with these present-day systems is a primary focus for the HLW Program.

  9. Removal of pollutants from solid matrices using supercritical fluids

    SciTech Connect (OSTI)

    Tomasko, D.L. [Ohio State Univ., Columbus, OH (United States); Macnaughton, S.J.; Foster, N.R. [Univ. of South Wales, Kensington (Australia)] [and others

    1995-04-01T23:59:59.000Z

    Several supercritical fluid extraction (SCFE) processes have been proposed for removing toxic and intractable organic compounds from a range of contaminated solids. These include soil remediation and the regeneration of absorbents used to treat wastewater streams such as granular activated carbon (GAC). As a separation technique for environmental control, SCFR has several distinct advantages over conventional liquid extraction methods and incineration. Most notably, the contaminant is removed from the solvent in a concentrated form via a change in pressure or temperature and can be completely separated upon expansion to atmospheric pressure. The viability of SCFE hinges on process conditions such as solvent-feed ratio and solvent recycle ratio. The necessity of recycling solvent complicates the contaminant separation step since a complete reduction to atmospheric pressure would create large recompression costs. Because of this, the pressure and temperature dependence of contaminant solubility must be understood so that operating conditions for the separation step can be defined. Fortunately, this is the most developed aspect of SCF technology. However, the mass transfer limitations to removing contaminants from solids change with solvent flow rate. This paper discusses the use of SCFE for environmental control and presents results for the removal of DDT and 2-chlorophenol from GAC. 2-chlorophenol is almost completely removed with pure CO{sub 2} at 40{degrees}C and 101 bar while only 55% of the DDT is removed at 40{degrees}C and 200 bar. These differences in regeneration efficiency cannot be understood solely in terms of solubility but point to a need for detailed studies of adsorption equilibrium and mass transfer resistances in supercritical fluid systems.

  10. Sorbents for the oxidation and removal of mercury

    DOE Patents [OSTI]

    Olson, Edwin S.; Holmes, Michael J.; Pavlish, John Henry

    2014-09-02T23:59:59.000Z

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  11. Method for removing undesired particles from gas streams

    DOE Patents [OSTI]

    Durham, Michael Dean (Castle Rock, CO); Schlager, Richard John (Aurora, CO); Ebner, Timothy George (Westminster, CO); Stewart, Robin Michele (Arvada, CO); Hyatt, David E. (Denver, CO); Bustard, Cynthia Jean (Littleton, CO); Sjostrom, Sharon (Denver, CO)

    1998-01-01T23:59:59.000Z

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency.

  12. Method for removal of beryllium contamination from an article

    DOE Patents [OSTI]

    Simandl, Ronald F.; Hollenbeck, Scott M.

    2012-12-25T23:59:59.000Z

    A method of removal of beryllium contamination from an article is disclosed. The method typically involves dissolving polyisobutylene in a solvent such as hexane to form a tackifier solution, soaking the substrate in the tackifier to produce a preform, and then drying the preform to produce the cleaning medium. The cleaning media are typically used dry, without any liquid cleaning agent to rub the surface of the article and remove the beryllium contamination below a non-detect level. In some embodiments no detectible residue is transferred from the cleaning wipe to the article as a result of the cleaning process.

  13. Methods of hydrotreating a liquid stream to remove clogging compounds

    DOE Patents [OSTI]

    Minderhoud, Johannes Kornelis [Amsterdam, NL; Nelson, Richard Gene [Katy, TX; Roes, Augustinus Wilhelmus Maria [Houston, TX; Ryan, Robert Charles [Houston, TX; Nair, Vijay [Katy, TX

    2009-09-22T23:59:59.000Z

    A method includes producing formation fluid from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a gas stream. At least a portion of the liquid stream is provided to a hydrotreating unit. At least a portion of selected in situ heat treatment clogging compositions in the liquid stream are removed to produce a hydrotreated liquid stream by hydrotreating at least a portion of the liquid stream at conditions sufficient to remove the selected in situ heat treatment clogging compositions.

  14. Sorbents for the oxidation and removal of mercury

    DOE Patents [OSTI]

    Olson, Edwin S. (Grand Forks, ND); Holmes, Michael J. (Thompson, ND); Pavlish, John H. (East Grand Forks, MN)

    2008-10-14T23:59:59.000Z

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  15. Sorbents for the oxidation and removal of mercury

    DOE Patents [OSTI]

    Olson, Edwin S. (Grand Forks, ND); Holmes, Michael J. (Thompson, ND); Pavlish, John H. (East Grand Forks, MN)

    2012-05-01T23:59:59.000Z

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  16. Method for removing semiconductor layers from salt substrates

    DOE Patents [OSTI]

    Shuskus, Alexander J. (West Hartford, CT); Cowher, Melvyn E. (East Brookfield, MA)

    1985-08-27T23:59:59.000Z

    A method is described for removing a CVD semiconductor layer from an alkali halide salt substrate following the deposition of the semiconductor layer. The semiconductor-substrate combination is supported on a material such as tungsten which is readily wet by the molten alkali halide. The temperature of the semiconductor-substrate combination is raised to a temperature greater than the melting temperature of the substrate but less than the temperature of the semiconductor and the substrate is melted and removed from the semiconductor by capillary action of the wettable support.

  17. Method for the removal and recovery of mercury

    DOE Patents [OSTI]

    Easterly, C.E.; Vass, A.A.; Tyndall, R.L.

    1997-01-28T23:59:59.000Z

    The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

  18. Method for removal of furfural coke from metal surfaces

    SciTech Connect (OSTI)

    Turner, J.D.

    1990-02-27T23:59:59.000Z

    This patent describes a process for preparing furfural coke for removal from metallic surfaces. It comprises: heating ship furfural coke without causing an evolution of heat capable of undesirably altering metallurgical properties of the surfaces in the presence of a gas with a total pressure of less than 100 psig containing molecular oxygen. The gas being at a sufficient temperature below 800{degrees}F. (427{degrees}C.) for a sufficient time to change the crush strength of the coke so as to permit removal with a water jet at a pressure of about 5000 psi.

  19. Compositions and methods for removing arsenic in water

    DOE Patents [OSTI]

    Gadgil, Ashok Jagannth (El Cerrito, CA)

    2011-02-22T23:59:59.000Z

    Compositions and methods and for contaminants from water are provided. The compositions comprise ferric hydroxide and ferric oxyhydride coated substrates for use in removing the contaminant from the water. Contacting water bearing the contaminant with the substrates can substantially reduce contaminant levels therein. Methods of oxidizing the contaminants in water to facilitate their removal by the ferric hydroxide and ferric oxyhydride coated substrates are also provided. The contaminants include, but are not limited to, arsenic, selenium, uranium, lead, cadmium, nickel, copper, zinc, chromium and vanadium, their oxides and soluble salts thereof.

  20. Water Recycling removal using temperature-sensitive hydronen

    SciTech Connect (OSTI)

    Rana B. Gupta

    2002-10-30T23:59:59.000Z

    The overall objective of this project was to study the proposed Water Recycling/Removal Using Temperature-Sensitive Hydrogels. The main element of this technology is the design of a suitable hydrogel that can perform needed water separation for pulp and paper industry. The specific topics studied are to answer following questions: (a) Can water be removed using hydrogel from large molecules such as lignin? (b) Can the rate of separation be made faster? (c) What are the molecular interactions with hydrogel surface? (d) Can a hydrogel be designed for a high ionic strength and high temperature? Summary of the specific results are given.

  1. Technical note Barriers and opportunities for passive removal of indoor ozone

    E-Print Network [OSTI]

    Siegel, Jeffrey

    Technical note Barriers and opportunities for passive removal of indoor ozone Elliott T. Gall presents a Monte Carlo simulation to assess passive removal materials (PRMs) that remove ozone of homes in Houston, Texas, were taken from the literature and combined with back- ground ozone removal

  2. Development of Silica/Vanadia/ Titania Catalysts for Removal of

    E-Print Network [OSTI]

    Li, Ying

    mercury (Hg0) from simulated coal-combustion flue gas. Experiments were carried out in fixed-bed reactorsDevelopment of Silica/Vanadia/ Titania Catalysts for Removal of Elemental Mercury from Coal-Combustion the composition and microstructures of SCR (selective catalytic reduction) catalysts for Hg0 oxidation in coal-combustion

  3. The Minimum Constraint Removal Problem with Three Robotics Applications

    E-Print Network [OSTI]

    Indiana University

    The Minimum Constraint Removal Problem with Three Robotics Applications Kris Hauser Abstract on three example applications: generating human-interpretable excuses for failure, motion planning under their failures. · In human-robot interaction, semantically meaningful explanations would help people diagnose

  4. The Minimum Constraint Removal Problem with Three Robotics Applications

    E-Print Network [OSTI]

    Indiana University

    The Minimum Constraint Removal Problem with Three Robotics Applications Kris Hauser September 13 strategies. It is demonstrated on three example applications: gener- ating human-interpretable excuses, then they provide no explanation for the failure. For several applications, it would be useful for planners

  5. ADVANCES IN DUST DETECTION AND REMOVAL FOR TOKAMAKS

    SciTech Connect (OSTI)

    Campos, A.; Skinner, C.H.

    2009-01-01T23:59:59.000Z

    Dust diagnostics and removal techniques are vital for the safe operation of next step fusion devices such as ITER. In the tokamak environment, large particles or fi bers can fall on the electrostatic detector potentially causing a permanent short. An electrostatic dust detector developed in the laboratory is being applied to the National Spherical Torus Experiment (NSTX). We report on the development of a gas puff system that uses helium to clear such particles from the detector. Experiments at atmospheric pressure with varying nozzle designs, backing pressures, puff durations and exit fl ow orientations have given an optimal confi guration that effectively removes particles from a 25 cm˛ area. Similar removal effi ciencies were observed under a vacuum base pressure of 1 mTorr. Dust removal from next step tokamaks will be required to meet regulatory dust limits. A tri-polar grid of fi ne interdigitated traces has been designed that generates an electrostatic traveling wave for conveying dust particles to a “drain.” First trials with only two working electrodes have shown particle motion in optical microscope images.

  6. GROUNDWATER NITRATE REMOVAL CAPACITY OF RIPARIAN ZONES IN

    E-Print Network [OSTI]

    Gold, Art

    , and 3 in Urban watersheds to study denitrification capacity. Mini-piezometers were installed at eachGROUNDWATER NITRATE REMOVAL CAPACITY OF RIPARIAN ZONES IN URBANIZING WATERSHEDS BY TARA KIMBERLY and geomorphology of riparian zones, potentially changing riparian groundwater denitrification capacity. Little work

  7. Thief process for the removal of mercury from flue gas

    DOE Patents [OSTI]

    Pennline, Henry W. (Bethel Park, PA); Granite, Evan J. (Wexford, PA); Freeman, Mark C. (South Park Township, PA); Hargis, Richard A. (Canonsburg, PA); O'Dowd, William J. (Charleroi, PA)

    2003-02-18T23:59:59.000Z

    A system and method for removing mercury from the flue gas of a coal-fired power plant is described. Mercury removal is by adsorption onto a thermally activated sorbent produced in-situ at the power plant. To obtain the thermally activated sorbent, a lance (thief) is inserted into a location within the combustion zone of the combustion chamber and extracts a mixture of semi-combusted coal and gas. The semi-combusted coal has adsorptive properties suitable for the removal of elemental and oxidized mercury. The mixture of semi-combusted coal and gas is separated into a stream of gas and semi-combusted coal that has been converted to a stream of thermally activated sorbent. The separated stream of gas is recycled to the combustion chamber. The thermally activated sorbent is injected into the duct work of the power plant at a location downstream from the exit port of the combustion chamber. Mercury within the flue gas contacts and adsorbs onto the thermally activated sorbent. The sorbent-mercury combination is removed from the plant by a particulate collection system.

  8. Potential Supply Impacts of Removal of 1-Pound RVP Waiver

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    trends, and current laws and regulations. The EIA's Annual Energy Outlook 2002 (AEO2002) is usedPotential Supply Impacts of Removal of 1-Pound RVP Waiver September 2002 #12;ii Energy Information by the Office of Oil and Gas of the Energy Information Administration. General questions concerning the report

  9. Process for removing polymer-forming impurities from naphtha fraction

    DOE Patents [OSTI]

    Kowalczyk, Dennis C. (Pittsburgh, PA); Bricklemyer, Bruce A. (Avonmore, PA); Svoboda, Joseph J. (Pittsburgh, PA)

    1983-01-01T23:59:59.000Z

    Polymer precursor materials are vaporized without polymerization or are removed from a raw naphtha fraction by passing the raw naphtha to a vaporization zone (24) and vaporizing the naphtha in the presence of a wash oil while stripping with hot hydrogen to prevent polymer deposits in the equipment.

  10. Process for removing polymer-forming impurities from naphtha fraction

    DOE Patents [OSTI]

    Kowalczyk, D.C.; Bricklemyer, B.A.; Svoboda, J.J.

    1983-12-27T23:59:59.000Z

    Polymer precursor materials are vaporized without polymerization or are removed from a raw naphtha fraction by passing the raw naphtha to a vaporization zone and vaporizing the naphtha in the presence of a wash oil while stripping with hot hydrogen to prevent polymer deposits in the equipment. 2 figs.

  11. Columbia River Channel Improvement Project Rock Removal Blasting: Monitoring Plan

    SciTech Connect (OSTI)

    Carlson, Thomas J.; Johnson, Gary E.

    2010-01-29T23:59:59.000Z

    This document provides a monitoring plan to evaluate take as outlined in the National Marine Fisheries Service 2002 Biological Opinion for underwater blasting to remove rock from the navigation channel for the Columbia River Channel Improvement Project. The plan was prepared by the Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers (USACE), Portland District.

  12. Particulate contamination removal from wafers using plasmas and mechanical agitation

    DOE Patents [OSTI]

    Selwyn, Gary S. (Los Alamos, NM)

    1998-01-01T23:59:59.000Z

    Particulate contamination removal from wafers using plasmas and mechanical agitation. The present invention includes the use of plasmas with mechanical agitation for removing particulate matter from the surface of a wafer. The apparatus hereof comprises a mechanical activator, at least one conducting contact pin for transferring the vibration from the activator to the wafer, clamp fingers that maintain the wafer's position, and means for generating a plasma in the vicinity of the surface of the wafer, all parts of the cleaning apparatus except the mechanical activator and part of the contact pin being contained inside the processing chamber. By exposing a wafer to a plasma and providing motion thereto in a direction perpendicular to its surface, the bonding between the particulate matter and the surface may be overcome. Once free of the wafer surface, the particulates become charged by electrons from the plasma and are drawn into the plasma by attractive forces which keep them from redepositing. The introduction of a flowing gas through the plasma sweeps the particulates away from the wafer and out of the plasma. The entire surface is cleaned during one cleaning step. The use of an rf plasma to accomplish the particulate removal was found to remove more than 90% of the particulates.

  13. Energy Savings for CO2 Removal in Ammonia Plants

    E-Print Network [OSTI]

    Pouilliart, R.; Van Hecke, F. C.

    1981-01-01T23:59:59.000Z

    An exergy analysis of carbonate solution C02 removal systems which use solution flashing shows that there is no energy saving by using a mechanical thermocompressor instead of a steam-jet ejector. In a 1000 ShT/D ammonia plant an energy saving...

  14. Decay heat removal by natural convection - the RVACS system.

    SciTech Connect (OSTI)

    Tzanos, C. P.

    1999-08-17T23:59:59.000Z

    In conclusion, this work shows that for sodium coolant the reactor vessel auxiliary cooling system (RVACS) is an effective passive heat removal system if the reactor power does not exceed about 1600 MW(th). Its effectiveness is limited by the effective radiative heat transfer coefficient in the inner gap. In a lead cooled system, economic considerations may impose a lower limit.

  15. Removing Redundancy and Inconsistency in Memory-Based Collaborative Filtering

    E-Print Network [OSTI]

    Tresp, Volker

    Removing Redundancy and Inconsistency in Memory- Based Collaborative Filtering Kai Yu Siemens AG, Corporate Technology & University of Munich, Germany kai.yu.external@mchp.siemens. de Xiaowei Xu Information Science Department University of Arkansas at Little Rock xwxu@ualr.edu Anton Schwaighofer Siemens AG

  16. Guide wire extension for shape memory polymer occlusion removal devices

    DOE Patents [OSTI]

    Maitland, Duncan J. (Pleasant Hill, CA); Small, IV, Ward (Livermore, CA); Hartman, Jonathan (Sacramento, CA)

    2009-11-03T23:59:59.000Z

    A flexible extension for a shape memory polymer occlusion removal device. A shape memory polymer instrument is transported through a vessel via a catheter. A flexible elongated unit is operatively connected to the distal end of the shape memory polymer instrument to enhance maneuverability through tortuous paths en route to the occlusion.

  17. Apparatus for removably holding a plurality of microballoons

    DOE Patents [OSTI]

    Jorgensen, B.S.

    1984-06-05T23:59:59.000Z

    The present invention relates generally to the manipulation of microballoons and more particularly to an apparatus for removably holding a plurality of microballoons in order to more efficiently carry out the filling of the microballoons with a known quantity of gas.

  18. Pentek metal coating removal system: Baseline report; Greenbook (chapter)

    SciTech Connect (OSTI)

    NONE

    1997-07-31T23:59:59.000Z

    The Pentek coating removal technology was tested and is being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The Pentek coating removal system consisted of the ROTO-PEEN Scaler, CORNER-CUTTER{reg_sign}, and VAC-PAC{reg_sign}. They are designed to remove coatings from steel, concrete, brick, and wood. The Scaler uses 3M Roto Peen tungsten carbide cutters while the CORNER-CUTTER{reg_sign} uses solid needles for descaling activities. These hand tools are used with the VAC-PAC{reg_sign} vacuum system to capture dust and debris as removal of the coating takes place. The safety and health evaluation during the testing demonstration focused on two main areas of exposure: dust and noise. Dust exposure minimal, but noise exposure was significant. Further testing for each exposure is recommended because of the environment where the testing demonstration took place. It is feasible that the dust and noise levels will be higher in an enclosed operating environment of different construction. In addition, other areas of concern found were arm-hand vibration, whole-body, ergonomics, heat stress, tripping hazards, electrical hazards, machine guarding, and lockout/tagout.

  19. Investigating the Use of Biosorbents to Remove Arsenic from Water

    E-Print Network [OSTI]

    Erapalli, Shreyas

    2011-02-22T23:59:59.000Z

    , As (III), and arsenate, As (V), from water. Batch reactors were employed to assess the percent removal, reaction kinetics, adsorption capacity, and desorption of each arsenic species onto/from biosorbents under pH buffered and non?buffered conditions...

  20. Biological Removal of Siloxanes from Landfill and Digester Gases

    E-Print Network [OSTI]

    Biological Removal of Siloxanes from Landfill and Digester Gases: Opportunities and Challenges S U) presents challenges for using landfill and digester gases as energy fuels because of the formation volatilize from waste at landfills and wastewater treatment plants (1). As a result, biogas produced

  1. Mercury removal in utility wet scrubber using a chelating agent

    DOE Patents [OSTI]

    Amrhein, Gerald T. (Louisville, OH)

    2001-01-01T23:59:59.000Z

    A method for capturing and reducing the mercury content of an industrial flue gas such as that produced in the combustion of a fossil fuel or solid waste adds a chelating agent, such as ethylenediaminetetraacetic acid (EDTA) or other similar compounds like HEDTA, DTPA and/or NTA, to the flue gas being scrubbed in a wet scrubber used in the industrial process. The chelating agent prevents the reduction of oxidized mercury to elemental mercury, thereby increasing the mercury removal efficiency of the wet scrubber. Exemplary tests on inlet and outlet mercury concentration in an industrial flue gas were performed without and with EDTA addition. Without EDTA, mercury removal totaled 42%. With EDTA, mercury removal increased to 71%. The invention may be readily adapted to known wet scrubber systems and it specifically provides for the removal of unwanted mercury both by supplying S.sup.2- ions to convert Hg.sup.2+ ions into mercuric sulfide (HgS) and by supplying a chelating agent to sequester other ions, including but not limited to Fe.sup.2+ ions, which could otherwise induce the unwanted reduction of Hg.sup.2+ to the form, Hg.sup.0.

  2. Instructions for use Removal of Oxygen and Nitrogen from Niobium

    E-Print Network [OSTI]

    Tachizawa, Kazuya

    Instructions for use #12;------ Removal of Oxygen and Nitrogen from Niobium by External Gettering External Gettering, Purification of Niobium, Thermodynamics of Impurities, Oxygen Diffusion, Purity niobium even below 1500K. The oxygen concentration in the deposit and the Nb bulk is evaluated

  3. Apparatuses and methods for removal of ink buildup

    DOE Patents [OSTI]

    Cudzinovic, Michael; Pass, Thomas; Rogers, Rob; Sun, Ray-Hon; Sun, Sheng; Wahlstrom, Ben; Fuhrman, Dennis Jason; Altendorf, Kyle David

    2013-03-12T23:59:59.000Z

    A substrate patterning method including the steps of spraying ink on a surface of a substrate, the spraying of the ink resulting in an overspray of excess ink past an edge of the substrate; changing a temperature of the excess ink to cause a change in a viscosity of the excess ink; and removing the excess ink having the changed viscosity.

  4. Argonne Electrochemical Technology Program Sulfur removal from reformate

    E-Print Network [OSTI]

    Argonne Electrochemical Technology Program Sulfur removal from reformate Xiaoping Wang, Theodore Krause, and Romesh Kumar Chemical Engineering Division Argonne National Laboratory Hydrogen, Fuel Cells, and Infrastructure Technologies 2003 Merit Review Berkeley, CA May 19-22, 2003 #12;Argonne Electrochemical Technology

  5. Method for removal of mercury from various gas streams

    DOE Patents [OSTI]

    Granite, E.J.; Pennline, H.W.

    2003-06-10T23:59:59.000Z

    The invention provides for a method for removing elemental mercury from a fluid, the method comprising irradiating the mercury with light having a wavelength of approximately 254 nm. The method is implemented in situ at various fuel combustion locations such as power plants and municipal incinerators.

  6. Blood storage device and method for oxygen removal

    DOE Patents [OSTI]

    Bitensky, Mark W. (Waban, MA); Yoshida, Tatsuro (Newton, MA)

    2000-01-01T23:59:59.000Z

    The present invention relates to a storage device and method for the long-term storage of blood and, more particularly, to a blood storage device and method capable of removing oxygen from the stored blood and thereby prolonging the storage life of the deoxygenated blood.

  7. Sea Turtle Observations at Explosive Removals of Energy Structures

    E-Print Network [OSTI]

    Sea Turtle Observations at Explosive Removals of Energy Structures GREGG R. GITSCHLAG and BRYAN A. HERCZEG Introduction In July 1992 the total number of oil and gas production platformsI in the Gulfof. In that year 51 dead sea turtles were found on upper Texas beaches during mid-March to mid-April following

  8. Particulate contamination removal from wafers using plasmas and mechanical agitation

    DOE Patents [OSTI]

    Selwyn, G.S.

    1998-12-15T23:59:59.000Z

    Particulate contamination removal from wafers is disclosed using plasmas and mechanical agitation. The present invention includes the use of plasmas with mechanical agitation for removing particulate matter from the surface of a wafer. The apparatus hereof comprises a mechanical activator, at least one conducting contact pin for transferring the vibration from the activator to the wafer, clamp fingers that maintain the wafer`s position, and means for generating a plasma in the vicinity of the surface of the wafer, all parts of the cleaning apparatus except the mechanical activator and part of the contact pin being contained inside the processing chamber. By exposing a wafer to a plasma and providing motion thereto in a direction perpendicular to its surface, the bonding between the particulate matter and the surface may be overcome. Once free of the wafer surface, the particulates become charged by electrons from the plasma and are drawn into the plasma by attractive forces which keep them from redepositing. The introduction of a flowing gas through the plasma sweeps the particulates away from the wafer and out of the plasma. The entire surface is cleaned during one cleaning step. The use of an rf plasma to accomplish the particulate removal was found to remove more than 90% of the particulates. 4 figs.

  9. Proceedings: Indoor Air 2005 OZONE REMOVAL BY RESIDENTIAL HVAC FILTERS

    E-Print Network [OSTI]

    Siegel, Jeffrey

    Proceedings: Indoor Air 2005 2366 OZONE REMOVAL BY RESIDENTIAL HVAC FILTERS P Zhao1,2 , JA Siegel1, Austin, Texas 78758, USA ABSTRACT HVAC filters have a significant influence on indoor air quality% for Filter #2 at a face velocity of 0.81 cm/s. The potential for HVAC filters to affect ozone concentrations

  10. MAILLER et al. Removal of priority and emerging substances by

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of micropollutants in conventional wastewater treatment plants (WWTPs) composed by primary and biological treatmentsMAILLER et al. Removal of priority and emerging substances by biological and tertiary treatments in the case of urban areas (Heberer 2002). This implies a large understanding of wastewater treatment

  11. Nutrient Removal Mechanisms in a Cold Climate Gravel Wetland

    E-Print Network [OSTI]

    Nutrient Removal Mechanisms in a Cold Climate Gravel Wetland Alison Watts, Robert Roseen, Kim Farah and development of stormwater treatment systems Gregg Hall 35 Colovos Road Durham, New Hampshire 03824-3534 603.862.4024 http://www.unhsc.unh.edu #12;POROUS ASPHALT Watershed Boundary #12;#12;Gravel Wetland Effluent sampling

  12. Nutrient Removal Mechanisms in a Cold Climate Gravel Wetland

    E-Print Network [OSTI]

    Nutrient Removal Mechanisms in a Cold Climate Gravel Wetland Alison Watts, Robert Roseen, Kim Farah and development of stormwater treatment systems Gregg Hall 35 Colovos Road Durham, New Hampshire 03824-3534 603;Gravel Wetland Sampling within the system #12;NEIWPCC-UNH Project Goals Validation of constructed gravel

  13. Detroit Edison's Fermi 1 - Preparation for Reactor Removal

    SciTech Connect (OSTI)

    Swindle, Danny [Sargent and Lundy Engineers, LLC, 55 E. Monroe Street, Chicago, IL 60603 (United States)

    2008-01-15T23:59:59.000Z

    This paper is intended to provide information about the ongoing decommissioning tasks at Detroit Edison's Fermi 1 plant, and in particular, the work being performed to prepare the reactor for removal and disposal. In 1972 Fermi 1 was shutdown and the fuel returned to the Atomic Energy Commission. By the end of 1975, a retirement plan was prepared, the bulk sodium removed, and the plant placed in a safe store condition. The plant systems were left isolated with the sodium containing systems inert with carbon dioxide in an attempt to form a carbonate layer, thus passivating the underlying reactive sodium. In 1996, Detroit Edison determined to evaluate the condition of the plant and to make recommendations in relation to the Fermi 1 future plans. At the end of 1997 approval was obtained to remove the bulk asbestos and residual alkali-metals (i.e., sodium and sodium potassium (NaK)). In 2000, full nuclear decommissioning of the plant was approved. To date, the bulk asbestos insulation has been removed, and the only NaK remaining is located in six capillary instrument tubes. The remaining sodium is contained within the reactor, two of the three primary loops, and miscellaneous removed pipes and equipment to be processed. The preferred method for removing or reacting sodium at Fermi 1 is by injecting superheated steam into a heated, nitrogen inert system. The byproducts of this reaction are caustic sodium hydroxide, hydrogen gas, and heat. The decision was made to separate the three primary loops from the reactor for better control prior to processing each loop and the reactor separately. The first loop has already been processed. The main focus is now to process the reactor to allow removal and disposal of the Class C waste prior to the anticipated June 2008 closure of the Barnwell radioactive waste disposal facility located in South Carolina. Lessons learnt are summarized and concern: the realistic schedule and adherence to the schedule, time estimates, personnel accountability, back up or fill in work, work packages, condensation control, radiological contamination control, and organization of the waste stream.

  14. Methods of using adsorption media for separating or removing constituents

    DOE Patents [OSTI]

    Tranter, Troy J. (Idaho Falls, ID); Herbst, R. Scott (Idaho Falls, ID); Mann, Nicholas R. (Blackfoot, ID); Todd, Terry A. (Aberdeen, ID)

    2011-10-25T23:59:59.000Z

    Methods of using an adsorption medium to remove at least one constituent from a feed stream. The method comprises contacting an adsorption medium with a feed stream comprising at least one constituent and removing the at least one constituent from the feed stream. The adsorption medium comprises a polyacrylonitrile (PAN) matrix and at least one metal hydroxide homogenously dispersed therein. The adsorption medium may comprise from approximately 15 wt % to approximately 90 wt % of the PAN and from approximately 10 wt % to approximately 85 wt % of the at least one metal hydroxide. The at least one metal hydroxide may be selected from the group consisting of ferric hydroxide, zirconium hydroxide, lanthanum hydroxide, cerium hydroxide, titanium hydroxide, copper hydroxide, antimony hydroxide, and molybdenum hydroxide.

  15. Method of removing nitrogen oxides from exhaust gas mixtures

    SciTech Connect (OSTI)

    Batha, H.D.; Mason, J.H.; Thompson, S.R.

    1980-03-04T23:59:59.000Z

    A method of removing nitrogen oxides (NOX) from exhaust gas mixtures is described. The removal of NOX from exhaust gas mixtures is accomplished by exposing the exhaust gas mixture, in a manner that does not substantially impede the gas flow, to a ceramic material containing from about 75% to about 95% by weight silicon carbide and from about 0.3% to about 10.0% silica. A reduction of at least 85% of NOX from the mixture is to be expected and reductions up to 95 to 100% are attainable. Ceramic mixtures containing silicon nitride in amounts between about 10% and about 30% are found to reduce the amount of NOX in exhaust gases at temperatures as low as 200* C.

  16. Apparatus for removing hydrocarbon contaminants from solid materials

    DOE Patents [OSTI]

    Bala, G.A.; Thomas, C.P.

    1996-02-13T23:59:59.000Z

    A system is described for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste). 4 figs.

  17. Method for removing hydrocarbon contaminants from solid materials

    DOE Patents [OSTI]

    Bala, Gregory A. (Idaho Falls, ID); Thomas, Charles P. (Idaho Falls, ID)

    1995-01-01T23:59:59.000Z

    A system for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste).

  18. Apparatus for removing hydrocarbon contaminants from solid materials

    DOE Patents [OSTI]

    Bala, Gregory A. (Idaho Falls, ID); Thomas, Charles P. (Idaho Falls, ID)

    1996-01-01T23:59:59.000Z

    A system for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste).

  19. Method for removing hydrocarbon contaminants from solid materials

    DOE Patents [OSTI]

    Bala, G.A.; Thomas, C.P.

    1995-10-03T23:59:59.000Z

    A system is described for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste). 4 figs.

  20. Process for removing sulfate anions from waste water

    DOE Patents [OSTI]

    Nilsen, David N. (Lebanon, OR); Galvan, Gloria J. (Albany, OR); Hundley, Gary L. (Corvallis, OR); Wright, John B. (Albany, OR)

    1997-01-01T23:59:59.000Z

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  1. Removal of field and embedded metal by spin spray etching

    DOE Patents [OSTI]

    Contolini, R.J.; Mayer, S.T.; Tarte, L.A.

    1996-01-23T23:59:59.000Z

    A process of removing both the field metal, such as copper, and a metal, such as copper, embedded into a dielectric or substrate at substantially the same rate by dripping or spraying a suitable metal etchant onto a spinning wafer to etch the metal evenly on the entire surface of the wafer. By this process the field metal is etched away completely while etching of the metal inside patterned features in the dielectric at the same or a lesser rate. This process is dependent on the type of chemical etchant used, the concentration and the temperature of the solution, and also the rate of spin speed of the wafer during the etching. The process substantially reduces the metal removal time compared to mechanical polishing, for example, and can be carried out using significantly less expensive equipment. 6 figs.

  2. An investigation of sorbents for mercury removal from flue gas

    SciTech Connect (OSTI)

    Granite, E.J.; Pennline, H.W.; Haddad, G.J.; Hargis, R.A. [Dept. of Energy, Pittsburgh, PA (United States). Federal Energy Technology Center

    1998-12-31T23:59:59.000Z

    A laboratory-scale packed-bed reactor system is used to screen sorbents for their capability to remove elemental mercury from a carrier gas. An on-line atomic fluorescence spectrophotometer, used in a continuous mode, monitors the elemental mercury concentration in the inlet and outlet streams of the packed-bed reactor. The mercury concentration in the reactor inlet gas and the reactor temperature are held constant during a test. The capacities and breakthrough times of several commercially available activated carbons, as well as novel sorbents, were determined as a function of various parameters. The mechanisms of mercury removal by the sorbents are suggested by combining the results of the packed-bed testing with various analytical results.

  3. Method for removing undesired particles from gas streams

    DOE Patents [OSTI]

    Durham, M.D.; Schlager, R.J.; Ebner, T.G.; Stewart, R.M.; Hyatt, D.E.; Bustard, C.J.; Sjostrom, S.

    1998-11-10T23:59:59.000Z

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency. 11 figs.

  4. Negative kinetic energy term of general relativity and its removing

    E-Print Network [OSTI]

    T. Mei

    2009-03-30T23:59:59.000Z

    We first present a new Lagrangian of general relativity, which can be divided into kinetic energy term and potential energy term. Taking advantage of vierbein formalism, we reduce the kinetic energy term to a sum of five positive terms and one negative term. Some gauge conditions removing the negative kinetic energy term are discussed. Finally, we present a Lagrangian that only include positive kinetic energy terms. To remove the negative kinetic energy term leads to a new field equation of general relativity in which there are at least five equations of constraint and at most five dynamical equations, this characteristic is different from the normal Einstein field equation in which there are four equations of constraint and six dynamical equations.

  5. Use of microalgae to remove pollutants from power plant discharges

    DOE Patents [OSTI]

    Wilde, Edward W. (1833 Pisgah Rd., North Augusta, SC 29841); Benemann, John R. (2741 O'Harte, San Pablo, CA 94806); Weissman, Joseph C. (2086 N. Porpoise Pt. La., Vero Beach, FL 32963); Tillett, David M. (911-3 Coquina La., Vero Beach, FL 32963)

    1991-01-01T23:59:59.000Z

    A method and system for removing pollutants dissolved in the aqueous discharge of a plant, such as a power plant, from a body of water having known hydraulogy and physicochemical characteristics, the method comprising (a) modifying the hydraulic system of the body of water including use of physical barriers to define a zone in a portion of the body of water which zone includes the discharge point and where the water has a range of physicochemical characteristics; (b) selecting a large and preferably filamentous, planktonically growing strain of algae adapted to absorb the particular pollutants and genetically dominating algae at the physicochemical characteristics of the zone; (c) establishing a colony of the selected algal strain in the zone; (d) harvesting a portion of the colony; and (e) reinnoculating the zone near the discharge point with a fraction of the harvested portion. The fraction used for reinnoculation can be adjusted to balance the rate of pollutant removal to the rate of pollutant discharge.

  6. Methods for removing contaminant matter from a porous material

    DOE Patents [OSTI]

    Fox, Robert V. (Idaho Falls, ID) [Idaho Falls, ID; Avci, Recep (Bozeman, MT) [Bozeman, MT; Groenewold, Gary S. (Idaho Falls, ID) [Idaho Falls, ID

    2010-11-16T23:59:59.000Z

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  7. Fairer Trade, Removing Gender Bias in US Import Taxes

    E-Print Network [OSTI]

    Taylor, Lori L.; Dar, Jawad

    Fairer Trade Removing Gender Bias in US Import Taxes LORI L. TAYLOR AND JAWAD DAR Mosbacher Institute VOLUME 6 | ISSUE 3 | 2015 There are many inequalities in US tariff policy. Products imported from certain countries enter duty free..., the US Su- preme Court refused to hear appeals from import- ers Rack Room Shoes Inc. and Forever 21 Inc., thereby blocking their attempts to challenge an earlier ruling by the Court of Internation- al Trade. The importers had argued before the Court...

  8. System for the removal of contaminant soil-gas vapors

    DOE Patents [OSTI]

    Weidner, Jerry R. (Iona, ID); Downs, Wayne C. (Sugar City, ID); Kaser, Timothy G. (Ammon, ID); Hall, H. James (Idaho Falls, ID)

    1997-01-01T23:59:59.000Z

    A system extracts contaminated vapors from soil or other subsurface regions by using changes in barometric pressure to operate sensitive check valves that control air entry and removal from wells in the ground. The system creates an efficient subterranean flow of air through a contaminated soil plume and causes final extraction of the contaminants from the soil to ambient air above ground without any external energy sources.

  9. Efficiency of alum coagulation for removal of trihalomethane precursors

    E-Print Network [OSTI]

    Shannon, Joe Dan

    1980-01-01T23:59:59.000Z

    EFFICIENCY OF ALUM COAGULATION FOR REMOUAL OF TRIHALOMETHANE PRECURSORS A Thesis by JOE DAN SHANNON Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE... August 1980 Major Subject: Civil Engineering EFFICIENCY OF ALUM COAGULATION FOR REMOVAL OF TRIHALOMETHANE PRECURSORS A Thesis by JOE DAN SHANNON Approved as to style and content by: (Chairman of Committee) (Member) (Memb ) (Head of Department...

  10. System for the removal of contaminant soil-gas vapors

    DOE Patents [OSTI]

    Weidner, J.R.; Downs, W.C.; Kaser, T.G.; Hall, H.J.

    1997-12-16T23:59:59.000Z

    A system extracts contaminated vapors from soil or other subsurface regions by using changes in barometric pressure to operate sensitive check valves that control air entry and removal from wells in the ground. The system creates an efficient subterranean flow of air through a contaminated soil plume and causes final extraction of the contaminants from the soil to ambient air above ground without any external energy sources. 4 figs.

  11. Inflatable containment diaphragm for sealing and removing stacks

    DOE Patents [OSTI]

    Meskanick, G.R.; Rosso, D.T.

    1993-04-13T23:59:59.000Z

    A diaphragm with an inflatable torus-shaped perimeter is used to seal at least one end of a stack so that debris that might be hazardous will not be released during removal of the stack. A diaphragm is inserted and inflated in the lower portion of a stack just above where the stack is to be cut such that the perimeter of the diaphragm expands and forms a seal against the interior surface of the stack.

  12. Microbial removal of no.sub.x from gases

    DOE Patents [OSTI]

    Sublette, Kerry L. (Tulsa, OK)

    1991-01-01T23:59:59.000Z

    Disclosed is a process by which a gas containing nitric oxide is contacted with an anaerobic microbial culture of denitrifying bacteria to effect the chemical reduction of the nitric oxide to elemental nitrogen. The process is particularly suited to the removal of nitric oxide from flue gas streams and gas streams from nitric acid plants. Thiobacillus dentrificians as well as other bacteria are disclosed for use in the process.

  13. Active Space Debris Removal using Capture and Ejection 

    E-Print Network [OSTI]

    Missel, Jonathan William

    2013-04-25T23:59:59.000Z

    object as well as its launch vehicle and parts thereof." Based on this de ni- tion, space debris are uncontrolled space objects serving no function, such as expired satellites, jettisoned components, and collision shrapnel. Traveling at speeds around.... Many alternative proposals to remove space debris have been made: laser impingement [5], ground-based laser design \\Project Orion" [3], ion guns [4], remote vehicles that capture debris and return to a central station [6], passively intercepting...

  14. Removable, hermetically-sealing, filter attachment system for hostile environments

    DOE Patents [OSTI]

    Mayfield, Glenn L [Richland, WA

    1983-01-01T23:59:59.000Z

    A removable and reusable filter attachment system. A filter medium is fixed o, and surrounded by, a filter frame having a coaxial, longitudinally extending, annular rim. The rim engages an annular groove which surrounds the opening of a filter housing. The annular groove contains a fusible material and a heating mechanism for melting the fusible material. Upon resolidifying, the fusible material forms a hermetic bond with the rim and groove. Remelting allows detachment and replacement of the filter frame.

  15. Nitrogen removal from natural gas using two types of membranes

    DOE Patents [OSTI]

    Baker, Richard W.; Lokhandwala, Kaaeid A.; Wijmans, Johannes G.; Da Costa, Andre R.

    2003-10-07T23:59:59.000Z

    A process for treating natural gas or other methane-rich gas to remove excess nitrogen. The invention relies on two-stage membrane separation, using methane-selective membranes for the first stage and nitrogen-selective membranes for the second stage. The process enables the nitrogen content of the gas to be substantially reduced, without requiring the membranes to be operated at very low temperatures.

  16. Active Space Debris Removal using Capture and Ejection

    E-Print Network [OSTI]

    Missel, Jonathan William

    2013-04-25T23:59:59.000Z

    object as well as its launch vehicle and parts thereof." Based on this de ni- tion, space debris are uncontrolled space objects serving no function, such as expired satellites, jettisoned components, and collision shrapnel. Traveling at speeds around.... Many alternative proposals to remove space debris have been made: laser impingement [5], ground-based laser design \\Project Orion" [3], ion guns [4], remote vehicles that capture debris and return to a central station [6], passively intercepting...

  17. Superfund fact sheet: The removal program. Fact sheet

    SciTech Connect (OSTI)

    Not Available

    1992-09-01T23:59:59.000Z

    The fact sheet describes the Superfund Emergency Response Program, a program specifically designed to respond to multi-media hazardous materials accidents (e.g. illegal disposal or improper handling of materials, transportation accidents, chemical fires) that endanger people and/or the environment. Explanations of how the removal program works and how the affected communities are involved are given. The fact sheet is one in a series providing reference information about Superfund issues and is intended for readers with no scientific training.

  18. BOA: Pipe-asbestos insulation removal robot system

    SciTech Connect (OSTI)

    Schempf, H.; Bares, J.; Mutschler, E. [and others

    1995-12-31T23:59:59.000Z

    This paper describes the BOA system, a mobile pipe-external crawler used to remotely strip and bag (possibly contaminated) asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations across the DOE weapons complex. The mechanical removal of ACLIM is very cost-effective due to the relatively low productivity and high cost involved in human removal scenarios. BOA, a mechanical system capable of removing most forms of lagging (paper, plaster, aluminum sheet, clamps, screws and chicken-wire), and insulation (paper, tar, asbestos fiber, mag-block) uses a circular cutter and compression paddles to cut and strip the insulation off the pipe through compression, while a HEPA-filter and encapsulant system maintain a certifiable vacuum and moisture content inside the system and on the pipe, respectively. The crawler system has been built and is currently undergoing testing. Key design parameters and performance parameters are developed and used in performance testing. Since the current system is a testbed, we also discuss future enhancements and outline two deployment scenarios (robotic and manual) for the final system to be designed and completed by the end of FY `95. An on-site demonstration is currently planned for Fernald in Ohio and Oak Ridge in Tennessee.

  19. Method for removing oxide contamination from silicon carbide powders

    DOE Patents [OSTI]

    Brynestad, J.; Bamberger, C.E.

    1984-08-01T23:59:59.000Z

    The described invention is directed to a method for removing oxide contamination in the form of oxygen-containing compounds such as SiO/sub 2/ and B/sub 2/O/sub 3/ from a charge of finely divided silicon carbide. The silicon carbide charge is contacted with a stream of hydrogen fluoride mixed with an inert gas carrier such as argon at a temperature in the range of about 200/sup 0/ to 650/sup 0/C. The oxides in the charge react with the heated hydrogen fluoride to form volatile gaseous fluorides such as SiF/sub 4/ and BF/sub 3/ which pass through the charge along with unreacted hydrogen fluoride and the carrier gas. Any residual gaseous reaction products and hydrogen fluoride remaining in the charge are removed by contacting the charge with the stream of inert gas which also cools the powder to room temperature. The removal of the oxygen contamination by practicing the present method provides silicon carbide powders with desirable pressing and sintering characteristics. 1 tab.

  20. Preliminary Evaluation of Removing Used Nuclear Fuel from Shutdown Sites

    SciTech Connect (OSTI)

    Maheras, Steven J.; Best, Ralph E.; Ross, Steven B.; Buxton, Kenneth A.; England, Jeffery L.; McConnell, Paul E.

    2013-09-30T23:59:59.000Z

    This report fulfills the M2 milestone M2FT-13PN0912022, “Stranded Sites De-Inventorying Report.” In January 2013, the U.S. Department of Energy (DOE) issued the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (DOE 2013). Among the elements contained in this strategy is an initial focus on accepting used nuclear fuel from shutdown reactor sites. This focus is consistent with the recommendations of the Blue Ribbon Commission on America’s Nuclear Future, which identified removal of stranded used nuclear fuel at shutdown sites as a priority so that these sites may be completely decommissioned and put to other beneficial uses (BRC 2012). Shutdown sites are defined as those commercial nuclear power reactor sites where the nuclear power reactors have been shut down and the site has been decommissioned or is undergoing decommissioning. In this report, a preliminary evaluation of removing used nuclear fuel from 12 shutdown sites was conducted. The shutdown sites were Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, Zion, Crystal River, Kewaunee, and San Onofre. These sites have no other operating nuclear power reactors at their sites and have also notified the U.S. Nuclear Regulatory Commission that their reactors have permanently ceased power operations and that nuclear fuel has been permanently removed from their reactor vessels. Shutdown reactors at sites having other operating reactors are not included in this evaluation.

  1. Pentek metal coating removal system: Baseline report; Summary

    SciTech Connect (OSTI)

    NONE

    1997-07-31T23:59:59.000Z

    The Pentek metal coating removal system consists of the ROTO-PEEN Scaler, CORNER-CUTTER(R), and VAC-PAC(R). The system is designed to remove coatings from steel, concrete, brick, and wood. The Scaler uses 3M ROTO-PEEN tungsten carbide cutters, while the CORNER-CUTTER(R) uses solid needles for descaling activities. These are used with the VAC-PAC(R) vacuum system to capture dust and debris as removal of the coating takes place. The safety and health evaluation during the testing demonstration focused on two main areas of exposure: dust and noise. Dust exposure was minimal, but noise exposure was significant. Further testing for each exposure is recommended, since the outdoor environment where the testing demonstration took place may skew the results. It is feasible that dust and noise levels will be higher in an enclosed operating environment. Other areas of concern found were arm-hand vibration, whole-body vibration, ergonomics, heat stress, tripping hazards, electrical hazards, machine guarding, and lockout/tagout.

  2. Removal of fluoride from aqueous solution by using alum sludge

    SciTech Connect (OSTI)

    Sujana, M.G.; Thakur, R.S.; Rao, S.B. [CSIR, Bhubaneswar (India). Regional Research Lab.] [CSIR, Bhubaneswar (India). Regional Research Lab.

    1998-10-01T23:59:59.000Z

    The ability of treated alum sludge to remove fluoride from aqueous solution has been investigated. The studies were carried out as functions of contact time, concentration of adsorbent and adsorbate, temperature, pH, and effect of concentrations of other anions. The data indicate that treated alum sludge surface sites are heterogeneous in nature and that fits into a heterogeneous site binding model. The optimum pH for complete removal of fluoride from aqueous solution was found to be 6. The rate of adsorption was rapid during the initial 5 minutes, and equilibrium was attained within 240 minutes. The adsorption followed first-order rate kinetics. The present system followed the Langmuir adsorption isotherm model. The loading factor (i.e., the milligram of fluoride adsorbed per gram of alum sludge) increased with initial fluoride concentration, whereas a negative trend was observed with increasing temperature. The influence of addition of anions on fluoride removal depends on the relative affinity of the anions for the surface and the relative concentrations of the anions.

  3. The thief process for mercury removal from flue gas

    SciTech Connect (OSTI)

    Granite, E.J.; Freeman, M.C.; Hargis, R.A.; O'Dowd, W.J.; Pennline, H.W.

    2007-09-01T23:59:59.000Z

    The Thief Process is a cost-effective variation to activated carbon injection (ACI) for removal of mercury from flue gas. In this scheme, partially combusted coal from the furnace of a pulverized coal power generation plant is extracted by a lance and then re-injected into the ductwork downstream of the air preheater. Recent results on a 500-lb/h pilot-scale combustion facility show similar removals of mercury for both the Thief Process and ACI. The tests conducted to date at laboratory, bench, and pilot-scales demonstrate that the Thief sorbents exhibit capacities for mercury from flue gas streams that are comparable to those exhibited by commercially available activated carbons. A patent for the process was issued in February 2003. The Thief sorbents are cheaper than commercially-available activated carbons; exhibit excellent capacities for mercury; and the overall process holds great potential for reducing the cost of mercury removal from flue gas. The Thief Process was licensed to Mobotec USA, Inc. in May of 2005.

  4. Cesium removal using crystalline silicotitanate. Innovative technology summary report

    SciTech Connect (OSTI)

    NONE

    1999-05-01T23:59:59.000Z

    Approximately 100 million gallons of radioactive waste is stored in underground storage tanks at the Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge Reservation, and Savannah River Site (SRS). Most of the radioactivity comes from {sup 137}Cs, which emits high-activity gamma radiation. The Cesium Removal System is a modular, transportable, ion-exchange system configured as a compact processing unit. Liquid tank waste flows through columns packed with solid material, called a sorbent, that selectively adsorbs cesium and allows the other materials to pass through. The sorbent is crystalline silicotitanate (CST), an engineered material with a high capacity for sorbing cesium from alkaline wastes. The Cesium Removal System was demonstrated at Oak Ridge using Melton Valley Storage Tank (MVST) waste for feed. Demonstration operations began in September 1996 and were completed during June 1997. Prior to the demonstration, a number of ion-exchange materials were evaluated at Oak Ridge with MVST waste. Also, three ion-exchange materials and three waste types were tested at Hanford. These bench-scale tests were conducted in a hot cell. Hanford's results showed that 300 times less sorbent was used by selecting Ionsiv IE-911 over organic ion-exchange resins for cesium removal. This paper gives a description of the technology and discusses its performance, applications, cost, regulatory and policy issues and lessons learned.

  5. Ammonia removal process upgrade to the Acme Steel Coke Plant

    SciTech Connect (OSTI)

    Harris, J.L. [Acme Steel Co., Chicago, IL (United States). Chicago Coke Plant

    1995-12-01T23:59:59.000Z

    The need to upgrade the ammonia removal process at the Acme Steel Coke Plant developed with the installation of the benzene NESHAP (National Emission Standard for Hazardous Air Pollutants) equipment, specifically the replacement of the final cooler. At Acme Steel it was decided to replace the existing open cooling tower type final cooler with a closed loop direct spray tar/water final cooler. This new cooler has greatly reduced the emissions of benzene, ammonia, hydrogen sulfide and hydrogen cyanide to the atmosphere, bringing them into environmental compliance. At the time of its installation it was not fully recognized as to the effect this would have on the coke oven gas composition. In the late seventies the decision had been made at Acme Steel to stop the production of ammonia sulfate salt crystals. The direction chosen was to make a liquid ammonia sulfate solution. This product was used as a pickle liquor at first and then as a liquid fertilizer as more markets were developed. In the fall of 1986 the ammonia still was brought on line. The vapors generated from the operation of the stripping still are directed to the inlet of the ammonia absorber. At that point in time it was decided that an improvement to the cyclical ammonia removal process was needed. The improvements made were minimal yet allowed the circulation of solution through the ammonia absorber on a continuous basis. The paper describes the original batch process and the modifications made which allowed continuous removal.

  6. Process for off-gas particulate removal and apparatus therefor

    DOE Patents [OSTI]

    Carl, D.E.

    1997-10-21T23:59:59.000Z

    In the event of a breach in the off-gas line of a melter operation requiring closure of the line, a secondary vessel vent line is provided with a particulate collector utilizing atomization for removal of large particulates from the off-gas. The collector receives the gas containing particulates and directs a portion of the gas through outer and inner annular channels. The collector further receives a fluid, such as water, which is directed through the outer channel together with a second portion of the particulate-laden gas. The outer and inner channels have respective ring-like termination apertures concentrically disposed adjacent one another on the outer edge of the downstream side of the particulate collector. Each of the outer and inner channels curves outwardly away from the collector`s centerline in proceeding toward the downstream side of the collector. Gas flow in the outer channel maintains the fluid on the channel`s wall in the form of a ``wavy film,`` while the gas stream from the inner channel shears the fluid film as it exits the outer channel in reducing the fluid to small droplets. Droplets formed by the collector capture particulates in the gas stream by one of three mechanisms: impaction, interception or Brownian diffusion in removing the particulates. The particulate-laden droplets are removed from the fluid stream by a vessel vent condenser or mist eliminator. 4 figs.

  7. Process for off-gas particulate removal and apparatus therefor

    DOE Patents [OSTI]

    Carl, Daniel E. (Orchard Park, NY)

    1997-01-01T23:59:59.000Z

    In the event of a breach in the off-gas line of a melter operation requiring closure of the line, a secondary vessel vent line is provided with a particulate collector utilizing atomization for removal of large particulates from the off-gas. The collector receives the gas containing particulates and directs a portion of the gas through outer and inner annular channels. The collector further receives a fluid, such as water, which is directed through the outer channel together with a second portion of the particulate-laden gas. The outer and inner channels have respective ring-like termination apertures concentrically disposed adjacent one another on the outer edge of the downstream side of the particulate collector. Each of the outer and inner channels curves outwardly away from the collector's centerline in proceeding toward the downstream side of the collector. Gasflow in the outer channel maintains the fluid on the channel's wall in the form of a "wavy film," while the gas stream from the inner channel shears the fluid film as it exits the outer channel in reducing the fluid to small droplets. Droplets formed by the collector capture particulates in the gas stream by one of three mechanisms: impaction, interception or Brownian diffusion in removing the particulates. The particulate-laden droplets are removed from the fluid stream by a vessel vent condenser or mist eliminator.

  8. Acid rain control strategists overlook dust removal benefits

    SciTech Connect (OSTI)

    Not Available

    1989-09-01T23:59:59.000Z

    Various strategies for controlling acid rain by reducing SO{sub 2} from existing utilities have failed to take into account the incidental particulate removal abilities of SO{sub 2} scrubbers. This has resulted in over-estimating the costs of acid rain control by 25% or more. This oversight has also caused utilities to invest in preliminary engineering of precipitator upgrades which will never have to be made if scrubbers are installed. While it seems inexplicable that a factor of this importance could have been overlooked by the industry, it is because of the unique situation in old U.S. utility power plants. These plants have relatively inefficient particulate control equipment which is not subject to new source performance standards. New power plants incorporate highly efficient particulate control devices so the ability of the downstream scrubbers to remove dust is irrelevant. The very small amount of particulate entering the scrubber from a highly efficient precipitator could be offset by escaping sulfate particles from a poorly operated scrubber. So an informal guideline was established to indicate that the scrubber had no overall effect on particulate emissions. The industry has generalized upon this guideline when, in fact, it only applies to new plants. The McIlvaine Company in its FGD Knowledge Network has thoroughly documented evidence that SO{sub 2} scrubbers will remove as much as 95% of the particulate being emitted from the relatively low efficiency precipitators operating on the nations existing coal-fired power plants.

  9. Formulation of substrate removal kinetics in multi-component aqueous systems

    E-Print Network [OSTI]

    Chaney, Ernest William

    1967-01-01T23:59:59.000Z

    : Or anic Component Analyses. . 44 14 Test J-a: Organic Component Analyses, . 15 Test J-b: Organic Component Analyses. . 16 Test K-c. 'Organic Component Analyses. . 51 53 59 17 Organic Substrate Added, Days 1-6. . 81 18 Organic Substrate Added, Days...: Removal of 1-pentanol 47 48 17 Test J-a: Organic Removal Analyses. . 52 18 Test J-b: Organic Removal Analyses. . . 54 19 Test J-b: Organic Removal Analyses. . 55 20 Test K-c- Organic Removal Analyses. . . 60 Comparison of Removal Patterns of I...

  10. Chemical Addition prior to Membrane Processes for Natural Organic Matter (NOM) Removal 

    E-Print Network [OSTI]

    Schäfer, Andrea; Fane, Anthony G.; Waite, T. D.

    1998-01-01T23:59:59.000Z

    Membrane processes for surface water treatment include microfiltration (MF), ultrafiltration (UF) and nanofiltration (NF), depending on the target material to be removed and the limiting process economics. MF will remove ...

  11. SOFC Ohmic Resistance Reduction by HCl-Induced Removal of Manganese...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SOFC Ohmic Resistance Reduction by HCl-Induced Removal of Manganese at the AnodeElectrolyte Interface. SOFC Ohmic Resistance Reduction by HCl-Induced Removal of Manganese at the...

  12. Contaminant Stratigraphy of the Ballville Reservoir, Sandusky River, NW Ohio: Implications for Dam Removal

    E-Print Network [OSTI]

    Gottgens, Hans

    . Removal of the dam would require dredging or release downstream of 0.35 million m3 of sedi- ment to re for keeping the dam. Reasons to remove a dam might include economic obsolescence, safety issues, costs

  13. Notice of Asbestos-Containing Material (ACM) Removal Request for Correction of Online ACM Inventory

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Inventory This form is to be completed for all asbestos abatement/removal work at the University of Maryland and type of material removed -as listed on DES inventory. (Indicate "NPL" ­ if described material is "not

  14. 324 Building spent fuel segments pieces and fragments removal summary report

    SciTech Connect (OSTI)

    SMITH, C L

    2003-01-09T23:59:59.000Z

    As part of the 324 Building Deactivation Project, all Spent Nuclear Fuel (SNF) and Special Nuclear Material were removed. The removal entailed packaging the material into a GNS-12 cask and shipping it to the Central Waste Complex (CWC).

  15. Proton Delivery and Removal in [Ni(PR2NR?2)2]2+ Hydrogen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Delivery and Removal in Ni(PR2NR?2)22+ Hydrogen Production and Oxidation Catalysts. Proton Delivery and Removal in Ni(PR2NR?2)22+ Hydrogen Production and Oxidation...

  16. Oil removal for produced water treatment and micellar cleaning of ultrafiltration membranes

    E-Print Network [OSTI]

    Beech, Scott Jay

    2006-10-30T23:59:59.000Z

    turbidity removal of over 99% and oil removal of 78% for the produced water samples. The results indicated that the ultrafiltration membranes would be useful as one of the first steps in purifying the water. Membrane cleaning of produced water...

  17. Removal of Chloride from Wastewater by Advanced Softening Process Using Electrochemically Generated Aluminum Hydroxide 

    E-Print Network [OSTI]

    Mustafa, Syed Faisal

    2014-07-23T23:59:59.000Z

    solubility. Chloride can be removed from water and wastewater by precipitation as calcium chloroaluminate using advanced softening process. This research was conducted to evaluate chloride removal using electrochemically generated aluminum hydroxide and lime...

  18. Department of Energy to Take Steps to Remove ENERGY STAR Label...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Take Steps to Remove ENERGY STAR Label on Certain LG Refrigerator-Freezer Models Department of Energy to Take Steps to Remove ENERGY STAR Label on Certain LG...

  19. Cesium removal from Savannah River Site radioactive waste using crystalline silicotitanate (IONSIV(R) IE-911)

    SciTech Connect (OSTI)

    Walker, D.D.

    1999-12-15T23:59:59.000Z

    This study measured the ability of crystalline silicotitanate to remove cesium from Savannah River Site radioactive waste.

  20. SULFURIC ACID REMOVAL PROCESS EVALUATION: LONG-TERM RESULTS

    SciTech Connect (OSTI)

    Gary M. Blythe; Richard McMillan

    2002-07-03T23:59:59.000Z

    The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory, under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corp., the Tennessee Valley Authority, and Dravo Lime, Inc. Sulfuric acid controls are becoming of increasing interest to power generators with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NO{sub x} control on many coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project previously tested the effectiveness of furnace injection of four different calcium-and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents were tested during four one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide byproduct slurry produced from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization system. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm the effectiveness of the sorbents tested over extended operation on two different boilers, and to determine balance-of-plant impacts. The first long-term test was conducted on FirstEnergy's BMP, Unit 3, and the second test was conducted on AEP's Gavin Plant, Unit 1. The Gavin Plant testing provided an opportunity to evaluate the effects of sorbent injected into the furnace on SO{sub 3} formed across an operating SCR reactor. This report presents the results from those long-term tests. The tests determined the effectiveness of injecting commercially available magnesium hydroxide slurry (Gavin Plant) and byproduct magnesium hydroxide slurry (both Gavin Plant and BMP) for sulfuric acid control. The results show that injecting either slurry could achieve up to 70 to 75% overall sulfuric acid removal. At BMP, this overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NOX control than at removing SO{sub 3} formed in the furnace. The long-term tests also determined balance-of-plant impacts from slurry injection during the two tests. These include impacts on boiler back-end temperatures and pressure drops, SCR catalyst properties, ESP performance, removal of other flue gas species, and flue gas opacity. For the most part the balance-of-plant impacts were neutral to positive, although adverse effects on ESP performance became an issue during the BMP test.

  1. BOA: Asbestos pipe insulation removal robot system. Phase 1

    SciTech Connect (OSTI)

    Schempf, H.; Bares, J.E.

    1995-02-01T23:59:59.000Z

    The project described in this report targets the development of a mechanized system for safe, cost-efficient and automated abatement of asbestos containing materials used as pipe insulation. Based on several key design criteria and site visits, a proof-of-concept prototype robot system, dubbed BOA, was designed and built, which automatically strips the lagging and insulation from the pipes, and encapsulates them under complete vacuum operation. The system can operate on straight runs of piping in horizontal or vertical orientations. Currently we are limited to four-inch diameter piping without obstacles as well as a somewhat laborious emplacement and removal procedure -- restrictions to be alleviated through continued development. BOA removed asbestos at a rate of 4-5 ft./h compared to 3 ft./h for manual removal of asbestos with a 3-person crew. The containment and vacuum system on BOA was able to achieve the regulatory requirement for airborne fiber emissions of 0.01 fibers/ccm/ 8-hr. shift. This program consists of two phases. The first phase was completed and a demonstration was given to a review panel, consisting of DOE headquarters and site representatives as well as commercial abatement industry representatives. Based on the technical and programmatic recommendations drafted, presented and discussed during the review meeting, a new plan for the Phase II effort of this project was developed. Phase 11 will consist of a 26-month effort, with an up-front 4-month site-, market-, cost/benefit and regulatory study before the next BOA robot (14 months) is built, and then deployed and demonstrated (3 months) at a DOE site (such as Fernald or Oak Ridge) by the beginning of FY`97.

  2. Removal of Mercury from Coal-Derived Synthesis Gas

    SciTech Connect (OSTI)

    None

    2005-09-29T23:59:59.000Z

    A paper study was completed to survey literature, patents, and companies for mercury removal technologies applicable to gasification technologies. The objective was to determine if mercury emissions from gasification of coal are more or less difficult to manage than those from a combustion system. The purpose of the study was to define the extent of the mercury problem for gasification-based coal utilization and conversion systems. It is clear that in coal combustion systems, the speciation of mercury between elemental vapor and oxidized forms depends on a number of factors. The most important speciation factors are the concentration of chlorides in the coal, the temperatures in the ducting, and residence times. The collection of all the mercury was most dependent upon the extent of carbon in the fly ash, and the presence of a wet gas desulfurization system. In combustion, high chloride content plus long residence times at intermediate temperatures leads to oxidation of the mercury. The mercury is then captured in the wet gas desulfurization system and in the fly ash as HgCl{sub 2}. Without chloride, the mercury oxidizes much slower, but still may be trapped on thick bag house deposits. Addition of limestone to remove sulfur may trap additional mercury in the slag. In gasification where the mercury is expected to be elemental, activated carbon injection has been the most effective method of mercury removal. The carbon is best injected downstream where temperatures have moderated and an independent collector can be established. Concentrations of mercury sorbent need to be 10,000 to 20,000 the concentrations of the mercury. Pretreatment of the activated carbon may include acidification or promotion by sulfur.

  3. Total nitrogen removal in a hybrid, membrane-aerated activated sludge process

    E-Print Network [OSTI]

    Nerenberg, Robert

    Total nitrogen removal in a hybrid, membrane-aerated activated sludge process Leon S. Downing wastewater. Air-filled hollow-fiber membranes are incorporated into an activated sludge tank removal in activated sludge. Ş 2008 Elsevier Ltd. All rights reserved. 1. Introduction The removal

  4. CHEMICAL REMOVAL OF BIOMASS FROM WASTE AIR BIOTRICKLING FILTERS: SCREENING OF CHEMICALS

    E-Print Network [OSTI]

    CHEMICAL REMOVAL OF BIOMASS FROM WASTE AIR BIOTRICKLING FILTERS: SCREENING OF CHEMICALS for the removal of excess biomass from biotrickling ®lters for waste air treatment. Although the experiment/v) NaOH, 0.26 and 1.31% (w/v) NaClO and 11.3% (w/v) H2O2 resulted in a biomass removal signi

  5. Littoral Fish Community Response to Smallmouth Bass Removal from an Adirondack Lake

    E-Print Network [OSTI]

    Kraft, Clifford E.

    Littoral Fish Community Response to Smallmouth Bass Removal from an Adirondack Lake BRIAN C. WEIDEL littoral fish abundance, we removed 47,682 smallmouth bass Micropterus dolomieu from a 271-ha Adirondack at decreasing smallmouth bass abundance and increasing native fish abundance, but removal must be conducted

  6. Does Small Dam Removal Affect Local Property Values? An Empirical Analysis Bill Provencher

    E-Print Network [OSTI]

    Provencher, R. William

    Does Small Dam Removal Affect Local Property Values? An Empirical Analysis Bill Provencher of small dam removal on property values in south-central Wisconsin. Data on residential property sales were obtained for three categories of sites: those where a dam is intact, those where a dam was recently removed

  7. Salt-and-Pepper Noise Removal by Median-type Noise Detectors and

    E-Print Network [OSTI]

    Chan, Raymond

    1 Salt-and-Pepper Noise Removal by Median-type Noise Detectors and Detail-preserving Regularization for removing salt-and-pepper impulse noise. In the first phase, an adaptive median filter is used to identify remove salt-and-pepper-noise with noise level as high as 90%. Index Terms Impulse noise, adaptive median

  8. Contaminated sediment removal from a spent fuel storage canal

    SciTech Connect (OSTI)

    Geber, K R

    1993-01-01T23:59:59.000Z

    A leaking underground spent fuel transfer canal between a decommissioned reactor and a radiochemical separations building at the Oak Ridge National Laboratory (ORNL) was found to contain RCRA-hazardous and radioactive sediment. Closure of the Part B RCRA permitted facility required the use of an underwater robotic vacuum and a filtration-containment system to separate and stabilize the contaminated sediment. This paper discusses the radiological controls established to maintain contamination and exposures As Low As Reasonably Achievable (ALARA) during the sediment removal.

  9. Process for removal of hazardous air pollutants from coal

    DOE Patents [OSTI]

    Akers, David J. (Indiana, PA); Ekechukwu, Kenneth N. (Silver Spring, MD); Aluko, Mobolaji E. (Burtonsville, MD); Lebowitz, Howard E. (Mountain View, CA)

    2000-01-01T23:59:59.000Z

    An improved process for removing mercury and other trace elements from coal containing pyrite by forming a slurry of finely divided coal in a liquid solvent capable of forming ions or radicals having a tendency to react with constituents of pyrite or to attack the bond between pyrite and coal and/or to react with mercury to form mercury vapors, and heating the slurry in a closed container to a temperature of at least about 50.degree. C. to produce vapors of the solvent and withdrawing vapors including solvent and mercury-containing vapors from the closed container, then separating mercury from the vapors withdrawn.

  10. Extraction process for removing metallic impurities from alkalide metals

    DOE Patents [OSTI]

    Royer, Lamar T. (Knoxville, TN)

    1988-01-01T23:59:59.000Z

    A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

  11. System and method for removal of buried objects

    DOE Patents [OSTI]

    Alexander, Robert G. (Richland, WA); Crass, Dennis (Kennewick, WA); Grams, William (Kennewick, WA); Phillips, Steven J. (Sunnyside, WA); Riess, Mark (Kennewick, WA)

    2008-06-03T23:59:59.000Z

    The present invention is a system and method for removal of buried objects. According to one embodiment of the invention, a crane with a vibrator casing driver is used to lift and suspend a large diameter steel casing over the buried object. Then the casing is driven into the ground by the vibratory driver until the casing surrounds the buried object. Then the open bottom of the casing is sealed shut by injecting grout into the ground within the casing near its bottom. When the seal has cured and hardened, the top of the casing is lifted to retrieve the casing, with the buried object inside, from the ground.

  12. Closing the TSTA Facility, tritium removed from TSTA

    SciTech Connect (OSTI)

    Tesch, Charles; Rogers, M. L. (Michael L.); Michelotti, R. A. (Roy A.)

    2004-01-01T23:59:59.000Z

    The Tritium Systems Test Assembly (TSTA) project was begun in 1978 to develop, design, and demonstrate the technology and safe operation of selected tritium processing systems required for a fusion reactor. The TSTA is located at Los Alamos National Laboratory in Los Alamos, New Mexico, and was initially funded by the US DOE. Tritium processing at TSTA began in 1984. In 2001, DOE determined that the mission of TSTA had been successfully completed, and the facility should be stabilized. Stabilization comprised placing the facility in a safe and stable configuration with a goal of reducing the tritium inventory to below the DOE low-hazard nuclear facility threshold of 16000 Ci. The facility was then to be held in this safe and stable state until funding was available for the final decontamination and decommissioning. This paper will describe the process and results of the activities required to achieve the safe and stable condition. At the completion of the TSTA mission, the tritium inventory at TSTA was 170 grams. The facility was categorized as a DOE moderate-hazard nuclear facility. At the completion of the stabilization project in 2003, the tritium inventory had been reduced to less than 1 gram, well below the low-hazard nuclear facility threshold, and the facility was categorized as a radiological facility. The pre-stabilization tritium inventory at TSTA was grouped in the following categories: tritium gas mixed with hydrogen isotopes, tritiated water absorbed on molecular sieve, tritium held up as a hydride on various metals, and tritium held up in process components. For each category, the tritium content was characterized, a path for removal was determined, and the proper disposal package was developed. Half of the tritium removed from the facility was reusable and the other half was disposed as waste. Hydrogen exchange, calorimetry, direct sampling, pressure/composition/temperature, radiological smear surveys, and controlled regeneration were methods used to determine the tritium inventory. The removed tritium inventory was either sent to other facilities for processing or buried at the Los Alamos radioactive waste disposal site. No effort was made to recover tritiated water absorbed on molecular sieve. Some hardware was sent to other facilities for reuse. One complete experimental system, including a contaminated glovebox and many components, was packaged and transferred to another DOE site for future use. Special burial containers that could safely contain up to 10 grams of tritium per package were designed and fabricated. The entire project was conducted with low tritium emission to the environment and negligible personnel exposure. After completion of the tritium removal, all remaining hardware and piping were opened and vented, and facility emission was below 1 Ci per day.

  13. Method of removing niobium from uranium-niobium alloy

    SciTech Connect (OSTI)

    Pollock, E.N.; Schlier, D.S.; Shinopulos, G.

    1992-01-28T23:59:59.000Z

    This patent describes a method of removing niobium from a uranium-niobium alloy. It comprises dissolving the uranium-niobium alloy metal pieces in a first aqueous solution containing an acid selected from the group consisting of hydrochloric acid and sulfuric acid and fluoboric acid as a catalyst to provide a second aqueous solution, which includes uranium (U{sup +4}), acid radical ions, the acids insolubles including uranium oxides and niobium oxides; adding nitric acid to the insolubles to oxidize the niobium oxides to yield niobic acid and to complete the solubilization of any residual uranium; and separating the niobic acid from the nitric acid and solubilized uranium.

  14. Shutdown heat removal system reliability in thermal reactors

    SciTech Connect (OSTI)

    Sun, Y.H.; Bari, R.A.

    1980-01-01T23:59:59.000Z

    An analysis of the failure probability per year of the shutdown heat removal system (SHRS) at hot standby conditions for two thermal reactor designs is presented. The selected reactor designs are the Pressurized Water Reactor and the Nonproliferation Alternative System Assessment Program Heavy Water Reactor. Failures of the SHRS following the initiating transients of loss of offsite power and loss of main feedwater system are evaluated. Common mode failures between components are incorporated in this anlaysis via the ..beta..-factor method and the sensitivity of the system reliability to common mode failures is investigated parametrically.

  15. Apparatus for removal of particulate matter from gas streams

    DOE Patents [OSTI]

    Smith, Peyton L. (Baton Rouge, LA); Morse, John C. (Baton Rouge, LA)

    2000-01-01T23:59:59.000Z

    An apparatus for the removal of particulate matter from the gaseous product stream of an entrained flow coal gasifier which apparatus includes an initial screen, an intermediate screen which is aligned with the direction of flow of the gaseous product stream and a final screen transversely disposed to the flow of gaseous product and which apparatus is capable of withstanding at least a pressure differential of about 10 psi (68.95 kPa) or greater at the temperatures of the gaseous product stream.

  16. Method of dye removal for the textile industry

    DOE Patents [OSTI]

    Stone, Mark L. (Idaho Falls, ID)

    2000-01-01T23:59:59.000Z

    The invention comprises a method of processing a waste stream containing dyes, such as a dye bath used in the textile industry. The invention comprises using an inorganic-based polymer, such as polyphosphazene, to separate dyes and/or other chemicals from the waste stream. Membranes comprising polyphosphazene have the chemical and thermal stability to survive the harsh, high temperature environment of dye waste streams, and have been shown to completely separate dyes from the waste stream. Several polyphosplhazene membranes having a variety of organic substituent have been shown effective in removing color from waste streams.

  17. Method of removing and detoxifying a phosphorus-based substance

    DOE Patents [OSTI]

    Vandegrift, G.F.; Steindler, M.J.

    1985-05-21T23:59:59.000Z

    A method of removing a phosphorus-based poisonous substance from water contaminated is presented. In addition, the toxicity of the phosphorus-based substance is also subsequently destroyed. A water-immiscible organic solvent is first immobilized on a supported liquid membrane before the contaminated water is contacted with one side of the supported liquid membrane to absorb the phosphorus-based substance in the organic solvent. The other side of the supported liquid membrane is contacted with a hydroxy-affording strong base to react with phosphorus-based solvated species to form a non-toxic product.

  18. Removal of sulfur and nitrogen containing pollutants from discharge gases

    DOE Patents [OSTI]

    Joubert, James I. (Pittsburgh, PA)

    1986-01-01T23:59:59.000Z

    Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

  19. System for fuel rod removal from a reactor module

    DOE Patents [OSTI]

    Matchett, Richard L. (Bethel Park, PA); Roof, David R. (North Huntingdon, PA); Kikta, Thomas J. (Pittsburgh, PA); Wilczynski, Rosemarie (McKees Rocks, PA); Nilsen, Roy J. (Pittsburgh, PA); Bacvinskas, William S. (Bethel Park, PA); Fodor, George (Pittsburgh, PA)

    1990-01-01T23:59:59.000Z

    A robotic system for remote underwater withdrawal of the fuel rods from fuel modules of a light water breeder reactor includes a collet/grapple assembly for gripping and removing fuel rods in each module, which is positioned by use of a winch and a radial support means attached to a vertical support tube which is mounted over the fuel module. A programmable logic controller in conjunction with a microcomputer, provides control for the accurate positioning and pulling force of the rod grapple assembly. Closed circuit television cameras are provided which aid in operator interface with the robotic system.

  20. System for fuel rod removal from a reactor module

    DOE Patents [OSTI]

    Matchett, R.L.; Fodor, G.; Kikta, T.J.; Bacvinsicas, W.S.; Roof, D.R.; Nilsen, R.J.; Wilczynski, R.

    1988-07-28T23:59:59.000Z

    A robotic system for remote underwater withdrawal of the fuel rods from fuel modules of a light water breeder reactor includes a collet/grapple assembly for gripping and removing fuel rods in each module, which is positioned by use of a winch and a radial support means attached to a vertical support tube which is mounted over the fuel module. A programmable logic controller in conjunction with a microcomputer, provides control for the accurate positioning and pulling force of the rod grapple assembly. Closed circuit television cameras are provided which aid in operator interface with the robotic system. 7 figs.

  1. Feed gas contaminant removal in ion transport membrane systems

    DOE Patents [OSTI]

    Underwood, Richard Paul (Allentown, PA); Makitka, III, Alexander (Hatfield, PA); Carolan, Michael Francis (Allentown, PA)

    2012-04-03T23:59:59.000Z

    An oxygen ion transport membrane process wherein a heated oxygen-containing gas having one or more contaminants is contacted with a reactive solid material to remove the one or more contaminants. The reactive solid material is provided as a deposit on a support. The one or more contaminant compounds in the heated oxygen-containing gas react with the reactive solid material. The contaminant-depleted oxygen-containing gas is contacted with a membrane, and oxygen is transported through the membrane to provide transported oxygen.

  2. Process for removing an organic compound from water

    DOE Patents [OSTI]

    Baker, Richard W. (Palo Alto, CA); Kaschemekat, Jurgen (Palo Alto, CA); Wijmans, Johannes G. (Menlo Park, CA); Kamaruddin, Henky D. (San Francisco, CA)

    1993-12-28T23:59:59.000Z

    A process for removing organic compounds from water is disclosed. The process involves gas stripping followed by membrane separation treatment of the stripping gas. The stripping step can be carried out using one or multiple gas strippers and using air or any other gas as stripping gas. The membrane separation step can be carried out using a single-stage membrane unit or a multistage unit. Apparatus for carrying out the process is also disclosed. The process is particularly suited for treatment of contaminated groundwater or industrial wastewater.

  3. Hanford Deep Dig Removes Contaminated Soil | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAMGeneralGuiding Documents and LinkslDeep Dig Removes

  4. Removal to Maximum Extent Practical | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR -Department of Energyasto the NRCAffairs,Removal to

  5. Install Removable Insulation on Valves and Fittings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment ofEnergy1 Inspection12-01SummaryRemovable Insulation

  6. Remove Condensate with Minimal Air Loss | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuick Guide:U.N.JuneAsPipeline FirstLuncheonRemove

  7. Oregon Section 401 Removal/Fill Certification Webpage | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:Energy Information FeesInformation Section 401 Removal/Fill

  8. High Metal Removal Rate Process for Machining Difficult Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TOTechnologyHigh EfficiencyMetal Removal

  9. High Metal Removal Rate Process for Machining Difficult Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TOTechnologyHigh EfficiencyMetal RemovalHybrid

  10. Install Removable Insulation on Valves and Fittings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of Energy InvestingS10IS007 InspectionRemovable Insulation on

  11. Method and apparatus for removing ions from soil

    DOE Patents [OSTI]

    Bibler, Jane P. (813 E. Rollingwood Rd., Aiken, SC 29801)

    1993-01-01T23:59:59.000Z

    A method and apparatus for selectively removing species of ions from an area of soil. Permeable membranes 14 and 18 impregnated with an ion exchange resin that is specific to one or more species of chemical ions are inserted into ground 12 in close proximity to, and on opposing sides of, a soil area of interest 22. An electric potential is applied across electrodes 26 and 28 to cause the migration of ions out of soil area 22 toward the membranes 14 and 18. Preferably, the resin exchanges ions of sodium or hydrogen for ions of mercury that it captures from soil area 22. Once membranes 14 and 18 become substantially saturated with mercury ions, the potential applied across electrodes 26 and 28 is discontinued and membranes 14 and 18 are preferably removed from soil 12 for storage or recovery of the ions. The membranes are also preferably impregnated with a buffer to inhibit the effect of the hydrolysis of water by current from the electrodes.

  12. Method and apparatus for removing ions from soil

    DOE Patents [OSTI]

    Bibler, J.P.

    1993-03-02T23:59:59.000Z

    A method and apparatus are presented for selectively removing species of ions from an area of soil. Permeable membranes 14 and 18 impregnated with an ion exchange resin that is specific to one or more species of chemical ions are inserted into ground 12 in close proximity to, and on opposing sides of, a soil area of interest 22. An electric potential is applied across electrodes 26 and 28 to cause the migration of ions out of soil area 22 toward the membranes 14 and 18. Preferably, the resin exchanges ions of sodium or hydrogen for ions of mercury that it captures from soil area 22. Once membranes 14 and 18 become substantially saturated with mercury ions, the potential applied across electrodes 26 and 28 is discontinued and membranes 14 and 18 are preferably removed from soil 12 for storage or recovery of the ions. The membranes are also preferably impregnated with a buffer to inhibit the effect of the hydrolysis of water by current from the electrodes.

  13. Alternative cooling resource for removing the residual heat of reactor

    SciTech Connect (OSTI)

    Park, H. C.; Lee, J. H.; Lee, D. S.; Jung, C. Y.; Choi, K. Y. [Korea Hydro and Nuclear Power Co., Ltd., 260 Naa-ri Yangnam-myeon Gyeongju-si, Gyeonasangbuk-do, 780-815 (Korea, Republic of)

    2012-07-01T23:59:59.000Z

    The Recirculated Cooling Water (RCW) system of a Candu reactor is a closed cooling system which delivers demineralized water to coolers and components in the Service Building, the Reactor Building, and the Turbine Building and the recirculated cooling water is designed to be cooled by the Raw Service Water (RSW). During the period of scheduled outage, the RCW system provides cooling water to the heat exchangers of the Shutdown Cooling System (SDCS) in order to remove the residual heat of the reactor, so the RCW heat exchangers have to operate at all times. This makes it very hard to replace the inlet and outlet valves of the RCW heat exchangers because the replacement work requires the isolation of the RCW. A task force was formed to prepare a plan to substitute the recirculated water with the chilled water system in order to cool the SDCS heat exchangers. A verification test conducted in 2007 proved that alternative cooling was possible for the removal of the residual heat of the reactor and in 2008 the replacement of inlet and outlet valves of the RCW heat exchangers for both Wolsong unit 3 and 4 were successfully completed. (authors)

  14. Design alternatives report for the cesium removal demonstration

    SciTech Connect (OSTI)

    Walker, J.F. Jr.; Youngblood, E.L.

    1995-09-01T23:59:59.000Z

    The Cesium Removal Demonstration (CRD) project will use liquid low-level waste (LLLW) stored in the Oak Ridge National Laboratory Melton Valley Storage Tanks to demonstrate cesium removal from sodium nitrate-based supernates. This report presents the results of a conceptual design study to scope the alternatives for conducting the demonstration at ORNL. Factors considered included (1) sorbent alternatives, (2) facility alternatives, (3) process alternatives, (4) process disposal alternatives, and (5) relative cost comparisons. Recommendations included (1) that design of the CRD system move forward based on information obtained to date from tests with Savannah River Resin, (2) that the CRD system be designed so it could use crystalline silicotitanates (CST) if an engineered form of CST becomes available prior to the CRD, (3) that the system be designed without the capability for resin regeneration, (4) that the LLLW solidification facility be used for the demonstration (5) that vitrification of the loaded resins from the CRD be demonstrated at the Savannah River Site, and (6) that permanent disposal of the loaded and/or vitrified resin at the Nevada Test Site be pursued.

  15. Novel sorbents for mercury removal from flue gas

    SciTech Connect (OSTI)

    Granite, E.J.; Pennline, H.W.; Hargis, R.A.

    1999-07-01T23:59:59.000Z

    A laboratory-scale packed-bed reactor system is used to screen sorbents for their capability to remove elemental mercury from various carrier gases. When the carrier gas is argon, an on-line atomic fluorescence spectrophotometer (AFS), used in a continuous mode, monitors the elemental mercury concentration in the inlet and outlet streams of the packed-bed reactor. The mercury concentration in the reactor inlet gas and the reactor temperature are held constant during a test. For more complex carrier gases, capacity is determined off-line by analyzing the spent sorbent with either a cold vapor atomic absorption spectrophotometer (CVAAS) or an inductively coupled argon plasma atomic emission spectrophotometer (ICP-AES). The capacities and breakthrough times of several commercially available activated carbons, as well as novel sorbents, were determined as a function of various parameters. The mechanisms of mercury removal by the sorbents are suggested by combining the results of the packed-bed testing with various analytical results.

  16. Novel sorbents for mercury removal from flue gas

    SciTech Connect (OSTI)

    Granite, E.J.; Pennline, H.W.; Hargis, R.A.

    2000-04-01T23:59:59.000Z

    A laboratory-scale packed-bed reactor system is used to screen sorbents for their capability to remove elemental mercury from various carrier gases. When the carrier gas is argon, an on-line atomic fluorescence spectrophotometer (AFS), used in a continuous mode, monitors the elemental mercury concentration in the inlet and outlet streams of the packed-bed reactor. The mercury concentration in the inlet and outlet streams of the packed-bed reactor. The mercury concentration in the reactor inlet gas and the reactor temperature are held constant during a test. For more complex carrier gases, the capacity is determined off-line by analyzing the spent sorbent with either a cold vapor atomic absorption spectrophotometer (CVAAS) or an inductively coupled argon plasma atomic emission spectrophotometer (ICP-AES). The capacities and breakthrough times of several commercially available activated carbons as well as novel sorbents were determined as a function of various parameters. The mechanisms of mercury removal by the sorbents are suggested by combining the results of the packed-bed testing with various analytical results.

  17. Gradient Improvement by Removal of Identified Local Defects

    SciTech Connect (OSTI)

    R.L. Geng, W.A. Clemens, C.A. Cooper, H. Hayano, K. Watanabe

    2011-07-01T23:59:59.000Z

    Recent experience of ILC cavity processing and testing at Jefferson Lab has shown that some 9-cell cavities are quench limited at a gradient in the range of 15-25 MV/m. Further studies reveal that these quench limits are often correlated with sub-mm sized and highly localized geometrical defects at or near the equator weld. There are increasing evidence to show that these genetic defects have their origin in the material or in the electron beam welding process (for example due to weld irregularities or splatters on the RF surface and welding porosity underneath the surface). A local defect removal method has been proposed at Jefferson Lab by locally re-melting the niobium material. Several 1-cell cavities with known local defects have been treated by using the JLab local e-beam re-melting method, resulting in gradient and Q0 improvement. We also sent 9-cell cavities with known gradient limiting local defects to KEK for local grinding and to FNAL for global mechanical polishing. We report on the results of gradient improvements by removal of local defects in these cavities.

  18. Gas-Cooled Fast Reactor (GFR) Decay Heat Removal Concepts

    SciTech Connect (OSTI)

    K. D. Weaver; L-Y. Cheng; H. Ludewig; J. Jo

    2005-09-01T23:59:59.000Z

    Current research and development on the Gas-Cooled Fast Reactor (GFR) has focused on the design of safety systems that will remove the decay heat during accident conditions, ion irradiations of candidate ceramic materials, joining studies of oxide dispersion strengthened alloys; and within the Advanced Fuel Cycle Initiative (AFCI) the fabrication of carbide fuels and ceramic fuel matrix materials, development of non-halide precursor low density and high density ceramic coatings, and neutron irradiation of candidate ceramic fuel matrix and metallic materials. The vast majority of this work has focused on the reference design for the GFR: a helium-cooled, direct power conversion system that will operate with an outlet temperature of 850şC at 7 MPa. In addition to the work being performed in the United States, seven international partners under the Generation IV International Forum (GIF) have identified their interest in participating in research related to the development of the GFR. These are Euratom (European Commission), France, Japan, South Africa, South Korea, Switzerland, and the United Kingdom. Of these, Euratom (including the United Kingdom), France, and Japan have active research activities with respect to the GFR. The research includes GFR design and safety, and fuels/in-core materials/fuel cycle projects. This report is a compilation of work performed on decay heat removal systems for a 2400 MWt GFR during this fiscal year (FY05).

  19. Use of microalgae to remove pollutants from power plant discharges

    DOE Patents [OSTI]

    Wilde, E.W.; Benemann, J.R.; Weissman, J.C.; Tillett, D.M.

    1991-04-30T23:59:59.000Z

    A method and system are described for removing pollutants dissolved in the aqueous discharge of a plant, such as a power plant, from a body of water having known hydraulic and physicochemical characteristics, the method comprising (a) modifying the hydraulic system of the body of water including use of physical barriers to define a zone in a portion of the body of water which zone includes the discharge point and where the water has a range of physicochemical characteristics; (b) selecting a large and preferably filamentous, planktonically growing strain of algae adapted to absorb the particular pollutants and genetically dominating algae at the physicochemical characteristics of the zone; (c) establishing a colony of the selected algal strain in the zone; (d) harvesting a portion of the colony; and (e) reinoculating the zone near the discharge point with a fraction of the harvested portion. The fraction used for reinoculation can be adjusted to balance the rate of pollutant removal to the rate of pollutant discharge. 4 figures.

  20. Removal design report for the 108-F Biological Laboratory

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    Most of the 100-F facilities were deactivated with the reactor and have since been demolished. Of the dozen or so reactor-related structures, only the 105-F Reactor Building and the 108-F Biology Laboratory remain standing today. The 108-F Biology Laboratory was intended to be used as a facility for the mixing and addition of chemicals used in the treatment of the reactor cooling water. Shortly after F Reactor began operation, it was determined that the facility was not needed for this purpose. In 1949, the building was converted for use as a biological laboratory. In 1962, the lab was expanded by adding a three-story annex to the original four-story structure. The resulting lab had a floor area of approximately 2,883 m{sup 2} (main building and annex) that operated until 1973. The building contained 47 laboratories, a number of small offices, a conference room, administrative section, lunch and locker rooms, and a heavily shielded, high-energy exposure cell. The purpose of this removal design report is to establish the methods of decontamination and decommissioning and the supporting functions associated with facility removal and disposal.

  1. High SO[sub 2] removal efficiency testing

    SciTech Connect (OSTI)

    Blythe, G.

    1993-04-22T23:59:59.000Z

    This document provides a discussion of the technical progress on DOE-PETC Project Number AC22-92PC91338, High Efficiency SO[sub 2] Removal Testing,'' for the time period from January 1 through March 31, 1993. The project involves testing at full-scale utility flue gas desulfurization (FGD) systems to evaluate low capital cost upgrades that may allow these systems to achieve up to 98% SO[sub 2] removal efficiency. The options to be evaluated primarily involve the addition of organic acid buffers to the FGD systems. The base'' project involves testing at one site, Tampa Electric Company's Big Bend Station. Up to five optional sites may be added to the program at the discretion of DOE-PETC. By March 31, 1993, four of those five options had been exercised. The options include testing at Hoosier Energy's Merom Station (Option I), Southwestern Electric Power Company's (SWEPCo) Pirkey Station (Option II), PSI Energy's Gibson Station (Option III), and Duquesne Light's Elrama Station (Option IV). The remainder of this document is divided into three sections. Section 2, Project Summary, provides a brief overview of the technical efforts on this project during the quarter. Section 3, Results, summarizes the outcome of those technical efforts. Results for the Base Program and for Options I and II are discussed in separate subsections. There are no technical results yet for Options III and IV, which were just exercised by DOE-PETC this quarter.

  2. Preliminary Evaluation of Removing Used Nuclear Fuel from Shutdown Sites

    SciTech Connect (OSTI)

    Maheras, Steven J.; Best, Ralph E.; Ross, Steven B.; Buxton, Kenneth A.; England, Jeffery L.; McConnell, Paul E.; Massaro, Lawrence M.; Jensen, Philip J.

    2014-10-01T23:59:59.000Z

    This report presents a preliminary evaluation of removing used nuclear fuel (UNF) from 12 shutdown nuclear power plant sites. At these shutdown sites the nuclear power reactors have been permanently shut down and the sites have been decommissioned or are undergoing decommissioning. The shutdown sites are Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, Zion, Crystal River, Kewaunee, and San Onofre. The evaluation was divided into four components: • characterization of the UNF and greater-than-Class C low-level radioactive waste (GTCC waste) inventory • a description of the on-site infrastructure and conditions relevant to transportation of UNF and GTCC waste • an evaluation of the near-site transportation infrastructure and experience relevant to shipping transportation casks containing UNF and GTCC waste, including identification of gaps in information • an evaluation of the actions necessary to prepare for and remove UNF and GTCC waste. The primary sources for the inventory of UNF and GTCC waste are the U.S. Department of Energy (DOE) RW-859 used nuclear fuel inventory database, industry sources such as StoreFUEL and SpentFUEL, and government sources such as the U.S. Nuclear Regulatory Commission. The primary sources for information on the conditions of site and near-site transportation infrastructure and experience included observations and information collected during visits to the Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, and Zion sites; information provided by managers at the shutdown sites; Facility Interface Data Sheets compiled for DOE in 2005; Services Planning Documents prepared for DOE in 1993 and 1994; industry publications such as Radwaste Solutions; and Google Earth. State and Regional Group representatives, a Tribal representative, and a Federal Railroad Administration representative participated in six of the shutdown site visits. Every site was found to have at least one off-site transportation mode option for removing its UNF and GTCC waste; some have multiple options. Experience removing large components during reactor decommissioning provided an important source of information used to identify the transportation mode options for the sites. Especially important in conducting the evaluation were site visits, through which information was obtained that would not have been available otherwise. Extensive photographs taken during the site visits proved to be particularly useful in documenting the current conditions at or near the sites. Additional conclusions from this evaluation include: • The 12 shutdown sites use designs from 4 different suppliers involving 9 different (horizontal and vertical) dry storage systems that would require the use of 8 different transportation cask designs to remove the UNF and GTCC waste from the shutdown sites. • Although there are common aspects, each site has some unique features and/or conditions. • Although some regulatory actions will be required, all UNF at the initial 9 shutdown sites (Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, and Zion) is in licensed systems that can be transported, including a small amount of high-burnup fuel. • Each site indicated that 2-3 years of advance time would be required for its preparations before shipments could begin. • Most sites have more than one transportation option, e.g., rail, barge, or heavy haul truck, as well as constraints and preferences. It is expected that additional site visits will be conducted to add to the information presented in the evaluation.

  3. Removing Bonus Pay from a Fund Source In order to remove the bonus charges from a fund source, review the following instructions

    E-Print Network [OSTI]

    Goodman, Robert M.

    1 Removing Bonus Pay from a Fund Source In order to remove the bonus charges from a fund source) has charged 25% of pay to costshare fund source 222380. When the bonus expenses were incurred, the bonus was distributed based on the same percentage as the biweekly pay. This resulted in bonus pay

  4. Underground Storage Tank Regulations for the Certification of Persons Who Install, Alter, and Remove Underground Storage Tanks (Mississippi)

    Broader source: Energy.gov [DOE]

    The Underground Storage Tank Regulations for the Certification of Persons who Install, Alter, and Remove Underground Storage Tanks applies to any project that will install, alter or remove...

  5. Low-quality natural gas sulfur removal/recovery

    SciTech Connect (OSTI)

    K. Amo; R.W. Baker; V.D. Helm; T. Hofmann; K.A. Lokhandwala; I. Pinnau; M.B. Ringer; T.T. Su; L. Toy; J.G. Wijmans

    1998-01-29T23:59:59.000Z

    A significant fraction of U.S. natural gas reserves are subquality due to the presence of acid gases and nitrogen; 13% of existing reserves (19 trillion cubic feed) may be contaminated with hydrogen sulfide. For natural gas to be useful as fuel and feedstock, this hydrogen sulfide has to be removed to the pipeline specification of 4 ppm. The technology used to achieve these specifications has been amine, or similar chemical or physical solvent, absorption. Although mature and widely used in the gas industry, absorption processes are capital and energy-intensive and require constant supervision for proper operation. This makes these processes unsuitable for treating gas at low throughput, in remote locations, or with a high concentration of acid gases. The U.S. Department of Energy, recognizes that exploitation of smaller, more sub-quality resources will be necessary to meet demand as the large gas fields in the U.S. are depleted. In response to this need, Membrane Technology and Research, Inc. (MTR) has developed membranes and a membrane process for removing hydrogen sulfide from natural gas. During this project, high-performance polymeric thin-film composite membranes were brought from the research stage to field testing. The membranes have hydrogen sulfide/methane selectivities in the range 35 to 60, depending on the feed conditions, and have been scaled up to commercial-scale production. A large number of spiral-wound modules were manufactured, tested and optimized during this project, which culminated in a field test at a Shell facility in East Texas. The short field test showed that membrane module performance on an actual natural gas stream was close to that observed in the laboratory tests with cleaner streams. An extensive technical and economic analysis was performed to determine the best applications for the membrane process. Two areas were identified: the low-flow-rate, high-hydrogen-sulfide-content region and the high-flow-rate, high-hydrogen-sulfide-content region. In both regions the MTR membrane process will be combined with another process to provide the necessary hydrogen sulfide removal from the natural gas. In the first region the membrane process will be combined with the SulfaTreat fixed-bed absorption process, and in the second region the membrane process will be combined with a conventional absorption process. Economic analyses indicate that these hybrid processes provide 20-40% cost savings over stand-alone absorption technologies.

  6. HAPs-Rx: Precombustion Removal of Hazardous Air Pollutant Precursors

    SciTech Connect (OSTI)

    David J. Akers; Clifford E. Raleigh

    1998-03-16T23:59:59.000Z

    CQ Inc. and its project team members--Howard University, PrepTech Inc., Fossil Fuel Sciences, the United States Geological Survey (USGS), and industry advisors--are applying mature coal cleaning and scientific principles to the new purpose of removing potentially hazardous air pollutants from coal. The team uniquely combines mineral processing, chemical engineering, and geochemical expertise. This project meets more than 11 goals of the U.S. Department of Energy (DOE), the National Energy Strategy, and the 1993 Climate Change Action Plan. During this project: (1) Equations were developed to predict the concentration of trace elements in as-mined and cleaned coals. These equations, which address both conventional and advanced cleaning processes, can be used to increase the removal of hazardous air pollutant precursors (HAPs) by existing cleaning plants and to improve the design of new cleaning plants. (2) A promising chemical method of removing mercury and other HAPs was developed. At bench-scale, mercury reductions of over 50 percent were achieved on coal that had already been cleaned by froth flotation. The processing cost of this technology is projected to be less than $3.00 per ton ($3.30 per tonne). (3) Projections were made of the average trace element concentration in cleaning plant solid waste streams from individual states. Average concentrations were found to be highly variable. (4) A significantly improved understanding of how trace elements occur in coal was gained, primarily through work at the USGS during the first systematic development of semiquantitative data for mode of occurrence. In addition, significant improvement was made in the laboratory protocol for mode of occurrence determination. (5) Team members developed a high-quality trace element washability database. For example, the poorest mass balance closure for the uncrushed size and washability data for mercury on all four coals is 8.44 percent and the best is 0.46 percent. This indicates an extremely high level of reproducibility of the data. In addition, a series of ''round-robin'' tests involving various laboratories was performed to assure analytical accuracy. (6) A comparison of the cost of lowering mercury emissions through the use of coal cleaning technologies versus the use of post-combustion control methods such as activated carbon injection indicates that, in many cases, coal cleaning may prove to be the lower-cost option. The most significant disadvantage for using coal cleaning for control of mercury emissions is that a reduction of 90 percent or greater from as-fired coal has not yet been demonstrated, even at laboratory-scale.

  7. FLOWSHEET FOR ALUMINUM REMOVAL FROM SLUDGE BATCH 6

    SciTech Connect (OSTI)

    Pike, J; Jeffrey Gillam, J

    2008-12-17T23:59:59.000Z

    Samples of Tank 12 sludge slurry show a substantially larger fraction of aluminum than originally identified in sludge batch planning. The Liquid Waste Organization (LWO) plans to formulate Sludge Batch 6 (SB6) with about one half of the sludge slurry in Tank 12 and one half of the sludge slurry in Tank 4. LWO identified aluminum dissolution as a method to mitigate the effect of having about 50% more solids in High Level Waste (HLW) sludge than previously planned. Previous aluminum dissolution performed in a HLW tank in 1982 was performed at approximately 85 C for 5 days and dissolved nearly 80% of the aluminum in the sludge slurry. In 2008, LWO successfully dissolved 64% of the aluminum at approximately 60 C in 46 days with minimal tank modifications and using only slurry pumps as a heat source. This report establishes the technical basis and flowsheet for performing an aluminum removal process in Tank 51 for SB6 that incorporates the lessons learned from previous aluminum dissolution evolutions. For SB6, aluminum dissolution process temperature will be held at a minimum of 65 C for at least 24 days, but as long as practical or until as much as 80% of the aluminum is dissolved. As planned, an aluminum removal process can reduce the aluminum in SB6 from about 84,500 kg to as little as 17,900 kg with a corresponding reduction of total insoluble solids in the batch from 246,000 kg to 131,000 kg. The extent of the reduction may be limited by the time available to maintain Tank 51 at dissolution temperature. The range of dissolution in four weeks based on the known variability in dissolution kinetics can range from 44 to more than 80%. At 44% of the aluminum dissolved, the mass reduction is approximately 1/2 of the mass noted above, i.e., 33,300 kg of aluminum instead of 66,600 kg. Planning to reach 80% of the aluminum dissolved should allow a maximum of 81 days for dissolution and reduce the allowance if test data shows faster kinetics. 47,800 kg of the dissolved aluminum will be stored in Tank 8 and 21,000 kg will be stored in saltcake via evaporation. Up to 77% of the total aluminum planned for SB6 may be removed via aluminum dissolution. Storage of the aluminum-laden supernate in Tank 8 will require routine evaluation of the free hydroxide concentration in order to maintain aluminum in solution. Periodic evaluation will be established on concurrent frequency with corrosion program samples as previously established for aluminum-laden supernate from SB5 that is stored in Tank 11.

  8. Application and Removal of Strippable Coatings via Remote Platform - 13133

    SciTech Connect (OSTI)

    Shoffner, P.; Lagos, L. [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States)] [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States); Maggio, S. [International Climbing Machine, 630 Elmira Road, Ithaca, NY 14850 (United States)] [International Climbing Machine, 630 Elmira Road, Ithaca, NY 14850 (United States)

    2013-07-01T23:59:59.000Z

    Florida International University's (FIU's) Applied Research Center is currently supporting the Department of Energy (DOE) Environmental Management Office of D and D and Facility Engineering program. FIU is supporting DOE's initiative to improve safety, reduce technical risks, and limit uncertainty within D and D operations by identifying technologies suitable to meet specific facility D and D requirements, assessing the readiness of those technologies for field deployment, and conducting feasibility studies and technology demonstrations of selected technologies and working with technology vendors to optimize the design of their current technologies to accomplish dangerous and demanding tasks during D and D operations. To meet one identified technology gap challenge for a technology to remotely apply strippable coatings, fixatives and decontamination gels, FIU identified and performed an initial demonstration of an innovative remote fixative sprayer platform from International Climbing Machines (ICM). The selected technology was demonstrated spraying fixative products at the hot cell mockup facility at the Applied Research Center at FIU in November 2008 under cold (non-radioactive) conditions. The remotely controlled platform was remotely operated and entered the facility and sprayed a fixative onto horizontal and vertical surfaces. Based on the initial FIU demonstration and the specific technical requirements identified at the DOE facilities, a follow-up demonstration was expanded to include strippable coatings and a decontamination gel, which was demonstrated in June 2010 at the ICM facility in Ithaca, NY. This second technology evaluation documented the ability of the remote system to spray the selected products on vertical stainless steel and concrete surfaces to a height of 3 meters (10 feet) and to achieve sufficient coverage and product thickness to promote the ability to peel/remove the strippable coatings and decontamination gel. The next challenge was to determine if a remote platform could be used to remove the strippable coatings and decontamination gels. In 2012, FIU worked with the technology provider, ICM, to conduct feasibility and trade studies to identify the requirements for the remote removal of strippable coatings or decontamination gels using the existing remote controlled platform. (authors)

  9. Mixed waste removal from a hazardous waste storage tank

    SciTech Connect (OSTI)

    Geber, K.R.

    1993-06-01T23:59:59.000Z

    The spent fuel transfer canal at the Oak Ridge Graphite Reactor was found to be leaking 400 gallons of water per day into the surrounding soil. Sampling of the sediment layer on the floor of the canal to determine the environmental impact of the leak identified significant radiological contamination and elevated levels of cadmium and lead which are hazardous under the Resource Conservation and Recovery Act (RCRA). Under RCRA regulations and Rules of Tennessee Department of Environment and Conservation, the canal was considered a hazardous waste storage tank. This paper describes elements of the radiological control program established in support of a fast-track RCRA closure plan that involved underwater mapping of the radiation fields, vacuuming, and ultra-filtration techniques that were successfully used to remove the mixed waste sediments and close the canal in a method compliant with state and federal regulations.

  10. Method for removing acid gases from a gaseous stream

    DOE Patents [OSTI]

    Gorin, Everett (San Rafael, CA); Zielke, Clyde W. (McMurray, PA)

    1981-01-01T23:59:59.000Z

    In a process for hydrocracking a heavy aromatic polynuclear carbonaceous feedstock containing reactive alkaline constituents to produce liquid hydrocarbon fuels boiling below about 475.degree. C. at atmospheric pressure by contacting the feedstock with hydrogen in the presence of a molten metal halide catalyst, thereafter separating a gaseous stream containing hydrogen, at least a portion of the hydrocarbon fuels and acid gases from the molten metal halide and regenerating the molten metal halide, thereby producing a purified molten metal halide stream for recycle to the hydrocracking zone, an improvement comprising; contacting the gaseous acid gas, hydrogen and hydrocarbon fuels-containing stream with the feedstock containing reactive alkaline constituents to remove acid gases from the acid gas containing stream. Optionally at least a portion of the hydrocarbon fuels are separated from gaseous stream containing hydrogen, hydrocarbon fuels and acid gases prior to contacting the gaseous stream with the feedstock.

  11. Removal of mercury from coal via a microbial pretreatment process

    DOE Patents [OSTI]

    Borole, Abhijeet P. (Knoxville, TN); Hamilton, Choo Y. (Knoxville, TN)

    2011-08-16T23:59:59.000Z

    A process for the removal of mercury from coal prior to combustion is disclosed. The process is based on use of microorganisms to oxidize iron, sulfur and other species binding mercury within the coal, followed by volatilization of mercury by the microorganisms. The microorganisms are from a class of iron and/or sulfur oxidizing bacteria. The process involves contacting coal with the bacteria in a batch or continuous manner. The mercury is first solubilized from the coal, followed by microbial reduction to elemental mercury, which is stripped off by sparging gas and captured by a mercury recovery unit, giving mercury-free coal. The mercury can be recovered in pure form from the sorbents via additional processing.

  12. Method for removing cesium from a nuclear reactor coolant

    DOE Patents [OSTI]

    Colburn, R.P.

    1983-08-10T23:59:59.000Z

    A method of and system for removing cesium from a liquid metal reactor coolant including a carbon packing trap in the primary coolant system for absorbing a major portion of the radioactive cesium from the coolant flowing therethrough at a reduced temperature. A regeneration subloop system having a secondary carbon packing trap is selectively connected to the primary system for isolating the main trap therefrom and connecting it to the regeneration system. Increasing the temperature of the sodium flowing through the primary trap diffuses a portion of the cesium inventory thereof further into the carbon matrix while simultaneously redispersing a portion into the regeneration system for absorption at a reduced temperature by the secondary trap.

  13. Method and apparatus for removing micronized coal from steam

    SciTech Connect (OSTI)

    Vlnaty, J.

    1980-10-14T23:59:59.000Z

    Micronized coal is removed from coal-bearing steam by spraying stabilized petroleum oil into the steam and directing the resultant stream at a separation surface on which a coal-oil slurry is deposited and collected. Apparatus includes conduits which direct the resultant stream downward into a housing and normal to a surface on which the slurry is deposited by impact forces. In additional apparatus disclosed, the resultant stream is directed from a horizontal conduit circumferentially along the interior wall of a horizontally disposed cylindrical chamber at the top of the chamber and the coal-oil slurry deposited on the wall by centrifugal force is collected in a trough situated below a longitudinal slot at the bottom of the chamber. In both types of apparatus, after separation of the slurry the velocity of the steam is reduced to settle out remaining oil droplets and is then discharged to the atmosphere.

  14. 100-KE REACTOR CORE REMOVAL PROJECT ALTERNATIVE ANALYSIS WORKSHOP REPORT

    SciTech Connect (OSTI)

    HARRINGTON RA

    2010-01-15T23:59:59.000Z

    On December 15-16, 2009, a 100-KE Reactor Core Removal Project Alternative Analysis Workshop was conducted at the Washington State University Consolidated Information Center, Room 214. Colburn Kennedy, Project Director, CH2M HILL Plateau Remediation Company (CHPRC) requested the workshop and Richard Harrington provided facilitation. The purpose of the session was to select the preferred Bio Shield Alternative, for integration with the Thermal Shield and Core Removal and develop the path forward to proceed with project delivery. Prior to this workshop, the S.A. Robotics (SAR) Obstruction Removal Alternatives Analysis (565-DLV-062) report was issued, for use prior to and throughout the session, to all the team members. The multidisciplinary team consisted ofrepresentatives from 100-KE Project Management, Engineering, Radcon, Nuclear Safety, Fire Protection, Crane/Rigging, SAR Project Engineering, the Department of Energy Richland Field Office, Environmental Protection Agency, Washington State Department of Ecology, Defense Nuclear Facility Safety Board, and Deactivation and Decommission subject matter experts from corporate CH2M HILL and Lucas. Appendix D contains the workshop agenda, guidelines and expectations, opening remarks, and attendance roster going into followed throughout the workshop. The team was successful in selecting the preferred alternative and developing an eight-point path forward action plan to proceed with conceptual design. Conventional Demolition was selected as the preferred alternative over two other alternatives: Diamond Wire with Options, and Harmonic Delamination with Conventional Demolition. The teams preferred alternative aligned with the SAR Obstruction Removal Alternative Analysis report conclusion. However, the team identified several Path Forward actions, in Appendix A, which upon completion will solidify and potentially enhance the Conventional Demolition alternative with multiple options and approaches to achieve project delivery. In brief, the Path Forward was developed to reconsider potential open air demolition areas; characterize to determine if any zircaloy exists, evaluate existing concrete data to determine additional characterization needs, size the new building to accommodate human machine interface and tooling, consider bucket thumb and use ofshape-charges in design, and finally to utilize complex-wide and industry explosive demolition lessons learned in the design approach. Appendix B documents these results from the team's use ofValue Engineering process tools entitled Weighted Analysis Alternative Matrix, Matrix Conclusions, Evaluation Criteria, and Alternative Advantages and Disadvantages. These results were further supported with the team's validation of parking-lot information sheets: memories (potential ideas to consider), issues/concerns, and assumptions, contained in Appendix C. Appendix C also includes the recorded workshop flipchart notes taken from the SAR Alternatives and Project Overview presentations. The SAR workshop presentations, including a 3-D graphic illustration demonstration video have been retained in the CHPRC project file, and were not included in this report due to size limitations. The workshop concluded with a round robin close-out where each member was engaged for any last minute items and meeting utility. In summary, the team felt the session was value added and looked forward to proceeding with the recommended actions and conceptual design.

  15. Method for removing hydrogen sulfide from coke oven gas

    SciTech Connect (OSTI)

    Ritter, H.

    1982-08-03T23:59:59.000Z

    An improved sulfur-ammonia process is disclosed for removing hydrogen sulfide from coke oven gases. In the improved process, a concentrator formerly used for standby operation is used at all normal times as an ammonia scrubber to improve the efficiency of gas separation during normal operation and is used as a concentrator for its intended standby functions during the alternative operations. In its normal function, the concentrator/scrubber functions as a scrubber to strip ammonia gas from recirculating liquid streams and to permit introduction of an ammonia-rich gas into a hydrogen sulfide scrubber to increase the separation efficiency of that unit. In the standby operation, the same concentrator/scrubber serves as a concentrator to concentrate hydrogen sulfide in a ''strong liquor'' stream for separate recovery as a strong liquor.

  16. Removable inner turbine shell with bucket tip clearance control

    DOE Patents [OSTI]

    Sexton, Brendan F. (Clifton Park, NY); Knuijt, Hans M. (Niskayuna, NY); Eldrid, Sacheverel Q. (Saratoga Springs, NY); Myers, Albert (Amsterdam, NY); Coneybeer, Kyle E. (Schenectady, NY); Johnson, David Martin (Ballston Lake, NY); Kellock, Iain R. (Clifton Park, NY)

    2000-01-01T23:59:59.000Z

    A turbine includes a plurality of inner shell sections mounting first and second stage nozzle and shroud portions. The inner shell sections are pinned to an outer containment shell formed of sections to preclude circumferential movement of the inner shell relative to the outer shell and enable thermal expansion and contraction of the inner shell relative to the outer shell. Positive bucket tip clearance control is afforded by passing a thermal medium about the inner shell in heat transfer relation with the shrouds about the first and second stage bucket tips, the thermal medium being provided from a source of heating/cooling fluid independent of the turbine. Access is provided to the rotor and turbine buckets by removing the outer and inner shell sections.

  17. Performance of hydroclones for removing particles from viscous liquids

    SciTech Connect (OSTI)

    Talbot, J.B.

    1980-08-01T23:59:59.000Z

    The performance of a 1-cm diam, Dorr-Oliver hydroclone with slurries containing approx. 5 wt % solids in water-glycerin solutions was studied to evaluate the effects of fluid viscosity. Micron-sized particles of low-density solids (aluminum oxide, test dust, fly ash, or kaolin) were removed from solutions with viscosities ranging from 1 to 85 cP. Pressure drop across the hydroclone increased with increasing feed rate and viscosity. Gross and centrifugal efficiencies were found to increase with flow rate and decrease with viscosity. Liquid viscosities >10 cP had deleterious effects on the pressure drop and efficiency; thus useful separations were not attained. The particle diameter, corresponding to a point efficiency of 50%, decreased as the product of the inlet Reynolds number and the solid-to-liquid density ratio increased. The reduced efficiency curve was found to characterize the hydroclone performance.

  18. Validation of two ribosomal RNA removal methods for microbial metatranscriptomics

    SciTech Connect (OSTI)

    He, Shaomei; Wurtzel, Omri; Singh, Kanwar; Froula, Jeff L; Yilmaz, Suzan; Tringe, Susannah G; Wang, Zhong; Chen, Feng; Lindquist, Erika A; Sorek, Rotem; Hugenholtz, Philip

    2010-10-01T23:59:59.000Z

    The predominance of rRNAs in the transcriptome is a major technical challenge in sequence-based analysis of cDNAs from microbial isolates and communities. Several approaches have been applied to deplete rRNAs from (meta)transcriptomes, but no systematic investigation of potential biases introduced by any of these approaches has been reported. Here we validated the effectiveness and fidelity of the two most commonly used approaches, subtractive hybridization and exonuclease digestion, as well as combinations of these treatments, on two synthetic five-microorganism metatranscriptomes using massively parallel sequencing. We found that the effectiveness of rRNA removal was a function of community composition and RNA integrity for these treatments. Subtractive hybridization alone introduced the least bias in relative transcript abundance, whereas exonuclease and in particular combined treatments greatly compromised mRNA abundance fidelity. Illumina sequencing itself also can compromise quantitative data analysis by introducing a G+C bias between runs.

  19. Removable check valve for use in a nuclear reactor

    DOE Patents [OSTI]

    Dunn, Charlton (Calabasas, CA); Gutzmann, Edward A. (Simi Valley, CA)

    1988-01-01T23:59:59.000Z

    A removable check valve for interconnecting the discharge duct of a pump and an inlet coolant duct of a reactor core in a pool-type nuclear reactor. A manifold assembly is provided having an outer periphery affixed to and in fluid communication with the discharge duct of the pump and has an inner periphery having at least one opening therethrough. A housing containing a check valve is located within the inner periphery of the manifold. The upper end of the housing has an opening in alignment with the opening in the manifold assembly, and seals are provided above and below the openings. The lower end of the housing is adapted for fluid communication with the inlet duct of the reactor core.

  20. Process and system for removing impurities from a gas

    DOE Patents [OSTI]

    Henningsen, Gunnar; Knowlton, Teddy Merrill; Findlay, John George; Schlather, Jerry Neal; Turk, Brian S

    2014-04-15T23:59:59.000Z

    A fluidized reactor system for removing impurities from a gas and an associated process are provided. The system includes a fluidized absorber for contacting a feed gas with a sorbent stream to reduce the impurity content of the feed gas; a fluidized solids regenerator for contacting an impurity loaded sorbent stream with a regeneration gas to reduce the impurity content of the sorbent stream; a first non-mechanical gas seal forming solids transfer device adapted to receive an impurity loaded sorbent stream from the absorber and transport the impurity loaded sorbent stream to the regenerator at a controllable flow rate in response to an aeration gas; and a second non-mechanical gas seal forming solids transfer device adapted to receive a sorbent stream of reduced impurity content from the regenerator and transfer the sorbent stream of reduced impurity content to the absorber without changing the flow rate of the sorbent stream.

  1. High SO[sub 2] removal efficiency testing

    SciTech Connect (OSTI)

    Blythe, G.

    1992-10-20T23:59:59.000Z

    This project involves testing at full-scale utility flue gas desulftirization (FGD) systems to evaluate low capital cost upgrades that may allow these systems to achieve up to 98% SO[sub 2] removal efficiency. The options to be evaluated primarily involve the addition of organic acid buffers to the FGD systems. The base'' project involves testing at one site, the Tampa Electric Company Big Bend Station. Up to five optional sites may be added to the program at the discretion of DOE-PETC. By 30 September, 1992, two of the five options had been exercised for testing at the Hoosier Energy Merom Station and at the Southwestern Electric Power Company Pirkey Station.

  2. Black Hole Hair Removal: Non-linear Analysis

    E-Print Network [OSTI]

    Dileep P. Jatkar; Ashoke Sen; Yogesh K. Srivastava

    2009-07-03T23:59:59.000Z

    BMPV black holes in flat transverse space and in Taub-NUT space have identical near horizon geometries but different microscopic degeneracies. It has been proposed that this difference can be accounted for by different contribution to the degeneracies of these black holes from hair modes, -- degrees of freedom living outside the horizon. In this paper we explicitly construct the hair modes of these two black holes as finite bosonic and fermionic deformations of the black hole solution satisfying the full non-linear equations of motion of supergravity and preserving the supersymmetry of the original solutions. Special care is taken to ensure that these solutions do not have any curvature singularity at the future horizon when viewed as the full ten dimensional geometry. We show that after removing the contribution due to the hair degrees of freedom from the microscopic partition function, the partition functions of the two black holes agree.

  3. Removal of Pu238 from Neptunium Solution by Anion Exchange

    SciTech Connect (OSTI)

    KYSER, EDWARD

    2003-12-01T23:59:59.000Z

    A new anion flowsheet for use in HB-Line was tested in the lab with Reillex{trademark} HPQ for removal of Pu{sup 238} contamination from Np. Significant rejection of Pu{sup 238} was observed by washing with 6 to 12 bed volumes (BV) of reductive wash containing reduced nitric acid concentration along with both ferrous sulfamate (FS) and hydrazine. A shortened-height column was utilized in these tests to match changes in the plant equipment. Lab experiments scaled to plant batch sizes of 1500 to 2200 g Np were observed with modest losses for up-flow washing. Down-flow washing was observed to have high losses. The following are recommended conditions for removing Pu{sup 238} from Np solutions by anion exchange in HB-Line: (1) Feed conditions: Up-flow 6.4-8 M HNO{sub 3}, 0.02 M hydrazine, 0.05 M excess FS, less than 5 days storage of solution after FS addition. (2) Reductive Wash conditions: Up-flow 6-12 BV of 6.4 M HNO{sub 3}, 0.05 M FS, 0.05 M hydrazine. 1.8 mL/min/cm{sup 2} flowrate. (3) Decontamination Wash conditions: Up-flow 1-2 BV of 6.4-8 M HNO{sub 3}, no FS, no hydrazine. (4) Elution conditions: Down-flow 0.17 M HNO{sub 3}, 0.05 M hydrazine, no FS.

  4. ACTINIDE REMOVAL PROCESS SAMPLE ANALYSIS, CHEMICAL MODELING, AND FILTRATION EVALUATION

    SciTech Connect (OSTI)

    Martino, C.; Herman, D.; Pike, J.; Peters, T.

    2014-06-05T23:59:59.000Z

    Filtration within the Actinide Removal Process (ARP) currently limits the throughput in interim salt processing at the Savannah River Site. In this process, batches of salt solution with Monosodium Titanate (MST) sorbent are concentrated by crossflow filtration. The filtrate is subsequently processed to remove cesium in the Modular Caustic Side Solvent Extraction Unit (MCU) followed by disposal in saltstone grout. The concentrated MST slurry is washed and sent to the Defense Waste Processing Facility (DWPF) for vitrification. During recent ARP processing, there has been a degradation of filter performance manifested as the inability to maintain high filtrate flux throughout a multi-batch cycle. The objectives of this effort were to characterize the feed streams, to determine if solids (in addition to MST) are precipitating and causing the degraded performance of the filters, and to assess the particle size and rheological data to address potential filtration impacts. Equilibrium modelling with OLI Analyzer{sup TM} and OLI ESP{sup TM} was performed to determine chemical components at risk of precipitation and to simulate the ARP process. The performance of ARP filtration was evaluated to review potential causes of the observed filter behavior. Task activities for this study included extensive physical and chemical analysis of samples from the Late Wash Pump Tank (LWPT) and the Late Wash Hold Tank (LWHT) within ARP as well as samples of the tank farm feed from Tank 49H. The samples from the LWPT and LWHT were obtained from several stages of processing of Salt Batch 6D, Cycle 6, Batch 16.

  5. Electrode Induced Removal and Recovery of Uranium (VI) from Acidic Subsurfaces

    SciTech Connect (OSTI)

    Gregory, Kelvin [Carnegie Mellon University

    2013-08-12T23:59:59.000Z

    The overarching objective of this research is to provide an improved understanding of how aqueous geochemical conditions impact the removal of U and Tc from groundwater and how engineering design may be utilized to optimize removal of these radionuclides. Experiments were designed to address the unique conditions in Area 3 of ORNL while also providing broader insight into the geochemical effectors of the removal rates and extent for U and Tc. The specific tasks of this work were to: 1) quantify the impact of common aqueous geochemical and operational conditions on the rate and extent of U removal and recovery from water, 2) investigate the removal of Tc with polarized graphite electrode, and determine the influence of geochemical and operational conditions on Tc removal and recovery, 3) determine whether U and Tc may be treated simultaneous from Area 3 groundwater, and examine the bench-scale performance of electrode-based treatment, and 4) determine the capacity of graphite electrodes for U(VI) removal and develop a mathematical, kinetic model for the removal of U(VI) from aqueous solution. Overall the body of work suggests that an electrode-based approach for the remediation of acidic subsurface environments, such as those observed in Area 3 of ORNL may be successful for the removal for both U(VI) and Tc. Carbonaceous (graphite) electrode materials are likely to be the least costly means to maximize removal rates and efficiency by maximizing the electrode surface area.

  6. Method of CO.sub.2 removal from a gasesous stream at reduced temperature

    SciTech Connect (OSTI)

    Fisher, James C; Siriwardane, Ranjani V; Berry, David A; Richards, George A

    2014-11-18T23:59:59.000Z

    A method for the removal of H.sub.2O and CO.sub.2 from a gaseous stream comprising H.sub.2O and CO.sub.2, such as a flue gas. The method initially utilizes an H.sub.2O removal sorbent to remove some portion of the H.sub.2O, producing a dry gaseous stream and a wet H.sub.2O removal sorbent. The dry gaseous stream is subsequently contacted with a CO.sub.2 removal sorbent to remove some portion of the CO.sub.2, generating a dry CO.sub.2 reduced stream and a loaded CO.sub.2 removal sorbent. The loaded CO.sub.2 removal sorbent is subsequently heated to produce a heated CO.sub.2 stream. The wet H.sub.2O removal sorbent and the dry CO.sub.2 reduced stream are contacted in a first regeneration stage, generating a partially regenerated H.sub.2O removal sorbent, and the partially regenerated H.sub.2O removal sorbent and the heated CO.sub.2 stream are subsequently contacted in a second regeneration stage. The first and second stage regeneration typically act to retain an initial monolayer of moisture on the various removal sorbents and only remove moisture layers bound to the initial monolayer, allowing for relatively low temperature and pressure operation. Generally the applicable H.sub.2O sorption/desorption processes may be conducted at temperatures less than about 70.degree. C. and pressures less than 1.5 atmospheres, with certain operations conducted at temperatures less than about 50.degree. C.

  7. Removal of long-lived {sup 222}Rn daughters by electropolishing thin layers of stainless steel

    SciTech Connect (OSTI)

    Schnee, R. W.; Bowles, M. A.; Bunker, R.; McCabe, K.; White, J. [Department of Physics, Syracuse University, Syracuse, NY 13244 (United States)] [Department of Physics, Syracuse University, Syracuse, NY 13244 (United States); Cushman, P.; Pepin, M. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)] [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Guiseppe, V. E. [University of South Dakota, Vermillion, South Dakota 57069 (United States)] [University of South Dakota, Vermillion, South Dakota 57069 (United States)

    2013-08-08T23:59:59.000Z

    Long-lived alpha and beta emitters in the {sup 222}Rn decay chain on detector surfaces may be the limiting background in many experiments attempting to detect dark matter or neutrinoless double beta decay. Removal of tens of microns of material via electropolishing has been shown to be effective at removing radon daughters implanted into material surfaces. Some applications, however, require the removal of uniform and significantly smaller thicknesses. Here, we demonstrate that electropolishing < 1 ?m from stainless-steel plates reduces the contamination efficiently, by a factor > 100. Examination of electropolished wires with a scanning electron microscope confirms that the thickness removed is reproducible and reasonably uniform. Together, these tests demonstrate the effectiveness of removal of radon daughters for a proposed low-radiation, multi-wire proportional chamber (the BetaCage), without compromising the screener’s energy resolution. More generally, electropolishing thin layers of stainless steel may effectively remove radon daughters without compromising precision-machined parts.

  8. Removal of long-lived $^{222}$Rn daughters by electropolishing thin layers of stainless steel

    E-Print Network [OSTI]

    R. W. Schnee; M. A. Bowles; R. Bunker; K. McCabe; J. White; P. Cushman; M. Pepin; V. E. Guiseppe

    2014-04-23T23:59:59.000Z

    Long-lived alpha and beta emitters in the $^{222}$Rn decay chain on detector surfaces may be the limiting background in many experiments attempting to detect dark matter or neutrinoless double-beta decay. Removal of tens of microns of material via electropolishing has been shown to be effective at removing radon daughters implanted into material surfaces. Some applications, however, require the removal of uniform and significantly smaller thicknesses. Here, we demonstrate that electropolishing steel plates reduces the contamination efficiently, by a factor > 100. Examination of electropolished wires with a scanning electron microscope confirms that the thickness removed is reproducible and reasonably uniform. Together, these tests demonstrate the effectiveness of removal of radon daughters for a proposed low-radiation, multi-wire proportional chamber (the BetaCage), without compromising the screener's energy resolution. More generally, electropolishing thin layers of stainless steel may effectively remove radon daughters without compromising precision-machined parts.

  9. Heavy Water Components Test Reactor Decommissioning - Major Component Removal

    SciTech Connect (OSTI)

    Austin, W.; Brinkley, D.

    2010-05-05T23:59:59.000Z

    The Heavy Water Components Test Reactor (HWCTR) facility (Figure 1) was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR facility is on high, well-drained ground, about 30 meters above the water table. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. It was not a defense-related facility like the materials production reactors at SRS. The reactor was moderated with heavy water and was rated at 50 megawatts thermal power. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In 1965, fuel assemblies were removed, systems that contained heavy water were drained, fluid piping systems were drained, deenergized and disconnected and the spent fuel basin was drained and dried. The doors of the reactor facility were shut and it wasn't until 10 years later that decommissioning plans were considered and ultimately postponed due to budget constraints. In the early 1990s, DOE began planning to decommission HWCTR again. Yet, in the face of new budget constraints, DOE deferred dismantlement and placed HWCTR in an extended surveillance and maintenance mode. The doors of the reactor facility were welded shut to protect workers and discourage intruders. The $1.6 billion allocation from the American Recovery and Reinvestment Act to SRS for site clean up at SRS has opened the doors to the HWCTR again - this time for final decommissioning. During the lifetime of HWCTR, 36 different fuel assemblies were tested in the facility. Ten of these experienced cladding failures as operational capabilities of the different designs were being established. In addition, numerous spills of heavy water occurred within the facility. Currently, radiation and radioactive contamination levels are low within HWCTR with most of the radioactivity contained within the reactor vessel. There are no known insults to the environment, however with the increasing deterioration of the facility, the possibility exists that contamination could spread outside the facility if it is not decommissioned. An interior panoramic view of the ground floor elevation taken in August 2009 is shown in Figure 2. The foreground shows the transfer coffin followed by the reactor vessel and control rod drive platform in the center. Behind the reactor vessel is the fuel pool. Above the ground level are the polar crane and the emergency deluge tank at the top of the dome. Note the considerable rust and degradation of the components and the interior of the containment building. Alternative studies have concluded that the most environmentally safe, cost effective option for final decommissioning is to remove the reactor vessel, steam generators, and all equipment above grade including the dome. Characterization studies along with transport models have concluded that the remaining below grade equipment that is left in place including the transfer coffin will not contribute any significant contamination to the environment in the future. The below grade space will be grouted in place. A concrete cover will be placed over the remaining footprint and the groundwater will be monitored for an indefinite period to ensure compliance with environmental regulations. The schedule for completion of decommissioning is late FY2011. This paper describes the concepts planned in order to remove the major components including the dome, the reactor vessel (RV), the two steam generators (SG), and relocating the transfer coffin (TC).

  10. Removal of the Plutonium Recycle Test Reactor - 13031

    SciTech Connect (OSTI)

    Herzog, C. Brad [CH2M HILL, Inc. (United States)] [CH2M HILL, Inc. (United States); Guercia, Rudolph [US-DOE (United States)] [US-DOE (United States); LaCome, Matt [Meier Engineering Inc (United States)] [Meier Engineering Inc (United States)

    2013-07-01T23:59:59.000Z

    The 309 Facility housed the Plutonium Recycle Test Reactor (PRTR), an operating test reactor in the 300 Area at Hanford, Washington. The reactor first went critical in 1960 and was originally used for experiments under the Hanford Site Plutonium Fuels Utilization Program. The facility was decontaminated and decommissioned in 1988-1989, and the facility was deactivated in 1994. The 309 facility was added to Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) response actions as established in an Interim Record of Decision (IROD) and Action Memorandum (AM). The IROD directs a remedial action for the 309 facility, associated waste sites, associated underground piping and contaminated soils resulting from past unplanned releases. The AM directs a removal action through physical demolition of the facility, including removal of the reactor. Both CERCLA actions are implemented in accordance with U.S. EPA approved Remedial Action Work Plan, and the Remedial Design Report / Remedial Action Report associated with the Hanford 300-FF-2 Operable Unit. The selected method for remedy was to conventionally demolish above grade structures including the easily distinguished containment vessel dome, remove the PRTR and a minimum of 300 mm (12 in) of shielding as a single 560 Ton unit, and conventionally demolish the below grade structure. Initial sample core drilling in the Bio-Shield for radiological surveys showed evidence that the Bio-Shield was of sound structure. Core drills for the separation process of the PRTR from the 309 structure began at the deck level and revealed substantial thermal degradation of at least the top 1.2 m (4LF) of Bio-Shield structure. The degraded structure combined with the original materials used in the Bio-Shield would not allow for a stable structure to be extracted. The water used in the core drilling process proved to erode the sand mixture of the Bio-Shield leaving the steel aggregate to act as ball bearings against the core drill bit. A redesign is being completed to extract the 309 PRTR and entire Bio-Shield structure together as one monolith weighing 1100 Ton by cutting structural concrete supports. In addition, the PRTR has hundreds of contaminated process tubes and pipes that have to be severed to allow for a uniformly flush fit with a lower lifting frame. Thirty-two 50 mm (2 in) core drills must be connected with thirty-two wire saw cuts to allow for lifting columns to be inserted. Then eight primary saw cuts must be completed to severe the PRTR from the 309 Facility. Once the weight of the PRTR is transferred to the lifting frame, then the PRTR may be lifted out of the facility. The critical lift will be executed using four 450 Ton strand jacks mounted on a 9 m (30 LF) tall mobile lifting frame that will allow the PRTR to be transported by eight 600 mm (24 in) Slide Shoes. The PRTR will then be placed on a twenty-four line, double wide, self powered Goldhofer for transfer to the onsite CERCLA Disposal Cell (ERDF Facility), approximately 33 km (20 miles) away. (authors)

  11. Defining manganese(II) removal processes in passive coal mine drainage treatment systems through laboratory incubation experiments

    E-Print Network [OSTI]

    Burgos, William

    - trations. At operating coal mines, the most commonly used ``active treatment'' method to remove MnDefining manganese(II) removal processes in passive coal mine drainage treatment systems through for the passive removal of Mn(II) from coal mine drainage (CMD). Aqueous Mn(II) is removed via oxidative

  12. Trichloroethene Removal From Waste Gases in Anaerobic Biotrickling Filters Through Reductive Dechlorination

    E-Print Network [OSTI]

    Popat, Sudeep Chandrakant

    2010-01-01T23:59:59.000Z

    in a foamed emulsion bioreactor. Environ. Sci. Technol.in a foamed emulsion bioreactor. Environ. Sci. Technol.of a trickle-bed bioreactor: Carbon disulfide removal.

  13. anti-parasite treatment removes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wastewater treatment plants (WWTPs) with biological nitrogen removal processes, using a life cycle assessment (LCA) approach. Literature ... Xu, Xin, S.M. Massachusetts Institute...

  14. Modeling Ozone Removal to Indoor Materials, Including the Effects of Porosity, Pore Diameter, and Thickness

    E-Print Network [OSTI]

    Gall, Elliott T; Siegel, Jeffrey A; Corsi, Richard L

    2015-01-01T23:59:59.000Z

    of healthy young volunteers to ozone causes cardiovasculareffects of five common ozone-initiated terpene reactiondecay rates, and removal of ozone and their relation to

  15. Distribution of bed sediment on Clear Creek after removal of Saeltzer Dam

    E-Print Network [OSTI]

    Clayton-Niederman, Z; Gilbreath, Alicia

    2005-01-01T23:59:59.000Z

    of Saeltzer Dam on Clear Creek: An Update, Water Resources83-138. Brown, Matt. 2004. Clear Creek anadromous salmonidto Dam Removal, Clear Creek, California, Water Resources

  16. Proceedings of NAMRI/SME, Vol. 41, 2013 Removal Mechanism and Defect Characterization for Glass-

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    Proceedings of NAMRI/SME, Vol. 41, 2013 Removal Mechanism and Defect Characterization for Glass of NAMRI/SME, Vol. 41, 2013 f

  17. Microsoft Word - CX-WautomaPhoneLineRemoval_FY14_WEB.docx

    Broader source: Energy.gov (indexed) [DOE]

    7, 2014 REPLY TO ATTN OF: KEPRPasco SUBJECT: Environmental Clearance Memorandum Greg Wilfong Lineman Foreman III - TFPF-PASCO Proposed Action: Telephone line removal along the...

  18. Developing effective removal of caesium, strontium and uranium from contaminated soils and sediments

    E-Print Network [OSTI]

    Burke, Ian

    Developing effective removal of caesium, strontium and uranium from contaminated soils immobilise the radionuclides within the sediment (4, 5) . In order to remediate this sediment associated

  19. A Multi-Factor Analysis of Sustainable Agricultural Residue Removal Potential

    SciTech Connect (OSTI)

    Jared Abodeely; David Muth; Paul Adler; Eleanor Campbell; Kenneth Mark Bryden

    2012-10-01T23:59:59.000Z

    Agricultural residues have significant potential as a near term source of cellulosic biomass for bioenergy production, but sustainable removal of agricultural residues requires consideration of the critical roles that residues play in the agronomic system. Previous work has developed an integrated model to evaluate sustainable agricultural residue removal potential considering soil erosion, soil organic carbon, greenhouse gas emission, and long-term yield impacts of residue removal practices. The integrated model couples the environmental process models WEPS, RUSLE2, SCI, and DAYCENT. This study uses the integrated model to investigate the impact of interval removal practices in Boone County, Iowa, US. Residue removal of 4.5 Mg/ha was performed annually, bi-annually, and tri-annually and were compared to no residue removal. The study is performed at the soil type scale using a national soil survey database assuming a continuous corn rotation with reduced tillage. Results are aggregated across soil types to provide county level estimates of soil organic carbon changes and individual soil type soil organic matter content if interval residue removal were implemented. Results show interval residue removal is possible while improving soil organic matter. Implementation of interval removal practices provide greater increases in soil organic matter while still providing substantial residue for bioenergy production.

  20. Facebook Applications' Installation and Removal: A Temporal Analysis

    E-Print Network [OSTI]

    Kagan, Dima; Elyashar, Aviad; Elovici, Yuval

    2013-01-01T23:59:59.000Z

    Facebook applications are one of the reasons for Facebook attractiveness. Unfortunately, numerous users are not aware of the fact that many malicious Facebook applications exist. To educate users, to raise users' awareness and to improve Facebook users' security and privacy, we developed a Firefox add-on that alerts users to the number of installed applications on their Facebook profiles. In this study, we present the temporal analysis of the Facebook applications' installation and removal dataset collected by our add-on. This dataset consists of information from 2,945 users, collected during a period of over a year. We used linear regression to analyze our dataset and discovered the linear connection between the average percentage change of newly installed Facebook applications and the number of days passed since the user initially installed our add-on. Additionally, we found out that users who used our Firefox add-on become more aware of their security and privacy installing on average fewer new application...

  1. Classification and storage of wastewater from floor finish removal operations

    SciTech Connect (OSTI)

    Hunt, C.E.

    1996-05-01T23:59:59.000Z

    This study evaluates the wastewater generated from hard surface floor finish removal operations at Lawrence Livermore Laboratory in order to determine if this wastewater is a hazardous waste, either by statistical evaluation, or other measurable regulatory guidelines established in California Regulations. This research also comparatively evaluates the 55 gallon drum and other portable tanks, all less than 1,000 gallons in size in order to determine which is most effective for the management of this waste stream at Lawrence Livermore Laboratory. The statistical methods in SW-846 were found to be scientifically questionable in their application to hazardous waste determination. In this statistical evaluation, the different data transformations discussed in the regulatory guidance document were applied along with the log transformation to the population of 18 samples from 55 gallon drums. Although this statistical evaluation proved awkward in its application, once the data is collected and organized on a spreadsheet this statistical analysis can be an effective tool which can aid the environmental manager in the hazardous waste classification process.

  2. Method for removing tilt control in adaptive optics systems

    DOE Patents [OSTI]

    Salmon, Joseph Thaddeus (Livermore, CA)

    1998-01-01T23:59:59.000Z

    A new adaptive optics system and method of operation, whereby the method removes tilt control, and includes the steps of using a steering mirror to steer a wavefront in the desired direction, for aiming an impinging aberrated light beam in the direction of a deformable mirror. The deformable mirror has its surface deformed selectively by means of a plurality of actuators, and compensates, at least partially, for existing aberrations in the light beam. The light beam is split into an output beam and a sample beam, and the sample beam is sampled using a wavefront sensor. The sampled signals are converted into corresponding electrical signals for driving a controller, which, in turn, drives the deformable mirror in a feedback loop in response to the sampled signals, for compensating for aberrations in the wavefront. To this purpose, a displacement error (gradient) of the wavefront is measured, and adjusted by a modified gain matrix, which satisfies the following equation: G'=(I-X(X.sup.T X).sup.-1 X.sup.T)G(I-A)

  3. Method for removing tilt control in adaptive optics systems

    DOE Patents [OSTI]

    Salmon, J.T.

    1998-04-28T23:59:59.000Z

    A new adaptive optics system and method of operation are disclosed, whereby the method removes tilt control, and includes the steps of using a steering mirror to steer a wavefront in the desired direction, for aiming an impinging aberrated light beam in the direction of a deformable mirror. The deformable mirror has its surface deformed selectively by means of a plurality of actuators, and compensates, at least partially, for existing aberrations in the light beam. The light beam is split into an output beam and a sample beam, and the sample beam is sampled using a wavefront sensor. The sampled signals are converted into corresponding electrical signals for driving a controller, which, in turn, drives the deformable mirror in a feedback loop in response to the sampled signals, for compensating for aberrations in the wavefront. To this purpose, a displacement error (gradient) of the wavefront is measured, and adjusted by a modified gain matrix, which satisfies the following equation: G{prime} = (I{minus}X(X{sup T} X){sup {minus}1}X{sup T})G(I{minus}A). 3 figs.

  4. Multi-component removal in flue gas by aqua ammonia

    DOE Patents [OSTI]

    Yeh, James T. (Bethel Park, PA); Pennline, Henry W. (Bethel Park, PA)

    2007-08-14T23:59:59.000Z

    A new method for the removal of environmental compounds from gaseous streams, in particular, flue gas streams. The new method involves first oxidizing some or all of the acid anhydrides contained in the gas stream such as sulfur dioxide (SO.sub.2) and nitric oxide (NO) and nitrous oxide (N.sub.2O) to sulfur trioxide (SO.sub.3) and nitrogen dioxide (NO.sub.2). The gas stream is subsequently treated with aqua ammonia or ammonium hydroxide which captures the compounds via chemical absorption through acid-base or neutralization reactions. The products of the reactions can be collected as slurries, dewatered, and dried for use as fertilizers, or once the slurries have been dewatered, used directly as fertilizers. The ammonium hydroxide can be regenerated and recycled for use via thermal decomposition of ammonium bicarbonate, one of the products formed. There are alternative embodiments which entail stoichiometric scrubbing of nitrogen oxides and sulfur oxides with subsequent separate scrubbing of carbon dioxide.

  5. Controlled epitaxial graphene growth within removable amorphous carbon corrals

    SciTech Connect (OSTI)

    Palmer, James; Hu, Yike; Hankinson, John; Guo, Zelei; Heer, Walt A. de [School of Physics, Georgia Institute of Technology, 837 State St. NW, Atlanta, Georgia 30332 (United States); Kunc, Jan [School of Physics, Georgia Institute of Technology, 837 State St. NW, Atlanta, Georgia 30332 (United States); Faculty of Mathematics and Physics, Institute of Physics, 12116 Prague (Czech Republic); Berger, Claire [School of Physics, Georgia Institute of Technology, 837 State St. NW, Atlanta, Georgia 30332 (United States); Université Grenoble Alpes/CNRS—Institut Néel, BP166, Grenoble Cedex 9 38042 (France)

    2014-07-14T23:59:59.000Z

    We address the question of control of the silicon carbide (SiC) steps and terraces under epitaxial graphene on SiC and demonstrate amorphous carbon (aC) corrals as an ideal method to pin SiC surface steps. aC is compatible with graphene growth, structurally stable at high temperatures, and can be removed after graphene growth. For this, aC is first evaporated and patterned on SiC, then annealed in the graphene growth furnace. There at temperatures above 1200?°C, mobile SiC steps accumulate at the aC corral that provide effective step flow barriers. Aligned step free regions are thereby formed for subsequent graphene growth at temperatures above 1330?°C. Atomic force microscopy imaging supports the formation of step-free terraces on SiC with the step morphology aligned to the aC corrals. Raman spectroscopy indicates the presence of good graphene sheets on the step-free terraces.

  6. Removal of particulate solids from a hot hydrocarbon slurry oil

    SciTech Connect (OSTI)

    Rush, J.B.

    1991-12-31T23:59:59.000Z

    This patent describes a method of treating a hot, refractory hydrocarbon slurry oil having an initial boiling point at atmospheric pressure at least as high as 500{degrees} F and having a gravity of from about 5{degrees} API to about 15{degrees} API, to remove solid particulate material the slurry oil. It comprises mixing with the hot slurry oil, a hot vacuum reduced crude oil having an initial boiling point at atmospheric pressure which is higher than the initial boiling plant at atmospheric pressure of the slurry oil, and having an end point at atmospheric pressure which is higher than the end point at atmospheric pressure of the slurry oil; charging the mixture of hot vacuum reduced crude oil and hot slurry oil to a vacuum flash zone having a pressure of from 1.0 mm Hg to about 10.0 mm Hg and at the selected temperature of less than 700{degrees} F and more than 300{degrees} F to thereby vaporize a major portion of the slurry oil in the mixture, and to thereby transfer substantially all of the solid particulate material into the bottoms liquid remaining in the flash zone following the completion of the vaporization; recovering the overhead; and recovering the liquid bottoms containing the solid particulate material.

  7. Removal of nitrogen and sulfur from oil-shale

    SciTech Connect (OSTI)

    Olmstead, W.N.

    1986-01-28T23:59:59.000Z

    This patent describes a process for enhancing the removal of nitrogen and sulfur from oil-shale. The process consists of: (a) contacting the oil-shale with a sufficient amount of an aqueous base solution comprised of at least a stoichiometric amount of one or more alkali metal or alkaline-earth metal hydroxides based on the total amount of nitrogen and sulfur present in the oil-shale. Also necessary is an amount sufficient to form a two-phase liquid, solid system, a temperature from about 50/sup 0/C to about 350/sup 0/C., and pressures sufficient to maintain the solution in liquid form; (b) separating the effluents from the treated oil-shale, wherein the resulting liquid effluent contains nitrogen moieties and sulfur moieties from the oil-shale and any resulting gaseous effluent contains nitrogen moieties from the oil-shale, and (c) converting organic material of the treated oil-shale to shale-oil at a temperature from about 450/sup 0/C to about 550/sup 0/C.

  8. Overview of Contaminant Removal From Coal-Derived Syngas

    SciTech Connect (OSTI)

    Layne, A.W.; Alvin, M.A.; Granite, E.; Pennline, H.W.; Siriwardane, R.V.; Keairns, D.; Newby, R.A.

    2007-11-01T23:59:59.000Z

    Gasification is an important strategy for increasing the utilization of abundant domestic coal reserves. DOE envisions increased use of gasification in the United States during the next 20 years. As such, the DOE Gasification Technologies Program, including the FutureGen initiative, will strive to approach a near-zero emissions goal, with respect to multiple pollutants, such as sulfur, mercury, and nitrogen oxides. Since nearly one-third of anthropogenic carbon dioxide emissions are produced by coal-powered generation facilities, conventional coal-burning power plants, and advanced power generation plants, such as IGCC, present opportunities in which carbon can be removed and then permanently stored.
    Gas cleaning systems for IGCC power generation facilities have been effectively demonstrated and used in commercial operations for many years. These systems can reduce sulfur, mercury, and other contaminants in synthesis gas produced by gasifiers to the lowest level achievable in coal-based energy systems. Currently, DOE Fossil Energy's goals set for 2010 direct completion of R&D for advanced gasification combined cycle technology to produce electricity from coal at 45–50% plant efficiency. By 2012, completion of R&D to integrate this technology with carbon dioxide separation, capture, and sequestration into a zero-emissions configuration is targeted with a goal to provide electricity with less than a 10% increase in cost of electricity. By 2020, goals are set to develop zero-emissions plants that are fuel-flexible and capable of multi-product output and thermal efficiencies of over 60% with coal. These objectives dictate that it is essential to not only reduce contaminant emissions into the generated synthesis gas, but also to increase the process or system operating temperature to that of humid gas cleaning criteria conditions (150 to 370 °C), thus reducing the energy penalties that currently exist as a result of lowering process temperatures (?40 to 38 °C) with subsequent reheat to the required higher temperatures.
    From a historical perspective, the evolution of advanced syngas cleaning systems applied in IGCC and chemical and fuel synthesis plants has followed a path of configuring a series of individual cleaning steps, one for each syngas contaminant, each step controlled to its individual temperature and sorbent and catalyst needs. As the number of syngas contaminants of interest has increased (particulates, hydrogen sulfide, carbonyl sulfide, halides such as hydrogen chloride, ammonia, hydrogen cyanide, alkali metals, metal carbonyls, mercury, arsenic, selenium, and cadmium) and the degree of syngas cleaning has become more severe, the potential feasibility of advanced humid gas cleaning has diminished. A focus on multi-contaminant syngas cleaning is needed to enhance the potential cost savings, and performance of humid gas cleaning will focus on multi-contaminant syngas cleaning. Groups of several syngas contaminants to be removed simultaneously need to be considered, resulting in significant gas cleaning system intensification. Intensified, multi-contaminant cleaning processes need to be devised and their potential performance characteristics understood through small-scale testing, conceptual design evaluation, and scale-up assessment with integration into the power generation system. Results of a 1-year study undertaken by DOE/NETL are presented to define improved power plant configurations and technology for advanced multi-contaminant cleanup options.

  9. SULFURIC ACID REMOVAL PROCESS EVALUATION: SHORT-TERM RESULTS

    SciTech Connect (OSTI)

    Gary M. Blythe; Richard McMillan

    2002-03-04T23:59:59.000Z

    The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. Sulfuric acid controls are becoming of increasing interest to utilities with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species, a precursor to acid aerosol/condensable emissions, and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of SCR for NOX control on some coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project is testing the effectiveness of furnace injection of four different calcium- and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents have been tested during four one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant units. One of the sorbents tested was a magnesium hydroxide slurry produced from a wet flue gas desulfurization system waste stream, from a system that employs a Thiosorbic{reg_sign} Lime scrubbing process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles into the front wall of upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests. The longer-term tests are being conducted to confirm the effectiveness of the sorbents tested over extended operation and to determine balance-of-plant impacts. This reports presents the results of the short-term tests; the long-term test results will be reported in a later document. The short-term test results showed that three of the four reagents tested, dolomite powder, commercial magnesium hydroxide slurry, and byproduct magnesium hydroxide slurry, were able to achieve 90% or greater removal of sulfuric acid compared to baseline levels. The molar ratio of alkali to flue gas sulfuric acid content (under baseline conditions) required to achieve 90% sulfuric acid removal was lowest for the byproduct magnesium hydroxide slurry. However, this result may be confounded because this was the only one of the three slurries tested with injection near the top of the furnace across from the pendant superheater platens. Injection at the higher level was demonstrated to be advantageous for this reagent over injection lower in the furnace, where the other slurries were tested.

  10. SULFURIC ACID REMOVAL PROCESS EVALUATION: SHORT-TERM RESULTS

    SciTech Connect (OSTI)

    Gary M. Blythe; Richard McMillan

    2002-02-04T23:59:59.000Z

    The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. Sulfuric acid controls are becoming of increasing interest to utilities with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species, a precursor to acid aerosol/condensable emissions, and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of SCR for NO{sub x} control on some coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project is testing the effectiveness of furnace injection of four different calcium- and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents have been tested during four one- to two-week tests conducted on two First Energy Bruce Mansfield Plant units. One of the sorbents tested was a magnesium hydroxide slurry produced from a wet flue gas desulfurization system waste stream, from a system that employs a Thiosorbic{reg_sign} Lime scrubbing process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles into the front wall of upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests. The longer-term tests are being conducted to confirm the effectiveness of the sorbents tested over extended operation and to determine balance-of-plant impacts. This reports presents the results of the short-term tests; the long-term test results will be reported in a later document. The short-term test results showed that three of the four reagents tested, dolomite powder, commercial magnesium hydroxide slurry, and byproduct magnesium hydroxide slurry, were able to achieve 90% or greater removal of sulfuric acid compared to baseline levels. The molar ratio of alkali to flue gas sulfuric acid content (under baseline conditions) required to achieve 90% sulfuric acid removal was lowest for the byproduct magnesium hydroxide slurry. However, this result may be confounded because this was the only one of the three slurries tested with injection near the top of the furnace across from the pendant superheater platens. Injection at the higher level was demonstrated to be advantageous for this reagent over injection lower in the furnace, where the other slurries were tested.

  11. Methods and apparatus for removal and control of material in laser drilling of a borehole

    DOE Patents [OSTI]

    Rinzler, Charles C; Zediker, Mark S; Faircloth, Brian O; Moxley, Joel F

    2014-01-28T23:59:59.000Z

    The removal of material from the path of a high power laser beam during down hole laser operations including drilling of a borehole and removal of displaced laser effected borehole material from the borehole during laser operations. In particular, paths, dynamics and parameters of fluid flows for use in conjunction with a laser bottom hole assembly.

  12. Method for combined removal of mercury and nitrogen oxides from off-gas streams

    DOE Patents [OSTI]

    Mendelsohn, Marshall H. (Downers Grove, IL); Livengood, C. David (Lockport, IL)

    2006-10-10T23:59:59.000Z

    A method for removing elemental Hg and nitric oxide simultaneously from a gas stream is provided whereby the gas stream is reacted with gaseous chlorinated compound to convert the elemental mercury to soluble mercury compounds and the nitric oxide to nitrogen dioxide. The method works to remove either mercury or nitrogen oxide in the absence or presence of each other.

  13. Balloon Dilatation: A Helpful Technique for Removal of a Stuck Dialysis Line

    SciTech Connect (OSTI)

    Farooq, Ammad, E-mail: faroamm@aol.com; Jones, Vaughan, E-mail: Vaughan.jones@wales.nhs.uk; Agarwal, Sanjay, E-mail: sanjay.agarwal@wales.nhs.uk [Wrexham Maelor Hospital, Betsi Cadwaladr University Health Board, Department of Radiology (United Kingdom)

    2012-12-15T23:59:59.000Z

    We describe a useful technique for the removal of an irretrievable/stuck long-term intravenous catheter. The alternative would have meant removing it surgically or snaring it in a case of extremely difficult venous access. The process we used was effective in this particular case.

  14. Organic and nitrogen removal from landfill leachate in aerobic granular sludge sequencing batch reactors

    SciTech Connect (OSTI)

    Wei Yanjie [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Key Laboratory of Environmental Protection in Water Transport Engineering Ministry of Communications, Tianjin Research Institute of Water Transport Engineering, Tianjin 300456 (China); Ji Min, E-mail: jmtju@yahoo.cn [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Li Ruying [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Qin Feifei [Tianjin Tanggu Sino French Water Supply Co. Ltd., Tianjin 300450 (China)

    2012-03-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Aerobic granular sludge SBR was used to treat real landfill leachate. Black-Right-Pointing-Pointer COD removal was analyzed kinetically using a modified model. Black-Right-Pointing-Pointer Characteristics of nitrogen removal at different ammonium inputs were explored. Black-Right-Pointing-Pointer DO variations were consistent with the GSBR performances at low ammonium inputs. - Abstract: Granule sequencing batch reactors (GSBR) were established for landfill leachate treatment, and the COD removal was analyzed kinetically using a modified model. Results showed that COD removal rate decreased as influent ammonium concentration increasing. Characteristics of nitrogen removal at different influent ammonium levels were also studied. When the ammonium concentration in the landfill leachate was 366 mg L{sup -1}, the dominant nitrogen removal process in the GSBR was simultaneous nitrification and denitrification (SND). Under the ammonium concentration of 788 mg L{sup -1}, nitrite accumulation occurred and the accumulated nitrite was reduced to nitrogen gas by the shortcut denitrification process. When the influent ammonium increased to a higher level of 1105 mg L{sup -1}, accumulation of nitrite and nitrate lasted in the whole cycle, and the removal efficiencies of total nitrogen and ammonium decreased to only 35.0% and 39.3%, respectively. Results also showed that DO was a useful process controlling parameter for the organics and nitrogen removal at low ammonium input.

  15. Alternatives Generation and Analysis for Heat Removal from High Level Waste Tanks

    SciTech Connect (OSTI)

    WILLIS, W.L.

    2000-06-15T23:59:59.000Z

    This document addresses the preferred combination of design and operational configurations to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. An interim decision for the preferred method to remove the heat from the high-level waste tanks during waste feed delivery operations is presented herein.

  16. Biologically-based signal processing system applied to noise removal for signal extraction

    DOE Patents [OSTI]

    Fu, Chi Yung; Petrich, Loren I.

    2004-07-13T23:59:59.000Z

    The method and system described herein use a biologically-based signal processing system for noise removal for signal extraction. A wavelet transform may be used in conjunction with a neural network to imitate a biological system. The neural network may be trained using ideal data derived from physical principles or noiseless signals to determine to remove noise from the signal.

  17. Effect of Xylan and Lignin Removal by Batch and Flowthrough Pretreatment

    E-Print Network [OSTI]

    California at Riverside, University of

    Effect of Xylan and Lignin Removal by Batch and Flowthrough Pretreatment on the Enzymatic for pretreating cellulosic biomass, including higher hemicellulose sugar yields, enhanced cellulose digestibility understand these trade-offs, comparative data are reported on xylan and lignin removal and enzymatic

  18. Removing systematic noise from lightcurves A discussion of past approaches and potential future directions

    E-Print Network [OSTI]

    Wolfe, Patrick J.

    two different methods: KMEANS and hierarchical clustering. Gopalan, Giri Removing "systematic" noise from lightcurves #12;TFA: KMEANS clustering Initialize K random points in Rn as centers. Assign each" noise from lightcurves #12;TFA: KMEANS clustering Gopalan, Giri Removing "systematic" noise from

  19. Removable Urban Pavements: An innovative, sustainable technology Journal: International Journal of Pavement Engineering

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Removable Urban Pavements: An innovative, sustainable technology Journal: International Journal of Pavement Engineering URL: http://mc.manuscriptcentral.com/gpav E-mail: IJPE.editor@citg.tudelft.nl, alqadi@uiuc.edu Removable Urban Pavements: An innovative, sustainable technology François de Larrard1, Thierry Sedran2, Jean

  20. RECYCLING AND REMOVAL OF OFFSHORE WIND TURBINES AN INTERACTIVE METHOD FOR REDUCTION OF NEGATIVE ENVIRONMENTAL EFFECTS

    E-Print Network [OSTI]

    phases of new wind turbines. There are plans about offshore wind farms in many countries e.g. in northernRECYCLING AND REMOVAL OF OFFSHORE WIND TURBINES ­ AN INTERACTIVE METHOD FOR REDUCTION OF NEGATIVE and an analysis of future removal and recycling processes of offshore wind turbines. The method is process

  1. Method for the removal of elemental mercury from a gas stream

    DOE Patents [OSTI]

    Mendelsohn, Marshall H. (Downers Grove, IL); Huang, Hann-Sheng (Darien, IL)

    1999-01-01T23:59:59.000Z

    A method is provided to remove elemental mercury from a gas stream by reacting the gas stream with an oxidizing solution to convert the elemental mercury to soluble mercury compounds. Other constituents are also oxidized. The gas stream is then passed through a wet scrubber to remove the mercuric compounds and oxidized constituents.

  2. Method for the removal of elemental mercury from a gas stream

    DOE Patents [OSTI]

    Mendelsohn, M.H.; Huang, H.S.

    1999-05-04T23:59:59.000Z

    A method is provided to remove elemental mercury from a gas stream by reacting the gas stream with an oxidizing solution to convert the elemental mercury to soluble mercury compounds. Other constituents are also oxidized. The gas stream is then passed through a wet scrubber to remove the mercuric compounds and oxidized constituents. 7 figs.

  3. Removal of Separable Organic From Tank 241-C-103 Scoping Study

    SciTech Connect (OSTI)

    KOCH, M.R.

    2000-05-16T23:59:59.000Z

    This study is based on previous evaluations/proposals for removing the floating organic layer in C-103. A practical method is described with assumptions, cost and schedule estimates, and risks. Proposed operational steps include bulk organic removal, phase separation, organic washing and offsite disposal, followed by an in-situ polishing process.

  4. RE-ASSEMBLING HETCH HETCHY: Water Supply Implications of Removing O'Shaughnessy Dam

    E-Print Network [OSTI]

    Lund, Jay R.

    1 RE-ASSEMBLING HETCH HETCHY: Water Supply Implications of Removing O'Shaughnessy Dam Sarah E. Null The Hetch Hetchy System provides San Francisco with much of its water supply. O'Shaughnessy Dam is one of its conveyance. Removing O'Shaughnessy Dam has gained interest for restoring Hetch Hetchy Valley

  5. LEARNING FROM DAM REMOVAL MONITORING: CHALLENGES TO SELECTING EXPERIMENTAL DESIGN AND ESTABLISHING SIGNIFICANCE OF OUTCOMES

    E-Print Network [OSTI]

    Tullos, Desiree

    LEARNING FROM DAM REMOVAL MONITORING: CHALLENGES TO SELECTING EXPERIMENTAL DESIGN AND ESTABLISHING, California, USA ABSTRACT As the decommissioning of dams becomes a common restoration technique, decisions about dam removals must be based on sound predictions of expected outcomes. Results of past and ongoing

  6. Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater

    E-Print Network [OSTI]

    Shawabkeh, Reyad A.

    Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater Reyad; available online 29 October 2003 Abstract A by-product fly ash from oil shale processing was converted shale; Ash; Zeolite; Cadmium and lead removal 1. Introduction Oil shale exists in Jordan with large

  7. DOWNSTREAM CHANNEL CHANGES AFTER A SMALL DAM REMOVAL: USING AERIAL PHOTOS AND MEASUREMENT ERROR FOR CONTEXT;

    E-Print Network [OSTI]

    Tullos, Desiree

    DOWNSTREAM CHANNEL CHANGES AFTER A SMALL DAM REMOVAL: USING AERIAL PHOTOS AND MEASUREMENT ERROR to assess downstream channel changes associated with a small dam removal. The Brownsville Dam, a 2.1 m tall downstream from the dam and in an upstream control reach using aerial photos (1994­2008) and in the field

  8. Results from evaporation tests to support the MWTF heat removal system design

    SciTech Connect (OSTI)

    Crea, B.A.

    1994-12-22T23:59:59.000Z

    An experimental tests program was conducted to measure the evaporative heat removal from the surface of a tank of simulated waste. The results contained in this report constitute definition design data for the latest heat removal function of the MWTF primary ventilation system.

  9. Removal of Barriers to the Use of Renewable Energy Sources for Rural Electrification in Chile

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad CatĂłlica de Chile)

    in Latin America, a series of interviews with different agents involved in the rural electrificationRemoval of Barriers to the Use of Renewable Energy Sources for Rural Electrification in Chile Forcano 2 Removal of Barriers to the Use of Renewable Energy Sources for Rural Electrification in Chile

  10. Nitrogen removal via nitrite in a sequencing batch reactor treating sanitary landfill leachate

    E-Print Network [OSTI]

    Ammonium rich wastewater Fuzzy logic Biological nutrient removal a b s t r a c t The present paper reports and biological pro- cesses (Lema et al., 1988). Among several biological treatment sys- tems, sequencing batch confirm the effectiveness of the nitrite route for nitrogen removal optimisation in leachate treatment

  11. ORIGINAL RESEARCH PAPER Removal of selenite from wastewater using microbial fuel

    E-Print Network [OSTI]

    Tullos, Desiree

    generation Á Microbial fuel cell Á Selenium removal Á Wastewater treatment Introduction Selenium (SeORIGINAL RESEARCH PAPER Removal of selenite from wastewater using microbial fuel cells Tunc Catal Ć; Lenz T. Catal Á H. Liu (&) Department of Biological and Ecological Engineering, Oregon State University

  12. ACCEPTED BY WATER ENVIRONMENT RESEARCH ODOR AND VOC REMOVAL FROM WASTEWATER TREATMENT PLANT

    E-Print Network [OSTI]

    ACCEPTED BY WATER ENVIRONMENT RESEARCH _______ ODOR AND VOC REMOVAL FROM WASTEWATER TREATMENT PLANT of biofilters for sequential removal of H2S and VOCs from wastewater treatment plant waste air. The biofilter of VOCs. In Europe, biological treatment in biofilters has rapidly been gaining ground as a relatively

  13. Removal of Selenium from Wastewater using ZVI and Hybrid ZVI/Iron Oxide Process

    E-Print Network [OSTI]

    Yang, Zhen

    2012-12-20T23:59:59.000Z

    . The hZVI system process is a novel chemical treatment that has shown valuable potential for removing several heavy metals from wastewater. This study concluded that at bench scale, the removal efficiency of SeCN- in the wastewater is over 99% with 2...

  14. Volunteer Potato Density Influences Critical Time of Weed Removal in Bulb Onion

    E-Print Network [OSTI]

    Sims, Gerald K.

    Volunteer Potato Density Influences Critical Time of Weed Removal in Bulb Onion Martin M. Williams II, Corey V. Ransom, and W. Mack Thompson* Volunteer potato is highly competitive with onion and few control tactics are effective for removing this weed from an onion crop. Both volunteer potato density

  15. Enhancing phosphorus removal in constructed wetlands with ochre from mine drainage treatment

    E-Print Network [OSTI]

    Heal, Kate

    Enhancing phosphorus removal in constructed wetlands with ochre from mine drainage treatment K in a wastewater constructed wetland (175 m2 area) in Berwickshire, UK. The hydraulic and treatment performance wetlands are widely used for tertiary wastewater treatment but, although effective for nitrogen removal

  16. Leach test of cladding removal waste grout using Hanford groundwater

    SciTech Connect (OSTI)

    Serne, R.J.; Martin, W.J.; Legore, V.L.

    1995-09-01T23:59:59.000Z

    This report describes laboratory experiments performed during 1986-1990 designed to produce empirical leach rate data for cladding removal waste (CRW) grout. At the completion of the laboratory work, funding was not available for report completion, and only now during final grout closeout activities is the report published. The leach rates serve as inputs to computer codes used in assessing the potential risk from the migration of waste species from disposed grout. This report discusses chemical analyses conducted on samples of CRW grout, and the results of geochemical computer code calculations that help identify mechanisms involved in the leaching process. The semi-infinite solid diffusion model was selected as the most representative model for describing leaching of grouts. The use of this model with empirically derived leach constants yields conservative predictions of waste release rates, provided no significant changes occur in the grout leach processes over long time periods. The test methods included three types of leach tests--the American Nuclear Society (ANS) 16.1 intermittent solution exchange test, a static leach test, and a once-through flow column test. The synthetic CRW used in the tests was prepared in five batches using simulated liquid waste spiked with several radionuclides: iodine ({sup 125}I), carbon ({sup 14}C), technetium ({sup 99}Tc), cesium ({sup 137}Cs), strontium ({sup 85}Sr), americium ({sup 241}Am), and plutonium ({sup 238}Pu). The grout was formed by mixing the simulated liquid waste with dry blend containing Type I and Type II Portland cement, class F fly ash, Indian Red Pottery clay, and calcium hydroxide. The mixture was allowed to set and cure at room temperature in closed containers for at least 46 days before it was tested.

  17. Magnetic mesoporous materials for removal of environmental wastes

    SciTech Connect (OSTI)

    Kim, Byoung Chan; Lee, Jinwoo; Um, Wooyong; Kim, Jaeyun; Joo, Jin; Lee, Jin Hyung; Kwak, Ja Hun; Kim, Jae Hyun; Lee, Changha; Lee, Hongshin; Addleman, Raymond S.; Hyeon, Taeghwan; Gu, Man Bock; Kim, Jungbae

    2011-09-15T23:59:59.000Z

    We have synthesized two different magnetic mesoporous materials that can be easily separated from aqueous solutions by applying a magnetic field. Synthesized magnetic mesoporous materials, Mag-SBA-15 (magnetic ordered mesoporous silica) and Mag-OMC (magnetic ordered mesoporous carbon), have a high loading capacity of contaminants due to high surface area of the supports and high magnetic activity due to the embedded iron oxide particles. Application of surface-modified Mag-SBA-15 was investigated for the collection of mercury from water. The mercury adsorption using Mag-SBA-15 was rapid during the initial contact time and reached a steady-state condition, with an uptake of approximately 97% after 7 hours. Application of Mag-OMC for collection of organics from water, using fluorescein as an easily trackable model analyte, was explored. The fluorescein was absorbed into Mag-OMC within minutes and the fluorescent intensity of solution was completely disappeared after an hour. In another application, Mag-SBA-15 was used as a host of tyrosinase, and employed as recyclable catalytic scaffolds for tyrosinase-catalyzed biodegradation of catechol. Tyrosinase aggregates in Mag-SBA-15, prepared in a two step process of tyrosinase adsorption and crosslinking, could be used repeatedly for catechol degradation with no serious loss of enzyme activity. Considering these results of cleaning up water from toxic inorganic, organic and biochemical contaminants, magnetic mesoporous materials have a great potential to be employed for the removal of environmental contaminants and potentially for the application in large-scale wastewater treatment plants.

  18. Removal of water from a shallow bath under laser pulse irradiation

    SciTech Connect (OSTI)

    Antonova, L I; Gladush, G G; Glova, A F; Drobyazko, S V; Krasyukov, A G; Mainashev, V S; Rerikh, V L; Taran, M D [State Research Center of Russian Federation 'Troitsk Institute for Innovation and Fusion Research', Troitsk, Moscow Region (Russian Federation)

    2011-05-31T23:59:59.000Z

    An experimental investigation was made of water removal from a shallow bath under the action of a CO{sub 2}-laser radiation pulse focused to a spot of size substantially smaller than the bath length. We showed that the specific expenditure of energy is determined by the intensity of laser radiation at the water surface for different values of the focal spot area and pulse duration. The removal dynamics was studied by single-frame photography technique. It was determined that the water is removed layerwise only from the walls of the cavern, which expands in the horizontal direction upon cessation of the radiation pulse. Two-dimensional numerical simulations were made of the water removal, and a mechanism was proposed to explain the experimentally observed removal pattern. (interaction of laser radiation with matter)

  19. SLAG CHARACTERIZATION AND REMOVAL USING PULSE DETONATION TECHNOLOGY DURING COAL GASIFICATION

    SciTech Connect (OSTI)

    DR. DANIEL MEI; DR. JIANREN ZHOU; DR. PAUL O. BINEY; DR. ZIAUL HUQUE

    1998-07-30T23:59:59.000Z

    Pulse detonation technology for the purpose of removing slag and fouling deposits in coal-fired utility power plant boilers offers great potential. Conventional slag removal methods including soot blowers and water lances have great difficulties in removing slags especially from the down stream areas of utility power plant boilers. The detonation wave technique, based on high impact velocity with sufficient energy and thermal shock on the slag deposited on gas contact surfaces offers a convenient, inexpensive, yet efficient and effective way to supplement existing slag removal methods. A slight increase in the boiler efficiency, due to more effective ash/deposit removal and corresponding reduction in plant maintenance downtime and increased heat transfer efficiency, will save millions of dollars in operational costs. Reductions in toxic emissions will also be accomplished due to reduction in coal usage. Detonation waves have been demonstrated experimentally to have exceptionally high shearing capability, important to the task of removing slag and fouling deposits. The experimental results describe the parametric study of the input parameters in removing the different types of slag and operating condition. The experimental results show that both the single and multi shot detonation waves have high potential in effectively removing slag deposit from boiler heat transfer surfaces. The results obtained are encouraging and satisfactory. A good indication has also been obtained from the agreement with the preliminary computational fluid dynamics analysis that the wave impacts are more effective in removing slag deposits from tube bundles rather than single tube. This report presents results obtained in effectively removing three different types of slag (economizer, reheater, and air-heater) t a distance of up to 20 cm from the exit of the detonation tube. The experimental results show that the softer slags can be removed more easily. Also closer the slag to the exit of the detonation tube, the better are their removals. Side facing slags are found to shear off without breaking. Wave strength and slag orientation also has different effects on the chipping off of the slag. One of the most important results from this study is the observation that the pressure of the waves plays a vital role in removing slag. The wave frequency is also important after a threshold pressure level is attained.

  20. Energy distribution and computer modeled nozzle design in high pressure water jet coating removal

    SciTech Connect (OSTI)

    Blades, B. [Hobart Tafa Technologies Inc., Concord, NH (United States)

    1994-12-31T23:59:59.000Z

    Wider acceptance of water jet coating removal as an industrial process has created a demand to better understand the physical phenomena occurring during coating removal. This demand stems from both technical and process control concerns. Research on behavior of coating removal nozzles and high pressure jets in general provide the basis for the development of a mathematical model of rotating nozzle. The model finds uses in both process development and new equipment design. Data confirming the validity of the model has been generated and the need for further refinement of the model has been noted.

  1. Polymer formulation for removing hydrogen and liquid water from an enclosed space

    DOE Patents [OSTI]

    Shepodd, Timothy J. (Livermore, CA)

    2006-02-21T23:59:59.000Z

    This invention describes a solution to the particular problem of liquid water formation in hydrogen getters exposed to quantities of oxygen. Water formation is usually desired because the recombination reaction removes hydrogen without affecting gettering capacity and the oxygen removal reduces the chances for a hydrogen explosion once free oxygen is essentially removed. The present invention describes a getter incorporating a polyacrylate compound that can absorb up to 500% of its own weight in liquid water without significantly affecting its hydrogen gettering/recombination properties, but that also is insensitive to water vapor.

  2. Methods and apparatus for carbon dioxide removal from a fluid stream

    DOE Patents [OSTI]

    Wei, Wei (Mission Viejo, CA); Ruud, James Anthony (Delmar, NY); Ku, Anthony Yu-Chung (Rexford, NY); Ramaswamy, Vidya (Niskayuna, NY); Liu, Ke (Rancho Santa Margrita, CA)

    2010-01-19T23:59:59.000Z

    An apparatus for producing hydrogen gas wherein the apparatus includes a reactor. In one embodiment, the reactor includes at least two conversion-removal portions. Each conversion-removal portion comprises a catalyst section configured to convert CO in the stream to CO.sub.2 and a membrane section located downstream of and in flow communication with the catalyst section. The membrane section is configured to selectively remove the CO.sub.2 from the stream and to be in flow communication with a sweep gas.

  3. Composites for removing metals and volatile organic compounds and method thereof

    DOE Patents [OSTI]

    Coronado, Paul R. (Livermore, CA); Coleman, Sabre J. (Oakland, CA); Reynolds, John G. (San Ramon, CA)

    2006-12-12T23:59:59.000Z

    Functionalized hydrophobic aerogel/solid support structure composites have been developed to remove metals and organic compounds from aqueous and vapor media. The targeted metals and organics are removed by passing the aqueous or vapor phase through the composite which can be in molded, granular, or powder form. The composites adsorb the metals and the organics leaving a purified aqueous or vapor stream. The species-specific adsorption occurs through specific functionalization of the aerogels tailored towards specific metals and/or organics. After adsorption, the composites can be disposed of or the targeted metals and/or organics can be reclaimed or removed and the composites recycled.

  4. Please purchase 'e-PDF Creator' on http://www.e-pdfconverter.com to remove this message. Please purchase 'e-PDF Creator' on http://www.e-pdfconverter.com to remove this message.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Please purchase 'e-PDF Creator' on http://www.e-pdfconverter.com to remove this message. #12;Please purchase 'e-PDF Creator' on http://www.e-pdfconverter.com to remove this message. #12;Please purchase 'e-PDF Creator' on http://www.e-pdfconverter.com to remove this message. #12;Please purchase 'e-PDF Creator

  5. Standard practice for removal of uranium or plutonium, or both, for impurity assay in uranium or plutonium materials

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2006-01-01T23:59:59.000Z

    Standard practice for removal of uranium or plutonium, or both, for impurity assay in uranium or plutonium materials

  6. acid-gas removal systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    contamination control 12;10 Transfer of Graphite to Supersack (V) 12;11 Moving graphite pile Complete shipment of graphite to DOE's Nevada Test Site Removal of biological shield...

  7. adp-ribosylation removal revealed: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    contamination control 12;10 Transfer of Graphite to Supersack (V) 12;11 Moving graphite pile Complete shipment of graphite to DOE's Nevada Test Site Removal of biological shield...

  8. after-heat removal system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    contamination control 12;10 Transfer of Graphite to Supersack (V) 12;11 Moving graphite pile Complete shipment of graphite to DOE's Nevada Test Site Removal of biological shield...

  9. Removal of polycyclic aromatic hydrocarbons (PAHs) from sewage sludge by anaerobic degradation

    E-Print Network [OSTI]

    Removal of polycyclic aromatic hydrocarbons (PAHs) from sewage sludge by anaerobic degradation N nature of the polyaromatic hydrocarbons (PAHs) they are mostly bound to the sludge and escape aerobic

  10. HYDROGEN DISTILLATION AT THE DEUTERIUM REMOVAL UNIT OF MuCap EXPERIMENT

    E-Print Network [OSTI]

    Titov, Anatoly

    321 HYDROGEN DISTILLATION AT THE DEUTERIUM REMOVAL UNIT OF MuCap EXPERIMENT I.A. Alekseev, E for manufacturing of ultra pure protium from hydrogen [2]. A principle of hydrogen cryogenic distillation was used

  11. Process for the removal of tritium from the product solutions obtained by the Purex process

    SciTech Connect (OSTI)

    Bossche, A.V.; Olinger, R.

    1983-02-22T23:59:59.000Z

    A process for the removal of tritium from the product solutions obtained in the reprocessing of irradiated nuclear fuels by the Purex process comprising a plurality of series-connected extraction cycles having an organic solvent.

  12. Determining the removal effectiveness of flame retardants from drinking water treatment processes

    E-Print Network [OSTI]

    Lin, Joseph C. (Joseph Chris), 1981-

    2004-01-01T23:59:59.000Z

    Low concentrations of xenobiotic chemicals have recently become a concern in the surface water environment. The concern expands to drinking water treatment processes, and whether or not they remove these chemicals while ...

  13. Removal of 1,082-Ton Reactor Among Richland Operations Office...

    Broader source: Energy.gov (indexed) [DOE]

    cleanup in PFP so the plant can be torn down. Nearly 2,000 capsules of highly radioactive cesium and strontium need to be removed from water-filled storage basins and placed in dry...

  14. Processes for Removal and Immobilization of 14C, 129I, and 85Kr

    SciTech Connect (OSTI)

    Strachan, Denis M.; Bryan, Samuel A.; Henager, Charles H.; Levitskaia, Tatiana G.; Matyas, Josef; Thallapally, Praveen K.; Scheele, Randall D.; Weber, William J.; Zheng, Feng

    2009-10-05T23:59:59.000Z

    This is a white paper covering the results of a literature search and preliminary experiments on materials and methods to remove and immobilize gaseous radionuclided that come from the reprocessing of spent nuclear fuel.

  15. An investigation of urea decomposition and selective non-catalytic removal of nitric oxide with urea 

    E-Print Network [OSTI]

    Park, Yong Hun

    2004-09-30T23:59:59.000Z

    The use of urea (NH2CONH2) to remove nitric oxide (NO) from exhaust streams was investigated using a laboratory laminar-flow reactor. The experiments used a number of gas compositions to simulate different combustion exhaust ...

  16. Cleaning method for removing sulfur containing deposits from coke oven gas lines

    SciTech Connect (OSTI)

    Sumansky, L.W.

    1985-04-09T23:59:59.000Z

    Process for removing hard to remove deposits containing elemental sulfur and multivalent compounds from a surface comprising contacting the deposits with a cleaning composition comprising (a) a major portion of aliphatic amine, (b) water, and (c) an oxidizing or reducing agent, allowing the cleaning composition to remain in contact with the deposits for sufficient time to allow sufficient dissolution of said solid to take place to allow removal of the deposits to take place, and applying such force as is necessary to remove these partially dissolved deposits from the surface. A preferred cleaning composition comprises from about 60 to about 90 volume percent aliphatic amine, from about 10 to about 40 volume percent water, and from about 1 to about 3 weight percent of a moderate oxidizing or reducing agent, such percentages based on the total composition.

  17. Post-project appraisal of lower Ritchie Creek dam removal, Napa County

    E-Print Network [OSTI]

    Daniels, Jubilee; Pagano, Laura

    2004-01-01T23:59:59.000Z

    Appraisal of Lower Ritchie Creek Dam Removal, Napa CountyApril 2004 Abstract Ritchie Creek drains 2.6 square milesdam was built in 1912 on Ritchie Creek to facilitate water

  18. Perspectives on Dam Removal: York Creek Dam and the Water Framework Directive

    E-Print Network [OSTI]

    Lawrence, Justin E; Pollak, Josh D; Richmond, Sarah F

    2008-01-01T23:59:59.000Z

    3. Long-profile of York Creek (figure adapted from report byFigure 5. Facies map for York Creek about 100 ft downstreamon Dam Removal: York Creek Dam and the Water Framework

  19. The effect of fan and heat sink design on heat removal from microprocessor chips

    E-Print Network [OSTI]

    Baltrip, Kedra G

    1997-01-01T23:59:59.000Z

    Air flow and heat removal characteristics for fan/heat sink designs used to cool Pentium class processors were analyzed. Five designs were tested for fan speed, differential and static nozzle pressure, static fan pressure, fan input current...

  20. Evaluation of a shoreline cleaner for enhanced removal of petroleum from a wetland

    E-Print Network [OSTI]

    Bizzell, Cydney Jill

    2000-01-01T23:59:59.000Z

    , and bioaugmentation. This latest phase of research (1998) is a continuation of studies to evaluate non-invasive oil removal techniques from sensitive wetland environments. For this controlled oil release experiment, 21 plots were divided into three treatment regimes...