National Library of Energy BETA

Sample records for kazakhstan kyrgyzstan moldova

  1. Kyrgyzstan: Problems, opportunities

    SciTech Connect (OSTI)

    Banks, J.; Ebel, R. )

    1993-03-15

    Kyrgyzstan is a country of 4.3 million persons in Central Asia with Kazakhstan bordering to the north, China to the southeast, Uzbekistan to the west, and Tajikistan to the southwest. Among Kyrgyzstan's major ethnic groups, Kyrgyz account of 52% of the population, Russians 22%, and Uzbeks 13%. Since independence Sept. 7, 1991, from the Soviet Union, Kyrgyzstan has found itself in a very difficult position. The situation in the energy sector is particularly strained. Oil and gas production are minimal, there are no refineries in the country, and all petroleum products are brought in from Russia, Kazakhstan, and Uzbekistan. Natural gas in supplied from Turkmenistan. Although there are domestic reserves of coal, imports from Russia and Kazakhstan account for 55% of supply. However, there is significant hydropower potential in Kyrgyzstan. Energy officials have clearly identified development of this resource as the path to energy independence and economic progress. An overview of Kyrgyzstan's energy sector is given in this article for crude oil, natural gas, coal resources, electrical power, and investment opportunities.

  2. Coal resources of Kyrgyzstan

    SciTech Connect (OSTI)

    Landis, E.R.; Bostick, N.H.; Gluskoter, H.J.; Johnson, E.A.; Harrison, C.D.; Huber, D.W.

    1995-12-31

    The rugged, mountainous country of Kyrgyzstan contains about one-half of the known coal resources of central Asia (a geographic and economic region that also includes Uzbekistan, Tadjikistan and Turkmenistan). Coal of Jurassic age is present in eight regions in Kyrgyzstan in at least 64 different named localities. Significant coal occurrences of about the same age are present in the central Asian countries of Kazakhstan, China, and Russia. Separation of the coal-bearing rocks into individual deposits results more than earth movements before and during formation of the present-day mountains and basins of the country than from deposition in separate basins.Separation was further abetted by deep erosion and removal of the coal-bearing rocks from many areas, followed by covering of the remaining coal-bearing rocks by sands and gravels of Cenozoic age. The total resources of coal in Kyrgyzstan have been reported as about 30 billion tons. In some of the reported localities, the coal resources are known and adequately explored. In other parts of the republic, the coal resources are inadequately understood or largely unexplored. The resource and reserve inventory of Kyrgyzstan is at best incomplete; for some purposes, such as short-term local and long-range national planning, it may be inadequate. Less than 8% of the total estimated resources are categorized as recoverable reserves, and the amount that is economically recoverable is unknown. The coal is largely of subbituminous and high-volatile C bituminous rank, most has low and medium ash and sulfur contents, and coals of higher rank (some with coking qualities) are present in one region. It is recommended that appropriate analyses and tests be made during planning for utilization.

  3. Moldova National Inventory Report - Lessons Learned | Open Energy...

    Open Energy Info (EERE)

    Moldova National Inventory Report - Lessons Learned Jump to: navigation, search Name Moldova Second National Inventory Report - Lessons Learned AgencyCompany Organization United...

  4. Moldova: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Moldova Population Unavailable GDP 8,738,000,000 Energy Consumption 0.14 Quadrillion Btu 2-letter ISO code MD 3-letter ISO code MDA Numeric ISO...

  5. Compiling RES Legislation for Kazakhstan | Open Energy Information

    Open Energy Info (EERE)

    for Kazakhstan1 Compiling RES Legislation for Kazakhstan Potential of renewable energy sources usage in the Republic of Kazakhstan Report on Benefits of RES to Energy...

  6. Kazakhstan | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Kazakhstan NNSA Hosts International Nuclear Forensics Workshop with Participants from Eight Countries WASHINGTON, D.C. - During May 11-22, the National Nuclear Security Administration's (NNSA) Nuclear Smuggling Detection and Deterrence program held a hands-on nuclear forensics course at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington. The "International Training Course on... US, Kazakhstan Cooperate to Eliminate Highly Enriched Uranium WASHINGTON D.C - The

  7. Moldova-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  8. Kazakhstan's potential provides Western opportunities

    SciTech Connect (OSTI)

    Darnell, R. )

    1993-01-01

    While crude oil production continues to drop in the Russian Federation at a rate of 15% to 20% per year, Kazakhstan's output rose from 440,000 bopd in 1991 to 446,000 bopd, as of November 1992. Much of this increase was exported to the Russian Federation to supplement the latter's declining production. while Kazakhstan received needed Russian goods in exchange for this oil, it isn't getting the hard currency that will be required to upgrade its petroleum industry. This is a serious problem for Kazakh officials, since they are counting on revenues from petroleum exports to invigorate their overall plan for economic growth in this newly independent country. In order to convert Kazakhstan's hydrocarbon potential into economic reality, two critical issues must be addressed immediately. First, Kazakhstan must develop a tax and minerals law that gives multinational petroleum companies an incentive to invest in opening a dedicated crude oil export route through Russia, and at least one alternate export route to the Caspian Sea or Persian Gulf. At present, even the most successful petroleum venture inside Kazakhstan would have to weave its way through the Russian bureaucracy to utilize that existing and inadequate export pipeline system. This quandary, of course, has recently become the undoing of several Western petroleum operations that have managed to actually produce exportable oil inside the Russian Federation itself, but they can't get it out. In addition, three other variables should be considered by any party that is evaluating Kazakhstan as a future area (see map for current fields) of interest for petroleum operations. These are political stability, field operating conditions, and the country's natural gas crisis. Each of these factors, though not as critical as the legal regime and export access, can radically affect how an operator might approach negotiating the terms of its particular project.

  9. FSU/Eastern Europe: Russia spearheads small upturn

    SciTech Connect (OSTI)

    1996-08-01

    The paper discusses the political and legal scene in Russia, domestic restructuring, exploration, drilling, development by Western companies and by Russian companies, and production. Exploration and development in Azerbaijan, Kazakhstan, Turkmenistan, Ukraine, Armenia, Belarus, Georgia, Kyrgyzstan, Latvia, Lithuania, Moldova, Tajikistan, Uzbekistan, Albania, Bulgaria, Croatia, Czech Republic, Hungary, Poland, Romania, Slovakia, Slovenia, and Serbia are also discussed.

  10. Renewable Energy and Energy Efficiency Seminar in Kazakhstan...

    Open Energy Info (EERE)

    Seminar in Kazakhstan Jump to: navigation, search Logo: Renewable Energy and Energy Efficiency Seminar in Kazakhstan Name Renewable Energy and Energy Efficiency Seminar in...

  11. Kazakhstan Climate Change Coordination Center | Open Energy Informatio...

    Open Energy Info (EERE)

    Kazakhstan Climate Change Coordination Center Jump to: navigation, search Name: Kazakhstan Climate Change Coordination Center Address: 48 Abai Street, Room 102 Astana (473000)...

  12. Kazakhstan - United States Special Commission on Energy Partnership |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Kazakhstan - United States Special Commission on Energy Partnership Kazakhstan - United States Special Commission on Energy Partnership April 6, 2016 - 5:12pm Addthis On April 6, 2016, the Kazakhstan - United States Energy Partnership Commission held a meeting at the Energy Ministry of the Republic of Kazakhstan, co-chaired by Energy Minister K.A. Bosumbayev and Secretary of Energy, Dr. Ernest Moniz. The Republic of Kazakhstan was represented at the session by officials

  13. Kazakhstan

    National Nuclear Security Administration (NNSA)

    using alpha and gamma spectrometry, and consulting nuclear forensics library databases to compare evidence samples with domestic holdings. The participants also had the...

  14. Request for Proposal No. DE-SOL-0008418 Section J, Appendix D

    National Nuclear Security Administration (NNSA)

    D SECTION J APPENDIX D SENSITIVE FOREIGN NATIONS CONTROL 1. Pursuant to the Contract Section I Clause 952.204-71 entitled "Sensitive Foreign Nations Controls," "sensitive foreign nations" is one of the countries listed below: Algeria Armenia Azerbaijan Belarus China (People's Republic of China) Cuba Georgia Hong Kong India Iran Iraq Israel Kazakhstan Kyrgyzstan Libya Moldova North Korea (Democratic People's Republic of) Pakistan Russia Sudan Syria Taiwan Tajikistan

  15. Microsoft Word - SEC J_Appendix D - Sensitive Foreign Nations Control

    National Nuclear Security Administration (NNSA)

    D, Page 1 SECTION J APPENDIX D SENSITIVE FOREIGN NATIONS CONTROL 1. Pursuant to the Contract Section I Clause entitled "Sensitive Foreign Nations Controls," "sensitive foreign nations" is one of the countries listed below: Algeria Armenia Azerbaijan Belarus China (People's Republic of China) Cuba Georgia Hong Kong India Iran Iraq Israel Kazakhstan Kyrgyzstan Libya Moldova North Korea (Democratic People's Republic of) Pakistan Russia Sudan Syria Taiwan Tajikistan Turkmenistan

  16. Deputy Secretary Poneman Visits Kazakhstan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The United States and Kazakhstan also continue to strengthen their cooperation in international border security and law enforcement measures to deter, detect, and interdict illicit ...

  17. U.S. DOE, Kazakhstan government launch aerial imaging project

    SciTech Connect (OSTI)

    Hamm, J.

    1997-10-01

    The US Department of Energy (DOE) and the Kazakhstan government have launched a breakthrough science and technology mission to use DOE technology developed to detect weapons proliferation to search for oil and mineral reserves in Kazakhstan. The Pacific Northwest National Laboratory is leading the research effort, which began in June. This mission to conduct airborne imaging flights over Kazakhstan is the result of a recently signed agreement between Pacific Northwest and Earth Search Sciences Inc., a remote sensing firm based in Idaho, to look for oil and mineral deposits in the Republic of Kazakhstan in central Asia. It is the first time this technology will be used outside the United States.

  18. United States Department of Energy and the Republic of Kazakhstan...

    National Nuclear Security Administration (NNSA)

    Department of Energy and the Republic of Kazakhstan Ministry of Energy Mark the Completion of the Packaging of the BN-350 Fast Breeder Reactor Spent Fuel | National Nuclear ...

  19. After Action Report - Kazakhstan NSDD July 2015

    SciTech Connect (OSTI)

    Fox, Caterina; Eppich, Gary; Kips, Ruth; Knight, Kim; Belian, Anthony; Gray, Paul; Canazaro, B.

    2015-07-25

    On Monday 20 July, Caterina Fox, Ruth Kips and Kim Knight were invited to participate in Kazakhstan's nuclear material inventory management working group meeting coordinated by Alexander Vasilliev as nuclear forensics subject matter experts. The meeting included participants from Kazakhstan's nuclear regulatory agency (CAESC, the Committee on Atomic and Energetic Supervision and Control) and 3 institutes 1. Institute of Nuclear Physics, INP (Almaty), 2. National Nuclear Center, NNC (Kurchatov), and 3. Ulba Metallurgical Plant, UMP (Oskemen). CAESC requested attendance of an MC&A expert, an IT Specialist, and a Physical Security Specialist from each site. The general meeting concerned considerations for creating unified or compatible systems for nuclear material inventory management. NSDD representatives provided an overview of nuclear forensics and presented considerations for developments of inventory management that might be synergistic with future consideration of development of a National Nuclear Forensics Library to support nuclear forensics investigations.

  20. U.S. and Kazakhstan Strengthen Energy Ties During Secretary Bodman...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    climate in Kazakhstan. Secretary Bodman arrived in Kazakhstan after visiting Pakistan where he took part in high-level meeting to discuss ways that the U.S. and Pakistan...

  1. U.S. and Kazakhstan Strengthen Energy Ties During Secretary Bodman's Visit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Kazakhstan Strengthen Energy Ties During Secretary Bodman's Visit U.S. and Kazakhstan Strengthen Energy Ties During Secretary Bodman's Visit March 14, 2006 - 11:51am Addthis Meets with President Nazarbayev to Discuss Regional Energy Security and Cooperation on Nonproliferation Efforts ASTANA , KAZAKHSTAN - U.S. Secretary of Energy Samuel W. Bodman today continued his four-nation visit in Astana, Kazakhstan. In Astana, the Secretary discussed opportunities for long-term

  2. Progress Toward Remediation of Uranium Tailings in Mailuu-Suu, Kyrgyzstan

    SciTech Connect (OSTI)

    Buckley, P B; Ranville, J; Honeyman, B D; Smith, D K; Rosenberg, N; Knapp, R B

    2003-07-09

    The town of Mailuu-Suu in Kyrgyzstan inherited 23 distinct tailings deposits from Soviet-Era uranium mining operations. Mailuu-Suu is located in the narrow landslide-prone valley of the Mailuu-Suu River about 25 km from the Uzbekistan border. Large-scale release of the radioactive tailings, as a result of landslides, could lead to irreversible contamination of the river and downstream areas. The Mailuu-Suu River is a tributary to the Syr-Darya River, the Fergana valley's main source of irrigation water. The Fergana Valley is a key agricultural region and major population center that spans Kyrgyzstan, Tajikistan, and Uzbekistan. The trans-boundary nature of the Mailuu-Suu tailings issue presents an opportunity for collaboration among these Central Asian states. A cooperative approach to addressing environmental issues such as Mailuu-Suu may contribute to the region's stability by facilitating peaceful associations. Experience from remediation of sites in the US under the Uranium Mill Tailings Remediation Action Project (UMTRA) will be useful in progressing toward remediation at Mailuu-Suu.

  3. USAID-Central Asian Republics Climate Activities | Open Energy...

    Open Energy Info (EERE)

    ourwork Country Kazakhstan, Uzbekistan, Turkmenistan, Kyrgyzstan, Tajikistan Central Asia, Central Asia, Central Asia, Central Asia, Central Asia References USAID Climate...

  4. Radiological Conditions at the Semipalatinsk Test Site, Kazakhstan: Preliminary Assessment and Recommendations for Further Study

    SciTech Connect (OSTI)

    Napier, Bruce A. )

    1999-01-01

    This is a review of the book ''Radiological Conditions at the Semipalatinsk Test Site, Kazakhstan: Preliminary Assessment and Recommendations for Further Study.''

  5. DOE/NE Sponsors a U.S. - Kazakhstan Civilian Nuclear Energy Workshop...

    Energy Savers [EERE]

    ... Sponsors a U.S. - Kazakhstan Civilian Nuclear Energy Workshop at Idaho National Laboratory International Framework for Nuclear Energy Cooperation (IFNEC) Expert meetings in Romania

  6. Estimating the potential of greenhouse gas mitigation in Kazakhstan

    SciTech Connect (OSTI)

    Monacrovich, E.; Pilifosova, O.; Danchuck, D.

    1996-09-01

    As part of the studies related to the obligations of the UN Framework Convention on Climate Change, the Republic of Kazakhstan started activities to inventory greenhouse gas (GHG) emissions and assess of GHG mitigation options, The objective of this paper is to present an estimate of the possibility of mitigating GHG emissions and determine the mitigation priorities. It presents a compilation of the possible options and their assessment in terms of major criteria and implementation feasibility. Taking into account the structure of GHG emissions in Kazakhstan in 1990, preliminary estimates of the potential for mitigation are presented for eight options for the energy sector and agriculture and forestry sector. The reference scenario prepared by expert assessments assumes a reduction of CO{sub 2} emissions in 1996-1998 by about 26% from the 1990 level due to general economic decline, but then emissions increase. It is estimated that the total potential for the mitigation of CO{sub 2} emissions for the year 2000 is 3% of the CO{sub 2} emissions in the reference scenario. The annual reduction in methane emissions due to the estimated options can amount to 5%-6% of the 1990 level. 10 refs., 1 fig., 4 tabs.

  7. An Energy Overview of the Republic of Kazakhstan

    SciTech Connect (OSTI)

    anon.

    2003-10-20

    The DOE Office of Fossil Energy is maintaining a web site that is meant to provide useful business- and energy-related information about countries and regions of the world for exporters, project developers, and researchers. The site consists of more than 130 country pages (organized into seven different world regions), with each country page having its own set of links to information sources about that country. There are also more than 30 Country Energy Overviews at the web site -- each of these is a comprehensive review of a specific country's entire energy situation, including sections on Energy Policy, Oil, Natural Gas, Coal, Hydroelectric/Renewables, Nuclear Power, Energy Transmission Infrastructure, Electricity, Electric Industry Overview, Environmental Activities, Privatization, Trade, and Economic Situation. The specific country highlighted in this Country Energy Overview is Kazakhstan. The site is designed to be dynamic. Updates to the overviews will be made as need and resources permit.

  8. U.S. Works With Kazakhstan to Stop Nuclear and Radioactive Material

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smuggling | Department of Energy Works With Kazakhstan to Stop Nuclear and Radioactive Material Smuggling U.S. Works With Kazakhstan to Stop Nuclear and Radioactive Material Smuggling May 6, 2006 - 10:34am Addthis WASHINGTON, DC - As part of the overall U.S. strategy to prevent nuclear and dangerous radiological materials from falling into the hands of terrorists, the Department of Energy's National Nuclear Security Administration (NNSA) announced today that an agreement with the government

  9. Request for Proposal No. DE-SOL-0008418 Section J, Appendix D

    National Nuclear Security Administration (NNSA)

    is one of the countries listed below: Algeria Armenia Azerbaijan Belarus China (People's Republic of China) Cuba Georgia Hong Kong India Iran Iraq Israel Kazakhstan Kyrgyzstan ...

  10. LM Co-Hosts Internatonal Workshop on Uranium Legacy Sites | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... For visitors from countries of Central Asia, including Tajikstan, Kyrgyzstan, Kazakhstan, and Uzbekistan, visiting remediated legacy uranium sites on the Colorado Plateau had an ...

  11. DOE/NE Sponsors a U.S. – Kazakhstan Civilian Nuclear Energy Workshop at Idaho National Laboratory

    Broader source: Energy.gov [DOE]

    Deputy Assistant Secretary Ed McGinnis opened a successful U.S.-Kazakhstan Civil Nuclear Energy workshop at Idaho National Laboratory the week of February 9.The workshop participants included...

  12. Definition of Non-Conventional Sulfur Utilization in Western Kazakhstan for Sulfur Concrete (Phase 1)

    SciTech Connect (OSTI)

    Kalb, Paul

    2007-05-31

    Battelle received a contract from Agip-KCO, on behalf a consortium of international oil and gas companies with exploration rights in the North Caspian Sea, Kazakhstan. The objective of the work was to identify and help develop new techniques for sulfur concrete products from waste, by-product sulfur that will be generated in large quantitites as drilling operations begin in the near future. BNL has significant expertise in the development and use of sulfur concrete products and has direct experience collaborating with the Russian and Kazakh partners that participated. Feasibility testing was successfully conducted for a new process to produce cost-effective sulfur polymer cement that has broad commerical applications.

  13. Treatability study on the use of by-product sulfur in Kazakhstan for the stabilization of hazardous and radioactive wastes

    SciTech Connect (OSTI)

    Kalb, P.D.; Milian, L.W.; Yim, S.P.; Dyer, R.S.; Michaud, W.R.

    1997-12-01

    The Republic of Kazakhstan generates significant quantities of excess elemental sulfur from the production and refining of petroleum reserves. In addition, the country also produces hazardous, and radioactive wastes which require treatment/stabilization. In an effort to find secondary uses for the elemental sulfur, and simultaneously produce a material which could be used to encapsulate, and reduce the dispersion of harmful contaminants into the environment, BNL evaluated the use of the sulfur polymer cement (SPC) produced from by-product sulfur in Kazakhstan. This thermoplastic binder material forms a durable waste form with low leaching properties and is compatible with a wide range of waste types. Several hundred kilograms of Kazakhstan sulfur were shipped to the US and converted to SPC (by reaction with 5 wt% organic modifiers) for use in this study. A phosphogypsum sand waste generated in Kazakhstan during the purification of phosphate fertilizer was selected for treatment. Waste loadings of 40 wt% were easily achieved. Waste form performance testing included compressive strength, water immersion, and Accelerated Leach Testing.

  14. Treatability study on the use of by-product sulfur in Kazakhstan for the stabilization of hazardous and radioactive wastes

    SciTech Connect (OSTI)

    Yim, Sung Paal; Kalb, P.D.; Milian, L.W.

    1997-08-01

    The Republic of Kazakhstan generates significant quantities of excess sulfur from the production and refining of petroleum reserves. In addition, the country also produces hazardous, and radioactive wastes which require treatment/stabilization. In an effort to find secondary uses for the elemental sulfur, and simultaneously produce a material which could be used to encapsulate, and reduce the dispersion of harmful contaminants into the environment, BNL evaluated the use of the sulfur polymer cement (SPC) produced from by-product sulfur in Kazakhstan. This thermoplastic binder material forms a durable waste form with low leaching properties and is compatible with a wide range of waste types. Several hundred kilograms of Kazakhstan sulfur were shipped to the U.S. and converted to SPC (by reaction with 5 wt% organic modifiers) for use in this study. A phosphogypsum sand waste generated in Kazakhstan during the purification of phosphate fertilizer was selected for treatment. Waste loading of 40 wt% were easily achieved. Waste form performance testing included compressive strength, water immersion, and Accelerated Leach Testing. 14 refs., 7 figs., 6 tabs.

  15. A digital seismogram archive of nuclear explosion signals, recorded at the Borovoye Geophysical Observatory, Kazakhstan, from 1966 to 1996

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    An, Vadim A.; Ovtchinnikov, Vladimir M.; Kaazik, Pyotr B.; Adushkin, Vitaly V.; Sokolova, Inna N.; Aleschenko, Iraida B.; Mikhailova, Natalya N.; Kim, Won -Young; Richards, Paul G.; Patton, Howard J.; et al

    2015-03-27

    Seismologists from Kazakhstan, Russia, and the United States have rescued the Soviet-era archive of nuclear explosion seismograms recorded at Borovoye in northern Kazakhstan during the period 1966–1996. The signals had been stored on about 8000 magnetic tapes, which were held at the recording observatory. After hundreds of man-years of work, these digital waveforms together with significant metadata are now available via the project URL, namely http://www.ldeo.columbia.edu/res/pi/Monitoring/Data/ as a modern open database, of use to diverse communities. Three different sets of recording systems were operated at Borovoye, each using several different seismometers and different gain levels. For some explosions, more thanmore » twenty different channels of data are available. A first data release, in 2001, contained numerous glitches and lacked many instrument responses, but could still be used for measuring accurate arrival times and for comparison of the strengths of different types of seismic waves. The project URL also links to our second major data release, for nuclear explosions in Eurasia recorded in Borovoye, in which the data have been deglitched, all instrument responses have been included, and recording systems are described in detail. This second dataset consists of more than 3700 waveforms (digital seismograms) from almost 500 nuclear explosions in Eurasia, many of them recorded at regional distances. It is important as a training set for the development and evaluation of seismological methods of discriminating between earthquakes and underground explosions, and can be used for assessment of three-dimensional models of the Earth’s interior structure.« less

  16. A digital seismogram archive of nuclear explosion signals, recorded at the Borovoye Geophysical Observatory, Kazakhstan, from 1966 to 1996

    SciTech Connect (OSTI)

    An, Vadim A.; Ovtchinnikov, Vladimir M.; Kaazik, Pyotr B.; Adushkin, Vitaly V.; Sokolova, Inna N.; Aleschenko, Iraida B.; Mikhailova, Natalya N.; Kim, Won -Young; Richards, Paul G.; Patton, Howard J.; Scott Phillips, W.; Randall, George; Baker, Diane

    2015-03-27

    Seismologists from Kazakhstan, Russia, and the United States have rescued the Soviet-era archive of nuclear explosion seismograms recorded at Borovoye in northern Kazakhstan during the period 1966–1996. The signals had been stored on about 8000 magnetic tapes, which were held at the recording observatory. After hundreds of man-years of work, these digital waveforms together with significant metadata are now available via the project URL, namely http://www.ldeo.columbia.edu/res/pi/Monitoring/Data/ as a modern open database, of use to diverse communities. Three different sets of recording systems were operated at Borovoye, each using several different seismometers and different gain levels. For some explosions, more than twenty different channels of data are available. A first data release, in 2001, contained numerous glitches and lacked many instrument responses, but could still be used for measuring accurate arrival times and for comparison of the strengths of different types of seismic waves. The project URL also links to our second major data release, for nuclear explosions in Eurasia recorded in Borovoye, in which the data have been deglitched, all instrument responses have been included, and recording systems are described in detail. This second dataset consists of more than 3700 waveforms (digital seismograms) from almost 500 nuclear explosions in Eurasia, many of them recorded at regional distances. It is important as a training set for the development and evaluation of seismological methods of discriminating between earthquakes and underground explosions, and can be used for assessment of three-dimensional models of the Earth’s interior structure.

  17. Process Flow Chart for Immobilizing of Radioactive High Concentration Sodium Hydroxide Product from the Sodium Processing Facility at the BN-350 Nuclear power plant in Aktau, Kazakhstan

    SciTech Connect (OSTI)

    Burkitbayev, M.; Omarova, K.; Tolebayev, T.; Galkin, A.; Bachilova, N.; Blynskiy, A.; Maev, V.; Wells, D.; Herrick, A.; Michelbacher, J.

    2008-07-01

    This paper describes the results of a joint research investigations carried out by the group of Kazakhstan, British and American specialists in development of a new material for immobilization of radioactive 35% sodium hydroxide solutions from the sodium coolant processing facility of the BN-350 nuclear power plant. The resulting solid matrix product, termed geo-cement stone, is capable of isolating long lived radionuclides from the environment. The physico-mechanical properties of geo-cement stone have been investigated and the flow chart for its production verified in a full scale experiments. (author)

  18. Feasibility studies to establish at the Kazakhstan Ulba metallurgical plant the manufacturing capability to produce low-enriched uranium certified reference materials

    SciTech Connect (OSTI)

    Kuzminski, Jozef; Nesuhoff, J; Cratto, P; Pfennigwerth, G; Mikhailenko, A; Maliutina, I; Nations, J

    2009-01-01

    One of the salient features of the transition plan that the United States Department of Energy/National Nuclear Security Administration (DOE/NNSA) is presently implementing in the Former Soviet Union countries is the availability of uranium certified reference materials for calibration of nondestructive assay (NDA) measurement equipment. To address this challenge, DOE/NNSA and U.S. national laboratories have focused their cooperative efforts on establishing a reliable source for manufacturing, certifying, and supplying of such standards. The Ulba Metallurgical Plant (UMP), Kazakhstan, which processes large quantities of low-enriched uranium to produce ceramic fuel pellets for nuclear-powered reactors, is well situated to become a key supplier of low-enriched uranium certified reference materials for the country and Central Asia region. We have recently completed Phase I of a feasibility study to establish at UMP capabilities of manufacturing these standards. In this paper we will discuss details of a proposed methodology for uranium down-blending, material selection and characterization, and a proposed methodology of measurement by destructive (DA) and non-destructive (NDA) analysis to form a database for material certification by the competent State authorities in the Republic of Kazakhstan. In addition, we will discuss the prospect for manufacturing of such standards at UMP.

  19. Neutronic, steady-state, and transient analyses for the Kazakhstan VVR-K reactor with LEU fuel: ANL independent verification results

    SciTech Connect (OSTI)

    Hanan, Nelson A.; Garner, Patrick L.

    2015-08-01

    Calculations have been performed for steady state and postulated transients in the VVR-K reactor at the Institute of Nuclear Physics (INP), Kazakhstan. (The reactor designation in Cyrillic is BBP-K; transliterating characters to English gives VVR-K but translating words gives WWR-K.) These calculations have been performed at the request of staff of the INP who are performing similar calculations. The selection of the transients considered started during working meetings and email correspondence between Argonne National Laboratory (ANL) and INP staff. In the end the transient were defined by the INP staff. Calculations were performed for the fresh low-enriched uranium (LEU) core and for four subsequent cores as beryllium is added to maintain critically during the first 15 cycles. These calculations have been performed independently from those being performed by INP and serve as one step in the verification process.

  20. Technical cooperation between IAE/NNC and U.S. DOE National Laboratories on nuclear export controls in Kazakhstan -- a status report

    SciTech Connect (OSTI)

    Picologlou, B.; Cernicek, A.; Pakhnitz, V.; Koltysheva, G.

    1997-09-01

    The US Department of Energy (DOE) sponsors technical cooperative agreements, also known as Lab to Lab agreements, between its National Laboratories and similar institutions in the Newly Independent States (NIS) for the purpose of sharing some of the experience and expertise on nuclear export controls and nonproliferation of the former with their NIS counterparts so that, in turn, they can provide technical support to their respective governments in nonproliferation matters. In Kazakhstan, two separate technical cooperative agreements involving the Institute of Atomic Energy of the National Nuclear Center, Argonne National Laboratory, and Los Alamos National Laboratory were established in 1996. The tasks carried out during the first year of these technical cooperative agreements are described and the objectives and end products of the tasks are discussed.

  1. Mine locations: Kazakhstan

    SciTech Connect (OSTI)

    Perry, Bradley A

    2008-01-01

    Upon accepting this internship at Los Alamos National Laboratory, I was excited but a bit nervous because I was placed into a field I knew nothing about and did not incorporate my mechanical engineering background. However, I stayed positive and realized that experience and education can come in many forms and that this would be a once in a lifetime opportunity. The EES-II Division (which stands for Earth and Environmental Sciences, Geophysics division) concentrates on several topics, including Nuclear Treaty Verification Seismology. The study of this is extremely important in order to monitor countries that have nuclear capability and make sure they follow the rules of the international comprehensive nuclear test ban treaty. Seismology is only one aspect of this monitoring and EES-II works diligently with many other groups here at Los Alamos and across the world.

  2. Kyrgyzstan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    EIA Natural Gas Reserves 5,663,000,000 Cubic Meters (cu m) 91 2010 CIA World Factbook Oil Reserves 40,000,000 Barrels (bbl) 80 2010 CIA World Factbook Energy Maps featuring...

  3. Industry turns its attention south

    SciTech Connect (OSTI)

    Marhefka, D.

    1997-08-01

    The paper discusses the outlook for the gas and oil industries in the Former Soviet Union and Eastern Europe. Significant foreign investment continues to elude Russia`s oil and gas industry, so the Caspian nations of Kazakhstan and Azerbaijan are picking up the slack, welcoming the flow of foreign capital to their energy projects. Separate evaluations are given for Russia, Azerbaijan, Kazakhstan, Turkmenistan, Ukraine, Armenia, Belarus, Georgia, Lithuania, Latvia, Estonia, Moldova, Tajikstan, Uzbekistan, Albania, Bulgaria, Croatia, Czech Republic, Hungary, Poland, Romania, Slovakia, Slovenia, and Serbia.

  4. Radioactive Waste Management in Central Asia - 12034

    SciTech Connect (OSTI)

    Zhunussova, Tamara; Sneve, Malgorzata; Liland, Astrid

    2012-07-01

    After the collapse of the Soviet Union the newly independent states in Central Asia (CA) whose regulatory bodies were set up recently are facing problems with the proper management of radioactive waste and so called 'nuclear legacy' inherited from the past activities. During the former Soviet Union (SU) period, various aspects of nuclear energy use took place in CA republics of Kazakhstan, Kyrgyzstan, Tajikistan and Uzbekistan. Activities range from peaceful use of energy to nuclear testing for example at the former Semipalatinsk Nuclear Test Site (SNTS) in Kazakhstan, and uranium mining and milling industries in all four countries. Large amounts of radioactive waste (RW) have been accumulated in Central Asia and are waiting for its safe disposal. In 2008 the Norwegian Radiation Protection Authority (NRPA), with the support of the Norwegian Ministry of Foreign Affairs, has developed bilateral projects that aim to assist the regulatory bodies in Kazakhstan, Kyrgyzstan Tajikistan, and Uzbekistan (from 2010) to identify and draft relevant regulatory requirements to ensure the protection of the personnel, population and environment during the planning and execution of remedial actions for past practices and radioactive waste management in the CA countries. The participating regulatory authorities included: Kazakhstan Atomic Energy Agency, Kyrgyzstan State Agency on Environmental Protection and Forestry, Nuclear Safety Agency of Tajikistan, and State Inspectorate on Safety in Industry and Mining of Uzbekistan. The scope of the projects is to ensure that activities related to radioactive waste management in both planned and existing exposure situations in CA will be carried out in accordance with the international guidance and recommendations, taking into account the relevant regulatory practice from other countries in this area. In order to understand the problems in the field of radioactive waste management we have analysed the existing regulations through the so called 'Threat assessment' in each CA country which revealed additional problems in the existing regulatory documents beyond those described at the start of our ongoing bilateral projects in Kazakhstan, Kirgizistan Tajikistan and Uzbekistan. (authors)

  5. Probabilistic seismic risk of the territory of Bishkek city, Kyrgyzstan

    SciTech Connect (OSTI)

    Kamchybekov, Murataly Pakirovich

    2008-07-08

    For seismic risk analysis were gathered information about district's seismicity, tectonics, topography, and engineering--geotechnical conditions, which present in apartments, infrastructures and demographies. All of these informations are joined within the limits of GIS for father probabilistic evaluations from different losses levels from earthquake, and also definitions of effective arrangements by reaction. There were given analysis of obtained results with the purpose to take into the consideration and falling of seismic risk's levels.

  6. Kazakhstan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWhyear 14 2008 NREL Coal Reserves 37,037.66 Million Short Tons 8 2008 EIA Natural Gas Reserves 2,407,000,000,000 Cubic Meters (cu m) 15 2010 CIA World Factbook Oil Reserves...

  7. Data base of chemical explosions in Kazakhstan

    SciTech Connect (OSTI)

    Demin, V.N.; Malahova, M.N.; Martysevich, P.N.; Mihaylova, N.N.; Nurmagambetov, A.; Kopnichev, Yu.F. D.; Edomin, V.I.

    1996-12-01

    Within the bounds of this report, the following works were done: (1) Information about explosion quarries, located in Southern, Eastern and Northern Kasakstan was summarized. (2) The general information about seismicity of areas of location of explosion quarries was adduced. (3) The system of observation and seismic apparatus, recording the local earthquakes and quarry explosions at the territory of Kazakstan were described. (4) Data base of quarry explosions, that were carried out in Southern, Eastern and Northern Kazakstan during 1995 and first half of 1996 year was adduced. (5) Upon the data of registration of explosions in Southern Kazakstan the correlative dependences between power class of explosions and summary weight of charge were constructed. (6) Seismic records of quarry explosions were adduced. It is necessary to note, that the collection of data about quarry explosions in Kazakstan in present time is very difficult task. Organizations, that makes these explosions, are always suffering reorganizations and sometimes it is actually impossible to receive all the necessary information. Some quarries are situated in remote, almost inaccessible regions, and within the bounds of supplier financing not the every quarry was in success to visit. So the present data base upon the chemical explosions for 1995 is not full and in further it`s expansion is possible.

  8. Moldova-Enhancing Capacity for Low Emission Development Strategies...

    Open Energy Info (EERE)

    illustrates the U.S. perspective on LEDS: Integrated development goals and objectives, national greenhouse gas inventory, and economic and resource data Long-term projections of...

  9. Moldova-Supporting RBEC Transition to Low-Emission Development...

    Open Energy Info (EERE)

    (UNDP), UNDP Bratislava Regional Center Partner Interministerial committees headed by the national focal point on climate change Sector Climate, Energy Focus Area Renewable Energy,...

  10. Moldova-EU-UNDP Low Emission Capacity Building Programme (LECBP...

    Open Energy Info (EERE)

    Programme (UNDP), German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), Australian Department of Climate Change and Energy Efficiency (DCCEE),...

  11. Opportunities for renewable energy sources in Central Asia countries

    SciTech Connect (OSTI)

    Obozov, A.J.; Loscutoff, W.V.

    1998-07-01

    This report presents an overview of the state of conventional energy sources and the potential for development of renewable energy sources in the Central Asia countries of Kazakhstan, Uzbekistan, Kyrgyzstan, Turkmenistan, and Tajikistan. The region has a population of about 50 million in an area of more than four million square kilometers. The per capita gross internal product is more than $2,500, although the economy has been declining the past five years. The area has substantial coal, oil, uranium, and natural gas reserves, although they are not distributed equally among the five countries. Energy production is such that the countries do not have to rely heavily on imports. One of the problems in Central Asia is that the energy prices are substantially below the world prices. This is a factor in development of renewable energy sources. The primary renewable energy resources available are wind in Kazakhstan, solar in the entire region, biomass in Kyrgyzstan, and micro-hydropower stations in Kazakhstan and Kyrgyzstan. All of these have the potential to provide a significant amount of the required energy for the region. However, all of the countries have an abundance of various renewable energy resources. To effectively use these resources, however, a number of barriers to their development and commercialization must be overcome. These include low prices of conventional energy sources, absence of legislative support, lack of financing for new technologies, and lack of awareness of renewable energy sources by the population. A number of specific actions are proposed to overcome these barriers. These include establishment of a Central Asia coordinating council for renewable energy, development of a regional renewable energy program, and setting up a number of large demonstration projects. 16 figs.

  12. Oil and gas resources of the Fergana basin (Uzbekistan, Tadzhikistan, and Kyrgyzstan). Advance summary

    SciTech Connect (OSTI)

    Not Available

    1993-12-07

    The Energy Information Administration (EIA), in cooperation with the US Geological Survey (USGS), has assessed 13 major petroleum producing regions outside of the United States. This series of assessments has been performed under EIA`s Foreign Energy Supply Assessment Program (FESAP). The basic approach used in these assessments was to combine historical drilling, discovery, and production data with EIA reserve estimates and USGS undiscovered resource estimates. Field-level data for discovered oil were used for these previous assessments. In FESAP, supply projections through depletion were typically formulated for the country or major producing region. Until now, EIA has not prepared an assessment of oil and gas provinces in the former Soviet Union (FSU). Before breakup of the Soviet Union in 1991, the Fergana basin was selected for a trial assessment of its discovered and undiscovered oil and gas. The object was to see if enough data could be collected and estimated to perform reasonable field-level estimates of oil and gas in this basin. If so, then assessments of other basins in the FSU could be considered. The objective was met and assessments of other basins can be considered. Collected data for this assessment cover discoveries through 1987. Compared to most other oil and gas provinces in the FSU, the Fergana basin is relatively small in geographic size, and in number and size of most of its oil and gas fields. However, with recent emphasis given to the central graben as a result of the relatively large Mingbulak field, the basin`s oil and gas potential has significantly increased. At least 7 additional fields to the 53 fields analyzed are known and are assumed to have been discovered after 1987.

  13. Kazakhstan-Enhancing Capacity for Low Emission Development Strategies...

    Open Energy Info (EERE)

    illustrates the U.S. perspective on LEDS: Integrated development goals and objectives, national greenhouse gas inventory, and economic and resource data Long-term projections of...

  14. Kazakhstan-Supporting RBEC Transition to Low-Emission Development...

    Open Energy Info (EERE)

    (UNDP), UNDP Bratislava Regional Center Partner Interministerial committees headed by the national focal point on climate change Sector Climate, Energy Focus Area Renewable Energy,...

  15. US, Kazakhstan Cooperate to Eliminate Highly Enriched Uranium...

    National Nuclear Security Administration (NNSA)

    ... application of nuclear science. NNSA maintains and enhances the safety, security, reliability and performance of the U.S. nuclear weapons stockpile without nuclear testing; works ...

  16. US-Kazakhstan Energy Partnership | Open Energy Information

    Open Energy Info (EERE)

    diversification of energy sources, promotion of regional electric-power trade, nuclear energy and nonproliferation, and improvement of the regulatory environment to...

  17. Kazakhstan-Clean Technology Fund (CTF) | Open Energy Information

    Open Energy Info (EERE)

    and Development, Inter-American Development Bank, World Bank Sector Climate, Energy Focus Area Energy Efficiency, Geothermal, Transportation Topics Background analysis,...

  18. U.S. - Kazakhstan Cooperation on Nuclear Security and Nonproliferation...

    National Nuclear Security Administration (NNSA)

    In addition, both countries are strongly committed to preventing the proliferation of nuclear weapons and are working together to continue reducing the proliferation threats ...

  19. Minerals yearbook: Mineral industries of Europe and central Eurasia. Volume 3. 1992 international review

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    Volume III, Minerals Yearbook -- International Review contains the latest available mineral data on more than 175 foreign countries and discusses the importance of minerals to the economies of these nations. Since the 1989 International Review, the volume has been presented as six reports. The report presents the Mineral Industries of Europe and Central Eurasia. The report incorporates location maps, industry structure tables, and an outlook section previously incorporated in the authors' Minerals Perspectives Series quinquennial regional books, which are being discontinued. This section of the Minerals Yearbook reviews the minerals industries of 45 countries: the 12 nations of the European Community (EC); 6 of the 7 nations of the European Free Trade Association (EFTA); Malta; the 11 Eastern European economies in transition (Albania, Bosnia and Hercegovina, Bulgaria, Croatia, Czechoslovakia, Hungary, Macedonia, Poland, Romania, Serbia and Montenegro, and Slovenia); and the countries of Central Eurasia (Armenia, Azerbaijan, Belarus, Estonia, Georgia, Kazakhstan, Kyrgystan, Latvia, Lithuania, Moldova, Russia, Tajikistan, Turkmenistan, Ukraine, and Uzbekistan).

  20. The Nuvruz Project: Monitoring for Radionuclides and Metals in Central Asia Transboundary Rivers End of Year One Reports

    SciTech Connect (OSTI)

    YULDASHEV, BEKHZAD; SALIKHBAEV, UMAR; RADYUK, RAISA; DJURAEV, AKRAM; DJURAEV, ANWAR; VASILIEV, IVAN; TOLONGUTOV, BAJGABYL; VALENTINA, ALEKHINA; SOLODUKHIN, VLADIMIR; POZNIAK, VICTOR; LITTLEFIELD, ADRIANE C.

    2002-09-01

    The Navruz Project is a cooperative, transboundary, river monitoring project involving rivers and institutions in Kazakhstan, Kyrgyzstan, Tajikistan, and Uzbekistan facilitated by Sandia National Laboratories in the U.S. The Navruz Project focuses on waterborne radionuclides and metals because of their importance to public health and nuclear materials proliferation concerns in the region. Data obtained in this project are shared among all participating countries and the public through an internet web site and are available for use in further studies and in regional transboundary water resource management efforts. Overall, the project addresses three main goals: to help increase capabilities in Central Asian nations for sustainable water resources management; to provide a scientific basis for supporting nuclear transparency and non-proliferation in the region; and to help reduce the threat of conflict in Central Asia over water resources, proliferation concerns, or other factors. The Navruz project has a duration of three years. This document contains the reports from each of the participating institutions following the first year of data collection. While a majority of samples from the Navruz project are within normal limits, a preliminary analysis does indicate a high concentration of selenium in the Kazakhstan samples. Uzbekistan samples contain high uranium and thorium concentrations, as well as elevated levels of chromium, antimony and cesium. Additionally, elevated concentrations of radioactive isotopes have been detected at one Tajikistan sampling location. Further analysis will be published in a subsequent report.

  1. U.S., Kazakhstan Agree to Areas of Cooperation in Civil Nuclear Energy |

    Energy Savers [EERE]

    Department of Energy Utility-Scale Solar 60 Percent Towards Cost-Competition Goal U.S. Utility-Scale Solar 60 Percent Towards Cost-Competition Goal February 12, 2014 - 11:05am Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department announced today that the U.S. solar industry is more than 60 percent of the way to achieving cost-competitive utility-scale solar photovoltaic (PV) electricity - only three years into the Department's decade-long SunShot Initiative. To help

  2. Natural gas in Central Asia. Industries, markets and export options of Kazakhstan, Turkmenistan and Uzbekistan

    SciTech Connect (OSTI)

    Miyamoto, A.

    1998-01-01

    This comprehensive study examines the recent development of the three major gas resource countries in Central Asia. The author assesses the strategies likely to be taken by the Central Asian gas industry, especially with regard to pipeline construction.

  3. Use of plasma fuel systems at thermal power plants in Russia, Kazakhstan, China, and Turkey

    SciTech Connect (OSTI)

    Karpenko, E.I.; Karpenko, Y.E.; Messerle, V.E.; Ustimenko, A.B.

    2009-05-15

    The technology of plasma ignition of solid fuels is described, as well as its creation and development steps, the technoeconomic characteristics of plasma igniter systems, schemes of their installation in pulverized-coal boilers, and results of their application at pulverized coal-fired power plants.

  4. Strontium-85 and plutonium-239 sorption in rock samples from the Semipalatinsk Test Site, Kazakhstan

    SciTech Connect (OSTI)

    Mason, C.F.V.; Lu, N.; Marusak, N.L.; Scheber, B.; Chipera, S.; Daukeyev, D.; Khromushin, I.

    1999-03-01

    The adsorption and desorption of strontium and plutonium were studied as a function of rock type and simulated ground waters from the Semipalatinsk Test Site (STS). Seven different rock types were obtained from the Balapan Region of the STS and were subjected to x-ray diffraction analyses. Two different ground waters were simulated using data supplied by the National Nuclear Center. The results indicate the sorption of strontium is strongly dependent on the minerals present in the rock species and on the total ionic strength of the ground water whereas, in all cases, plutonium was strongly irreversibly sorbed.

  5. Immobilization of Cesium Traps from the BN-350 Fast Reactor (Aktau, Kazakhstan)

    SciTech Connect (OSTI)

    J. A. Michelbacher; C. Knight; O. G. Romanenko; I. L. Tazhibaeva; I. L. Yakovlev; A. V. Rovneyko; V. I. Maev; D. Wells; A. Herrick

    2011-03-01

    During BN-350 reactor operations and also during the initial stages of decommissioning, cesium traps were used to decontaminate the reactor’s primary sodium coolant. Two different types of carbon-based trap were used – the MAVR series, low ash granulated graphite adsorber (LAG) contained in a carrier designed to be inserted into the reactor core during shutdown; and a series of ex-reactor trap accumulators(TAs) which used reticulated vitreous carbon (RVC) to reduce Cs-137 levels in the sodium after final reactor shutdown. In total four MAVRs and seven TAs were used at BN-350 to remove an estimated cumulative 755 TBq of cesium. The traps, which also contain residual sodium, need to be immobilized in an appropriate way to allow them to be consigned as waste packages for long term storage and, ultimately, disposal. The present paper reports on the current status of the implementation phase, with particular reference to the work done to date on the trap accumulators, which have the most similarity with the cesium traps used at other reactors.

  6. National independence and nonproliferation in the new states of Central Asia

    SciTech Connect (OSTI)

    Gleason, G.

    1993-12-01

    Five independent states emerged in Central Asia from the breakup of the USSR. One of these states, Kazakhstan, possesses nuclear weapons. The other four of these states, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan, are not known to possess nuclear weapons, however they occupy a geostrategic position which makes them important to non-proliferation efforts. The present report profiles the capabilities and intentions of these four Central Asian states. The analysis of capabilities suggests that none of these states has the capability to develop a usable nuclear weapon. However, all of these countries-- especially Uzbekistan--have components of the old Soviet nuclear weapons complex which are now orphans. They have no use for these facilities and must either re-profile them, destroy them, or transfer them. The analysis of intentions suggests that the dynamics of national independence have created a situation in which Uzbekistan has hegemonic designs in the region. Implications for retarding nuclear proliferation in the Central Asian region are examined. Opportunities for outside influence are assessed.

  7. Department of Energy Nuclear Material Protection, Control, and Accounting Program at the Mangyshlak Atomic Energy Complex, Aktau, Republic of Kazakhstan

    SciTech Connect (OSTI)

    Case, R.; Berry, R.B.; Eras, A.

    1998-08-01

    As part of the Cooperative Threat Reduction Nuclear Material Protection, Control, and Accounting (MPC and A) Program, the US Department of Energy and Mangyshlak Atomic Energy Complex (MAEC), Aktau, Republic of Kazakstan have cooperated to enhance existing MAEC MPC and A features at the BN-350 liquid-metal fast-breeder reactor. This paper describes the methodology of the enhancement activities and provides representative examples of the MPC and A augmentation implemented at the MAEC.

  8. Phlogopite and Quartz Lamellae in Diamond-bearing Diopside from Marbles of the Kokchetav Massif Kazakhstan: Exsolution or Replacement Reaction

    SciTech Connect (OSTI)

    L Dobrzhinetskaya; R Wirth; D Rhede; Z Liu; H Green

    2011-12-31

    Exsolution lamellae of pyroxene in garnet (grt), coesite in titanite and omphacite from UHPM terranes are widely accepted as products of decompression. However, interpretation of oriented lamellae of phyllosilicates, framework silicates and oxides as a product of decompression of pyroxene is very often under debate. Results are presented here of FIB-TEM, FEG-EMP and synchrotron-assisted infrared (IR) spectroscopy studies of phlogopite (Phlog) and phlogopite + quartz (Qtz) lamellae in diamond-bearing clinopyroxene (Cpx) from ultra-high pressure (UHP) marble. These techniques allowed collection of three-dimensional information from the grain boundaries of both the single (phlogopite), two-phase lamellae (phlogopite + quartz), and fluid inclusions inside of diamond included in K-rich Cpx and understanding their relationships and mechanisms of formation. The Cpx grains contain in their cores lamellae-I, which are represented by topotactically oriented extremely thin lamellae of phlogopite (that generally are two units cell wide but locally can be seen to be somewhat broader) and microdiamond. The core composition is: (Ca{sub 0.94}K{sub 0.04}Na{sub 0.02})(Al{sub 0.06}Fe{sub 0.08}Mg{sub 0.88})(Si{sub 1.98}Al{sub 0.02})O{sub 6.00}. Fluid inclusions rich in K and Si are recognized in the core of the Cpx, having no visible connections to the lamellae-I. Lamellar-II inclusions consist of micron-size single laths of phlogopite and lens-like quartz or slightly elongated phlogopite + quartz intergrowths; all are situated in the rim zone of the Cpx. The composition of the rim is (Ca{sub 0.95}Fe{sub 0.03}Na{sub 0.02})(Al{sub 0.05}Fe{sub 0.05}Mg{sub 0.90})Si{sub 2}O{sub 6}, and the rim contains more Ca, Mg than the core, with no K there. Such chemical tests support our microstructural observations and conclusion that the phlogopite lamellae-I are exsolved from the K-rich Cpx-precursor during decompression. It is assumed that Cpx-precursor was also enriched in H{sub 2}O, because diamond included in the core of this Cpx contains fluid inclusions. The synchrotron IR spectra of such diamond record the presence of OH{sup -} stretching and H{sub 2}O bending motion regions. Lamellar-II inclusions are interpreted as forming partly because of modification of the lamellae-i in the presence of fluid enriched in K, Fe and Si during deformation of the host diopside; the latter is probably related to the shallower stage of exhumation of the UHP marble. This study emphasizes that in each case to understand the mechanism of lamellar inclusion formation more detailed studies are needed combining both compositional, structural and three-dimensional textural features of lamellar inclusions and their host.

  9. SAMRUK KAZYNA National Welfare Fund | Open Energy Information

    Open Energy Info (EERE)

    Fund Jump to: navigation, search Name: SAMRUK-KAZYNA National Welfare Fund Place: Kazakhstan Sector: Hydro, Solar, Wind energy Product: Kazakhstan-based project developer in...

  10. Kelly Gonzalez

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Kazakhstan - United States Special Commission on Energy Partnership Kazakhstan - United States Special Commission on Energy Partnership April 6, 2016 - 5:12pm Addthis On April 6, 2016, the Kazakhstan - United States Energy Partnership Commission held a meeting at the Energy Ministry of the Republic of Kazakhstan, co-chaired by Energy Minister K.A. Bosumbayev and Secretary of Energy, Dr. Ernest Moniz. The Republic of Kazakhstan was represented at the session by officials

  11. Forest Carbon Partnership Facility | Open Energy Information

    Open Energy Info (EERE)

    Madagascar, Mexico, Moldova, Mozambique, Nepal, Nicaragua, Panama, Papua New Guinea, Paraguay, Peru, Republic of the Congo, Suriname, Tanzania, Thailand, Uganda, Vanuatu, Vietnam...

  12. Mali-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  13. Namibia-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  14. UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  15. Indonesia-UNEP Green Economy Advisory Services | Open Energy...

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  16. Ghana-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  17. Senegal-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  18. South Korea-UNEP Green Economy Advisory Services | Open Energy...

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  19. Rwanda-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  20. Egypt-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  1. Morocco-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  2. Barbados-UNEP Green Economy Advisory Services | Open Energy Informatio...

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  3. Peru-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  4. Armenia-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  5. Serbia-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  6. Philippines-UNEP Green Economy Advisory Services | Open Energy...

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  7. Kenya-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  8. Burkina Faso-UNEP Green Economy Advisory Services | Open Energy...

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  9. Mexico-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  10. Russian-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  11. Mongolia-UNEP Green Economy Advisory Services | Open Energy Informatio...

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  12. Jordan-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  13. Nepal-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  14. Ukraine-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  15. Montenegro-UNEP Green Economy Advisory Services | Open Energy...

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  16. International Energy Outlook 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    significant contributors to non-OPEC crude and lease condensate production: Canada, Brazil, U.S., Kazakhstan, Russia 0 6 12 18 24 Canada United States Mexico Brazil Kazakhstan...

  17. Kun Renewables | Open Energy Information

    Open Energy Info (EERE)

    Kun Renewables Jump to: navigation, search Name: Kun Renewables Place: Kazakhstan Product: Plans to build a 2,500 tonne polysilicon plant in Kazakhstan, with the backing of the...

  18. U.S. Department of Energy and NTI Announce Key Nonproliferation Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Kazakhstan | Department of Energy NTI Announce Key Nonproliferation Project with Kazakhstan U.S. Department of Energy and NTI Announce Key Nonproliferation Project with Kazakhstan September 29, 2006 - 9:01am Addthis Agreement Reached To Downblend HEU and Convert Reactor WASHINGTON, D.C. - The U.S. Department of Energy and the Nuclear Threat Initiative (NTI) today announced that they have reached an important agreement-in-principle with the Government of Kazakhstan to move forward with

  19. Microsoft PowerPoint - Dynamics Complexities Accounting for Foreign...

    National Nuclear Security Administration (NNSA)

    Australia Namibia Euratom Canada China Russia South Africa Kazakhstan Uzbekistan ... Energy Community (EURATOM) Japan China Switzerland Chile Brazil ...

  20. Microsoft PowerPoint - 3_Gary and Brian_Wednesday 5-22 Transit...

    National Nuclear Security Administration (NNSA)

    France Germany Italy Japan Kazakhstan Mexico Netherlands China Russia Spain United Kingdom Sweden 5 Natural Uranium Imports ...

  1. Clean Cities Reaches Across the Sea

    Broader source: Energy.gov [DOE]

    Clean Cities International collaborates with leaders from Kazakhstan and Sweden share best practices and accomplish mutual goals.

  2. Microsoft PowerPoint - 2_MITCH_HEMBREE_NMMSS_2014_Obligations...

    National Nuclear Security Administration (NNSA)

    April 2010 Japan Kazakhstan Korea, Republic of Morocco Norway Romania South Africa Switzerland Taiwan Thailand Turkey Ukraine ...

  3. USAID Europe and Eurasia Climate Program | Open Energy Information

    Open Energy Info (EERE)

    Country Armenia, Republic of Macedonia, Russia, Ukraine, Poland, Kazakhstan, Hungary, Turkey, Uzbekistan, Turkmenistan, Lithuania, Estonia, Latvia, Azerbaijan, Tajikistan Western...

  4. Energy Technology Systems Analysis Program (MARKAL) | Open Energy...

    Open Energy Info (EERE)

    Switzerland, Albania, Australia, Austria, Bosnia and Herzegovina, Brazil, Bulgaria, Colombia, Croatia, India, Indonesia, Kazakhstan, Malaysia, New Zealand, China, Philippines,...

  5. Deputy Secretary Daniel Poneman’s Remarks to the International Forum for a Nuclear Weapons-Free World

    Broader source: Energy.gov [DOE]

    Please find below Deputy Secretary Daniel Poneman’s remarks, as prepared for delivery, to the International Forum for a Nuclear Weapons-Free World in Astana, Kazakhstan.

  6. nssa_01_05

    National Nuclear Security Administration (NNSA)

    Reactor Spent Fuel At a ceremony in Aktau, Kazakhstan today, American and Kazakhstani officials marked the successful completion of a project to package spent fuel from a reactor ...

  7. International Atomic Energy Agency

    National Nuclear Security Administration (NNSA)

    1%2A en US, Kazakhstan Cooperate to Eliminate Highly Enriched Uranium http:nnsa.energy.govmediaroompressreleaseskazakhstan

  8. Part VII: Section J: List of Documents, Exhibits, and Other Attachment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AzerbaiJan Belarus China (People's Republic of China ) Cuba - Terrorist Georgia India Iran - Terrorist Iraq Israel Kazakhstan North Korea (Democratic People's Republic of) -...

  9. Asian Development Bank | Open Energy Information

    Open Energy Info (EERE)

    Kazakhstan-Clean Technology Fund (CTF) Malaysia-Strengthening Planning Capacity for Low Carbon Growth in Developing Asia Mekong Brahmaputra Clean Development Fund L.P....

  10. U.S. Department of Energy Welcomes the United Kingdom as 21st...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Australia, Bulgaria, Ghana, Hungary, Jordan, Kazakhstan, Lithuania, Poland, Romania, Slovenia, and the Ukraine. "The UK shares in the vision of improved non-proliferation ...

  11. EM International Strategic Plan 2010-2015

    Energy Savers [EERE]

    ... Japan, Jordan Kazakhstan, Republic of Korea, Lithuania, Morocco, Oman, Poland, Romania, the Russian Federation, Senegal, Slovenia, Ukraine, United Kingdom and the United States. ...

  12. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    ... Kazakhstan EIAARI World Shale Gas and Shale Oil Resource Assessment December 29, 2014 XXVIII-32 Figure 26. North-South Correlation Panel, the Sarylan Graben. Source: Mosley and ...

  13. International Collaboration with the Shutdown of the BN-350 Reactor

    SciTech Connect (OSTI)

    J. A. Michelbacher; P.B. Wells; N. Organ; D. Wells

    2005-08-01

    Representatives from the United States and the United Kingdom discussed areas where collaboration on the shutdown of the BN-350 Reactor in Aktau, Kazakhstan would benefit not only Kazakhstan, but would also help to assure the successful shutdown of the reactor. A fundamental understanding of the basis for collaboration has been for each side to add value to each of the project areas, rather than simply substitute for each others experience. This approach has brought distinct technical and management benefits to the decommissioning activities in Kazakhstan.

  14. Y-12's second era begins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    weapons test on August 29, 1949 in Kazakhstan. During this same time from 1945 to 1949, Y-12 was busy transitioning from an electromagnetic separation plant to a nuclear weapons...

  15. 2015_05_04_Columbia University_FINAL[2].pptx (Read-Only)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 May 2015 Most significant contributors to non-OPEC crude and lease condensate production: Canada, Brazil, U.S., Kazakhstan, Russia 0 6 12 18 24 Canada United States Mexico...

  16. International Energy Outlook 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2015 Most significant contributors to non-OPEC crude and lease condensate production: Canada, Brazil, U.S., Kazakhstan, Russia 0 6 12 18 24 Canada United States Mexico...

  17. From Cold War to cold vessels

    SciTech Connect (OSTI)

    Melrath, C.

    1996-09-01

    This article describes a former Soviet weapons plant which is converted to produce cryogenic vessels and other peaceful cylinders. In 1995, Byelocorp Scientific Inc. (BSI), a New York-based firm that specializes in transferring technologies developed in the former Soviet Union, began converting a huge military defense plant in Kazakhstan into civilian-industrial use. The nearly 750,000-square-foot factory in Almaty, the capital of the former Soviet republic, was previously used to manufacture torpedo shells and ballistic rocket casings. The old defense plant, which was known as Gidromash, will now manufacture cylinders of a kinder, gentler variety--cryogenic vessels. The Kazakhstan operation is being managed jointly with Supco Srl., an Italian manufacturing, engineering, and construction company. With financing from the US Department of Defense, BSI, Supco, and the Kazakhstan government, a new joint venture called Byelkamit (a combination of Byelocorp, Kazakhstan, America, and Italy) was established.

  18. U.S. Department of Energy and NTI Announce Key Nonproliferation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NTI Announce Key Nonproliferation Project with Kazakhstan U.S. Department of Energy and ... Agreement Reached To Downblend HEU and Convert Reactor WASHINGTON, D.C. - The U.S. ...

  19. Deputy Secretary Daniel Poneman's Remarks to the International...

    Office of Environmental Management (EM)

    This ceremony today reminds us that ending nuclear testing must remain a top priority for the global community. For nearly two decades, the United States and Kazakhstan have worked ...

  20. removal

    National Nuclear Security Administration (NNSA)

    80 pounds) of highly enriched uranium (HEU) spent fuel from the Institute of Nuclear Physics (INP) in Almaty, Kazakhstan. The HEU was transported via two air shipments to a...

  1. Ulrich Wiesner > Spencer T. Olin Professor of Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Security Administration US, Kazakhstan Cooperate to Eliminate Highly Enriched Uranium January 07, 2015 WASHINGTON D.C - The Department of Energy's National Nuclear Security Administration (DOE/NNSA) announced today the removal of 36 kilograms (approximately 80 pounds) of highly enriched uranium (HEU) spent fuel from the Institute of Nuclear Physics (INP) in Almaty, Kazakhstan. The HEU was transported via two air shipments to a secure facility in Russia for permanent disposition. This

  2. Kazmerski Leads National Center for Solar Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kazakhstan NNSA Hosts International Nuclear Forensics Workshop with Participants from Eight Countries WASHINGTON, D.C. - During May 11-22, the National Nuclear Security Administration's (NNSA) Nuclear Smuggling Detection and Deterrence program held a hands-on nuclear forensics course at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington. The "International Training Course on... US, Kazakhstan Cooperate to Eliminate Highly Enriched Uranium WASHINGTON D.C - The

  3. request.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    removal US, Kazakhstan Cooperate to Eliminate Highly Enriched Uranium WASHINGTON D.C - The Department of Energy's National Nuclear Security Administration (DOE/NNSA) announced today the removal of 36 kilograms (approximately 80 pounds) of highly enriched uranium (HEU) spent fuel from the Institute of Nuclear Physics (INP) in Almaty, Kazakhstan. The HEU was

    render safe Nuclear Forensics The National Technical Nuclear Forensics (NTNF) program is a Homeland Security Council and National Security

  4. Microsoft Word - AN_NM_12_11_2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear physics at Nazarbayev University in Astana, Kazakhstan Dr. Aliya Nurmukhanbetova and Nessipbek Mynbayev Nazarbayev University, Astana, Kazakhstan Abstract: We will describe nuclear research in Nazarbayev University, and will present the first results of study of resonances in alpha+ 13 C reaction at low energies. The aim of the project is to obtain experimental data of the excitation functions of the 13 C (α, α) 13 С elastic scattering at the initial beam energy of 13 C from 1.7Mev/A

  5. Microsoft Word - FY07AnnualReport.doc

    Broader source: Energy.gov (indexed) [DOE]

    (EZ) 1 18,000,000 FRANCE (FR) 5 8,093,198 GABON (GB) 1 441,600 GAMBIA (GA) 1 49,300 GERMANY FEDERAL REPUBLIC OF (GE) 3 1,698,498 HUNGARY (HU) 1 4,000,000 KAZAKHSTAN (KZ) 3...

  6. Initiatives for proliferation prevention program : goals, projects, and opportunities

    SciTech Connect (OSTI)

    Hemberger, P. H.

    2001-01-01

    The mission of the U.S. Department of Energy Initiatives for Proliferation Prevention (IPP) Program is to identify and create commercial opportunities for former weapons scientists currently or formerly involved with weapons of mass destruction in the Former Soviet Union (FSU). IPP was first authorized in Fiscal Year 1994 under Section 575 of Public Law 103-87. IPP currently sponsors 164 projects in Russian at 64 institutes; 16 projects in the Ukraine at 14 institutes; 14 projects in Kazakhstan at 10 institutes; and one project in Belarus. To date, the IPP program has engaged over 10,000 experts in the areas of nuclear, chemical, and biological weapons and missile development at more than 170 institutes in Russia, Kazakhstan, Ukraine, and Belarus.

  7. NREL: International Activities - Bilateral Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Printable Version Bilateral Partnerships NREL partners with more than 50 countries around the world to advance development and use of renewable energy and energy efficiency technologies: Angola Argentina Australia Bangladesh Brazil Canada Chile China Colombia Costa Rica Gabon Haiti India Indonesia Japan Kazakhstan Kenya Korea Mexico North America Philippines Saudi Arabia U.S. Pacific Territories United Arab Emirates Vietnam Asia Bangladesh Under sponsorship from the U.S. Agency for International

  8. Microsoft PowerPoint - GNEP PARTNERS CANDIDATE PARTNERS AND OBSERVERS.PPT

    Energy Savers [EERE]

    GNEP Partners and Observers GNEP Partners (As of September 16, 2007) 1. Australia 2. Bulgaria 3. China 4. France 5. Ghana 6. Hungary 7. Japan 8. Jordan 9. Kazakhstan 10. Lithuania 11. Poland 12. Romania 13. Russia 14. Slovenia 15. Ukraine 16. United States GNEP Observers 1. International Atomic Energy Agency (IAEA) 2. Generation IV International Forum (GIF) 3. Euratom Attending Candidate Partner and Observer Countries 1. Argentina 2. Belgium 3. Brazil 4. Canada 5. Czech 6. Egypt 7. Finland 8.

  9. russia | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    russia NNSA Partnership Successfully Removes All Remaining HEU from Uzbekistan WASHINGTON, DC - Today, the Department of Energy's National Nuclear Security Administration (DOE/NNSA) announced the successful return of the final 5 kilograms (approximately 11 pounds) of highly enriched uranium (HEU) spent fuel from the IIN-3M "Foton" research reactor in Tashkent, Uzbekistan to... US, Kazakhstan Cooperate to Eliminate Highly Enriched Uranium WASHINGTON D.C - The Department of Energy's

  10. Now Accepting Applications for Alvarez Fellowship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November/December 2010 November/December 2010 December 22, 2010 In this issue: * NNSA Secures Highly Enriched Uranium and Plutonium in Kazakhstan * VP Biden Presents Baldrige Quality Award to Kansas City Plant Contractor * Ken Baker Honored for Public Service * Abigail Cuthbertson Receives 201 Linton Brooks Medal for Public Service * Employees Throughout the Nuclear Security Enterprise Give Back This Holiday Season * Nonproliferation R&D Leads to Award-winning Cancer Screening Device *

  11. Proceedings of the Radionuclide Contamination in Water Resources Workshop

    SciTech Connect (OSTI)

    Richardson, J H; Duisebayev, B; Janecky, D R; Knapp, R; Rosenburg, N D; Smith, D K; Tompson, A F B; Tyupkina, O; Veselov, V V

    2001-07-26

    A workshop entitled ''Radionuclide Contamination in Water Resources'' was held in Almaty, Kazakhstan from Tuesday 29 May through Friday 1 June. This workshop was co-sponsored by the U.S. Department of Energy, Lawrence Livermore National Laboratory, and three organizations from the Republic of Kazakhstan: the Institute of Nonproliferation, the Institute of Hydrogeology and Hydrophysics, and KazAtomProm. Representatives from the U.S. Department of Energy, three national laboratories, and 13 different organizations from the Republic of Kazakhstan attended the workshop. A complete list of attendees, the workshop program, and information on the background and motivation for this workshop are provided in this report. The objective of the workshop was to identify critical problems, discover what is known about the problems related to radionuclide contamination of groundwater resources, form collaborative teams, and produce a small number proposals that both address further characterization and assess risk via contaminant fate and transport modeling. We plan to present these proposals to U.S. government agencies and international sponsors for funding.

  12. Energy choices in the near abroad: The haves and have-nots face the future

    SciTech Connect (OSTI)

    Ebel, R.E.

    1997-08-01

    Of the 14 republics that make up the `Near Abraod,` only three-Kazakhstan, Turkmenistan, and Azerbaijan-are rich in oil and natural gas. The others have been almost completely dependent on Russia for their fuel. Russia, with its own energy sector in difficulty, has been cutting back deliveries. The republics with substantial oil and gas resources are challenged to develop them in a timely and responsible fashion. Success will move them into world of developed nations; failure will bring economic stagnation and political grief.

  13. Another Kazakh megaproject lined up

    SciTech Connect (OSTI)

    Not Available

    1992-07-13

    This paper reports that Agip SpA and British Gas plc (BG) have signed an exclusive protocol of intent with Kazakhstan for joint further development of supergiant Karachaganak oil and gas/condensate field and related work in the Uralsk region of the former Soviet republic. The deal ultimately could mean an outlay of $6 billion during a 10 year period of boost production in the field, on stream since 1986, by drilling wells and implementing advanced recovery techniques. Reserves currently are pegged at more than 20 tcf of gas and a combined 1.9-2 billion bbl of liquids, an estimate likely to rise.

  14. Control And Data Acquisition System Of Tokamak KTM

    SciTech Connect (OSTI)

    Baystrukov, K. I.; Pavlov, V. M.; Sharnin, A. V.; Obhodskij, A. V.; Merkulov, S. V.; Golobokov, Y. N.; Mezentsev, A. A.; Ovchinnikov, A. V.; Tazhibaeva, I. L.

    2008-04-07

    The preliminary results of control and data acquisition system (CODAS) development for Kazakhstan tokamak for material testing (KTM) [1] are presented. The KTM CODAS is completely new system optimized for KTM facility and its regimes of operation. Its development is carrying out in Tomsk Polytechnic University by Russian specialists. The first KTM launching under the control of CODAS is planed on 2008 year. The base functionality of CODAS is presented, including short description of its subsystems, such as control system of conditioning process, plasma control system, digital control system of power supplies, protection and timing system, data acquisition system.

  15. Evaluation of Solar Grade Silicon Produced by the Institute of Physics and Technology: Cooperative Research and Development Final Report, CRADA Number CRD-07-211

    SciTech Connect (OSTI)

    Page, M.

    2013-02-01

    NREL and Solar Power Industries will cooperate to evaluate technology for producing solar grade silicon from industrial waste of the phosphorus industry, as developed by the Institute of Physics and Technology (IPT), Kazakhstan. Evaluation will have a technical component to assess the material quality and a business component to assess the economics of the IPT process. The total amount of silicon produced by IPT is expected to be quite limited (50 kg), so evaluations will need to be done on relatively small quantities (? 5 kg/sample).

  16. U.S. Energy Information Administration (EIA)

    Gasoline and Diesel Fuel Update (EIA)

    Frequently Requested Methodology Assessed resource basin map Summary tables (2015) Recent Updates Chad Kazakhstan Oman United Arab Emirates Previous Full Reports April 5, 2011 (16.8 mb) June 13, 2013 (64.9 mb) World Shale Resource Assessments Last updated: September 24, 2015 This series of reports provides an initial assessment of world shale oil and shale gas resources. The first edition was released in 2011 and updates are released on an on-going basis. Four countries were added in 2014: Chad,

  17. In situ radiation measurements at the former Soviet Nuclear Test Site

    SciTech Connect (OSTI)

    Tipton, W.J.

    1996-06-01

    A team from the Remote Sensing Laboratory conducted a series of in situ radiological measurements at the former Soviet Nuclear Test Site near Semipalatinsk, Kazakhstan, during the period of July 21-30, 1994. The survey team measured the terrestrial gamma radiation at selected areas on the site to determine the levels of natural and man-made radiation. The survey was part of a cooperative effort between the United States team and teams of radiation scientists from the National Nuclear Center of the Republic of Kazakhstan and the V.G. Khlopin Radium Institute in St. Petersburg, Russia. In addition to in situ radiation measurements made by the United States and Russian teams, soil samples were collected and analyzed by the Russian and Kazakhstani teams. All teams conducted their measurements at ten locations within the test site. The United States team also made a number of additional measurements to locate and verify the positions of three potential fallout plumes containing plutonium contamination from nonnuclear tests. In addition, the United States team made several measurements in Kurchatov City, the housing area used by personnel and their families who work(ed) at the test sites. Comparisons between the United States and Russian in situ measurements and the soil sample results are presented as well as comparisons with a Soviet aerial survey conducted in 1990-1991. The agreement between the different types of measurements made by all three countries was quite good.

  18. Lidar Measurements of the Vertical Distribution of Aerosol Optical and Physical Properties over Central Asia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Boris B.; Sverdlik, Leonid G.; Imashev, Sanjar A.; Solomon, Paul A.; Lantz, Jeffrey; Schauer, James J.; Shafer, Martin M.; Artamonova, Maria S.; Carmichael, Gregory R.

    2013-01-01

    The vertical structure of aerosol optical and physical properties was measured by Lidar in Eastern Kyrgyzstan, Central Asia, from June 2008 to May 2009. Lidar measurements were supplemented with surface-based measurements of PM 2.5 and PM 10 mass and chemical composition in both size fractions. Dust transported into the region is common, being detected 33% of the time. The maximum frequency occurred in the spring of 2009. Dust transported to Central Asia comes from regional sources, for example, Taklimakan desert and Aral Sea basin, and from long-range transport, for example, deserts of Arabia, Northeast Africa, Iran, and Pakistan. Regionalmore » sources are characterized by pollution transport with maximum values of coarse particles within the planetary boundary layer, aerosol optical thickness, extinction coefficient, integral coefficient of aerosol backscatter, and minimum values of the Ångström exponent. Pollution associated with air masses transported over long distances has different characteristics during autumn, winter, and spring. During winter, dust emissions were low resulting in high values of the Ångström exponent (about 0.51) and the fine particle mass fraction (64%). Dust storms were more frequent during spring with an increase in coarse dust particles in comparison to winter. The aerosol vertical profiles can be used to lower uncertainty in estimating radiative forcing.« less

  19. SUSTAINABLE DEVELOPMENT IN KAZAKHASTAN: USING OIL AND GAS PRODUCTION BY-PRODUCT SULFUR FOR COST-EFFECTIVE SECONDARY END-USE PRODUCTS.

    SciTech Connect (OSTI)

    KALB, P.D.; VAGIN, S.; BEALL, P.W.; LEVINTOV, B.L.

    2004-09-25

    The Republic of Kazakhstan is continuing to develop its extensive petroleum reserves in the Tengiz region of the northeastern part of the Caspian Sea. Large quantities of by-product sulfur are being produced as a result of the removal of hydrogen sulfide from the oil and gas produced in the region. Lack of local markets and economic considerations limit the traditional outlets for by-product sulfur and the buildup of excess sulfur is a becoming a potential economic and environmental liability. Thus, new applications for re-use of by-product sulfur that will benefit regional economies including construction, paving and waste treatment are being developed. One promising application involves the cleanup and treatment of mercury at a Kazakhstan chemical plant. During 19 years of operation at the Pavlodar Khimprom chlor-alkali production facility, over 900 tons of mercury was lost to the soil surrounding and beneath the buildings. The Institute of Metallurgy and Ore Benefication (Almaty) is leading a team to develop and demonstrate a vacuum-assisted thermal process to extract the mercury from the soil and concentrate it as pure, elemental mercury, which will then be treated using the Sulfur Polymer Stabilization/Solidification (SPSS) process. The use of locally produced sulfur will recycle a low-value industrial by-product to treat hazardous waste and render it safe for return to the environment, thereby helping to solve two problems at once. SPSS chemically stabilizes mercury to mercuric sulfide, which has a low vapor pressure and low solubility, and then physically encapsulates the material in a durable, monolithic solid sulfur polymer matrix. Thus, mercury is placed in a solid form very much like stable cinnabar, the form in which it is found in nature. Previous research and development has shown that the process can successfully encapsulate up to 33 wt% mercury in the solid form, while still meeting very strict regulatory standards for leachable mercury (0.025 mg/l in the Toxicity Characteristic Leaching Procedure). The research and development to deploy Kazakhstan recycled sulfur for secondary applications described in this paper is being conducted with support from the International Science and Technology Center (ISTC) and the U.S. Department of Energy Initiatives for Proliferation Prevention (DOE IPP).

  20. SPECIAL SEMINAR - The NOTTE experiment, or how to become a Total Solar Eclipse chaser

    ScienceCinema (OSTI)

    None

    2011-10-06

    The NOTTE experiment (Neutrino Oscillations with Telescope during Total Eclipse) aims at searching for visible photons emitted through a possible radiative decay of solar neutrinos. The experiment and the expeditions organized by a group of physicists and astrophysicists from INFN and INAF Bologna hunting for Total Solar Eclipses from 1998 to 2006 wil be described. The results of observations performed during total solar eclipse expeditions in 2001 (Zambia) and 2006 (Sahara desert, Libya) are presented and a beautiful photo gallery will be shown. Other peculiar observations that can be made during a solar eclipse are also illustrated. The seminar will be followed by a brief presentation of future camps for solar eclipse chasers and scientists organized in 2008 in Russia, Kazakhstan, China and Mongolia, in 2009 in Shanghai and on the Easter Island in 2010.

  1. Large oil resource awaits exploitation in former Soviet Union's Muslim republics

    SciTech Connect (OSTI)

    Riva, J.P. Jr. )

    1993-01-04

    Throughout the dramatic breakup of the Soviet Union, most of the attention was focused on the Russian federation. This paper reports that less notice was paid to the republics of Azerbaijan, Kazakhstan, Turkmenistan, Uzbekistan, Kirghizia, and Tadzhikistan that are located along the Soviet southern fringe. This region was known as the Northern Tier (of the Middle East) when the six republics were forcibly incorporated into the Soviet Union by the Red Army after the revolution. The Russians were considered colonial rulers by the inhabitants of these Muslim states, whereas the Azeris, Turkmen, Uzbeks, Kazakhs, Tajiks, Kyrgyzs, etc., were often regarded as backward by the Russians and given little autonomy. The Soviets, while proclaiming their efforts to improve public health and protect nature, relentlessly degraded both.

  2. Caspian pipeline combine awards construction contract

    SciTech Connect (OSTI)

    Not Available

    1992-11-02

    This paper reports that the Caspian Pipeline Consortium (CPC) has let contract to Overseas Bechtel Inc. for a 500 mile crude oil export pipeline in Russia. Bechtel will provide engineering, procurement, financing, and construction services and serve as project manager for the 42 inc. line that will extend west from Grozny, near the Caspian Sea, to Novorossiisk, on the Black Sea. Estimated cost is more than $850 million. At Grozny, the new line will tie into 800 miles of existing pipeline that runs along the north shore of the Caspian Sea from supergiant Tengiz field in Kazakhstan. Together, the two segments will form a 1,300 mile system capable of shipping crude oil from the Tengiz region and from Baku, Azerbaijan, to a new terminal and port facilities at Novorossiisk for shipment to world markets, ultimately reaching open oceans via the Mediterranean Sea.

  3. SPECIAL SEMINAR - The NOTTE experiment, or how to become a Total Solar Eclipse chaser

    SciTech Connect (OSTI)

    2011-02-08

    The NOTTE experiment (Neutrino Oscillations with Telescope during Total Eclipse) aims at searching for visible photons emitted through a possible radiative decay of solar neutrinos. The experiment and the expeditions organized by a group of physicists and astrophysicists from INFN and INAF Bologna hunting for Total Solar Eclipses from 1998 to 2006 wil be described. The results of observations performed during total solar eclipse expeditions in 2001 (Zambia) and 2006 (Sahara desert, Libya) are presented and a beautiful photo gallery will be shown. Other peculiar observations that can be made during a solar eclipse are also illustrated. The seminar will be followed by a brief presentation of future camps for solar eclipse chasers and scientists organized in 2008 in Russia, Kazakhstan, China and Mongolia, in 2009 in Shanghai and on the Easter Island in 2010.

  4. U.S. Energy Information Administration (EIA)

    Gasoline and Diesel Fuel Update (EIA)

    2. World natural gas reserves by country as of January 1, 2016 Country Reserves (trillion cubic feet) Percent of world total World 6,950 100 Top 20 countries 6,359 91.5 Russia 1,688 24.3 Iran 1,201 17.3 Qatar 866 12.5 United States 369 5.3 Saudi Arabia 300 4.3 Turkmenistan 265 3.8 United Arab Emirates 215 3.1 Venezuela 198 2.9 Nigeria 180 2.6 China 175 2.5 Algeria 159 2.3 Iraq 112 1.6 Indonesia 102 1.5 Mozambique 100 1.4 Kazakhstan 85 1.2 Egypt 77 1.1 Canada 70 1 Norway 68 1 Uzbekistan 65 0.9

  5. Technology Cooperation Agreement Pilot Project development-friendly greenhouse gas reduction, May 1999 update

    SciTech Connect (OSTI)

    Benioff, R.

    1999-05-11

    The Technology Cooperation Agreement Pilot Project (TCAPP) was launched by several U.S. Government agencies (USAID, EPA and DOE) in August 1997 to establish a model for climate change technology cooperation with developing and transition countries. TCAPP is currently facilitating voluntary partnerships between the governments of Brazil, China, Kazakhstan, Korea, Mexico, and the Philippines, the private sector, and the donor community on a common set of actions that will advance implementation of clean energy technologies. The six participating countries have been actively engaged in shaping this initiative along with international donors and the private sector. This program helps fulfill the US obligation to support technology transfer to developing countries under Article 4.5 of the United Nations Framework Convention on Climate Change. TCAPP also provides a mechanism to focus resources across international donor programs on the technology cooperation needs of developing and transition countries.

  6. Paleosols and carbonate sequence stratigraphy, Carboniferous, S. Kazakstan

    SciTech Connect (OSTI)

    Lehmann, P.J.; Cook, H.E.; Zempolich, W.G.

    1996-12-31

    Carbonate platform facies in the Karatau Mountains of S. Kazakhstan are analogs for coeval oil and gas fields in the N. Caspian Basin, W. Kazakhstan. Understanding the sequence stratigraphy of these analogs is enhanced by the recognition and interpretation of paleosols. Thirty four paleosols subdivide 620 in of Visean-Bashkirian carbonates that span {approx} 30 my. M. and U. Visean strata consists of slope apron to platform margin skeletal/oolitic grainstone subdivided by 15 paleosols, that stack into 5 upward-thinning sequence sets. The U. Visean marks a significant increase in accommodation where shelf lagoon burrowed, skeletal wackestone/packstone shoal upward into skeletal/oncolitic grainstonelpackstone. Here depositional units thicken and are capped by thin peritidal laminates, not paleosols. The Serpukovian has 13 paleosols developed in biostromal open shelf grainstone/packstone and skeletal/oolitic grain shoal complexes. The L. Bashkirian records a major flooding event where lower slope laminates lie only 7 m above three stacked, deeply-rooted paleosols. This section shoals upward into upper slope acid-rich turbidites. Sequence boundaries are marked by 4 burrowed firmgrounds in the lower slope facies and by paleosols in the upper slope facies. Paleosols are characterized by the following: (1) laminated micrite crusts (i.e. Multer crusts), (2) rhizoliths, (3) alveolar texture, (4) brown isopachous and pendant spar, (5) desiccation cracks, (6) glaebules, (7) micritized grains, and (8) tangential needle fibers of calcite. Most rhizoliths and micrite crusts penetrate less than 1 m of strata. The shallow penetration, dark color of the michte crusts and rhizoliths, and common isopachous cements may indicate significant paleosol formation in a humid climate. The repeated occurrence of paleosols on subtidal upper slope, platform margin and platform interior facies strongly suggests a eustatic or glacio-eustatic origin.

  7. Paleosols and carbonate sequence stratigraphy, Carboniferous, S. Kazakstan

    SciTech Connect (OSTI)

    Lehmann, P.J. , Houston, TX ); Cook, H.E. ); Zempolich, W.G. )

    1996-01-01

    Carbonate platform facies in the Karatau Mountains of S. Kazakhstan are analogs for coeval oil and gas fields in the N. Caspian Basin, W. Kazakhstan. Understanding the sequence stratigraphy of these analogs is enhanced by the recognition and interpretation of paleosols. Thirty four paleosols subdivide 620 in of Visean-Bashkirian carbonates that span [approx] 30 my. M. and U. Visean strata consists of slope apron to platform margin skeletal/oolitic grainstone subdivided by 15 paleosols, that stack into 5 upward-thinning sequence sets. The U. Visean marks a significant increase in accommodation where shelf lagoon burrowed, skeletal wackestone/packstone shoal upward into skeletal/oncolitic grainstonelpackstone. Here depositional units thicken and are capped by thin peritidal laminates, not paleosols. The Serpukovian has 13 paleosols developed in biostromal open shelf grainstone/packstone and skeletal/oolitic grain shoal complexes. The L. Bashkirian records a major flooding event where lower slope laminates lie only 7 m above three stacked, deeply-rooted paleosols. This section shoals upward into upper slope acid-rich turbidites. Sequence boundaries are marked by 4 burrowed firmgrounds in the lower slope facies and by paleosols in the upper slope facies. Paleosols are characterized by the following: (1) laminated micrite crusts (i.e. Multer crusts), (2) rhizoliths, (3) alveolar texture, (4) brown isopachous and pendant spar, (5) desiccation cracks, (6) glaebules, (7) micritized grains, and (8) tangential needle fibers of calcite. Most rhizoliths and micrite crusts penetrate less than 1 m of strata. The shallow penetration, dark color of the michte crusts and rhizoliths, and common isopachous cements may indicate significant paleosol formation in a humid climate. The repeated occurrence of paleosols on subtidal upper slope, platform margin and platform interior facies strongly suggests a eustatic or glacio-eustatic origin.

  8. Comparison of Tarim and central Asian FSU basins, I: Phanerozoic paleogeography

    SciTech Connect (OSTI)

    Heubeck, C.; Shangyou N. )

    1996-01-01

    Large amounts of previously unpublished data on the petroleum geology of the FSU's Central Asian Republics and of China's Tarim region have found their way into the western public domain in the past few years. These data provide for the first time the opportunity to merge detailed stratigraphic, tectonic, and paleogeographic studies done during the past decades on both sides of the FSU-Chinese border and to place the results in a plate-tectonic and palinspastically restored reference frame. Major tectonic events affecting the active post-Silurian south-facing margin of Asia between the Caspian Sea and Tarim include (1) the collapse of the Kazakhstan arc fragments (ca. 400-300 Ma); (2) collision of YiIi with Tarim (ca. 375 Ma); (3) consolidation of the Turan Platform from pre-existing basement blocks (ca. 280-220 Ma), (4) collision of Tarim/Yili with the Kazakhstan arcs (ca. 260 Ma); (5) stabilization of a south-facing Triassic active margin (ca. 250 - 200 Ma); (6) accretion of Cimmeria (ca. 200 Ma) and associated reactivation events in Turan, Syr-Darja, and Tarim; (7) reactivation and modification of intracontinental structures during the collision of central Asia with India (ca. 55 Ma to present) and with the Arabian platform (ca. 25 Ma). Periodic large-scale flooding of denuded continental platforms (Turan, Tadjik) during sea-level highstands is recorded in the Jurassic, Mid-Late Cretaceous, and the Early Tertiary, resulting in extensive tracts of restricted marine sedimentary systems and marine incursions deep into central Asia (SW Tarim, Kuche Depression, Fergana, Turgay). Mesozoic-Cenozoic source rocks are sensitive to rapid lateral facies changes, and understanding their distribution requires detailed stratigraphic analysis. The attempted synthesis of data from China and the FSU with plate-tectonic concepts allows the transfer and testing of play concepts and hydrocarbons systems across the FSU-Chinese border.

  9. Cleaning Cesium Radionuclides from BN-350 Primary Sodium

    SciTech Connect (OSTI)

    Romanenko, O.G.; Allen, K.J.; Wachs, D.M.; Planchon, H.P.; Wells, P.B.; Michelbacher, J.A.; Nazarenko, P.; Dumchev, I.; Maev, V.; Zemtzev, B.; Tikhomirov, L.; Yakovlev, V.; Synkov, A

    2005-04-15

    This paper reports the successful design and operation of a system to remove highly radioactive cesium from the sodium coolant of the BN-350 reactor in Aktau, Kazakhstan. As an international effort between the United States and the Republic of Kazakhstan, a cesium-trapping system was jointly designed, fabricated, installed, and successfully operated. The results are significant for a number of reasons, including (a) a significant reduction of radioactivity levels of the BN-350 coolant and reactor surfaces, thereby reducing exposure to workers during shutdown operations; (b) demonstration of scientific ideas; and (c) the engineering application of effective cesium trap deployment for commercial-sized liquid-metal reactors. About 255 300 GBq (6900 Ci) of cesium was trapped, and the {sup 137}Cs specific activity in BN-350 primary sodium was decreased from 296 MBq/kg (8000 {mu}Ci/kg) to 0.37 MBq/kg (10 {mu}Ci/kg) by using seven cesium traps containing reticulated vitreous carbon (RVC) as the cesium adsorbent. Cesium trapping was accomplished by pumping sodium from the primary circuit, passing it through a block of RVC within each trap, and returning the cleaned sodium to the primary circuit. Both to predict and to analyze the behavior of the cesium traps in the BN-350 reactor primary circuit, a model was developed that satisfactorily describes the observed results of the cesium trapping. By using this model, thermodynamic parameters, such as the heat of adsorption of cesium atoms on RVC and on internal piping surfaces of the BN-350 reactor primary circuit, -22.7 and -5.0 kJ/mole, respectively, were extracted from the experimental data.

  10. INVESTIGATION OF CRUSTAL MOTION IN THE TIEN SHAN USING INSAR

    SciTech Connect (OSTI)

    Mellors, R J

    2011-02-25

    The northern Tien Shan of Central Asia is an area of active mid-continent deformation. Although far from a plate boundary, this region has experienced 5 earthquakes larger than magnitude 7 in the past century and includes one event that may as be as large as Mw 8.0. Previous studies based on GPS measurements indicate on the order of 23 mm/yr of shortening across the entire Tien Shan and up to 15 mm/year in the northern Tien Shan (Figure 1). The seismic moment release rate appears comparable with the geodetic measured slip, at least to first order, suggesting that geodetic rates can be considered a proxy for accumulation rates of stress for seismic hazard estimation. Interferometric synthetic aperture radar may provide a means to make detailed spatial measurements and hence in identifying block boundaries and assisting in seismic hazard. Therefore, we hoped to define block boundaries by direct measurement and by identifying and resolving earthquake slip. Due to political instability in Kyrgzystan, the existing seismic network has not performed as well as required to precisely determine earthquake hypocenters in remote areas and hence InSAR is highly useful. In this paper we present the result of three earthquake studies and show that InSAR is useful for refining locations of teleseismically located earthquakes. ALOS PALSAR data is used to investigate crustal motion in the Tien Shan mountains of Central Asia. As part of the work, considerable software development was undertaken to process PALSAR data. This software has been made freely available. Two damaging earthquakes have been imaged in the Tien Shan and the locations provided by ALOS InSAR have helped to refine seismological velocity models. A third earthquake south of Kyrgyzstan was also imaged. The use of InSAR data and especially L band is therefore very useful in providing groundtruth for earthquake locations.

  11. BN-350 unattended safeguards system current status and initial fuel movement data

    SciTech Connect (OSTI)

    Williams, Richard Brady; Browne, Michael C; Parker, Robert F; Ingegneri, Maurizio

    2009-01-01

    The Unattended and Remote Monitoring (UNARM) system at the BN-350 fast breeder reactor facility in Aktau, Kazakhstan continues to provide safeguards monitoring data as the spent fuel disposition project transitions from wet fuel storage to dry storage casks. Qualitative data from the initial cask loading procedures has been released by the International Atomic Energy Agency (IAEA) and is presented here for the first time. The BN-350 fast breeder reactor in Aktau, Kazakhstan, operated as a plutonium-producing facility from 1973 W1til 1999. Kazakhstan signed the Nonproliferation Treaty (NPT) in February 1994, and shortly afterwards the IAEA began safeguarding the reactor facility and its nuclear material. Slnce the cessation of reactor operations ten years ago, the chief proliferation concern has been the spent fuel assemblies stored in the pond on-site. By 2002, all fuel assemblies in wet storage had been repackaged into proliferation-resistant canisters. From the beginning, the IAEA's safeguards campaign at the BN-350 included a constant unattended sensor presence in the form of UNARM which monitors nuclear material activities at the facility in the absence of inspector presence. The UNARM equipment at the BN-350 was designed to be modular and extensible, allowing the system to adapt as the safeguards requirements change. This has been particularly important at the BN-350 due to the prolonged wet storage phase of the project. The primary function of the BN-350 UNARM system is to provide the IAEA with an independent, radiation-centric Containment and Surveillance (C&S) layer in addition to the standard seals and video systems. The UNARM system has provided continuous Continuity of Knowledge (COK) data for the BN-350's nuclear material storage areas in order to ensure the validity of the attended measurements during the lifetime of the project. The first of these attended measurements was characterization of the spent fuel assemblies. This characterization utilized the Spent Fuel Coincidence Counter (SFCC) instrument [ref] to measure neutron multiplicity and calculate Pu mass. These calculated masses were then compared to modeling simulation of the assemblies as well as declarations from the facility in order to baseline the amount of material under IAEA safeguards [ref]. Once the baseline was established, bundles of four or six assemblies were repackaged into proliferati n-resistant canisters. This provided an additional physical barrier to material diversion and provided further protection by choosing assemblies for each canister so that the overall dose rate met self-protection requirements. Each of the canisters were then characterized using a similar technique to the SFCC, but with the Spent Fuel Attribute Monitor (SPAM) instnunent (ref). The data from these measurements were then used to calculate an attribute proportional to the total Pu mass in each canister. This attribute was then compared to the know Pu mass of each assembly in order to verify the accuracy of SPAM. In the event that COK is lost, the SPAM detector remains positioned to reverify Pu content of individual canisters without requiring the canister to be opened.

  12. Initiatives for proliferation prevention

    SciTech Connect (OSTI)

    1997-04-01

    Preventing the proliferation of weapons of mass destruction is a central part of US national security policy. A principal instrument of the Department of Energy`s (DOE`s) program for securing weapons of mass destruction technology and expertise and removing incentives for scientists, engineers and technicians in the newly independent states (NIS) of the former Soviet Union to go to rogue countries or assist terrorist groups is the Initiatives for Proliferation Prevention (IPP). IPP was initiated pursuant to the 1994 Foreign Operations Appropriations Act. IPP is a nonproliferation program with a commercialization strategy. IPP seeks to enhance US national security and to achieve nonproliferation objectives by engaging scientists, engineers and technicians from former NIS weapons institutes; redirecting their activities in cooperatively-developed, commercially viable non-weapons related projects. These projects lead to commercial and economic benefits for both the NIS and the US IPP projects are funded in Russian, Ukraine, Kazakhstan and Belarus. This booklet offers an overview of the IPP program as well as a sampling of some of the projects which are currently underway.

  13. Conference report on the 3rd international symposium on lithium application for fusion devices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mazzitelli, G.; Hirooka, Y.; Hu, J. S.; Mirnov, S. V.; Nygren, R.; Shimada, M.; Ono, M.; Tabares, F. L.

    2015-01-14

    The third International Symposium on Lithium Application for Fusion Device (ISLA-2013) was held on 9–11 October 2013 at ENEA Frascati Centre with growing participation and interest from the community working on more general aspect of liquid metal research for fusion energy development. ISLA-2013 has been confirmed to be the largest and the most important meeting dedicated to liquid metal application for the magnetic fusion research. Overall, 45 presentation plus 5 posters were given, representing 28 institutions from 11 countries. The latest experimental results from nine magnetic fusion devices were presented in 16 presentations from NSTX (PPPL, USA), FTU (ENEA, Italy),more » T-11M (Trinity, RF), T-10 (Kurchatov Institute, RF), TJ-II (CIEMAT, Spain), EAST(ASIPP, China), HT-7 (ASIPP, China), RFX (Padova, Italy), KTM (NNC RK, Kazakhstan). Sessions were devoted to the following: (I) lithium in magnetic confinement experiments (facility overviews), (II) lithium in magnetic confinement experiments (topical issues), (III) special session on liquid lithium technology, (IV) lithium laboratory test stands, (V) Lithium theory/modelling/comments, (VI) innovative lithium applications and (VII) special Session on lithium-safety and lithium handling. There was a wide participation from the fusion technology communities, including IFMIF and TBM communities providing productive exchange with the physics oriented magnetic confinement liquid metal research groups. This international workshop will continue on a biennial basis (alternating with the Plasma–Surface Interactions (PSI) Conference) and the next workshop will be held at CIEMAT, Madrid, Spain, in 2015.« less

  14. The bear awakens: Resurgence of oil and gas in the former Soviet Union

    SciTech Connect (OSTI)

    Foreman, N.E.

    1996-12-31

    Since dissolution of the Soviet Union (USSR) in late 1991, the oil and gas industries in the 15 component nations have been in a state of turmoil stemming mainly from past communist management practices and the transition to Western-style market economies and multiparty governments. As a result, oil and gas output have fallen dramatically. This study incorporates separate oil and gas production forecasts, predicted independently by onshore and offshore sectors, for each of the producing republics of the Former Soviet Union (FSU) over the period 1996-2005. Supply--assessed by full-cycle resource analysis--and demand, estimated from available historic and projected consumption figures, are balanced to yield a coherent picture. Production of both oil and gas for the FSU is forecast to recover strongly. Oil and condensate output--led by Russia, Kazakhstan, and Azerbaijan--are forecast to rebound to 9,545 MBOPD by 2005, which will reinstate the FSU as one of the world`s premier crude exporting blocs. Natural gas output--propelled by gains in Russia, Turkmenistan, and Uzbekistan--will likewise resurge, reaching a world-leading 96,051 MMCFD level, of which a large amount will be exported.

  15. Uzbekistan Radiation Portal Monnitoring System

    SciTech Connect (OSTI)

    Richardson, J; Knapp, R; Loshak, A; Yuldashev, B; Petrenko, V

    2005-06-10

    The work proposed in this presentation builds on the foundation set by the DTRA funded demonstration project begun in 2000 and completed in December of 2003. This previous work consisted of two phases whose overall objective was to install portal radiation monitors at four select ports-of-entry in Uzbekistan (Tashkent International Airport, Gisht-Kuprik (Kazakhstan border), Alat (Turkmenistan border), and Termez (Afghanistan border)) in order to demonstrate their effectiveness in preventing the illicit trafficking of nuclear materials. The objectives also included developing and demonstrating capabilities in the design, installation, operation, training, and maintenance of a radiation portal monitoring system. The system and demonstration project has proved successful in many ways. An effective working relationship among the Uzbekistan Customs Services, Uzbekistan Border Guards, and Uzbekistan Institute of Nuclear Physics has been developed. There has been unprecedented openness with the sharing of portal monitor data with Lawrence Livermore National Laboratory. The system has proved to be effective, with detection of illicit trafficking, and, at Alat, an arrest of three persons illegally transporting radioactive materials into Turkmenistan. The demonstration project has made Uzbekistan a model nonproliferation state in Central Asia and, with an expanded program, places them in a position to seal a likely transit route for illicit nuclear materials. These results will be described. In addition, this work is currently being expanded to include additional ports-of-entry in Uzbekistan. The process for deciding on which additional ports-of-entry to equip will also be described.

  16. International Workshops to Foster Implementation of the IAEA Additional Protocol

    SciTech Connect (OSTI)

    Killinger, Mark H.; Coates, Cameron W.; Bedke, Michael L.

    2003-07-14

    A country’s adherence to the International Atomic Energy Agency’s (IAEA) Additional Protocol is an important statement to the world of that country’s commitment to nuclear nonproliferation. Without the Additional Protocol (AP) it is possible, as demonstrated in Iraq, for a country party to the Non-Proliferation Treaty (NPT) to clandestinely work toward nuclear weapons and be undetected by the IAEA. This is because classical safeguards under the NPT are directed at diversion of nuclear material from declared activities. But a country may instead build undeclared activities to produce weapons-grade nuclear material. The AP is directed at detecting those undeclared activities. As of May 2003, 73 countries had signed the AP, but only 35 have entered into force. To further adherence to the AP, the IAEA has held regional, high-level seminars in Japan, South Africa, Kazakhstan, Peru, Romania, and Malaysia to explain AP provisions. To supplement these policy-level seminars, the U.S. Department of Energy (DOE) has undertaken to develop a set of modules of technical competencies required to implement the AP. The intent is to work closely with the IAEA by providing these technical competencies to countries as well as to complement the IAEA’s regional seminars and other outreach efforts. This paper briefly describes the technical competency modules.

  17. Transforming on-grid renewable energy markets. A review of UNDP-GEF support for feed-in tariffs and related price and market-access instruments

    SciTech Connect (OSTI)

    Glemarec, Yannick; Rickerson, Wilson; Waissbein, Oliver

    2012-11-15

    As a Global Environment Facility (GEF) founding implementing agency, UNDP has worked on over 230 GEF-supported clean energy projects in close to 100 developing countries since 1992. About 100 of these projects in 80 countries have focused on renewable energy, supported by approximately US $ 293 million in GEF funds and leveraging US $1.48 billion in associated co-financing from national governments, international organizations, the private sector and non-governmental organizations. As part of UNDP efforts to codify and share lessons learnt from these initiatives, this report addresses how scarce public resources can be used to catalyze larger private financial flows for renewable energy. It provides an overview of UNDP-GEF’s extensive work supporting development of national renewable energy policies such as feed-in tariffs. In these activities UNDP-GEF assists developing countries to assess key risks and barriers to technology diffusion and then to identify a mix of policy and financial de-risking measures to remove these barriers and drive investment. This approach is illustrated through three case studies in Uruguay, Mauritius and Kazakhstan. This report is complemented by a companion publication presenting an innovative UNDP financial modeling tool to assist policymakers in appraising different public instruments to promote clean energy.

  18. Conference report on the 3rd international symposium on lithium application for fusion devices

    SciTech Connect (OSTI)

    Mazzitelli, G.; Hirooka, Y.; Hu, J. S.; Mirnov, S. V.; Nygren, R.; Shimada, M.; Ono, M.; Tabares, F. L.

    2015-01-14

    The third International Symposium on Lithium Application for Fusion Device (ISLA-2013) was held on 9–11 October 2013 at ENEA Frascati Centre with growing participation and interest from the community working on more general aspect of liquid metal research for fusion energy development. ISLA-2013 has been confirmed to be the largest and the most important meeting dedicated to liquid metal application for the magnetic fusion research. Overall, 45 presentation plus 5 posters were given, representing 28 institutions from 11 countries. The latest experimental results from nine magnetic fusion devices were presented in 16 presentations from NSTX (PPPL, USA), FTU (ENEA, Italy), T-11M (Trinity, RF), T-10 (Kurchatov Institute, RF), TJ-II (CIEMAT, Spain), EAST(ASIPP, China), HT-7 (ASIPP, China), RFX (Padova, Italy), KTM (NNC RK, Kazakhstan). Sessions were devoted to the following: (I) lithium in magnetic confinement experiments (facility overviews), (II) lithium in magnetic confinement experiments (topical issues), (III) special session on liquid lithium technology, (IV) lithium laboratory test stands, (V) Lithium theory/modelling/comments, (VI) innovative lithium applications and (VII) special Session on lithium-safety and lithium handling. There was a wide participation from the fusion technology communities, including IFMIF and TBM communities providing productive exchange with the physics oriented magnetic confinement liquid metal research groups. This international workshop will continue on a biennial basis (alternating with the Plasma–Surface Interactions (PSI) Conference) and the next workshop will be held at CIEMAT, Madrid, Spain, in 2015.

  19. Nuclear design of small-sized high temperature gas-cooled reactor for developing countries

    SciTech Connect (OSTI)

    Goto, M.; Seki, Y.; Inaba, Y.; Ohashi, H.; Sato, H.; Fukaya, Y.; Tachibana, Y.

    2012-07-01

    Japan Atomic Energy Agency (JAEA) has started a conceptual design of a small-sized HTGR with 50 MW thermal power (HTR50S), which is a first-of-a-kind commercial or demonstration plant of a small-sized HTGR to be deployed in developing countries such as Kazakhstan in the 2020's. The nuclear design of the HTR50S is performed by upgrading the proven technology of the High Temperature Engineering Test Reactor (HTTR) to reduce the cost for the construction. In the HTTR design, twelve kinds of fuel enrichment was used to optimize the power distribution, which is required to make the maximum fuel temperature below the thermal limitation during the burn-up period. However, manufacture of many kinds of fuel enrichment causes increase of the construction cost. To solve this problem, the present study challenges the nuclear design by reducing the number of fuel enrichment to as few as possible. The nuclear calculations were performed with SRAC code system whose validity was proven by the HTTR burn-up data. The calculation results suggested that the optimization of the power distribution was reasonably achieved and the maximum fuel temperature was kept below the limitation by using three kinds of fuel enrichment. (authors)

  20. Discrimination Analysis of Earthquakes and Man-Made Events Using ARMA Coefficients Determination by Artificial Neural Networks

    SciTech Connect (OSTI)

    AllamehZadeh, Mostafa

    2011-12-15

    A Quadratic Neural Networks (QNNs) model has been developed for identifying seismic source classification problem at regional distances using ARMA coefficients determination by Artificial Neural Networks (ANNs). We have devised a supervised neural system to discriminate between earthquakes and chemical explosions with filter coefficients obtained by windowed P-wave phase spectra (15 s). First, we preprocess the recording's signals to cancel out instrumental and attenuation site effects and obtain a compact representation of seismic records. Second, we use a QNNs system to obtain ARMA coefficients for feature extraction in the discrimination problem. The derived coefficients are then applied to the neural system to train and classification. In this study, we explore the possibility of using single station three-component (3C) covariance matrix traces from a priori-known explosion sites (learning) for automatically recognizing subsequent explosions from the same site. The results have shown that this feature extraction gives the best classifier for seismic signals and performs significantly better than other classification methods. The events have been tested, which include 36 chemical explosions at the Semipalatinsk test site in Kazakhstan and 61 earthquakes (mb = 5.0-6.5) recorded by the Iranian National Seismic Network (INSN). The 100% correct decisions were obtained between site explosions and some of non-site events. The above approach to event discrimination is very flexible as we can combine several 3C stations.

  1. BN-350 "Mirror System".

    SciTech Connect (OSTI)

    Thornton, A. L.; Halbig, J. K.

    2004-01-01

    The BN-350 Unattended Monitoring System plays an important role for the Safeguards Department of the International Atomic Energy Agency (IAEA). In 1998, the Los Alamos National Laboratory, in conjunction with the IAEA and sponsored by the US Department of Energy, designed and installed an integrated multi-instrument safeguards system at the BN-350 reactor in Aktau, Kazakhstan, to monitor spent-fuel and blanket assembly conditioning and canning activities. The purpose of the system was to provide effective safeguards at this facility while reducing the manpower load on the IAEA. The system is composed of many individual nondestructive analysis and surveillance components, each having a unique function and working together to provide fully unattended measurement of spent-fuel assemblies. The BN-350 ''Mirror System'' was built to provide a similar system with like components at the IAEA Headquarters in Vienna to facilitate analysis and/or simulation of problems that might occur in the field and for training inspectors and other technical staff in preparation for their work in the field. In addition, the system is used to test new equipment and qualify new or modified software. This paper describes the main components of the Mirror System, how the components are integrated, and how the Mirror System has benefited the IAEA.

  2. Growth mechanisms, polytypism, and real structure of kaolinite microcrystals

    SciTech Connect (OSTI)

    Samotoin, N. D.

    2008-09-15

    The mechanisms of growth of kaolinite microcrystals (0.1-5.0 {mu}m in size) at deposits related to the cluvial weathering crust, as well as to the low-temperature and medium-temperature hydrothermal processes of transformations of minerals in different rocks in Russia, Kazakhstan, Ukraine, Czechia, Vietnam, India, Cuba, and Madagascar, are investigated using transmission electron microscopy and vacuum decoration with gold. It is established that kaolinite microcrystals grow according to two mechanisms: the mechanism of periodic formation of two-dimensional nuclei and the mechanism of spiral growth. The spiral growth of kaolinite microcrystals is dominant and occurs on steps of screw dislocations that differ in sign and magnitude of the Burgers vector along the c axis. The layered growth of kaolinite originates from a widespread source in the form of a step between polar (+ and -) dislocations, i.e., a growth analogue of the Frank-Read dislocation source. The density of growth screw dislocations varies over a wide range and can be as high as {approx}10{sup 9} cm{sup -2}. Layered stepped kaolinite growth pyramids for all mechanisms of growth on the (001) face of kaolinite exhibit the main features of the triclinic 1Tc and real structures of this mineral.

  3. New automated inventory/material accounting system (AIMAS) version for former Soviet Union countries

    SciTech Connect (OSTI)

    Kuzminski, Jozef; Ewing, Tom; Sakunov, Igor; Drapey, Sergey; Nations, Jim

    2009-01-01

    AIMAS (Automated Inventory/Material Accounting System) is a PC-based application for site-level nuclear material accountancy that was originally developed in the late 90's as a part of the U.S Department of Energy Assistance Program to Ukraine. Designed to be flexible and secure, plus place minimal demands on computing infrastructure, it was originally developed to run in early Windows operating system (OS) environments like W98 and W3.1. The development, support, and maintenance of AIMAS were transferred to Ukraine in 2002. Because it is highly flexible and can be configured to meet diverse end-user's needs, the software has been used at several facilities in Ukraine. Incorporating added functionality is planned to support nuclear installations in the Republic of Kazakhstan and Uzbekistan, as well. An improved 32-bit version of AIMAS has recently been developed to operate effectively on modern PCs running the latest Windows OS by AVIS, the Ukrainian developer. In the paper we discuss the status of AIMAS, plans for new functions, and describe the strategy for addressing a sustainable software life-cycle while meeting user requirements in multiple FSU countries.

  4. Structural model of uramarsite

    SciTech Connect (OSTI)

    Rastsvetaeva, R. K.; Sidorenko, G. A.; Ivanova, A. G.; Chukanov, N. V.

    2008-09-15

    The structural model of uramarsite, a new mineral of the uran-mica family from the Bota-Burum deposit (South Kazakhstan), is determined using a single-crystal X-ray diffraction analysis. The parameters of the triclinic unit cell are as follows: a = 7.173(2) A, b = 7.167(5) A, c = 9.30(1) A, {alpha} = 90.13(7){sup o}, {beta} = 90.09(4){sup o}, {gamma} = 89.96(4){sup o}, and space group P1. The crystal chemical formula of uramarsite is: (UO{sub 2}){sub 2}[AsO{sub 4}][PO{sub 4},AsO{sub 4}][NH{sub 4}][H{sub 3}O] . 6H{sub 2}O (Z = 1). Uramarsite is the second ammonium-containing mineral of uranium and an arsenate analogue of uramphite. In the case of uramarsite, the lowering of the symmetry from tetragonal to triclinic, which is accompanied by a triclinic distortion of the tetragonal unit cell, is apparently caused by the ordering of the As and P atoms and the NH{sub 4}, H{sub 3}O, and H{sub 2}O groups.

  5. Natural mercury isotope variation in coal deposits and organic soils

    SciTech Connect (OSTI)

    Abir, Biswas; Joel D. Blum; Bridget A. Bergquist; Gerald J. Keeler; Zhouqing Xie

    2008-11-15

    There is a need to distinguish among sources of Hg to the atmosphere in order to more fully understand global Hg pollution. In this study we investigate whether coal deposits within the United States, China, and Russia-Kazakhstan, which are three of the five greatest coal-producing regions, have diagnostic Hg isotopic fingerprints that can be used to discriminate among Hg sources. We also investigate the Hg isotopic composition of modern organic soil horizons developed in areas distant from point sources of Hg in North America. Mercury stored in coal deposits displays a wide range of both mass dependent fractionation and mass independent fractionation. {delta}{sup 202}Hg varies in coals by 3{per_thousand} and {Delta}{sup 201}Hg varies by 0.9{per_thousand}. Combining these two Hg isotope signals results in what may be a unique isotopic 'fingerprint' for many coal deposits. Mass independent fractionation of mercury has been demonstrated to occur during photochemical reactions of mercury. This suggests that Hg found in most coal deposits was subjected to photochemical reduction near the Earth's surface prior to deposition. The similarity in MDF and MIF of modern organic soils and coals from North America suggests that Hg deposition from coal may have imprinted an isotopic signature on soils. This research offers a new tool for characterizing mercury inputs from natural and anthropogenic sources to the atmosphere and provides new insights into the geochemistry of mercury in coal and soils. 35 refs., 2 figs., 1 tab.

  6. Analysis of HEU samples from the ULBA Metallurgical Plant

    SciTech Connect (OSTI)

    Gift, E.H.

    1995-05-01

    In early March 1994, eight highly enriched uranium (HEU) samples were collected from materials stored at the Ulba Metallurgical Plant in Oskamen (Ust Kamenogorsk), Kazakhstan. While at the plant site, portions of four samples were dissolved and analyzed by mass spectrograph at the Ulba analytical laboratory by Ulba analysts. Three of these mass spectrograph solutions and the eight HEU samples were subsequently delivered to the Y-12 Plant for complete chemical and isotopic analyses. Chemical forms of the eight samples were uranium metal chips, U0{sub 2} powder, uranium/beryllium oxide powder, and uranium/beryllium alloy rods. All were declared by the Ulba plant to have a uranium assay of {approximately}90 wt % {sup 235}U. The uranium/beryllium powder and alloy samples were also declared to range from about 8 to 28 wt % uranium. The chemical and uranium isotopic analyses done at the Y-12 Plant confirm the Ulba plant declarations. All samples appear to have been enriched using some reprocessed uranium, probably from recovery of uranium from plutonium production reactors. As a result, all samples contain some {sup 236}U and {sup 232}U and have small but measurable quantities of plutonium. This plutonium could be the result of either contamination carried over from the enrichment process or cross-contamination from weapons material. It is not the result of direct reactor exposure. Neither the {sup 232}U nor the plutonium concentrations are sufficiently high to provide a significant industrial health hazard. Both are well within established or proposed acceptance criteria for storage at Y-12. The trace metal analyses showed that, with the exception of beryllium, there are no trace metals in any of these HEU samples that pose a significant health hazard.

  7. Preparation of High Purity, High Molecular-Weight Chitin from Ionic Liquids for Use as an Adsorbate for the Extraction of Uranium from Seawater

    SciTech Connect (OSTI)

    Rogers, Robin

    2013-12-21

    Ensuring a domestic supply of uranium is a key issue facing the wider implementation of nuclear power. Uranium is mostly mined in Kazakhstan, Australia, and Canada, and there are few high-grade uranium reserves left worldwide. Therefore, one of the most appealing potential sources of uranium is the vast quantity dissolved in the oceans (estimated to be 4.4 billion tons worldwide). There have been research efforts centered on finding a means to extract uranium from seawater for decades, but so far none have resulted in an economically viable product, due in part to the fact that the materials that have been successfully demonstrated to date are too costly (in terms of money and energy) to produce on the necessary scale. Ionic Liquids (salts which melt below 100{degrees}C) can completely dissolve raw crustacean shells, leading to recovery of a high purity, high molecular weight chitin powder and to fibers and films which can be spun directly from the extract solution suggesting that continuous processing might be feasible. The work proposed here will utilize the unprecedented control this makes possible over the chitin fiber a) to prepare electrospun nanofibers of very high surface area and in specific architectures, b) to modify the fiber surfaces chemically with selective extractant capacity, and c) to demonstrate their utility in the direct extraction and recovery of uranium from seawater. This approach will 1) provide direct extraction of chitin from shellfish waste thus saving energy over the current industrial process for obtaining chitin; 2) allow continuous processing of nanofibers for very high surface area fibers in an economical operation; 3) provide a unique high molecular weight chitin not available from the current industrial process, leading to stronger, more durable fibers; and 4) allow easy chemical modification of the large surface areas of the fibers for appending uranyl selective functionality providing selectivity and ease of stripping. The resulting sorbent should prove economically feasible, as well as providing an overall net energy gain.

  8. Peak fitting applied to low-resolution enrichment measurements

    SciTech Connect (OSTI)

    Bracken, D.; McKown, T.; Sprinkle, J.K. Jr.; Gunnink, R.; Kartoshov, M.; Kuropatwinski, J.; Raphina, G.; Sokolov, G.

    1998-12-01

    Materials accounting at bulk processing facilities that handle low enriched uranium consists primarily of weight and uranium enrichment measurements. Most low enriched uranium processing facilities draw separate materials balances for each enrichment handled at the facility. The enrichment measurement determines the isotopic abundance of the {sup 235}U, thereby determining the proper strata for the item, while the weight measurement generates the primary accounting value for the item. Enrichment measurements using the passive gamma radiation from uranium were developed for use in US facilities a few decades ago. In the US, the use of low-resolution detectors was favored because they cost less, are lighter and more robust, and don`t require the use of liquid nitrogen. When these techniques were exported to Europe, however, difficulties were encountered. Two of the possible root causes were discovered to be inaccurate knowledge of the container wall thickness and higher levels of minor isotopes of uranium introduced by the use of reactor returns in the enrichment plants. the minor isotopes cause an increase in the Compton continuum under the 185.7 keV assay peak and the observance of interfering 238.6 keV gamma rays. The solution selected to address these problems was to rely on the slower, more costly, high-resolution gamma ray detectors when the low-resolution method failed. Recently, these gamma ray based enrichment measurement techniques have been applied to Russian origin material. The presence of interfering gamma radiation from minor isotopes was confirmed. However, with the advent of fast portable computers, it is now possible to apply more sophisticated analysis techniques to the low-resolution data in the field. Explicit corrections for Compton background, gamma rays from {sup 236}U daughters, and the attenuation caused by thick containers can be part of the least squares fitting routine. Preliminary results from field measurements in Kazakhstan will be discussed.

  9. Experiments Performed in Substantiation of the Conditioning of BN-350 Spent Cesium Traps Using Lead or Lead-Bismuth Alloy Filling Technology

    SciTech Connect (OSTI)

    O. Romanenko; I. Tazhibaeva; I. Yakovlev; A. Ivanov; D. Wells; A. Herrick; J. Michelbacher; S. Shiganakov

    2009-05-01

    The technology of cleaning cesium radionuclides from sodium coolant at the BN-350 fast reactor was realized in the form of cesium traps of two types: stationary devices connected to the circuit that was to be cleaned and in-core devices installed into the core of reactor when it was not under operation. Carbon-graphite materials were used as sorbents to collect and concentrate radioactive cesium, accumulated in the BN-350 reactor circuits over the decades of their operation, in relatively small volume traps which provided effective radiation-safe conditions for personnel working in proximity to the coolant and equipment of the primary circuit during BN-350 decommissioning. Spent cesium traps, as products unfit for further use, represent solid radioactive wastes. The presence of chemically active sodium, potassium and cesium that are able to react violently with water results in series of problems related to their disposal in the Republic of Kazakhstan. Considering the technology of filling spent cesium traps with lead/lead-bismuth alloy as a priority one for their conditioning, evaluations for safety substantiation were implemented. A set of experiments was implemented aimed at verification of calculations performed in substantiation of the proposed technology: filling a full scale cesium trap mock-up with sodium followed by its draining to determine the optimal regimes of draining; filling bench scale cesium trap mock-ups with sodium and cesium followed by sodium draining and filling with lead or lead-bismuth alloy at different temperatures and filling rates to chose the optimal regimes for filling spent cesium traps; implementation of leachability tests to determine the rate of cesium release from the filling materials into water. This paper provides a description of the experimental program carried out and the main results obtained.

  10. Progress and status of the IAEA coordinated research project: production of Mo-99 using LEU fission or neutron activation

    SciTech Connect (OSTI)

    Goldman, Ira N.; Adelfang, Pablo E-mail: P.Adelfang@iaea.org; Ramamoorthy, Natesan

    2008-07-15

    Since late 2004, the IAEA has developed and implemented a Coordinated Research Project (CRP) to assist countries interested in initiating indigenous, small-scale production of Mo-99 to meet local nuclear medicine requirements. The objective of the CRP is to provide interested countries with access to non-proprietary technologies and methods to produce Mo-99 using LEU foil or LEU mini-plate targets, or for the utilization of n,gamma neutron activation, e.g. through the use of gel generators. The project has made further progress since the RERTR 2006 meeting, with a Technical Workshop on Operational Aspects of Mo99 Production held 28-30 November 2006 in Vienna and the Second Research Coordination Meeting held in Bucharest, Romania 16-20 April 2007. The paper describes activities carried out as noted above, and as well as the provision of LEU foils to a number of participants, and the progress by a number of groups in preparing for LEU target assembly and disassembly, irradiation, chemical processing, and waste management. The participants' progress in particular on thermal hydraulics computations required for using LEU targets is notable, as also the progress in gel generator plant operations in India and Kazakhstan. Poland has joined as a new research agreement holder and an application by Egypt to be a contract holder is undergoing internal review in the IAEA and is expected to be approved. The IAEA has also participated in several open meetings of the U.S. National Academy of Sciences Study on Producing Medical Radioisotopes without HEU, which will also be discussed in the paper. (author)

  11. Remediation of former uranium mining and milling activities in Central Asia

    SciTech Connect (OSTI)

    Waggitt, Peter

    2007-07-01

    Available in abstract form only. Full text of publication follows: Several of the Central Asian countries of the former Soviet Union were involved in the uranium mining and milling industry from about 1945 for varying periods until the break up of the Soviet Union in 1991 and beyond. Some facilities are still producing in Uzbekistan and Kazakhstan. However, before the break up, many facilities had been abandoned and in only a few cases had any remediation been undertaken. Since 1991 the newly independent states of the region have been seeking assistance for the remediation of the multitude of tailings piles, waste rock stockpiles and abandoned, and often semi dismantled, production facilities that may be found throughout the region. Many of these sites are close to settlements that were established as service towns for the mines. Most towns still have populations, although the mining industry has departed. In some instances there are cases of pollution and contamination and in many locations there is a significant level of public concern. The IAEA has been undertaking a number of Technical Cooperation (TC) projects throughout the region for some time to strengthen the institutions in the relevant states and assist them to establish monitoring and surveillance programs as an integral part of the long term remediation process. The IAEA is liaising with other agencies and donors who are also working on these problems to optimise the remediation effort. The paper describes the objectives and operation of the main TC regional program, liaison efforts with other agencies, the achievements so far and the long term issues for remediation of these legacies of the 'cold war' era. (authors)

  12. Silo Storage Preconceptual Design

    SciTech Connect (OSTI)

    Stephanie L. Austad; Patrick W. Bragassa; Kevin M Croft; David S Ferguson; Scott C Gladson; Annette L Shafer; John H Weathersby

    2012-09-01

    The National Nuclear Security Administration (NNSA) has a need to develop and field a low-cost option for the long-term storage of a variety of radiological material. The storage option’s primary requirement is to provide both environmental and physical protection of the materials. Design criteria for this effort require a low initial cost and minimum maintenance over a 50-year design life. In 1999, Argonne National Laboratory-West was tasked with developing a dry silo storage option for the BN-350 Spent Fuel in Aktau Kazakhstan. Argon’s design consisted of a carbon steel cylinder approximately 16 ft long, 18 in. outside diameter and 0.375 in. wall thickness. The carbon steel silo was protected from corrosion by a duplex coating system consisting of zinc and epoxy. Although the study indicated that the duplex coating design would provide a design life well in excess of the required 50 years, the review board was concerned because of the novelty of the design and the lack of historical use. In 2012, NNSA tasked Idaho National Laboratory (INL) with reinvestigating the silo storage concept and development of alternative corrosion protection strategies. The 2012 study, “Silo Storage Concepts, Cathodic Protection Options Study” (INL/EST-12-26627), concludes that the option which best fits the design criterion is a passive cathotic protection scheme, consisting of a carbon steel tube coated with zinc or a zinc-aluminum alloy encapsulated in either concrete or a cement grout. The hot dipped zinc coating option was considered most efficient, but the flame-sprayed option could be used if a thicker zinc coating was determined to be necessary.

  13. Source sector and region contributions to BC and PM2.5 in Central Asia

    SciTech Connect (OSTI)

    Kulkarni, S.; Sobhani, N.; Miller-Schulze, J. P.; Shafer, M. M.; Schauer, J. J.; Solomon, P. A.; Saide, P. E.; Spak, S. N.; Cheng, Y. F.; Denier van der Gon, H. A. C.; Lu, Z.; Streets, D. G.; Janssens-Maenhout, G.; Wiedinmyer, C.; Lantz, J.; Artamonova, M.; Chen, B.; Imashev, S.; Sverdlik, L.; Deminter, J. T.; Adhikary, B.; D'Allura, A.; Wei, C.; Carmichael, G. R.

    2015-02-18

    Particulate matter (PM) mass concentrations, seasonal cycles, source sector, and source region contributions in Central Asia (CA) are analyzed for the period April 2008–July 2009 using the Sulfur Transport and dEposition Model (STEM) chemical transport model and modeled meteorology from the Weather Research and Forecasting (WRF) model. Predicted aerosol optical depth (AOD) values (annual mean value ~0.2) in CA vary seasonally, with lowest values in the winter. Surface PM2.5 concentrations (annual mean value ~10 μg m-3) also exhibit a seasonal cycle, with peak values and largest variability in the spring/summer, and lowest values and variability in the winter (hourly values from 2 to 90 μg m-3). Surface concentrations of black carbon (BC) (mean value ~0.1 μg m-3) show peak values in the winter. The simulated values are compared to surface measurements of AOD as well as PM2.5, PM10, BC, and organic carbon (OC) mass concentrations at two regional sites in Kyrgyzstan (Lidar Station Teplokluchenka (LST) and Bishkek). The predicted values of AOD and PM mass concentrations and their seasonal cycles are fairly well captured. The carbonaceous aerosols are underpredicted in winter, and analysis suggests that the winter heating emissions are underestimated in the current inventory. Dust, from sources within and outside CA, is a significant component of the PM mass and drives the seasonal cycles of PM and AOD. On an annual basis, the power and industrial sectors are found to be the most important contributors to the anthropogenic portion of PM2.5. Residential combustion and transportation are shown to be the most important sectors for BC. Biomass burning within and outside the region also contributes to elevated PM and BC concentrations. The analysis of the transport pathways and the variations in particulate matter mass and composition in CA demonstrates that this region is strategically located to characterize regional and intercontinental transport of pollutants. Aerosols at these sites are shown to reflect dust, biomass burning, and anthropogenic sources from Europe; South, East, and Central Asia; and Russia depending on the time period. Simulations for a reference 2030 emission scenario based on pollution abatement measures already committed to in current legislation show that PM2.5 and BC concentrations in the region increase, with BC growing more than PM2.5 on a relative basis. This suggests that both the health impacts and the climate warming associated with these particles may increase over the next decades unless additional control measures are taken. The importance of observations in CA to help characterize the changes that are rapidly taking place in the region are discussed.

  14. Source sector and region contributions to BC and PM2.5 in Central Asia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kulkarni, S.; Sobhani, N.; Miller-Schulze, J. P.; Shafer, M. M.; Schauer, J. J.; Solomon, P. A.; Saide, P. E.; Spak, S. N.; Cheng, Y. F.; Denier van der Gon, H. A. C.; et al

    2015-02-18

    Particulate matter (PM) mass concentrations, seasonal cycles, source sector, and source region contributions in Central Asia (CA) are analyzed for the period April 2008–July 2009 using the Sulfur Transport and dEposition Model (STEM) chemical transport model and modeled meteorology from the Weather Research and Forecasting (WRF) model. Predicted aerosol optical depth (AOD) values (annual mean value ~0.2) in CA vary seasonally, with lowest values in the winter. Surface PM2.5 concentrations (annual mean value ~10 μg m-3) also exhibit a seasonal cycle, with peak values and largest variability in the spring/summer, and lowest values and variability in the winter (hourly valuesmore » from 2 to 90 μg m-3). Surface concentrations of black carbon (BC) (mean value ~0.1 μg m-3) show peak values in the winter. The simulated values are compared to surface measurements of AOD as well as PM2.5, PM10, BC, and organic carbon (OC) mass concentrations at two regional sites in Kyrgyzstan (Lidar Station Teplokluchenka (LST) and Bishkek). The predicted values of AOD and PM mass concentrations and their seasonal cycles are fairly well captured. The carbonaceous aerosols are underpredicted in winter, and analysis suggests that the winter heating emissions are underestimated in the current inventory. Dust, from sources within and outside CA, is a significant component of the PM mass and drives the seasonal cycles of PM and AOD. On an annual basis, the power and industrial sectors are found to be the most important contributors to the anthropogenic portion of PM2.5. Residential combustion and transportation are shown to be the most important sectors for BC. Biomass burning within and outside the region also contributes to elevated PM and BC concentrations. The analysis of the transport pathways and the variations in particulate matter mass and composition in CA demonstrates that this region is strategically located to characterize regional and intercontinental transport of pollutants. Aerosols at these sites are shown to reflect dust, biomass burning, and anthropogenic sources from Europe; South, East, and Central Asia; and Russia depending on the time period. Simulations for a reference 2030 emission scenario based on pollution abatement measures already committed to in current legislation show that PM2.5 and BC concentrations in the region increase, with BC growing more than PM2.5 on a relative basis. This suggests that both the health impacts and the climate warming associated with these particles may increase over the next decades unless additional control measures are taken. The importance of observations in CA to help characterize the changes that are rapidly taking place in the region are discussed.« less

  15. Recent Developments in the Management of Cameco Corporation's Fuel Services Division Waste - 13144

    SciTech Connect (OSTI)

    Smith, Thomas P.

    2013-07-01

    Cameco Corporation is a world leader in uranium production. Headquartered in Saskatoon, Saskatchewan our operations provide 16% of the world uranium mine production and we have approximately 435 million pounds of proven and probable uranium reserves. Cameco mining operations are located in Saskatchewan, Wyoming, Nebraska and Kazakhstan. Cameco is also a major supplier of uranium processing services required to produce fuel for the generation of clean energy. These operations are based in Blind River, Cobourg and Port Hope, Ontario and are collectively referred to as the Fuel Services Division. The Fuel Services Division produces uranium trioxide from uranium ore concentrate at the Blind River Refinery. Cameco produces uranium hexafluoride and uranium dioxide at the Port Hope Conversion Facility. Cameco operates a fuel manufacturing facility in Port Hope, Ontario and a metal fabrication facility located in Cobourg, Ontario. The company manufactures fuel bundles utilized in the Candu reactors. Cameco's Fuel Services Division produces several types of low-level radioactively contaminated wastes. Internal processing capabilities at both the Blind River Refinery and Port Hope Conversion Facility are extensive and allow for the recycling of several types of waste. Notwithstanding these capabilities there are certain wastes that are not amenable to the internal processing capabilities and must be disposed of appropriately. Disposal options for low-level radioactively contaminated wastes in Canada are limited primarily due to cost considerations. In recent years, Cameco has started to ship marginally contaminated wastes (<500 ppm uranium) to the United States for disposal in an appropriate landfill. The landfill is owned by US Ecology Incorporated and is located near Grand View, Idaho 70 miles southeast of Boise in the Owyhee Desert. The facility treats and disposes hazardous waste, non-hazardous industrial waste and low-activity radioactive material. The site's arid climate, deep groundwater and favourable geology help ensure permanent waste isolation. Combined with a state of the art multi-layer landfill liner system, the Grand View facility represents an ideal choice to minimize environmental liability. Marginally contaminated wastes from operations within the Fuel Services Division are typically loaded into PacTec IP-2 rated Intermediary Bulk Containers and then transported by road to a nearby rail siding. The Intermediary Bulk Containers are then loaded in US Ecology owned gondola rail-cars. The gondolas are then transported via Canadian Pacific and Union Pacific railroads to the US Ecology Rail Transfer facility located in Mayfield, Idaho. The Intermediary Bulk Containers are unloaded into trucks for transport to the disposal facility located approximately 32 miles away. (authors)

  16. The complete mitochondrial genome of a gecko and the phylogeneticposition of the Middle Eastern teratoscincus keyserlingii

    SciTech Connect (OSTI)

    Macey, J. Robert; Fong, Jonathan J.; Kuehl, Jennifer V.; Shafiei,Soheila; Ananjeva, Natalia B.; Papenfuss, Theodore J.; Boore, Jeffrey L.

    2005-04-22

    Sqamate reptiles are traditionally divided into six groups: Iguania, Anguimorpha, Scincomorpha, Gekkota (these four are lizards), Serpentes (snakes), and Amphisbaenia (the so-called worm lizards). Currently there are complete mitochondrial genomes from two representatives of the Iguania (Janke et al., 2001; Kumazawa, 2004), three from the Anguimorpha (Kumazawa, 2004; Kumazawa and Endo, 2004), two from the Scincomorpha (Kumazawa and Nishida, 1999; Kumazawa, 2004), two from Serpentes (Kumazawa et al., 1998; Kumazawa, 2004) and 12 from Amphisbaenia (Macey et al., 2004). The only traditional group of Squamata from which a complete mitochondrial genome has not been sequenced is the Gekkota. Here we report the complete mitochondrial genome of Teratoscincus keyserlingii, a Middle Eastern representative of the Gekkota. The gekkonid lizard genus Teratoscincus is distributed throughout the deserts of central and southwest Asia as shown in figure 1, with five species currently recognized (Macey et al. 1997a, 1999b). Included in this figure are the positions of mountain ranges discussed in the text; see also figure 1 in Macey et al. (1999b). Two species, T. bedriagai and T. microlepis, are restricted to Southwest Asia south of the Kopet Dagh and Hindu Kush in Iran, Afghanistan, and Pakistan (Anderson, 1999). Two species are found in the deserts of western China and Mongolia, with T. przewalskii occurring in the Taklimakan and lowland Gobi deserts, and T. roborowskii restricted to the Turpan Depression. The fifth species, T. scincus, is sometimes considered to be restricted to the Caspian Basin in Kazakhstan, Kyrgyzistan, Tadjikistan, Turkmenistan and Uzbekistan. Alternatively, Teratoscincus populations in Southwest Asia, primarily on the Iranian Plateau, situated directly north of the Arabian Plate, are sometimes considered to be a subspecies of T. scincus or, otherwise, to constitute a sixth species, T. keyserlingii. Macey et al. (1999b) assessed the phylogenetic relationships of four Teratoscincus species with mitochondrial DNA sequences from a {approx}1800 base-pair segment spanning from nad1 to cox1. Phylogenetic analysis places T. microlepis in a basal position to a clade containing T. scincus, T. przewalskii and T. roborowskii, with the later two as sister taxa. This phylogenetic arrangement suggests that tectonic plate movements in Southwest Asia and western China due to the Indian and Arabian collisions caused speciation among Teratoscincus species. No molecular phylogenetic study has included the putative species T. keyserlingii.

  17. Developments in the Nuclear Safeguards and Security Engineering Degree Program at Tomsk Polytechnic University

    SciTech Connect (OSTI)

    Boiko, Vladimir I.; Demyanyuk, Dmitry G.; Silaev, Maxim E.; Duncan, Cristen L.; Heinberg, Cynthia L.; Killinger, Mark H.; Goodey, Kent O.; Butler, Gilbert W.

    2009-10-06

    Over the last six years, Tomsk Polytechnic University (TPU) has developed a 5 year engineering degree program in the field of Material Protection Control and Accounting (MPC&A). In 2009 the first students graduated with this new degree. There were 25 job offers from nuclear fuel cycle enterprises of Russia and Kazakhstan for 17 graduates of the program. Due to the rather wide selection of workplaces, all graduates have obtained positions at nuclear enterprises. The program was developed within the Applied Physics and Engineering Department (APED). The laboratory and methodological base has been created taking into consideration the experience of the similar program at the Moscow Engineering Physics Institute (MEPhI). However, the TPU program has some distinguishing features such as the inclusion of special courses pertaining to fuel enrichment and reprocessing. During the last two years, three MPC&A laboratories have been established at APED. This was made possible due to several factors such as establishment of the State innovative educational program at TPU, assistance of the U.S. Department of Energy through Pacific Northwest National Laboratory and Los Alamos National Laboratory, and the financial support of the Swedish Radiation Safety Authority and some Russian private companies. All three of the MPC&A laboratories are part of the Innovative Educational Center Nuclear Technologies and Non-Proliferation, which deals with many topics including research activities, development of new curricula for experts training and retraining, and training of masters students. In 2008, TPU developed a relationship with the International Atomic Energy Agency (IAEA), which was familiarized with APEDs current resources and activities. The IAEA has shown interest in creation of a masters degree educational program in the field of nuclear security at TPU. A future objective is to acquaint nuclear fuel cycle enterprises with new APED capabilities and involve the enterprises in the scientific and educational projects implemented through the Nuclear Technologies and Non-Proliferation Center. This paper describes the development of the MPC&A engineering degree program and future goals of TPU in the field of nonproliferation education.

  18. Romania: Brand-New Engineering Solutions

    SciTech Connect (OSTI)

    Ken Allen; Lucian Biro; Nicolae Zamfir; Madalina Budu

    2011-01-01

    The HEU spent nuclear fuel transport from Romania was a pilot project in the framework of the Russian Research Reactor Fuel Return Program (RRRFR), being the first fully certified spent nuclear fuel shipment by air. The successful implementation of the Romanian shipment also brought various new technology in the program, further used by other participating countries. Until 2009, the RRRFR program repatriated to the Russian Federation HEU spent nuclear fuel of Russian origin from many countries, like Uzbekistan, Czech Republic, Latvia, Hungary, Kazakhstan and Bulgaria. The means of transport used were various; from specialized TK-5 train for the carriage of Russian TUK-19 transport casks, to platform trains for 20 ft freight ISO containers carrying Czech Skoda VPVR/M casks; from river barge on the Danube, to vessel on the Mediterranean Sea and Atlantic Ocean. Initially, in 2005, the transport plan of the HEU spent nuclear fuel from the National Institute for R&D in Nuclear Physics and Nuclear Engineering 'Horia Hulubei' in Magurele, Romania considered a similar scheme, using the specialized TK-5 train transiting Ukraine to the destination point in the Russian Federation, or, as an alternative, using the means and route of the spent nuclear fuel periodically shipped from the Bulgarian nuclear power plant Kosloduy (by barge on the Danube, and by train through Ukraine to the Russian Federation). Due to impossibility to reach an agreement in due time with the transit country, in February 2007 the US, Russian and Romanian project partners decided to adopt the air shipment of the spent nuclear fuel as prime option, eliminating the need for agreements with any transit countries. By this time the spent nuclear fuel inspections were completed, proving the compliance of the burn-up parameters with the international requirements for air shipments of radioactive materials. The short air route avoiding overflying of any other countries except the country of origin and the country of destination also contributed to the decision making in this issue. The efficient project management and cooperation between the three countries (Russia, Romania and USA) made possible, after two and a half years of preparation work, for the first fully certified spent nuclear fuel air shipment to take place on 29th of June 2009, from Romanian airport 'Henri Coanda' to the Russian airport 'Koltsovo' near Yekaterinburg. One day before that, after a record period of 3 weeks of preparation, another HEU cargo was shipped by air from Romanian Institute for Nuclear Research in Pitesti to Russia, containing fresh pellets and therefore making Romania the third HEU-free country in the RRRFR program.

  19. Cogeneration of Electricity and Potable Water Using The International Reactor Innovative And Secure (IRIS) Design

    SciTech Connect (OSTI)

    Ingersoll, D.T.; Binder, J.L.; Kostin, V.I.; Panov, Y.K.; Polunichev, V.; Ricotti, M.E.; Conti, D.; Alonso, G.

    2004-10-06

    The worldwide demand for potable water has been steadily growing and is projected to accelerate, driven by a continued population growth and industrialization of emerging countries. This growth is reflected in a recent market survey by the World Resources Institute, which shows a doubling in the installed capacity of seawater desalination plants every ten years. The production of desalinated water is energy intensive, requiring approximately 3-6 kWh/m3 of produced desalted water. At current U.S. water use rates, a dedicated 1000 MW power plant for every one million people would be required to meet our water needs with desalted water. Nuclear energy plants are attractive for large scale desalination application. The thermal energy produced in a nuclear plant can provide both electricity and desalted water without the production of greenhouse gases. A particularly attractive option for nuclear desalination is to couple a desalination plant with an advanced, modular, passively safe reactor design. The use of small-to-medium sized nuclear power plants allows for countries with smaller electrical grid needs and infrastructure to add new electrical and water capacity in more appropriate increments and allows countries to consider siting plants at a broader number of distributed locations. To meet these needs, a modified version of the International Reactor Innovative and Secure (IRIS) nuclear power plant design has been developed for the cogeneration of electricity and desalted water. The modular, passively safe features of IRIS make it especially well adapted for this application. Furthermore, several design features of the IRIS reactor will ensure a safe and reliable source of energy and water even for countries with limited nuclear power experience and infrastructure. The IRIS-D design utilizes low-quality steam extracted from the low-pressure turbine to boil seawater in a multi-effect distillation desalination plant. The desalination plant is based on the horizontal tube film evaporation design used successfully with the BN-350 nuclear plant in Aktau, Kazakhstan. Parametric studies have been performed to optimize the balance of plant design. Also, an economic analysis has been performed, which shows that IRIS-D should be able to provide electricity and clean water at highly competitive costs.

  20. Explosion Source Phenomena Using Soviet, Test-Era, Waveform Data

    SciTech Connect (OSTI)

    Richards, Paul G.; Rautian, Tatyana G.; Khalturin, Vitaly I.; Phillips, W. Scott

    2006-04-12

    During the nuclear testing era, the former Soviet Union carried out extensive observations of underground nuclear explosions, recording both their own shots and those of foreign nuclear states. Between 1961 and 1989, the Soviet Complex Seismological Expedition deployed seismometers at time-varying subsets of over 150 sites to record explosions at regional distances from the Semipalatinsk and Lop Nor test sites and from the shot points of peaceful nuclear explosions. This data set included recordings from broadband, multi-channel ChISS seismometers that produced a series of narrow band outputs, which could then be measured to perform spectral studies. [ChISS is the Russian abbreviation for multichannel spectral seismometer. In this instrument the signal from the seismometer is passed through a system of narrow bandpass filters and recorded on photo paper. ChISS instruments have from 8 to 16 channels in the frequency range from 100 sec to 40 Hz. We used data mostly from 7 channels, ranging from 0.08 to 5 Hz.] Quantitative, pre-digital era investigations of high-frequency source scaling relied on this type of data. To augment data sets of central Central Asia explosions, we have measured and compiled 537 ChISS coda envelopes for 124 events recorded at Talgar, Kazakhstan, at a distance of about 750 km from Semipalatinsk. Envelopes and calibration levels were measured manually from photo paper records for seven bands between 0.08 and 5 Hz. We obtained from 2 to 10 coda envelope measurements per event, depending on the event size and instrument magnification. Coda lengths varied from 250 to 1400 s. For small events, only bands between 0.6 and 2.5 Hz could be measured. Envelope levels were interpolated or extrapolated to 500 s and we have obtained the dependence of this quantity on magnitude. Coda Q was estimated and found to increase from 232 at 0.08 Hz to 1270 at 5 Hz. These relationships were used to construct an average scaling law of coda spectra for Semipalatinsk explosions. Significant differences from average scaling were observed and may result from variations in emplacement conditions. The ChISS envelope data have been integrated into coda processing at Los Alamos National Laboratory (LANL) by applying ChISS filter bands to modern, digital data from central Central Asia, for purposes of magnitude and yield calibration. In addition, we have compiled regional, direct phase measurements for ChISS recordings at Talgar, Garm, Zerenda, and Novosibirsk. The ChISS envelope data have been integrated into coda processing at Los Alamos National Laboratory (LANL) by applying ChISS filter bands to modern, digital data from central and east Asia, for purposes of yield calibration. The difference in manual versus digital measurement methods are captured in site terms that are higher by up to 0.5 log10 units for ChISS data, relative to modern Talgar data due to the measurement of peak, rather than mean envelopes. After correction for site and path effects, ChISS amplitudes compare well to measurements from the Borovoye archive for events in common. Direct wave measurements have been used to construct spectra for Semipalatinsk explosions, and can be used to explore the behavior of regional phase amplitudes with shot point and emplacement condition.

  1. REPORT OF THE ISS OSI INVITED MEETING, VIENNA, 24-27 MARCH, 2009

    SciTech Connect (OSTI)

    Sweeney, J J

    2009-04-17

    The International Scientific Studies project (ISS) was initiated in early 2008 with the objective of creating a series of activities aimed at application of modern scientific methods to improve the efficiency of analysis and the quality of verification of the Comprehensive Nuclear Test-Ban Treaty Organization (CTBTO). The ISS On-Site Inspection (OSI) Invited Meeting convened on March 24, 2009 with the objectives of gaining a better understanding of the phenomenology of underground nuclear explosions (UNE) for OSI purposes and to identify areas of interest to OSI that could benefit significantly from contributions by the general scientific community. Fifteen invited experts from four countries, along with fifteen members of the OSI Division of the Provisional Technical Secretariat (PTS) met for four days at the Vienna International Center in an informal setting to discuss the application of observational methods, geophysical techniques, radionuclide measurement methods, environmental sampling methods, drilling techniques, and information management in the context UNE phenomena and OSI implementation. The meeting began with the identification and description of two general OSI scenarios, a vertical borehole emplacement and a horizontal tunnel emplacement, that serve as general examples of past UNE testing activities that can be used as a reference to identify UNE phenomena relevant for OSI observations. A significant portion of the first day of the meeting was spent in the description of the details of these scenarios and their implications for OSI observables. This discussion then served as a foundation for the discussions of the following three days in which OSI methods and technologies were evaluated in the context of UNE phenomenology and signatures. The methods and technologies discussed included visual observation from air and ground, radiation detection from the air, ground, and subsurface, ground-based and airborne geophysical observations and analysis, collection strategies for air, water, and solid samples, drilling concepts, and aspects of data fusion, information management, and modeling and simulation. The informal setting of the meeting provided a 'brainstorming' atmosphere and participation was excellent. One important aspect of this particular group was the very wide breadth of experience and expertise represented, ranging from those sharing their knowledge of UNE testing practice, radiological measurements and sampling, and knowledge of the underground effects of UNEs, to those with extensive experience in scientific and commercial geophysical measurements and surveys, to others with rich experience gained from several OSI field exercises, including the recent OSI Integrated Field Exercise in held in Kazakhstan in September 2008. During the workshop a number of topic areas relevant to OSI, explained in the list below, were identified that will benefit from collaboration with the international scientific community. Most of the topics represent the potential for studies of long-term interest, but some topics were identified that could be addressed, either by workshop participants or others known to the participants, that could be included as abstracts for submission to the ISS meeting taking place in June 2009. Items with topics that could be covered in the June meeting are annotated in the list. The meeting ended with the general understanding that ISS will not be completed with the June 2009 Conference. Rather, the ISS is considered as a long term project sponsoring relevant ongoing international scientific initiatives to expand and improve the verification capabilities of the Comprehensive Nuclear Test-Ban Treaty.

  2. Changes in Russia's Military and Nuclear Doctrine

    SciTech Connect (OSTI)

    Wolkov, Benjamin M.; Balatsky, Galya I.

    2012-07-26

    In 1993, the Russian Federation set out a new military doctrine that would determine the direction of its armed forces until President Putin set out the next doctrine in 2000. The Russian Federation creating the doctrine was new; the USSR had recently collapsed, Gorbachev - the creator of the predecessor to this doctrine in 1987 - was out of office, and the new Russian military had only been formed in May, 1992.1 The analysis of the 1993 doctrine is as follows: a definition of how doctrine is defined; a short history of Russian military doctrine leading up to the 1993 doctrine (officially the Basic Provisions of the Military Doctrine of the Russian Federation); and finally, what the doctrine established. An overview of the 1993 doctrine is: (1) Russia's 1993 doctrine was a return to older, more aggressive doctrine as a result of stability concerns surrounding the recent collapse of the USSR; (2) Russia turned from Gorbachev's 'defensive defense' in the 1987 doctrine to aggressive defense with the option of preempting or striking back against an aggressor; (3) Russia was deeply concerned about how nationalism would affect the former Soviet Republics, particularly in respect to the ethnic Russians still living abroad; and (4) Nuclear doctrine pledged to not be the first to use nuclear weapons but provided for the potential for escalation from a conventional to a nuclear war. The 2000 doctrine (officially the Russian Federation Military Doctrine) was created in a more stable world than the 1993 doctrine was. The Russian Federation had survived independence and the 'threat of direct military aggression against the Russian Federation and its allies' had diminished. It had secured all of the nuclear weapons from its neighbors Ukraine, Belarus, and Kazakhstan, and had elected a new president, Vladimir Putin, to replace Boris Yeltsin. Yet, even as the doctrine took more defensive tones than the 1993 doctrine, it expanded its nuclear options. Below are a new definition of what doctrine meant in 2000 and an outline of the 2000 doctrine. An overview of the 2000 doctrine is: (1) The 2000 doctrine was a return to a more defensive posture; the threat of nuclear retaliation, rather than that of preemptive force, would be its deterrence; (2) In order to strengthen its nuclear deterrence, Russia extended and redefined the cases in which nuclear weapons could be used to include a wider range of conflict types and a larger spectrum of attackers; and (3) Russia's threats changed to reflect its latest fear of engaging in a limited conflict with no prospect of the use of nuclear deterrence. In 2006, the defense minister and deputy prime minister Sergei Ivanov announced that the government was starting on a draft of a future doctrine. Four years later, in 2010, the Military Doctrine of the Russian Federation was put into effect with the intent of determining Russian doctrine until 2020. The 2010 doctrine, like all previous doctrines, was a product of the times in which it was written. Gone were many of the fears that had followed Russia for the past two decades. Below are an examination of the 2010 definition of doctrine as well as a brief analysis of the 2010 doctrine and its deviations from past doctrines. An overview of the 2010 doctrine is: (1) The new doctrine emphasizes the political centralization of command both in military policy and the use of nuclear weapons; (2) Nuclear doctrine remains the same in many aspects including the retention of first-use; (3) At the same time, doctrine was narrowed to using nuclear weapons only when the Russian state's existence is in danger; to continue strong deterrence, Russia also opted to follow the United States by introducing precision conventional weapons; (4) NATO is defined as Russia's primary external threat because of its increased global presence and its attempt to recruit states that are part of the Russian 'bloc'; and (5) The 2000 doctrine's defensive stance was left out of the doctrine; rumored options for use of nuclear weapons in local wars and in preemptive strikes were also left out.