National Library of Energy BETA

Sample records for kaviany moo hwan

  1. Acoustic Logs At Alum Area (Moos & Ronne, 2010) | Open Energy...

    Open Energy Info (EERE)

    tensile wall fractures, and were adequate to detect stratigraphic features. References Daniel Moos, Joel Ronne (2010) Selecting The Optimal Logging Suite For Geothermal Reservoir...

  2. Cross-Dipole Acoustic Log At Alum Area (Moos & Ronne, 2010) ...

    Open Energy Info (EERE)

    oriented in the strike direction of the fault and of the dipping sediments. References Daniel Moos, Joel Ronne (2010) Selecting The Optimal Logging Suite For Geothermal Reservoir...

  3. Density Log at Alum Area (Moos & Ronne, 2010) | Open Energy Informatio...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Density Log at Alum Area (Moos & Ronne, 2010) Exploration Activity Details Location Alum...

  4. Ferromagnetic superexchange in insulating Cr2MoO6 by controlling orbital hybridization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, M.; Do, D.; Dela Cruz, Clarina R.; Dun, Zhiling; Cheng, J. -G.; Goto, H.; Uwatoko, Yoshiya; Zou, T.; Zhou, Haidon D.; Mahanti, Subhendra D.; et al

    2015-09-11

    We report the magnetic and electronic structures of the newly synthesized inverse-trirutile compound Cr2MoO6. Despite the same crystal symmetry and similar bond-lengths and bond-angles to Cr2TeO6, Cr2MoO6 possesses a magnetic structure of the Cr2MoO6 type, different from that seen in Cr2TeO6. Ab-initio electronic structure calculations show that the sign and strength of the Cr-O-Cr exchange coupling is strongly influenced by the hybridization between Mo 4d and O 2p orbitals. This result further substantiates our recently proposed mechanism for tuning the exchange interaction between two magnetic atoms by modifying the electronic states of the non-magnetic atoms in the exchange path throughmore » orbital hybridization. This approach is fundamentally different from the conventional methods of controlling the exchange interaction by either carrier injection or through structural distortions.« less

  5. Analysis of a new MoO transition in the near-IR: A combined theoretical and experimental study

    SciTech Connect (OSTI)

    Harms, Jack C.; Womack, Kaitlin A.; O’Brien, Leah C.; Zou, Wenli

    2014-10-07

    The near-infrared electronic spectrum of MoO has been recorded in emission using the Fourier transform spectrometer associated with the National Solar Observatory at Kitt Peak, AZ. The gas phase MoO molecules were produced in a neon-based electric discharge using a molybdenum hollow cathode and a trace amount of oxygen. One MoO molecular band was observed in the spectrum with a red-degraded bandhead at 6735 cm{sup −1} and is assigned as the (0,0) band of the c {sup 3}Π{sub 1} − a {sup 3}Σ{sup −}{sub 0+} transition. The assignment is based upon isotopologue shifts and ab initio calculations. Results from the ab initio calculations and analysis are presented. The new calculations support the assignment of the observed transition and have led to reassignment of several electronic states from previous work.

  6. Mo-O bond doping and related-defect assisted enhancement of photoluminescence in monolayer MoS{sub 2}

    SciTech Connect (OSTI)

    Wei, Xiaoxu; Yu, Zhihao; Cheng, Ying; Yu, Linwei; Wang, Junzhuan Wang, Xinran; Shi, Yi; Hu, Fengrui; Wang, Xiaoyong; Xiao, Min

    2014-12-15

    In this work, we report a strong photoluminescence (PL) enhancement of monolayer MoS{sub 2} under different treatments. We find that by simple ambient annealing treatment in the range of 200?C to 400?C, the PL emission can be greatly enhanced by a factor up to two orders of magnitude. This enhancement can be attributed to two factors: first, the formation of Mo-O bonds during ambient exposure introduces an effective p-doping in the MoS{sub 2} layer; second, localized electrons formed around Mo-O bonds related defective sites where the electrons can be effectively localized with higher binding energy resulting in efficient radiative excitons recombination. Time resolved PL decay measurement showed that longer lifetime of the treated sample consistent with the higher quantum efficiency in PL. These results give more insights to understand the luminescence properties of the MoS{sub 2}.

  7. Crystal structure of dioxobis(benzhydroxamato)molybdenum(VI) with propionic acid MoO2(C6H5CONHO)2 x 2/3 CH3CH2COOH

    SciTech Connect (OSTI)

    Makhmudova, N.K.; Sharipov, Kh.T.; Kohdashova, T.S.; Porai-Koshits, M.A.; Ibragimov, B.T.

    1987-04-01

    An x-ray structural investigation of the structure of MoO2 (C6H5CONHO)2 x 2/3 CH3CH2COOH (I) has been carried out (diffractometer, Cu K/sub /, least-squares method in the anisotropic approximation to R = 0.053). The crystallographic data are: a = 17.290(2), c = 11.140(2) A, rho(exp) = 1.53, rho(calc) = 1.562(1) g/cmT, space group P61, Z = 6. The crystals of I were built up from monomeric complex molecules of MoO2 (C6H5CONHO)2, which are joined to one another by a system of hydrogen bonds to form a loose three-dimensional skeleton with large channel-like openings. The presence of solvent molecules in I (which were not detected by the analysis of the electron density) is indicated by the band of the stretching vibration of the carbonyl group nu(C=O) of propionic acid at nu = 1720 cm in the IR spectrum of I. The analysis of the derivatogram of I and the comparison of the values of the density of the crystal (calculated and experimental) indicate that the MoO2(BHA)2:PA ratio is equal to 1:2/3. An ordinary distorted octahedral environment of Mo(VI) consisting of oxygen atoms has been established. The geometric characteristics of the cis-molybdenyl grouping are as follows: Mo-O(1) = 1.701(4), Mo-O(2) = 1.679(6) A, and the OMoO angle equals 104.3(3). The magnitude of the effect of the influence of the double bonds in the two independent chelate rings is equal to 0.137 and 0.244 A. The complex molecules of MoO2 (BHA)2 are joined to one another by H bonds, which link the neighboring complexes in helical chains around 61 axes and bind these chains in a three-dimensional framework. The set of H bonds and the arrangement of the chelate rings and phenyl rings result in the formation of channels of types A and B. X-ray powder diffraction analysis showed that the channels of type A are randomly occupied by the molecules of propionic acid (PA).

  8. Resistivity Log At Alum Area (Moos & Ronne, 2010) | Open Energy...

    Open Energy Info (EERE)

    and Cross-Well Resistivity Activity Date Usefulness useful DOE-funding Unknown Notes Density and electrical resistivity data were important to calibrate structural models based...

  9. Lipophilic Bisphosphonates as Dual Farnesyl/Geranylgeranyl Diphosphate...

    Office of Scientific and Technical Information (OSTI)

    Michael P. ; Guo, Rey-Ting ; Krysiak, Kilannin ; Mukherjee, Sujoy ; Gao, Yi-Gui ; Robinson, Howard ; Song, Yongcheng ; No, Joo Hwan ; Bergan, Kyle ; Leon, Annette ; Cass, ...

  10. Utility Promoters for Biomass Feedstock Biotechnology - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility Promoters for Biomass Feedstock Biotechnology Inventors: Kyung-Hwan Han, Jae-Heung ... Successful application of biotechnology requires both gene discovery and a proper means ...

  11. Investigators - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigators Director Name Department Email Peter Green MSE/ChemE pfgreen@umich.edu Principal Investigators Name Department Email Akram Boukai MSE boukai@umich.edu Roy Clarke Physics royc@umich.edu Barry Dunietz Chemistry bdunietz@umich.edu Steve Forrest EECS/Phys/MSE stevefor@umich.edu Eitan Geva Chemistry eitan@umich.edu Rachel Goldman MSE/EECS/Phys rsgold@umich.edu Ted Goodson Chemistry tgoodson@umich.edu L (Jay) Guo EECS guo@umich.edu Massoud Kaviany ME kaviany@umich.edu John Kieffer MSE

  12. Materials Data on Ag2MoO4 (SG:227) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  13. Materials Data on Fe2(MoO4)3 (SG:60) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  14. Materials Data on Li2MoO3 (SG:12) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  15. Materials Data on Bi2(MoO4)3 (SG:14) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. Materials Data on MoO3 (SG:14) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  17. Neutron Log At Alum Area (Moos & Ronne, 2010) | Open Energy Informatio...

    Open Energy Info (EERE)

    Technique Neutron Log Activity Date Usefulness useful DOE-funding Unknown Notes Density, photo-electric factor (PEF), neutron, and gamma ray (GR) logs provided sufficient...

  18. Gamma Log At Alum Area (Moos & Ronne, 2010) | Open Energy Information

    Open Energy Info (EERE)

    Technique Gamma Log Activity Date Usefulness useful DOE-funding Unknown Notes Density, photo-electric factor (PEF), neutron, and gamma ray (GR) logs provided sufficient...

  19. Center for Nanophase Materials Sciences (CNMS) - Archived CNMS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HIGHLIGHTS Correlating Electronic Transport to Atomic Structures in Self-Assembled Quantum Wires Shengyong Qin,1 Tae-Hwan Kim,1 Yanning Zhang,2 Wenjie Ouyang,2 Hanno H....

  20. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Ivanov, Ilia N (1) Jeong, Jae Hak (1) Kim, Gee-Man (1) Kim, Jeong Hwan (1) Kim, Jong Hoon ... Cheol Seong ; Kim, Jong Hoon ; Kim, Gee-Man ; Choi, Jae Ho ; Choi, Kang Joon ; Jeong, ...

  1. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and manipulation of the competing electronic phases near the Mott metal-insulator transition Tae-Hwan Kim1, M. Angst2, B. Hu3, R. Jin3, X. G. Zhang1, J. F. Wendelken1, E. W....

  2. Materials Data on Li2Fe2(MoO4)3 (SG:60) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  3. MoO3 as combined hole injection layer and tapered spacer in combinatorial multicolor microcavity organic light emitting diodes

    SciTech Connect (OSTI)

    Liu, R.; Xu, Chun; Biswas, Rana; Shinar, Joseph; Shinar, Ruth

    2011-09-01

    Multicolor microcavity ({mu}C) organic light-emitting diode (OLED) arrays were fabricated simply by controlling the hole injection and spacer MoO{sub 3} layer thickness. The normal emission was tunable from {approx}490 to 640 nm and can be further expanded. A compact, integrated spectrometer with two-dimensional combinatorial arrays of {mu}C OLEDs was realized. The MoO{sub 3} yields more efficient and stable devices, revealing a new breakdown mechanism. The pixel current density reaches {approx}4 A/cm{sup 2} and a maximal normal brightness {approx}140 000 Cd/m{sup 2}, which improves photoluminescence-based sensing and absorption measurements.

  4. Materials Data on K2Zn2(MoO4)3 (SG:14) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  5. Materials Data on Rb2Ni2(MoO4)3 (SG:14) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  6. Science Highlights- Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Click on icons for highlight slides. Click on titles or citations for link to papers. Structural Order-Disorder Transitions and Phonon Conductivity of Partially Filled Skutterudites Hyoungchul Kim, Massoud Kaviany, John C. Thomas, Anton van der Ven, Ctirad Uher, and Baoling Huang Physical Review Letters, 105, 265901 (2010) Filled skutterudites are among the most promising of novel thermoelectric materials for power conversion applications. Their effectiveness can be further improved by finding

  7. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... battery (1) high voltage spinel (1) in situ techniques (1) li2moo3 (1) lithium ion batteries (1) lithium-sulfur batteries (1) Filter by Author Nam, Kyung-Wan (21) Yang, ...

  8. Historical Information H.3 Post-Event Reports

    Office of Legacy Management (LM)

    ... ' 1 2 00001 2 000005 00W07 MOO07 000007 OMW)OI( 00001 1 000004 190000006 OOOOOS 000007 ... o o b o . . b o o o z 00001 7 000oi8 0 0 0 0 0 000020 000oi8 000023 000020 ...

  9. Bi–Mn mixed metal organic oxide: A novel 3d-6p mixed metal coordination network

    SciTech Connect (OSTI)

    Shi, Fa-Nian; Rosa Silva, Ana; Bian, Liang

    2015-05-15

    A new terminology of metal organic oxide (MOO) was given a definition as a type of coordination polymers which possess the feature of inorganic connectivity between metals and the direct bonded atoms and show 1D, 2D or 3D inorganic sub-networks. One such compound was shown as an example. A 3d-6p (Mn–Bi. Named MOOMnBi) mixed metals coordination network has been synthesized via hydrothermal method. The new compound with the molecular formula of [MnBi{sub 2}O(1,3,5-BTC){sub 2}]{sub n} (1,3,5-BTC stands for benzene-1,3,5-tricarboxylate) was characterized via single crystal X-ray diffraction technique that revealed a very interesting 3-dimensional (3D) framework with Bi{sub 4}O{sub 2}(COO){sub 12} clusters which are further connected to Mn(COO){sub 6} fragments into a 2D MOO. The topology study indicates an unprecedented topological type with the net point group of (4{sup 13}.6{sup 2})(4{sup 13}.6{sup 8})(4{sup 16}.6{sup 5})(4{sup 18}.6{sup 10})(4{sup 22}.6{sup 14})(4{sup 3}) corresponding to 3,6,7,7,8,9-c hexa-nodal net. MOOMnBi shows catalytic activity in the synthesis of (E)-α,β-unsaturated ketones. - Graphical abstract: This metal organic framework (MOF) is the essence of a 2D metal organic oxide (MOO). - Highlights: • New concept of metal organic oxide (MOO) was defined and made difference from metal organic framework. • New MOO of MOOMnBi was synthesized by hydrothermal method. • Crystal structure of MOOMnBi was determined by single crystal X-ray analysis. • The catalytic activity of MOOMnBi was studied showing reusable after 2 cycles.

  10. In Situ Time-Resolved Characterization of Ni-MoO2 Catalysts for the Water-Gas Shift Reaction

    SciTech Connect (OSTI)

    Wen,W.; Calderon, J.; Brito, J.; Marinkovic, N.; Hanson, J.; Rodriquez, J.

    2008-01-01

    Active catalysts for the water-gas shift (WGS, CO + H2O ? H2 + CO2) reaction were synthesized from nickel molybdates ({beta}-NiMoO4 and nH2O{center_dot}NiMoO4) as precursors, and their structural transformations were monitored using in situ time-resolved X-ray diffraction and X-ray absorption near-edge spectroscopy. In general, the nickel molybdates were not stable and underwent partial reduction in the presence of CO or CO/H2O mixtures at high temperatures. The interaction of {beta}-NiMoO4 with the WGS reactants at 500 C led to the formation of a mixture of Ni (24 nm particle size) and MoO2 (10 nm particle size). These Ni-MoO2 systems displayed good catalytic activity at 350, 400, and 500 C. At 350 and 400 C, catalytic tests revealed that the Ni-MoO2 system was much more active than isolated Ni (some activity) or isolated MoO2 (negligible activity). Thus, cooperative interactions between the admetal and oxide support were probably responsible for the high WGS activity of Ni-MoO2. In a second synthetic approach, the NiMoO4 hydrate was reduced to a mixture of metallic Ni, NiO, and amorphous molybdenum oxide by direct reaction with H2 gas at 350 C. In the first pass of the water-gas shift reaction, MoO2 appeared gradually at 500 C with a concurrent increase of the catalytic activity. For these catalysts, the particle size of Ni (4 nm) was much smaller than that of the MoO2 (13 nm). These systems were found to be much more active WGS catalysts than Cu-MoO2, which in turn is superior to commercial low-temperature Cu-ZnO catalysts.

  11. Nanowire CdS-CdTe solar cells with molybdenum oxide as contact

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dang, Hongmei; Singh, Vijay P.

    2015-10-06

    Using a 10 nm thick molybdenum oxide (MoO3-x) layer as a transparent and low barrier contact to p-CdTe, we demonstrate nanowire CdS-CdTe solar cells with a power conversion efficiency of 11% under front side illumination. Annealing the as-deposited MoO3 film in N2 resulted in a reduction of the cell’s series resistance, from 9.97 Ω/cm2 to 7.69 Ω/cm2, and increase in efficiency from 9.9% to 11%. Under illumination from the back, the MoO3-x/Au side, the nanowire solar cells yielded Jsc of 21 mA/cm2 and efficiency of 8.67%. Our results demonstrate use of a thin layer transition metal oxide as a potentialmore » way for a transparent back contact to nanowire CdS-CdTe solar cells. As a result, this work has implications toward enabling a novel superstrate structure nanowire CdS-CdTe solar cell on Al foil substrate by a low cost roll-to roll fabrication process.« less

  12. No I .+,o L

    Office of Legacy Management (LM)

    pf- ,'46-G 1 No I .+,o L ---+-~"~----* ARMY SERVICE FORCES UNITED STATES ENGINEER OFFICE if?GFERGaD L~'Z EID.u CGA 3ll MANHATTAN DISTRJCT D0uMm-l CHlMOO AllU orncz P. 0. BOX 6140 A CHICAGO 80. tLLlNOlS 17 October 1945 Subject: The l24th F'ield Artillery Anmy Building, Chicago, Illinois '1 \ To: The District Zugiaeer, U. S. Engineer Office, b&n&tan District, Oak Eidge, Tennessee . "-2 -\, - Attention: Contract Section Q? ( sip ( Uhder date of 15 September 1943, The University,of

  13. ANL-14/01 Surveillance of Site A and Plot M

    Office of Legacy Management (LM)

    ANL-14/01 Surveillance of Site A and Plot M Report for 2013 Environment, Safety, and Quality Assurance Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC ENERGY U.S. DEPARTMENT OF Environment, Safety, and Quality Assurance Division Argonne National Laboratory 9700 South Cass Avenue, Bldg. 201 Argonne, IL 60439-4832 www.anl.gov ANL-14/01 Surveillance of Site A and Plot M Report for 2013 by Lawrence P. Moos Environment, Safety, and Quality

  14. I

    Office of Legacy Management (LM)

    . ' , -, . ..Mo.o~-~ I Department ob Energy. Washington. DC 20585 , '~ JAN 6 is.75 ; .', - I The Honorable Freeman R. Bosley, ,Jr. 1200 Market Street City Hall St: Louis,, Missouri 63103 ~ < ,Dear Mayor Bosley: Secretary of,Energy Hazel O'Leary hps.announced a :new approach to openness in the'Department of Energy ,(DDE) and its coanaunications with the public. In support'of this.initiative, we,are pleased to forward the enclosed information related to the former Washington University site in

  15. Tuning charge–discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Yong-Ning; Ma, Jun; Hu, Enyuan; Yu, Xiqian; Gu, Lin; Nam, Kyung -Wan; Chen, Liquan; Wang, Zhaoxiang; Yang, Xiao -Qing

    2014-11-18

    Through a systematic study of lithium molybdenum trioxide (Li2MoO3), a new ‘unit cell breathing’ mechanism is introduced based on both crystal and electronic structural changes of transition metal oxide cathode materials during charge–discharge: For widely used LiMO2 (M = Co, Ni, Mn), lattice parameters, a and b, contracts during charge. However, for Li2MoO3, such changes are in opposite directions. Metal–metal bonding is used to explain such ‘abnormal’ behaviour and a generalized hypothesis is developed. The expansion of M–M bond becomes the controlling factor for a(b) evolution during charge, in contrast to the shrinking M–O as controlling factor in ‘normal’ materials.more » The cation mixing caused by migration of Mo ions at higher oxidation state provides the benefits of reducing the c expansion range in early stage of charging and suppressing the structure collapse at high voltage charge. These results open a new strategy for designing and engineering layered cathode materials for high energy density lithium-ion batteries.« less

  16. Crystal structure of the spin-glass pyrochlore, Y/sub 2/Mo/sub 2/O/sub 7/

    SciTech Connect (OSTI)

    Reimers, J.N.; Greedan, J.E.; Sato, M.

    1988-02-01

    The crystal structure of the spin-glass material, Y/sub 2/Mo/sub 2/O/sub 7/, has been determined from powder neutron diffraction data using profile (Rietveld) methods. The data are consistent with the fully ordered cubic pyrochlore structure, a/sub 0/ = 10.230(1) A with Y in 16d, Mo in 16c, O in 48f(x = 0.3382(1), and O' in 8b of Fd3m. Attempts to refine models with O' disordered over the 32e sites or between the 8a and 8b sites resulted in convergence to the 8b positions. Derived Y-O and Mo-O distances are in excellent agreement with those found in isostructural materials giving indirect evidence for Y-Mo ordering over the cation sites.

  17. UNITED STATES D E P - OF TEE INTERIOR C

    Office of Legacy Management (LM)

    TEI -764 Nuclear $xplosions --Peaceful Applications 316858 UNITED STATES D E P - OF TEE INTERIOR C z E O L o G I C A L SURVEY S U P P ~ A R Y RFFORT ON G E O L O G I C INVESTIGATIONS I N S U P P O R T O F PHASE 11, PROJECT C E W i R I C C IN THE VICINITY O F CAPE THCIMPSOIV, NOR!FE~~ESTERN ALASKA* Eeuben Kachadwrian, A. H1 Zachenbmch, G. W. Moo~e, and R. M. lhller This report is preliminary an8 has not been edited for conformity with Geological Survey format and nomenclature, b Whis report

  18. Image

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTRACT!D CODE IPAU!£ 0, PAGeS 1 10 Z, AMENOMENT/MOO[PICATIQN NO, 3, EFI'tECT!Va DATE 4. REQU!SmoNtPuRCHASE'REQ. NO. 15, PROJECT NO. ("appllen!)I,,) 178. See BIQC¥ 16C 1080008480 6: I$SueD- BY COOE 00518 7. ADMINJSTERED ay lffothOrffum Item 6) CODE 100518 Oak Rl.<lge Oak Ridge U.S. Department of Enet"gy t!. S. D-Opartmen t of Energy P.O. Box 2001 J? .0. Box 2001 .oak Ridge l'N 37831 Oak R'idge TN 37831 tl-. NAMEAND ADDRESS- OF CONrRACTOR (/'to" srrfMJj. <:.euflfy, Sialf!

  19. Development of mooring-anchor program in public domain for coupling with floater program for FOWTs (Floating Offshore Wind Turbines)

    SciTech Connect (OSTI)

    Kim, MooHyun

    2014-08-01

    This report presents the development of offshore anchor data sets which are intended to be used to develop a database that allows preliminary selection and sizing of anchors for the conceptual design of floating offshore wind turbines (FOWTs). The study is part of a project entitled “Development of Mooring-Anchor Program in Public Domain for Coupling with Floater Program for FOWTs (Floating Offshore Wind Turbines)”, under the direction of Dr. Moo-Hyun Kim at the Texas A&M University and with the sponsorship from the US Department of Energy (Contract No. DE-EE0005479, CFDA # 81.087 for DE-FOA-0000415, Topic Area 1.3: Subsurface Mooring and Anchoring Dynamics Models).

  20. Li3Mo4P5O24: A two-electron cathode for lithium-ion batteries with three-dimensional diffusion pathways

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wen, Bohua; Khalifah, Peter G.; Liu, Jue; Chernova, Natasha A.; Wang, Xiaoya; Janssen, Yuri; Omenya, Fredrick; Whittingham, M. Stanley

    2016-03-05

    The structure of the novel compound Li3Mo4P5O24 has been solved from single crystal X-ray diffraction data. The Mo cations in Li3Mo4P5O24 are present in four distinct types of MoO6 octahedra, each of which has one open vertex at the corner participating in a Mo=O double bond and whose other five corners are shared with PO4 tetrahedra. On the basis of a bond valence sum difference map (BVS-DM) analysis, this framework is predicted to support the facile diffusion of Li+ ions, a hypothesis that is confirmed by electrochemical testing data, which show that Li3Mo4P5O24 can be utilized as a rechargeable batterymore » cathode material. It is found that Li can both be removed from and inserted into Li3Mo4P5O24. The involvement of multiple redox processes occurring at the same Mo site is reflected in electrochemical plateaus around 3.8 V associated with the Mo6+/Mo5+ redox couple and 2.2 V associated with the Mo5+/Mo4+ redox couple. The two-electron redox properties of Mo cations in this structure lead to a theoretical capacity of 198 mAh/g. When cycled between 2.0 and 4.3 V versus Li+/Li, an initial capacity of 113 mAh/g is observed with 80% of this capacity retained over the first 20 cycles. Lastly, this compound therefore represents a rare example of a solid state cathode able to support two-electron redox capacity and provides important general insights about pathways for designing next-generation cathodes with enhanced specific capacities.« less

  1. Scalable salt-templated synthesis of two-dimensional transition metal oxides

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiao, Xu; Song, Huaibing; Lin, Shizhe; Zhou, Ying; Zhan, Xiaojun; Hu, Zhimi; Zhang, Qi; Sun, Jiyu; Yang, Bo; Li, Tianqi; et al

    2016-04-22

    Two-dimensional atomic crystals, such as two-dimensional oxides, have attracted much attention in energy storage because nearly all of the atoms can be exposed to the electrolyte and involved in redox reactions. However, current strategies are largely limited to intrinsically layered compounds. Here we report a general strategy that uses the surfaces of water-soluble salt crystals as growth templates and is applicable to not only layered compounds but also various transition metal oxides, such as hexagonal-MoO3, MoO2, MnO and hexagonal-WO3. The planar growth is hypothesized to occur via a match between the crystal lattices of the salt and the growing oxide.more » Restacked two-dimensional hexagonal-MoO3 exhibits high pseudocapacitive performances (for example, 300Fcm-3 in an Al2(SO4)3 electrolyte). Furthermore, the synthesis of various two-dimensional transition metal oxides and the demonstration of high capacitance are expected to enable fundamental studies of dimensionality effects on their properties and facilitate their use in energy storage and other applications.« less

  2. Layered Atom Arrangements in Complex Materials

    SciTech Connect (OSTI)

    K.E. Sikafus; R.W.Grimes; S.M.Corish; A.R. Cleave; M.Tang; C.R.Stanek; B.P. Uberuaga; J.A.Valdez

    2005-04-15

    In this report, we develop an atom layer stacking model to describe systematically the crystal structures of complex materials. To illustrate the concepts, we consider a sequence of oxide compounds in which the metal cations progress in oxidation state from monovalent (M{sup 1+}) to tetravalent (M{sup 4+}). We use concepts relating to geometric subdivisions of a triangular atom net to describe the layered atom patterns in these compounds (concepts originally proposed by Shuichi Iida). We demonstrate that as a function of increasing oxidation state (from M{sup 1+} to M{sup 4+}), the layer stacking motifs used to generate each successive structure (specifically, motifs along a 3 symmetry axis), progress through the following sequence: MMO, MO, M{sub r}O, MO{sub r/s}O{sub u/v}, MOO (where M and O represent fully dense triangular atom nets and r/s and u/v are fractions used to describe partially filled triangular atom nets). We also develop complete crystallographic descriptions for the compounds in our oxidation sequence using trigonal space group R{bar 3}.

  3. MoSi 2 Oxidation in 670-1498 K Water Vapor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sooby Wood, Elizabeth; Parker, Stephen S.; Nelson, Andrew T.; Maloy, Stuart A.; Butt, D.

    2016-03-08

    Molybdenum disilicide (MoSi2) has well documented oxidation resistance at high temperature (T > 1273 K) in dry O2 containing atmospheres due to the formation of a passive SiO2 surface layer. But, its behavior under atmospheres where water vapor is the dominant species has received far less attention. Oxidation testing of MoSi2 was performed at temperatures ranging from 670–1498 K in both 75% water vapor and synthetic air (Ar-O2, 80%–20%) containing atmospheres. Here the thermogravimetric and microscopy data describing these phenomena are presented. Over the temperature range investigated, MoSi2 displays more mass gain in water vapor than in air. The oxidationmore » kinetics observed in water vapor differ from that of the air samples. Two volatile oxides, MoO2(OH)2 and Si(OH)4, are thought to be the species responsible for the varied kinetics, at 670–877 K and at 1498 K, respectively. Finally, we observed an increase in oxidation (140–300 mg/cm2) from 980–1084 K in water vapor, where passivation is observed in air.« less

  4. ALD of Al2O3 for Highly Improved Performance in Li-Ion Batteries

    SciTech Connect (OSTI)

    Dillon, A.; Jung, Y. S.; Ban, C.; Riley, L.; Cavanagh, A.; Yan, Y.; George, S.; Lee, S. H.

    2012-01-01

    Significant advances in energy density, rate capability and safety will be required for the implementation of Li-ion batteries in next generation electric vehicles. We have demonstrated atomic layer deposition (ALD) as a promising method to enable superior cycling performance for a vast variety of battery electrodes. The electrodes range from already demonstrated commercial technologies (cycled under extreme conditions) to new materials that could eventually lead to batteries with higher energy densities. For example, an Al2O3 ALD coating with a thickness of ~ 8 A was able to stabilize the cycling of unexplored MoO3 nanoparticle anodes with a high volume expansion. The ALD coating enabled stable cycling at C/2 with a capacity of ~ 900 mAh/g. Furthermore, rate capability studies showed the ALD-coated electrode maintained a capacity of 600 mAh/g at 5C. For uncoated electrodes it was only possible to observe stable cycling at C/10. Also, we recently reported that a thin ALD Al2O3 coating with a thickness of ~5 A can enable natural graphite (NG) electrodes to exhibit remarkably durable cycling at 50 degrees C. The ALD-coated NG electrodes displayed a 98% capacity retention after 200 charge-discharge cycles. In contrast, bare NG showed a rapid decay. Additionally, Al2O3 ALD films with a thickness of 2 to 4 A have been shown to allow LiCoO2 to exhibit 89% capacity retention after 120 charge-discharge cycles performed up to 4.5 V vs Li/Li+. Bare LiCoO2 rapidly deteriorated in the first few cycles. The capacity fade is likely caused by oxidative decomposition of the electrolyte at higher potentials or perhaps cobalt dissolution. Interestingly, we have recently fabricated full cells of NG and LiCoO2 where we coated both electrodes, one or the other electrode as well as neither electrode. In creating these full cells, we observed some surprising results that lead us to obtain a greater understanding of the ALD coatings. We have also recently coated a binder free LiNi0.04Mn0

  5. Slip and Dilation Tendency Anlysis of Neal Hot Springs Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Based on inversion of fault kinematic data, Edwards (2013) interpreted that two discrete stress orientations are preserved at Neal Hot Springs. An older episode of east-west directed extension and a younger episode of southwest-northeast directed sinistral, oblique -normal extension. This interpretation is consistent with the evolution of Cenozoic tectonics in the region (Edwards, 2013). As such we applied a southwest-northeast (060) directed normal faulting stress regime, consistent with the younger extensional episode, to the Neal Hot Springs faults. Under these stress conditions northeast striking steeply

  6. Slip and Dilation Tendency Anlysis of Neal Hot Springs Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Based on inversion of fault kinematic data, Edwards (2013) interpreted that two discrete stress orientations are preserved at Neal Hot Springs. An older episode of east-west directed extension and a younger episode of southwest-northeast directed sinistral, oblique -normal extension. This interpretation is consistent with the evolution of Cenozoic tectonics in the region (Edwards, 2013). As such we applied a southwest-northeast (060) directed normal faulting stress regime, consistent with the younger extensional episode, to the Neal Hot Springs faults. Under these stress conditions northeast striking steeply

  7. Slip and Dilation Tendency Analysis of the Tuscarora Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the Tuscarora geothermal field was calculated based on the faults mapped Tuscarora area (Dering, 2013). The Tuscarora area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the Tuscarora area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60 dipping fault segments have the highest tendency

  8. Slip and Dilation Tendency Analysis of the Patua Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency analysis for the Patua geothermal system was calculated based on faults mapped in the Hazen Quadrangle (Faulds et al., 2011). Patua lies near the margin between the Basin and Range province, which is characterized by west-northwest directed extension and the Walker Lane province, characterized by west-northwest directed dextral shear. As such, the Patua area likely has been affected by tectonic stress associated with either or both of stress regimes over geologic time. In order to characterize this stress variation we calculated slip tendency at Patua for both normal faulting and strike

  9. Slip and Dilation Tendency Analysis of the San Emidio Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the San Emidio geothermal field was calculated based on the faults mapped Tuscarora area (Rhodes, 2011). The San Emidio area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the San Emidio area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. This is consistent with the shmin determined through inversion of fault data by Rhodes (2011). Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest

  10. Slip and Dilation Tendency Anlysis of McGinness Hills Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the McGinness Hills geothermal field was calculated based on the faults mapped McGinness Hills area (Siler 2012, unpublished). The McGinness Hills area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the McGinness area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60 dipping fault

  11. Regional Slip Tendency Analysis of the Great Basin Region

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    - The resulting along?fault and fault?to?fault variation in slip or dilation potential is a proxy for along fault and fault?to?fault variation in fluid flow conduit potential. Stress Magnitudes and directions were calculated across the entire Great Basin. Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson?Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005). The minimum horizontal stress direction (Shmin) was contoured, and spatial bins with common Shmin directions were calculated. Based on this technique, we subdivided the Great Basin into nine regions (Shmin <070, 070140). Slip and dilation tendency were calculated using 3DStress for the faults within each region using the mean Shmin for the region. Shmin variation throughout Great Basin are shown on Figure 3. For faults within the Great Basin proper, we applied a normal faulting stress regime, where the vertical stress (sv) is larger than the maximum horizontal stress (shmax), which is larger than the minimum horizontal stress (sv>shmax>shmin). Based on visual inspection of the limited stress magnitude data in the Great Basin, we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46. These values are consistent with stress magnitude data at both Dixie Valley (Hickman et al., 2000) and Yucca Mountain (Stock et al., 1985). For faults within the Walker Lane/Eastern California Shear Zone, we applied a strike?slip faulting stress, where shmax > sv > shmin. Upon visual inspection of limited stress magnitude data from the Walker Lane and Eastern California Shear zone, we chose values such that SHmin/SHmax = .46 and Shmin/Sv= .527

  12. Thermal expansion of Cr{sub 2x}Fe{sub 2-2x}Mo{sub 3}O{sub 12}, Al{sub 2x}Fe{sub 2-2x}Mo{sub 3}O{sub 12} and Al{sub 2x}Cr{sub 2-2x}Mo{sub 3}O{sub 12} solid solutions

    SciTech Connect (OSTI)

    Ari, M.; Jardim, P.M.; Marinkovic, B.A. Rizzo, F.; Ferreira, F.F.

    2008-06-15

    The transition temperature from monoclinic to orthorhombic and the thermal expansion of the orthorhombic phase were investigated for three systems of the family A{sub 2}M{sub 3}O{sub 12}: Cr{sub 2x}Fe{sub 2-2x}Mo{sub 3}O{sub 12}, Al{sub 2x}Fe{sub 2-2x}Mo{sub 3}O{sub 12} and Al{sub 2x}Cr{sub 2-2x}Mo{sub 3}O{sub 12}. It was possible to obtain a single-phase solid solution in all studied samples (x=0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1). A linear relationship between the transition temperature and the fraction of A{sup 3+} cations (x) was observed for each system. In all orthorhombic solid solutions studied here the observed thermal expansion was anisotropic. These anisotropic thermal expansion properties of crystallographic axes a, b and c result in a low positive or near-zero overall linear coefficient of thermal expansion ({alpha}{sub l}={alpha}{sub V}/3). The relationship between the size of A{sup 3+} cations in A{sub 2}M{sub 3}O{sub 12} and the coefficient of thermal expansion is discussed. Near-zero thermal expansion of Cr{sub 2}Mo{sub 3}O{sub 12} is explained by the behavior of Cr-O and Mo-O bond distances, Cr-Mo non-bond distances and Cr-O-Mo bond angles with increasing temperature, estimated by Rietveld analysis of synchrotron X-ray powder diffraction data. - Graphical abstract: In this figure, all published overall linear coefficients of thermal expansion for orthorhombic A{sub 2}M{sub 3}O{sub 12} family obtained through diffraction methods as a function of A{sup 3+} cation radii size, together with dilatometric results, are plotted. Our results indicate that Cr{sub 2}Mo{sub 3}O{sub 12} does not exactly follow the established relationship.

  13. Regional Slip Tendency Analysis of the Great Basin Region

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-09-30

    - The resulting along?fault and fault?to?fault variation in slip or dilation potential is a proxy for along fault and fault?to?fault variation in fluid flow conduit potential. Stress Magnitudes and directions were calculated across the entire Great Basin. Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson?Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005). The minimum horizontal stress direction (Shmin) was contoured, and spatial bins with common Shmin directions were calculated. Based on this technique, we subdivided the Great Basin into nine regions (Shmin <070, 070140). Slip and dilation tendency were calculated using 3DStress for the faults within each region using the mean Shmin for the region. Shmin variation throughout Great Basin are shown on Figure 3. For faults within the Great Basin proper, we applied a normal faulting stress regime, where the vertical stress (sv) is larger than the maximum horizontal stress (shmax), which is larger than the minimum horizontal stress (sv>shmax>shmin). Based on visual inspection of the limited stress magnitude data in the Great Basin, we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46. These values are consistent with stress magnitude data at both Dixie Valley (Hickman et al., 2000) and Yucca Mountain (Stock et al., 1985). For faults within the Walker Lane/Eastern California Shear Zone, we applied a strike?slip faulting stress, where shmax > sv > shmin. Upon visual inspection of limited stress magnitude data from the Walker Lane and Eastern California Shear zone, we chose values such that SHmin/SHmax = .46 and Shmin/Sv= .527

  14. Accident source terms for pressurized water reactors with high-burnup cores calculated using MELCOR 1.8.5.

    SciTech Connect (OSTI)

    Gauntt, Randall O.; Powers, Dana Auburn; Ashbaugh, Scott G.; Leonard, Mark Thomas; Longmire, Pamela

    2010-04-01

    In this study, risk-significant pressurized-water reactor severe accident sequences are examined using MELCOR 1.8.5 to explore the range of fission product releases to the reactor containment building. Advances in the understanding of fission product release and transport behavior and severe accident progression are used to render best estimate analyses of selected accident sequences. Particular emphasis is placed on estimating the effects of high fuel burnup in contrast with low burnup on fission product releases to the containment. Supporting this emphasis, recent data available on fission product release from high-burnup (HBU) fuel from the French VERCOR project are used in this study. The results of these analyses are treated as samples from a population of accident sequences in order to employ approximate order statistics characterization of the results. These trends and tendencies are then compared to the NUREG-1465 alternative source term prescription used today for regulatory applications. In general, greater differences are observed between the state-of-the-art calculations for either HBU or low-burnup (LBU) fuel and the NUREG-1465 containment release fractions than exist between HBU and LBU release fractions. Current analyses suggest that retention of fission products within the vessel and the reactor coolant system (RCS) are greater than contemplated in the NUREG-1465 prescription, and that, overall, release fractions to the containment are therefore lower across the board in the present analyses than suggested in NUREG-1465. The decreased volatility of Cs2MoO4 compared to CsI or CsOH increases the predicted RCS retention of cesium, and as a result, cesium and iodine do not follow identical behaviors with respect to distribution among vessel, RCS, and containment. With respect to the regulatory alternative source term, greater differences are observed between the NUREG-1465 prescription and both HBU and LBU predictions than exist between HBU and LBU

  15. Preparation and structural study from neutron diffraction data of Pr{sub 5}Mo{sub 3}O{sub 16}

    SciTech Connect (OSTI)

    Martinez-Lope, M.J.; Alonso, J.A.; Sheptyakov, D.; Pomjakushin, V.

    2010-12-15

    The title compound has been prepared as polycrystalline powder by thermal treatments of mixtures of Pr{sub 6}O{sub 11} and MoO{sub 2} in air. In the literature, an oxide with a composition Pr{sub 2}MoO{sub 6} has been formerly described to present interesting catalytic properties, but its true stoichiometry and crystal structure are reported here for the first time. It is cubic, isostructural with CdTm{sub 4}Mo{sub 3}O{sub 16} (space group Pn-3n, Z=8), with a=11.0897(1) A. The structure contains MoO{sub 4} tetrahedral units, with Mo-O distances of 1.788(2) A, fully long-range ordered with PrO{sub 8} polyhedra; in fact it can be considered as a superstructure of fluorite (M{sub 8}O{sub 16}), containing 32 MO{sub 2} fluorite formulae per unit cell, with a lattice parameter related to that of cubic fluorite (a{sub f}=5.5 A) as a{approx}2a{sub f}. A bond valence study indicates that Mo exhibits a mixed oxidation state between 5+ and 6+ (perhaps accounting for the excellent catalytic properties). One kind of Pr atoms is trivalent whereas the second presents a mixed Pr{sup 3+}-Pr{sup 4+} oxidation state. The similarity of the XRD pattern with that published for Ce{sub 2}MoO{sub 6} suggests that this compound also belongs to the same structural type, with an actual stoichiometry Ce{sub 5}Mo{sub 3}O{sub 16}. -- Graphical Abstract: Formerly formulated as Pr{sub 2}MoO{sub 6}, the title compound is a cubic superstructure of fluorite (a=11.0897(1) A, space group Pn-3n) due to the long-range ordering of PrO{sub 8} scalenohedra and MoO{sub 4} tetrahedral units, showing noticeable shifts of the oxygen positions in order to provide a tetrahedral coordination for Mo ions. A mixed valence Mo{sup 5+}-Mo{sup 6+} is identified, which could account for the excellent catalytic properties of this material. Display Omitted

  16. Propane ammoxidation over the Mo-V-Te-Nb-O M1 phase: Reactivity of surface cations in hydrogen abstraction steps

    SciTech Connect (OSTI)

    Muthukumar, Kaliappan; Yu, Junjun; Xu, Ye; Guliants, Vadim V.

    2011-01-01

    Density functional theory calculations (GGA-PBE) have been performed to investigate the adsorption of C3 (propane, isopropyl, propene, and allyl) and H species on the proposed active center present in the surface ab planes of the bulk Mo-V-Te-Nb-O M1 phase in order to better understand the roles of the different surface cations in propane ammoxidation. Modified cluster models were employed to isolate the closely spaced V=O and Te=O from each other and to vary the oxidation state of the V cation. While propane and propene adsorb with nearly zero adsorption energy, the isopropyl and allyl radicals bind strongly to V=O and Te=O with adsorption energies, {Delta}E, being {le} -1.75 eV, but appreciably more weakly on other sites, such as Mo=O, bridging oxygen (Mo-O-V and Mo-O-Mo), and empty metal apical sites ({Delta}E > -1 eV). Atomic H binds more strongly to Te = O ({Delta}E {le} -3 eV) than to all the other sites, including V = O ({Delta}E = -2.59 eV). The reduction of surface oxo groups by dissociated H and their removal as water are thermodynamically favorable except when both H atoms are bonded to the same Te=O. Consistent with the strong binding of H, Te=O is markedly more active at abstracting the methylene H from propane (E{sub a} {le} 1.01 eV) than V = O (E{sub a} = 1.70 eV on V{sup 5+} = O and 2.13 eV on V{sup 4+} = O). The higher-than-observed activity and the loose binding of Te = O moieties to the mixed metal oxide lattice of M1 raise the question of whether active Te = O groups are in fact present in the surface ab planes of the M1 phase under propane ammoxidation conditions.

  17. Slip and Dilation Tendency Analysis of the Salt Wells Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the Salt Wells geothermal field was calculated based on the faults mapped in the Bunejug Mountains quadrangle (Hinz et al., 2011). The Salt Wells area lies in the Basin and Range Province (N. Hinz personal comm.) As such we applied a normal faulting stress regime to the Salt Wells area faults, with a minimum horizontal stress direction oriented 105, based on inspection of local and regional stress determinations. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60 dipping fault

  18. Regional Slip Tendency Analysis of the Great Basin Region

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-09-30

    Slip and dilation tendency on the Great Basin fault surfaces (from the USGS Quaternary Fault Database) were calculated using 3DStress (software produced by Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by the measured ambient stress field. - Values range from a maximum of 1 (a fault plane ideally oriented to slip or dilate under ambient stress conditions) to zero (a fault plane with no potential to slip or dilate). - Slip and dilation tendency values were calculated for each fault in the Great Basin. As dip is unknown for many faults in the USGS Quaternary Fault Database, we made these calculations using the dip for each fault that would yield the maximum slip or dilation tendency. As such, these results should be viewed as maximum slip and dilation tendency. - The resulting along‐fault and fault‐to‐fault variation in slip or dilation potential is a proxy for along fault and fault‐to‐fault variation in fluid flow conduit potential. Stress Magnitudes and directions were calculated across the entire Great Basin. Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson‐Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005). The minimum horizontal stress direction (Shmin) was contoured, and spatial bins with common Shmin directions were calculated. Based on this technique, we subdivided the Great Basin into nine regions (Shmin <070, 070140). Slip and dilation tendency were calculated using 3DStress for the faults within each region using the mean Shmin for the region. Shmin variation throughout Great Basin

  19. Slip and Dilation Tendency Analysis of the Salt Wells Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    , 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the Salt Wells geothermal field was calculated based on the faults mapped in the Bunejug Mountains quadrangle (Hinz et al., 2011). The Salt Wells area lies in the Basin and Range Province (N. Hinz personal comm.) As such we applied a normal faulting stress regime to the Salt Wells area faults, with a minimum horizontal stress direction oriented 105, based on inspection of local and regional stress determinations. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. Several such faults intersect in high density in the core of the accommodation zone in the Bunejug Mountains and local to the Salt Wells geothermal .

  20. Slip and Dilation Tendency Analysis of the Patua Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    , 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency analysis for the Patua geothermal system was calculated based on faults mapped in the Hazen Quadrangle (Faulds et al., 2011). Patua lies near the margin between the Basin and Range province, which is characterized by west-northwest directed extension and the Walker Lane province, characterized by west-northwest directed dextral shear. As such, the Patua area likely has been affected by tectonic stress associated with either or both of stress regimes over geologic time. In order to characterize this stress variation we calculated slip tendency at Patua for both normal faulting and strike slip faulting stress regimes. Based on examination of regional and local stress data (as explained above) we applied at shmin direction of 105 to Patua. Whether the vertical stress (sv) magnitude is larger than ...

  1. Slip and Dilation Tendency Anlysis of McGinness Hills Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the McGinness Hills geothermal field was calculated based on the faults mapped McGinness Hills area (Siler 2012, unpublished). The McGinness Hills area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the McGinness area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. The McGinness Hills geothermal system is characterized by a left-step in a north-northeast striking west-dipping fault system wit...

  2. Slip and Dilation Tendency Analysis of the Tuscarora Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    , 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the Tuscarora geothermal field was calculated based on the faults mapped Tuscarora area (Dering, 2013). The Tuscarora area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the Tuscarora area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. Tuscarora is defined by a left-step in a major north- to-north northeast striking, west-dipping range-bounding normal fault system. Faults within the broad step define an anticlinal accommodation zone...

  3. Slip and Dilation Tendency Analysis of the San Emidio Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    , 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the San Emidio geothermal field was calculated based on the faults mapped Tuscarora area (Rhodes, 2011). The San Emidio area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the San Emidio area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. This is consistent with the shmin determined through inversion of fault data by Rhodes (2011). Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60° dipping fault segments have the highest tendency to slip. Interesting, the San Emidio geothermal field lies in an area of primarily north striking faults, which...

  4. Slip and Dilation Tendency Anlysis of Neal Hot Springs Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Based on inversion of fault kinematic data, Edwards (2013) interpreted that two discrete stress orientations are preserved at Neal Hot Springs. An older episode of east-west directed extension and a younger episode of southwest-northeast directed sinistral, oblique -normal extension. This interpretation is consistent with the evolution of Cenozoic tectonics in the region (Edwards, 2013). As such we applied a southwest-northeast (060) directed normal faulting stress regime, consistent with the younger extensional episode, to the Neal Hot Springs faults. Under these stress conditions northeast striking steeply dipping fault segments have the highest tendency to dilate and northeast striking 60° dipping fault segments have the highest tendency to slip. Under these stress condition...