Sample records for karlsruhe atmospheric mesoscale

  1. Mesoscale coupled ocean-atmosphere feedbacks in boundary current systems

    E-Print Network [OSTI]

    Putrasahan, Dian Ariyani

    2012-01-01T23:59:59.000Z

    Isolating Mesoscale Coupled Ocean-Atmosphere in the KuroshioSST coupler . . . . Chapter 3 Mesoscale Ocean-Atmosphere4.2 Impact of Mesoscale SST on Precipitation Chapter 4 vi

  2. Intercomparison of oceanic and atmospheric forced and coupled mesoscale simulations

    E-Print Network [OSTI]

    Boyer, Edmond

    Intercomparison of oceanic and atmospheric forced and coupled mesoscale simulations Part I: Surface Abstract. A mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model current. In order to analyze the eect of mesoscale coupling, three simulations are compared: the ®rst one

  3. Mesoscale coupled ocean-atmosphere interaction

    E-Print Network [OSTI]

    Seo, Hyodae

    2007-01-01T23:59:59.000Z

    2000: A Coupled Air-Sea Mesoscale Model: Experiments inWind Stress Curl from a Mesoscale Model. Mon. Wea. Rev. ,2006: Effect of Ocean Mesoscale Variability on the Mean

  4. Mesoscale Coupled Ocean-Atmosphere Interaction

    E-Print Network [OSTI]

    Seo, Hyodae

    2007-01-01T23:59:59.000Z

    2000: A Coupled Air-Sea Mesoscale Model: Experiments inWind Stress Curl from a Mesoscale Model. Mon. Wea. Rev. ,2006: Effect of Ocean Mesoscale Variability on the Mean

  5. Ocean color and atmospheric dimethyl sulfide: On their mesoscale variability

    E-Print Network [OSTI]

    Matrai, Patricia A; Balch, William M; Cooper, David J; Saltzman, Eric S

    1993-01-01T23:59:59.000Z

    periods of' time, covering mesoscale Campbell, J. W. and W.Dimethyl Sulfide' On Their Mesoscale Variability PATRICIA A.Miami, Miami, Florida The mesoscale variability of dimethyl

  6. Chromatin Ionic Atmosphere Analyzed by a Mesoscale Electrostatic Hin Hark Gan

    E-Print Network [OSTI]

    Schlick, Tamar

    Chromatin Ionic Atmosphere Analyzed by a Mesoscale Electrostatic Approach Hin Hark Gan and Tamar an electrostatic model to handle multivalent ions and compute the ionic distribution around a mesoscale chromatin

  7. Soil moisture in complex terrain: quantifying effects on atmospheric boundary layer flow and providing improved surface boundary conditions for mesoscale models

    E-Print Network [OSTI]

    Daniels, Megan Hanako

    2010-01-01T23:59:59.000Z

    groundwater, land-surface, and mesoscale atmospheric model-and modification of mesoscale circulations. , Mon. Wea.J. Davis, The effects of mesoscale surface heterogeneity on

  8. ATMOSPHERIC DUST AND MESOSCALE/MICROSCALE METEOROLOGY. A. Spiga1 , S.R. Lewis1

    E-Print Network [OSTI]

    Spiga, Aymeric

    ATMOSPHERIC DUST AND MESOSCALE/MICROSCALE METEOROLOGY. A. Spiga1 , S.R. Lewis1 , and F. For- get2 to advances in computational resources and modeling techniques. Note also that mesoscale modeling and Large: general circulation models, mesoscale models, microscale models [Large-Eddy Simulations]. Figure 1

  9. Satellite observations of mesoscale ocean features and copropagating atmospheric surface fields in the tropical belt

    E-Print Network [OSTI]

    Xie, Shang-Ping

    Satellite observations of mesoscale ocean features and copropagating atmospheric surface fields speed and sea surface temperature (SST) over mesoscale ocean features in certain frontal regions. The aim of this study is to determine to what extent mesoscale ocean dynamics modifies the surface wind

  10. Heat transport and weakening of atmospheric stability induced by mesoscale flows

    E-Print Network [OSTI]

    Pielke, Roger A.

    Heat transport and weakening of atmospheric stability induced by mesoscale flows G. A. Dalu boundary layer (CBL) is transported upward into the midtroposphere by mesoscale flows, and how the air, and diffusion, associated with the mesoscale flow, is more clearly shown when the forcing is periodic in time

  11. Mesoscale Atmospheric Dispersion, 2001, Ed. Z. Boybeyi, WIT Publications, Southampton, UK, Advances in Air Pollution, Vol 9, p. 424.

    E-Print Network [OSTI]

    Raman, Sethu

    Mesoscale Atmospheric Dispersion, 2001, Ed. Z. Boybeyi, WIT Publications, Southampton, UK, Advances surface­atmosphere exchanges in mesoscale air pollution systems Devdutta S. Niyogi & Sethu Raman North-physiological leaf scaling approach. Finally, of particular relevance to mesoscale applications is the area averaging

  12. Nighttime atmospheric stability changes and their effects on the temporal intensity of a mesoscale convective complex

    E-Print Network [OSTI]

    Hovis, Jeffrey Scott

    1988-01-01T23:59:59.000Z

    NIGHTTIME ATMOSPHERIC STABILITY CHANGES AND THEIR EFFECTS ON THE TEMPORAL INTENSITY OF A MESOSCALE CONVECTIVE COMPLEX A Thesis JEFFREY SCOTT HOVIS Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1988 Major Subject: Meteorology NIGHTTIME ATMOSPHERIC STABILITY CHANGES AND THEIR EFFECTS ON THE TEMPORAL INTENSITY OF A MESOSCALE CONVECTIVE COMPLEX A Thesis JEFFREY SCOTT HOVIS Approved as to style...

  13. Forecast of surface layer meteorological parameters at Cerro Paranal with a mesoscale atmospherical model

    E-Print Network [OSTI]

    Lascaux, Franck; Fini, Luca

    2015-01-01T23:59:59.000Z

    This article aims at proving the feasibility of the forecast of all the most relevant classical atmospherical parameters for astronomical applications (wind speed and direction, temperature) above the ESO ground-base site of Cerro Paranal with a mesoscale atmospherical model called Meso-Nh. In a precedent paper we have preliminarily treated the model performances obtained in reconstructing some key atmospherical parameters in the surface layer 0-30~m studying the bias and the RMSE on a statistical sample of 20 nights. Results were very encouraging and it appeared therefore mandatory to confirm such a good result on a much richer statistical sample. In this paper, the study was extended to a total sample of 129 nights between 2007 and 2011 distributed in different parts of the solar year. This large sample made our analysis more robust and definitive in terms of the model performances and permitted us to confirm the excellent performances of the model. Besides, we present an independent analysis of the model p...

  14. Using Mesoscale Weather Model Output as Boundary Conditions for Atmospheric Large-Eddy Simulations and Wind-Plant Aerodynamic Simulations (Presentation)

    SciTech Connect (OSTI)

    Churchfield, M. J.; Michalakes, J.; Vanderwende, B.; Lee, S.; Sprague, M. A.; Lundquist, J. K.; Moriarty, P. J.

    2013-10-01T23:59:59.000Z

    Wind plant aerodynamics are directly affected by the microscale weather, which is directly influenced by the mesoscale weather. Microscale weather refers to processes that occur within the atmospheric boundary layer with the largest scales being a few hundred meters to a few kilometers depending on the atmospheric stability of the boundary layer. Mesoscale weather refers to large weather patterns, such as weather fronts, with the largest scales being hundreds of kilometers wide. Sometimes microscale simulations that capture mesoscale-driven variations (changes in wind speed and direction over time or across the spatial extent of a wind plant) are important in wind plant analysis. In this paper, we present our preliminary work in coupling a mesoscale weather model with a microscale atmospheric large-eddy simulation model. The coupling is one-way beginning with the weather model and ending with a computational fluid dynamics solver using the weather model in coarse large-eddy simulation mode as an intermediary. We simulate one hour of daytime moderately convective microscale development driven by the mesoscale data, which are applied as initial and boundary conditions to the microscale domain, at a site in Iowa. We analyze the time and distance necessary for the smallest resolvable microscales to develop.

  15. 4, 54555514, 2004 Mesoscale modeling

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 4, 5455­5514, 2004 Mesoscale modeling of combined aerosol and photo-oxidant processes M Union 2004 Atmospheric Chemistry and Physics Discussions Mesoscale modeling of combined aerosol­5514, 2004 Mesoscale modeling of combined aerosol and photo-oxidant processes M. Lazaridis et al. Title Page

  16. Buoyancy Effects on the Scaling Characteristics of Atmospheric Boundary Layer Wind Fields in the Mesoscale Range

    E-Print Network [OSTI]

    Kiliyanpilakkil, V P; Ruiz-Columbié, A; Araya, G; Castillo, L; Hirth, B; Burgett, W

    2015-01-01T23:59:59.000Z

    We have analyzed long-term wind speed time-series from five field sites up to a height of 300 m from the ground. Structure function-based scaling analysis has revealed that the scaling exponents in the mesoscale regime systematically depend on height. This anomalous behavior is shown to be caused by the buoyancy effects. In the framework of the extended self-similarity, the relative scaling exponents portray quasi-universal behavior.

  17. Mesoscale & Microscale Meteorological Division / NCAR WRF Nature Run

    E-Print Network [OSTI]

    Michalakes, John

    Mesoscale & Microscale Meteorological Division / NCAR WRF Nature Run John Michalakes Josh Hacker overview and petascale issues Nature run methodology Results and conclusion #12;Mesoscale & Microscale's atmosphere #12;Mesoscale & Microscale Meteorological Division / NCAR Description of Science · Kinetic energy

  18. MESOSCALE CONVECTIVE SYSTEMS Robert A. Houze Jr.

    E-Print Network [OSTI]

    Houze Jr., Robert A.

    MESOSCALE CONVECTIVE SYSTEMS Robert A. Houze Jr. Department of Atmospheric Sciences University; published 31 December 2004. [1] Mesoscale convective systems (MCSs) have regions of both convective and stratiform precipitation, and they develop mesoscale circulations as they mature. The upward motion takes

  19. THE SIMULATION OF FINE SCALE NOCTURNAL BOUNDARY LAYER MOTIONS WITH A MESO-SCALE ATMOSPHERIC MODEL

    SciTech Connect (OSTI)

    Werth, D.; Kurzeja, R.; Parker, M.

    2009-04-02T23:59:59.000Z

    A field project over the Atmospheric Radiation Measurement-Clouds and Radiation Testbed (ARM-CART) site during a period of several nights in September, 2007 was conducted to explore the evolution of the low-level jet (LLJ). Data was collected from a tower and a sodar and analyzed for turbulent behavior. To study the full range of nocturnal boundary layer (NBL) behavior, the Regional Atmospheric Modeling System (RAMS) was used to simulate the ARM-CART NBL field experiment and validated against the data collected from the site. This model was run at high resolution, and is ideal for calculating the interactions among the various motions within the boundary layer and their influence on the surface. The model reproduces adequately the synoptic situation and the formation and dissolution cycles of the low-level jet, although it suffers from insufficient cloud production and excessive nocturnal cooling. The authors suggest that observed heat flux data may further improve the realism of the simulations both in the cloud formation and in the jet characteristics. In a higher resolution simulation, the NBL experiences motion on a range of timescales as revealed by a wavelet analysis, and these are affected by the presence of the LLJ. The model can therefore be used to provide information on activity throughout the depth of the NBL.

  20. Atmospheric Dispersion at Spatial Resolutions Below Mesoscale for university of Tennessee SimCenter at Chattanooga: Final Report

    SciTech Connect (OSTI)

    Dr. David Whitfield; Dr. Daniel Hyams

    2009-09-14T23:59:59.000Z

    In Year 1 of this project, items 1.1 and 1.2 were addressed, as well as item 2.2. The baseline parallel computational simulation tool has been refined significantly over the timeline of this project for the purpose of atmospheric dispersion and transport problems; some of these refinements are documented in Chapter 3. The addition of a concentration transport capability (item 1.2) was completed, along with validation and usage in a highly complex urban environment. Multigrid capability (item 2.2) was a primary focus of Year 1 as well, regardless of the fact that it was scheduled for Year 2. It was determined by the authors that due to the very large nature of the meshes required for atmospheric simulations at mesoscale, multigrid was a key enabling technology for the rest of the project to be successful. Therefore, it was addressed early according to the schedule laid out in the original proposal. The technology behind the multigrid capability is discussed in detail in Chapter 5. Also in Year 1, the issue of ground topography specification is addressed. For simulations of pollutant transport in a given region, a key prerequisite is the specification of the detailed ground topography. The local topography must be placed into a form suitable for generating an unstructured grid both on the topography itself and the atmospheric volume above it; this effort is documented in Chapter 6. In Year 2 of this project, items 1.3 and 2.1 were addressed. Weather data in the form of wind speeds, relative humidity, and baseline pollution levels may be input into the code in order to improve the real-world fidelity of the solutions. Of course, the computational atmospheric boundary layer (ABL) boundary condition developed in Year 1 may still be used when necessary. Cloud cover may be simulated via the levels of actinic flux allowed in photochemical reactions in the atmospheric chemistry model. The primary focus of Year 2 was the formulation of a multispecies capability with included chemical reactions (item 2.1). This proved to be a very arduous task, taking the vast majority of the time and personnel allocation for Year Two. The addition of this capability and related verification is documented in Chapter 7. A discussion of available tropospheric chemistry models is located in Chapter 8; and, a technology demonstrator for the full multispecies capability is detailed in Chapter 9. Item 2.3 has been partially addressed, in that the computation of sensitivity derivatives have been incorporated in the Tenasi code [7]. However, it has not been utilized in this project in order to compute probability distribution functions for pollutant deposition. In order to completely address the integration of weather and sensor data into the code (item 1.3) and integrate with existing sensor networks (item 3.1), a customizable interface was established. Weather data is most commonly available via a real database, and as such, support for accessing these databases is present in the solver source code. For integration functionality, a method of dynamic code customization was developed in Year 3, which is documented in Chapter 11.

  1. AN URBAN SURFACE EXCHANGE PARAMETERISATION FOR MESOSCALE MODELS

    E-Print Network [OSTI]

    AN URBAN SURFACE EXCHANGE PARAMETERISATION FOR MESOSCALE MODELS ALBERTO MARTILLI1, , ALAIN CLAPPIER. A scheme to represent the impact of urban buildings on airflow in mesoscale atmospheric models is presented the presence of the buildings. The parameterisation is introduced into a mesoscale model and tested

  2. Hyperparameter estimation for uncertainty quantification in mesoscale carbon dioxide inversions

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Hyperparameter estimation for uncertainty quantification in mesoscale carbon dioxide inversions-validation (GCV) and x2 test are compared for the first time under a realistic setting in a mesoscale CO2 estimation, uncertainty quantification, mesoscale carbon dioxide inversions 1. Introduction The atmosphere

  3. Air Shower Measurements in Karlsruhe

    E-Print Network [OSTI]

    Haungs, Andreas

    2007-01-01T23:59:59.000Z

    The Karlsruhe multi-detector set-ups KASCADE, KASCADE-Grande, and LOPES aim on measurements of cosmic rays in the energy range of the so called knee between 10^14 eV and 10^18 eV. The multidimensional analysis of the air shower data measured by KASCADE indicates a distinct knee in the energy spectra of light primary cosmic rays and an increasing dominance of heavy ones towards higher energies. This provides, together with the results of large scale anisotropy studies, implications for discriminating astrophysical models of the origin of the knee. To improve the reconstruction quality and statistics at higher energies, where the knee of the heavy primaries is expected at around 100 PeV, KASCADE has been extended by a factor 10 in area to the new experiment KASCADE-Grande. LOPES is located on site of the KASCADE-Grande experiment. It measures radio pulses from extensive air showers with the goal to establish this renewed detection technique for future large scale experiments.

  4. Air Shower Measurements in Karlsruhe

    E-Print Network [OSTI]

    Andreas Haungs

    2007-05-02T23:59:59.000Z

    The Karlsruhe multi-detector set-ups KASCADE, KASCADE-Grande, and LOPES aim on measurements of cosmic rays in the energy range of the so called knee between 10^14 eV and 10^18 eV. The multidimensional analysis of the air shower data measured by KASCADE indicates a distinct knee in the energy spectra of light primary cosmic rays and an increasing dominance of heavy ones towards higher energies. This provides, together with the results of large scale anisotropy studies, implications for discriminating astrophysical models of the origin of the knee. To improve the reconstruction quality and statistics at higher energies, where the knee of the heavy primaries is expected at around 100 PeV, KASCADE has been extended by a factor 10 in area to the new experiment KASCADE-Grande. LOPES is located on site of the KASCADE-Grande experiment. It measures radio pulses from extensive air showers with the goal to establish this renewed detection technique for future large scale experiments.

  5. Materials at the Mesoscale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials at the Mesoscale 1663 Los Alamos science and technology magazine Latest Issue:January 2015 All Issues submit Materials at the Mesoscale Los Alamos's bold proposal to...

  6. Modelling and numerical approximation of a 2.5D set of equations for mesoscale atmospheric processes

    E-Print Network [OSTI]

    Kalise, Dante

    2011-01-01T23:59:59.000Z

    The set of 3D inviscid primitive equations for the atmosphere is dimensionally reduced by a Discontinuous Galerkin discretization in one horizontal direction. The resulting model is a 2D system of balance laws where with a source term depending on the layering procedure and the choice of coupling fluxes, which is established in terms of upwind considerations. The "2.5D" system is discretized via a WENO-TVD scheme based in a flux limiter centered approach. We study four tests cases related to atmospheric phenomena to analyze the physical validity of the model.

  7. A SCALABLE FULLY IMPLICIT COMPRESSIBLE EULER SOLVER FOR MESOSCALE NONHYDROSTATIC SIMULATION OF

    E-Print Network [OSTI]

    Cai, Xiao-Chuan

    A SCALABLE FULLY IMPLICIT COMPRESSIBLE EULER SOLVER FOR MESOSCALE NONHYDROSTATIC SIMULATION for the mesoscale nonhydrostatic simulation of atmospheric flows governed by the compressible Euler equations is of interest as in mesoscale and cloud-resolving atmospheric simulations, fast and efficient solution

  8. atmospheric layers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Boundary Layer Wind Response to Mesoscale Sea Surface Temperature The wind speed response to mesoscale SST variability is investigated over the Agulhas Return Current...

  9. atmosphere boundary layer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Boundary Layer Wind Response to Mesoscale Sea Surface Temperature The wind speed response to mesoscale SST variability is investigated over the Agulhas Return Current...

  10. atmospheric superficial layer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Boundary Layer Wind Response to Mesoscale Sea Surface Temperature The wind speed response to mesoscale SST variability is investigated over the Agulhas Return Current...

  11. atmospheric boundary layer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Boundary Layer Wind Response to Mesoscale Sea Surface Temperature The wind speed response to mesoscale SST variability is investigated over the Agulhas Return Current...

  12. atmospheric boundary layers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Boundary Layer Wind Response to Mesoscale Sea Surface Temperature The wind speed response to mesoscale SST variability is investigated over the Agulhas Return Current...

  13. Closing the Mesoscale Gap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Closing the Mesoscale Gap Los Alamos proposes to fill in the gaps in our fundamental understanding of materials with MaRIE, a facility designed to gain access to the mesoscale....

  14. New Efficient Sparse SpaceTime Algorithms for Superparameterization on Mesoscales

    E-Print Network [OSTI]

    Xing, Yulong

    New Efficient Sparse Space­Time Algorithms for Superparameterization on Mesoscales YULONG XING-scale and mesoscale processes provided by a cloud-resolving model (CRM) embedded in each column of a large-scale model for limited-area mesoscale ensemble forecasting. 1. Introduction Atmospheric processes of weather and climate

  15. Modeling of passive microwave responses in convective situations using output from mesoscale models

    E-Print Network [OSTI]

    Pardo-Carrión, Juan R.

    Modeling of passive microwave responses in convective situations using output from mesoscale models using output from nonhydrostatic mesoscale atmospheric model, Meso-NH, simulations. The radiative for a systematic evaluation of the mesoscale cloud models. An overall good agreement is obtained for both

  16. MESOSCALE ANALYSIS OF A CAROLINA COASTAL FRONT SETHU RAMAN, NEERAJA C. REDDY and DEVDUTTA S. NIYOGI

    E-Print Network [OSTI]

    Niyogi, Dev

    MESOSCALE ANALYSIS OF A CAROLINA COASTAL FRONT SETHU RAMAN, NEERAJA C. REDDY and DEVDUTTA S. NIYOGI the shore. Key words: GALE, Coastal front, Atmospheric boundary layer, Gulf Stream, Mesoscale analysis turbulent heat fluxes. These strong gradients in heat fluxes enhance mesoscale circulation

  17. CORIOLIS EFFECTS IN MESOSCALE SHALLOW LAYER FLOWS J. C. R. Hunt

    E-Print Network [OSTI]

    Hunt, Julian

    CORIOLIS EFFECTS IN MESOSCALE SHALLOW LAYER FLOWS J. C. R. Hunt ¢¡ £ ,A. Orr , D. Cresswell layer or inversion layer, is developed for idealised and steady, but typical, mesoscale atmospheric estimates for a wide range of perturbed mesoscale flows, especially where the surface conditions change

  18. Elements of comparison between Martian and terrestrial mesoscale meteorological phenomena: Katabatic winds and boundary layer convection

    E-Print Network [OSTI]

    Spiga, Aymeric

    Elements of comparison between Martian and terrestrial mesoscale meteorological phenomena Keywords: Mesoscale meteorology Katabatic winds Boundary layer convection Comparative planetology a b s t r a c t Terrestrial and Martian atmospheres are both characterised by a large variety of mesoscale

  19. Search for: mesoscale | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    mesoscale Find + Advanced Search Advanced Search All Fields: mesoscale Title: Full Text: Bibliographic Data: Creator Author: Name Name ORCID Search Authors Type: All Accepted...

  20. ECC'g931. AUGUST -3. SEPTEMBER 1999 KARLSRUHE, GERMANY

    E-Print Network [OSTI]

    Confhence ECC'g931. AUGUST - 3. SEPTEMBER 1999 KARLSRUHE, GERMANY under the auspices 1 IFAK, Steinfelderstr. (IGZ) D-39179 Barleben - Germany 2 LAG-CNRS-ENSIEG, BP 46, F-38402, Saint

  1. Urban and land surface effects on the 30 July 2003 mesoscale convective system event observed in the southern Great Plains

    E-Print Network [OSTI]

    Niyogi, Dev

    Urban and land surface effects on the 30 July 2003 mesoscale convective system event observed/Atmosphere Mesoscale Prediction System (COAMPS 1 ) to investigate the impact of urban and land vegetation processes on the prediction of the mesoscale convective system (MCS) observed on 30 July 2003 in the vicinity of Oklahoma City

  2. Mesoscale Modeling Spring Semester 2014

    E-Print Network [OSTI]

    ATS730 Mesoscale Modeling Spring Semester 2014 Meeting Times: T/TH: 9-10:15am Room: ATS 101 is to present the development of the basic equations used in mesoscale models, as well as the various methods than on actual simulations of mesoscale phenomena or the evaluation of specific mesoscale models

  3. Silicon Micromachined Dimensional Calibration Artifact for Mesoscale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Micromachined Dimensional Calibration Artifact for Mesoscale Measurement Machines 1 Silicon Micromachined Dimensional Calibration Artifact for Mesoscale Measurement Machines 2...

  4. HMDB: A Large Video Database for Human Motion Recognition Karlsruhe Instit. of Tech.

    E-Print Network [OSTI]

    Serre, Thomas

    HMDB: A Large Video Database for Human Motion Recognition H. Kuehne Karlsruhe Instit. of Tech. Karlsruhe, Germany kuehne@kit.edu H. Jhuang E. Garrote T. Poggio Massachusetts Institute of Technology

  5. ICT Conference on Energetic Materials June 24-27, 2008 Karlsruhe, Germany

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    39th ICT Conference on Energetic Materials June 24-27, 2008 Karlsruhe, Germany 1 Detonation of Meta on Energetic Materials June 24-27, 2008 Karlsruhe, Germany 2 The smallest meta-stable carbon cluster found-27, 2008 Karlsruhe, Germany 3 accumulated energy is released upon fission of the boat ensemble

  6. Monte Carlo Calculations of the Intrinsic Detector Backgrounds for the Karlsruhe Tritium Neutrino Experiment

    E-Print Network [OSTI]

    Washington at Seattle, University of - Department of Physics, Electroweak Interaction Research Group

    Monte Carlo Calculations of the Intrinsic Detector Backgrounds for the Karlsruhe Tritium Neutrino of the Intrinsic Detector Backgrounds for the Karlsruhe Tritium Neutrino Experiment Michelle L. Leber Chair of the Supervisory Committee: Professor John F. Wilkerson Physics The Karlsruhe Tritium Neutrino Experiment (KATRIN

  7. Mesoscale Dynamics Spring Semester 2012

    E-Print Network [OSTI]

    Birner, Thomas

    ATS 735 Mesoscale Dynamics (3 cr) Spring Semester 2012 Instructor: Richard H. Johnson, Room ATS 305: There are no required texts. The recent book Mesoscale Meteorology in Midlatitudes by Markowski and Richardson covers with mesoscale-related research. A set of notes will be made available for the course, although we will not cover

  8. MESOSCALE DESCRIPTION OF DEFECTED MATERIALS

    E-Print Network [OSTI]

    Vinals, Jorge

    MESOSCALE DESCRIPTION OF DEFECTED MATERIALS Jorge Vi~nals School of Physics and Astronomy. Laughlin) Small but finite wavenumber and finite frequency ("mesoscale") response functions and transport;MESOSCALE DESCRIPTION B B B B B B B A B A B A A B B A A A A BB A B Microscopic Mesoscopic Macroscopic vn

  9. Mesoscale Dynamics Spring Semester 2014

    E-Print Network [OSTI]

    ATS 735 Mesoscale Dynamics (3 cr) Spring Semester 2014 Instructor: Richard H. Johnson, Room ATS 305: There are no required texts. The recent book Mesoscale Meteorology in Midlatitudes by Markowski and Richardson covers with mesoscale-related research. A set of notes will be made available for the course, although we will not cover

  10. 7, 1043910465, 2007 Mesoscale inversion

    E-Print Network [OSTI]

    Boyer, Edmond

    ACPD 7, 10439­10465, 2007 Mesoscale inversion T. Lauvaux et al. Title Page Abstract Introduction Discussions Mesoscale inversion: first results from the CERES campaign with synthetic data T. Lauvaux 1,2 , M.lauvaux@lsce.ipsl.fr) 10439 #12;ACPD 7, 10439­10465, 2007 Mesoscale inversion T. Lauvaux et al. Title Page Abstract

  11. Initial Development and Genesis of Hurricane Dolly (2008) Key Laboratory of Mesoscale Severe Weather (MOE), Department of Atmospheric Sciences, Nanjing University, Nanjing, China

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    Severe Weather (MOE), Department of Atmospheric Sciences, Nanjing University, Nanjing, China FUQING ZHANG-resolving simulation with the Weather Research and Forecasting Model, this study examines key processes that led- tudinal stretching deformation) alters the characteristics of equatorial waves to form regions of energy

  12. Generated using version 3.2 of the official AMS LATEX template Mesoscale Predictability and Initial-Condition Error Growth in1

    E-Print Network [OSTI]

    Generated using version 3.2 of the official AMS LATEX template Mesoscale Predictability and Initial;ABSTRACT5 Early investigations suggested that mesoscale atmospheric motions would have very limited6 cascade. In contrast, subsequent studies proposed that many mesoscale cir-8 culations inherit

  13. Q. J. R. Meteorol. Soc. (2006), 132, pp. 709736 doi: 10.1256/qj.04.141 Momentum transport processes in the stratiform regions of mesoscale

    E-Print Network [OSTI]

    Houze Jr., Robert A.

    2006-01-01T23:59:59.000Z

    processes in the stratiform regions of mesoscale convective systems over the western Pacific warm pool By DAVID B. MECHEM1, SHUYI S. CHEN2 and ROBERT A. HOUZE, Jr.3 1Cooperative Institute for Mesoscale of mesoscale convective systems (MCSs) during the Tropical Ocean­Global Atmosphere Coupled Ocean

  14. Mesoscale ocean dynamics modeling

    SciTech Connect (OSTI)

    mHolm, D.; Alber, M.; Bayly, B.; Camassa, R.; Choi, W.; Cockburn, B.; Jones, D.; Lifschitz, A.; Margolin, L.; Marsden, L.; Nadiga, B.; Poje, A.; Smolarkiewicz, P. [Los Alamos National Lab., NM (United States); Levermore, D. [Arizona Univ., Tucson, AZ (United States)

    1996-05-01T23:59:59.000Z

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The ocean is a very complex nonlinear system that exhibits turbulence on essentially all scales, multiple equilibria, and significant intrinsic variability. Modeling the ocean`s dynamics at mesoscales is of fundamental importance for long-time-scale climate predictions. A major goal of this project has been to coordinate, strengthen, and focus the efforts of applied mathematicians, computer scientists, computational physicists and engineers (at LANL and a consortium of Universities) in a joint effort addressing the issues in mesoscale ocean dynamics. The project combines expertise in the core competencies of high performance computing and theory of complex systems in a new way that has great potential for improving ocean models now running on the Connection Machines CM-200 and CM-5 and on the Cray T3D.

  15. Mesoscale hybrid calibration artifact

    SciTech Connect (OSTI)

    Tran, Hy D. (Albuquerque, NM); Claudet, Andre A. (Albuquerque, NM); Oliver, Andrew D. (Waltham, MA)

    2010-09-07T23:59:59.000Z

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  16. atmospheric models final: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperature received 25 October 2013, in final form 24 July 2014) ABSTRACT The wind speed response to mesoscale SST (COAMPS) atmospheric models. The SST- induced wind response...

  17. Technologiefabrik Karlsruhe GmbH | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:HoldingsTechint Spa Jump to:Technologiefabrik Karlsruhe GmbH

  18. METR 4433, Mesoscale Meteorology Spring 2011

    E-Print Network [OSTI]

    Droegemeier, Kelvin K.

    METR 4433, Mesoscale Meteorology Spring 2011 Instructor Dr. Kelvin K. Droegemeier Office: Three, 1:00 ­ 2:30 pm Required Text Markowski, P. and Y. Richardson: Mesoscale Meteorology in Midlatitudes and physical analysis techniques to mesoscale phenomena. Topics include definition of the term "mesoscale

  19. ATS 641: Mesoscale Meteorology Spring 2014

    E-Print Network [OSTI]

    ATS 641: Mesoscale Meteorology Spring 2014 TR, 1:00-2:50 PM, ATS Room 101 Course Description and Prerequisites This course will cover the theory and application of mesoscale meteorology, and how mesoscale, students will be able to: · Describe the basic theories describing mesoscale weather phenomena · Understand

  20. LMD Martian Mesoscale Model User Manual

    E-Print Network [OSTI]

    Spiga, Aymeric

    LMD Martian Mesoscale Model [LMD-MMM] User Manual A. Spiga aymeric.spiga@upmc.fr Laboratoire de;#12;Contents 1 What is the LMD Martian Mesoscale Model? 3 1.1 Dynamical core on mesoscale levels . . . . . . . . . . . . . . . 35 iii #12;iv User Manual for the LMD Martian Mesoscale Model

  1. METR 4433, Mesoscale Meteorology Spring 2013

    E-Print Network [OSTI]

    Droegemeier, Kelvin K.

    METR 4433, Mesoscale Meteorology Spring 2013 Instructor Dr. Kelvin K. Droegemeier (kkd Text Markowski, P. and Y. Richardson: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 430pp to mesoscale phenomena. Topics include definition of the term "mesoscale," radar principles and interpretation

  2. Sleep Dynamics and Seizure Control in a Mesoscale Cortical Model

    E-Print Network [OSTI]

    Lopour, Beth Ann

    2009-01-01T23:59:59.000Z

    Contributions . . . . . . . . . 2 Mesoscale Cortical Modelstates in h e from the mesoscale cortical model, here- afterand Seizure Control in a Mesoscale Cortical Model by Beth

  3. Mesoscale coupled ocean-atmosphere interaction

    E-Print Network [OSTI]

    Seo, Hyodae

    2007-01-01T23:59:59.000Z

    surface currents on wind stress, heat flux, and wind powerflux components (wind stress, heat flux and fresh-waterWest Coast Surface Heat Fluxes, Wind Stress, and Wind Stress

  4. Mesoscale Coupled Ocean-Atmosphere Interaction

    E-Print Network [OSTI]

    Seo, Hyodae

    2007-01-01T23:59:59.000Z

    surface currents on wind stress, heat flux, and wind powerflux components (wind stress, heat flux and fresh-waterWest Coast Surface Heat Fluxes, Wind Stress, and Wind Stress

  5. Soft X-ray techniques to study mesoscale magnetism

    E-Print Network [OSTI]

    Kortright, Jeffrey B.

    2003-01-01T23:59:59.000Z

    X-Ray Techniques to Study Mesoscale Magnetism Jeffrey B.X-Ray Techniques to Study Mesoscale Magnetism Jeffrey B.

  6. Mesoscale Metallic Pyramids with Nanoscale Tips

    E-Print Network [OSTI]

    Odom, Teri W.

    Mesoscale Metallic Pyramids with Nanoscale Tips Joel Henzie, Eun-Soo Kwak, and Teri W. Odom generate free-standing mesoscale metallic pyramids composed of one or more materials and having nanoscale tips (radii of curvature of less than 2 nm). Mesoscale holes (100-300 nm) in a chromium film are used

  7. MESOSCALE AVERAGING OF NUCLEATION AND GROWTH MODELS

    E-Print Network [OSTI]

    Burger, Martin

    MESOSCALE AVERAGING OF NUCLEATION AND GROWTH MODELS MARTIN BURGER , VINCENZO CAPASSO , AND LIVIO-Kolmogorov relations for the degree of crystallinity. By relating the computation of expected values to mesoscale averaging, we obtain a suitable description of the process at the mesoscale. We show how the variance

  8. TENURE-TRACK FACULTY POSITION Mesoscale Meteorology

    E-Print Network [OSTI]

    Birner, Thomas

    TENURE-TRACK FACULTY POSITION ­ Mesoscale Meteorology Colorado State University The Department or associate level faculty position specializing in mesoscale meteorology. Exceptionally qualified candidates in linking models and/or theory with observations for the study of mesoscale processes. The successful

  9. Mesoscale Model Development and the Meteorological Community

    E-Print Network [OSTI]

    Mass, Clifford F.

    Mesoscale Model Development and the Meteorological Community Cliff Mass University of Washington: Although the U.S. remains a leader in mesoscale model development and application, the community is not fulfilling its potential. The resources of the U.S. mesoscale forecasting community are considerable

  10. Engineering mesoscale structures with distinct dynamical implications

    E-Print Network [OSTI]

    Engineering mesoscale structures with distinct dynamical implications Anne-Ly Do1 , Johannes H that there are certain mesoscale subgraphs that have precise and distinct consequences for the system-level dynamics. In particular, if mesoscale symmetries are present then eigenvectors of the Jacobian localise on the symmetric

  11. Tests of an Ensemble Kalman Filter for Mesoscale and Regional-Scale Data Assimilation. Part III: Comparison with 3DVAR in a Real-Data Case Study

    E-Print Network [OSTI]

    Tests of an Ensemble Kalman Filter for Mesoscale and Regional-Scale Data Assimilation. Part III 8 May 2007) ABSTRACT The feasibility of using an ensemble Kalman filter (EnKF) for mesoscale application of an ensemble Kalman filter (EnKF; Evensen 1994) in the atmospheric sci- ences field (Houtekamer

  12. Acoustic Characterization of Mesoscale Objects

    SciTech Connect (OSTI)

    Chinn, D; Huber, R; Chambers, D; Cole, G; Balogun, O; Spicer, J; Murray, T

    2007-03-13T23:59:59.000Z

    This report describes the science and engineering performed to provide state-of-the-art acoustic capabilities for nondestructively characterizing mesoscale (millimeter-sized) objects--allowing micrometer resolution over the objects entire volume. Materials and structures used in mesoscale objects necessitate the use of (1) GHz acoustic frequencies and (2) non-contacting laser generation and detection of acoustic waves. This effort demonstrated that acoustic methods at gigahertz frequencies have the necessary penetration depth and spatial resolution to effectively detect density discontinuities, gaps, and delaminations. A prototype laser-based ultrasonic system was designed and built. The system uses a micro-chip laser for excitation of broadband ultrasonic waves with frequency components reaching 1.0 GHz, and a path-stabilized Michelson interferometer for detection. The proof-of-concept for mesoscale characterization is demonstrated by imaging a micro-fabricated etched pattern in a 70 {micro}m thick silicon wafer.

  13. Penetrative turbulence associated with mesoscale surface heat flux variations

    E-Print Network [OSTI]

    Alam, Jahrul M

    2015-01-01T23:59:59.000Z

    This article investigates penetrative turbulence in the atmospheric boundary layer. Using a large eddy simulation approach, we study characteristics of the mixed layer with respect to surface heat flux variations in the range from 231.48 W/m$^2$ to 925.92 W/m$^2$, and observe that the surface heterogeneity on a spatial scale of $20$ km leads to downscale turbulent kinetic energy cascade. Coherent fluctuations of mesoscale horizontal wind is observed at 100m above the ground. Such a surface induced temporal oscillations in the horizontal wind suggest a rapid jump in mesocale wind forecasts, which is difficult to parameterize using traditional one-dimensional ensemble-mean models. Although the present work is idealized at a typical scale (20km) of surface heterogeneity, the results help develop effective subgrid scale parameterization schemes for classical weather forecasting mesoscale models.

  14. Coupling a Mesoscale Numerical Weather Prediction Model with Large-Eddy Simulation for Realistic Wind Plant Aerodynamics Simulations (Poster)

    SciTech Connect (OSTI)

    Draxl, C.; Churchfield, M.; Mirocha, J.; Lee, S.; Lundquist, J.; Michalakes, J.; Moriarty, P.; Purkayastha, A.; Sprague, M.; Vanderwende, B.

    2014-06-01T23:59:59.000Z

    Wind plant aerodynamics are influenced by a combination of microscale and mesoscale phenomena. Incorporating mesoscale atmospheric forcing (e.g., diurnal cycles and frontal passages) into wind plant simulations can lead to a more accurate representation of microscale flows, aerodynamics, and wind turbine/plant performance. Our goal is to couple a numerical weather prediction model that can represent mesoscale flow [specifically the Weather Research and Forecasting model] with a microscale LES model (OpenFOAM) that can predict microscale turbulence and wake losses.

  15. Dynamic Filtering and Mining Triggers in Mesoscale Meteorology Forecasting

    E-Print Network [OSTI]

    Plale, Beth

    Dynamic Filtering and Mining Triggers in Mesoscale Meteorology Forecasting Nithya N. Vijayakumar {rramachandran, xli}@itsc.uah.edu Abstract-- Mesoscale meteorology forecasting as a data driven application Triggers, Data Mining, Stream Processing, Meteorology Forecasting I. INTRODUCTION Mesoscale meteorologists

  16. Calibrated Probabilistic Mesoscale Weather Field Forecasting: The Geostatistical Output Perturbation

    E-Print Network [OSTI]

    Washington at Seattle, University of

    Calibrated Probabilistic Mesoscale Weather Field Forecasting: The Geostatistical Output. This is typically not feasible for mesoscale weather prediction carried out locally by organizations without by simulating realizations of the geostatistical model. The method is applied to 48-hour mesoscale forecasts

  17. MESOSCALE THEORY OF GRAINS AND CELLS: POLYCRYSTALS & PLASTICITY

    E-Print Network [OSTI]

    Sethna, James P.

    MESOSCALE THEORY OF GRAINS AND CELLS: POLYCRYSTALS & PLASTICITY A Dissertation Presented RIGHTS RESERVED #12;MESOSCALE THEORY OF GRAINS AND CELLS: POLYCRYSTALS & PLASTICITY Surachate Limkumnerd, continuum explanation for the evolution of dislocations into sharp walls. We present here a mesoscale theory

  18. Mesoscale Eddies in the Gulf of Alaska: Observations and Implications

    E-Print Network [OSTI]

    Rovegno, Peter

    2012-01-01T23:59:59.000Z

    Chao, Y. 2012. Modeling the mesoscale eddy field in the GulfShriver, J. F. 2001. Mesoscale variability in the boundaryof the Gulf of Alaska mesoscale circulation. Progress in

  19. Mesoscale convective complex vs. non-mesoscale convective complex thunderstorms: a comparison of selected meteorological variables

    E-Print Network [OSTI]

    Hoofard, Michael Eugene

    1986-01-01T23:59:59.000Z

    MESOSCALE CONVECTIVE CCMPLLX VS. NON-MESOSCALE CONVECTIVE COMPLEX THUNDERSTORMS: A COMPARISON OF SELECTED METEOROLOGICAL VARIABLES A Thesis MICHAkL EUGENE JJOOFARD Submitted to the Graduate College of Texas AJkM University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1986 Major Subj ect: Meteorology MESOSCALE CONVECTIVE COMPLEX VS. NON-MESOSCALE CONVECTIVE COMPLEX THUNDERSTORMS: A COMPARISON OF SELECTED METEOROLOGICAL VARIABLES A Thesis...

  20. Quality of the Target Area for Metrics with Different Nonlinearities in a Mesoscale Convective System

    E-Print Network [OSTI]

    Meng, Zhiyong

    , on the forecast error of strongly nonlinear rainfall and weakly nonlinear total energy around the initial vortex of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China (Manuscript received 31 area for forecast metrics with different nonlinearities in a mesoscale convective vortex

  1. Ecospace: Prediction of Mesoscale Spatial Patterns in Trophic

    E-Print Network [OSTI]

    Pauly, Daniel

    Ecospace: Prediction of Mesoscale Spatial Patterns in Trophic Relationships of Exploited Ecosystems Springer-Verlag 539 Walters, C., D. Pauly and V. Christensen. 1999. Ecospace: Prediction of mesoscale

  2. New Mesoscale Multimodal Imaging of Cellular Communication Between...

    Office of Science (SC) Website

    New Mesoscale Multimodal Imaging Bioimaging Technology Bioimaging Technology Home About Research Small Worlds New Mesoscale Multimodal Imaging Adaptive Biosystems Imaging Systems...

  3. Mesoscale Characterization of Coupled Hydromechanical Behavior of a Fractured Porous Slope in Response to Free Water-Surface Movement

    E-Print Network [OSTI]

    Guglielmi, Y.

    2008-01-01T23:59:59.000Z

    Mesoscale Characterization of Coupled Hydromechanicalinstrumented for mesoscale hydraulic and mechanicalwords: Fracture; Rock slope; Mesoscale; In situ poroelastic

  4. Mesoscale flows in large aspect ratio simulations of turbulent compressible convection

    E-Print Network [OSTI]

    F. Rincon; F. Lignieres; M. Rieutord

    2006-11-28T23:59:59.000Z

    We present the results of a very large aspect ratio (42.6) numerical simulation of fully compressible turbulent convection in a polytropic atmosphere, and focus on the properties of large-scale flows. Mesoscale patterns dominate the turbulent energy spectrum. We show that these structures, which had already been observed in Boussinesq simulations by Cattaneo et al. (2001), have a genuine convective origin and do not result directly from collective interactions of the smaller scales of the flow, even though their growth is strongly affected by nonlinear transfers. If this result is relevant to the solar photosphere, it suggests that the dominant convective mode below the Sun's surface may be at mesoscales.

  5. MPMM: A Massively Parallel Mesoscale Model

    SciTech Connect (OSTI)

    Foster, I.; Michalakes, J.

    1992-12-31T23:59:59.000Z

    Static domain decomposition is a technique that provides a quick path to porting atmospheric models on distributed memory parallel computers. However, parallel inefficiencies in the form of load imbalances and ill-tuned communication are difficult to correct without complicated and explicit recoding. Reconfiguring the code to run on larger or smaller numbers of processors may require recompiling. Modularity and machine independence may also suffer. If full advantage is to be taken of Massively Parallel Processing (MPP) technology, tools and techniques that allow for dynamic performance tuning and reconfiguration are required. Program Composition Notation (PCN) is a language and run-time system for expressing parallel programs developed at Argonne and at the California Institute of Technology. It provides an intermediate layer between the application program and the physical processors of a computer. It allows the model to be statically decomposed over a virtual machine, but this virtual machine can be mapped and remapped dynamically over the physical computer. Programs are portable to as many machines as PCN itself, modularity is easily preserved, and communication tuning for a particular computer is encapsulated within the PCN run-time system. In this paper we report on a project at Argonne National Laboratory to parallelize the Penn State/NCAR Mesoscale Model version 5 using a fine grain decomposition dynamically mapped and managed under PCN.

  6. Molecule-Mimetic Chemistry and Mesoscale Self-Assembly

    E-Print Network [OSTI]

    Prentiss, Mara

    Molecule-Mimetic Chemistry and Mesoscale Self-Assembly NED B. BOWDEN, MARCUS WECK, INSUNG S. CHOI, and possible uses for these processes and assemblies.6-22 Mesoscale Self-Assembly (MESA) Mesoscale Self technically, and especially in physics, a mesoscale object is one whose dimensions are comparable to the scale

  7. Multiphase Modeling of Flow, Transport, and Biodegradation in a Mesoscale Landfill Bioreactor

    E-Print Network [OSTI]

    Oldenburg, Curtis M.; Borglin, Sharon E.; Hazen, Terry C.

    2002-01-01T23:59:59.000Z

    boundary conditions for the mesoscale landfill bioreactor. (and Biodegradation in a Mesoscale Landfill Bioreactor Curtisapplied it to our own mesoscale laboratory aerobic landfill

  8. Mapping mesoscale heterogeneity in the plastic deformation of a copper single crystal

    E-Print Network [OSTI]

    Magid, K. R.

    2009-01-01T23:59:59.000Z

    619. page 18 Mapping mesoscale heterogeneity in a deformedthese planes. page 36 Mapping mesoscale heterogeneity in aJanuary 2009, 77–107 Mapping mesoscale heterogeneity in the

  9. Effect of ocean mesoscale variability on the mean state of tropical Atlantic climate

    E-Print Network [OSTI]

    Seo, H; Jochum, M; Murtugudde, R; Miller, A J

    2006-01-01T23:59:59.000Z

    Effect of Ocean Mesoscale Variability on the Mean State ofthe effect of oceanic mesoscale features on the mean climatemodel, resolving oceanic mesoscale variability leads to a

  10. Analytical mesoscale modeling of aeolian sand transport

    E-Print Network [OSTI]

    Marc Lämmel; Anne Meiwald; Klaus Kroy

    2014-05-03T23:59:59.000Z

    We analyze the mesoscale structure of aeolian sand transport, based on a recently developed two-species continuum model. The calculated sand flux and important average characteristics of the grain trajectories are found to be in remarkable agreement with field and wind-tunnel data. We conclude that the essential mesoscale physics is insensitive to unresolved details on smaller scales and well captured by the coarse-grained analytical model, thus providing a sound basis for precise and numerically efficient mesoscale modeling of aeolian structure formation.

  11. MESOSCALE SIMULATIONS OF POWDER COMPACTION

    SciTech Connect (OSTI)

    Lomov, Ilya; Fujino, Don; Antoun, Tarabay; Liu, Benjamin [Lawrence Livermore National Laboratory, P. O. Box 808, Livermore CA 94551 (United States)

    2009-12-28T23:59:59.000Z

    Mesoscale 3D simulations of shock compaction of metal and ceramic powders have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating a well-characterized shock compaction experiment of a porous ductile metal. Simulation results using the Steinberg material model and handbook values for solid 2024 aluminum showed good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not as well studied as metals, so a simple material model for solid ceramic (tungsten carbide) has been calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powders have been performed and showed good agreement with experimental data. The numerical shock wave profile has same character and thickness as that measured experimentally using VISAR. The numerical results show reshock states above the single-shock Hugoniot line as observed in experiments. We found that for good quantitative agreement with experiments 3D simulations are essential.

  12. Postulated Mesoscale Quantum of Internal Friction Hysteresis

    E-Print Network [OSTI]

    Randall D. Peters

    2004-05-27T23:59:59.000Z

    Evidence is provided, from yet another experiment, for the existence of a mesoscale quantum of internal friction hysteresis, having the value of the electron rest energy divided by the fine structure constant.

  13. THE APPLICATION OF AN EVOLUTIONARY ALGORITHM TO THE OPTIMIZATION OF A MESOSCALE METEOROLOGICAL MODEL

    SciTech Connect (OSTI)

    Werth, D.; O'Steen, L.

    2008-02-11T23:59:59.000Z

    We show that a simple evolutionary algorithm can optimize a set of mesoscale atmospheric model parameters with respect to agreement between the mesoscale simulation and a limited set of synthetic observations. This is illustrated using the Regional Atmospheric Modeling System (RAMS). A set of 23 RAMS parameters is optimized by minimizing a cost function based on the root mean square (rms) error between the RAMS simulation and synthetic data (observations derived from a separate RAMS simulation). We find that the optimization can be efficient with relatively modest computer resources, thus operational implementation is possible. The optimization efficiency, however, is found to depend strongly on the procedure used to perturb the 'child' parameters relative to their 'parents' within the evolutionary algorithm. In addition, the meteorological variables included in the rms error and their weighting are found to be an important factor with respect to finding the global optimum.

  14. JET Papers Presented to 18th Symposium on Fusion Technology (SOFT-18) (Karlsruhe,Germany, 22nd-26th August 1994)

    E-Print Network [OSTI]

    JET Papers Presented to 18th Symposium on Fusion Technology (SOFT-18) (Karlsruhe,Germany, 22nd-26th August 1994)

  15. Glider Path-Planning for Optimal Sampling of Mesoscale Eddies

    E-Print Network [OSTI]

    Smith, Ryan N.

    Glider Path-Planning for Optimal Sampling of Mesoscale Eddies Daniel Hernandez1 , Ryan Smith2 these, mesoscale eddies are of particular interest due to the relevance they have in many oceano

  16. Mesoscale Simulations of Power Compaction

    SciTech Connect (OSTI)

    Lomov, I; Fujino, D; Antoun, T; Liu, B

    2009-08-06T23:59:59.000Z

    Mesoscale 3D simulations of metal and ceramic powder compaction in shock waves have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating shock compaction of porous well-characterized ductile metal using Steinberg material model. Results of the simulations with handbook values for parameters of solid 2024 aluminum have good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not so well studied as metals, so material model for ceramic (tungsten carbide) has been fitted to shock compression experiments of non-porous samples and further calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powder have been performed and showed good agreement with experimental data. Numerical shock wave profile has same character and thickness as measured with VISAR. Numerical results show reshock states above the single-shock Hugoniot line also observed in experiments. They found that to receive good quantitative agreement with experiment it is essential to perform 3D simulations.

  17. Accessing biology's toolbox for the mesoscale biofabrication of soft matter

    E-Print Network [OSTI]

    Raghavan, Srinivasa

    Accessing biology's toolbox for the mesoscale biofabrication of soft matter Gregory F. Payne,bf James N. Culverag and William E. Bentley*ab Biology is a master of mesoscale science, possessing will provide a biocompatible approach to mesoscale science and yield products that are safe, sustainable

  18. MPO 663 -Convective and Mesoscale Meteorology Brian Mapes, Spring 2008

    E-Print Network [OSTI]

    Miami, University of

    MPO 663 - Convective and Mesoscale Meteorology Brian Mapes, Spring 2008 I intend for students and mesoscale phenomena. 2. Working understanding of several of these tools, cultivated via homework, including. A sense of how convective and mesoscale phenomena fit into larger scales, gained via short current

  19. MESOSCALE EDDIES Peter B. Rhines, University of Washington,

    E-Print Network [OSTI]

    MESOSCALE EDDIES Peter B. Rhines, University of Washington, School of Oceanography, Box 357940, Seattle, WA 98195 7940, USA Copyright ^ 2001 Academic Press doi:10.1006/rwos.2001.0143 Mesoscale eddies that strongly feel viscosity, to `mesoscale eddies' that strongly feel the Earth's rota- tion, to great `gyres

  20. Simulation and characterization of the Adriatic Sea mesoscale variability

    E-Print Network [OSTI]

    Cushman-Roisin, Benoit

    Simulation and characterization of the Adriatic Sea mesoscale variability Benoit Cushman-Roisin,1 resolve the mesoscale variability because the grid size falls below the first baroclinic deformation in two larger-scale models. The present simulations demonstrate that the DieCAST model allows mesoscale

  1. GLOBAL PATTERN OF MESOSCALE VARIABILITY IN SEA SURFACE HEIGHT

    E-Print Network [OSTI]

    Kaplan, Alexey

    GLOBAL PATTERN OF MESOSCALE VARIABILITY IN SEA SURFACE HEIGHT AND ITS DYNAMICAL CAUSES Alexey separate the mesoscale variability of sea surface heights into its spatial and temporal components of mesoscale variability in different areas to dynamical causes. Major portion of it can be explained

  2. Remotely sensed mesoscale oceanography and the distribution of Illex argentinus

    E-Print Network [OSTI]

    Pierce, Graham

    Remotely sensed mesoscale oceanography and the distribution of Illex argentinus in the South consider the in¯uence of mesoscale oceanographic processes around the Falkland Islands (Islas Malvinas remotely sensed satellite images were used as an indicator of mesoscale oceanographic activity and compared

  3. Mesoscale analysis of segmental dynamics in microphase-segregated polyurea

    E-Print Network [OSTI]

    Grujicic, Mica

    Mesoscale analysis of segmental dynamics in microphase- segregated polyurea M. Grujicic · B-atom molecular dynamics techniques. To overcome this problem, mesoscale coarse-grain simulation methods of constituent atom-size particles. Within the mesoscale methods, on the other hand, this atomistic description

  4. A Mesoscale Diffusion Model in Population Genetics with

    E-Print Network [OSTI]

    O'Leary, Michael

    ' & $ % A Mesoscale Diffusion Model in Population Genetics with Dynamic Fitness Mike O'Leary Towson University Judith R. Miller Georgetown University 1 #12;A mesoscale diffusion model in population genetics that dominance and epistasis are absent. April 28, 2005 Mike O'Leary and Judith Miller Slide 2 #12;A mesoscale

  5. Numerical Simulation in Applied Geophysics. From the Mesoscale to the

    E-Print Network [OSTI]

    Santos, Juan

    Numerical Simulation in Applied Geophysics. From the Mesoscale to the Macroscale Juan E. Santos Numerical Simulation in Applied Geophysics. From the Mesoscale to the Macroscale ­ p. #12;Introduction. I layering, fractures and craks at the mesoscale (on the order of centimeters) are common in the earth

  6. HYBRID DECADE-MEAN GLOBAL SEA LEVEL WITH MESOSCALE RESOLUTION

    E-Print Network [OSTI]

    HYBRID DECADE-MEAN GLOBAL SEA LEVEL WITH MESOSCALE RESOLUTION Nikolai A. Maximenko1 and Pearn P of twin-satellite mission GRACE and mesoscale sea level tilt derived from the momentum balance as seen 55 #12;sea level exhibits excellent accuracy on mesoscale, but may contain significant systematic

  7. Report on the use of stability parameters and mesoscale

    E-Print Network [OSTI]

    Report on the use of stability parameters and mesoscale modelling in short-term prediction Jake Nielsen, Henrik Madsen, John Tøfting Title: Report on the use of stability parameters and mesoscale. Mesoscale modelling has been carried out using KAMM at this location. The characteristics of the measured

  8. Identification of a mesoscale model with multiscale experimental observations

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Identification of a mesoscale model with multiscale experimental observations M.T. Nguyen, C and at mesoscale within the framework of a heterogeneous microstruc- ture which is modeled by a random elastic measurements of the displacement fields at macroscale and at mesoscale performed with only a single specimen

  9. Computational upscaling of inertia effects from porescale to mesoscale

    E-Print Network [OSTI]

    Peszynska, Malgorzata

    Computational upscaling of inertia effects from porescale to mesoscale Malgorzata Peszy´nska1 for computational upscaling of flow from porescale (microscale) to lab scale (mesoscale). In particular, we solve laboratory for porous me- dia which delivers data needed for mesoscale simulations by performing microscale

  10. Mesoscale morphologies in polymer thin films.

    SciTech Connect (OSTI)

    Ramanathan, M.; Darling, S. B. (Center for Nanoscale Materials)

    2011-06-01T23:59:59.000Z

    In the midst of an exciting era of polymer nanoscience, where the development of materials and understanding of properties at the nanoscale remain a major R&D endeavor, there are several exciting phenomena that have been reported at the mesoscale (approximately an order of magnitude larger than the nanoscale). In this review article, we focus on mesoscale morphologies in polymer thin films from the viewpoint of origination of structure formation, structure development and the interaction forces that govern these morphologies. Mesoscale morphologies, including dendrites, holes, spherulites, fractals and honeycomb structures have been observed in thin films of homopolymer, copolymer, blends and composites. Following a largely phenomenological level of description, we review the kinetic and thermodynamic aspects of mesostructure formation outlining some of the key mechanisms at play. We also discuss various strategies to direct, limit, or inhibit the appearance of mesostructures in polymer thin films as well as an outlook toward potential areas of growth in this field of research.

  11. A study of mesoscale gravity waves over the North Atlantic with satellite observations and a mesoscale model

    E-Print Network [OSTI]

    A study of mesoscale gravity waves over the North Atlantic with satellite observations and a mesoscale model Dong L. Wu Jet Propulsion Laboratory, California Institute of Technology, Pasadena and compare AMSU-A observations to simulations from a mesoscale model (MM5). The simulated gravity waves

  12. Particle-Based Mesoscale Hydrodynamic Techniques

    E-Print Network [OSTI]

    Hiroshi Noguchi; Norio Kikuchi; Gerhard Gompper

    2006-10-31T23:59:59.000Z

    Dissipative particle dynamics (DPD) and multi-particle collision (MPC) dynamics are powerful tools to study mesoscale hydrodynamic phenomena accompanied by thermal fluctuations. To understand the advantages of these types of mesoscale simulation techniques in more detail, we propose new two methods, which are intermediate between DPD and MPC -- DPD with a multibody thermostat (DPD-MT), and MPC-Langevin dynamics (MPC-LD). The key features are applying a Langevin thermostat to the relative velocities of pairs of particles or multi-particle collisions, and whether or not to employ collision cells. The viscosity of MPC-LD is derived analytically, in very good agreement with the results of numerical simulations.

  13. Forbush decreases and solar events seen in the 10 - 20GeV energy range by the Karlsruhe Muon Telescope

    E-Print Network [OSTI]

    I. Braun; J. Engler; J. R. Hörandel; J. Milke

    2008-10-27T23:59:59.000Z

    Since 1993, a muon telescope located at Forschungszentrum Karlsruhe (Karlsruhe Muon Telescope) has been recording the flux of single muons mostly originating from primary cosmic-ray protons with dominant energies in the 10 - 20 GeV range. The data are used to investigate the influence of solar effects on the flux of cosmic-rays measured at Earth. Non-periodic events like Forbush decreases and ground level enhancements are detected in the registered muon flux. A selection of recent events will be presented and compared to data from the Jungfraujoch neutron monitor. The data of the Karlsruhe Muon Telescope help to extend the knowledge about Forbush decreases and ground level enhancements to energies beyond the neutron monitor regime.

  14. Urban morphological analysis for mesoscale meteorological and dispersion modeling applications : current issues

    SciTech Connect (OSTI)

    Burian, S. J. (Steven J.); Brown, M. J. (Michael J.); Ching, J. (Jason); Cheuk, M. L. (Mang Lung); Yuan, M. (May); McKinnon, A. T. (Andrew T.); Han, W. S. (Woo Suk)

    2004-01-01T23:59:59.000Z

    Accurate predictions of air quality and atmospheric dispersion at high spatial resolution rely on high fidelity predictions of mesoscale meteorological fields that govern transport and turbulence in urban areas. However, mesoscale meteorological models do not have the spatial resolution to directly simulate the fluid dynamics and thermodynamics in and around buildings and other urban structures that have been shown to modify micro- and mesoscale flow fields (e.g., see review by Bornstein 1987). Mesoscale models therefore have been adapted using numerous approaches to incorporate urban effects into the simulations (e.g., see reviews by Brown 2000 and Bornstein and Craig 2002). One approach is to introduce urban canopy parameterizations to approximate the drag, turbulence production, heating, and radiation attenuation induced by sub-grid scale buildings and urban surface covers (Brown 2000). Preliminary results of mesoscale meteorological and air quality simulations for Houston (Dupont et al. 2004) demonstrated the importance of introducing urban canopy parameterizations to produce results with high spatial resolution that accentuates variability, highlights important differences, and identifies critical areas. Although urban canopy parameterizations may not be applicable to all meteorological and dispersion models, they have been successfully introduced and demonstrated in many of the current operational and research mode mesoscale models, e.g., COAMPS (Holt et al. 2002), HOTMAC (Brown and Williams 1998), MM5 (e.g., Otte and Lacser 2001; Lacser and Otte 2002; Dupont et al. 2004), and RAMS (Rozoff et al. 2003). The primary consequence of implementing an urban parameterization in a mesoscale meteorological model is the need to characterize the urban terrain in greater detail. In general, urban terrain characterization for mesoscale modeling may be described as the process of collecting datasets of urban surface cover physical properties (e.g., albedo, emissivity) and morphology (i.e., ground elevation, building and tree height and geometry characteristics) and then processing the data to compute physical cover and morphological parameters. Many of the surface cover and morphological parameters required for mesoscale meteorological models are also needed by atmospheric dispersion models. Thus, most of the discussion below is relevant to both types of modeling. In this paper, the term urban morphological analysis will be used to define the component of urban terrain characterization concerned with the morphological parameters. Furthermore, the focus will be building morphological parameters; therefore, the term urban morphological analysis will refer exclusively to the task of inventorying, computing or estimating building morphological parameters. Several approaches to perform urban morphological analysis exist; however, all have in common three types of practice issues related to the uncertainty of (1) data, (2) parameter definitions and calculation methods, and (3) extrapolation techniques. The objective of this paper is to describe the state-of-the-practice of urban morphological analysis by reviewing the primary approaches presented in the literature and outlining and commenting on key aspects of the three types of practice issues listed above.

  15. Nesting large-eddy simulations within mesoscale simulations for wind energy applications

    SciTech Connect (OSTI)

    Lundquist, J K; Mirocha, J D; Chow, F K; Kosovic, B; Lundquist, K A

    2008-09-08T23:59:59.000Z

    With increasing demand for more accurate atmospheric simulations for wind turbine micrositing, for operational wind power forecasting, and for more reliable turbine design, simulations of atmospheric flow with resolution of tens of meters or higher are required. These time-dependent large-eddy simulations (LES), which resolve individual atmospheric eddies on length scales smaller than turbine blades and account for complex terrain, are possible with a range of commercial and open-source software, including the Weather Research and Forecasting (WRF) model. In addition to 'local' sources of turbulence within an LES domain, changing weather conditions outside the domain can also affect flow, suggesting that a mesoscale model provide boundary conditions to the large-eddy simulations. Nesting a large-eddy simulation within a mesoscale model requires nuanced representations of turbulence. Our group has improved the Weather and Research Forecasting model's (WRF) LES capability by implementing the Nonlinear Backscatter and Anisotropy (NBA) subfilter stress model following Kosovic (1997) and an explicit filtering and reconstruction technique to compute the Resolvable Subfilter-Scale (RSFS) stresses (following Chow et al, 2005). We have also implemented an immersed boundary method (IBM) in WRF to accommodate complex terrain. These new models improve WRF's LES capabilities over complex terrain and in stable atmospheric conditions. We demonstrate approaches to nesting LES within a mesoscale simulation for farms of wind turbines in hilly regions. Results are sensitive to the nesting method, indicating that care must be taken to provide appropriate boundary conditions, and to allow adequate spin-up of turbulence in the LES domain.

  16. Precipitation Hydrometeor Type Relative to the Mesoscale Airflow in Oceanic Deep Convection of the Madden-Julian Oscillation

    E-Print Network [OSTI]

    Houze Jr., Robert A.

    1 Precipitation Hydrometeor Type Relative to the Mesoscale Airflow in Oceanic Deep located relative to mesoscale air motions Heavy rain and riming occur downstream of mesoscale Abstract Composite analysis of near-equatorial oceanic mesoscale convective systems (MCSs

  17. Mesoscale and Large-Eddy Simulations for Wind Energy

    SciTech Connect (OSTI)

    Marjanovic, N

    2011-02-22T23:59:59.000Z

    Operational wind power forecasting, turbine micrositing, and turbine design require high-resolution simulations of atmospheric flow over complex terrain. The use of both Reynolds-Averaged Navier Stokes (RANS) and large-eddy (LES) simulations is explored for wind energy applications using the Weather Research and Forecasting (WRF) model. To adequately resolve terrain and turbulence in the atmospheric boundary layer, grid nesting is used to refine the grid from mesoscale to finer scales. This paper examines the performance of the grid nesting configuration, turbulence closures, and resolution (up to as fine as 100 m horizontal spacing) for simulations of synoptically and locally driven wind ramping events at a West Coast North American wind farm. Interestingly, little improvement is found when using higher resolution simulations or better resolved turbulence closures in comparison to observation data available for this particular site. This is true for week-long simulations as well, where finer resolution runs show only small changes in the distribution of wind speeds or turbulence intensities. It appears that the relatively simple topography of this site is adequately resolved by all model grids (even as coarse as 2.7 km) so that all resolutions are able to model the physics at similar accuracy. The accuracy of the results is shown in this paper to be more dependent on the parameterization of the land-surface characteristics such as soil moisture rather than on grid resolution.

  18. Detecting and characterizing mesoscale and submesoscale structures of Mediterranean water from joint seismic

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Click Here for Full Article Detecting and characterizing mesoscale and submesoscale structures mesoscale and submesoscale structures of Mediterranean water from joint seismic and hydrographic the imaged structures in terms of mesoscale and submesoscale eddies, of homogeneous layers and of lateral

  19. Impact of Agricultural Practice on Regional Climate in a Coupled Land Surface Mesoscale Model

    E-Print Network [OSTI]

    Cooley, H.S.; Riley, W.J.; Torn, M.S.; He, Y.

    2004-01-01T23:59:59.000Z

    winter wheat belt on the mesoscale environment, Monthlygeneration Penn State/NCAR mesoscale model (MM5), NCAR,in a Coupled Land Surface Mesoscale Model H.S. Cooley Energy

  20. MESOSCALE OCEANOGRAPHY Instructors: Igor Kamenkovich, Arthur Mariano and Donald B. Olson, with other contributions

    E-Print Network [OSTI]

    Miami, University of

    MESOSCALE OCEANOGRAPHY Instructors: Igor Kamenkovich, Arthur Mariano and Donald B. Olson of ocean mesoscale variability, including its properties in different oceanic regimes, the dynamics will learn basic concepts on ocean mesoscale processes and perspectives on current research topics from

  1. Mesoscale simulation of polymer reaction equilibrium: Combining dissipative particle dynamics with reaction ensemble Monte Carlo.

    E-Print Network [OSTI]

    Lisal, Martin

    Mesoscale simulation of polymer reaction equilibrium: Combining dissipative particle dynamics a mesoscale simulation technique, called the reaction ensemble dissipative particle dynamics RxDPD method. Coarse-grained, particle- based mesoscale models that retain only the most essential features

  2. Observational Analysis of the Predictability of Mesoscale Convective Systems ISRAEL L. JIRAK AND WILLIAM R. COTTON

    E-Print Network [OSTI]

    Observational Analysis of the Predictability of Mesoscale Convective Systems ISRAEL L. JIRAK (Manuscript received 30 December 2005, in final form 4 October 2006) ABSTRACT Mesoscale convective systems of usefulness in operational forecasting. 1. Introduction Mesoscale convective systems (MCSs) frequently de

  3. From deterministic to stochastic, from mesoscale to macroscopic

    E-Print Network [OSTI]

    Title: From deterministic to stochastic, from mesoscale to macroscopic: multiscale modeling of grain growth Abstract: Many problems in science and engineering ...

  4. Mesoscale harmonic analysis of homogenous dislocation nucleation

    E-Print Network [OSTI]

    Asad Hasan; Craig E. Maloney

    2012-05-08T23:59:59.000Z

    We perform atomistic computer simulations to study the mechanism of homogeneous dislocation nucleation in two dimensional (2D) hexagonal crystalline films during indentation with a circular nanoindenter. The nucleation process is governed by the vanishing of the energy associated with a single normal mode. This critical mode is largely confined to a single plane of adjacent atoms. For fixed film thickness, L, the spatial extent, \\xi, of the critical mode grows with indenter radius, R. For fixed R/L, the spatial extent \\xi, grows roughly as \\xi ~ L^0.4. We, furthermore, perform a mesoscale analysis to determine the lowest energy normal mode for mesoscale regions of varying radius, r_{meso}, centered on the critical mode's core. The energy, \\lambda_{meso}, of the lowest normal mode in the meso-region decays very rapidly with r_{meso} and \\lambda_{meso} ~= 0 for r_{meso} >~ \\xi. The lowest normal mode shows a spatial extent, \\xi_{meso}, which has a sublinear power-law increase with r_{meso} for r_{meso} mesoscale analysis gives good estimates for the energy and spatial extent of the critical mode \\emph{only} for r_{meso} >~ 1.5 \\xi. In this sense homogeneous dislocation nucleation should be understood as a quasi-local phenomenon.

  5. NASA-TM-III642 Design of Inielligent Mesoscale Periodic Array

    E-Print Network [OSTI]

    Asher, Sanford A.

    i" /} , NASA-TM-III642 Design of Inielligent Mesoscale Periodic Array Structures Utilizing Smart *National Research Council hitrodoetion Mesoscale Periodic Arlay Structures (MPAS, also known as crystalline

  6. Constructing Irregular Surfaces to Enclose Macromolecular Complexes for Mesoscale Modeling Using the Discrete

    E-Print Network [OSTI]

    Schlick, Tamar

    Constructing Irregular Surfaces to Enclose Macromolecular Complexes for Mesoscale Modeling Using proteins. DiSCO is generally applicable to other interesting macromolecular systems for which mesoscale

  7. Mesoscale regulation comes from the bottom-up: intertidal interactions between consumers

    E-Print Network [OSTI]

    Nielsen, Karina J.

    REPORT Mesoscale regulation comes from the bottom-up: intertidal interactions between consumers variation in nutrient supply to shift community structure over mesoscales. Keywords Macroalgae, upwelling

  8. Mesoscale Theory of Grains and Cells: Crystal Plasticity and Coarsening Surachate Limkumnerd* and James P. Sethna

    E-Print Network [OSTI]

    Sethna, James P.

    Mesoscale Theory of Grains and Cells: Crystal Plasticity and Coarsening Surachate Limkumnerd a mesoscale theory of dislocation motion. It provides a quantitative description of deformation and rotation

  9. Microscale and mesoscale discrete models for dynamic fracture of structures built of brittle material

    E-Print Network [OSTI]

    Microscale and mesoscale discrete models for dynamic fracture of structures built of brittle are derived either at microscale with random distribution of material properties or at a mesoscale

  10. Mesoscale simulation of polymer reaction equilibrium: Combining dissipative particle dynamics with reaction

    E-Print Network [OSTI]

    Lisal, Martin

    Mesoscale simulation of polymer reaction equilibrium: Combining dissipative particle dynamics. R. Smith, J. Chem. Phys. 125, 16490 2006 , a mesoscale simulation technique for studying polymer

  11. A unified morphological description of Nafion membranes from SAXS and mesoscale simulations

    E-Print Network [OSTI]

    Elliott, James

    A unified morphological description of Nafion membranes from SAXS and mesoscale simulations James A with mesoscale simulations of the morphology of Nafion using Dissipative Particle Dynamics (DPD) parameterized

  12. Massively parallel implementation of the Penn State/NCAR Mesoscale Model

    SciTech Connect (OSTI)

    Foster, I.; Michalakes, J.

    1992-12-01T23:59:59.000Z

    Parallel computing promises significant improvements in both the raw speed and cost performance of mesoscale atmospheric models. On distributed-memory massively parallel computers available today, the performance of a mesoscale model will exceed that of conventional supercomputers; on the teraflops machines expected within the next five years, performance will increase by several orders of magnitude. As a result, scientists will be able to consider larger problems, more complex model processes, and finer resolutions. In this paper. we report on a project at Argonne National Laboratory that will allow scientists to take advantage of parallel computing technology. This Massively Parallel Mesoscale Model (MPMM) will be functionally equivalent to the Penn State/NCAR Mesoscale Model (MM). In a prototype study, we produced a parallel version of MM4 using a static (compile-time) coarse-grained ``patch`` decomposition. This code achieves one-third the performance of a one-processor CRAY Y-MP on twelve Intel 1860 microprocessors. The current version of MPMM is based on all MM5 and uses a more fine-grained approach, decomposing the grid as finely as the mesh itself allows so that each horizontal grid cell is a parallel process. This will allow the code to utilize many hundreds of processors. A high-level language for expressing parallel programs is used to implement communication strearns between the processes in a way that permits dynamic remapping to the physical processors of a particular parallel computer. This facilitates load balancing, grid nesting, and coupling with graphical systems and other models.

  13. Massively parallel implementation of the Penn State/NCAR Mesoscale Model

    SciTech Connect (OSTI)

    Foster, I.; Michalakes, J.

    1992-01-01T23:59:59.000Z

    Parallel computing promises significant improvements in both the raw speed and cost performance of mesoscale atmospheric models. On distributed-memory massively parallel computers available today, the performance of a mesoscale model will exceed that of conventional supercomputers; on the teraflops machines expected within the next five years, performance will increase by several orders of magnitude. As a result, scientists will be able to consider larger problems, more complex model processes, and finer resolutions. In this paper. we report on a project at Argonne National Laboratory that will allow scientists to take advantage of parallel computing technology. This Massively Parallel Mesoscale Model (MPMM) will be functionally equivalent to the Penn State/NCAR Mesoscale Model (MM). In a prototype study, we produced a parallel version of MM4 using a static (compile-time) coarse-grained patch'' decomposition. This code achieves one-third the performance of a one-processor CRAY Y-MP on twelve Intel 1860 microprocessors. The current version of MPMM is based on all MM5 and uses a more fine-grained approach, decomposing the grid as finely as the mesh itself allows so that each horizontal grid cell is a parallel process. This will allow the code to utilize many hundreds of processors. A high-level language for expressing parallel programs is used to implement communication strearns between the processes in a way that permits dynamic remapping to the physical processors of a particular parallel computer. This facilitates load balancing, grid nesting, and coupling with graphical systems and other models.

  14. Rotational and divergent kinetic energy in the mesoscale model ALADIN

    E-Print Network [OSTI]

    Zagar, Nedjeljka

    energy, divergent energy, ALADIN, limited-area modelling 1. Introduction Horizontal divergenceRotational and divergent kinetic energy in the mesoscale model ALADIN By V. BLAZ ICA1 *, N. Z AGAR1 received 7 June 2012; in final form 7 March 2013) ABSTRACT Kinetic energy spectra from the mesoscale

  15. Generation of mesoscale convective structures in tokamak edge plasma

    SciTech Connect (OSTI)

    Krasheninnikov, S. I.; Smolyakov, A. I. [University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States); University of Saskatchewan, 116 Science Place, Saskatoon, Saskatchewan S7N 5E2 (Canada)

    2007-10-15T23:59:59.000Z

    It is shown that the interplay of the interchange drive and nonlinear effects of Reynolds stress and inverse cascade of drift wave turbulence select a range of plasma parameters (plasma pressure), for which mesoscale perturbations of a certain transverse length scale become unstable. It is suggested that the blob formation is a result of these mesoscale instabilities.

  16. Karlsruhe Database for Radioactive Wastes (KADABRA) - Accounting and Management System for Radioactive Waste Treatment - 12275

    SciTech Connect (OSTI)

    Himmerkus, Felix; Rittmeyer, Cornelia [WAK Rueckbau- und Entsorgungs- GmbH, 76339 Eggenstein-Leopoldshafen (Germany)

    2012-07-01T23:59:59.000Z

    The data management system KADABRA was designed according to the purposes of the Cen-tral Decontamination Department (HDB) of the Wiederaufarbeitungsanlage Karlsruhe Rueckbau- und Entsorgungs-GmbH (WAK GmbH), which is specialized in the treatment and conditioning of radioactive waste. The layout considers the major treatment processes of the HDB as well as regulatory and legal requirements. KADABRA is designed as an SAG ADABAS application on IBM system Z mainframe. The main function of the system is the data management of all processes related to treatment, transfer and storage of radioactive material within HDB. KADABRA records the relevant data concerning radioactive residues, interim products and waste products as well as the production parameters relevant for final disposal. Analytical data from the laboratory and non destructive assay systems, that describe the chemical and radiological properties of residues, production batches, interim products as well as final waste products, can be linked to the respective dataset for documentation and declaration. The system enables the operator to trace the radioactive material through processing and storage. Information on the actual sta-tus of the material as well as radiological data and storage position can be gained immediately on request. A variety of programs accessed to the database allow the generation of individual reports on periodic or special request. KADABRA offers a high security standard and is constantly adapted to the recent requirements of the organization. (authors)

  17. The Karlsruhe Astrophysical Database of Nucleosynthesis in Stars Project - Status and Prospects

    E-Print Network [OSTI]

    Iris Dillmann; Tamas Szücs; Zsolt Fülöp; Ralf Plag; Franz Käppeler; Thomas Rauscher

    2014-08-16T23:59:59.000Z

    The KADoNiS (Karlsruhe Astrophysical Database of Nucleosynthesis in Stars) project is an astrophysical online database for cross sections relevant for nucleosynthesis in the $s$ process and the $\\gamma$ process. The $s$-process database (www.kadonis.org) was started in 2005 and is presently facing its 4th update (KADoNiS v1.0). The $\\gamma$-process database (KADoNiS-p, www.kadonis.org/pprocess) was recently revised and re-launched in March 2013. Both databases are compilations for experimental cross sections with relevance to heavy ion nucleosynthesis. For the $s$ process recommended Maxwellian averaged cross sections for $kT$= 5-100~keV are given for more than 360 isotopes between $^{1}$H and $^{210}$Bi. For the $\\gamma$-process database all available experimental data from $(p,\\gamma), (p,n), (p,\\alpha), (\\alpha,\\gamma), (\\alpha,n)$, and $(\\alpha,p)$ reactions between $^{70}$Ge and $^{209}$Bi in or close to the respective Gamow window were collected and can be compared to theoretical predictions. The aim of both databases is a quick and user-friendly access to the available data in the astrophysically relevant energy regions.

  18. Microphysical/mesoscale aspects of nuclear winter and new directions in assessments

    SciTech Connect (OSTI)

    Knox, J.B.

    1985-06-01T23:59:59.000Z

    Recent results of model studies and sensitivity tests have shown the degree to which the intensity and duration of ''nuclear winter'' depends on the mass of soot and dust suspended, its optical properties, its vertical distribution in the atmosphere, and the residence time. The soot from urban fires is viewed as evolving during its dispersion from the early fire induced plumes, to cloud scale systems, to the mesoscale and larger systems. Micro-physical processes are perceived as operating within these systems in a manner to enhance removal from the troposphere, and to alter the verical distribution of the soot or its subsequent, aging or evolving aerosol. Relevant observations and studies of these processes are presented and discussed. Critical inputs to the climate simulation models may well be altered significantly by these process effects, many of which are in need of better definition. Appropriate research needs to be initiated to address and better define these microphysical/mesoscale processes of potential importance in the altered atmospheric system after a major nuclear exchange. 11 refs., 2 figs.

  19. Segmentation and Tracking of Mesoscale Eddies in Numeric Ocean Models Vishal Sood, Bin John, Ramprasad Balasubramanian and Amit Tandon*

    E-Print Network [OSTI]

    Tandon, Amit

    Segmentation and Tracking of Mesoscale Eddies in Numeric Ocean Models Vishal Sood, Bin John suggested that the mesoscale eddies and mesoscale features play a strong role in carrying heat poleward oceanographers an invaluable tool to assess mesoscale eddies and the Lagrangian characteristics of this mesoscale

  20. Severe Accident Related Research and Development at Forschungszentrum Karlsruhe for Present and Future Needs

    SciTech Connect (OSTI)

    Scholtyssek, Werner; Heusener, Gerhard; Hofmann, Fritz; Plitz, Helmut [Forschungszentrum Karlsruhe GmbH (Germany)

    2002-07-15T23:59:59.000Z

    The research and development program at the Forschungszentrum Karlsruhe, performed within the Program Nuclear Safety Research, is centered around phenomena and processes that could possibly endanger the containment integrity of a large pressurized water reactor after a severe accident. The program includes three activities.The first activity is in-vessel steam explosion. Premixing phenomena are studied in the QUEOS and PREMIX test series. The efficiency of energy conversion is the subject of ECO tests. The BERDA experimental program investigates the load capacity of a reactor pressure vessel (RPV) in steam explosion events.The second activity is hydrogen behavior and mitigation. Advanced models and numerical tools are developed to describe hydrogen sources, distribution of gases in containment, the various modes of hydrogen combustion, and corresponding structural loads.The third activity is ex-vessel melt behavior. The release behavior of melt after RPV failure is studied in DISCO and KAJET tests. In support of core catcher development, interaction with sacrificial and refractory materials, further melt spreading and cooling phenomena are investigated in KAPOOL, KATS, and COMET tests.The goal is to describe and quantify the governing mechanisms and to develop verified models and numerical tools that are able to predict maximum possible loads for severe accident scenarios on full plant scale. The work supported the development and assessment of the safety design of the French-German European Pressurized Water Reactor (EPR). It led to a broader understanding of severe accident phenomena and of controlling and mitigating measures that can also be of benefit for existing plants.

  1. Mesoscale Quantization and Self-Organized Stability

    E-Print Network [OSTI]

    Randall D. Peters

    2005-06-16T23:59:59.000Z

    In the world of technology, one of the most important forms of friction is that of rolling friction. Yet it is one of the least studied of all the known forms of energy dissipation. In the present experiments we investigate the oscillatory free-decay of a rigid cube, whose side-length is less than the diameter of the rigid cylinder on which it rests. The resulting free-decay is one of harmonic motion with damping. The non-dissipative character of the oscillation yields to a linear differential equation; however, the damping is found to involve more than a deterministic nonlinearity. Dominated by rolling friction, the damping is sensitive to the material properties of the contact surfaces. For `clean' surfaces of glass on glass, the decay shows features of mesoscale quantization and self-organized stability.

  2. Phase Effects on Mesoscale Object X-ray Absorption Images

    SciTech Connect (OSTI)

    Martz, Jr., H E; Aufderheide, M B; Barty, A; Lehman, S K; Kozioziemski, B J; Schneberk, D J

    2004-09-24T23:59:59.000Z

    At Lawrence Livermore National Laboratory particular emphasis is being placed on the nondestructive characterization (NDC) of 'mesoscale' objects.[Martz and Albrecht 2003] We define mesoscale objects as objects that have mm extent with {micro}m features. Here we confine our discussions to x-ray imaging methods applicable to mesoscale object characterization. The goal is object recovery algorithms including phase to enable emerging high-spatial resolution x-ray imaging methods to ''see'' inside or image mesoscale-size materials and objects. To be successful our imaging characterization effort must be able to recover the object function to one micrometer or better spatial resolution over a few millimeters field-of-view with very high contrast.

  3. Evolution of moisture convergence in a mesoscale convective complex

    E-Print Network [OSTI]

    Bercherer, John Phillip

    1990-01-01T23:59:59.000Z

    Committee: Dr. Keuneth C. Brundidge Two separate Mesoscale Convective Complexes (MCCs) were investigated to determine if a characteristic surface moisture convergence (MC) signature existed on the mesoscale during their lifecycle. The first storm (Case 1... convergence, a bandpass filtering technique was utilized. It was found that MC could identify the general area of initial thunderstorm activity 2 h prior to its development for both cases. During the initial development stage of Case 1, advection...

  4. Analysis of azimuthal mode dynamics of mesoscale eddies

    E-Print Network [OSTI]

    McCalpin, John David

    1984-01-01T23:59:59.000Z

    ANALYSIS OF AZIMUTHAL MODE DYNAMICS OF MESOSCALE EDDIES A Thesis by UOHN DAVID MCCALPIN Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1984... Major Subject: Oceanography ANALYSIS OF AZIMUTHAL MODE DYNAMICS OF MESOSCALE EDDIES A Thesis by JOHN DAVID MCCALPIN Approved as to style and content by: rew . as ano (Chairman of Committee) o ert . ei (Member) uy . rancesc &ni (Member) Robert...

  5. Mesoscale Systems: weather associated with circulation systems of horizontal scales of 5 to 1,000 km

    E-Print Network [OSTI]

    Weber, Rodney

    Mesoscale Systems: weather associated with circulation systems of horizontal scales of 5 to 1 faster at night #12;Dispersion in Mesoscale Systems Mesoscale systems can have large effects on pollution

  6. Intercomparison of mesoscale meteorological models for precipitation forecasting Hydrology and Earth System Sciences, 7(6), 799811 (2003) EGU

    E-Print Network [OSTI]

    Boyer, Edmond

    2003-01-01T23:59:59.000Z

    Intercomparison of mesoscale meteorological models for precipitation forecasting 799 Hydrology and Earth System Sciences, 7(6), 799811 (2003) © EGU Intercomparison of mesoscale meteorological models

  7. Predicting reptile distributions at the mesoscale: relation to climate and topography

    E-Print Network [OSTI]

    Richner, Heinz

    Predicting reptile distributions at the mesoscale: relation to climate and topography Antoine at a mesoscale level. A more detailed knowledge of these relationships, in combination with maps of the potential

  8. DOI: 10.1002/adma.200601882 Spontaneous Formation of Mesoscale Polymer Patterns

    E-Print Network [OSTI]

    Lin, Zhiqun

    DOI: 10.1002/adma.200601882 Spontaneous Formation of Mesoscale Polymer Patterns in an Evaporating of intriguing, ordered structures. Herein, we report on the spontaneous formation of well-or- ganized mesoscale

  9. Course MA59800: Numerical Simulation in Applied Geophysics. From the Mesoscale to the Macroscale.

    E-Print Network [OSTI]

    Santos, Juan

    Course MA59800: Numerical Simulation in Applied Geophysics. From the Mesoscale to the Macroscale matrix properties, fine layering, frac- tures and craks at the mesoscale (on the order of centimeters

  10. Course: Numerical Simulation in Applied Geophysics. From the Mesoscale to the Macroscale

    E-Print Network [OSTI]

    Santos, Juan

    Course: Numerical Simulation in Applied Geophysics. From the Mesoscale to the Macroscale Professor variations in the fluid and solid matrix properties, fine layering, frac- tures and craks at the mesoscale

  11. Mesoscale Origin of the Enhanced Cycling-Stability of the Si...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mesoscale Origin of the Enhanced Cycling-Stability of the Si-Conductive Polymer Anode for Li-ion Batteries. Mesoscale Origin of the Enhanced Cycling-Stability of the Si-Conductive...

  12. Mesoscale Modeling of a Li-Ion Polymer Cell Chia-Wei Wanga,

    E-Print Network [OSTI]

    Sastry, Ann Marie

    Mesoscale Modeling of a Li-Ion Polymer Cell Chia-Wei Wanga, * and Ann Marie Sastrya,b,c, *,z, the study reported critical data required for mesoscale numerical simulation, including ionic con- ductivity

  13. Author's personal copy Mesoscale modeling of electric double layer capacitors with three-dimensional

    E-Print Network [OSTI]

    Pilon, Laurent

    Author's personal copy Mesoscale modeling of electric double layer capacitors with three Mesoscale modeling Mesoporous electrodes a b s t r a c t This paper presents general mathematical

  14. Structure of polyamidoamide dendrimers up to limiting generations: A mesoscale description

    E-Print Network [OSTI]

    Goddard III, William A.

    Structure of polyamidoamide dendrimers up to limiting generations: A mesoscale description Prabal K, while reducing the degrees of freedom by tenfold. This mesoscale description has allowed us to study

  15. Atomic Force Microscopy of Photosystem II and Its Unit Cell Clustering Quantitatively Delineate the Mesoscale

    E-Print Network [OSTI]

    Geissler, Phillip

    the Mesoscale Variability in Arabidopsis Thylakoids Bibiana Onoa1 , Anna R. Schneider2 , Matthew D. Brooks3 Quantitatively Delineate the Mesoscale Variability in Arabidopsis Thylakoids. PLoS ONE 9(7): e101470. doi:10

  16. Mesoscale modeling of electrical percolation in fiber-filled systems Sameer S. Rahatekar and Marc Hamm

    E-Print Network [OSTI]

    Elliott, James

    Mesoscale modeling of electrical percolation in fiber-filled systems Sameer S. Rahatekar and Marc online 4 October 2005 The research described in this paper primarily involves mesoscale simulations

  17. A distributional approach to the geometry of 2D dislocations at the mesoscale

    E-Print Network [OSTI]

    Lisbon, University of

    A distributional approach to the geometry of 2D dislocations at the mesoscale Part A: General introduce the meso-scale as defined by some average distance between the dislocations. The laws governing

  18. Meso-scale turbulence in living fluids

    E-Print Network [OSTI]

    Henricus H. Wensink; Jörn Dunkel; Sebastian Heidenreich; Knut Drescher; Raymond E. Goldstein; Hartmut Löwen; Julia M. Yeomans

    2012-08-21T23:59:59.000Z

    Turbulence is ubiquitous, from oceanic currents to small-scale biological and quantum systems. Self-sustained turbulent motion in microbial suspensions presents an intriguing example of collective dynamical behavior amongst the simplest forms of life, and is important for fluid mixing and molecular transport on the microscale. The mathematical characterization of turbulence phenomena in active non-equilibrium fluids proves even more difficult than for conventional liquids or gases. It is not known which features of turbulent phases in living matter are universal or system-specific, or which generalizations of the Navier-Stokes equations are able to describe them adequately. Here, we combine experiments, particle simulations, and continuum theory to identify the statistical properties of self-sustained meso-scale turbulence in active systems. To study how dimensionality and boundary conditions affect collective bacterial dynamics, we measured energy spectra and structure functions in dense Bacillus subtilis suspensions in quasi-2D and 3D geometries. Our experimental results for the bacterial flow statistics agree well with predictions from a minimal model for self-propelled rods, suggesting that at high concentrations the collective motion of the bacteria is dominated by short-range interactions. To provide a basis for future theoretical studies, we propose a minimal continuum model for incompressible bacterial flow. A detailed numerical analysis of the 2D case shows that this theory can reproduce many of the experimentally observed features of self-sustained active turbulence.

  19. Numerical modeling of roll structures in mesoscale vortexes over the Black Sea

    E-Print Network [OSTI]

    Iarova, D A

    2014-01-01T23:59:59.000Z

    This paper is a case study of horizontal atmospheric rolls that formed over the Black Sea on 16 August 2007. The rolls were discovered in WRF modeling results for a mesoscale cyclone that originated over the sea on 15 August 2007. The roll formation mechanisms, such as Rayleigh-Benard convective instability, dynamic instability, advection and stretching of vertical velocity field inhomogeneities, are considered. It is shown that indeed convective instability played an important role in the roll formation but dynamic instability did not occur. In order to distinguish other possible mechanisms of the roll formation numerical experiments were performed. In these experiments sea surface temperature in the initial conditions was decreased in order to prevent convective instability. Even though convective instability was suppressed roll-like structures still appeared in the modeling results, although their height and circulation velocity were smaller than in the control run. It was found that these structures were ...

  20. Coupled Mesoscale-Large-Eddy Modeling of Realistic Stable Boundary Layer Turbulence

    E-Print Network [OSTI]

    Wang, Yao; Manuel, Lance

    2013-01-01T23:59:59.000Z

    Site-specific flow and turbulence information are needed for various practical applications, ranging from aerodynamic/aeroelastic modeling for wind turbine design to optical diffraction calculations. Even though highly desirable, collecting on-site meteorological measurements can be an expensive, time-consuming, and sometimes a challenging task. In this work, we propose a coupled mesoscale-large-eddy modeling framework to synthetically generate site-specific flow and turbulence data. The workhorses behind our framework are a state-of-the-art, open-source atmospheric model called the Weather Research and Forecasting (WRF) model and a tuning-free large-eddy simulation (LES) model. Using this coupled framework, we simulate a nighttime stable boundary layer (SBL) case from the well-known CASES-99 field campaign. One of the unique aspects of this work is the usage of a diverse range of observations for characterization and validation. The coupled models reproduce certain characteristics of observed low-level jets....

  1. Modeled biogeochemical responses to mesoscale eddies in the South China Sea

    E-Print Network [OSTI]

    Maine, University of

    Modeled biogeochemical responses to mesoscale eddies in the South China Sea Peng Xiu1 and Fei Chai1] Mesoscale eddies are observed each year in the South China Sea (SCS); however, their contributions physicalbiogeochemical model to evaluate the eddy impact. We first track the modeled mesoscale eddies in the SCS

  2. Wind ringing of the ocean in presence of mesoscale eddies P. Klein and G. Lapeyre

    E-Print Network [OSTI]

    Lapeyre, Guillaume

    Wind ringing of the ocean in presence of mesoscale eddies P. Klein and G. Lapeyre Laboratoire de scales related to oceanic mesoscale eddies. Results show that a turbulent eddy field does not affect Oceanography: Physical: Eddies and mesoscale processes; 4572 Oceanography: Physical: Upper ocean processes

  3. THE ROLE OF CLOUD MICROPHYSICS PARAMETERIZATION IN THE SIMULATION OF MESOSCALE CONVECTIVE SYSTEMS AND ANVIL

    E-Print Network [OSTI]

    THE ROLE OF CLOUD MICROPHYSICS PARAMETERIZATION IN THE SIMULATION OF MESOSCALE CONVECTIVE SYSTEMS in the Simulation of Mesoscale Convective Systems and Anvil Clouds in the Tropical Western Pacific K. Van Weverberg1 cloud microphysics in the simulation of mesoscale convective systems (MCSs) in the tropical western

  4. Practical and Intrinsic Predictability of Severe and Convective Weather at the Mesoscales

    E-Print Network [OSTI]

    Practical and Intrinsic Predictability of Severe and Convective Weather at the Mesoscales at the mesoscales using convection-permitting ensemble simulations of a squall line and bow echo event during the Bow Echo and Mesoscale Convective Vortex (MCV) Experiment (BAMEX) on 9­10 June 2003. Although most

  5. Atomistic and Mesoscale Modeling of Dislocation B.S., Huazhong University of Science and Technology (1995)

    E-Print Network [OSTI]

    Cai, Wei

    1995-01-01T23:59:59.000Z

    Atomistic and Mesoscale Modeling of Dislocation Mobility by Wei Cai B.S., Huazhong University by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sow-Hsin Chen Chairman, Department Committee on Graduate Students #12;2 #12;Atomistic and Mesoscale theories and simulations of dislocations in Si and BCC transition metals, with emphasis on the atomistic-mesoscale

  6. Charge rearrangement by sprites over a north Texas mesoscale convective system

    E-Print Network [OSTI]

    Cummer, Steven A.

    Charge rearrangement by sprites over a north Texas mesoscale convective system William W. Hager,1 is analyzed for a mesoscale convective system (MCS) situated in north Texas and east New Mexico on 15 July. Lapierre (2012), Charge rearrangement by sprites over a north Texas mesoscale convective system, J. Geophys

  7. Near-Inertial Wave Wake of Hurricanes Katrina and Rita over Mesoscale Oceanic Eddies

    E-Print Network [OSTI]

    Miami, University of

    Near-Inertial Wave Wake of Hurricanes Katrina and Rita over Mesoscale Oceanic Eddies BENJAMIN; Jaimes and Shay 2009, hereafter JS09). These robust mesoscale oceanic features are present at any time (Jaimes 2009). This mesoscale ocean variability imposed important dynamical constraints on the OML

  8. DETECTING AND TRACKING OF MESOSCALE OCEANIC FEATURES IN THE MIAMI ISOPYCNIC CIRCULATION OCEAN MODEL

    E-Print Network [OSTI]

    Tandon, Amit

    DETECTING AND TRACKING OF MESOSCALE OCEANIC FEATURES IN THE MIAMI ISOPYCNIC CIRCULATION OCEAN MODEL developed to automatically detect, locate and track mesoscale eddies spatially and temporally. Using an invaluable tool to assess mesoscale oceanic features. Key Words ­ Scientific Visualization, Eddy Detection

  9. Mixed Layer Cooling in Mesoscale Oceanic Eddies during Hurricanes Katrina and Rita

    E-Print Network [OSTI]

    Miami, University of

    Mixed Layer Cooling in Mesoscale Oceanic Eddies during Hurricanes Katrina and Rita BENJAMIN JAIMES. Introduction Isotherm topography and energetic geostrophic flow in mesoscale oceanic features in the Gulf. 2000; Shay et al. 2000). The dependence of hurricane-induced OML cooling on the presence of mesoscale

  10. A Climatology of Midlatitude Mesoscale Convective Vortices in the Rapid Update Cycle

    E-Print Network [OSTI]

    Johnson, Richard H.

    A Climatology of Midlatitude Mesoscale Convective Vortices in the Rapid Update Cycle ERIC P. JAMES of mesoscale convective vortices (MCVs) occurring in the state of Oklahoma during the late spring and summer, true MCVs represent only about 20% of the mesoscale relative vorticity maxima detected by the algorithm

  11. ach year across the US, mesoscale weather events--flash floods, tornadoes, hail,

    E-Print Network [OSTI]

    Plale, Beth

    E ach year across the US, mesoscale weather events--flash floods, tornadoes, hail, strong winds of mesoscale weather research; its disparate, high-volume data sets and streams; or the tremendous urgent need for a comprehensive national cyberinfrastructure in mesoscale meteorology--particularly one

  12. Numerical Simulation of Mesoscale Circulations in a Region of Contrasting Soil Types

    E-Print Network [OSTI]

    Raman, Sethu

    Numerical Simulation of Mesoscale Circulations in a Region of Contrasting Soil Types SETHU RAMAN,1 AARON SIMS,1,2 ROBB ELLIS,1 and RYAN BOYLES 1 Abstract--Mesoscale processes that form due to changes on mesoscale processes are examined. Climatological analyses indicate increased convective precipitation

  13. Distribution and Habitat Associations of Billfish and Swordfish Larvae across Mesoscale Features in the Gulf

    E-Print Network [OSTI]

    Rooker, Jay R.

    Distribution and Habitat Associations of Billfish and Swordfish Larvae across Mesoscale Features additive models (GAMs). Mesoscale features in the NGoM affected the distribution and abundance of billfish and Swordfish Larvae across Mesoscale Features in the Gulf of Mexico. PLoS ONE 7(4): e34180. doi:10.1371/journal

  14. Patterns of Precipitation and Mesolow Evolution in Midlatitude Mesoscale Convective Vortices

    E-Print Network [OSTI]

    Johnson, Richard H.

    Patterns of Precipitation and Mesolow Evolution in Midlatitude Mesoscale Convective Vortices ERIC P manifestations of mesoscale convective vortices (MCVs) that traversed Oklahoma during the periods May­August 2002 Profiler Network data. Forty-five MCVs that developed from mesoscale convective systems (MCSs) have been

  15. Author , Short title EFFECTS OF MESOSCALE TEXTURE ON APPARENT SURFACE GLOSS

    E-Print Network [OSTI]

    Ferwerda, James A.

    Author , Short title 1 EFFECTS OF MESOSCALE TEXTURE ON APPARENT SURFACE GLOSS James A. Ferwerda to it. We first measure both the microscale reflectance properties and mesoscale texture of flat, latex these images as stimuli in perceptual experiments to systematically study how surface mesoscale properties

  16. Persistence of iron limitation in the western subarctic Pacific SEEDS II mesoscale fertilization experiment

    E-Print Network [OSTI]

    Cochlan, William P.

    Persistence of iron limitation in the western subarctic Pacific SEEDS II mesoscale fertilization t The cumulative evidence from more than a dozen mesoscale iron-enrichment studies in high nitrate low chlorophyll diatoms, vary greatly among these mesoscale experiments even though similar amounts of iron were added

  17. Spatio-temporal segmentation of mesoscale ocean surface dynamics using satellite data

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Spatio-temporal segmentation of mesoscale ocean surface dynamics using satellite data Pierre Tandeo Temperature (SST) provide a wealth of information about ocean circulation, espe- cially mesoscale ocean an observation-driven framework, we investigate the extent to which mesoscale ocean dynamics may be decomposed

  18. Development of a Piezoelectrically-Actuated Mesoscale Robot Quadruped Michael Goldfarb, Michael Gogola, Gregory Fischer

    E-Print Network [OSTI]

    Development of a Piezoelectrically-Actuated Mesoscale Robot Quadruped Michael Goldfarb, Michael approach that offers a high locomotive efficiency, and is therefore well suited to mesoscale robot design actuated mesoscale robot quadruped. The design described utilizes a lightly damped skeletal structure

  19. Real-Time Forecasting for the Antarctic: An Evaluation of the Antarctic Mesoscale Prediction System (AMPS)*

    E-Print Network [OSTI]

    Howat, Ian M.

    Real-Time Forecasting for the Antarctic: An Evaluation of the Antarctic Mesoscale Prediction System. MANNING AND JORDAN G. POWERS Mesoscale and Microscale Meteorology Division, National Center.S. Antarctic Program's field operations, the Antarctic Mesoscale Prediction System (AMPS) was implemented in Oc

  20. A Diagnostic Suite of Models for the Evaluation of Oceanic Mesoscale Eddy Parameterizations

    E-Print Network [OSTI]

    Fox-Kemper, Baylor

    A Diagnostic Suite of Models for the Evaluation of Oceanic Mesoscale Eddy Parameterizations by S. D of Oceanic Mesoscale Eddy Parameterizations written by S. D. Bachman has been approved for the Department and Oceanic Sciences) A Diagnostic Suite of Models for the Evaluation of Oceanic Mesoscale Eddy

  1. PROBCAST: A Web-Based Portal to Mesoscale Probabilistic Forecasts Clifford Mass1

    E-Print Network [OSTI]

    Mass, Clifford F.

    1 PROBCAST: A Web-Based Portal to Mesoscale Probabilistic Forecasts Clifford Mass1 , Susan Joslyn over the Pacific Northwest. PROBCAST products are derived from the output of a mesoscale ensemble-processing of mesoscale, short-range ensembles. The NAS report also noted current deficiencies in the communication

  2. Mesoscale-resolving simulations of summer and winter bora events in the Adriatic Sea

    E-Print Network [OSTI]

    Cushman-Roisin, Benoit

    Mesoscale-resolving simulations of summer and winter bora events in the Adriatic Sea Benoit CushmanCAST model on a 1.2-min grid (about 2-km resolution) and resolve the mesoscale variability because the grid-Roisin, B., and K. A. Korotenko (2007), Mesoscale-resolving simulations of summer and winter bora events

  3. Sensitivity of Mesoscale Surface Dynamics to Surface Soil and Vegetation Contrasts over the Carolina Sandhills

    E-Print Network [OSTI]

    Raman, Sethu

    Sensitivity of Mesoscale Surface Dynamics to Surface Soil and Vegetation Contrasts over in mesoscale summertime precipitation over this region. Numerical simulations are analyzed to investigate the relationships between mesoscale surface dynamics and the transition from clay to sandy soils over this region

  4. Studies on non-premixed flame streets in a mesoscale channel

    E-Print Network [OSTI]

    Ju, Yiguang

    Studies on non-premixed flame streets in a mesoscale channel Bo Xu *, Yiguang Ju Department of channel width, wall temperature, and flow rate on the dynamics of non-premix flames in a mesoscale The Combustion Institute. Published by Elsevier Inc. All rights reserved. Keywords: Mesoscale combustion; Non

  5. ATM678, Mesoscale Dynamics, Spring 2014 Class time: TR 11:30am to 1pm

    E-Print Network [OSTI]

    Moelders, Nicole

    ATM678, Mesoscale Dynamics, Spring 2014 Class time: TR 11:30am to 1pm Classroom: Elvy auditorium, Akasofu 319 Course Description: The class provides a comprehensive explanation of mesoscale air motions ­ their phenology, basic physics and mechanisms, why they build and how mesoscale motions interact with the micro

  6. Mesoscale Self-Assembly of Hexagonal Plates Using Lateral Capillary Forces: Synthesis Using the "Capillary Bond"

    E-Print Network [OSTI]

    Prentiss, Mara

    Mesoscale Self-Assembly of Hexagonal Plates Using Lateral Capillary Forces: Synthesis Using examines self-assembly in a quasi-two-dimensional, mesoscale system. The system studied here involves-assembly from the molecular to the mesoscale, (ii) the demonstration of a system in which small objects can

  7. Mesoscale eddies northeast of the Hawaiian archipelago from satellite altimeter observations

    E-Print Network [OSTI]

    Qiu, Bo

    Mesoscale eddies northeast of the Hawaiian archipelago from satellite altimeter observations; published 16 March 2010. [1] Enhanced mesoscale eddy activity northeast of the Hawaiian archipelago by 5° longitude subregions revealed the dominant mesoscale periods ranging from 90 days near 18°N

  8. PHYSICAL REVIEW A 83, 043827 (2011) Quantum fluctuations and saturable absorption in mesoscale lasers

    E-Print Network [OSTI]

    Levi, Anthony F. J.

    2011-01-01T23:59:59.000Z

    PHYSICAL REVIEW A 83, 043827 (2011) Quantum fluctuations and saturable absorption in mesoscale in mesoscale lasers. The time evolution of the density matrix is obtained from numerical integration and field behavior of mesoscale lasers. Using only semiclassical master equations and specific device parameters

  9. Analysis of a mesoscale infiltration and water seepage test in unsaturated fractured rock: Spatial variabilities

    E-Print Network [OSTI]

    Zhou, Quanlin

    Analysis of a mesoscale infiltration and water seepage test in unsaturated fractured rock: Spatial 2006 Abstract A mesoscale (21 m in flow distance) infiltration and seepage test was recently conducted flow in fractured rock at mesoscale or a larger scale is not necessarily conditional explicitly

  10. Mesoscale distribution of zooplankton biomass in the northeast Atlantic Ocean determined with an Optical Plankton Counter

    E-Print Network [OSTI]

    Mesoscale distribution of zooplankton biomass in the northeast Atlantic Ocean determined Available online 2 June 2009 Keywords: Zooplankton Biomass Size distribution Mesoscale eddies Optical plankton counter Pelagic environment Northeast Atlantic Ocean a b s t r a c t We examined the mesoscale

  11. Draft Chapter from Mesoscale Dynamic Meteorology By Prof. Yu-lang Lin, North Carolina State University

    E-Print Network [OSTI]

    Droegemeier, Kelvin K.

    1 Draft Chapter from Mesoscale Dynamic Meteorology By Prof. Yu-lang Lin, North Carolina State University Chapter 1 Overview 1.1 Introduction The so-called mesometeorology or mesoscale meteorology as mesoscale phenomena by others (e.g. Orlanski 1975; Thunis and Bornstein 1996). Therefore, a more precise

  12. Mesoscale Simulation of Grain David Kinderlehrer, Jeehyun Lee, Irene Livshits and Shlomo Ta'asan

    E-Print Network [OSTI]

    Mesoscale Simulation of Grain Growth David Kinderlehrer, Jeehyun Lee, Irene Livshits and Shlomo Ta'asan WILEY-VCH Verlag Berlin GmbH September 4, 2003 #12;2 0.1 Introduction The mesoscale simulation of grain of the statistics it provides, we are led to the companion issue of coarse graining in mesoscale simulations. We

  13. The Importance of Mesoscale Circulations Generated by SubgridScale Landscape Heterogeneities in General Circulations Models

    E-Print Network [OSTI]

    Fridlind, Ann

    jcl92c.tex The Importance of Mesoscale Circulations Generated by Subgrid­Scale Landscape Oceanography, Cook Campus, Rutgers University, New Brunswick, NJ 08903, USA. #12; Abstract A mesoscale. These results emphasize the need to parameterize mesoscale processes induced by landscape discontinuities

  14. Large-Scale Errors and Mesoscale Predictability in Pacific Northwest Snowstorms DALE R. DURRAN

    E-Print Network [OSTI]

    Large-Scale Errors and Mesoscale Predictability in Pacific Northwest Snowstorms DALE R. DURRAN The development of mesoscale numerical weather prediction (NWP) models over the last two decades has made- search communities. Nevertheless, the predictability of the mesoscale features captured in such forecasts

  15. Mesoscale transport properties induced by near critical resistive pressure-gradient-driven turbulence in toroidal geometry

    E-Print Network [OSTI]

    Martín-Solís, José Ramón

    Mesoscale transport properties induced by near critical resistive pressure diffusive equation for mesoscale tracer-particle transport. The indices of the fractional derivates a mesoscale regime. That is, for time scales above the fluctuation scales reaching to the trans- port scales

  16. Mesoscale energetics and ows induced by sea-land and mountain-valley contrasts

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Mesoscale energetics and ¯ows induced by sea-land and mountain-valley contrasts S. Federico1 , G. A in determining the development of thermally forced mesoscale circula- tions (TFMCs) over a mountainous peninsula dynamics (climatology; mesoscale meteorology) 1 Introduction In the early hours of the morning the sun

  17. On the role of mesoscale eddies in the ventilation of Antarctic intermediate water

    E-Print Network [OSTI]

    Fischlin, Andreas

    On the role of mesoscale eddies in the ventilation of Antarctic intermediate water Zouhair Lachkar Mesoscale eddies CFC-11 Ventilation Southern Ocean a b s t r a c t The spatial distribution of Antarctic and ventilation are substantially affected by mesoscale eddies. To diagnose the role of eddies, we made global CFC

  18. Mesoscale Simulation of Tropical Cyclones in the South Pacific: Climatology and Interannual Variability

    E-Print Network [OSTI]

    Mesoscale Simulation of Tropical Cyclones in the South Pacific: Climatology and Interannual is shown to reproduce a wide range of mesoscale convective systems. Tropical cyclones grow from the most related to mesoscale in- teractions, which also affect TC tracks and the resulting occurrence. 1

  19. Asymmetric Catalysis at the Mesoscale: Gold Nanoclusters Embedded in Chiral Self-Assembled Monolayer as Heterogeneous

    E-Print Network [OSTI]

    Asymmetric Catalysis at the Mesoscale: Gold Nanoclusters Embedded in Chiral Self of the catalytically active metallic sites and the surrounding chiral SAM for the formation of a mesoscale the catalytically active site from the nanoscale to the mesoscale, which implies a principle of operating systems

  20. Self-Assembly of Mesoscale Isomers: The Role of Pathways and Degrees of Freedom

    E-Print Network [OSTI]

    Menon, Govind

    Self-Assembly of Mesoscale Isomers: The Role of Pathways and Degrees of Freedom Shivendra Pandey1 geometric path sampling and a mesoscale experimental model to investigate the self-assembly of a model. Citation: Pandey S, Johnson D, Kaplan R, Klobusicky J, Menon G, et al. (2014) Self-Assembly of Mesoscale

  1. CONVERGENCE AND STABILITY IN UPSCALING OF FLOW WITH INERTIA FROM PORESCALE TO MESOSCALE

    E-Print Network [OSTI]

    Peszynska, Malgorzata

    CONVERGENCE AND STABILITY IN UPSCALING OF FLOW WITH INERTIA FROM PORESCALE TO MESOSCALE MAl with inertia from porescale (microscale) to Darcy scale (lab scale, mesoscale). In particular, we solve Navier-Darcy model with inertia at mesoscale. 1. Introduction. In [1] we presented a proof-of-concept algorithm

  2. Deriving Mesoscale Surface Current Fields from Multi-Sensor Satellite Data , B. Seppke b

    E-Print Network [OSTI]

    Hamburg,.Universität

    Deriving Mesoscale Surface Current Fields from Multi-Sensor Satellite Data M. Gade a , B. Seppke b of mesoscale surface currents in the southestern Baltic Sea (Southern Baltic Proper). Marine surface films of the two-dimensional data sets may therefore allow for the calculation of mesoscale ocean current fields

  3. Segmentation of mesoscale ocean surface dynamics using satellite SST and SSH observations

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Segmentation of mesoscale ocean surface dynamics using satellite SST and SSH observations Pierre about ocean circulation, espe- cially mesoscale ocean dynamics which may involve strong spatio- temporal to which mesoscale ocean dynamics may be decomposed into a mixture of dynamical modes, characterized

  4. Generation of strong mesoscale eddies by weak ocean gyres by Michael A. Spall1

    E-Print Network [OSTI]

    Generation of strong mesoscale eddies by weak ocean gyres by Michael A. Spall1 ABSTRACT The generation of strong mesoscale variability through instability of the large-scale circulation in the interior with the scaling theory. 1. Introduction It is now well recognized that the kinetic energy of the mesoscale

  5. Mesoscale eddies in the northeastern Pacific tropical-subtropical transition zone: Statistical characterization from satellite altimetry

    E-Print Network [OSTI]

    Mesoscale eddies in the northeastern Pacific tropical-subtropical transition zone: Statistical February 2012; revised 24 August 2012; accepted 6 September 2012; published 24 October 2012. [1] Mesoscale cycle. Although mesoscale eddies in these areas have been previously reported, this study provides

  6. Mesoscale and clusters of synchrony in networks of bursting neurons Igor Belykh1

    E-Print Network [OSTI]

    Belykh, Igor

    Mesoscale and clusters of synchrony in networks of bursting neurons Igor Belykh1 and Martin Hasler2 with relatively large clusters, leading potentially to cluster synchronization at the mesoscale network level. We represent the microscale level, cooperative rhythms of neuronal subpopulations define the mesoscale level

  7. Small and mesoscale properties of a substorm onset auroral arc H. U. Frey,1

    E-Print Network [OSTI]

    Bergen, Universitetet i

    Small and mesoscale properties of a substorm onset auroral arc H. U. Frey,1 O. Amm,2 C. C. Chaston; revised 22 June 2010; accepted 28 June 2010; published 7 October 2010. [1] We present small and mesoscale. Good agreement could be reached for the mesoscale arc properties. A qualitative analysis

  8. Seasonal Mesoscale and Submesoscale Eddy Variability along the North Pacific Subtropical Countercurrent

    E-Print Network [OSTI]

    Qiu, Bo

    Seasonal Mesoscale and Submesoscale Eddy Variability along the North Pacific Subtropical abundant in mesoscale eddies, but also exhibits prominent submesoscale eddy features. Output from a 1 the seasonal STCC variability in the mesoscale versus submesoscale ranges. Resolving the eddy scales of .150 km

  9. Development of the Flux-Adjusting Surface Data Assimilation System for Mesoscale Models

    E-Print Network [OSTI]

    Niyogi, Dev

    Development of the Flux-Adjusting Surface Data Assimilation System for Mesoscale Models KIRAN and temperature and for surface air temperature and water vapor mixing ratio for mesoscale models. In the FASDAS-field variables. The FASDAS is coupled to a land surface submodel in a three-dimensional mesoscale model and tests

  10. Mesoscale symmetries explain dynamical equivalence of food webs

    E-Print Network [OSTI]

    Aufderheide, Helge; Gross, Thilo

    2012-01-01T23:59:59.000Z

    A present challenge in complex systems is to identify mesoscale structures that have distinct dynamical implications. In this paper we present a detailed investigation of a previously observed dynamical equivalence of certian ecological food webs. We show that this equivalence is rooted in mesoscale symmetries that exist in these webs. Certain eigenvectors of the Jacobian describing dynamical modes of the system, such as specific instabilities or responses to perturbations, localize on these symmetric motifs. On the one hand this means that by removing a symmetry from the network one obtains a system which has identical dynamics except for the removal of the localized mode. This explains the previously observed equivalence. On the other hand it means that we can identify dynamical modes that only depend on the symmetric motif. Symmetric structures thus provide an example for mesoscale network motifs having distinct and exact implications for the dynamics.

  11. Eddy heat fluxes at Drake Passage due to mesoscale motions

    E-Print Network [OSTI]

    Rojas Recabal, Ricardo Luis

    1982-01-01T23:59:59.000Z

    EDDY HEAT FLUKES AT DRAKE PASSAGE DUE TO MESOSCALE MOTIONS A Thesis by RICARDO LUIS ROJAS RECABAL Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May... 1982 Major Subject: Oceanography EDDY HEAT FLUXES AT DRAKE PASSAGE DUE TO MESOSCALE NOTIONS A Thesis by RICARDO LUIS ROJAS RECABAL Approved as to style and content by: was )W-~ Member em er May 1982 ABSTRACT Eddy Heat Fluxes at Drake Passage...

  12. Review of structure representation and reconstruction on mesoscale and microscale

    SciTech Connect (OSTI)

    Li, Dongsheng

    2014-05-01T23:59:59.000Z

    Structure representation and reconstruction on mesoscale and microscale is critical in material design, advanced manufacturing and multiscale modeling. Microstructure reconstruction has been applied in different areas of materials science and technology, structural materials, energy materials, geology, hydrology, etc. This review summarizes the microstructure descriptors and formulations used to represent and algorithms to reconstruct structures at microscale and mesoscale. In the stochastic methods using correlation function, different optimization approaches have been adapted for objective function minimization. A variety of reconstruction approaches are compared in efficiency and accuracy.

  13. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Calibrated Probabilistic Mesoscale Weather Field Forecasting: The Geostatist...

    E-Print Network [OSTI]

    Raftery, Adrian

    permission. Calibrated Probabilistic Mesoscale Weather Field Forecasting: The Geostatist... Yulia Gel; Adrian

  14. October 1986 R. H. Johnson 721 Lower-Tropospheric Warming and Drying in Tropical Mesoscale Convective Systems

    E-Print Network [OSTI]

    Johnson, Richard H.

    October 1986 R. H. Johnson 721 Lower-Tropospheric Warming and Drying in Tropical Mesoscale components of tropical mesoscale convective systems. It is found that while the apparent heat source Q1 of mesoscale downdrafts within the mesoscale convective systems. The warming and drying at low levels

  15. Mesoscale predictability of an extreme warm-season precipitation event

    E-Print Network [OSTI]

    Odins, Andrew Michael

    2005-02-17T23:59:59.000Z

    . The Penn State University/NCAR Mesoscale Model version 5 (MM5) was used to conduct predictability experiments, which follow closely to the research conducted by Zhang et al. A control simulation initialized at 00Z 1 July is established over a 30-km grid...

  16. MESOSCALE MODELLING OF WIND ENERGY OVER NON-HOMOGENEOUS TERRAIN

    E-Print Network [OSTI]

    Pielke, Roger A.

    MESOSCALE MODELLING OF WIND ENERGY OVER NON-HOMOGENEOUS TERRAIN (ReviewArticle) Y. MAHRER.1. OBSERVATIONALAPPROACHES Evaluations of wind energy based on wind observations (usually surface winds) at well, the resolution of the wind energy pattern throughout an extended area by this methodology requires a large number

  17. Wind resource assessment with a mesoscale non-hydrostatic model

    E-Print Network [OSTI]

    Boyer, Edmond

    Wind resource assessment with a mesoscale non- hydrostatic model Vincent Guénard, Center for Energy is developed for assessing the wind resource and its uncertainty. The work focuses on an existing wind farm mast measurements. The wind speed and turbulence fields are discussed. It is shown that the k

  18. Characterization of Caribbean Meso-Scale Eddies Jose M. Lopez

    E-Print Network [OSTI]

    Gilbes, Fernando

    Characterization of Caribbean Meso-Scale Eddies Jose M. Lopez Department of Marine Sciences, P-term goal is to improve predictivity of physical, biogeochemical and optical properties of Eastern Caribbean, biological and optical variables across frontal and eddy boundaries in the Eastern Caribbean Sea · To develop

  19. Mesoscale simulations of surfactant dissolution and mesophase formation

    E-Print Network [OSTI]

    P. Prinsen; P. B. Warren; M. A. J. Michels

    2002-04-22T23:59:59.000Z

    The evolution of the contact zone between pure surfactant and solvent has been studied by mesoscale simulation. It is found that mesophase formation becomes diffusion controlled and follows the equilibrium phase diagram adiabatically almost as soon as individual mesophases can be identified, corresponding to times in real systems of order 10 microseconds.

  20. LANSCE School on Neutron Scattering: Materials at the Mesoscale

    E-Print Network [OSTI]

    1 11th LANSCE School on Neutron Scattering: Materials at the Mesoscale Lujan Center Los Alamos. Please name the applicant for admission to the 11th LANSCE School on Neutron Scattering: Last, First LANSCE School on Neutron Scattering including: drive and motivation, ability to work with others

  1. WIND ATLAS FOR EGYPT: MEASUREMENTS, MICRO-AND MESOSCALE MODELLING

    E-Print Network [OSTI]

    sets for evaluating the potential wind power output from large electricity-producing wind turbine and accurate wind atlas data sets for evaluating the potential wind power output from large electricityWIND ATLAS FOR EGYPT: MEASUREMENTS, MICRO- AND MESOSCALE MODELLING Niels G. Mortensen1 , Jens

  2. RisR1252(EN) The Numerical Wind Atlas

    E-Print Network [OSTI]

    potential from high quality wind measurements. It estimates the local influences on the wind by small hillsRisø­R­1252(EN) The Numerical Wind Atlas -- the KAMM/WAsP Method Helmut P. Frank, Ole Rathmann The method of combining the Karlsruhe Atmospheric Mesoscale Model, KAMM, with the Wind Atlas Analysis

  3. Determining Greenland Ice Sheet sensitivity to regional climate change: one-way coupling of a 3-D thermo-mechanical ice sheet model with a mesoscale climate model

    E-Print Network [OSTI]

    Schlegel, Nicole-Jeanne

    2011-01-01T23:59:59.000Z

    ice sheet model with a mesoscale climate model By Nicole-ice sheet model with a mesoscale climate model Copyrightice sheet model with a mesoscale climate model by Nicole-

  4. Thermodynamic properties of mesoscale convective systems observed during BAMEX

    SciTech Connect (OSTI)

    Correia, James; Arritt, R.

    2008-11-01T23:59:59.000Z

    Dropsonde observations from the Bow-echo and Mesoscale convective vortex EXperiment (BAMEX) are used to document the spatio-temporal variability of temperature, moisture and wind within mesoscale convective systems (MCSs). Onion type sounding structures are found throughout the stratiform region of MCSs but the temperature and moisture variability is large. Composite soundings were constructed and statistics of thermodynamic variability were generated within each sub-region of the MCS. The calculated air vertical velocity helped identify subsaturated downdrafts. We found that lapse rates within the cold pool varied markedly throughout the MCS. Layered wet bulb potential temperature profiles seem to indicate that air within the lowest several km comes from a variety of source regions. We also found that lapse rate transitions across the 0 C level were more common than isothermal, melting layers. We discuss the implications these findings have and how they can be used to validate future high resolution numerical simulations of MCSs.

  5. Plant Decontamination as a Precondition of the Remote Dismantling Concept of the Karlsruhe Vitrification Plant VEK - 12206

    SciTech Connect (OSTI)

    Dux, Joachim; Fleisch, Joachim; Latzko, Bernhard; Rohleder, Norbert [WAK Rueckbau- und Entsorgungs- GmbH, P.O.Box 12 63, 76339 Eggenstein-Leopoldshafen (Germany)

    2012-07-01T23:59:59.000Z

    Vitrification of the high-active liquid waste concentrates (HAWC) was a major milestone in the WAK decommissioning project (StiWAK). From September 2009 to June 2010, about 56 m{sup 3} of HAWC were vitrified at the Karlsruhe vitrification facility (VEK) and filled into 123 canisters. HAWC vitrification was followed by an extensive rinsing and shutdown program, in the course of which both the VEK process installations and the facilities for the storage and evaporation of high-active fission product solutions (LAVA) are prepared specifically for dismantling. Finally the rinsing programme leads to an overall reduction of the remaining contamination in the installations by a factor of approx. 5 - 10. The amount of liquids arisen from this program has been vitrified and another 17 canisters have been filled. In total, 140 canisters were packed into 5 CASTOR casks that were already transported to the Zwischenlager Nord (interim store North) of EWN GmbH (ZLN) in the mid of February 2011. The melter of the VEK was already shut down in the late November 2010. (authors)

  6. Quantum fluctuations and saturable absorption in mesoscale lasers

    SciTech Connect (OSTI)

    Roy-Choudhury, Kaushik [Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484 (United States); Levi, A. F. J. [Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484 (United States); Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089-2533 (United States)

    2011-04-15T23:59:59.000Z

    We present a quantum-mechanical treatment of fluctuations and saturable absorption in mesoscale lasers. The time evolution of the density matrix is obtained from numerical integration and field-field and intensity-intensity correlations are calculated to obtain steady-state linewidth and photon statistics. Inclusion of a saturable absorber in the otherwise homogeneous medium is shown to suppress lasing, increase fluctuations, and enhance spontaneous emission near threshold.

  7. Mesoscale modeling of metal-loaded high explosives

    SciTech Connect (OSTI)

    Bdzil, John Bohdan [Los Alamos National Laboratory; Lieberthal, Brandon [UNIV OF ILLINOIS; Srewart, Donald S [UNIV OF ILLINOIS

    2010-01-01T23:59:59.000Z

    We describe a 3D approach to modeling multi-phase blast explosive, which is primarily condensed explosive by volume with inert embedded particles. These embedded particles are uniform in size and placed on the array of a regular lattice. The asymptotic theory of detonation shock dynamics governs the detonation shock propagation in the explosive. Mesoscale hydrodynamic simulations are used to show how the particles are compressed, deformed, and accelerated by the high-speed detonation products flow.

  8. Mesoscale Modeling of LX-17 Under Isentropic Compression

    SciTech Connect (OSTI)

    Springer, H K; Willey, T M; Friedman, G; Fried, L E; Vandersall, K S; Baer, M R

    2010-03-06T23:59:59.000Z

    Mesoscale simulations of LX-17 incorporating different equilibrium mixture models were used to investigate the unreacted equation-of-state (UEOS) of TATB. Candidate TATB UEOS were calculated using the equilibrium mixture models and benchmarked with mesoscale simulations of isentropic compression experiments (ICE). X-ray computed tomography (XRCT) data provided the basis for initializing the simulations with realistic microstructural details. Three equilibrium mixture models were used in this study. The single constituent with conservation equations (SCCE) model was based on a mass-fraction weighted specific volume and the conservation of mass, momentum, and energy. The single constituent equation-of-state (SCEOS) model was based on a mass-fraction weighted specific volume and the equation-of-state of the constituents. The kinetic energy averaging (KEA) model was based on a mass-fraction weighted particle velocity mixture rule and the conservation equations. The SCEOS model yielded the stiffest TATB EOS (0.121{micro} + 0.4958{micro}{sup 2} + 2.0473{micro}{sup 3}) and, when incorporated in mesoscale simulations of the ICE, demonstrated the best agreement with VISAR velocity data for both specimen thicknesses. The SCCE model yielded a relatively more compliant EOS (0.1999{micro}-0.6967{micro}{sup 2} + 4.9546{micro}{sup 3}) and the KEA model yielded the most compliant EOS (0.1999{micro}-0.6967{micro}{sup 2}+4.9546{micro}{sup 3}) of all the equilibrium mixture models. Mesoscale simulations with the lower density TATB adiabatic EOS data demonstrated the least agreement with VISAR velocity data.

  9. Analysis of 11 june 2003 mesoscale convective vortex genesis using weather surveillance radar ??88 doppler (wsr-88d) 

    E-Print Network [OSTI]

    Reynolds, Amber Elizabeth

    2009-05-15T23:59:59.000Z

    Mesoscale convective vortices (MCVs), which typically form within the stratiform rain of some mesoscale convective systems (MCSs), may persist for days, often regenerating convection daily. Long-lived MCVs can produce as much precipitation as a...

  10. The Retrieval of Ice Water Content from Radar Reflectivity Factor and Temperature and Its Use in Evaluating a Mesoscale Model

    E-Print Network [OSTI]

    Hogan, Robin

    in Evaluating a Mesoscale Model ROBIN J. HOGAN, MARION P. MITTERMAIER,* AND ANTHONY J. ILLINGWORTH Department-GHz radar with the values held in the Met Office mesoscale forecast model, for eight precipitating

  11. Analysis of 11 june 2003 mesoscale convective vortex genesis using weather surveillance radar ??88 doppler (wsr-88d)

    E-Print Network [OSTI]

    Reynolds, Amber Elizabeth

    2009-05-15T23:59:59.000Z

    Mesoscale convective vortices (MCVs), which typically form within the stratiform rain of some mesoscale convective systems (MCSs), may persist for days, often regenerating convection daily. Long-lived MCVs can produce as much precipitation as a...

  12. A case study of the mesoscale and synoptic-scale heat and moisture budgets in the vicinity of a mesoscale convective complex

    E-Print Network [OSTI]

    Dial, Greg Leander

    1990-01-01T23:59:59.000Z

    A CASE STUDY OF THE MESOSCALE AND SYNOPTIC-SCALE HEAT AND MOISTURE BUDGETS IN THE VICINITY OF A MESOSCALE CONVECTIVE COMPLEX A Thesis by GREG LEANDER DIAL Submitted to the Office of Graduate Studies of Texas A8 M University in partial...&j Leandor Dial Approved as lo style and content by: Kcnnctt& C, ftrunrti&lgc (Ctn&i& ol' Co&nn&ittcc) (I tcn&l&c&) Norman W. Na glc (Mcmbcr) E ar . ipscr (I les&I of Dcpartmcnt) I 1 a y I 9 &3 0 ABSTRACT A Case Study of the Mesoscale and Synoptic...

  13. FeCycle: Attempting an iron biogeochemical budget from a mesoscale SF6 tracer experiment in unperturbed low iron waters

    E-Print Network [OSTI]

    Wilhelm, Steven W.

    FeCycle: Attempting an iron biogeochemical budget from a mesoscale SF6 tracer experiment to ocean physics. In summer 2003 we conducted FeCycle, a 10-day mesoscale tracer release in HNLC waters SE biogeochemical budget from a mesoscale SF6 tracer experiment in unperturbed low iron waters, Global Biogeochem

  14. Proceedings in Applied Mathematics and Mechanics, 31 October 2007 Parametrization for Mesoscale Ocean Transport through Random Flow

    E-Print Network [OSTI]

    Kramer, Peter

    Proceedings in Applied Mathematics and Mechanics, 31 October 2007 Parametrization for Mesoscale a mathematical approach based on homogenization theory toward representing the effects of mesoscale coherent in parameterizing the transport effects of sub-grid scale flow structures appearing in mesoscale oceanic turbulence

  15. Anatomy and evolution of a cyclonic mesoscale eddy observed in the northeastern Pacific tropical-subtropical transition zone

    E-Print Network [OSTI]

    Anatomy and evolution of a cyclonic mesoscale eddy observed in the northeastern Pacific tropical and evolution of a cyclonic mesoscale eddy observed in the northeastern Pacific tropical-subtropical transition zone, J. Geophys. Res. Oceans, 118, doi:10.1002/ 2013JC009339. 1. Introduction [2] Mesoscale eddy

  16. Charge transfer and in-cloud structure of large-charge-moment positive lightning strokes in a mesoscale convective system

    E-Print Network [OSTI]

    Cummer, Steven A.

    in a mesoscale convective system Gaopeng Lu,1 Steven A. Cummer,1 Jingbo Li,1 Feng Han,1 Richard J. Blakeslee,2 positive cloud-to-ground (+CG) strokes in a mesoscale convective system. Although no high altitude images of large-charge-moment positive lightning strokes in a mesoscale convective system, Geophys. Res. Lett., 36

  17. An implicit finite-element model for 3D non-hydrostatic mesoscale ocean M.A. Maidana1

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    An implicit finite-element model for 3D non-hydrostatic mesoscale ocean flows M.A. Maidana1 , J-dimensional, non-hydrostatic mesoscale ocean flows. The model considered here incorporates surface wind stress and the idea of using unstructured grids for modelling mesoscale ocean dynamics sounds very attractive given

  18. The impact of agricultural intensification and irrigation on landatmosphere interactions and Indian monsoon precipitation --A mesoscale modeling perspective

    E-Print Network [OSTI]

    Niyogi, Dev

    and Indian monsoon precipitation -- A mesoscale modeling perspective E.M. Douglas a, , A. Beltrán-Przekurat b convergence, mesoscale convection, and precipitation patterns over the Indian monsoon region. Four experiments pattern and changes in mesoscale precipitation. These agricultural changes, including irrigation modify

  19. Spatial Intermittency of Surface Layer Wind Fluctuations at Mesoscale Range Rachel Baile* and Jean-Francois Muzy

    E-Print Network [OSTI]

    Boyer, Edmond

    Spatial Intermittency of Surface Layer Wind Fluctuations at Mesoscale Range Rachel Bai¨le* and Jean and to confirm an intermittent nature of mesoscale fluctuations similar to the one observed in fully developed involving a wide range of spatiotemporal scales. The modeling of wind speed behavior in the mesoscale range

  20. THE USE OF SPATIAL CONSTRAINTS IN THE DERIVATION OF MESOSCALE SEA SURFACE CURRENT FIELDS FROM MULTI-SENSOR SATELLITE DATA

    E-Print Network [OSTI]

    Hamburg,.Universität

    THE USE OF SPATIAL CONSTRAINTS IN THE DERIVATION OF MESOSCALE SEA SURFACE CURRENT FIELDS FROM MULTI images are used for the computation of mesoscale surface currents in the Northern and Southern Baltic for the derivation of mesoscale sea surface currents using multi-sensor / multi-channel satellite images by means

  1. Development and Evaluation of a Coupled Photosynthesis-Based Gas Exchange Evapotranspiration Model (GEM) for Mesoscale Weather Forecasting Applications

    E-Print Network [OSTI]

    Niyogi, Dev

    (GEM) for Mesoscale Weather Forecasting Applications DEV NIYOGI Department of Agronomy, and Department form 13 May 2008) ABSTRACT Current land surface schemes used for mesoscale weather forecast models use model (GEM) as a land surface scheme for mesoscale weather forecasting model applications. The GEM

  2. THE PRECIPITATION REGIME OF DRONNING MAUD LAND, ANTARCTICA, DERIVED FROM AMPS (ANTARCTIC MESOSCALE PREDICTION SYSTEM) ARCHIVE DATA

    E-Print Network [OSTI]

    Schlosser, Elisabeth

    THE PRECIPITATION REGIME OF DRONNING MAUD LAND, ANTARCTICA, DERIVED FROM AMPS (ANTARCTIC MESOSCALE. Manning2) 1) Institute of Meteorology and Geophysics, University of Innsbruck, Austria 2) Mesoscale the temporal and spatial distribution of precipitation in DML using AMPS (Antarctic Mesoscale Prediction System

  3. Effect of mesoscale topography over the Tibetan Plateau on summer precipitation in China: A regional model study

    E-Print Network [OSTI]

    Wang, Yuqing

    Effect of mesoscale topography over the Tibetan Plateau on summer precipitation in China 2008; accepted 27 August 2008; published 8 October 2008. [1] The effect of mesoscale topography over and topography. In the sensitivity simulation, the mesoscale feature in topography over the TP was smoothed out

  4. IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 5, OCTOBER 2009 1047 A New Mechanism for Mesoscale Legged

    E-Print Network [OSTI]

    Webster III, Robert James

    IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 5, OCTOBER 2009 1047 A New Mechanism for Mesoscale for a novel mechanism for robotic legged locomotion at the mesoscale (from hundreds of microns to tens mesoscale locomotion tasks, in- cluding endoscopic capsule robot locomotion in the gastrointestinal tract

  5. Mesoscale Eddy Energy Locality in an Idealized Ocean Model IAN GROOMS, LOUIS-PHILIPPE NADEAU, AND K. SHAFER SMITH

    E-Print Network [OSTI]

    Smith, K. Shafer

    Mesoscale Eddy Energy Locality in an Idealized Ocean Model IAN GROOMS, LOUIS-PHILIPPE NADEAU, AND K investigates the energy budget of mesoscale eddies in wind-driven two-layer quasigeostrophic simulations of eddy energy are ``nonlocal.'' Many mesoscale parameterizations assume that statistics of the unresolved

  6. Sensitivity of Mesoscale Gravity Waves to the Baroclinicity of Jet-Front Systems SHUGUANG WANG AND FUQING ZHANG

    E-Print Network [OSTI]

    Sensitivity of Mesoscale Gravity Waves to the Baroclinicity of Jet-Front Systems SHUGUANG WANG of mesoscale gravity waves to the baroclinicity of the background jet-front systems by simulating different life cycles of baroclinic waves with a high-resolution mesoscale model. Four simulations are made

  7. Characterization of Mesoscale Coiled-Coil Peptide-Porphyrin Brian J. Pepe-Mooney, Bashkim Kokona, and Robert Fairman*

    E-Print Network [OSTI]

    Fairman, Robert

    Characterization of Mesoscale Coiled-Coil Peptide-Porphyrin Complexes Brian J. Pepe-Mooney, Bashkim-assemble to form mesoscale filaments and serve as a scaffold for porphyrin interaction. In our earlier work mesoscale fibrils were formed, taking advantage of the types of porphyrin interactions that are present

  8. The Surface Expression of Semidiurnal Internal Tides near a Strong Source at Hawaii. Part II: Interactions with Mesoscale Currents*

    E-Print Network [OSTI]

    : Interactions with Mesoscale Currents* C. CHAVANNE, P. FLAMENT, AND D. LUTHER School of Ocean and Earth Science in the light of the interaction of internal tides with energetic surface-intensified mesoscale currents locations at critical topographic slopes through idealized mesoscale currents approximating the observed

  9. Mesoscale variability in time series data: Satellite-based estimates for the U.S. JGOFS Bermuda Atlantic

    E-Print Network [OSTI]

    Mesoscale variability in time series data: Satellite-based estimates for the U.S. JGOFS Bermuda TOPEX/Poseidon­ERS-1/2) are used to characterize, statistically, the mesoscale variability about the U to better understand the contribution of mesoscale eddies to the time series record and the model- data

  10. Nature of the Mesoscale Boundary Layer Height and Water Vapor Variability Observed 14 June 2002 during the IHOP_2002 Campaign

    E-Print Network [OSTI]

    Guichard, Francoise

    Nature of the Mesoscale Boundary Layer Height and Water Vapor Variability Observed 14 June 2002, Boulder, Colorado (Manuscript received 4 September 2007, in final form 23 June 2008) ABSTRACT Mesoscale at the mesoscale, with the spatial pattern and the magnitude of the variability changing from day to day. On 14

  11. Isolating the role of mesoscale eddies in mixing of a passive tracer in an eddy resolving model

    E-Print Network [OSTI]

    Miami, University of

    Isolating the role of mesoscale eddies in mixing of a passive tracer in an eddy resolving model February 2008; published 16 May 2008. [1] This study examines the role of mesoscale eddies in distribution was replaced by a down-gradient diffusive parameterization. Our results demonstrate that advection by mesoscale

  12. Copyright (to be inserted by the publisher ) Mesoscale Simulation of the Evolution of the Grain Boundary Character

    E-Print Network [OSTI]

    Rohrer, Gregory S.

    Citation & Copyright (to be inserted by the publisher ) Mesoscale Simulation of the Evolution; Simulation; Grain boundary energy; Mullins Equation Abstract. A mesoscale, variational simulation of grain to the mesoscale simulation of grain growth in large two dimensional systems to study the evolution of the grain

  13. Combustion in Meso-scale Vortex Chambers Ming-hsun Wu*

    E-Print Network [OSTI]

    Yang, Vigor

    1 Combustion in Meso-scale Vortex Chambers Ming-hsun Wu* , Yanxing Wang, Vigor Yang and Richard A) #12;2 COMBUSTION IN MESO-SCALE VORTEX CHAMBERS Ming-hsun Wu, Yanxing Wang, Vigor Yang and Richard A with the chemical energy varying from 25 to 174W. For the largest combustion volume, hydrogen and hydrocarbons

  14. Sensitivity of mesoscale gravity waves to the baroclinicity of jet-front systems 

    E-Print Network [OSTI]

    Wang, Shuguang

    2006-04-12T23:59:59.000Z

    To investigate the generation of mesoscale gravity waves from upper-tropospheric jet-front systems, five different life cycles of baroclinic waves are simulated with a high-resolution mesoscale model (MM5 with 10-km grid spacing). The baroclinicity...

  15. Transient luminous events above two mesoscale convective systems: Charge moment change analysis

    E-Print Network [OSTI]

    Rutledge, Steven

    Transient luminous events above two mesoscale convective systems: Charge moment change analysis that were parents of transient luminous events (TLEs; mainly sprites) over two different storms: 9 May (20. A. Rutledge, and D. R. MacGorman (2011), Transient luminous events above two mesoscale convective

  16. Sensitivity of mesoscale gravity waves to the baroclinicity of jet-front systems

    E-Print Network [OSTI]

    Wang, Shuguang

    2006-04-12T23:59:59.000Z

    To investigate the generation of mesoscale gravity waves from upper-tropospheric jet-front systems, five different life cycles of baroclinic waves are simulated with a high-resolution mesoscale model (MM5 with 10-km grid spacing). The baroclinicity...

  17. Multiscale dynamics of atmospheric and oceanic variability in the climate system

    E-Print Network [OSTI]

    Subramanian, Aneesh C.

    2012-01-01T23:59:59.000Z

    applied to the Oceanic Mesoscale in the South Eastassimilation at the oceanic mesoscale: A review. JOURNAL-scale circulations and mesoscale convective activity in

  18. Phase behavior and mesoscale solubilization in aqueous solutions of hydrotropes

    E-Print Network [OSTI]

    Deepa Subramanian; Mikhail A. Anisimov

    2013-09-27T23:59:59.000Z

    Hydrotropes are amphiphilic molecules that are too small to spontaneously form equilibrium structures in aqueous solutions, but form dynamic, noncovalent assemblies, referred to as clusters. In the presence of a hydrophobic compound, these clusters seem to get stabilized leading to the formation of long-lived, highly stable mesoscopic droplets, a phenomenon that we call mesoscale solubilization. In this work, we focus on the unusual mesoscopic properties of aqueous solutions of a nonionic hydrotrope, namely tertiary butyl alcohol (TBA), on addition of various hydrophobic compounds. Aqueous TBA solutions, in about 3 to 8 mol percent TBA concentration range and about 0 to 25 deg. C temperature range, show the presence of short-ranged (0.5 nm), short-lived (tens of picoseconds) molecular clusters which result in anomalies of the thermodynamic properties. These clusters are transient but do not relax by diffusion, thus distinctly different from conventional concentration fluctuations. In this concentration and temperature range, upon the addition of a third (more hydrophobic) component to TBA-water solutions, long-lived mesoscopic droplets of about 100 nm size are observed. In this work, we clarify the ambiguity behind the definition of solubility and elucidate the phenomenon of mesoscale solubilization. A systematic study of the macro and meso phase behavior of three ternary systems TBA-water-propylene oxide, TBA-water-isobutyl alcohol, and TBA-water-cyclohexane has been carried out. We differentiate between molecular solubility, mesoscale solubilization, and macroscopic phase separation. We have confirmed that practically stable aqueous colloids can be created from small molecules, without addition of surfactants or polymers. Such kind of novel materials may find applications in the design of various processes and products, ranging from pharmaceuticals to cosmetics and agrochemicals.

  19. Customizing mesoscale self-assembly with 3D printing

    E-Print Network [OSTI]

    M. Poty; G. Lumay; N. Vandewalle

    2013-10-17T23:59:59.000Z

    Self-assembly due to capillary forces is a common method for generating 2D mesoscale structures from identical floating particles at the liquid-air interface. Designing building blocks to obtain a desired mesoscopic structure is a scientific challenge. We show herein that it is possible to shape the particles with a low cost 3D printer, for composing specific mesoscopic structures. Our method is based on the creation of capillary multipoles inducing either attractive or repulsive forces. Since capillary interactions can be downscaled, our method opens new ways to low cost microfabrication.

  20. Analytical Rescaling of Polymer Dynamics from Mesoscale Simulations

    E-Print Network [OSTI]

    I. Y. Lyubimov; J. McCarty; A. Clark; M. G. Guenza

    2011-03-10T23:59:59.000Z

    We present a theoretical approach to scale the artificially fast dynamics of simulated coarse-grained polymer liquids down to its realistic value. As coarse-graining affects entropy and dissipation, two factors enter the rescaling: inclusion of intramolecular vibrational degrees of freedom, and rescaling of the friction coefficient. Because our approach is analytical, it is general and transferable. Translational and rotational diffusion of unentangled and entangled polyethylene melts, predicted from mesoscale simulations of coarse-grained polymer melts using our rescaling procedure, are in quantitative agreement with united atom simulations and with experiments.

  1. Mesoscale simulations of polymer dynamics in microchannel flows

    E-Print Network [OSTI]

    L. Cannavacciuolo; R. G. Winkler; G. Gompper

    2007-09-24T23:59:59.000Z

    The non-equilibrium structural and dynamical properties of flexible polymers confined in a square microchannel and exposed to a Poiseuille flow are investigated by mesoscale simulations. The chain length and the flow strength are systematically varied. Two transport regimes are identified, corresponding to weak and strong confinement. For strong confinement, the transport properties are independent of polymer length. The analysis of the long-time tumbling dynamics of short polymers yields non-periodic motion with a sublinear dependence on the flow strength. We find distinct differences for conformational as well as dynamical properties from results obtained for simple shear flow.

  2. Atmospheric Neutrinos

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2006-12-11T23:59:59.000Z

    This paper is a brief overview of the theory and experimental data of atmospheric neutrino production at the fiftieth anniversary of the experimental discovery of neutrinos.

  3. A mesoscale analysis of the Rayleigh-Plateau instability.

    SciTech Connect (OSTI)

    Pao, Wenxiao (BU); Soteriou, Marios (UTRC); Li, Xiaoyi (UTRC); Karniadakis, George (BU); Arienti, Marco

    2010-11-01T23:59:59.000Z

    Capillary pinch-off results carried out with the Many-Body Dissipative Particle Dynamics (MDPD) method are compared with the two-phase continuum discretization of hydrodynamics. The MDPD method provides a mesoscale description of the liquid-gas interface -- molecules can be thought of as grouped in particles with modeled Brownian and dissipative effects. No liquid-gas interface is explicitly defined; surface properties, such as surface tension, result from the MDPD interaction parameters. In side-to-side comparisons, the behavior of the MDPD liquid is demonstrated to replicate the macroscale behavior (thin interface assumption) calculated by the Combined Level Set-Volume of Fluid (CLSVOF) method. For instance, in both the continuum and mesoscale discretizations the most unstable wavelength perturbation leads to pinch-off, whereas a smaller wavelength-to-diameter ratio, as expected, does not. The behavior of the virial pressure in MDPD will be discussed in relation to the hydrodynamic capillary pressure that results from the thin interface assumption.

  4. Mesoscale Spectra of Mars's Atmosphere Derived from MGS TES Infrared Radiances TAKESHI IMAMURA

    E-Print Network [OSTI]

    Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa FUKUHARA Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara potential energy by differential solar heating. This is converted to eddy available potential energy

  5. Mesoscale Benchmark Demonstration Problem 1: Mesoscale Simulations of Intra-granular Fission Gas Bubbles in UO2 under Post-irradiation Thermal Annealing

    SciTech Connect (OSTI)

    Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert; Gao, Fei; Sun, Xin; Tonks, Michael; Biner, Bullent; Millet, Paul; Tikare, Veena; Radhakrishnan, Balasubramaniam; Andersson , David

    2012-04-11T23:59:59.000Z

    A study was conducted to evaluate the capabilities of different numerical methods used to represent microstructure behavior at the mesoscale for irradiated material using an idealized benchmark problem. The purpose of the mesoscale benchmark problem was to provide a common basis to assess several mesoscale methods with the objective of identifying the strengths and areas of improvement in the predictive modeling of microstructure evolution. In this work, mesoscale models (phase-field, Potts, and kinetic Monte Carlo) developed by PNNL, INL, SNL, and ORNL were used to calculate the evolution kinetics of intra-granular fission gas bubbles in UO2 fuel under post-irradiation thermal annealing conditions. The benchmark problem was constructed to include important microstructural evolution mechanisms on the kinetics of intra-granular fission gas bubble behavior such as the atomic diffusion of Xe atoms, U vacancies, and O vacancies, the effect of vacancy capture and emission from defects, and the elastic interaction of non-equilibrium gas bubbles. An idealized set of assumptions was imposed on the benchmark problem to simplify the mechanisms considered. The capability and numerical efficiency of different models are compared against selected experimental and simulation results. These comparisons find that the phase-field methods, by the nature of the free energy formulation, are able to represent a larger subset of the mechanisms influencing the intra-granular bubble growth and coarsening mechanisms in the idealized benchmark problem as compared to the Potts and kinetic Monte Carlo methods. It is recognized that the mesoscale benchmark problem as formulated does not specifically highlight the strengths of the discrete particle modeling used in the Potts and kinetic Monte Carlo methods. Future efforts are recommended to construct increasingly more complex mesoscale benchmark problems to further verify and validate the predictive capabilities of the mesoscale modeling methods used in this study.

  6. Strain in the mesoscale kinetic Monte Carlo model for sintering

    E-Print Network [OSTI]

    Bjørk, R; Tikare, V; Olevsky, E; Pryds, N

    2014-01-01T23:59:59.000Z

    Shrinkage strains measured from microstructural simulations using the mesoscale kinetic Monte Carlo (kMC) model for solid state sintering are discussed. This model represents the microstructure using digitized discrete sites that are either grain or pore sites. The algorithm used to simulate densification by vacancy annihilation removes an isolated pore site at a grain boundary and collapses a column of sites extending from the vacancy to the surface of sintering compact, through the center of mass of the nearest grain. Using this algorithm, the existing published kMC models are shown to produce anisotropic strains for homogeneous powder compacts with aspect ratios different from unity. It is shown that the line direction biases shrinkage strains in proportion the compact dimension aspect ratios. A new algorithm that corrects this bias in strains is proposed; the direction for collapsing the column is determined by choosing a random sample face and subsequently a random point on that face as the end point for...

  7. Dynamics of Mesoscale Magnetic Field in Diffusive Shock Acceleration

    E-Print Network [OSTI]

    P. H. Diamond; M. A. Malkov

    2006-05-15T23:59:59.000Z

    We present a theory for the generation of mesoscale ($kr_{g}\\ll 1$, where $r_{g}$ is the cosmic ray gyroradius) magnetic fields during diffusive shock acceleration. The decay or modulational instability of resonantly excited Alfven waves scattering off ambient density perturbations in the shock environment naturally generates larger scale fields. For a broad spectrum of perturbations, the physical mechanism of energy transfer is random refraction, represented by diffusion of Alfven wave packet in $k-$space. The scattering field can be produced directly by the decay instability or by the Drury instability, a hydrodynamic instability driven by the cosmic ray pressure gradient. This process is of interest to acceleration since it generates waves of longer wavelength, and so enables the confinement and acceleration of higher energy particles. This process also limits the intensity of resonantly generated turbulent magnetic field on $r_{g}$ scales.

  8. Mesoscale modeling of colloidal suspensions with adsorbing solutes

    E-Print Network [OSTI]

    Rei Tatsumi; Osamu Koike; Yukio Yamaguchi

    2015-01-14T23:59:59.000Z

    We construct a mesoscale model of colloidal suspensions that contain solutes reversibly adsorbing onto the colloidal particle surfaces. The present model describes the coupled dynamics of the colloidal particles, the host fluid, and the solutes through the Newton-Euler equations of motion, the hydrodynamic equations, and the advection-diffusion equation, respectively. The solute adsorption is modeled through a square-well potential, which represents a short-range attractive interaction between a particle and a solute molecule. The present model is formulated to be solved through direct numerical simulations. Some numerical results are presented to validate the simulations. The present model enables investigations of solute adsorption effects in the presence of a fluid flow and an inhomogeneous solute concentration distribution.

  9. Mesoscale polycrystal calculations of damage in spallation in metals

    SciTech Connect (OSTI)

    Tonks, Davis L [Los Alamos National Laboratory; Bingert, John F [Los Alamos National Laboratory; Livescu, Veronica [Los Alamos National Laboratory; Luo, Shengnian [Los Alamos National Laboratory; Bronkhorst, C A [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    The goal of this project is to produce a damage model for spallation in metals informed by the polycrystalline grain structure at the mesoscale. Earlier damage models addressed the continuwn macroscale in which these effects were averaged out. In this work we focus on cross sections from recovered samples examined with EBSD (electron backscattered diffraction), which reveal crystal grain orientations and voids. We seek to understand the loading histories of specific sample regions by meshing up the crystal grain structure of these regions and simulating the stress, strain, and damage histories in our hydro code, FLAG. The stresses and strain histories are the fundamental drivers of damage and must be calculated. The calculated final damage structures are compared with those from the recovered samples to validate the simulations.

  10. Coastal Wave Generation and Wave Breaking over Terrain: Two Problems in Mesoscale Wave Dynamics 

    E-Print Network [OSTI]

    Qian, Tingting

    2010-07-14T23:59:59.000Z

    Two problems in mesoscale wave dynamics are addressed: (i) wave-turbulence interaction in a breaking mountain wave and (ii) gravity wave generation associated with coastal heating gradients. The mean and turbulent structures in a breaking mountain...

  11. Mesoscale X-Ray Fluorescence (XRF) Mapping Reveals Growth Processes for Stromatolites from the Nsuze Group 

    E-Print Network [OSTI]

    Quezergue, Kimbra Rose

    2014-12-05T23:59:59.000Z

    Stromatolites are formed by physical, biological, and chemical processes, and combinations of specific processes produced the great variety of textures and morphologies in the geologic record. I here introduce a new technique for mesoscale chemical...

  12. Convective variability associated with a mesoscale vortex in a midlatitude squall line system

    E-Print Network [OSTI]

    Hristova-Veleva, Svetla M.

    1994-01-01T23:59:59.000Z

    The relationship between the kinematic structure of the convective line and the mesoscale stortn-relative flow associated with an embedded mesovortex in the trailing stratiform region of the 28 May 1985 squall line system is examined using Doppler...

  13. Application of the 85 GHz ice scattering signature to a global study of mesoscale convective systems

    E-Print Network [OSTI]

    Devlin, Karen Irene

    1995-01-01T23:59:59.000Z

    It has long been observed that tropical convection tends to cluster, organizing into multicellular mesoscale convective systems (MCS), In convective towers, updrafts on the order of 10 m s-I favor the formation of large, precipitation-sized ice...

  14. Rationalizing the Spatial Distribution of Mesoscale Eddy Diffusivity in Terms of Mixing Length Theory

    E-Print Network [OSTI]

    Bates, Michael

    Observations and theory suggest that lateral mixing by mesoscale ocean eddies only reaches its maximum potential at steering levels, surfaces at which the propagation speed of eddies approaches that of the mean flow. Away ...

  15. Mesoscale X-Ray Fluorescence (XRF) Mapping Reveals Growth Processes for Stromatolites from the Nsuze Group

    E-Print Network [OSTI]

    Quezergue, Kimbra Rose

    2014-12-05T23:59:59.000Z

    Stromatolites are formed by physical, biological, and chemical processes, and combinations of specific processes produced the great variety of textures and morphologies in the geologic record. I here introduce a new technique for mesoscale chemical...

  16. Coastal Wave Generation and Wave Breaking over Terrain: Two Problems in Mesoscale Wave Dynamics

    E-Print Network [OSTI]

    Qian, Tingting

    2010-07-14T23:59:59.000Z

    Two problems in mesoscale wave dynamics are addressed: (i) wave-turbulence interaction in a breaking mountain wave and (ii) gravity wave generation associated with coastal heating gradients. The mean and turbulent structures in a breaking mountain...

  17. Mesoscale fracture fabric and paleostress along the San Andreas fault at SAFOD

    E-Print Network [OSTI]

    Almeida, Rafael Vladimir

    2009-05-15T23:59:59.000Z

    Spot cores from Phase 1 drilling of the main borehole at the San Andreas Fault Observatory at Depth (SAFOD) were mapped to characterize the mesoscale structure and infer paleostress at depth. Cores were oriented by comparing mapped structures...

  18. Enhancement of Mesoscale Eddy Stirring at Steering Levels in the Southern Ocean

    E-Print Network [OSTI]

    Marshall, John C.

    Meridional cross sections of effective diffusivity in the Southern Ocean are presented and discussed. The effective diffusivity, K[subscript eff], characterizes the rate at which mesoscale eddies stir properties on interior ...

  19. Design of a high-speed, meso-scale nanopositioners driven by electromagnetic actuators

    E-Print Network [OSTI]

    Golda, Dariusz, 1979-

    2008-01-01T23:59:59.000Z

    The purpose of this thesis is to generate the design and fabrication knowledge that is required to engineer high-speed, six-axis, meso-scale nanopositioners that are driven by electromagnetic actuators. When compared to ...

  20. Use of the 1991 ASCOT field study data in a mesoscale model employing a four-dimensional data assimilation technique

    SciTech Connect (OSTI)

    Fast, J.D.; O'Steen, B.L.

    1992-01-01T23:59:59.000Z

    In this study, a four-dimensional data assimilation technique based on Newtonian relaxation is incorporated into Colorado State University (CSU) Regional Atmospheric Modeling System (RAMS) and evaluated using data taken from one experiment of the US Department of Energy's (DOE) 1991 Atmospheric Studies in COmplex Terrain (ASCOT) field study along the front range of the Rockies in Colorado. The main objective of this study is to determine the ability of the model to predict small-scale circulations influenced by terrain, such as drainage flows, and assess the impact of data assimilation on the numerical results. In contrast to previous studies in which the smallest horizontal grid spacing was 10 km (Stauffer and Seaman, 1991) and 8 km (Yamada and Hermi, 1991), data assimilation is applied in this study to domains with a horizontal grid spacing as small as 1 km. The prognostic forecasts made by RAMS are evaluated by comparing simulations that employ static initial conditions, with simulations that incorporate continuous data assimilation and data assimilation for fixed period of time (dynamic initialization). This paper will also elaborate on the application and limitation of the Newtonian relaxation technique in limited-area mesoscale models with a relatively small grid spacing.

  1. Use of the 1991 ASCOT field study data in a mesoscale model employing a four-dimensional data assimilation technique

    SciTech Connect (OSTI)

    Fast, J.D.; O`Steen, B.L.

    1992-11-01T23:59:59.000Z

    In this study, a four-dimensional data assimilation technique based on Newtonian relaxation is incorporated into Colorado State University (CSU) Regional Atmospheric Modeling System (RAMS) and evaluated using data taken from one experiment of the US Department of Energy`s (DOE) 1991 Atmospheric Studies in COmplex Terrain (ASCOT) field study along the front range of the Rockies in Colorado. The main objective of this study is to determine the ability of the model to predict small-scale circulations influenced by terrain, such as drainage flows, and assess the impact of data assimilation on the numerical results. In contrast to previous studies in which the smallest horizontal grid spacing was 10 km (Stauffer and Seaman, 1991) and 8 km (Yamada and Hermi, 1991), data assimilation is applied in this study to domains with a horizontal grid spacing as small as 1 km. The prognostic forecasts made by RAMS are evaluated by comparing simulations that employ static initial conditions, with simulations that incorporate continuous data assimilation and data assimilation for fixed period of time (dynamic initialization). This paper will also elaborate on the application and limitation of the Newtonian relaxation technique in limited-area mesoscale models with a relatively small grid spacing.

  2. Immersed Boundary Methods for High-Resolution Simulation of Atmospheric Boundary-Layer Flow Over Complex Terrain

    E-Print Network [OSTI]

    Lundquist, Katherine Ann

    2010-01-01T23:59:59.000Z

    large-eddy simulations within mesoscale simulations for windEddy Simulation of a Mesoscale Convective Internal Boundary185, 1957. Pielke, R. , Mesoscale Meteorological Modeling,

  3. Linking atomistic and mesoscale simulations of nanocrystalline materials : quantitative validation for the case of grain growth.

    SciTech Connect (OSTI)

    Moldovan, D.; Wolf, D.; Phillpot, S. R.; Materials Science Division; Louisiana State Univ.

    2003-11-01T23:59:59.000Z

    Using grain growth in nanocrystalline palladium as a simple case study, we demonstrate how a novel mesoscale approach for simulating microstructural evolution in polycrystalline materials can be validated directly against atomic-level simulations of the same system. We first describe molecular dynamics simulations of grain growth in a columnar model microstructure. The atomic-level insights into the grain-growth mechanism gained from these simulations, particularly in the role of grain rotations, are captured theoretically for incorporation into the mesoscale approach, in which the objects evolving in space and time are the grain boundaries and grain junctions rather than the atoms. With all the input parameters to the mesoscale being physically well defined and obtained directly from the atomic-level simulations, the mesoscale simulations are fully prescribed. We find that the morphology of the mesoscale system evolves in an almost identical manner with that of the molecular dynamics simulation, demonstrating that the length- and time-scale linking has been performed correctly. When applied to systems containing large numbers of grains, the now validated mesoscale simulation approach allows the growth topology and long-time growth kinetics to be determined. As an outlook, we describe how the effects of applied stress can be incorporated.

  4. Coupling Terrestrial and Atmospheric Water Dynamics to Improve Prediction in a Changing Environment

    E-Print Network [OSTI]

    Lyon, Steve W.; Dominguez, Francina; Gochis, David J.; Brunsell, Nathaniel A.; Castro, Christopher; Chow, Fotini K.; Fan, Ying; Fuka, Daniel; Hong, Yang; Kucera, Paul A.; Nesbitt, Stephen W.; Salzmann, Nadine; Schmidli, Juerg; Snyder, Peter K.; Teuling, Adriaam J.; Twine, Tracy E.; Levis, Samuel; Lundquist, Jessica D.; Salvucci, Guido D.; Sealy, Andrea M.; Walter, M. Todd

    2008-09-01T23:59:59.000Z

    considered. This scale specificity complicates and often precludes “fully generalized” approaches to Earth-systems models and may alias observation strategies. There is an obvious trade-off between simple and complex modeling approaches for representing... research subfields, but it is their coupling that has the potential to dramatically change our modeling capabilities. Efforts such as the Earth System Modeling Framework (ESMF) or the Weather Research and Forecasting (WRF) mesoscale atmospheric model...

  5. Modeling of Alpine Atmospheric Dynamics II

    E-Print Network [OSTI]

    Gohm, Alexander

    : mesoscale convective system 17-18 April 2004: Sierra hydraulic jump case 21 January 2005: the "Universiade) Results and discussion (synoptic scale overview, mesoscale structure, comparison of model and measurements

  6. Mesoscale Characterization of Coupled Hydromechanical Behavior of a Fractured Porous Slope in Response to Free Water-Surface Movement

    E-Print Network [OSTI]

    Guglielmi, Y.

    2008-01-01T23:59:59.000Z

    of these effects in fractured reservoirs, at an intermediateinteractions in a fractured carbonate reservoir inferredis a mesoscale fractured carbonate reservoir (30 m × 30 m ×

  7. The role of land surface processes on the mesoscale simulation of the July 26, 2005 heavy rain event over Mumbai, India

    E-Print Network [OSTI]

    Niyogi, Dev

    The role of land surface processes on the mesoscale simulation of the July 26, 2005 heavy rain Mesoscale convection Weather research and forecast model Indian summer monsoon Land surface processes

  8. The Impacts of Indirect Soil Moisture Assimilation and Direct Surface Temperature and Humidity Assimilation on a Mesoscale Model Simulation of an Indian

    E-Print Network [OSTI]

    Niyogi, Dev

    Assimilation on a Mesoscale Model Simulation of an Indian Monsoon Depression VINODKUMAR AND A. CHANDRASEKAR-generation Pennsylvania State University­NCAR Mesoscale Model (MM5) simulation utilized the humidity and temperature

  9. Bull. Disas. Prey. Res. Inst., Kyoto Univ., Vol. 45, Part 2,3 No. 391, February, 1996 61 A Simple Water Balance Model for a Mesoscale Catchment

    E-Print Network [OSTI]

    Takada, Shoji

    A Simple Water Balance Model for a Mesoscale Catchment Based on Heterogeneous Soil Water Storage Capacity, for the mesoscale catchments of Japan and Thailand. Sensitivity analysis of the model parameters has been conducted

  10. Journal of the Mechanics and Physics of Solids 56 (2008) 14501459 Shocks and slip systems: Predictions from a mesoscale theory of

    E-Print Network [OSTI]

    Sethna, James P.

    2008-01-01T23:59:59.000Z

    : Predictions from a mesoscale theory of continuum dislocation dynamics S. Limkumnerda,Ã, J.P. Sethnab a Zernike developed mesoscale continuum theory of dislocation dynamics, we derive three predictions about plasticity

  11. MICRO-SEISMOMETERS VIA ADVANCED MESO-SCALE FABRICATION

    SciTech Connect (OSTI)

    Garcia, Caesar A; Onaran, Guclu; Avenson, Brad; Hall, Neal

    2014-11-07T23:59:59.000Z

    The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) seek revolutionary sensing innovations for the monitoring of nuclear detonations. Performance specifications are to be consistent with those obtainable by only an elite few products available today, but with orders of magnitude reduction in size, weight, power, and cost. The proposed commercial innovation calls upon several technologies including the combination of meso-scale fabrication and assembly, photonics-based displacement / motion detection methods, and the use of digital control electronics . Early Phase II development has demonstrated verified and repeatable sub 2ng noise floor from 3Hz to 100Hz, compact integration of 3-axis prototypes, and robust deployment exercises. Ongoing developments are focusing on low frequency challenges, low power consumption, ultra-miniature size, and low cross axis sensitivity. We are also addressing the rigorous set of specifications required for repeatable and reliable long-term explosion monitoring, including thermal stability, reduced recovery time from mass re-centering and large mechanical shocks, sensitivity stability, and transportability. Successful implementation will result in small, hand-held demonstration units with the ability to address national security needs of the DOE/NNSA. Additional applications envisioned include military/defense, scientific instrumentation, oil and gas exploration, inertial navigation, and civil infrastructure monitoring.

  12. Manufacturing Ultra-Precision Meso-scale Products by Coining

    SciTech Connect (OSTI)

    Seugling, R M; Davis, P J; Rickens, K; Osmer, J; Brinksmeier, E

    2010-02-18T23:59:59.000Z

    A method for replicating ultra-precision, meso-scale features onto a near-net-shape metallic blank has been demonstrated. The 'coining' technology can be used to imprint a wide range of features and/or profiles into two opposing surfaces. The instrumented system provides the ability to measure and control the product thickness and total thickness variation (TTV). The coining mechanism relies on kinematic principles to accurately and efficiently produce ultra-precision work pieces without the production of by products such as machining chips, or grinding swarf while preserving surface finish, material structure and overall form. Coining has been developed as a niche process for manufacturing difficult to machine, millimeter size components made from materials that may present hazardous conditions. In the case described in this paper a refractory metal part, tantalum (Ta) was produced with 4 {micro}m peak to valley 50 {micro}m special wavelength sine wave coined into the surface of 50 {micro}m blank. This technique shows promise for use on ductile materials that cannot be precision machined with conventional single crystal diamond tooling and/or has strict requirements on subsurface damage, surface impurities and grain structure. As a production process, it can be used to reduce manufacturing costs where large numbers of ultra-precision, repetitive designs are required and produce parts out of hazardous materials without generating added waste.

  13. Interpreting Temperature Strain Data from Meso-Scale Clathrate Experiments

    SciTech Connect (OSTI)

    Leeman, John R [ORNL; Rawn, Claudia J [ORNL; Ulrich, Shannon M [ORNL; Elwood Madden, Megan [University of Oklahoma, Norman; Phelps, Tommy Joe [ORNL

    2012-01-01T23:59:59.000Z

    Gas hydrates are important in global climate change, carbon sequestra- tion, and seafloor stability. Currently, formation and dissociation pathways are poorly defined. We present a new approach for processing large amounts of data from meso-scale experiments, such as the LUNA distributed sensing system (DSS) in the seafloor process simulator (SPS) at Oak Ridge National Laboratory. The DSS provides a proxy for temperature measurement with a high spatial resolution allowing the heat of reaction during gas hydrate formation/dissociation to aid in locating clathrates in the vessel. The DSS fibers are placed in the sediment following an Archimedean spiral design and then the position of each sensor is solved by iterating over the arc length formula with Newtons method. The data is then gridded with 1 a natural neighbor interpolation algorithm to allow contouring of the data. The solution of the sensor locations is verified with hot and cold stimulus in known locations. An experiment was preformed with a vertically split column of sand and silt. The DSS system clearly showed hydrate forming in the sand first, then slowly creeping into the silt. Similar systems and data processing techniques could be used for monitoring of hydrates in natural environments or in any situation where a hybrid temperature/strain index is useful. Further ad- vances in fiber technology allow the fiber to be applied in any configuration and the position of each sensor to be precisely determined making practical applications easier.

  14. Emergent Mesoscale Phenomena in Magnetized Accretion Disc Turbulence

    E-Print Network [OSTI]

    Simon, Jacob B; Armitage, Philip J

    2012-01-01T23:59:59.000Z

    We study how the structure and variability of magnetohydrodynamic (MHD) turbulence in accretion discs converge with domain size. Our results are based on a series of vertically stratified local simulations, computed using the Athena code, that have fixed spatial resolution, but varying radial and azimuthal extent (from \\Delta R = 0.5H to 16H, where H is the vertical scale height). We show that elementary local diagnostics of the turbulence, including the Shakura-Sunyaev {\\alpha} parameter, the ratio of Maxwell stress to magnetic energy, and the ratio of magnetic to fluid stresses, converge to within the precision of our measurements for spatial domains of radial size Lx \\geq 2H. We obtain {\\alpha} = 0.02-0.03, consistent with recent results. Very small domains (Lx = 0.5H) return anomalous results, independent of spatial resolution. The convergence with domain size is only valid for a limited set of diagnostics: larger spatial domains admit the emergence of dynamically important mesoscale structures. In our la...

  15. Faculty Positions Department of Earth, Atmospheric, and Planetary Sciences

    E-Print Network [OSTI]

    Kihara, Daisuke

    of hazardous weather phenomena, such as tornadoes, mesoscale convective systems, and winter storms. Climate

  16. Atmospheric Aerosols Workshop | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Aerosols Workshop Atmospheric Aerosols Workshop EMSL Science Theme Advisory Panel Workshop - Atmospheric Aerosol Chemistry, Climate Change, and Air Quality. Baer DR, BJ...

  17. Mesoscale predictability and background error convariance estimation through ensemble forecasting

    E-Print Network [OSTI]

    Ham, Joy L

    2002-01-01T23:59:59.000Z

    Over the past decade, ensemble forecasting has emerged as a powerful tool for numerical weather prediction. Not only does it produce the best estimate of the state of the atmosphere, it also could quantify the uncertainties associated with the best...

  18. Interannual variability of summer biochemical enhancement in relation to mesoscale eddies at the shelf break in the vicinity of the Pribilof Islands,

    E-Print Network [OSTI]

    Interannual variability of summer biochemical enhancement in relation to mesoscale eddies the 1300-km-long eastern shelf break accompanied by a mesoscale eddy field (Okkonen, 2001a). Eddies occur., 2002). Mesoscale eddies, which penetrate to depths of at least 1000 m (Roden, 1995; Mizobata et al

  19. Steering in computational science: mesoscale modelling and J. CHIN{, J. HARTING{, S. JHA{, P. V. COVENEY{, A. R. PORTER{ and S. M. PICKLES{{

    E-Print Network [OSTI]

    Harting, Jens

    Steering in computational science: mesoscale modelling and simulation J. CHIN{, J. HARTING{, S. JHA steering for high performance computing applications. Lattice-Boltzmann mesoscale fluid simulations, there is currently considerable interest in mesoscale models. These models coarse grain most of the atomic

  20. A STUDY OF ICE ACCUMULATION AND STABILITY IN MARTIAN CRATERS UNDER PAST ORBITAL CONDITIONS USING THE LMD MESOSCALE MODEL. J.-B. Madeleine1

    E-Print Network [OSTI]

    Madeleine, Jean-Baptiste

    THE LMD MESOSCALE MODEL. J.-B. Madeleine1 , J. W. Head1 , A. Spiga2 , J. L. Dickson1 and F. Forget2 , 1 formed, using geolog- ical observations [e.g., 1-4] and mesoscale climate simulations [5 provide essential constraints on the mesoscale climate which prevailed during their formation

  1. arXiv:1205.6074v1[physics.bio-ph]28May2012 Mesoscale symmetries explain dynamical equivalence of food webs

    E-Print Network [OSTI]

    arXiv:1205.6074v1[physics.bio-ph]28May2012 Mesoscale symmetries explain dynamical equivalence is to identify mesoscale structures that have distinct dynamical implications. In this paper we present show that this equivalence is rooted in mesoscale symmetries that exist in these webs. Certain

  2. Analyses of the role of grain boundaries in mesoscale dynamic fracture resistance of SiCSi3N4 intergranular nanocomposites

    E-Print Network [OSTI]

    Tomar, Vikas

    Analyses of the role of grain boundaries in mesoscale dynamic fracture resistance of SiC­Si3N4 with SiC dispersions as well as Si3N4 matrix of mesoscale dimensions ($1 lm) are considered to have, cohesive finite element method (CFEM) based mesoscale dynamic fracture anal- yses of SiC­Si3N4

  3. Mesoscale Predictability of an Extreme Warm-Season Precipitation Event FUQING ZHANG, ANDREW M. ODINS, AND JOHN W. NIELSEN-GAMMON

    E-Print Network [OSTI]

    Mesoscale Predictability of an Extreme Warm-Season Precipitation Event FUQING ZHANG, ANDREW M Station, Texas (Manuscript received 22 November 2004, in final form 28 August 2005) ABSTRACT A mesoscale model is used to investigate the mesoscale predictability of an extreme precipitation event over central

  4. Mesoscale model cloud scheme assessment using satellite observations Jean-Pierre Chaboureau, Jean-Pierre Cammas, Patrick J. Mascart, and Jean-Pierre Pinty

    E-Print Network [OSTI]

    Chaboureau, Jean-Pierre

    Mesoscale model cloud scheme assessment using satellite observations Jean-Pierre Chaboureau, Jean of the mesoscale nonhydrostatic (Meso-NH) model has been conducted by comparing synthetic METEOSAT brightness combines the output from a bulk explicit cloud scheme routinely used in mesoscale simulations

  5. ARCHITECTURE OF THE MERCURY MESOSCALE METEOROLOGICAL DATA FUSION C. Fields, C. Cavendish, M. Coombs, T. Eskridge, R. Hartley, H. Pfeiffer, and C. Soderlund

    E-Print Network [OSTI]

    Hartley, Roger

    ARCHITECTURE OF THE MERCURY MESOSCALE METEOROLOGICAL DATA FUSION C. Fields, C. Cavendish, M. Coombs mesoscale meteorological data fusion system is being developed as an intelligent interface between the U.S. Army's Integrated Meteorological System IM[ETS) mesoscale database and tactical decision aids (TDAs

  6. REVIEWS OF GEOPHYSICS: U.S. NATIONAL REPORT TO INTERNATIONAL UNION OF GEODESY AND GEOPHYSICS COOL SEASON CYCLOGENESIS AND ASSOCIATED MESOSCALE WEATHER

    E-Print Network [OSTI]

    Businger, Steven

    -1994 COOL SEASON CYCLOGENESIS AND ASSOCIATED MESOSCALE WEATHER Steven Businger Department of Meteorology (NWS) and a profusion of recent field experiments1 are bringing an explosion of mesoscale2 observations to probe the mesoscale structure and evolution of winter cyclones in recent years. Many recent advances

  7. Mesoscale Patterns Formed by Evaporation of a Polymer Solution in the Proximity of a Sphere on a Smooth Substrate: Molecular Weight

    E-Print Network [OSTI]

    Lin, Zhiqun

    Mesoscale Patterns Formed by Evaporation of a Polymer Solution in the Proximity of a Sphere evaporation as a simple, lithography- and external-field- free route to well-ordered mesoscale structures weight (MW) effect on the mesoscale polymer patterns formed by drying a drop of polymer solution

  8. Bull. Disas. Prey. Res. Inst., Kyoto Univ., Vol. 45, Part 2,3 No 390, February, 1996 39 Mesoscale Numerical Study over the HEIFE Area

    E-Print Network [OSTI]

    Takada, Shoji

    Mesoscale Numerical Study over the HEIFE Area Part 1: Three Dimensional Wind Field By Zhong CHEN1),Jiayi, 1996) Abstract In this study the three dimensional mesoscale model, which is based on the Peking University Mesoscale Model, was used to simulate the wind field in the HEIFE experimental region. Simulations

  9. Tests of an Ensemble Kalman Filter for Mesoscale and Regional-Scale Data Assimilation. Part I: Perfect Model Experiments

    E-Print Network [OSTI]

    Meng, Zhiyong

    Tests of an Ensemble Kalman Filter for Mesoscale and Regional-Scale Data Assimilation. Part I the potential of using the ensemble Kalman filter (EnKF) for mesoscale and regional-scale data assimilation are assimilated. 1. Introduction The ensemble-based data assimilation method [en- semble Kalman filter (En

  10. Tests of an Ensemble Kalman Filter for Mesoscale and Regional-Scale Data Assimilation. Part II: Imperfect Model Experiments

    E-Print Network [OSTI]

    Meng, Zhiyong

    Tests of an Ensemble Kalman Filter for Mesoscale and Regional-Scale Data Assimilation. Part II In Part I of this two-part work, the feasibility of using an ensemble Kalman filter (EnKF) for mesoscale that using an ensemble Kalman filter (EnKF) in the context of a perfect model (i.e., both the truth

  11. arXiv:1207.3736v1[math.DS]16Jul2012 Meso-scale obstructions to

    E-Print Network [OSTI]

    arXiv:1207.3736v1[math.DS]16Jul2012 Meso-scale obstructions to stability of 1D center manifolds, the impact of meso-scale structural properties on the dynamics of complex networks. As a motivational exam

  12. Development of advanced cloud parameterizations to examine air quality, cloud properties, and cloud-radiation feedback in mesoscale models

    SciTech Connect (OSTI)

    Lee, In Young

    1993-09-01T23:59:59.000Z

    The distribution of atmospheric pollutants is governed by dynamic processes that create the general conditions for transport and mixing, by microphysical processes that control the evolution of aerosol and cloud particles, and by chemical processes that transform chemical species and form aerosols. Pollutants emitted into the air can undergo homogeneous gas reactions to create a suitable environment for the production by heterogeneous nucleation of embryos composed of a few molecules. The physicochemical properties of preexisting aerosols interact with newly produced embryos to evolve by heteromolecular diffusion and coagulation. Hygroscopic particles wig serve as effective cloud condensation nuclei (CCN), while hydrophobic particles will serve as effective ice-forming nuclei. Clouds form initially by condensation of water vapor on CCN and evolve in a vapor-liquid-solid system by deposition, sublimation, freezing, melting, coagulation, and breakup. Gases and aerosols that enter the clouds undergo aqueous chemical processes and may acidity hydrometer particles. Calculations for solar and longwave radiation fluxes depend on how the respective spectra are modified by absorbers such as H{sub 2}O, CO{sub 2}, O{sub 3}, CH{sub 4}, N{sub 2}O, chlorofruorocarbons, and aerosols. However, the flux calculations are more complicated for cloudy skies, because the cloud optical properties are not well defined. In this paper, key processes such as tropospheric chemistry, cloud microphysics parameterizations, and radiation schemes are reviewed in terms of physicochemical processes occurring, and recommendations are made for the development of advanced modules applicable to mesoscale models.

  13. Atmospheric Aerosol Systems | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Themes Atmospheric Aerosol Systems Overview Atmospheric Aerosol Systems Biosystem Dynamics & Design Energy Materials & Processes Terrestrial & Subsurface Ecosystems...

  14. Mesoscale Modeling During Mixed-Phase Arctic Cloud Experiment

    SciTech Connect (OSTI)

    Avramov, A.; Harringston, J.Y.; Verlinde, J.

    2005-03-18T23:59:59.000Z

    Mixed-phase arctic stratus clouds are the predominant cloud type in the Arctic (Curry et al. 2000) and through various feedback mechanisms exert a strong influence on the Arctic climate. Perhaps one of the most intriguing of their features is that they tend to have liquid tops that precipitate ice. Despite the fact that this situation is colloidally unstable, these cloud systems are quite long lived - from a few days to over a couple of weeks. It has been hypothesized that mixed-phase clouds are maintained through a balance between liquid water condensation resulting from the cloud-top radiative cooling and ice removal by precipitation (Pinto 1998; Harrington et al. 1999). In their modeling study Harrington et al. (1999) found that the maintenance of this balance depends strongly on the ambient concentration of ice forming nucleus (IFN). In a follow-up study, Jiang et al. (2002), using only 30% of IFN concentration predicted by Meyers et al. (1992) IFN parameterization were able to obtain results similar to the observations reported by Pinto (1998). The IFN concentration measurements collected during the Mixed-Phase Arctic Cloud Experiment (M-PACE), conducted in October 2004 over the North Slope of Alaska and the Beaufort Sea (Verlinde et al. 2005), also showed much lower values then those predicted (Prenne, pers. comm.) by currently accepted ice nucleation parameterizations (e.g. Meyers et al. 1992). The goal of this study is to use the extensive IFN data taken during M-PACE to examine what effects low IFN concentrations have on mesoscale cloud structure and coastal dynamics.

  15. An investigation of rainfall distribution within a mesoscale network in the middle Brazos River area

    E-Print Network [OSTI]

    Bell, Carroll Wilson

    1966-01-01T23:59:59.000Z

    AN INVESTIGATION OF RAINFALL DISTRIBUTION WITHIN A MESOSCALE NETWORK IN THE MIDDLE BRAZOS RIVER AREA A Thesis By CARROLL W. BELL Submitted to the Graduate College of the Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE May 1966 Ma]or Subject: METEOROLOGY AN INVESTIGATION OF RAINFALL DISTRIBUTION WITHIN A MESOSCALE NETWORK IN THE MIDDLE BRAZOS RIVER AREA A Thesis By CARROLL W. BELL Approved as to style and content by: C airman o...

  16. MOSE: a feasibility study for optical turbulence forecasts with the Meso-Nh mesoscale model to support AO facilities at ESO sites (Paranal and Armazones)

    E-Print Network [OSTI]

    Masciadri, E; 10.1117/12.925924

    2012-01-01T23:59:59.000Z

    We present very encouraging preliminary results obtained in the context of the MOSE project, an on-going study aiming at investigating the feasibility of the forecast of the optical turbulence and meteorological parameters (in the free atmosphere as well as in the boundary and surface layer) at Cerro Paranal (site of the Very Large Telescope - VLT) and Cerro Armazones (site of the European Extremely Large Telescope - E-ELT), both in Chile. The study employs the Meso-Nh atmospheric mesoscale model and aims at supplying a tool for optical turbulence forecasts to support the scheduling of the scientific programs and the use of AO facilities at the VLT and the E-ELT. In this study we take advantage of the huge amount of measurements performed so far at Paranal and Armazones by ESO and the TMT consortium in the context of the site selection for the E-ELT and the TMT to constraint/validate the model. A detailed analysis of the model performances in reproducing the atmospheric parameters (T, V, p, H, ...) near the g...

  17. Observations of prolific transient luminous event production above a mesoscale convective system in Argentina during

    E-Print Network [OSTI]

    Thomas, Jeremy N.

    in Argentina during the Sprite2006 Campaign in Brazil F. T. São Sabbas,1 M. J. Taylor,2 P.D. Pautet,2 M. Bailey convective system (MCS) over Argentina, as part of the third sprite campaign in Brazil. GOES infrared (IR a mesoscale convective system in Argentina during the Sprite2006 Campaign in Brazil, J. Geophys. Res., 115, A

  18. Mesoscale modelling for an offshore wind farm Jake Badger*, Rebecca Barthelmie, Sten Frandsen, Merete Bruun Christiansen

    E-Print Network [OSTI]

    Mesoscale modelling for an offshore wind farm Jake Badger*, Rebecca Barthelmie, Sten Frandsen for an offshore wind farm in a coastal location. Spatial gradients and vertical profiles between 25 m and 70 m offshore wind farms tend to be placed within the coastal zone, the region within around 50km from

  19. Meso-scale eects of tropical deforestation in Amazonia: preparatory LBA modelling studies

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Meso-scale eects of tropical deforestation in Amazonia: preparatory LBA modelling studies A. J forest is good, above deforested areas (pasture) poor. The models' underestimate of the temperature Modelling studies with general circulation models have shown that large-scale deforestation of the Amazon

  20. Modeling of mesoscale coupled oceanatmosphere interaction and its feedback to ocean in the western Arabian Sea

    E-Print Network [OSTI]

    Jochum, Markus

    -term in situ measurements. Given the shallow mixed layer, this additional surface heat flux warms the cold of the ocean. The observed relationship between the near-surface winds and mesoscale SSTs generate Ekman pump- ing velocities at the scale of the cold filaments, whose magnitude is the order of 1 m/day in both

  1. Lagrangian study of transport and mixing in a mesoscale eddy street

    E-Print Network [OSTI]

    S. V. Prants; M. V. Budyansky; V. I. Ponomarev; M. Yu. Uleysky

    2012-02-02T23:59:59.000Z

    We use dynamical systems approach and Lagrangian tools to study surface transport and mixing of water masses in a selected coastal region of the Japan Sea with moving mesoscale eddies associated with the Primorskoye Current. Lagrangian trajectories are computed for a large number of particles in an interpolated velocity field generated by a numerical regional multi-layer eddy-resolving circulation model. We compute finite-time Lyapunov exponents for a comparatively long period of time by the method developed and plot the Lyapunov synoptic map quantifying surface transport and mixing in that region. This map uncovers the striking flow structures along the coast with a mesoscale eddy street and repelling material lines. We propose new Lagrangian diagnostic tools --- the time of exit of particles off a selected box, the number of changes of the sign of zonal and meridional velocities --- to study transport and mixing by a pair of strongly interacting eddies often visible at sea-surface temperature satellite images in that region. We develop a technique to track evolution of clusters of particles, streaklines and material lines. The Lagrangian tools used allow us to reveal mesoscale eddies and their structure, to track different phases of the coastal flow, to find inhomogeneous character of transport and mixing on mesoscales and submesoscales and to quantify mixing by the values of exit times and the number of times particles wind around the eddy's center.

  2. A Coupling Methodology for Mesoscale-informed Nuclear Fuel Performance Codes

    SciTech Connect (OSTI)

    Michael Tonks; Derek Gaston; Cody Permann; Paul Millett; Glen Hansen; Dieter Wolf

    2010-10-01T23:59:59.000Z

    This study proposes an approach for capturing the effect of microstructural evolution on reactor fuel performance by coupling a mesoscale irradiated microstructure model with a finite element fuel performance code. To achieve this, the macroscale system is solved in a parallel, fully coupled, fully-implicit manner using the preconditioned Jacobian-free Newton Krylov (JFNK) method. Within the JFNK solution algorithm, microstructure-influenced material parameters are calculated by the mesoscale model and passed back to the macroscale calculation. Due to the stochastic nature of the mesoscale model, a dynamic fitting technique is implemented to smooth roughness in the calculated material parameters. The proposed methodology is demonstrated on a simple model of a reactor fuel pellet. In the model, INL’s BISON fuel performance code calculates the steady-state temperature profile in a fuel pellet and the microstructure-influenced thermal conductivity is determined with a phase field model of irradiated microstructures. This simple multiscale model demonstrates good nonlinear convergence and near ideal parallel scalability. By capturing the formation of large mesoscale voids in the pellet interior, the multiscale model predicted the irradiation-induced reduction in the thermal conductivity commonly observed in reactors.

  3. Transient luminous events above two mesoscale convective systems: Storm structure and evolution

    E-Print Network [OSTI]

    Rutledge, Steven

    structure and evolution Timothy J. Lang,1 Walter A. Lyons,2 Steven A. Rutledge,1 Jonathan D. Meyer,2. Meyer, D. R. MacGorman, and S. A. Cummer (2010), Transient luminous events above two mesoscale, are thought to result from dielectric breakdown at approximately 75 km height [Stanley et al., 1999

  4. Evaluation of mesoscale convective systems in South America using multiple satellite products and an objectbased approach

    E-Print Network [OSTI]

    Ebert, Beth

    and an objectbased approach E. M. C. Demaria,1 D. A. Rodriguez,2 E. E. Ebert,3 P. Salio,4 F. Su,5 and J. B. Valdes1 to precipitation was mitigating the effect of the errors. Citation: Demaria, E. M. C., D. A. Rodriguez, E. E. Ebert, P. Salio, F. Su, and J. B. Valdes (2011), Evaluation of mesoscale convective systems in South

  5. INTRODUCTIONTOTHE SOLAR ATMOSPHERE

    E-Print Network [OSTI]

    ? #12;WHAT ISTHE SOLAR ATMOSPHERE? #12;#12;1-D MODEL ATMOSPHERE · Averaged over space and time · GoodINTRODUCTIONTOTHE SOLAR ATMOSPHERE D. Shaun Bloomfield Trinity College Dublin #12;OUTLINE · What is the solar atmosphere? · How is the solar atmosphere observed? · What structures exist and how do they evolve

  6. Atmospheric chemistry results from the ANTCI 2005 Antarctic plateau airborne study

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    L. (1994), The new NMC mesoscale ETA?model—Description andand J. E. Box (2001), Mesoscale modeling of katabatic windsa polar version of the Mesoscale Model version 5 (MM5) [

  7. Experience in Remote Demolition of the Activated Biological Shielding of the Multi Purpose Research Reactor (MZFR) on the German Karlsruhe Site - 12208

    SciTech Connect (OSTI)

    Eisenmann, Beata; Fleisch, Joachim; Prechtl, Erwin; Suessdorf, Werner; Urban, Manfred [WAK Rueckbau- und Entsorgungs- GmbH, P.O.Box 12 63, 76339 Eggenstein-Leopoldshafen (Germany)

    2012-07-01T23:59:59.000Z

    In 2009, WAK Decommissioning and Waste Management GmbH (WAK) became owner and operator of the waste treatment facilities of Karlsruhe Institute of Technology (KIT) as well as of the prototype reactors, the Compact Sodium-Cooled Fast Reactor (KNK) and Multi-Purpose Reactor (MZFR), both being in an advanced stage of dismantling. Together with the dismantling and decontamination activities of the former WAK reprocessing facility since 1990, the envisaged demolishing of the R and D reactor FR2 and a hot cell facility, all governmentally funded nuclear decommissioning projects on the Karlsruhe site are concentrated under the WAK management. The small space typical of prototype research reactors represented a challenge also during the last phase of activated dismantling, dismantling of the activated biological shield of the MZFR. Successful demolition of the biological shield required detailed planning and extensive testing in the years before. In view of the limited space and the ambient dose rate that was too high for manual work, it was required to find a tool carrier system to take up and control various demolition and dismantling tools in a remote manner. The strategy formulated in the concept of dismantling the biological shield by means of a modified electro-hydraulic demolition excavator in an adaptable working scaffolding turned out to be feasible. The following boundary conditions were essential: - Remote exchange of the dismantling and removal tools in smallest space. - Positioning of various supply facilities on the working platform. - Avoiding of interfering edges. - Optimization of mass flow (removal of the dismantled mass from the working area). - Maintenance in the surroundings of the dismantling area (in the controlled area). - Testing and qualification of the facilities and training of the staff. Both the dismantling technique chosen and the proceeding selected proved to be successful. Using various designs of universal cutters developed on the basis of wall saws, both the activated steel liner and the inner reinforcing layer were cut remotely in one process. This allowed for the efficient execution of the following remote concrete removal steps using mining techniques. The electro-hydraulic demolition excavator that was purchased and then modified turned out to be an ideal tool carrier system with rapid-exchange coupling. Due to the high availability, no major delays occurred. This also was a result of the consistently implemented maintenance and repair concept. With the excavator installed in a modifiable scaffolding suspended from a rotating carrier ring, all dismantling areas could be reached and treated in spite of the small space. Thanks to an optimum organization of work-flows, routine change of dismantling work, and maintenance or repair, the iterative radiological measurement campaigns could be integrated in the whole activity without the dismantling work being disturbed significantly. The ventilation system with pressure grading and pre-filtration units ensured a low contamination level in the dismantling area. It was also possible to manage the dust formed by the milling of concrete surfaces. As it was possible to further cut metal parts and crushed concrete later on, residue flows were optimized. The planned overall period for testing, dismantling the bio-shield and removing the equipment was 36 months. The final duration was 39 months. (authors)

  8. A Statistical Analysis of Characteristics of Mesoscale Convective System Mountain Initiation Location Clusters in the Arkansas-Red River Basin

    E-Print Network [OSTI]

    Callen, Elisabeth F.

    2012-12-31T23:59:59.000Z

    Mesoscale Convective Systems (MCSs) are the focus of this analysis since it is the convective weather category which is smallest in number but produces the highest amount of precipitation. Being able to forecast these MCSs ...

  9. Evolution of vertical drafts and cloud-to-ground lightning within the convective region of a mesoscale convective complex

    E-Print Network [OSTI]

    Saul, Scott Henry

    1995-01-01T23:59:59.000Z

    The evolution of the area-averaged vertical velocity within the objectively defined convective region of the 4 June 1985 PRE-STORM (Preliminary Regional Experiment for Stormscale Operational and Research Meteorology-Central Phase) mesoscale...

  10. Cloud-to-ground lightning characteristics of warm season Mesoscale Convection Systems in the Central United States: 1992-1993

    E-Print Network [OSTI]

    Hoeth, Brian Richard

    1998-01-01T23:59:59.000Z

    This study provides a detailed analysis of cloud-to-aphics. ground (CG) lightning flashes within individual Mesoscale Convective Systems (MCSs) that occurred in the Central United States during May-August of 1992 and 1993. Analysis of the CG...

  11. The evolution of total lightning and radar reflectivity characteristics of two mesoscale convective systems over Houston, Texas

    E-Print Network [OSTI]

    Hodapp, Charles Lee

    2009-05-15T23:59:59.000Z

    originated in the convective or transition regions. Both in-situ charging mechanisms created by the development of the mesoscale updraft and charge advection by the front-to-rear flow likely contribute to the increased electrification and lightning...

  12. Vertical profiles of radar reflectivity of convective cells in tropical and mid-latitude mesoscale convective systems

    E-Print Network [OSTI]

    Lutz, Kurt Reed

    1992-01-01T23:59:59.000Z

    meteorological phenomenon of particular interest to forecasters is the mesoscale convective system (MCS). Chappell (1986) defines an MCS as "any multicellular storm or group of interacting storms that suggests some organization in its forcing". An MCS...VERTICAL PROFILES OF RADAR REFLECTIVITY OF CONVECTIVE CELLS IN TROPICAL AND MID-LATITUDE MESOSCALE CONVECTIVE SYSTEMS A Thesis by KURT REED LUTZ Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment...

  13. Properties of inflow and downdraft air of tropical mesoscale convective systems and the effect of downdrafts on the surface fluxes

    E-Print Network [OSTI]

    Griffith, Jeane Margaret

    1992-01-01T23:59:59.000Z

    PROPERTIES OF INFLOW AND DOWNDRAFT AIR OF TROPICAL MESOSCALE CONVECTIVE SYSTEMS AND THE EFFECT OF DOWNDRAFTS ON THE SURFACE FLUXES A Thesis by JEANE MARGARET GRIFFITH Submitted to the Office of Graduate Studies of Texas A&M University... in partial fulfillment of the requirements for the degree of MAS'IER OF SCIENCE December 1992 Major Subject: Meteorology PROPERTIES OF THE INFLOW AND DOWNDRAFT AIR OF TROPICAL MESOSCALE CONVECTIVE SYSTEMS AND THE EFFECT OF DOWNDRAFTS ON THE SURFACE...

  14. Lagrangian study of transport and mixing in a mesoscale eddy street

    E-Print Network [OSTI]

    Prants, S V; Ponomarev, V I; Uleysky, M Yu; 10.1016/j.ocemod.2011.02.008

    2012-01-01T23:59:59.000Z

    We use dynamical systems approach and Lagrangian tools to study surface transport and mixing of water masses in a selected coastal region of the Japan Sea with moving mesoscale eddies associated with the Primorskoye Current. Lagrangian trajectories are computed for a large number of particles in an interpolated velocity field generated by a numerical regional multi-layer eddy-resolving circulation model. We compute finite-time Lyapunov exponents for a comparatively long period of time by the method developed and plot the Lyapunov synoptic map quantifying surface transport and mixing in that region. This map uncovers the striking flow structures along the coast with a mesoscale eddy street and repelling material lines. We propose new Lagrangian diagnostic tools --- the time of exit of particles off a selected box, the number of changes of the sign of zonal and meridional velocities --- to study transport and mixing by a pair of strongly interacting eddies often visible at sea-surface temperature satellite imag...

  15. Engineering mesoscale structures with distinct dynamical implications in networks of delay-coupled delay oscillators

    E-Print Network [OSTI]

    Anne-Ly Do; Johannes Höfener; Thilo Gross

    2012-07-05T23:59:59.000Z

    The dynamics of networks of interacting systems depends intricately on the interaction topology. When the dynamics is explored, generally the whole topology has to be considered. However, we show that there are certain mesoscale subgraphs that have precise and distinct consequences for the system-level dynamics. In particular, if meso-scale symmetries are present then eigenvectors of the Jacobian localise on the symmetric subgraph and the corresponding eigenvalues become insensitive to the topology outside the subgraph. Hence, dynamical instabilities associated with these eigenvalues can be analyzed without considering the topology outside the subgraph. While such instabilities are thus generated entirely in small network subgraphs, they generally do not remain confined to the subgraph once the instability sets in and thus have system-level consequences. Here we illustrate the analytical investigation of such instabilities in an ecological meta-population model consisting of a network of delay-coupled delay oscillators.

  16. RSL: A parallel Runtime System Library for regional atmospheric models with nesting

    SciTech Connect (OSTI)

    Michalakes, J.G.

    1997-08-01T23:59:59.000Z

    RSL is a parallel runtime system library developed at Argonne National Laboratory that is tailored to regular-grid atmospheric models with mesh refinement in the form of two-way interacting nested grids. RSL provides high-level stencil and interdomain communication, irregular domain decomposition, automatic local/global index translation, distributed I/O, and dynamic load balancing. RSL was used with Fortran90 to parallelize a well-known and widely used regional weather model, the Penn State/NCAR Mesoscale model.

  17. Coastal zone wind energy. Part I. Synoptic and mesoscale controls and distributions of coastal wind energy

    SciTech Connect (OSTI)

    Garstang, M.; Nnaji, S.; Pielke, R.A.; Gusdorf, J.; Lindsey, C.; Snow, J.W.

    1980-03-01T23:59:59.000Z

    This report describes a method of determining coastal wind energy resources. Climatological data and a mesoscale numerical model are used to delineate the available wind energy along the Atlantic and Gulf coasts of the United States. It is found that the spatial distribution of this energy is dependent on the locations of the observing sites in relation to the major synoptic weather features as well as the particular orientation of the coastline with respect to the large-scale wind.

  18. Development and validation of a vertically two-dimensional mesoscale numerical model

    E-Print Network [OSTI]

    Walters, Michael Kent

    1985-01-01T23:59:59.000Z

    values of model variables for static test and kinetic energy calculations . . . . . . . . . 25 2 Results of kinetic energy budget calculations . . 29 ? 1 -5 Surface heating rate (K s x 10 ) . . . . . . . 32 4 Initial values of variables for nonlinear.... These tests provide an important means of debugging the numerical scheme. The validation tests performed on the mesoscale model consisted of a simple static test, calculation of the mass continuity and the kinet. ic energy budget, and performing non...

  19. Dynamics and generation mechanisms of mesoscale structures in tokamak edge plasmas

    SciTech Connect (OSTI)

    Krasheninnikov, S. I. [University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States); Smolyakov, A. I. [University of Saskatchewan, 116 Science Place, Saskatoon, Saskatchewan S7N 5E2 (Canada)

    2008-05-15T23:59:59.000Z

    Intermittent convective-like plasma transport associated with mesoscale coherent structures extended along the magnetic field lines (''blobs'') is often dominant at the edge of tokamaks, stellarators, and linear devices. Blobs can travel a large distance toward the wall ({approx}10 cm and larger) and strongly enhance both edge plasma energy and particle transport and plasma-wall interactions. The dynamics of blobs and blob generation mechanisms are discussed in this paper.

  20. MESO-SCALE MODELING OF THE INFLUENCE OF INTERGRANULAR GAS BUBBLES ON EFFECTIVE THERMAL CONDUCTIVITY

    SciTech Connect (OSTI)

    Paul C. Millett; Michael Tonks

    2011-06-01T23:59:59.000Z

    Using a mesoscale modeling approach, we have investigated how intergranular fission gas bubbles, as observed in high-burnup nuclear fuel, modify the effective thermal conductivity in a polycrystalline material. The calculations reveal that intergranular porosity has a significantly higher resistance to heat transfer compared to randomly-distributed porosity. A model is developed to describe this conductivity reduction that considers an effective grain boundary Kapitza resistance as a function of the fractional coverage of grain boundaries by bubbles.

  1. Boundaries of the Peruvian Oxygen Minimum Zone shaped by coherent mesoscale dynamics

    E-Print Network [OSTI]

    Bettencourt, João H; García, Emilio Hernández; Montes, Ivonne; Sudre, Joël; Dewitte, Boris; Paulmier, Aurélien; Garçon, Véronique

    2015-01-01T23:59:59.000Z

    Dissolved oxygen in sea water is a major factor affecting marine habitats and biogeochemical cycles. Oceanic zones with oxygen deficits represent significant portions of the area and volume of the oceans and are thought to be expanding. The Peruvian oxygen minimum zone is one of the most pronounced and lies in a region of strong mesoscale activity in the form of vortices and frontal regions, whose effect in the dynamics of the oxygen minimum zone is largely unknown. Here, we study this issue from a modeling approach and a Lagrangian point of view, using a coupled physical-biogeochemical simulation of the Peruvian oxygen minimum zone and finite-size Lyapunov exponent fields to understand the link between mesoscale dynamics and oxygen variations. Our results show that, at depths between 380 and 600 meters, mesoscale structures have a relevant dual role. First, their mean positions and paths delimit and maintain the oxygen minimum zone boundaries. Second, their high frequency fluctuations entrain oxygen across t...

  2. Mesoscale phenomena in solutions of 3-methylpyridine, heavy water, and an antagonistic salt

    E-Print Network [OSTI]

    Jan Leys; Deepa Subramanian; Eva Rodezno; Boualem Hammouda; Mikhail A. Anisimov

    2013-08-22T23:59:59.000Z

    We have investigated controversial issues regarding the mesoscale behavior of 3-methylpyridine (3MP), heavy water, and sodium tetraphenylborate (NaBPh4) solutions by combining results obtained from dynamic light scattering (DLS) and small-angle neutron scattering (SANS). We have addressed three questions: (i) what is the origin of the mesoscale inhomogeneities (order of 100 nm in size) manifested by the "slow mode" in DLS? (ii) Is the periodic structure observed from SANS an inherent property of this system? (iii) What is the universality class of critical behavior in this system? Our results confirm that the "slow mode" observed from DLS experiments corresponds to long-lived, highly stable mesoscale droplets (order of 100 nm in size), which occur only when the solute (3MP) is contaminated by hydrophobic impurities. SANS data confirm the presence of a periodic structure with a periodicity of about 10 nm. This periodic structure cannot be eliminated by nanopore filtration and thus is indeed an inherent solution property. The critical behavior of this system, in the range of concentration and temperatures investigated by DLS experiments, indicates that the criticality belongs to the universality class of the 3-dimensional Ising model.

  3. Air-sea interaction at contrasting sites in the Eastern Tropical Pacific : mesoscale variability and atmospheric convection at 10°N

    E-Print Network [OSTI]

    Farrar, J. Thomas (John Thomas), 1976-

    2007-01-01T23:59:59.000Z

    The role of ocean dynamics in driving air-sea interaction is examined at two contrasting sites on 125°W in the eastern tropical Pacific Ocean using data from the Pan American Climate Study (PACS) field program. Analysis ...

  4. P h y s i c a l O c e a n o g r a p h y D i v i s i o n Role of Mesoscale Eddies on Decadal Variability of the South

    E-Print Network [OSTI]

    P h y s i c a l O c e a n o g r a p h y D i v i s i o n Role of Mesoscale Eddies on Decadal representation of mesoscale eddies in the ocean. Therefore, the impact of mesoscale eddies on climate variability the mesoscale eddies are properly parameterized in CMIP5 models. Our overall goal is to explore the impact

  5. Atmospheric Transport of Radionuclides

    SciTech Connect (OSTI)

    Crawford, T.V.

    2003-03-03T23:59:59.000Z

    The purpose of atmospheric transport and diffusion calculations is to provide estimates of concentration and surface deposition from routine and accidental releases of pollutants to the atmosphere. This paper discusses this topic.

  6. How atmospheric ice forms | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    atmospheric ice forms How atmospheric ice forms Released: September 08, 2014 New insights into atmospheric ice formation could improve climate models This study advances our...

  7. Atmospheric Pressure Reactor System | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Pressure Reactor System Atmospheric Pressure Reactor System The atmospheric pressure reactor system is designed for testing the efficiency of various catalysts for the...

  8. Satellite Observations of Mesoscale Eddy-Induced Ekman Pumping1 Peter Gaube ,Dudley B. Chelton, Roger M. Samelson, Michael G. Schlax, Larry W. O'Neill2

    E-Print Network [OSTI]

    Satellite Observations of Mesoscale Eddy-Induced Ekman Pumping1 Peter Gaube ,Dudley B. Chelton;Three mechanisms for self-induced Ekman pumping in the interiors of mesoscale ocean eddies temperature (SST) field, which generates a stress curl and therefore Ekman pumping in regions of crosswind SST

  9. Satellite Observations of Mesoscale Eddy-Induced Ekman Pumping1 Peter Gaube ,Dudley B. Chelton, Roger M. Samelson, Michael G. Schlax, Larry W. O'Neill2

    E-Print Network [OSTI]

    Samelson, Roger

    Satellite Observations of Mesoscale Eddy-Induced Ekman Pumping1 Peter Gaube ,Dudley B. Chelton;Three mechanisms for self-induced Ekman pumping in the interiors of mesoscale ocean eddies generates a curl of the stress and therefore Ekman pumping in regions of crosswind SST gradients

  10. Climate Sciences: Atmospheric Thermodynamics

    E-Print Network [OSTI]

    Russell, Lynn

    1 Climate Sciences: Atmospheric Thermodynamics Instructor: Lynn Russell, NH343 http://aerosol.ucsd.edu/courses.html Text: Curry & Webster Atmospheric Thermodynamics Ch1 Composition Ch2 Laws Ch3 Transfers Ch12 Energy Climate Sciences: Atmospheric Thermodynamics Instructor: Lynn Russell, NH343 http

  11. Mesoscale Origin of the Enhanced Cycling-Stability of the Si-Conductive Polymer Anode for Li-ion Batteries

    SciTech Connect (OSTI)

    Gu, Meng; Xiao, Xingcheng; Liu, Gao; Thevuthasan, Suntharampillai; Baer, Donald R.; Zhang, Jiguang; Liu, Jun; Browning, Nigel D.; Wang, Chong M.

    2014-01-14T23:59:59.000Z

    Electrode used in lithium-ion battery is invariably a composite of multifunctional components. The performance of the electrode is controlled by the interactive function of all components at mesoscale. Fundamental understanding of mesoscale phenomenon sets the basis for innovative designing of new materials. Here we report the achievement and origin of a significant performance enhancement of electrode for lithium ion batteries based on Si nanoparticles wrapped with conductive polymer. This new material is in marked contrast with conventional material, which exhibit fast capacity fade. In-situ TEM unveils that the enhanced cycling stability of the conductive polymer-Si composite is associated with mesoscale concordant function of Si nanoparticles and the conductive polymer. Reversible accommodation of the volume changes of Si by the conductive polymer allows good electrical contact between all the particles during the cycling process. In contrast, the failure of the conventional Si-electrode is probed to be the inadequate electrical contact.

  12. Implementation and assessment of turbine wake models in the Weather Research and Forecasting model for both mesoscale and large-eddy simulation

    SciTech Connect (OSTI)

    Singer, M; Mirocha, J; Lundquist, J; Cleve, J

    2010-03-03T23:59:59.000Z

    Flow dynamics in large wind projects are influenced by the turbines located within. The turbine wakes, regions characterized by lower wind speeds and higher levels of turbulence than the surrounding free stream flow, can extend several rotor diameters downstream, and may meander and widen with increasing distance from the turbine. Turbine wakes can also reduce the power generated by downstream turbines and accelerate fatigue and damage to turbine components. An improved understanding of wake formation and transport within wind parks is essential for maximizing power output and increasing turbine lifespan. Moreover, the influence of wakes from large wind projects on neighboring wind farms, agricultural activities, and local climate are all areas of concern that can likewise be addressed by wake modeling. This work describes the formulation and application of an actuator disk model for studying flow dynamics of both individual turbines and arrays of turbines within wind projects. The actuator disk model is implemented in the Weather Research and Forecasting (WRF) model, which is an open-source atmospheric simulation code applicable to a wide range of scales, from mesoscale to large-eddy simulation. Preliminary results demonstrate the applicability of the actuator disk model within WRF to a moderately high-resolution large-eddy simulation study of a small array of turbines.

  13. Terrestrial Planet Atmospheres. The Moon's Sodium Atmosphere

    E-Print Network [OSTI]

    Walter, Frederick M.

    ;Origins of Atmospheres · Outgassing ­ Volcanoes expel water, CO2, N2, H2S, SO2 removed by the Fme convecFon reaches deserts #12;Water and Ice Clouds #12;H2SO4

  14. Transport coefficients of off-lattice mesoscale-hydrodynamics simulation techniques

    E-Print Network [OSTI]

    Hiroshi Noguchi; Gerhard Gompper

    2008-04-14T23:59:59.000Z

    The viscosity and self-diffusion constant of particle-based mesoscale hydrodynamic methods, multi-particle collision dynamics (MPC) and dissipative particle dynamics (DPD), are investigated, both with and without angular-momentum conservation. Analytical results are derived for fluids with an ideal-gas equation of state and a finite-time-step dynamics, and compared with simulation data. In particular, the viscosity is derived in a general form for all variants of the MPC method. In general, very good agreement between theory and simulations is obtained.

  15. Screening properties of four mesoscale smoothed charge models, with application to dissipative particle dynamics

    E-Print Network [OSTI]

    Patrick B. Warren; Andrey Vlasov

    2014-02-25T23:59:59.000Z

    We extend our previous study [J. Chem. Phys. 138, 204907 (2013)] to quantify the screening properties of four mesoscale smoothed charge models used in dissipative particle dynamics. Using a combination of the hypernetted chain integral equation closure and the random phase approximation, we identify regions where the models exhibit a real-valued screening length, and the extent to which this agrees with the Debye length in the physical system. We find that the second moment of the smoothed charge distribution is a good predictor of this behaviour. We are thus able to recommend a consistent set of parameters for the models.

  16. Moist processes and the quasi-hydrostatic approximation in a mesoscale numerical model

    E-Print Network [OSTI]

    Kennedy, Charles Joseph

    1987-01-01T23:59:59.000Z

    of Committee) James P. McGuirk (Member) J'ohn M. Klinck (Member) James R. Sco ns (Head of Department) December 1987 ABSTRACT Moist Processes and the Ouasi-Hydrostatic Approximation in a Mesoscale Numerical Model. (December 1987) Charles Joseph...HV)ds' ? gHp s + gHps a dg 1 gt = (gt), s 1 1 (19) the pressure tendency at the model top equation: g f V ~ (pHV)ds' ? VS Vp Q ( el 1 + 0 Yp CpT ? V (H0) ds' )' ? ) (20) Richardson's equation for vertical motion: s f , , f Id d'D &DDVdd ' ? 0 D, 0...

  17. Impact of Resolution on Simulation of Closed Mesoscale Cellular Convection Identified by Dynamically Guided Watershed Segmentation

    SciTech Connect (OSTI)

    Martini, Matus; Gustafson, William I.; Yang, Qing; Xiao, Heng

    2014-11-27T23:59:59.000Z

    Organized mesoscale cellular convection (MCC) is a common feature of marine stratocumulus that forms in response to a balance between mesoscale dynamics and smaller scale processes such as cloud radiative cooling and microphysics. We use the Weather Research and Forecasting model with chemistry (WRF-Chem) and fully coupled cloud-aerosol interactions to simulate marine low clouds during the VOCALS-REx campaign over the southeast Pacific. A suite of experiments with 3- and 9-km grid spacing indicates resolution-dependent behavior. The simulations with finer grid spacing have smaller liquid water paths and cloud fractions, while cloud tops are higher. The observed diurnal cycle is reasonably well simulated. To isolate organized MCC characteristics we develop a new automated method, which uses a variation of the watershed segmentation technique that combines the detection of cloud boundaries with a test for coincident vertical velocity characteristics. This ensures that the detected cloud fields are dynamically consistent for closed MCC, the most common MCC type over the VOCALS-REx region. We demonstrate that the 3-km simulation is able to reproduce the scaling between horizontal cell size and boundary layer height seen in satellite observations. However, the 9-km simulation is unable to resolve smaller circulations corresponding to shallower boundary layers, instead producing invariant MCC horizontal scale for all simulated boundary layers depths. The results imply that climate models with grid spacing of roughly 3 km or smaller may be needed to properly simulate the MCC structure in the marine stratocumulus regions.

  18. EMSL - Atmospheric Aerosol Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scienceatmospheric The Atmospheric Aerosol Systems Science Theme focuses on understanding the chemistry, physics and molecular-scale dynamics of aerosols for model...

  19. Atmospheric Neutrino Fluxes

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2005-02-18T23:59:59.000Z

    Starting with an historical review, I summarize the status of calculations of the flux of atmospheric neutrinos and how they compare to measurements.

  20. Experiences with the Application of the Non-Hydrostatic Mesoscale Model GESIMA for assessing Wind Potential in

    E-Print Network [OSTI]

    Heinemann, Detlev

    the wind energy potential are re- quired. While the European Wind Atlas [3] has been proven to be suitableExperiences with the Application of the Non-Hydrostatic Mesoscale Model GESIMA for assessing Wind.physik.uni-oldenburg.de/ehf *GKSS Research Center Geesthacht, Max-Planck-StraÃ?e 1, D-21494 Geesthacht, Germany To asses wind

  1. Junhong Wei and Fuqing Zhang, Pennsylvania State University Mesoscale Gravity Waves in Moist Baroclinic Jet-Front Systems

    E-Print Network [OSTI]

    Thompson, Anne

    with small amount of moisture, dry dynamic gravity wave modes continue to dominate. However, convective-permitting simulations with the Weather Research and Forecast (WRF) model are performed to study mesoscale gravity waves/negative), and 7-km dynamic tropopause (turquoise lines). Wave Identification Figure 3. Comparison of WP5 at 132 h

  2. Inferring catchment precipitation by doing hydrology backward: A test in 24 small and mesoscale catchments in Luxembourg

    E-Print Network [OSTI]

    Kirchner, James W.

    Inferring catchment precipitation by doing hydrology backward: A test in 24 small and mesoscale September 2012; published 10 October 2012. [1] The complexity of hydrological systems and the necessary simplification of models describing these systems remain major challenges in hydrological modeling. Kirchner

  3. High-definition analysis of fluid-induced seismicity related to the mesoscale hydromechanical properties of a fault zone

    E-Print Network [OSTI]

    Vallée, Martin

    -strain and seismic measurements taken in the fractured damage zone during the pressurization indicated that seismicity is triggered along low-permeable, highly rigid, low-dip angle, mesoscale-inherited fractures where-so-rigid, aseismic, sub- vertical, fault-related fractures. Using a three-dimensional distinct-element representation

  4. MODIS-Derived Boundary Conditions for a Mesoscale Climate Model: Application to Irrigated Agriculture in the Euphrates Basin

    E-Print Network [OSTI]

    Evans, Jason

    -level water consumption were more than doubled relative to simulations that did not incorporate MODIS data to improve the realism of a regional climate model (the fifth-generation Pennsylvania State University­NCAR Mesoscale Model) with respect to irrigated agriculture. MODIS data were used to estimate spatially

  5. Fully-coupled engineering and mesoscale simulations of thermal conductivity in UO2 fuel using an implicit multiscale approach

    SciTech Connect (OSTI)

    Michael Tonks; Derek Gaston; Cody Permann; Paul Millett; Glen Hansen; Chris Newman

    2009-08-01T23:59:59.000Z

    Reactor fuel performance is sensitive to microstructure changes during irradiation (such as fission gas and pore formation). This study proposes an approach to capture microstructural changes in the fuel by a two-way coupling of a mesoscale phase field irradiation model to an engineering scale, finite element calculation. This work solves the multiphysics equation system at the engineering-scale in a parallel, fully-coupled, fully-implicit manner using a preconditioned Jacobian-free Newton Krylov method (JFNK). A sampling of the temperature at the Gauss points of the coarse scale is passed to a parallel sequence of mesoscale calculations within the JFNK function evaluation phase of the calculation. The mesoscale thermal conductivity is calculated in parallel, and the result is passed back to the engineering-scale calculation. As this algorithm is fully contained within the JFNK function evaluation, the mesoscale calculation is nonlinearly consistent with the engineering-scale calculation. Further, the action of the Jacobian is also consistent, so the composite algorithm provides the strong nonlinear convergence properties of Newton's method. The coupled model using INL's \\bison\\ code demonstrates quadratic nonlinear convergence and good parallel scalability. Initial results predict the formation of large pores in the hotter center of the pellet, but few pores on the outer circumference. Thus, the thermal conductivity is is reduced in the center of the pellet, leading to a higher internal temperature than that in an unirradiated pellet.

  6. Atmospheric Dynamics II Instructor

    E-Print Network [OSTI]

    AT602 Atmospheric Dynamics II 2 credits Instructor: David W. J. Thompson davet: An Introduction to Dynamic Meteorology, 5th Edition, Academic Press (recommended) · Marshall, J., and Plumb, R. A., 2008: Atmosphere, Ocean, and Climate Dynamics: An Introductory Text, Academic Press. · Vallis, G. K

  7. Atmospheric Thermodynamics Composition

    E-Print Network [OSTI]

    Russell, Lynn

    1 Atmospheric Thermodynamics Ch1 Composition Ch2 Laws Ch3 Transfers Ch12 EnergyBalance Ch4 Water Ch Sciences: Atmospheric Thermodynamics Instructor: Lynn Russell, NH343 http #12;2 Review from Ch. 1 · Thermodynamic quantities · Composition · Pressure · Density · Temperature

  8. Ageostrophic, anticyclonic instability of a geostrophic, barotropic boundary current

    E-Print Network [OSTI]

    Yavneh, Irad

    -called atmospheric mesoscale (with L between about 1 and 1000 km) and oceanic mesoscale and "submesoscale" (with L

  9. Mesoscale modeling of the rheology of pressure sensitive adhesives through inclusion of transient forces

    E-Print Network [OSTI]

    Padding, J T; Auhl, D; Briels, W J; Bailly, C

    2011-01-01T23:59:59.000Z

    For optimal application, pressure-sensitive adhesives must have rheological properties in between those of a viscoplastic solid and those of a viscoelastic liquid. Such adhesives can be produced by emulsion polymerisation, resulting in latex particles which are dispersed in water and contain long-chain acrylic polymers. When the emulsion is dried, the latex particles coalesce and an adhesive film is formed. The rheological properties of the dried samples are believed to be dominated by the interface regions between the original latex particles, but the relation between rheology and latex particle properties is poorly understood. In this paper we show that it is possible to describe the bulk rheology of a pressure-sensitive adhesive by means of a mesoscale simulation model. To reach experimental time and length scales, each latex particle is represented by just one simulated particle. The model is subjected to oscillatory shear flow and extensional flow. Simple order of magnitude estimates of the model paramet...

  10. Vortex arrays and meso-scale turbulence of self-propelled particles

    E-Print Network [OSTI]

    Robert Grossmann; Pawel Romanczuk; Markus Bär; Lutz Schimansky-Geier

    2014-05-30T23:59:59.000Z

    Inspired by the Turing mechanism for pattern formation, we propose a simple self-propelled particle model with short-ranged alignment and anti-alignment at larger distances. It is able to produce orientationally ordered states, periodic vortex patterns as well as meso-scale turbulence. The latter phase resembles observations in dense bacterial suspensions. The model allows a systematic derivation and analysis of a kinetic theory as well as hydrodynamic equations for density and momentum fields. A phase diagram with regions of such pattern formation as well as spatially homogeneous orientational order and disorder is obtained from a linear stability analysis of these continuum equations. Microscopic Langevin simulations of the self-propelled particle system are in agreement with these findings.

  11. Mesoscale simulation of shocked poly-(4-methyl-1-pentene) (PMP) foams.

    SciTech Connect (OSTI)

    Schroen, Diana Grace; Flicker, Dawn G.; Haill, Thomas A.; Root, Seth; Mattsson, Thomas Kjell Rene

    2011-06-01T23:59:59.000Z

    Hydrocarbon foams are commonly used in HEDP experiments, and are subject to shock compression from tens to hundreds of GPa. Modeling foams is challenging due to the heterogeneous character of the foam. A quantitative understanding of foams under strong dynamic compression is sought. We use Sandia's ALEGRA-MHD code to simulate 3D mesoscale models of pure poly(4-methyl-1-petene) (PMP) foams. We employ two models of the initial polymer-void structure of the foam and analyze the statistical properties of the initial and shocked states. We compare the simulations to multi-Mbar shock experiments at various initial foam densities and flyer impact velocities. Scatter in the experimental data may be a consequence of the initial foam inhomogeneity. We compare the statistical properties the simulations with the scatter in the experimental data.

  12. Inferring the mesoscale structure of layered, edge-valued and time-varying networks

    E-Print Network [OSTI]

    Peixoto, Tiago P

    2015-01-01T23:59:59.000Z

    Many network systems are composed of interdependent but distinct types of interactions, which cannot be fully understood in isolation. These different types of interactions are often represented as layers, attributes on the edges or as a time-dependence of the network structure. Although they are crucial for a more comprehensive scientific understanding, these representations offer substantial challenges. Namely, it is an open problem how to precisely characterize the large or mesoscale structure of network systems in relation to these additional aspects. Furthermore, the direct incorporation of these features invariably increases the effective dimension of the network description, and hence aggravates the problem of overfitting, i.e. the use of overly-complex characterizations that mistake purely random fluctuations for actual structure. In this work, we propose a robust and principled method to tackle these problems, by constructing generative models of modular network structure, incorporating layered, attr...

  13. Physically consistent simulation of mesoscale chemical kinetics: The non-negative FIS-{alpha} method

    SciTech Connect (OSTI)

    Dana, Saswati, E-mail: saswatid@rishi.serc.iisc.ernet.in [Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560012 (India); Raha, Soumyendu, E-mail: raha@serc.iisc.ernet.in [Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560012 (India)

    2011-10-01T23:59:59.000Z

    Biochemical pathways involving chemical kinetics in medium concentrations (i.e., at mesoscale) of the reacting molecules can be approximated as chemical Langevin equations (CLE) systems. We address the physically consistent non-negative simulation of the CLE sample paths as well as the issue of non-Lipschitz diffusion coefficients when a species approaches depletion and any stiffness due to faster reactions. The non-negative Fully Implicit Stochastic {alpha} (FIS {alpha}) method in which stopped reaction channels due to depleted reactants are deleted until a reactant concentration rises again, for non-negativity preservation and in which a positive definite Jacobian is maintained to deal with possible stiffness, is proposed and analysed. The method is illustrated with the computation of active Protein Kinase C response in the Protein Kinase C pathway.

  14. Crossing the mesoscale no-mans land via parallel kinetic Monte Carlo.

    SciTech Connect (OSTI)

    Garcia Cardona, Cristina (San Diego State University); Webb, Edmund Blackburn, III; Wagner, Gregory John; Tikare, Veena; Holm, Elizabeth Ann; Plimpton, Steven James; Thompson, Aidan Patrick; Slepoy, Alexander (U. S. Department of Energy, NNSA); Zhou, Xiao Wang; Battaile, Corbett Chandler; Chandross, Michael Evan

    2009-10-01T23:59:59.000Z

    The kinetic Monte Carlo method and its variants are powerful tools for modeling materials at the mesoscale, meaning at length and time scales in between the atomic and continuum. We have completed a 3 year LDRD project with the goal of developing a parallel kinetic Monte Carlo capability and applying it to materials modeling problems of interest to Sandia. In this report we give an overview of the methods and algorithms developed, and describe our new open-source code called SPPARKS, for Stochastic Parallel PARticle Kinetic Simulator. We also highlight the development of several Monte Carlo models in SPPARKS for specific materials modeling applications, including grain growth, bubble formation, diffusion in nanoporous materials, defect formation in erbium hydrides, and surface growth and evolution.

  15. atmospheric emitted radiance: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mesoscales (wavelengths of 64-957 km) were obtained potential energy by differential solar heating. This is converted to eddy available potential energy 11 The horizontal...

  16. Cold domes over the warm pool: a study of the properties of cold domes produced by mesoscale convective systems during TOGA COARE

    E-Print Network [OSTI]

    Caesar, Kathy-Ann Lois

    1995-01-01T23:59:59.000Z

    Mesoscale convective systems (MCSs) are known to cool the subcloud layer by the introduction of penetrative downdrafts to the surface, resulting in the formation of cold domes (also known as cold pools). Five MCSs sampled during the Tropical Ocean...

  17. The sensitivity of the PSU-NCAR model (MM5) to cumulus parameterization in simulating the mesoscale environment associated with 2 June 1995 West Texas tornado outbreak

    E-Print Network [OSTI]

    Han, Sang-Ok

    1998-01-01T23:59:59.000Z

    On 2 June 1995, many supercede thunderstorms were graphics. observed in West Texas between Lubbock and Amarillo under the synoptic and mesoscale environment which was increasingly more supportive of severe convection. Of the storms, those which...

  18. Mesoscale solubilization and critical phenomena in binary and quasi binary solutions of hydrotropes

    E-Print Network [OSTI]

    Andreas E. Robertson; Dung H. Phan; Joseph E. Macaluso; Vladimir N. Kuryakov; Elena V. Jouravleva; Christopher E. Bertrand; Igor K. Yudin; Mikhail A. Anisimov

    2015-03-24T23:59:59.000Z

    Hydrotropes are substances consisting of amphiphilic molecules that are too small to self assemble in equilibrium structures in aqueous solutions, but can form dynamic molecular clusters H bonded with water molecules. Some hydrotropes, such as low molecular weight alcohols and amines, can solubilize hydrophobic compounds in aqueous solutions at a mesoscopic scale, around 100 nm, with formation of long lived mesoscale droplets. In this work, we report on the studies of near critical and phase behavior of binary, 2,6-lutidine - H2O, and quasibinary, 2,6-lutidine - H2O - D2O, and tert-butanol - 2-butanol - H2O solutions in the presence of a solubilized hydrophobic impurity, cyclohexane. In additional to visual observation of fluid phase equilibria, two experimental techniques were used - light scattering and small - angle neutron scattering. It was found that the increase of the tert-butanol to 2-butanol ratio affects the liquid - liquid equilibria in the quasi-binary system at ambient pressure in the same way as the increase of pressure modifies the phase behavior of binary 2-butanol - H2O solutions. The correlation length of critical fluctuations near the liquid-liquid separation and the size of mesoscale droplets of solubilized cyclohexane were obtained by dynamic light scattering and by small - angle neutron scattering. It is shown that the effect of the presence of small amounts of cyclohexane on the near - critical phase behavior is twofold - the transition temperature changes towards increasing the two-phase domain, and long-lived mesoscopic inhomogeneities emerge in the macroscopically homogeneous domain. These homogeneities remain unchanged upon approach to the critical point of macroscopic phase separation and do not alter the universal nature of criticality. However, a larger amount of cyclohexane generates additional liquid-liquid phase separation at lower temperatures.

  19. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, Roland L. (Bloomfield, CO); Cannon, Theodore W. (Golden, CO)

    1988-01-01T23:59:59.000Z

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions.

  20. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, R.L.; Cannon, T.W.

    1988-10-25T23:59:59.000Z

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions. 7 figs.

  1. Multiphase Modeling of Flow, Transport, and Biodegradation in a Mesoscale Landfill Bioreactor

    E-Print Network [OSTI]

    Oldenburg, Curtis M.; Borglin, Sharon E.; Hazen, Terry C.

    2002-01-01T23:59:59.000Z

    biodegradation, landfill, gas generation, simulationPower, H. Landfill emission of gases into the atmosphere:a new approach to landfill operations that controls gas and

  2. Atmospheric Science: An introductory survey 1. Introduction to the atmosphere

    E-Print Network [OSTI]

    Folkins, Ian

    Sound Convergence Zone #12;Terrain effects #12;Von Karman vortex streets #12;Atmosphere in Earth system

  3. The effect of urban canopy parameterizations on mesoscale meteorological model simulations in the Paso del Norte area

    SciTech Connect (OSTI)

    Brown, M.J.; Williams, M.D.

    1997-04-01T23:59:59.000Z

    Since mesoscale numerical models do not have the spatial resolution to directly simulate the fluid dynamics and thermodynamics in and around urban structures, urban canopy parameterizations are sometimes used to approximate the drag, heating, and enhanced turbulent kinetic energy (tke) produced by the sub-grid scale urban elements. In this paper, we investigate the effect of the urban canopy parameterizations used in the HOTMAC mesoscale meteorological model by turning the parameterizations on and off. The model simulations were performed in the Paso del Norte region, which includes the cities of El Paso and Ciudad Juarez, the Franklin and Sierra Juarez mountains, and the Rio Grande. The metropolitan area is surrounded by relatively barren scrubland and is intersected by strips of vegetation along the Rio Grande. Results indicate that the urban canopy parameterizations do affect the mesoscale flow field, reducing the magnitude of wind speed and changing the magnitude of the sensible heat flux and tke in the metropolitan area. A nighttime heat island and a daytime cool island exist when urban canopy parameters are turned on, but associated recirculation flows are not readily apparent. Model-computed solar, net, and longwave radiation values look reasonable, agreeing for the most part with published measurements.

  4. The Regional Atmospheric Modeling System (RAMS): Development for Parallel Processing Computer

    E-Print Network [OSTI]

    Cirne, Walfredo

    on the mesoscale (horizontal scales from 2 km to 2000 km) for purposes ranging from operational weather forecasting and simulating convective clouds, mesoscale convective systems, cirrus clouds, and precipitating weather systems models that had a great deal of overlap, the CSU cloud/mesoscale mode (Tripoli and Cotton, 1982

  5. Simulations of amphiphilic fluids using mesoscale lattice-Boltzmann and lattice-gas methods

    E-Print Network [OSTI]

    P. J. Love; M. Nekovee; J. Chin; N. Gonzalez-Segredo; P. V. Coveney

    2002-12-06T23:59:59.000Z

    We compare two recently developed mesoscale models of binary immiscible and ternary amphiphilic fluids. We describe and compare the algorithms in detail and discuss their stability properties. The simulation results for the cases of self-assembly of ternary droplet phases and binary water-amphiphile sponge phases are compared and discussed. Both models require parallel implementation and deployment on large scale parallel computing resources in order to achieve reasonable simulation times for three-dimensional models. The parallelisation strategies and performance on two distinct parallel architectures are compared and discussed. Large scale three dimensional simulations of multiphase fluids requires the extensive use of high performance visualisation techniques in order to enable the large quantities of complex data to be interpreted. We report on our experiences with two commercial visualisation products: AVS and VTK. We also discuss the application and use of novel computational steering techniques for the more efficient utilisation of high performance computing resources. We close the paper with some suggestions for the future development of both models.

  6. The nonlinear coupling between gyroradius scale turbulence and mesoscale magnetic islands in fusion plasmas

    SciTech Connect (OSTI)

    Hornsby, W. A.; Peeters, A. G.; Snodin, A. P.; Casson, F. J.; Camenen, Y.; Szepesi, G. [Department of Physics, Centre for Fusion, Space, and Astrophysics, University of Warwick, Coventry (United Kingdom); Siccinio, M.; Poli, E. [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching bei Muenchen (Germany)

    2010-09-15T23:59:59.000Z

    The interaction between small scale turbulence (of the order of the ion Larmor radius) and mesoscale magnetic islands is investigated within the gyrokinetic framework. Turbulence, driven by background temperature and density gradients, over nonlinear mode coupling, pumps energy into long wavelength modes, and can result in an electrostatic vortex mode that coincides with the magnetic island. The strength of the vortex is strongly enhanced by the modified plasma flow response connected with the change in topology, and the transport it generates can compete with the parallel motion along the perturbed magnetic field. Despite the stabilizing effect of sheared plasma flows in and around the island, the net effect of the island is a degradation of the confinement. When density and temperature gradients inside the island are below the threshold for turbulence generation, turbulent fluctuations still persist through turbulence convection and spreading. The latter mechanisms then generate a finite transport flux and, consequently, a finite pressure gradient in the island. A finite radial temperature gradient inside the island is also shown to persist due to the trapped particles, which do not move along the field around the island. In the low collisionality regime, the finite gradient in the trapped population leads to the generation of a bootstrap current, which reduces the neoclassical drive.

  7. The reduction of plankton biomass induced by mesoscale stirring: a modeling study in the Benguela upwelling

    E-Print Network [OSTI]

    Ismael Hernández-Carrasco; Vincent Rossi; Emilio Hernández-García; Veronique Garçon; Cristóbal López

    2013-11-05T23:59:59.000Z

    Recent studies, both based on remote sensed data and coupled models, showed a reduction of biological productivity due to vigorous horizontal stirring in upwelling areas. In order to better understand this phenomenon, we consider a system of oceanic flow from the Benguela area coupled with a simple biogeochemical model of Nutrient-Phyto-Zooplankton (NPZ) type. For the flow three different surface velocity fields are considered: one derived from satellite altimetry data, and the other two from a regional numerical model at two different spatial resolutions. We compute horizontal particle dispersion in terms of Lyapunov Exponents, and analyzed their correlations with phytoplankton concentrations. Our modelling approach confirms that in the south Benguela there is a reduction of biological activity when stirring is increased. Two-dimensional offshore advection and latitudinal difference in Primary Production, also mediated by the flow, seem to be the dominant processes involved. We estimate that mesoscale processes are responsible for 30 to 50% of the offshore fluxes of biological tracers. In the northern area, other factors not taken into account in our simulation are influencing the ecosystem. We suggest explanations for these results in the context of studies performed in other eastern boundary upwelling areas.

  8. Mesoscale Structures at Complex Fluid-Fluid Interfaces: a Novel Lattice Boltzmann / Molecular Dynamics Coupling

    E-Print Network [OSTI]

    Marcello Sega; Mauro Sbragaglia; Sofia Sergeevna Kantorovich; Alexey Olegovich Ivanov

    2014-02-19T23:59:59.000Z

    Complex fluid-fluid interfaces featuring mesoscale structures with adsorbed particles are key components of newly designed materials which are continuously enriching the field of soft matter. Simulation tools which are able to cope with the different scales characterizing these systems are fundamental requirements for efficient theoretical investigations. In this paper we present a novel simulation method, based on the approach of Ahlrichs and D\\"unweg [Ahlrichs and D\\"unweg, Int. J. Mod. Phys. C, 1998, 9, 1429], that couples the "Shan-Chen" multicomponent Lattice Boltzmann technique to off-lattice molecular dynamics to simulate efficiently complex fluid-fluid interfaces. We demonstrate how this approach can be used to study a wide class of challenging problems. Several examples are given, with an accent on bicontinuous phases formation in polyelectrolyte solutions and ferrofluid emulsions. We also show that the introduction of solvation free energies in the particle-fluid interaction unveils the hidden, multiscale nature of the particle-fluid coupling, allowing to treat symmetrically (and interchangeably) the on-lattice and off-lattice components of the system.

  9. Impact of mesoscale eddies on water transport between the Pacific Ocean and the Bering Sea

    E-Print Network [OSTI]

    Prants, S V; Budyansky, M V; Uleysky, M Yu

    2013-01-01T23:59:59.000Z

    Sea surface height anomalies observed by satellites in 1993--2012 are combined with simulation and observations by surface drifters and Argo floats to study water flow pattern in the Near Strait (NS) connected the Pacific Ocean with the Bering Sea. Daily Lagrangian latitudinal maps, computed with the AVISO surface velocity field, and calculation of the transport across the strait show that the flow through the NS is highly variable and controlled by mesoscale and submesoscale eddies in the area. On the seasonal scale, the flux through the western part of the NR is negatively correlated with the flux through its eastern part ($r=-0.93$). On the interannual time scale, a significant positive correlation ($r=0.72$) is diagnosed between the NS transport and the wind stress in winter. Increased southward component of the wind stress decreases the northward water transport through the strait. Positive wind stress curl over the strait area in winter--spring generates the cyclonic circulation and thereby enhances the...

  10. Equilibrium Structure of a Triblock Copolymer System Revealed by Mesoscale Simulation and Neutron Scattering

    SciTech Connect (OSTI)

    Do, Changwoo [ORNL] [ORNL; Chen, Wei-Ren [ORNL] [ORNL; Hong, Kunlun [ORNL] [ORNL; Smith, Gregory Scott [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    We have performed both mesoscale simulations and neutron scattering experiments on Pluronic L62, a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer system in aqueous solution. The influence of simulation variables such PEO/PPO block ratio, interaction parameters, and coarse-graining methods is extensively investigated by covering all permutations of parameters found in the literatures. Upon increasing the polymer weight fraction from 50 wt% to 90 wt%, the equilibrium structure of the isotropic, reverse micellar, bicontinuous, worm-like micelle network, and lamellar phases are respectively predicted from the simulation depending on the choices of simulation parameters. Small angle neutron scattering (SANS) measurements show that the same polymer systems exhibit the spherical micellar, lamellar, and reverse micellar phases with the increase of the copolymer concentration at room temperature. Detailed structural analysis and comparison with simulations suggest that one of the simulation parameter sets can provide reasonable agreement with the experimentally observed structures.

  11. Measuring kinetic energy changes in the mesoscale with low acquisition rates

    SciTech Connect (OSTI)

    Roldán, É. [ICFO–Institut de Ciències Fotòniques, Mediterranean Technology Park, Av. Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona) (Spain); GISC–Grupo Interdisciplinar de Sistemas Complejos, Madrid (Spain); Martínez, I. A.; Rica, R. A., E-mail: rul@ugr.es [ICFO–Institut de Ciències Fotòniques, Mediterranean Technology Park, Av. Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona) (Spain); Dinis, L. [GISC–Grupo Interdisciplinar de Sistemas Complejos, Madrid (Spain); Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, 28040 Madrid (Spain)

    2014-06-09T23:59:59.000Z

    We report on the measurement of the average kinetic energy changes in isothermal and non-isothermal quasistatic processes in the mesoscale, realized with a Brownian particle trapped with optical tweezers. Our estimation of the kinetic energy change allows to access to the full energetic description of the Brownian particle. Kinetic energy estimates are obtained from measurements of the mean square velocity of the trapped bead sampled at frequencies several orders of magnitude smaller than the momentum relaxation frequency. The velocity is tuned applying a noisy electric field that modulates the amplitude of the fluctuations of the position and velocity of the Brownian particle, whose motion is equivalent to that of a particle in a higher temperature reservoir. Additionally, we show that the dependence of the variance of the time-averaged velocity on the sampling frequency can be used to quantify properties of the electrophoretic mobility of a charged colloid. Our method could be applied to detect temperature gradients in inhomogeneous media and to characterize the complete thermodynamics of biological motors and of artificial micro and nanoscopic heat engines.

  12. Temperature-dependent elastic anisotropy and mesoscale deformation in a nanostructured ferritic alloy

    SciTech Connect (OSTI)

    Stoica, Grigoreta M [ORNL; Stoica, Alexandru Dan [ORNL; Miller, Michael K [ORNL; Ma, Dong [ORNL

    2014-01-01T23:59:59.000Z

    Nanostructured ferritic alloys (NFA) are a new class of ultrafine-grained oxide dispersion-strengthened steels, promising for service in extreme environments of high temperature and high irradiation in the next-generation of nuclear reactors. This is owing to the remarkable stability of their complex microstructures containing a high density of Y-Ti-O nanoclusters within grains and along the grain boundaries. While nanoclusters have been recognized to be the primary contributor to the exceptional resistance to irradiation and high-temperature creep, very little is known about the mechanical roles of the polycrystalline grains that constitute the bulk ferritic matrix. Here we report the mesoscale characterization of anisotropic responses of the ultrafine NFA grains to tensile stresses at various temperatures using the state-of-the-art in situ neutron diffraction. We show the first experimental determination of temperature-dependent single-crystal elastic constants for the NFA, and reveal a strong temperature-dependent elastic anisotropy due to a sharp decrease in the shear stiffness constant [c'=(c_11-c_12)/2] when a critical temperature ( T_c ) is approached, indicative of elastic softening and instability of the ferritic matrix. We also show, from anisotropy-induced intergranular strain/stress accumulations, that a common dislocation slip mechanism operates at the onset of yielding for low temperatures, while there is a deformation crossover from low-temperature lattice hardening to high temperature lattice softening in response to extensive plastic deformation.

  13. Pacific Northwest Laboratory annual report for 1987 to the DOE Office of Energy Research: Part 3, Atmospheric sciences

    SciTech Connect (OSTI)

    Elderkin, C.E.

    1988-08-01T23:59:59.000Z

    Currently, the broad goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, and continental scales in the air, in clouds, and on the surface. For several years, studies of transport and diffusion have been extended to mesoscale areas of complex terrain. Atmospheric cleansing research has expanded to a regional scale, multilaboratory investigation of precipitation scavenging processes involving the transformation and wet deposition of chemicals composing ''acid rain.'' In addition, the redistribution and long-range transport of transformed contaminants passing through clouds is recognized as a necessary extension of our research to even larger scales in the future. A few long-range tracer experiments conducted in recent years and the special opportunity for measuring the transport and removal of radioactivity following the Chernobyl reactor accident of April 1986 offer important initial data bases for studying atmospheric processes at these super-regional scales.

  14. Dynamics of Atmospheres

    E-Print Network [OSTI]

    Read, Peter L.

    transfer ­ Solar heating of surface, and atmosphere via dust absorption ­ Infrared CO2 band cooling (especially around 667 cm-1) ­ nonLTE near-infrared heating of CO2 and nonLTE cooling effects above ~60-80 km. Baroclinic waves, scales, heat and momentum transport, seasonal occurrence. Qualitative treatment

  15. Laboratory for Atmospheric and

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    . Along with this growth came a new building on campus and a new name: the Laboratory for Atmospheric of the Sun to the outermost fringes of the solar system. With LASP's continuing operations role in the planet traditional and stable approach based on federal agency funding of research grant

  16. Coupling the high-complexity land surface model ACASA to the mesoscale model WRF

    E-Print Network [OSTI]

    Pyles, R. D.

    In this study, the Weather Research and Forecasting (WRF) model is coupled with the Advanced Canopy–Atmosphere–Soil Algorithm (ACASA), a high-complexity land surface model. Although WRF is a state-of-the-art regional ...

  17. Coupling the High Complexity Land Surface Model ACASA to the Mesoscale Model WRF

    E-Print Network [OSTI]

    Xu, L.

    In this study, the Weather Research and Forecasting Model (WRF) is coupled with the Advanced Canopy-Atmosphere-Soil Algorithm (ACASA), a high complexity land surface model. Although WRF is a state-of-the-art regional ...

  18. SIO 217a Atmospheric and Climate Sciences I: Atmospheric Thermodynamics

    E-Print Network [OSTI]

    Russell, Lynn

    SIO 217a Atmospheric and Climate Sciences I: Atmospheric Thermodynamics Course Syllabus and Lecture Schedule Instructor: Lynn Russell, 343 NH, 534-4852, lmrussell@ucsd.edu Text: Thermodynamics of Atmospheres of Thermodynamics (Work, Heat, First Law, Second Law, Heat Capacity, Adiabatic Processes) 5-Oct F Hurricane Example

  19. Pluto's Atmosphere Does Not Collapse

    E-Print Network [OSTI]

    Olkin, C B; Borncamp, D; Pickles, A; Sicardy, B; Assafin, M; Bianco, F B; Buie, M W; de Oliveira, A Dias; Gillon, M; French, R G; Gomes, A Ramos; Jehin, E; Morales, N; Opitom, C; Ortiz, J L; Maury, A; Norbury, M; Ribas, F B; Smith, R; Wasserman, L H; Young, E F; Zacharias, M; Zacharias, N

    2013-01-01T23:59:59.000Z

    Combining stellar occultation observations probing Pluto's atmosphere from 1988 to 2013 and models of energy balance between Pluto's surface and atmosphere, we conclude that Pluto's atmosphere does not collapse at any point in its 248-year orbit. The occultation results show an increasing atmospheric pressure with time in the current epoch, a trend present only in models with a high thermal inertia and a permanent N2 ice cap at Pluto's north rotational pole.

  20. Differential atmospheric tritium sampler

    DOE Patents [OSTI]

    Griesbach, O.A.; Stencel, J.R.

    1987-10-02T23:59:59.000Z

    An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The moisture then passes through a combustion chamber where hydrogen gas in the form of H/sub 2/ or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.

  1. Differential atmospheric tritium sampler

    DOE Patents [OSTI]

    Griesbach, Otto A. (Langhorne, PA); Stencel, Joseph R. (Skillman, NJ)

    1990-01-01T23:59:59.000Z

    An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The mixture then passes through a combustion chamber where hydrogen gas in the form of H.sub.2 or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.

  2. Mesoscale Simulations of a Wind Ramping Event for Wind Energy Prediction

    SciTech Connect (OSTI)

    Rhodes, M; Lundquist, J K

    2011-09-21T23:59:59.000Z

    Ramping events, or rapid changes of wind speed and wind direction over a short period of time, present challenges to power grid operators in regions with significant penetrations of wind energy in the power grid portfolio. Improved predictions of wind power availability require adequate predictions of the timing of ramping events. For the ramping event investigated here, the Weather Research and Forecasting (WRF) model was run at three horizontal resolutions in 'mesoscale' mode: 8100m, 2700m, and 900m. Two Planetary Boundary Layer (PBL) schemes, the Yonsei University (YSU) and Mellor-Yamada-Janjic (MYJ) schemes, were run at each resolution as well. Simulations were not 'tuned' with nuanced choices of vertical resolution or tuning parameters so that these simulations may be considered 'out-of-the-box' tests of a numerical weather prediction code. Simulations are compared with sodar observations during a wind ramping event at a 'West Coast North America' wind farm. Despite differences in the boundary-layer schemes, no significant differences were observed in the abilities of the schemes to capture the timing of the ramping event. As collaborators have identified, the boundary conditions of these simulations probably dominate the physics of the simulations. They suggest that future investigations into characterization of ramping events employ ensembles of simulations, and that the ensembles include variations of boundary conditions. Furthermore, the failure of these simulations to capture not only the timing of the ramping event but the shape of the wind profile during the ramping event (regardless of its timing) indicates that the set-up and execution of such simulations for wind power forecasting requires skill and tuning of the simulations for a specific site.

  3. Gyrokinetic simulations of mesoscale energetic particle-driven Alfvenic turbulent transport embedded in microturbulence

    SciTech Connect (OSTI)

    Bass, E. M.; Waltz, R. E. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States)

    2010-11-15T23:59:59.000Z

    Energetic particle (EP) transport from local high-n toroidal Alfven eigenmodes (TAEs) and energetic particle modes (EPMs) is simulated with a gyrokinetic code. Linear and nonlinear simulations have identified a parameter range where the longwave TAE and EPM are unstable alongside the well-known ion-temperature-gradient (ITG) and trapped-electron-mode (TEM) instabilities. A new eigenvalue solver in GYRO facilitates this mode identification. States of nonlinearly saturated local TAE/EPM turbulent intensity are identified, showing a 'soft' transport threshold for enhanced energetic particle transport against the TAE/EPM drive from the EP pressure gradient. The very long-wavelength (mesoscale) TAE/EPM transport is saturated partially by nonlinear interaction with microturbulent ITG/TEM-driven zonal flows. Fixed-gradient-length, nonlinearly saturated states are accessible over a relatively narrow range of EP pressure gradient. Within this range, and in the local limit employed, TAE/EPM-driven transport more closely resembles drift-wave microturbulent transport than 'stiff' ideal MHD transport with a clamped critical total pressure gradient. At a higher, critical EP pressure gradient, fixed-gradient nonlinear saturation fails: EP transport increases without limit and background transport decreases. Presumably saturation is then obtained by relaxation of the EP pressure gradient to near this critical EP pressure gradient. If the background plasma gradients driving the ITG/TEM turbulence and zonal flows are weakened, the critical gradient collapses to the TAE/EPM linear stability threshold. Even at the critical EP pressure gradient there is no evidence that TAE/EPM instability significantly increases transport in the background plasma channels.

  4. On the effect of the steady-state approximation in time-space composite studies of mesoscale convective systems

    E-Print Network [OSTI]

    Mattison, Kevin Morgan

    1992-01-01T23:59:59.000Z

    ON THE EFFECT OF THE STRA 'Y-STATE APPROXIMATION IN TIME-SPACE COMPOSITE STUDIES OF MESOSCALE CONVECTIVE SYSTEMS A Thesis KEVIN MORGAN MATTISON Subnitted to the Office of Graduate Studies of Texas A&M University in partial fulfillnent... of the requirements for the degree of MASTER OF SCIENCE Decenber 1992 Major Subject: Meteorology ON THE EFFECT OF THE STEADY-STATE APPROXINATIOH IN TIME-SPACE COMPOSITE STUDIES OF NESOSCALE COHVECTIVE SYSTENS A Thesis KEVIN MORGAN NATTISOH Approved as to style...

  5. ARM - Atmospheric Heat Budget

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearchSOLICITATIONIMODI FICATION OFMaterialsAnnual Reports27,ListAtmospheric Heat

  6. ARM - Atmospheric Pressure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearchSOLICITATIONIMODI FICATION OFMaterialsAnnual Reports27,ListAtmospheric

  7. Atmospheric PSF Interpolation

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The itemAIR SEPARATION BYAbrasion andArticle)Atmospheric

  8. atmospheres thin atmospheres: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to optical depth perturbations. In Earth-type atmospheres sustained planetary greenhouse effect with a stable ground surface temperature can only exist at a particular...

  9. Meso-Scale Modeling of Spall in a Heterogeneous Two-Phase Material

    SciTech Connect (OSTI)

    Springer, H K

    2008-06-26T23:59:59.000Z

    The influence of the heterogeneous second-phase particle structure and applied loading conditions on the ductile spall response of a model two-phase material was investigated. Quantitative metallography, three-dimensional (3D) meso-scale simulations (MSS), and small-scale spall experiments provided the foundation for this study. Nodular ductile iron (NDI) was selected as the model two-phase material for this study because it contains a large and readily identifiable second- phase particle population. Second-phase particles serve as the primary void nucleation sites in NDI and are, therefore, central to its ductile spall response. A mathematical model was developed for the NDI second-phase volume fraction that accounted for the non-uniform particle size and spacing distributions within the framework of a length-scale dependent Gaussian probability distribution function (PDF). This model was based on novel multiscale sampling measurements. A methodology was also developed for the computer generation of representative particle structures based on their mathematical description, enabling 3D MSS. MSS were used to investigate the effects of second-phase particle volume fraction and particle size, loading conditions, and physical domain size of simulation on the ductile spall response of a model two-phase material. MSS results reinforce existing model predictions, where the spall strength metric (SSM) logarithmically decreases with increasing particle volume fraction. While SSM predictions are nearly independent of applied load conditions at lower loading rates, which is consistent with previous studies, loading dependencies are observed at higher loading rates. There is also a logarithmic decrease in SSM for increasing (initial) void size, as well. A model was developed to account for the effects of loading rate, particle size, matrix sound-speed, and, in the NDI-specific case, the probabilistic particle volume fraction model. Small-scale spall experiments were designed and executed for the purpose of validating closely-coupled 3D MSS. While the spall strength is nearly independent of specimen thickness, the fragment morphology varies widely. Detailed MSS demonstrate that the interactions between the tensile release waves are altered by specimen thickness and that these interactions are primarily responsible for fragment formation. MSS also provided insights on the regional amplification of damage, which enables the development of predictive void evolution models.

  10. Tests of an Ensemble Kalman Filter for Mesoscale and Regional-scale Data Assimilation. Part IV: Comparison with 3DVar in a Month-long Experiment

    E-Print Network [OSTI]

    Tests of an Ensemble Kalman Filter for Mesoscale and Regional-scale Data Assimilation. Part IV@tamu.edu #12;2 Abstract In previous works in this series study, an ensemble Kalman filter (En System. #12;4 1. Introduction The Ensemble Kalman filter (EnKF) (Evensen 1994), which estimates

  11. 13B.7 THE CLIMATOLOGY, CONVECTIVE MODE, AND MESOSCALE ENVIRONMENT OF COOL SEASON SEVERE THUNDERSTORMS IN THE OHIO AND TENNESSEE VALLEYS, 1995-2006

    E-Print Network [OSTI]

    2300, Norman, OK 73072, E-mail: Bryan.Smith@noaa.gov Center hourly mesoanalysis data (Bothwell et al System (GIS). Using these data, we define a tornado day as a 24 hr period beginning at the first reported13B.7 THE CLIMATOLOGY, CONVECTIVE MODE, AND MESOSCALE ENVIRONMENT OF COOL SEASON SEVERE

  12. Sandia National Laboratories: atmospheric chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and atmospheric chemistry that is expected to benefit auto and engine manufacturers, oil and gas utilities, and other industries that employ combustion models. A paper...

  13. Soil moisture in complex terrain: quantifying effects on atmospheric boundary layer flow and providing improved surface boundary conditions for mesoscale models

    E-Print Network [OSTI]

    Daniels, Megan Hanako

    2010-01-01T23:59:59.000Z

    74 ii Soil Moisture Sensors: Decagon ECH2O Capacitance133 A.10 Soil types corresponding to each75 Soil Moisture and Temperature Probe

  14. Soil moisture in complex terrain: quantifying effects on atmospheric boundary layer flow and providing improved surface boundary conditions for mesoscale models

    E-Print Network [OSTI]

    Daniels, Megan Hanako

    2010-01-01T23:59:59.000Z

    red indicates “water towers” generated by kinematic wavethe kinematic wave equation will begin to collect water onred indicates “water towers” generated by kinematic wave

  15. Soil moisture in complex terrain: quantifying effects on atmospheric boundary layer flow and providing improved surface boundary conditions for mesoscale models

    E-Print Network [OSTI]

    Daniels, Megan Hanako

    2010-01-01T23:59:59.000Z

    direction, (b) wind speed, (c) potential temperature, and (Airport of potential temperature, wind speed, winderrors (bias) for potential temperature, wind speed, wind

  16. ELSEVIER AtmosphericResearch 38 (1995) 207-235 ATMOSPHERIC

    E-Print Network [OSTI]

    Moelders, Nicole

    ELSEVIER AtmosphericResearch 38 (1995) 207-235 ATMOSPHERIC RESEARCH On the parameterization of ice and water substance mixing ratio fields were only strongly altered by turning off the ice phase of these schemes includes ice processes. But in mid- latitudes and also in tropics the ice phase is an important

  17. ATMOSPHERIC ELSEVIER AtmosphericResearch 44 (1997) 231-241

    E-Print Network [OSTI]

    Reading, University of

    ATMOSPHERIC RESEARCH ELSEVIER AtmosphericResearch 44 (1997) 231-241 Error analysis of backscatter;accepted 14 February 1997 Abstract Ice sphere backscatter has been calculated using both Mie theory as a reasonable approximation for rv 1997 Elsevier Science B.V. 1. Introduction Cirrus clouds play

  18. ANALYTICAL SOLUTION FOR WAVES IN PLANETS WITH ATMOSPHERIC SUPERROTATION. I. ACOUSTIC AND INERTIA-GRAVITY WAVES

    SciTech Connect (OSTI)

    Peralta, J.; López-Valverde, M. A. [Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Imamura, T. [Institute of Space and Astronautical Science-Japan Aerospace Exploration Agency 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Read, P. L. [Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford (United Kingdom); Luz, D. [Centro de Astronomia e Astrofísica da Universidade de Lisboa (CAAUL), Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa (Portugal); Piccialli, A., E-mail: peralta@iaa.es [LATMOS, UVSQ, 11 bd dAlembert, 78280 Guyancourt (France)

    2014-07-01T23:59:59.000Z

    This paper is the first of a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases when the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this first part, only waves that are direct solutions of the generic dispersion relation are studied—acoustic and inertia-gravity waves. Concerning inertia-gravity waves, we found that in the cases of short horizontal wavelengths, null background wind, or propagation in the equatorial region, only pure gravity waves are possible, while for the limit of large horizontal wavelengths and/or null static stability, the waves are inertial. The correspondence between classical atmospheric approximations and wave filtering has been examined too, and we carried out a classification of the mesoscale waves found in the clouds of Venus at different vertical levels of its atmosphere. Finally, the classification of waves in exoplanets is discussed and we provide a list of possible candidates with cyclostrophic regimes.

  19. Knowledge Management Group Institute AIFB -Karlsruhe University

    E-Print Network [OSTI]

    Staab, Steffen

    model proposes root furnishing accomodation event area ... hotel youth hostel... cityregion ... Relation ---------------------------------------------------------------------------------------------- (costs, accomodation) 0.38 0.04 (event, area) 0.37 0.04 (area, accomodation) 0.38 0.04 (area, hotel) 0

  20. Francesco Grilli: Karlsruhe Institute of Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof Energy Forrestal GarageD. Westphal,FissionUser

  1. Space Science : Atmosphere Greenhouse Effect

    E-Print Network [OSTI]

    Johnson, Robert E.

    Space Science : Atmosphere Greenhouse Effect Part-5a Solar + Earth Spectrum IR Absorbers Grey Atmosphere Greenhouse Effect #12;Radiation: Solar and Earth Surface B"(T) Planck Ideal Emission Integrate at the carbon cycle #12;However, #12;Greenhouse Effect is Complex #12;PLANETARY ENERGY BALANCE G+W fig 3-5

  2. Ch4. Atmosphere and Surface Energy Balances

    E-Print Network [OSTI]

    Pan, Feifei

    ;Energy Pathways #12;Solar radiation transfer in the atmosphere Solar radiation Reflection Atmosphere or performing any work. #12;Solar radiation transfer in the atmosphere Solar radiation Reflection Transmission or water. #12;Solar radiation transfer in the atmosphere Solar radiation Reflection Transmission Atmosphere

  3. Design and fabrication of a meso-scale stirling engine and combustor.

    SciTech Connect (OSTI)

    Echekki, Tarek (Sandia National Laboratories, Livermore, CA); Haroldsen, Brent L. (Sandia National Laboratories, Livermore, CA); Krafcik, Karen L. (Sandia National Laboratories, Livermore, CA); Morales, Alfredo Martin (Sandia National Laboratories, Livermore, CA); Mills, Bernice E. (Sandia National Laboratories, Livermore, CA); Liu, Shiling (Sandia National Laboratories, Livermore, CA); Lee, Jeremiah C. (Sandia National Laboratories, Livermore, CA); Karpetis, Adionos N. (Sandia National Laboratories, Livermore, CA); Chen, Jacqueline H. (Sandia National Laboratories, Livermore, CA); Ceremuga, Joseph T. (Sandia National Laboratories, Livermore, CA); Raber, Thomas N. (Sandia National Laboratories, Livermore, CA); Hekmuuaty, Michelle A. (Sandia National Laboratories, Livermore, CA)

    2005-05-01T23:59:59.000Z

    Power sources capable of supplying tens of watts are needed for a wide variety of applications including portable electronics, sensors, micro aerial vehicles, and mini-robotics systems. The utility of these devices is often limited by the energy and power density capabilities of batteries. A small combustion engine using liquid hydrocarbon fuel could potentially increase both power and energy density by an order of magnitude or more. This report describes initial development work on a meso-scale external combustion engine based on the Stirling cycle. Although other engine designs perform better at macro-scales, we believe the Stirling engine cycle is better suited to small-scale applications. The ideal Stirling cycle requires efficient heat transfer. Consequently, unlike other thermodynamic cycles, the high heat transfer rates that are inherent with miniature devices are an advantage for the Stirling cycle. Furthermore, since the Stirling engine uses external combustion, the combustor and engine can be scaled and optimized semi-independently. Continuous combustion minimizes issues with flame initiation and propagation. It also allows consideration of a variety of techniques to promote combustion that would be difficult in a miniature internal combustion engine. The project included design and fabrication of both the engine and the combustor. Two engine designs were developed. The first used a cylindrical piston design fabricated with conventional machining processes. The second design, based on the Wankel rotor geometry, was fabricated by through-mold electroforming of nickel in SU8 and LIGA micromolds. These technologies provided the requisite precision and tight tolerances needed for efficient micro-engine operation. Electroformed nickel is ideal for micro-engine applications because of its high strength and ductility. A rotary geometry was chosen because its planar geometry was more compatible with the fabrication process. SU8 lithography provided rapid prototypes to verify the design. A final high precision engine was created via LIGA. The micro-combustor was based on an excess enthalpy concept. Development of a micro-combustor included both modeling and experiments. We developed a suite of simulation tools both in support of the design of the prototype combustors, and to investigate more fundamental aspects of combustion at small scales. Issues of heat management and integration with the micro-scale Stirling engine were pursued using CFD simulations. We found that by choice of the operating conditions and channel dimensions energy conversion occurs by catalysis-dominated or catalysis-then-homogeneous phase combustion. The purpose of the experimental effort in micro-combustion was to study the feasibility and explore the design parameters of excess enthalpy combustors. The efforts were guided by the necessity for a practical device that could be implemented in a miniature power generator, or as a stand-alone device used for heat generation. Several devices were fabricated and successfully tested using methane as the fuel.

  4. Oceanic three-dimensional Lagrangian Coherent Structures: A study of a mesoscale eddy in the Benguela ocean region

    E-Print Network [OSTI]

    João H. Bettencourt; Cristóbal López; Emilio Hernández-García

    2012-07-09T23:59:59.000Z

    We study three dimensional oceanic Lagrangian Coherent Structures (LCSs) in the Benguela region, as obtained from an output of the ROMS model. To do that we first compute Finite-Size Lyapunov exponent (FSLE) fields in the region volume, characterizing mesoscale stirring and mixing. Average FSLE values show a general decreasing trend with depth, but there is a local maximum at about 100 m depth. LCSs are extracted as ridges of the calculated FSLE fields. They present a "curtain-like" geometry in which the strongest attracting and repelling structures appear as quasivertical surfaces. LCSs around a particular cyclonic eddy, pinched off from the upwelling front are also calculated. The LCSs are confirmed to provide pathways and barriers to transport in and out of the eddy.

  5. Carbonaceous spheres—an unusual template for solid metal oxide mesoscale spheres: Application to ZnO spheres

    SciTech Connect (OSTI)

    Patrinoiu, Greta; Calderón-Moreno, Jose Maria; Culita, Daniela C. [Illie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest (Romania); Birjega, Ruxandra [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box Mg—27, Magurele, Bucharest (Romania); Ene, Ramona [Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest (Romania); Carp, Oana, E-mail: ocarp@icf.ro [Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest (Romania)

    2013-06-15T23:59:59.000Z

    A green template route for the synthesis of mesoscale solid ZnO spheres was ascertained. The protocol involves a double coating of the carbonaceous spheres with successive layers of zinc-containing species by alternating a non-ultrasound and ultrasound-assisted deposition, followed by calcination treatments. The composites were characterized by FTIR spectroscopy, thermal analysis, scanning electron microscopy while the obtained ZnO spheres by X-ray diffraction, Raman spectroscopy, scanning and transmission electron microscopy, N{sub 2} adsorption–desorption isotherms and photoluminescence investigations. A growth mechanism of the solid spheres is advanced based on these results. While the spheres' diameters and the mean size values of ZnO are independent on deposition order, the surface area and the external porosity are fairly dependent. The photoluminescence measurements showed interesting emission features, with emission bands in the violet to orange region. The spheres present high photocatalytical activity towards the degradation of phenol under UV irradiation, the main reaction being its mineralization. - Graphical abstract: A novel and eco-friendly methodology for the synthesis of mesoscale solid ZnO spheres was developed. The protocol involves a double coating of the starch-derived carbonaceous spheres with successive layers of zinc-containing species by alternating a non-ultrasound and ultrasound-assisted deposition, followed by calcination treatments. - Highlights: • ZnO solid spheres are obtained via a template route using carbonaceous spheres. • Two-step coatings of interchangeable order are used as deposition procedure. • The coating procedure influences the porosity and surface area. • ZnO spheres exhibited interesting visible photoluminescence properties. • Solid spheres showed photocatalytical activity in degradation of phenol.

  6. North Pacific Mesoscale Coupled Air-Ocean Simulations Compared with Observations

    SciTech Connect (OSTI)

    Koracin, Darko; Cerovecki, Ivana; Vellore, Ramesh; Mejia, John; Hatchett, Benjamin; McCord, Travis; McLean, Julie; Dorman, Clive

    2013-04-11T23:59:59.000Z

    Executive summary The main objective of the study was to investigate atmospheric and ocean interaction processes in the western Pacific and, in particular, effects of significant ocean heat loss in the Kuroshio and Kuroshio Extension regions on the lower and upper atmosphere. It is yet to be determined how significant are these processes are on climate scales. The understanding of these processes led us also to development of the methodology of coupling the Weather and Research Forecasting model with the Parallel Ocean Program model for western Pacific regional weather and climate simulations. We tested NCAR-developed research software Coupler 7 for coupling of the WRF and POP models and assessed its usability for regional-scale applications. We completed test simulations using the Coupler 7 framework, but implemented a standard WRF model code with options for both one- and two-way mode coupling. This type of coupling will allow us to seamlessly incorporate new WRF updates and versions in the future. We also performed a long-term WRF simulation (15 years) covering the entire North Pacific as well as high-resolution simulations of a case study which included extreme ocean heat losses in the Kuroshio and Kuroshio Extension regions. Since the extreme ocean heat loss occurs during winter cold air outbreaks (CAO), we simulated and analyzed a case study of a severe CAO event in January 2000 in detail. We found that the ocean heat loss induced by CAOs is amplified by additional advection from mesocyclones forming on the southern part of the Japan Sea. Large scale synoptic patterns with anomalously strong anticyclone over Siberia and Mongolia, deep Aleutian Low, and the Pacific subtropical ridge are a crucial setup for the CAO. It was found that the onset of the CAO is related to the breaking of atmospheric Rossby waves and vertical transport of vorticity that facilitates meridional advection. The study also indicates that intrinsic parameterization of the surface fluxes within the WRF model needs more evaluation and analysis.

  7. Modeling Atmospheric Aerosols V. Rao Kotamarthi

    E-Print Network [OSTI]

    Modeling Atmospheric Aerosols V. Rao Kotamarthi and Yan Feng Climate Research Section Environmental Science Division Argonne National Laboratory #12;Outline Atmospheric Aerosols and gas phase heterogeneous reactions Regional Scales and Atmospheric Aerosols Regional Scale Aerosols: Ganges Valley Aerosol

  8. Fragmentation Energetics of Clusters Relevant to Atmospheric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Clusters Relevant to Atmospheric New Particle Formation. Fragmentation Energetics of Clusters Relevant to Atmospheric New Particle Formation. Abstract: The exact mechanisms by...

  9. Environmental Chemistry II (Atmospheric Chemistry)

    E-Print Network [OSTI]

    Dibble, Theodore

    SYLLABUS FOR Environmental Chemistry II (Atmospheric Chemistry) FCH 511 Fall 2013 Theodore S/explaining the trends in J as a function of altitude and solar zenith angle. The second involves analyzing real

  10. THE MARTIAN ATMOSPHERIC BOUNDARY LAYER

    E-Print Network [OSTI]

    Spiga, Aymeric

    THE MARTIAN ATMOSPHERIC BOUNDARY LAYER A. Petrosyan,1 B. Galperin,2 S. E. Larsen,3 S. R. Lewis,4 A [Haberle et al., 1993a; Larsen et al., 2002; Hinson et al., 2008]. At night, convection is inhibited

  11. Atmospheric science and power production

    SciTech Connect (OSTI)

    Randerson, D. (ed.)

    1984-07-01T23:59:59.000Z

    This is the third in a series of scientific publications sponsored by the US Atomic Energy Commission and the two later organizations, the US Energy Research and Development Adminstration, and the US Department of Energy. The first book, Meteorology and Atomic Energy, was published in 1955; the second, in 1968. The present volume is designed to update and to expand upon many of the important concepts presented previously. However, the present edition draws heavily on recent contributions made by atmospheric science to the analysis of air quality and on results originating from research conducted and completed in the 1970s. Special emphasis is placed on how atmospheric science can contribute to solving problems relating to the fate of combustion products released into the atmosphere. The framework of this book is built around the concept of air-quality modeling. Fundamentals are addressed first to equip the reader with basic background information and to focus on available meteorological instrumentation and to emphasize the importance of data management procedures. Atmospheric physics and field experiments are described in detail to provide an overview of atmospheric boundary layer processes, of how air flows around obstacles, and of the mechanism of plume rise. Atmospheric chemistry and removal processes are also detailed to provide fundamental knowledge on how gases and particulate matter can be transformed while in the atmosphere and how they can be removed from the atmosphere. The book closes with a review of how air-quality models are being applied to solve a wide variety of problems. Separate analytics have been prepared for each chapter.

  12. Laser Atmospheric Studies with VERITAS

    E-Print Network [OSTI]

    C. M. Hui; for the VERITAS collaboration

    2007-09-25T23:59:59.000Z

    As a calibrated laser pulse propagates through the atmosphere, the amount of Rayleigh-scattered light arriving at the VERITAS telescopes can be calculated precisely. This technique was originally developed for the absolute calibration of ultra-high-energy cosmic-ray fluorescence telescopes but is also applicable to imaging atmospheric Cherenkov telescopes (IACTs). In this paper, we present two nights of laser data taken with the laser at various distances away from the VERITAS telescopes and compare it to Rayleigh scattering simulations.

  13. Evaluating atmospheric CO2 inversions at multiple scales over a highly-inventoried agricultural landscape.

    SciTech Connect (OSTI)

    Schuh, Andrew E.; Lauvaux, Thomas; West, Tristram O.; Denning, A.; Davis, Kenneth J.; Miles, Natasha; Richardson, S. J.; Uliasz, Marek; Lokupitiya, Erandathie; Cooley, Dan; Andrews, Arlyn; Ogle, Stephen

    2013-05-01T23:59:59.000Z

    An intensive regional research campaign was conducted by the North American Carbon Program (NACP) in 2005 to study the carbon cycle of the highly productive agricultural regions of the Midwestern United States. Forty-_ve di_erent associated projects were spawned across _ve U.S. agencies over the course of nearly a decade involving hundreds of researchers. The primary objective of the project was to investigate the ability of atmospheric inversion techniques to use highly calibrated CO2 mixing ratio data to estimate CO2 exchange over the major croplands of the U.S. Statistics from densely monitored crop production, consisting primarily corn and soybeans, provided the backbone of a well-studied\\bottom up"flux estimate that was used to evaluate the atmospheric inversion results. Three different inversion systems, representing spatial scales varying from high resolution mesoscale, to continental, to global, coupled to different transport models and optimization techniques were compared to the bottom up" inventory estimates. The mean annual CO2-C sink for 2007 from the inversion systems ranged from 120 TgC to 170 TgC, when viewed across a wide variety of inversion setups, with the best" point estimates ranging from 145 TgC to 155 TgC. Inversion-based mean C sink estimates were generally slightly stronger, but statistically indistinguishable,from the inventory estimate whose mean C sink was 135 TgC. The inversion results showed temporal correlations at seasonal lengths while week to week correlations remained low. Comparisons were made between atmospheric transport yields of the two regional inversion systems, which despite having different influence footprints in space and time due to differences in underlying transport models and external forcings, showed similarity when aggregated in space and time.

  14. An analytical coarse-graining method which preserves the free energy, structural correlations, and thermodynamic state of polymer melts from the atomistic to the mesoscale

    E-Print Network [OSTI]

    J. McCarty; A. J. Clark; J. Copperman; M. G. Guenza

    2014-07-03T23:59:59.000Z

    Structural and thermodynamic consistency of coarse-graining models across multiple length scales is essential for the predictive role of multi-scale modeling and molecular dynamic simulations that use mesoscale descriptions. Our approach is a coarse-grained model based on integral equation theory, which can represent polymer chains at variable levels of chemical details. The model is analytical and depends on molecular and thermodynamic parameters of the system under study, as well as on the direct correlation function in the k --> 0 limit, c0. A numerical solution to the PRISM integral equations is used to determine c0, by adjusting the value of the effective hard sphere diameter, d, to agree with the predicted equation of state. This single quantity parameterizes the coarse-grained potential, which is used to perform mesoscale simulations that are directly compared with atomistic-level simulations of the same system. We test our coarse-graining formalism by comparing structural correlations, isothermal compressibility, equation of state, Helmholtz and Gibbs free energies, and potential energy and entropy using both united atom and coarse-grained descriptions. We find quantitative agreement between the analytical formalism for the thermodynamic properties, and the results of Molecular Dynamics simulations, independent of the chosen level of representation. In the mesoscale description, the potential energy of the soft-particle interaction becomes a free energy in the coarse-grained coordinates which preserves the excess free energy from an ideal gas across all levels of description. The structural consistency between the united-atom and mesoscale descriptions means the relative entropy between descriptions has been minimized without any variational optimization parameters. The approach is general and applicable to any polymeric system in different thermodynamic conditions.

  15. An analytical coarse-graining method which preserves the free energy, structural correlations, and thermodynamic state of polymer melts from the atomistic to the mesoscale

    SciTech Connect (OSTI)

    McCarty, J.; Clark, A. J.; Copperman, J.; Guenza, M. G., E-mail: mguenza@uoregon.edu [Department of Chemistry and Biochemistry, and Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97403 (United States)

    2014-05-28T23:59:59.000Z

    Structural and thermodynamic consistency of coarse-graining models across multiple length scales is essential for the predictive role of multi-scale modeling and molecular dynamic simulations that use mesoscale descriptions. Our approach is a coarse-grained model based on integral equation theory, which can represent polymer chains at variable levels of chemical details. The model is analytical and depends on molecular and thermodynamic parameters of the system under study, as well as on the direct correlation function in the k ? 0 limit, c{sub 0}. A numerical solution to the PRISM integral equations is used to determine c{sub 0}, by adjusting the value of the effective hard sphere diameter, d{sub HS}, to agree with the predicted equation of state. This single quantity parameterizes the coarse-grained potential, which is used to perform mesoscale simulations that are directly compared with atomistic-level simulations of the same system. We test our coarse-graining formalism by comparing structural correlations, isothermal compressibility, equation of state, Helmholtz and Gibbs free energies, and potential energy and entropy using both united atom and coarse-grained descriptions. We find quantitative agreement between the analytical formalism for the thermodynamic properties, and the results of Molecular Dynamics simulations, independent of the chosen level of representation. In the mesoscale description, the potential energy of the soft-particle interaction becomes a free energy in the coarse-grained coordinates which preserves the excess free energy from an ideal gas across all levels of description. The structural consistency between the united-atom and mesoscale descriptions means the relative entropy between descriptions has been minimized without any variational optimization parameters. The approach is general and applicable to any polymeric system in different thermodynamic conditions.

  16. Impact of Agricultural Practice on Regional Climate in a CoupledLand Surface Mesoscale Model

    SciTech Connect (OSTI)

    Cooley, H.S.; Riley, W.J.; Torn, M.S.; He, Y.

    2004-07-01T23:59:59.000Z

    The land surface has been shown to form strong feedbacks with climate due to linkages between atmospheric conditions and terrestrial ecosystem exchanges of energy, momentum, water, and trace gases. Although often ignored in modeling studies, land management itself may form significant feedbacks. Because crops are harvested earlier under drier conditions, regional air temperature, precipitation, and soil moisture, for example, affect harvest timing, particularly of rain-fed crops. This removal of vegetation alters the land surface characteristics and may, in turn, affect regional climate. We applied a coupled climate(MM5) and land-surface (LSM1) model to examine the effects of early and late winter wheat harvest on regional climate in the Department of Energy Atmospheric Radiation Measurement (ARM) Climate Research Facility in the Southern Great Plains, where winter wheat accounts for 20 percent of the land area. Within the winter wheat region, simulated 2 m air temperature was 1.3 C warmer in the Early Harvest scenario at mid-day averaged over the two weeks following harvest. Soils in the harvested area were drier and warmer in the top 10 cm and wetter in the 10-20 cm layer. Midday soils were 2.5 C warmer in the harvested area at mid-day averaged over the two weeks following harvest. Harvest also dramatically altered latent and sensible heat fluxes. Although differences between scenarios diminished once both scenarios were harvested, the short-term impacts of land management on climate were comparable to those from land cover change demonstrated in other studies.

  17. Oscillations of solar atmosphere neutrinos

    E-Print Network [OSTI]

    G. L. Fogli; E. Lisi; A. Mirizzi; D. Montanino; P. D. Serpico

    2006-11-10T23:59:59.000Z

    The Sun is a source of high energy neutrinos (E > 10 GeV) produced by cosmic ray interactions in the solar atmosphere. We study the impact of three-flavor oscillations (in vacuum and in matter) on solar atmosphere neutrinos, and calculate their observable fluxes at Earth, as well as their event rates in a kilometer-scale detector in water or ice. We find that peculiar three-flavor oscillation effects in matter, which can occur in the energy range probed by solar atmosphere neutrinos, are significantly suppressed by averaging over the production region and over the neutrino and antineutrino components. In particular, we find that the relation between the neutrino fluxes at the Sun and at the Earth can be approximately expressed in terms of phase-averaged ``vacuum'' oscillations, dominated by a single mixing parameter (the angle theta_23).

  18. Cumulant expansions for atmospheric flows

    E-Print Network [OSTI]

    Ait-Chaalal, Farid; Meyer, Bettina; Marston, J B

    2015-01-01T23:59:59.000Z

    The equations governing atmospheric flows are nonlinear, and consequently the hierarchy of cumulant equations is not closed. But because atmospheric flows are inhomogeneous and anisotropic, the nonlinearity may manifests itself only weakly through interactions of mean fields with disturbances such as thermals or eddies. In such situations, truncations of the hierarchy of cumulant equations hold promise as a closure strategy. We review how truncations at second order can be used to model and elucidate the dynamics of turbulent atmospheric flows. Two examples are considered. First, we study the growth of a dry convective boundary layer, which is heated from below, leading to turbulent upward energy transport and growth of the boundary layer. We demonstrate that a quasilinear truncation of the equations of motion, in which interactions of disturbances among each other are neglected but interactions with mean fields are taken into account, can successfully capture the growth of the convective boundary layer. Seco...

  19. Mixed Layer Mesoscales for OGCMs: Model development and assessment with T/P, WOCE and Drifter data

    E-Print Network [OSTI]

    Canuto, V M; Leboissetier, A

    2011-01-01T23:59:59.000Z

    We present a model for mixed layer (ML) mesoscale (M) fluxes of an arbitrary tracer in terms of the resolved fields (mean tracer and mean velocity). The treatment of an arbitrary tracer, rather than only buoyancy, is necessary since OGCMs time step T, S, CO2, etc and not buoyancy. The particular case of buoyancy is used to assess the model results. The paper contains three parts: derivation of the results, discussion of the results and assessment of the latter using, among others, WOCE, T/P and Drifter data. Derivation. To construct the M fluxes, we first solve the ML M dynamic equations for the velocity and tracer M fields. The goal of the derivation is to emphasize the different treatments of the non-linear terms in the adiabatic vs. diabatic ocean (deep ocean vs. mixed layer). Results. We derive analytic expressions for the following variables: a) vertical and horizontal M fluxes of an arbitrary tracer, b) M diffusivity in terms of the EKE, c) surface value of the EKE in terms of the vertical M buoyancy fl...

  20. MOSE: zooming on the Meso-NH mesoscale model performances at the surface layer at ESO sites (Paranal and Armazones)

    E-Print Network [OSTI]

    Lascaux, Franck; di Arcetri, INAF / Osservatorio Astrofisico; 10.1117/12.925934

    2012-01-01T23:59:59.000Z

    In the context of the MOSE project, in this contribution we present a detailed analysis of the Meso-NH mesoscale model performances and their dependency on the model and orography horizontal resolutions in proximity of the ground. The investigated sites are Cerro Paranal (site of the ESO Very Large Telescope - VLT) and Cerro Armazones (site of the ESO European Extremely Large Telescope - E-ELT), in Chile. At both sites, data from a rich statistical sample of different nights are available - from AWS (Automated Weather Stations) and masts - giving access to wind speed, wind direction and temperature at different levels near the ground (from 2 m to 30 m above the ground). In this study we discuss the use of a very high horizontal resolution (dX=0.1 km) numerical configuration that overcomes some specific limitations put in evidence with a standard configuration with dX=0.5 km. In both sites results are very promising. The study is co-funded by ESO and INAF.

  1. HEATING THE ATMOSPHERE ABOVE SUNSPOTS

    E-Print Network [OSTI]

    Rucklidge, Alastair

    become fragmented and twisted, and where they generate the necessary energy to heat the solar coronaHEATING THE ATMOSPHERE ABOVE SUNSPOTS David Alexander and Neal E. Hurlburt Lockheed Martin Solar, University of Cambridge, Cambridge, CB3 9EW, UK Abstract We present our results of a hybrid model of sunspots

  2. Space Science: Atmosphere Thermal Structure

    E-Print Network [OSTI]

    Johnson, Robert E.

    Space Science: Atmosphere Part -2 Thermal Structure Review tropospheres Absorption of Radiation Adiabatic Lapse Rate ~ 9 K/km Slightly smaller than our estimate Pressure ~3000ft under ocean surface thickness (positive up) is the solar zenith angle Fs is the solar energy flux at frequency (when

  3. Sulfuryl fluoride in the global atmosphere

    E-Print Network [OSTI]

    Muhle, J.

    The first calibrated high-frequency, high-precision, in situ atmospheric and archived air measurements of the fumigant sulfuryl fluoride (SO[subscript 2]F[subscript 2]) have been made as part of the Advanced Global Atmospheric ...

  4. ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. (2012)

    E-Print Network [OSTI]

    Gerber, Edwin

    2012-01-01T23:59:59.000Z

    ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. (2012) Published online in Wiley Online Library using National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP) concentrations and sea- surface temperatures (SSTs). These integrations enable the relative role of ozone

  5. Final Report: The Santa Barbara Channel - Santa Maria Basin Circulation Study

    E-Print Network [OSTI]

    Winant, Clinton D; Dever, Edward P; Dorman, Clive E; Hendershott, Myrl C

    2006-01-01T23:59:59.000Z

    dimensional meteorological mesoscale model of the MABL. II.and summer. Atmosphere mesoscale modeling of the wind stressUniversity-NCAR Research Mesoscale Model MM5 was run at 9 km

  6. 1997 Atmospheric Chemistry Colloquium for Emerging Senior Scientists

    SciTech Connect (OSTI)

    Paul H. Wine

    1998-11-23T23:59:59.000Z

    DOE's Atmospheric Chemistry Program is providing partial funding for the Atmospheric Chemistry Colloquium for Emerging Senior Scientists (ACCESS) and FY 1997 Gordon Research Conference in Atmospheric Chemistry

  7. atmospheric nitrogen fluorescence: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: Greenhouse Effect and Atmospheric Warming Atmosphere absorbs heat energy A real greenhouse traps heatCh4. Atmosphere and Surface Energy Balances...

  8. atmospheric energy redistribution: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    16 Ch4. Atmosphere and Surface Energy Balances Geosciences Websites Summary: Greenhouse Effect and Atmospheric Warming Atmosphere absorbs heat energy A real greenhouse traps...

  9. atmospheric pressure surface: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    K. 27 Ch4. Atmosphere and Surface Energy Balances Geosciences Websites Summary: Greenhouse Effect and Atmospheric Warming Atmosphere absorbs heat energy A real greenhouse traps...

  10. Radar range measurements in the atmosphere.

    SciTech Connect (OSTI)

    Doerry, Armin Walter

    2013-02-01T23:59:59.000Z

    The earth's atmosphere affects the velocity of propagation of microwave signals. This imparts a range error to radar range measurements that assume the typical simplistic model for propagation velocity. This range error is a function of atmospheric constituents, such as water vapor, as well as the geometry of the radar data collection, notably altitude and range. Models are presented for calculating atmospheric effects on radar range measurements, and compared against more elaborate atmospheric models.

  11. Northerly surface wind events over the eastern North Pacific Ocean : spatial distribution, seasonality, atmospheric circulation, and forcing

    E-Print Network [OSTI]

    Taylor, Stephen V.

    2006-01-01T23:59:59.000Z

    D. (2005), California Wind Resources, CEC publication # CEC-level inversions with surface wind and temperature at PointD. W. Stuart (1986), Mesoscale wind variability near Point

  12. In Situ Decommissioning Sensor Network, Meso-Scale Test Bed - Phase 3 Fluid Injection Test Summary Report

    SciTech Connect (OSTI)

    Serrato, M. G.

    2013-09-27T23:59:59.000Z

    The DOE Office of Environmental management (DOE EM) faces the challenge of decommissioning thousands of excess nuclear facilities, many of which are highly contaminated. A number of these excess facilities are massive and robust concrete structures that are suitable for isolating the contained contamination for hundreds of years, and a permanent decommissioning end state option for these facilities is in situ decommissioning (ISD). The ISD option is feasible for a limited, but meaningfull number of DOE contaminated facilities for which there is substantial incremental environmental, safety, and cost benefits versus alternate actions to demolish and excavate the entire facility and transport the rubble to a radioactive waste landfill. A general description of an ISD project encompasses an entombed facility; in some cases limited to the blow-grade portion of a facility. However, monitoring of the ISD structures is needed to demonstrate that the building retains its structural integrity and the contaminants remain entombed within the grout stabilization matrix. The DOE EM Office of Deactivation and Decommissioning and Facility Engineering (EM-13) Program Goal is to develop a monitoring system to demonstrate long-term performance of closed nuclear facilities using the ISD approach. The Savannah River National Laboratory (SRNL) has designed and implemented the In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) to address the feasibility of deploying a long-term monitoring system into an ISD closed nuclear facility. The ISDSN-MSTB goal is to demonstrate the feasibility of installing and operating a remote sensor network to assess cementitious material durability, moisture-fluid flow through the cementitious material, and resulting transport potential for contaminate mobility in a decommissioned closed nuclear facility. The original ISDSN-MSTB installation and remote sensor network operation was demonstrated in FY 2011-12 at the ISDSN-MSTB test cube located at the Florida International University Applied Research Center, Miami, FL (FIU-ARC). A follow-on fluid injection test was developed to detect fluid and ion migration in a cementitious material/grouted test cube using a limited number of existing embedded sensor systems. This In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) - Phase 3 Fluid Injection Test Summary Report summarizes the test implementation, acquired and processed data, and results from the activated embedded sensor systems used during the fluid injection test. The ISDSN-MSTB Phase 3 Fluid Injection Test was conducted from August 27 through September 6, 2013 at the FIU-ARC ISDSN-MSTB test cube. The fluid injection test activated a portion of the existing embedded sensor systems in the ISDSN-MSTB test cube: Electrical Resistivity Tomography-Thermocouple Sensor Arrays, Advance Tensiometer Sensors, and Fiber Loop Ringdown Optical Sensors. These embedded sensor systems were activated 15 months after initial placement. All sensor systems were remotely operated and data acquisition was completed through the established Sensor Remote Access System (SRAS) hosted on the DOE D&D Knowledge Management Information Tool (D&D DKM-IT) server. The ISDN Phase 3 Fluid Injection Test successfully demonstrated the feasibility of embedding sensor systems to assess moisture-fluid flow and resulting transport potential for contaminate mobility through a cementitious material/grout monolith. The ISDSN embedded sensor systems activated for the fluid injection test highlighted the robustness of the sensor systems and the importance of configuring systems in-depth (i.e., complementary sensors and measurements) to alleviate data acquisition gaps.

  13. Proof of the Atmospheric Greenhouse Effect

    E-Print Network [OSTI]

    Smith, Arthur P

    2008-01-01T23:59:59.000Z

    A recently advanced argument against the atmospheric greenhouse effect is refuted. A planet without an infrared absorbing atmosphere is mathematically constrained to have an average temperature less than or equal to the effective radiating temperature. Observed parameters for Earth prove that without infrared absorption by the atmosphere, the average temperature of Earth's surface would be at least 33 K lower than what is observed.

  14. Atmospheric Lifetime of Fossil Fuel Carbon Dioxide

    E-Print Network [OSTI]

    Scherer, Norbert F.

    Atmospheric Lifetime of Fossil Fuel Carbon Dioxide David Archer,1 Michael Eby,2 Victor Brovkin,3 released from combustion of fossil fuels equilibrates among the various carbon reservoirs of the atmosphere literature on the atmospheric lifetime of fossil fuel CO2 and its impact on climate, and we present initial

  15. Transformed shoreline-following horizontal coordinates in a mesoscale model: A sea-land-breeze case study

    SciTech Connect (OSTI)

    Berri, G.J.; Nunez, M.N. (Universidad de Buenos Aires (Argentina) Pabellon II Ciudad Universitaria, Buenos Aires (Argentina))

    1993-05-01T23:59:59.000Z

    A hydrostatic and incompressible mesoscale model with transformed horizontal coordinates is presented. The model is applied to study the sea-land-breeze circulation over Rio de La Plata. One of the new coordinates is shoreline-following and the other one is locally quasi-perpendicular to the first one. The original set of equations in the Cartesian coordinates is rewritten in the curvilinear coordinates. This transformation is useful provided that the curvilinear coordinates are close to being orthogonal. The horizontal domain covers 250 km [times] 250 km, and the vertical domain is 2 km deep. To predict the sea-land-breeze circulation the model is integrated over 12 h. The forcing of the model is a cyclic perturbation of the surface temperature. The changes in the wind direction during the day are in good agreement with the observations from six weather stations in the region. The same program code is applied to uniform domains of different resolutions in order to test the coordinate transformation. Results show that the predictions based upon the variable-resolution version resemble ones obtained using high uniform resolution but consume only one-fourth the computer time needed by the latter. Comparison of the vertical velocity patterns predicted by the model to the cumulus clouds distribution observed from satellite images show a very good agreement too. The authors believe that all these results justify the use of the coordinate transformation in this type of model, although further verifications are needed in order to draw more definitive conclusions. 28 refs., 11 figs.

  16. An investigation of rainfall variability and distribution in Luzon and a mesoscale study of rainfall of the province of Laguna and adjacent areas, Philippines

    E-Print Network [OSTI]

    Coligado, Mauro Comendador

    1967-01-01T23:59:59.000Z

    to month, quarterly isopercental technique, and zonification of homogeno s areas with respect to quarterly rainfall. The mesoscale study of rainfall was done by isohyetal analysis of daily rainfall by contingency index~ and by f. equency an. alysis of 3... Climatic Controls 6-10 6 6-8 8-10 III. PROCEDURES OP ANALYSIS. 11-20 Variability end Distribution of Rainfall in Lozon 11-15 A. Coefficient of variation B. Month of maximum and minimum rainfall. C. Precipitation changes from month to month. D...

  17. The kinematic and cloud-to-ground lightning structure of the 9-10, June 1998 Red River Mesoscale Convective System

    E-Print Network [OSTI]

    Santarpia, Joshua

    2001-01-01T23:59:59.000Z

    interest in using it to study severe weather. Mesoscale vortices that are often asso- ciated with severe storms such as supercells and bow echoes have been of particular interest. One of the first discussions of this type of circulation is from Brooks... radar echoes associated with a tornado indicating a cyclonic circulation. He likened the structure to that of a small-scale hurricane. Ray's (1976) dual-Doppler radar analysis of a supercell storm was the first to show a vortex pair and strong cy...

  18. Atmospheric-pressure plasma jet

    DOE Patents [OSTI]

    Selwyn, Gary S. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    Atmospheric-pressure plasma jet. A .gamma.-mode, resonant-cavity plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two concentric cylindrical electrodes are employed to generate a plasma in the annular region therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly shaping the rf-powered electrode. Because of the atmospheric pressure operation, no ions survive for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike low-pressure plasma sources and conventional plasma processing methods.

  19. The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx): Goals, platforms, and field operations

    SciTech Connect (OSTI)

    Wood, R.; Springston, S.; Mechoso, C. R.; Bretherton, C. S.; A.Weller, R.; Huebert, B.; Straneo, F.; Albrecht, B. A.; Coe, H.; Allen, G.; Vaughan, G.; Daum, P.; Fairall, C.; Chand, D.; Klenner, L. G.; Garreaud, R.; Grados, C.; Covert, D. S.; Bates, T. S.; Krejci, R.; Russell, L. M.; Szoeke, S. d.; Brewer, A.; Yuter, S. E.; Chaigneau, A.; Toniazzo, T.; Minnis, P.; Palikonda, R.; Abel, S. J.; Brown, W. O. J.; Williams, S.; Fochesatto, J.; Brioude, J.; Bower, K. N

    2011-01-21T23:59:59.000Z

    The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) was an international field program designed to make observations of poorly understood but critical components of the coupled climate system of the southeast Pacific. This region is characterized by strong coastal upwelling, the coolest SSTs in the tropical belt, and is home to the largest subtropical stratocumulus deck on Earth. The field intensive phase of VOCALS-REx took place during October and November 2008 and constitutes a critical part of a broader CLIVAR program (VOCALS) designed to develop and promote scientific activities leading to improved understanding, model simulations, and predictions of the southeastern Pacific (SEP) coupled ocean-atmosphere-land system, on diurnal to interannual timescales. The other major components of VOCALS are a modeling program with a model hierarchy ranging from the local to global scales, and a suite of extended observations from regular research cruises, instrumented moorings, and satellites. The two central themes of VOCALS-REx focus upon (a) links between aerosols, clouds and precipitation and their impacts on marine stratocumulus radiative properties, and (b) physical and chemical couplings between the upper ocean and the lower atmosphere, including the role that mesoscale ocean eddies play. A set of hypotheses designed to be tested with the combined field, monitoring and modeling work in VOCALS is presented here. A further goal of VOCALS-REx is to provide datasets for the evaluation and improvement of large-scale numerical models. VOCALS-REx involved five research aircraft, two ships and two surface sites in northern Chile. We describe the instrument payloads and key mission strategies for these platforms and give a summary of the missions conducted.

  20. Aerosol Effects on Cirrus through Ice Nucleation in the Community Atmosphere Model CAM5 with a Statistical Cirrus Scheme

    SciTech Connect (OSTI)

    Wang, Minghuai; Liu, Xiaohong; Zhang, Kai; Comstock, Jennifer M.

    2014-09-01T23:59:59.000Z

    A statistical cirrus cloud scheme that tracks ice saturation ratio in the clear-sky and cloudy portion of a grid box separately has been implemented into NCAR CAM5 to provide a consistent treatment of ice nucleation and cloud formation. Simulated ice supersaturation and ice crystal number concentrations strongly depend on the number concentrations of heterogeneous ice nuclei (IN), subgrid temperature formulas and the number concentration of sulfate particles participating in homogeneous freezing, while simulated ice water content is insensitive to these perturbations. 1% to 10% dust particles serving as heterogeneous IN is 20 found to produce ice supersaturaiton in better agreement with observations. Introducing a subgrid temperature perturbation based on long-term aircraft observations of meso-scale motion produces a better hemispheric contrast in ice supersaturation compared to observations. Heterogeneous IN from dust particles significantly alter the net radiative fluxes at the top of atmosphere (TOA) (-0.24 to -1.59 W m-2) with a significant clear-sky longwave component (0.01 to -0.55 W m-2). Different cirrus treatments significantly perturb the net TOA anthropogenic aerosol forcing from -1.21 W m-2 to -1.54 W m-2, with a standard deviation of 0.10 W m-2. Aerosol effects on cirrus clouds exert an even larger impact on the atmospheric component of the radiative fluxes (two or three times the changes in the TOA radiative fluxes) and therefore on the hydrology cycle through the fast atmosphere response. This points to the urgent need to quantify aerosol effects on cirrus clouds through ice nucleation and how these further affect the hydrological cycle.

  1. An Infrared Spectral Library for Atmospheric Environmental Monitoring...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Infrared Spectral Library for Atmospheric Environmental Monitoring. An Infrared Spectral Library for Atmospheric Environmental Monitoring. Abstract: Infrared (IR) spectroscopy...

  2. atmospheric research community: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University Corporation for Atmospheric Research Geosciences Websites Summary: University Corporation for Atmospheric Research CIGNA DENTAL PREFERRED PROVIDER INSURANCE EFFECTIVE...

  3. Pulse atmospheric fluidized bed combustion

    SciTech Connect (OSTI)

    Not Available

    1989-03-01T23:59:59.000Z

    The overall objective of the program is the development of a pulsed atmospheric fluidized-bed combustion (PAFBC) technology to burn coal and to provide heat and steam to commercial, institutional, and small industrial applications at a reasonable price in an environmentally acceptable manner. During this reporting period, a total of eight shakedown and debugging coal combustion tests were performed in the AFBC. A start-up procedure was established, system improvements implemented, and preliminary material and heat balances made based on these tests. The pulse combustor for the AFBC system was fabricated and installed and a series of tests was conducted on the system. 17 figs., 5 tabs.

  4. NETL SOFC: Atmospheric Pressure Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate -AdvancedMIRTBD525AdaptingWaterTerryAtmospheric

  5. Atmospheric neutrino flux at INO site

    SciTech Connect (OSTI)

    Honda, Morihiro [Institute for Cosmic Ray Research, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8582 (Japan)

    2011-11-23T23:59:59.000Z

    To illustrate the calculation of the atmospheric neutrino flux, we briefly explain our calculation scheme and important components, such as primary cosmic ray spectra, interaction model, and geomagnetic model. Then, we calculate the atmospheric neutrino flux at INO site in our calculation scheme. We compare the calculated atmospheric neutrino fluxes predicted at INO with those at other major neutrino detector sites, especially that at SK site.

  6. Toxicity of atmospheric aerosols on marine phytoplankton

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    metals added from these aerosols to the bioassay incubationsreleased to seawater from the aerosol filters after Author4605 CHEMISTRY Atmospheric aerosol deposition CHEMISTRY

  7. Urban Atmospheres captures a unique, synergistic moment

    E-Print Network [OSTI]

    Paulos, Eric

    Urban Atmospheres captures a unique, synergistic moment ­ expanding urban populations, rapid EDITORS Eric Paulos Intel Research eric@paulos.net Tom Jenkins Royal College of Art thomas

  8. Characterizing orbit uncertainty due to atmospheric uncertainty

    E-Print Network [OSTI]

    Wilkins, Matthew Paul

    2000-01-01T23:59:59.000Z

    is implemented to model errors in the atmospheric density model. This study shows that the Kalman filter computes a believable and more realistic covariance....

  9. Atmospheric Radiation Measurement Climate Research Facility ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    improving our understanding of how clouds and atmospheric moisture interact with solar radiation and the effects of these interactions on climate. Photo courtesy Argonne National...

  10. Physics Potential of Future Atmospheric Neutrino Searches

    E-Print Network [OSTI]

    Thomas Schwetz

    2008-12-12T23:59:59.000Z

    The potential of future high statistics atmospheric neutrino experiments is considered, having in mind currently discussed huge detectors of various technologies (water Cerekov, magnetized iron, liquid Argon). I focus on the possibility to use atmospheric data to determine the octant of $\\theta_{23}$ and the neutrino mass hierarchy. The sensitivity to the $\\theta_{23}$-octant of atmospheric neutrinos is competitive (or even superior) to long-baseline experiments. I discuss the ideal properties of a fictitious atmospheric neutrino detector to determine the neutrino mass hierarchy.

  11. Super-Kamiokande atmospheric neutrino results

    E-Print Network [OSTI]

    Toshiyuki Toshito; the Super-Kamiokande collaboration

    2001-05-14T23:59:59.000Z

    We present atmospheric neutrino results from a 79 kiloton year (1289 days) exposure of the Super-Kamiokande detector. Our data are well explained by $\

  12. atmospheres: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to optical depth perturbations. In Earth-type atmospheres sustained planetary greenhouse effect with a stable ground surface temperature can only exist at a particular...

  13. atmosphere: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to optical depth perturbations. In Earth-type atmospheres sustained planetary greenhouse effect with a stable ground surface temperature can only exist at a particular...

  14. atmospherics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to optical depth perturbations. In Earth-type atmospheres sustained planetary greenhouse effect with a stable ground surface temperature can only exist at a particular...

  15. Response of global soil consumption of atmospheric methane to changes in atmospheric climate and nitrogen deposition

    E-Print Network [OSTI]

    Zhuang, Qianlai

    Soil consumption of atmospheric methane plays an important secondary role in regulating the atmospheric CH4 budget, next to the dominant loss mechanism involving reaction with the hydroxyl radical (OH). Here we used a ...

  16. Response of a tundra ecosystem to elevated atmospheric carbon dioxide and CO{sub 2}-induced climate change. Annual technical report

    SciTech Connect (OSTI)

    Oechel, W.C.

    1993-02-01T23:59:59.000Z

    Northern ecosystems contain up to 455 Gt of C in the soil active layer and upper permafrost, which is equivalent to approximately 60% of the carbon currently in the atmosphere as CO{sub 2}. Much of this carbon is stored in the soil as dead organic matter. Its fate is subject to the net effects of global change on the plant and soil systems of northern ecosystems. The arctic alone contains about 60 Gt C, 90% of which is present in the soil active layer and upper permafrost, and is assumed to have been a sink for CO{sub 2} during the historic and recent geologic past. Depending on the nature, rate, and magnitude of global environmental change, the arctic may have a positive or negative feedback on global change. Results from the DOE- funded research efforts of 1990 and 1991 indicate that the arctic has become a source of CO{sub 2} to the atmosphere. Measurements made in the Barrow, Alaska region during 1992 support these results. This change coincides with recent climatic variation in the arctic, and suggests a positive feedback of arctic ecosystems on atmospheric CO{sub 2} and global change. There are obvious potential errors in scaling plot level measurements to landscape, mesoscale, and global spatial scales. In light of the results from the recent DOE-funded research, and the remaining uncertainties regarding the change in arctic ecosystem function due to high latitude warming, a revised set of research goals is proposed for the 1993--94 year. The research proposed in this application has four principal aspects: (A) Long- term response of arctic plants and ecosystems to elevated atmospheric CO{sub 2}. (B) Circumpolar patterns of net ecosystem CO{sub 2} flux. (C) In situ controls by temperature and moisture on net ecosystem CO{sub 2} flux. (D) Scaling of CO{sub 2} flux from plot, to landscape, to regional scales.

  17. Parallization of Stellar Atmosphere Codes

    E-Print Network [OSTI]

    P. Hoeflich

    2002-09-19T23:59:59.000Z

    Parallel computing has turned out to be the enabling technology to solve complex physical systems. However, the transition from shared memory, vector computers to massively parallel, distributed memory systems and, recently, to hybrid systems poses new challenges to the scientist. We want to present a cook-book (with a very strong, personal bias) based on our experience with parallization of our existing codes. Some of the general tools and communication libraries are discussed. Our approach includes a mixture of algorithm, domain and physical module based parallization. The advantages, scalability and limitations of each are discussed at some examples. We want show that it becomes easier to write parallel code with increasing complexity of the physical problem making stellar atmosphere codes beyond the classical assumptions very suitable.

  18. Limits to the lunar atmosphere

    SciTech Connect (OSTI)

    Morgan, T.H. (National Aeronautics and Space Administration, Washington, D.C. (USA)); Shemansky, D.E. (Univ. of Arizona, Tucson (USA))

    1991-02-01T23:59:59.000Z

    The presence of sodium and potassium on the Moon implies that other more abundant species should be present. Volatile molecules like H{sub 2}O are significantly more abundant than sodium in any of the proposed external atmospheric sources. Source mechanisms which derive atoms from the surface should favor abundant elements in the regolith. It is therefore puzzling that the Apollo ultraviolet spectrometer experiment set limits on the density of oxygen of N{sub O} < 5 {times} 10{sup 2} cm{sup {minus}3}, and that the Apollo Lunar Atmospheric Composition Experiment data imply N{sub O} < 50 cm{sup {minus}3} above the subsolar point. These limits are surprisingly small relative to the measured value for sodium. A simple consideration of sources and sinks predicts significantly greater densities of oxygen. It is possible but doubtful that the Apollo measurements occur ed during an epoch in which source rates were small. A preferential loss process for oxygen on the darkside of the Moon is considered in which ionization by electron capture in surface collisions leads to escape through acceleration in the local electric field. Cold trapping in permanently shadowed regions as a net sink is considered and discounted, but the episodic nature of cometary insertion may allow formation of ice layers which act as a stablized source of OH. On the basis of an assumed meteoroid impact source, the authors predict a possible emission brightness of {approximately} 50 R in the OH(A {minus} X)(0,0) band above the lunar bright limb. A very uncertain small comet source of H{sub 2}O could raise this value by more than two orders of magnitude.

  19. URBAN ATMOSPHERIC OBSERVATORY (UAO) FIRST PLANNING WORKSHOP, JANUARY 27-28-2003. WORKSHOP SUMMARY.

    SciTech Connect (OSTI)

    REYNOLDS,R.M.; LEE,H.N.

    2003-03-27T23:59:59.000Z

    The Urban Atmospheric Observatory (UAO) First Planning Workshop was held on 27-28 January 2003 at the Environmental Measurements Laboratory (EML) in downtown Manhattan, New York City. The meeting was well attended by local, state, and national administrators, as well as scientists and engineers from the national laboratories and academia. The real-time intensive UAO is a necessary step toward the development and validation of new technologies in support of the New York City emergency management and anti-terrorism effort. The real-time intensive UAO will be a dense array of meteorological instrumentation, remote sensing and satellite products and model output, as well as radiation detection, gamma spectrometer and aerosol measurements focused onto a small area in the heart of Manhattan. Such a test-bed, developed in a somewhat homogeneous urban area, and with a well-developed communication and data collection backbone, will be of immense utility for understanding how models of all scales can be improved and how they can best be integrated into the city's emergency program. The goal of the First Planning Workshop was to bring together a small group of experts in the fields of urban meteorology, modeling from mesoscale to fine-mesh computational fluid dynamics, instrumentation, communications and visualization, in order to (1) establish the importance of the observational program, (2) define the most efficient and cost-effective design for the program, (3) define needed intensive observational efforts and establish a schedule, and (4) define the importance of the UAO in emergency operations. The workshop achieved its goals with the enthusiastic participation of over forty persons. There was a synthesis of ideas towards a world-class facility that would benefit both immediate emergency management activities and, over an extended time, the entire field of urban meteorology and contaminant dispersion modeling.

  20. Doctoral Programs Atmospheric, Oceanic & Space Sciences

    E-Print Network [OSTI]

    Eustice, Ryan

    University of Michigan Space Research Building 2455 Hayward Street Ann Arbor, MI 48109-2143 aoss Katherine E. White, Ann Arbor ©The Regents of the University of Michigan Research areas Atmospheric Science Atmospheric Dynamics Climate, Climate Modeling & Climate Change Clouds & Precipitation Paleoclimate, Ice

  1. Human effects on the global atmosphere

    SciTech Connect (OSTI)

    Johnston, H.S.

    1984-01-01T23:59:59.000Z

    This review considers whether human activities can significantly change important functions of the global atmosphere by altering the amount or distribution of certain trace species. It deals with three specific topics: stratopheric ozone, the role of species other than carbon dioxide on the greenhouse effect, and certain recently recognized atmospheric consequences of a large scale nuclear war. 64 references, 10 figures, 2 tables.

  2. ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. (2013)

    E-Print Network [OSTI]

    Lee, Sukyoung

    2013-01-01T23:59:59.000Z

    ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. (2013) Published online in Wiley Online Library Sciences, Seoul National University, Seoul, South Korea *Correspondence to: C. Yoo, Center for Atmosphere). A number of studies have shown that the MJO plays an important role in modulating the extratropical cir

  3. ATOMIC IONIZATION AND OPACITIES IN PULSAR ATMOSPHERES

    E-Print Network [OSTI]

    ATOMIC IONIZATION AND OPACITIES IN PULSAR ATMOSPHERES Hydrogen Atmospheres J. VENTURA Physics.g. Pavlov et al., 1995; Zavlin et al., 1995, 1996; #12; 2 J. VENTURA ET AL. Rajagopal and Romani, 1996 the past three years. As is well known (Canuto and Ventura, 1977; Ruder et al., 1994), the external strong

  4. Atmospheric neutrino flux calculation using the NRLMSISE00 atmospheric model

    E-Print Network [OSTI]

    Honda, M; Kajita, T; Kasahara, K; Midorikawa, S

    2015-01-01T23:59:59.000Z

    In this paper, we extend the calculation of the atmospheric neutrino flux~\\cite{hkkm2004,hkkms2006,hkkm2011} to the sites in polar and tropical regions. In our earliest full 3D-calculation~\\cite{hkkm2004}, we used DPMJET-III~\\cite{dpm} for the hadronic interaction model above 5~GeV, and NUCRIN~\\cite{nucrin} below 5~GeV. We modified DPMJET-III as in Ref.~\\cite{hkkms2006} to reproduce the experimental muon spectra better, mainly using the data observed by BESS group~\\cite{BESSTeVpHemu}. In a recent work~\\cite{hkkm2011}, we introduced JAM interaction model for the low energy hadronic interactions. JAM is a nuclear interaction model developed with PHITS (Particle and Heavy-Ion Transport code System)~\\cite{phits}. In Ref.~\\cite{hkkm2011}, we could reproduce the observed muon flux at the low energies at balloon altitude with DPMJET-III above 32 GeV and JAM below that better than the combination of DPMJET-III above 5~GeV and NUCRIN below that. Besides the interaction model, we have also improved the calculation sche...

  5. Atmospheric sampling glow discharge ionization source

    DOE Patents [OSTI]

    McLuckey, S.A.; Glish, G.L.

    1989-07-18T23:59:59.000Z

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above. 3 figs.

  6. The Upper Atmosphere of HD17156b

    E-Print Network [OSTI]

    T. T. Koskinen; A. D. Aylward; S. Miller

    2008-11-28T23:59:59.000Z

    HD17156b is a newly-found transiting extrasolar giant planet (EGP) that orbits its G-type host star in a highly eccentric orbit (e~0.67) with an orbital semi-major axis of 0.16 AU. Its period, 21.2 Earth days, is the longest among the known transiting planets. The atmosphere of the planet undergoes a 27-fold variation in stellar irradiation during each orbit, making it an interesting subject for atmospheric modelling. We have used a three-dimensional model of the upper atmosphere and ionosphere for extrasolar gas giants in order to simulate the progress of HD17156b along its eccentric orbit. Here we present the results of these simulations and discuss the stability, circulation, and composition in its upper atmosphere. Contrary to the well-known transiting planet HD209458b, we find that the atmosphere of HD17156b is unlikely to escape hydrodynamically at any point along the orbit, even if the upper atmosphere is almost entirely composed of atomic hydrogen and H+, and infrared cooling by H3+ ions is negligible. The nature of the upper atmosphere is sensitive to to the composition of the thermosphere, and in particular to the mixing ratio of H2, as the availability of H2 regulates radiative cooling. In light of different simulations we make specific predictions about the thermosphere-ionosphere system of HD17156b that can potentially be verified by observations.

  7. Mass spectrometric approaches for chemical characterisation of atmospheric aerosols: critical

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    Mass spectrometric approaches for chemical characterisation of atmospheric aerosols: critical. Atmospheric aerosols have profound effects on the environment through several physicochemical processes on the respiratory and cardiovascular systems. Understanding aerosol atmospheric chemistry and its environmental

  8. Atmospheric science encompasses meteorology and climatology, as well as fields such as atmospheric chemistry and remote sensing.Atmospheric

    E-Print Network [OSTI]

    Oceanography and Meteorology Building.The Doppler weather radar on the roof of the building is a campus Mobile Atmospheric Research and Teaching Radar (SMART-R).This radar is used in national and international

  9. Pulsed atmospheric fluidized bed combustion

    SciTech Connect (OSTI)

    Not Available

    1989-11-01T23:59:59.000Z

    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  10. atmospheric pressure ionization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Atmospheric Pressure, in Vivo, and Imaging Mass. For example, atmospheric pressure infrared MALDI (AP IR-MALDI), capable of producing ions from small ionization (DESI),5...

  11. atmospheric carbon emissions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oxide (N2O) 13 Paris-Sud XI, Universit de 13 Atmospheric Lifetime of Fossil Fuel Carbon Dioxide Geosciences Websites Summary: Atmospheric Lifetime of Fossil Fuel Carbon...

  12. atmospheric oxygenation recorded: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cores may contain high quality records of atmospheric deposition. The qualitative Short, Daniel 3 Bistability of atmospheric oxygen and the Great Oxidation Geosciences Websites...

  13. atmospheric optical turbulence: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next Page Last Page Topic Index 1 Atmospheric Turbulence and its Influence on Adaptive Optics Physics Websites Summary: Atmospheric Turbulence and its Influence on Adaptive Optics...

  14. atmospheric ion measurements: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Atmospheric CERN Preprints Summary: We report the first observation in a high energy neutrino telescope of cascades induced by atmospheric electron neutrinos and by...

  15. Comparative Analysis of Urban Atmospheric Aerosol by Particle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of Urban Atmospheric Aerosol by Particle-Induced X-ray Emission (PIXE), Proton Elastic Scattering Analysis Comparative Analysis of Urban Atmospheric Aerosol by...

  16. Atmospheric Solids Analysis Probe Mass Spectrometry: A New Approach...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Solids Analysis Probe Mass Spectrometry: A New Approach for Airborne Particle Analysis. Atmospheric Solids Analysis Probe Mass Spectrometry: A New Approach for Airborne...

  17. A Volcanologist'S Review Of Atmospheric Hazards Of Volcanic Activity...

    Open Energy Info (EERE)

    atmospheric hazards caused by explosive volcanic activity. The hazard posed by fine silicate ash with long residence time in the atmosphere is probably much less serious than...

  18. Diesel and Gasoline Engine Emissions: Characterization of Atmosphere...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization of Atmosphere Composition and Health Responses to Inhaled Emissions Diesel and Gasoline Engine Emissions: Characterization of Atmosphere Composition and Health...

  19. Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951...

    Energy Savers [EERE]

    Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951-1963....

  20. atmospheric global electric: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    global atmospheric iron cycle, and combustion this paper. Key Words aerosol deposition, climate change, deserts Abstract Atmospheric inputs of iron sources of iron are...