National Library of Energy BETA

Sample records for kamm karlsruhe mesoscale

  1. Karlsruhe Institute for Industrial Production | Open Energy Informatio...

    Open Energy Info (EERE)

    Karlsruhe Institute for Industrial Production Jump to: navigation, search Name: Karlsruhe Institute for Industrial Production Place: Karlsruhe, Germany Zip: 76187 Product: String...

  2. Francesco Grilli: Karlsruhe Institute of Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Francesco Grilli: Karlsruhe Institute of Technology Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Francesco Grilli: Karlsruhe Institute of Technology High-temperature superconductors January 1, 2015 Francesco Grilli Francesco Grilli Contact Linda Anderman Email Peter Hosemann Francesco Grilli now at Karlsruhe Institute of Technology After graduating with his Ph.D. from the Swiss Federal Institute of Technology in

  3. Technologiefabrik Karlsruhe GmbH | Open Energy Information

    Open Energy Info (EERE)

    Name: Technologiefabrik Karlsruhe GmbH Place: Germany Sector: Services Product: General Financial & Legal Services ( Government Public sector ) References: Technologiefabrik...

  4. SciTech Connect: mesoscale

    Office of Scientific and Technical Information (OSTI)

    mesoscale Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: mesoscale Semantic Semantic Term Title: Full Text: Bibliographic Data: Creator Author:...

  5. Mesoscale hybrid calibration artifact

    DOE Patents [OSTI]

    Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.

    2010-09-07

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  6. Optically Directed Assembly of Continuous Mesoscale Filaments...

    Office of Scientific and Technical Information (OSTI)

    Optically Directed Assembly of Continuous Mesoscale Filaments Title: Optically Directed Assembly of Continuous Mesoscale Filaments Authors: Bahns, J. T. ; Sankaranarayanan, S. K. ...

  7. Optically Directed Assembly of Continuous Mesoscale Filaments...

    Office of Scientific and Technical Information (OSTI)

    Optically Directed Assembly of Continuous Mesoscale Filaments Citation Details In-Document Search Title: Optically Directed Assembly of Continuous Mesoscale Filaments Authors: ...

  8. Mesoscale Simulations of Coarsening in GB Networks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mukul Kumar is the Principal Investigator for Mesoscale Simulations of Coarsening in GB Networks LLNL BES Programs Highlight Mesoscale Simulations of Coarsening in GB Networks The...

  9. Acoustic Characterization of Mesoscale Objects

    SciTech Connect (OSTI)

    Chinn, D; Huber, R; Chambers, D; Cole, G; Balogun, O; Spicer, J; Murray, T

    2007-03-13

    This report describes the science and engineering performed to provide state-of-the-art acoustic capabilities for nondestructively characterizing mesoscale (millimeter-sized) objects--allowing micrometer resolution over the objects entire volume. Materials and structures used in mesoscale objects necessitate the use of (1) GHz acoustic frequencies and (2) non-contacting laser generation and detection of acoustic waves. This effort demonstrated that acoustic methods at gigahertz frequencies have the necessary penetration depth and spatial resolution to effectively detect density discontinuities, gaps, and delaminations. A prototype laser-based ultrasonic system was designed and built. The system uses a micro-chip laser for excitation of broadband ultrasonic waves with frequency components reaching 1.0 GHz, and a path-stabilized Michelson interferometer for detection. The proof-of-concept for mesoscale characterization is demonstrated by imaging a micro-fabricated etched pattern in a 70 {micro}m thick silicon wafer.

  10. Integrated Mesoscale Architectures for Sustainable Catalysis...

    Office of Science (SC) Website

    Integrated Mesoscale Architectures for Sustainable Catalysis (IMASC) Energy Frontier ... science, molecular dynamics (MD), density functional theory (DFT), quantum ...

  11. Mesoscale hybrid calibration artifact (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Mesoscale hybrid calibration artifact Title: Mesoscale hybrid calibration artifact A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp

  12. Optically Directed Assembly of Continuous Mesoscale Filaments...

    Office of Scientific and Technical Information (OSTI)

    Optically Directed Assembly of Continuous Mesoscale Filaments Bahns, J. T.; Sankaranarayanan, S. K. R. S.; Gray, S. K.; Chen, L. Not Available American Physical Society None USDOE...

  13. Mesoscale modeling of fuel restructuring. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Mesoscale modeling of fuel restructuring. Citation Details In-Document Search Title: Mesoscale modeling of fuel restructuring. Abstract not provided. Authors: Dingreville, Remi...

  14. STATISTICAL MECHANICS MODELING OF MESOSCALE DEFORMATION IN METALS...

    Office of Scientific and Technical Information (OSTI)

    STATISTICAL MECHANICS MODELING OF MESOSCALE DEFORMATION IN METALS Anter El-Azab 36 MATERIALS SCIENCE dislocation dynamics; mesoscale deformation of metals; crystal mechanics...

  15. Mesoscale magnetism (Journal Article) | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    Mesoscale magnetism This content will become publicly available on March 16, 2017 « Prev Next » Title: Mesoscale magnetism Authors: Hoffmann, Axel ; Schultheiß, Helmut Publication Date: 2015-08-01 OSTI Identifier: 1251245 Type: Publisher's Accepted Manuscript Journal Name: Current Opinion in Solid State and Materials Science Additional Journal Information: Journal Volume: 19; Journal Issue: 4; Journal ID: ISSN 1359-0286 Publisher: Elsevier Sponsoring Org: USDOE Country of Publication: United

  16. Mesoscale Simulations of Power Compaction

    SciTech Connect (OSTI)

    Lomov, I; Fujino, D; Antoun, T; Liu, B

    2009-08-06

    Mesoscale 3D simulations of metal and ceramic powder compaction in shock waves have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating shock compaction of porous well-characterized ductile metal using Steinberg material model. Results of the simulations with handbook values for parameters of solid 2024 aluminum have good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not so well studied as metals, so material model for ceramic (tungsten carbide) has been fitted to shock compression experiments of non-porous samples and further calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powder have been performed and showed good agreement with experimental data. Numerical shock wave profile has same character and thickness as measured with VISAR. Numerical results show reshock states above the single-shock Hugoniot line also observed in experiments. They found that to receive good quantitative agreement with experiment it is essential to perform 3D simulations.

  17. Mesoscale morphologies in polymer thin films.

    SciTech Connect (OSTI)

    Ramanathan, M.; Darling, S. B. (Center for Nanoscale Materials)

    2011-06-01

    In the midst of an exciting era of polymer nanoscience, where the development of materials and understanding of properties at the nanoscale remain a major R&D endeavor, there are several exciting phenomena that have been reported at the mesoscale (approximately an order of magnitude larger than the nanoscale). In this review article, we focus on mesoscale morphologies in polymer thin films from the viewpoint of origination of structure formation, structure development and the interaction forces that govern these morphologies. Mesoscale morphologies, including dendrites, holes, spherulites, fractals and honeycomb structures have been observed in thin films of homopolymer, copolymer, blends and composites. Following a largely phenomenological level of description, we review the kinetic and thermodynamic aspects of mesostructure formation outlining some of the key mechanisms at play. We also discuss various strategies to direct, limit, or inhibit the appearance of mesostructures in polymer thin films as well as an outlook toward potential areas of growth in this field of research.

  18. Meso-scale controlled motion for a microfluidic drop ejector...

    Office of Scientific and Technical Information (OSTI)

    Subject: 42 ENGINEERING; DROPLETS; FLOWMETERS; MINIATURIZATION; DESIGN Microelectromechanical systems.; Fluidic devices.; Mesoscale-materials; Manufacturing processes. Word Cloud ...

  19. Protection of Operators and Environment - the Safety Concept of the Karlsruhe Vitrification Plant VEK

    SciTech Connect (OSTI)

    Fleisch, J.; Kuttruf, H.; Lumpp, W.; Pfeifer, W.; Roth, G.; Weisenburger, S.

    2002-02-26

    The Karlsruhe Vitrification Plant (VEK) plant is a milestone in decommissioning and complete dismantling of the former Karlsruhe Reprocessing Plant WAK, which is in an advanced stage of disassembly. The VEK is scheduled to vitrify approx. 70 m3 of the highly radioactive liquid waste (HLW) resulting from reprocessing. Site preparation, civil work and component manufacturing began in 1999. The building will be finalized by mid of 2002, hot vitrification operation is currently scheduled for 2004/2005. Provisions against damages arising from construction and operation of the VEK had to be made in accordance with the state of the art as laid down in the German Atomic Law and the Radiation Protection Regulations. For this purpose, the appropriate analysis of accidents and their external and internal impacts were investigated. During the detailed design phase, a failure effects analysis was carried out, in which single events were studied with respect to the objectives of protection and ensuring activity containment, limiting radioactive discharges to the environment and protecting of the staff. Parallel to the planning phase of the VEK plant a cold prototype test facility (PVA) covering the main process steps was constructed and operated at the Institut fuer Nukleare Entsorgung (INE) of FZK. This pilot operation served to demonstrate the process technique and its operation with a simulated waste solution, and to test the main items of equipment, but was conducted also to use the experimental data and experience to back the safety concept of the radioactive VEK plant. This paper describes the basis of the safety concept of the VEK plant and results of the failure effect analysis. The experimental simulation of the failure scenarios, their effect on the process behavior, and the controllability of these events as well as the effect of the results on the safety concept of VEK are discussed. Additionally, an overview of the actual status of civil work and manufacturing of the technical equipment is given.

  20. Research on long term safety of nuclear waste disposal at the research center Karlsruhe, Germany

    SciTech Connect (OSTI)

    Gompper, Klaus; Bosbach, Dirk; Denecke, Melissa A.; Geckeis, Horst; Kienzler, Bernhard; Klenze, Reinhardt

    2007-07-01

    In Germany the safe disposal of radioactive waste is in the responsibility of the federal government. The R and D performed in the Institute for Nuclear Waste Disposal (INE) at the Research Center Karlsruhe contributes to the German provident research in the field of long-term safety for final disposal of high level heat producing nuclear wastes. INE's research is focused on the actinide elements and long lived fission products since these dominate the radiotoxicity over a long time. The research strategy synergistically combines fundamental science of aquatic radionuclide chemistry with applied investigations of real systems (waste form, host rock, aquifer), studied on laboratory scale and in underground laboratories. Because Germany has not yet selected a site for a high-level waste repository, all host rock formations under discussion in the international community (salt, hard rock, clay/tone) are investigated. Emphasis in long-term safety R and D at INE is on the development of actinide speciation methods and techniques in the trace concentration range. (authors)

  1. Tritium Laboratory Karlsruhe: administrative and technical framework for isotope laboratory operation

    SciTech Connect (OSTI)

    Welte, S.; Besserer, U.; Osenberg, D.; Wendel, J.

    2015-03-15

    Originally licensed in 1993 the Tritium Laboratory Karlsruhe (TLK) is a unique pilot scale isotope laboratory focused on tritium handling and processing to conduct a variety of scientific experiments and development tasks in view of future fusion power plants. TLK currently operates 15 glove boxes of 125 m{sup 3} total volume in an experimental hall measuring nearly 1500 m{sup 2}. The tritium infrastructure, comprising of the tritium storage system, the tritium transfer system and the isotope separation system, is integrated into TLK as a closed loop system to supply tritium to the experiments. Having a license for handling of up to 40 g of tritium and a closed tritium processing loop, TLK is a unique institute in non-military tritium research. In order to fulfil all requirements regarding the license, a framework of regulations is applied as a basis for the operation of TLK, as well as the setup of new experiments and the design of components. This paper will give an overview on the framework of operation in view of licensing issues, as well as administrative and technical regulations mandatory to legally and reliably operate an isotope laboratory of this scale.

  2. Karlsruhe Database for Radioactive Wastes (KADABRA) - Accounting and Management System for Radioactive Waste Treatment - 12275

    SciTech Connect (OSTI)

    Himmerkus, Felix; Rittmeyer, Cornelia [WAK Rueckbau- und Entsorgungs- GmbH, 76339 Eggenstein-Leopoldshafen (Germany)

    2012-07-01

    The data management system KADABRA was designed according to the purposes of the Cen-tral Decontamination Department (HDB) of the Wiederaufarbeitungsanlage Karlsruhe Rueckbau- und Entsorgungs-GmbH (WAK GmbH), which is specialized in the treatment and conditioning of radioactive waste. The layout considers the major treatment processes of the HDB as well as regulatory and legal requirements. KADABRA is designed as an SAG ADABAS application on IBM system Z mainframe. The main function of the system is the data management of all processes related to treatment, transfer and storage of radioactive material within HDB. KADABRA records the relevant data concerning radioactive residues, interim products and waste products as well as the production parameters relevant for final disposal. Analytical data from the laboratory and non destructive assay systems, that describe the chemical and radiological properties of residues, production batches, interim products as well as final waste products, can be linked to the respective dataset for documentation and declaration. The system enables the operator to trace the radioactive material through processing and storage. Information on the actual sta-tus of the material as well as radiological data and storage position can be gained immediately on request. A variety of programs accessed to the database allow the generation of individual reports on periodic or special request. KADABRA offers a high security standard and is constantly adapted to the recent requirements of the organization. (authors)

  3. STATISTICAL MECHANICS MODELING OF MESOSCALE DEFORMATION IN METALS

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: STATISTICAL MECHANICS MODELING OF MESOSCALE DEFORMATION IN METALS Citation Details In-Document Search Title: STATISTICAL MECHANICS MODELING OF MESOSCALE DEFORMATION IN METALS The research under this project focused on a theoretical and computational modeling of dislocation dynamics of mesoscale deformation of metal single crystals. Specifically, the work aimed to implement a continuum statistical theory of dislocations to understand

  4. Unusual lithiation and fracture behavior of silicon mesoscale...

    Office of Scientific and Technical Information (OSTI)

    Unusual lithiation and fracture behavior of silicon mesoscale pillars: roles of ultrathin ... Citation Details In-Document Search Title: Unusual lithiation and fracture behavior of ...

  5. Mesoscale Modeling of Fuel Swelling and Restructuring: Coupling...

    Office of Scientific and Technical Information (OSTI)

    evolution and Mechanical Localization. Citation Details In-Document Search Title: Mesoscale Modeling of Fuel Swelling and Restructuring: Coupling Microstructure evolution and ...

  6. Mesoscale Simulations of Particulate Flows with Parallel Distributed...

    Office of Scientific and Technical Information (OSTI)

    Title: Mesoscale Simulations of Particulate Flows with Parallel Distributed Lagrange Multiplier Technique Fluid particulate flows are common phenomena in nature and industry. ...

  7. Meso-Scale during Electron Beam Additive Manufacturing Chen,...

    Office of Scientific and Technical Information (OSTI)

    Thermal Properties and Beam-Particle Interaction at Meso-Scale during Electron Beam Additive Manufacturing Chen, Jian ORNL ORNL; Zheng, Lili ORNL ORNL; Feng, Zhili...

  8. From Quanta to the Continuum: Opportunities for Mesoscale Science...

    Office of Scientific and Technical Information (OSTI)

    Quanta to the Continuum: Opportunities for Mesoscale Science Crabtree, George Argonne National Lab. (ANL), Argonne, IL (United States); Sarrao, John Los Alamos National Lab....

  9. Challenge of Dynamic Mesoscale Imaging Barnes, Cris William ...

    Office of Scientific and Technical Information (OSTI)

    The Matter-Radiation Interactions in Extremes Project, and the Challenge of Dynamic Mesoscale Imaging Barnes, Cris William Los Alamos National Laboratory; Barber, John L. Los...

  10. Quanta to the Continuum: Opportunities for Mesoscale Science...

    Office of Scientific and Technical Information (OSTI)

    Quanta to the Continuum: Opportunities for Mesoscale Science Sarrao, John L Los Alamos National Laboratory; Crabtree, George Argonne National Laboratory 36 MATERIALS SCIENCE;...

  11. Generation of mesoscale convective structures in tokamak edge plasma

    SciTech Connect (OSTI)

    Krasheninnikov, S. I.; Smolyakov, A. I. [University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States); University of Saskatchewan, 116 Science Place, Saskatoon, Saskatchewan S7N 5E2 (Canada)

    2007-10-15

    It is shown that the interplay of the interchange drive and nonlinear effects of Reynolds stress and inverse cascade of drift wave turbulence select a range of plasma parameters (plasma pressure), for which mesoscale perturbations of a certain transverse length scale become unstable. It is suggested that the blob formation is a result of these mesoscale instabilities.

  12. Mesoscale Engineering of Nanocomposite Nonlinear Optical Materials

    SciTech Connect (OSTI)

    Afonso, C.N.; Feldman, L.C.; Gonella, F.; Haglund, R.F.; Luepke, G.; Magruder, R.H.; Mazzoldi, P.; Osborne, D.H.; Solis, J.; Zuhr, R.A.

    1999-11-01

    Complex nonlinear optical materials comprising elemental, compound or alloy quantum dots embedded in appropriate dielectric or semiconducting hosts may be suitable for deployment in photonic devices. Ion implantation, ion exchange followed by ion implantation, and pulsed laser deposition have ail been used to synthesize these materials. However, the correlation between the parameters of energetic-beam synthesis and the nonlinear optical properties is still very rudimentary when one starts to ask what is happening at nanoscale dimensions. Systems integration of complex nonlinear optical materials requires that the mesoscale materials science be well understood within the context of device structures. We discuss the effects of beam energy and energy density on quantum-dot size and spatial distribution, thermal conductivity, quantum-dot composition, crystallinity and defects - and, in turn, on the third-order optical susceptibility of the composite material. Examples from recent work in our laboratories are used to illustrate these effects.

  13. In the OSTI Collections: Mesoscale Science | OSTI, US Dept of Energy,

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information Mesoscale Science Article Acknowledgement: Dr. William N. Watson, Physicist DOE Office of Scientific and Technical Information The mesoscale's significance Understanding deformation and flow at the mesoscale Experiments and Tools Mesoscale science for defense Apparent requirements for progress References Research Organizations Reports available through OSTI's SciTech Connect Patent available through OSTI's DOepatents Conferences Journals

  14. Phase Effects on Mesoscale Object X-ray Absorption Images

    SciTech Connect (OSTI)

    Martz, Jr., H E; Aufderheide, M B; Barty, A; Lehman, S K; Kozioziemski, B J; Schneberk, D J

    2004-09-24

    At Lawrence Livermore National Laboratory particular emphasis is being placed on the nondestructive characterization (NDC) of 'mesoscale' objects.[Martz and Albrecht 2003] We define mesoscale objects as objects that have mm extent with {micro}m features. Here we confine our discussions to x-ray imaging methods applicable to mesoscale object characterization. The goal is object recovery algorithms including phase to enable emerging high-spatial resolution x-ray imaging methods to ''see'' inside or image mesoscale-size materials and objects. To be successful our imaging characterization effort must be able to recover the object function to one micrometer or better spatial resolution over a few millimeters field-of-view with very high contrast.

  15. From Quanta to the Continuum: Opportunities for Mesoscale Science

    Office of Scientific and Technical Information (OSTI)

    SEPTEMBER 2012 FROM QUANTA TO THE CONTINUUM: opportunities for MESOSCALE SCIENCE A REPORT FOR THE BASIC ENERGY SCIENCES ADVISORY COMMITTEE MESOSCALE SCIENCE SUBCOMMITTEE About the Department of Energy's Basic Energy Sciences Program Basic Energy Sciences (BES) supports fundamental research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels. This research provides the foundations for new energy technologies and supports DOE missions in

  16. Mesoscale Modeling Framework Design: Subcontract Report (Technical Report)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Technical Report: Mesoscale Modeling Framework Design: Subcontract Report Citation Details In-Document Search Title: Mesoscale Modeling Framework Design: Subcontract Report Authors: Chen, L Q ; Tang, M ; Heo, T W ; Wood, B C Publication Date: 2014-01-09 OSTI Identifier: 1116973 Report Number(s): LLNL-SR-648484 DOE Contract Number: W-7405-ENG-48 Resource Type: Technical Report Research Org: Lawrence Livermore National Laboratory (LLNL), Livermore, CA Sponsoring Org: USDOE

  17. Mesoscale Simulations of Particulate Flows with Parallel Distributed

    Office of Scientific and Technical Information (OSTI)

    Lagrange Multiplier Technique (Conference) | SciTech Connect Mesoscale Simulations of Particulate Flows with Parallel Distributed Lagrange Multiplier Technique Citation Details In-Document Search Title: Mesoscale Simulations of Particulate Flows with Parallel Distributed Lagrange Multiplier Technique Fluid particulate flows are common phenomena in nature and industry. Modeling of such flows at micro and macro levels as well establishing relationships between these approaches are needed to

  18. Mesoscale simulations of particulate flows with parallel distributed

    Office of Scientific and Technical Information (OSTI)

    Lagrange multiplier technique (Journal Article) | SciTech Connect Journal Article: Mesoscale simulations of particulate flows with parallel distributed Lagrange multiplier technique Citation Details In-Document Search Title: Mesoscale simulations of particulate flows with parallel distributed Lagrange multiplier technique Authors: Kanarska, Y ; Lomov, I ; Antoun, T Publication Date: 2010-09-10 OSTI Identifier: 1120915 Report Number(s): LLNL-JRNL-455392 DOE Contract Number: W-7405-ENG-48

  19. Technical Sessions Parameterization of Convective Clouds, Mesoscale Convective Systems,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parameterization of Convective Clouds, Mesoscale Convective Systems, and Convective-Generated Clouds W. R. Cotton Department of Atmospheric Science Colorado State University Fort Collins, CO 80523 This presentation is a summary of research progress supported under the Atmospheric Radiation Measurement (ARM) project entitled "Parameterization of Convective Clouds, Mesoscale Convective Systems, and Con'o'ective-Generated Clouds." The approach used in this research is to perform explicit

  20. Silicon Micromachined Dimensional Calibration Artifact for Mesoscale Measurement Machines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Micromachined Dimensional Calibration Artifact for Mesoscale Measurement Machines 1 Silicon Micromachined Dimensional Calibration Artifact for Mesoscale Measurement Machines 2 Sandia National Laboratories PO Box 5800 Albuquerque, NM 87185 USA Hy D. Tran, PhD, PE Phone: (505)844-5417 Fax: (505)844-4372 hdtran@sandia.gov AFFIRMATION: I affirm that all information submitted as a part of, or supplemental to, this entry is a fair and accurate representation of this product.

  1. Co-Design at the Mesoscale: Opportunities for NSLS-II (Conference...

    Office of Scientific and Technical Information (OSTI)

    Conference: Co-Design at the Mesoscale: Opportunities for NSLS-II Citation Details In-Document Search Title: Co-Design at the Mesoscale: Opportunities for NSLS-II Authors: Sarrao, ...

  2. Co-Design at the Mesoscale: Opportunities for NSLS-II (Conference...

    Office of Scientific and Technical Information (OSTI)

    Conference: Co-Design at the Mesoscale: Opportunities for NSLS-II Citation Details In-Document Search Title: Co-Design at the Mesoscale: Opportunities for NSLS-II Authors: Sarrao,...

  3. Co-Design at the Mesoscale: Opportunities for NSLS-II (Conference...

    Office of Scientific and Technical Information (OSTI)

    Conference: Co-Design at the Mesoscale: Opportunities for NSLS-II Citation Details In-Document Search Title: Co-Design at the Mesoscale: Opportunities for NSLS-II You are...

  4. GAP Flow Measurements During the Mesoscale Alpine Programme

    SciTech Connect (OSTI)

    Mayr, G.; Armi, L.; Arnold, S.; Banta, Robert M.; Darby, Lisa S.; Durran, D. D.; Flamant, C.; Gabersek, S.; Gohm, A.; Mayr, R.; Mobbs, S.; Nance, L. B.; Vergeiner, I.; Vergeiner, J.; Whiteman, Charles D.

    2004-04-30

    This article provides an overview of the Gap Flow sub-program of the Mesoscale Alpine Programme, a major international meteorological field experiment conducted in the European Alps. The article describes the initial results of an investigation of the wind flow through the Brenner Pass gap in the east-west oriented central section of the European Alps under conditions of south foehn. The overview describes the objectives of the experiments, the instrumentation used for the field investigation, and the mesoscale model simulations. Initial findings of the scientific program are provided.

  5. Review of structure representation and reconstruction on mesoscale and microscale

    SciTech Connect (OSTI)

    Li, Dongsheng

    2014-05-01

    Structure representation and reconstruction on mesoscale and microscale is critical in material design, advanced manufacturing and multiscale modeling. Microstructure reconstruction has been applied in different areas of materials science and technology, structural materials, energy materials, geology, hydrology, etc. This review summarizes the microstructure descriptors and formulations used to represent and algorithms to reconstruct structures at microscale and mesoscale. In the stochastic methods using correlation function, different optimization approaches have been adapted for objective function minimization. A variety of reconstruction approaches are compared in efficiency and accuracy.

  6. Plant Decontamination as a Precondition of the Remote Dismantling Concept of the Karlsruhe Vitrification Plant VEK - 12206

    SciTech Connect (OSTI)

    Dux, Joachim; Fleisch, Joachim; Latzko, Bernhard; Rohleder, Norbert

    2012-07-01

    Vitrification of the high-active liquid waste concentrates (HAWC) was a major milestone in the WAK decommissioning project (StiWAK). From September 2009 to June 2010, about 56 m{sup 3} of HAWC were vitrified at the Karlsruhe vitrification facility (VEK) and filled into 123 canisters. HAWC vitrification was followed by an extensive rinsing and shutdown program, in the course of which both the VEK process installations and the facilities for the storage and evaporation of high-active fission product solutions (LAVA) are prepared specifically for dismantling. Finally the rinsing programme leads to an overall reduction of the remaining contamination in the installations by a factor of approx. 5 - 10. The amount of liquids arisen from this program has been vitrified and another 17 canisters have been filled. In total, 140 canisters were packed into 5 CASTOR casks that were already transported to the Zwischenlager Nord (interim store North) of EWN GmbH (ZLN) in the mid of February 2011. The melter of the VEK was already shut down in the late November 2010. (authors)

  7. Assessment of MARMOT. A Mesoscale Fuel Performance Code

    SciTech Connect (OSTI)

    Tonks, M. R.; Schwen, D.; Zhang, Y.; Chakraborty, P.; Bai, X.; Fromm, B.; Yu, J.; Teague, M. C.; Andersson, D. A.

    2015-04-01

    MARMOT is the mesoscale fuel performance code under development as part of the US DOE Nuclear Energy Advanced Modeling and Simulation Program. In this report, we provide a high level summary of MARMOT, its capabilities, and its current state of validation. The purpose of MARMOT is to predict the coevolution of microstructure and material properties of nuclear fuel and cladding. It accomplished this using the phase field method coupled to solid mechanics and heat conduction. MARMOT is based on the Multiphysics Object-Oriented Simulation Environment (MOOSE), and much of its basic capability in the areas of the phase field method, mechanics, and heat conduction come directly from MOOSE modules. However, additional capability specific to fuel and cladding is available in MARMOT. While some validation of MARMOT has been completed in the areas of fission gas behavior and grain growth, much more validation needs to be conducted. However, new mesoscale data needs to be obtained in order to complete this validation.

  8. Thermodynamic properties of mesoscale convective systems observed during BAMEX

    SciTech Connect (OSTI)

    Correia, James; Arritt, R.

    2008-11-01

    Dropsonde observations from the Bow-echo and Mesoscale convective vortex EXperiment (BAMEX) are used to document the spatio-temporal variability of temperature, moisture and wind within mesoscale convective systems (MCSs). Onion type sounding structures are found throughout the stratiform region of MCSs but the temperature and moisture variability is large. Composite soundings were constructed and statistics of thermodynamic variability were generated within each sub-region of the MCS. The calculated air vertical velocity helped identify subsaturated downdrafts. We found that lapse rates within the cold pool varied markedly throughout the MCS. Layered wet bulb potential temperature profiles seem to indicate that air within the lowest several km comes from a variety of source regions. We also found that lapse rate transitions across the 0 C level were more common than isothermal, melting layers. We discuss the implications these findings have and how they can be used to validate future high resolution numerical simulations of MCSs.

  9. Quantum fluctuations and saturable absorption in mesoscale lasers

    SciTech Connect (OSTI)

    Roy-Choudhury, Kaushik [Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484 (United States); Levi, A. F. J. [Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484 (United States); Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089-2533 (United States)

    2011-04-15

    We present a quantum-mechanical treatment of fluctuations and saturable absorption in mesoscale lasers. The time evolution of the density matrix is obtained from numerical integration and field-field and intensity-intensity correlations are calculated to obtain steady-state linewidth and photon statistics. Inclusion of a saturable absorber in the otherwise homogeneous medium is shown to suppress lasing, increase fluctuations, and enhance spontaneous emission near threshold.

  10. Mesoscale Modeling of LX-17 Under Isentropic Compression

    SciTech Connect (OSTI)

    Springer, H K; Willey, T M; Friedman, G; Fried, L E; Vandersall, K S; Baer, M R

    2010-03-06

    Mesoscale simulations of LX-17 incorporating different equilibrium mixture models were used to investigate the unreacted equation-of-state (UEOS) of TATB. Candidate TATB UEOS were calculated using the equilibrium mixture models and benchmarked with mesoscale simulations of isentropic compression experiments (ICE). X-ray computed tomography (XRCT) data provided the basis for initializing the simulations with realistic microstructural details. Three equilibrium mixture models were used in this study. The single constituent with conservation equations (SCCE) model was based on a mass-fraction weighted specific volume and the conservation of mass, momentum, and energy. The single constituent equation-of-state (SCEOS) model was based on a mass-fraction weighted specific volume and the equation-of-state of the constituents. The kinetic energy averaging (KEA) model was based on a mass-fraction weighted particle velocity mixture rule and the conservation equations. The SCEOS model yielded the stiffest TATB EOS (0.121{micro} + 0.4958{micro}{sup 2} + 2.0473{micro}{sup 3}) and, when incorporated in mesoscale simulations of the ICE, demonstrated the best agreement with VISAR velocity data for both specimen thicknesses. The SCCE model yielded a relatively more compliant EOS (0.1999{micro}-0.6967{micro}{sup 2} + 4.9546{micro}{sup 3}) and the KEA model yielded the most compliant EOS (0.1999{micro}-0.6967{micro}{sup 2}+4.9546{micro}{sup 3}) of all the equilibrium mixture models. Mesoscale simulations with the lower density TATB adiabatic EOS data demonstrated the least agreement with VISAR velocity data.

  11. Mesoscale modeling of metal-loaded high explosives

    SciTech Connect (OSTI)

    Bdzil, John Bohdan [Los Alamos National Laboratory; Lieberthal, Brandon [UNIV OF ILLINOIS; Srewart, Donald S [UNIV OF ILLINOIS

    2010-01-01

    We describe a 3D approach to modeling multi-phase blast explosive, which is primarily condensed explosive by volume with inert embedded particles. These embedded particles are uniform in size and placed on the array of a regular lattice. The asymptotic theory of detonation shock dynamics governs the detonation shock propagation in the explosive. Mesoscale hydrodynamic simulations are used to show how the particles are compressed, deformed, and accelerated by the high-speed detonation products flow.

  12. A mesoscale analysis of the Rayleigh-Plateau instability.

    SciTech Connect (OSTI)

    Pao, Wenxiao (BU); Soteriou, Marios (UTRC); Li, Xiaoyi (UTRC); Karniadakis, George (BU); Arienti, Marco

    2010-11-01

    Capillary pinch-off results carried out with the Many-Body Dissipative Particle Dynamics (MDPD) method are compared with the two-phase continuum discretization of hydrodynamics. The MDPD method provides a mesoscale description of the liquid-gas interface -- molecules can be thought of as grouped in particles with modeled Brownian and dissipative effects. No liquid-gas interface is explicitly defined; surface properties, such as surface tension, result from the MDPD interaction parameters. In side-to-side comparisons, the behavior of the MDPD liquid is demonstrated to replicate the macroscale behavior (thin interface assumption) calculated by the Combined Level Set-Volume of Fluid (CLSVOF) method. For instance, in both the continuum and mesoscale discretizations the most unstable wavelength perturbation leads to pinch-off, whereas a smaller wavelength-to-diameter ratio, as expected, does not. The behavior of the virial pressure in MDPD will be discussed in relation to the hydrodynamic capillary pressure that results from the thin interface assumption.

  13. Mesoscale Benchmark Demonstration Problem 1: Mesoscale Simulations of Intra-granular Fission Gas Bubbles in UO2 under Post-irradiation Thermal Annealing

    SciTech Connect (OSTI)

    Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert; Gao, Fei; Sun, Xin; Tonks, Michael; Biner, Bullent; Millet, Paul; Tikare, Veena; Radhakrishnan, Balasubramaniam; Andersson , David

    2012-04-11

    A study was conducted to evaluate the capabilities of different numerical methods used to represent microstructure behavior at the mesoscale for irradiated material using an idealized benchmark problem. The purpose of the mesoscale benchmark problem was to provide a common basis to assess several mesoscale methods with the objective of identifying the strengths and areas of improvement in the predictive modeling of microstructure evolution. In this work, mesoscale models (phase-field, Potts, and kinetic Monte Carlo) developed by PNNL, INL, SNL, and ORNL were used to calculate the evolution kinetics of intra-granular fission gas bubbles in UO2 fuel under post-irradiation thermal annealing conditions. The benchmark problem was constructed to include important microstructural evolution mechanisms on the kinetics of intra-granular fission gas bubble behavior such as the atomic diffusion of Xe atoms, U vacancies, and O vacancies, the effect of vacancy capture and emission from defects, and the elastic interaction of non-equilibrium gas bubbles. An idealized set of assumptions was imposed on the benchmark problem to simplify the mechanisms considered. The capability and numerical efficiency of different models are compared against selected experimental and simulation results. These comparisons find that the phase-field methods, by the nature of the free energy formulation, are able to represent a larger subset of the mechanisms influencing the intra-granular bubble growth and coarsening mechanisms in the idealized benchmark problem as compared to the Potts and kinetic Monte Carlo methods. It is recognized that the mesoscale benchmark problem as formulated does not specifically highlight the strengths of the discrete particle modeling used in the Potts and kinetic Monte Carlo methods. Future efforts are recommended to construct increasingly more complex mesoscale benchmark problems to further verify and validate the predictive capabilities of the mesoscale modeling methods used in this study.

  14. Mesoscale polycrystal calculations of damage in spallation in metals

    SciTech Connect (OSTI)

    Tonks, Davis L [Los Alamos National Laboratory; Bingert, John F [Los Alamos National Laboratory; Livescu, Veronica [Los Alamos National Laboratory; Luo, Shengnian [Los Alamos National Laboratory; Bronkhorst, C A [Los Alamos National Laboratory

    2010-01-01

    The goal of this project is to produce a damage model for spallation in metals informed by the polycrystalline grain structure at the mesoscale. Earlier damage models addressed the continuwn macroscale in which these effects were averaged out. In this work we focus on cross sections from recovered samples examined with EBSD (electron backscattered diffraction), which reveal crystal grain orientations and voids. We seek to understand the loading histories of specific sample regions by meshing up the crystal grain structure of these regions and simulating the stress, strain, and damage histories in our hydro code, FLAG. The stresses and strain histories are the fundamental drivers of damage and must be calculated. The calculated final damage structures are compared with those from the recovered samples to validate the simulations.

  15. Predicting mesoscale microstructural evolution in electron beam welding

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rodgers, Theron M.; Madison, Jonathan D.; Tikare, Veena; Maguire, Michael C.

    2016-03-16

    Using the kinetic Monte Carlo simulator, Stochastic Parallel PARticle Kinetic Simulator, from Sandia National Laboratories, a user routine has been developed to simulate mesoscale predictions of a grain structure near a moving heat source. Here, we demonstrate the use of this user routine to produce voxelized, synthetic, three-dimensional microstructures for electron-beam welding by comparing them with experimentally produced microstructures. When simulation input parameters are matched to experimental process parameters, qualitative and quantitative agreement for both grain size and grain morphology are achieved. The method is capable of simulating both single- and multipass welds. As a result, the simulations provide anmore » opportunity for not only accelerated design but also the integration of simulation and experiments in design such that simulations can receive parameter bounds from experiments and, in turn, provide predictions of a resultant microstructure.« less

  16. Linking atomistic and mesoscale simulations of nanocrystalline materials : quantitative validation for the case of grain growth.

    SciTech Connect (OSTI)

    Moldovan, D.; Wolf, D.; Phillpot, S. R.; Materials Science Division; Louisiana State Univ.

    2003-11-01

    Using grain growth in nanocrystalline palladium as a simple case study, we demonstrate how a novel mesoscale approach for simulating microstructural evolution in polycrystalline materials can be validated directly against atomic-level simulations of the same system. We first describe molecular dynamics simulations of grain growth in a columnar model microstructure. The atomic-level insights into the grain-growth mechanism gained from these simulations, particularly in the role of grain rotations, are captured theoretically for incorporation into the mesoscale approach, in which the objects evolving in space and time are the grain boundaries and grain junctions rather than the atoms. With all the input parameters to the mesoscale being physically well defined and obtained directly from the atomic-level simulations, the mesoscale simulations are fully prescribed. We find that the morphology of the mesoscale system evolves in an almost identical manner with that of the molecular dynamics simulation, demonstrating that the length- and time-scale linking has been performed correctly. When applied to systems containing large numbers of grains, the now validated mesoscale simulation approach allows the growth topology and long-time growth kinetics to be determined. As an outlook, we describe how the effects of applied stress can be incorporated.

  17. MICRO-SEISMOMETERS VIA ADVANCED MESO-SCALE FABRICATION

    SciTech Connect (OSTI)

    Garcia, Caesar A; Onaran, Guclu; Avenson, Brad; Hall, Neal

    2014-11-07

    The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) seek revolutionary sensing innovations for the monitoring of nuclear detonations. Performance specifications are to be consistent with those obtainable by only an elite few products available today, but with orders of magnitude reduction in size, weight, power, and cost. The proposed commercial innovation calls upon several technologies including the combination of meso-scale fabrication and assembly, photonics-based displacement / motion detection methods, and the use of digital control electronics . Early Phase II development has demonstrated verified and repeatable sub 2ng noise floor from 3Hz to 100Hz, compact integration of 3-axis prototypes, and robust deployment exercises. Ongoing developments are focusing on low frequency challenges, low power consumption, ultra-miniature size, and low cross axis sensitivity. We are also addressing the rigorous set of specifications required for repeatable and reliable long-term explosion monitoring, including thermal stability, reduced recovery time from mass re-centering and large mechanical shocks, sensitivity stability, and transportability. Successful implementation will result in small, hand-held demonstration units with the ability to address national security needs of the DOE/NNSA. Additional applications envisioned include military/defense, scientific instrumentation, oil and gas exploration, inertial navigation, and civil infrastructure monitoring.

  18. Mesoscale and Large-Eddy Simulations for Wind Energy

    SciTech Connect (OSTI)

    Marjanovic, N

    2011-02-22

    Operational wind power forecasting, turbine micrositing, and turbine design require high-resolution simulations of atmospheric flow over complex terrain. The use of both Reynolds-Averaged Navier Stokes (RANS) and large-eddy (LES) simulations is explored for wind energy applications using the Weather Research and Forecasting (WRF) model. To adequately resolve terrain and turbulence in the atmospheric boundary layer, grid nesting is used to refine the grid from mesoscale to finer scales. This paper examines the performance of the grid nesting configuration, turbulence closures, and resolution (up to as fine as 100 m horizontal spacing) for simulations of synoptically and locally driven wind ramping events at a West Coast North American wind farm. Interestingly, little improvement is found when using higher resolution simulations or better resolved turbulence closures in comparison to observation data available for this particular site. This is true for week-long simulations as well, where finer resolution runs show only small changes in the distribution of wind speeds or turbulence intensities. It appears that the relatively simple topography of this site is adequately resolved by all model grids (even as coarse as 2.7 km) so that all resolutions are able to model the physics at similar accuracy. The accuracy of the results is shown in this paper to be more dependent on the parameterization of the land-surface characteristics such as soil moisture rather than on grid resolution.

  19. Impact of aerosol on mixed-phase stratocumulus during MPACE in a mesoscale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    model with two-moment microphysics Impact of aerosol on mixed-phase stratocumulus during MPACE in a mesoscale model with two-moment microphysics Morrison, Hugh MMM/ASP National Center for Atmospheric Research Pinto, James University of Colorado Curry, Judith Georgia Institute of Technology Category: Modeling The Penn State/NCAR mesoscale model MM5 is coupled to a new microphysics scheme to examine the impact of aerosol on mixed-phase stratocumulus during the Mixed-Phase Arctic Stratus

  20. MaRIE: A facility for time-dependent materials science at the mesoscale

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect MaRIE: A facility for time-dependent materials science at the mesoscale Citation Details In-Document Search Title: MaRIE: A facility for time-dependent materials science at the mesoscale Authors: Barnes, Cris William [1] ; Kippen, Karen Elizabeth [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2015-02-11 OSTI Identifier: 1170260 Report Number(s): LA-UR-15-20995 DOE Contract Number: AC52-06NA25396 Resource Type: Technical

  1. A Coupling Methodology for Mesoscale-informed Nuclear Fuel Performance Codes

    SciTech Connect (OSTI)

    Michael Tonks; Derek Gaston; Cody Permann; Paul Millett; Glen Hansen; Dieter Wolf

    2010-10-01

    This study proposes an approach for capturing the effect of microstructural evolution on reactor fuel performance by coupling a mesoscale irradiated microstructure model with a finite element fuel performance code. To achieve this, the macroscale system is solved in a parallel, fully coupled, fully-implicit manner using the preconditioned Jacobian-free Newton Krylov (JFNK) method. Within the JFNK solution algorithm, microstructure-influenced material parameters are calculated by the mesoscale model and passed back to the macroscale calculation. Due to the stochastic nature of the mesoscale model, a dynamic fitting technique is implemented to smooth roughness in the calculated material parameters. The proposed methodology is demonstrated on a simple model of a reactor fuel pellet. In the model, INLs BISON fuel performance code calculates the steady-state temperature profile in a fuel pellet and the microstructure-influenced thermal conductivity is determined with a phase field model of irradiated microstructures. This simple multiscale model demonstrates good nonlinear convergence and near ideal parallel scalability. By capturing the formation of large mesoscale voids in the pellet interior, the multiscale model predicted the irradiation-induced reduction in the thermal conductivity commonly observed in reactors.

  2. Coupling a Mesoscale Numerical Weather Prediction Model with Large-Eddy Simulation for Realistic Wind Plant Aerodynamics Simulations (Poster)

    SciTech Connect (OSTI)

    Draxl, C.; Churchfield, M.; Mirocha, J.; Lee, S.; Lundquist, J.; Michalakes, J.; Moriarty, P.; Purkayastha, A.; Sprague, M.; Vanderwende, B.

    2014-06-01

    Wind plant aerodynamics are influenced by a combination of microscale and mesoscale phenomena. Incorporating mesoscale atmospheric forcing (e.g., diurnal cycles and frontal passages) into wind plant simulations can lead to a more accurate representation of microscale flows, aerodynamics, and wind turbine/plant performance. Our goal is to couple a numerical weather prediction model that can represent mesoscale flow [specifically the Weather Research and Forecasting model] with a microscale LES model (OpenFOAM) that can predict microscale turbulence and wake losses.

  3. THE APPLICATION OF AN EVOLUTIONARY ALGORITHM TO THE OPTIMIZATION OF A MESOSCALE METEOROLOGICAL MODEL

    SciTech Connect (OSTI)

    Werth, D.; O'Steen, L.

    2008-02-11

    We show that a simple evolutionary algorithm can optimize a set of mesoscale atmospheric model parameters with respect to agreement between the mesoscale simulation and a limited set of synthetic observations. This is illustrated using the Regional Atmospheric Modeling System (RAMS). A set of 23 RAMS parameters is optimized by minimizing a cost function based on the root mean square (rms) error between the RAMS simulation and synthetic data (observations derived from a separate RAMS simulation). We find that the optimization can be efficient with relatively modest computer resources, thus operational implementation is possible. The optimization efficiency, however, is found to depend strongly on the procedure used to perturb the 'child' parameters relative to their 'parents' within the evolutionary algorithm. In addition, the meteorological variables included in the rms error and their weighting are found to be an important factor with respect to finding the global optimum.

  4. DOE Science Showcase - Mesoscale | OSTI, US Dept of Energy, Office of

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information Mesoscale "The immense diversity of materials in the macroscopic world-hard, soft, viscous, conducting, insulating, magnetic, liquid, and gaseous-is made up of only a hundred or so distinct kinds of atoms representing the elements of the periodic table. The differences in the size, complexity, and operating principles of atoms and macroscopic materials are enormous . . . The enormous differences separating atoms and bulk materials appear at first

  5. MESO-SCALE MODELING OF THE INFLUENCE OF INTERGRANULAR GAS BUBBLES ON EFFECTIVE THERMAL CONDUCTIVITY

    SciTech Connect (OSTI)

    Paul C. Millett; Michael Tonks

    2011-06-01

    Using a mesoscale modeling approach, we have investigated how intergranular fission gas bubbles, as observed in high-burnup nuclear fuel, modify the effective thermal conductivity in a polycrystalline material. The calculations reveal that intergranular porosity has a significantly higher resistance to heat transfer compared to randomly-distributed porosity. A model is developed to describe this conductivity reduction that considers an effective grain boundary Kapitza resistance as a function of the fractional coverage of grain boundaries by bubbles.

  6. Dynamics and generation mechanisms of mesoscale structures in tokamak edge plasmas

    SciTech Connect (OSTI)

    Krasheninnikov, S. I. [University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States); Smolyakov, A. I. [University of Saskatchewan, 116 Science Place, Saskatoon, Saskatchewan S7N 5E2 (Canada)

    2008-05-15

    Intermittent convective-like plasma transport associated with mesoscale coherent structures extended along the magnetic field lines (''blobs'') is often dominant at the edge of tokamaks, stellarators, and linear devices. Blobs can travel a large distance toward the wall ({approx}10 cm and larger) and strongly enhance both edge plasma energy and particle transport and plasma-wall interactions. The dynamics of blobs and blob generation mechanisms are discussed in this paper.

  7. Nesting large-eddy simulations within mesoscale simulations for wind energy applications

    SciTech Connect (OSTI)

    Lundquist, J K; Mirocha, J D; Chow, F K; Kosovic, B; Lundquist, K A

    2008-09-08

    With increasing demand for more accurate atmospheric simulations for wind turbine micrositing, for operational wind power forecasting, and for more reliable turbine design, simulations of atmospheric flow with resolution of tens of meters or higher are required. These time-dependent large-eddy simulations (LES), which resolve individual atmospheric eddies on length scales smaller than turbine blades and account for complex terrain, are possible with a range of commercial and open-source software, including the Weather Research and Forecasting (WRF) model. In addition to 'local' sources of turbulence within an LES domain, changing weather conditions outside the domain can also affect flow, suggesting that a mesoscale model provide boundary conditions to the large-eddy simulations. Nesting a large-eddy simulation within a mesoscale model requires nuanced representations of turbulence. Our group has improved the Weather and Research Forecasting model's (WRF) LES capability by implementing the Nonlinear Backscatter and Anisotropy (NBA) subfilter stress model following Kosovic (1997) and an explicit filtering and reconstruction technique to compute the Resolvable Subfilter-Scale (RSFS) stresses (following Chow et al, 2005). We have also implemented an immersed boundary method (IBM) in WRF to accommodate complex terrain. These new models improve WRF's LES capabilities over complex terrain and in stable atmospheric conditions. We demonstrate approaches to nesting LES within a mesoscale simulation for farms of wind turbines in hilly regions. Results are sensitive to the nesting method, indicating that care must be taken to provide appropriate boundary conditions, and to allow adequate spin-up of turbulence in the LES domain.

  8. Limitations of one-dimensional mesoscale PBL parameterizations in reproducing mountain-wave flows

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Munoz-Esparza, Domingo; Sauer, Jeremy A.; Linn, Rodman R.; Kosovic, Branko

    2015-12-08

    In this study, mesoscale models are considered to be the state of the art in modeling mountain-wave flows. Herein, we investigate the role and accuracy of planetary boundary layer (PBL) parameterizations in handling the interaction between large-scale mountain waves and the atmospheric boundary layer. To that end, we use recent large-eddy simulation (LES) results of mountain waves over a symmetric two-dimensional bell-shaped hill [Sauer et al., J. Atmos. Sci. (2015)], and compare them to four commonly used PBL schemes. We find that one-dimensional PBL parameterizations produce reasonable agreement with the LES results in terms of vertical wavelength, amplitude of velocitymore » and turbulent kinetic energy distribution in the downhill shooting flow region. However, the assumption of horizontal homogeneity in PBL parameterizations does not hold in the context of these complex flow configurations. This inappropriate modeling assumption results in a vertical wavelength shift producing errors of ≈ 10 m s–1 at downstream locations due to the presence of a coherent trapped lee wave that does not mix with the atmospheric boundary layer. In contrast, horizontally-integrated momentum flux derived from these PBL schemes displays a realistic pattern. Therefore results from mesoscale models using ensembles of one-dimensional PBL schemes can still potentially be used to parameterize drag effects in general circulation models. Nonetheless, three-dimensional PBL schemes must be developed in order for mesoscale models to accurately represent complex-terrain and other types of flows where one-dimensional PBL assumptions are violated.« less

  9. Mesoscale Origin of the Enhanced Cycling-Stability of the Si-Conductive Polymer Anode for Li-ion Batteries

    SciTech Connect (OSTI)

    Gu, Meng; Xiao, Xingcheng; Liu, Gao; Thevuthasan, Suntharampillai; Baer, Donald R.; Zhang, Jiguang; Liu, Jun; Browning, Nigel D.; Wang, Chong M.

    2014-01-14

    Electrode used in lithium-ion battery is invariably a composite of multifunctional components. The performance of the electrode is controlled by the interactive function of all components at mesoscale. Fundamental understanding of mesoscale phenomenon sets the basis for innovative designing of new materials. Here we report the achievement and origin of a significant performance enhancement of electrode for lithium ion batteries based on Si nanoparticles wrapped with conductive polymer. This new material is in marked contrast with conventional material, which exhibit fast capacity fade. In-situ TEM unveils that the enhanced cycling stability of the conductive polymer-Si composite is associated with mesoscale concordant function of Si nanoparticles and the conductive polymer. Reversible accommodation of the volume changes of Si by the conductive polymer allows good electrical contact between all the particles during the cycling process. In contrast, the failure of the conventional Si-electrode is probed to be the inadequate electrical contact.

  10. Impact of Resolution on Simulation of Closed Mesoscale Cellular Convection Identified by Dynamically Guided Watershed Segmentation

    SciTech Connect (OSTI)

    Martini, Matus; Gustafson, William I.; Yang, Qing; Xiao, Heng

    2014-11-27

    Organized mesoscale cellular convection (MCC) is a common feature of marine stratocumulus that forms in response to a balance between mesoscale dynamics and smaller scale processes such as cloud radiative cooling and microphysics. We use the Weather Research and Forecasting model with chemistry (WRF-Chem) and fully coupled cloud-aerosol interactions to simulate marine low clouds during the VOCALS-REx campaign over the southeast Pacific. A suite of experiments with 3- and 9-km grid spacing indicates resolution-dependent behavior. The simulations with finer grid spacing have smaller liquid water paths and cloud fractions, while cloud tops are higher. The observed diurnal cycle is reasonably well simulated. To isolate organized MCC characteristics we develop a new automated method, which uses a variation of the watershed segmentation technique that combines the detection of cloud boundaries with a test for coincident vertical velocity characteristics. This ensures that the detected cloud fields are dynamically consistent for closed MCC, the most common MCC type over the VOCALS-REx region. We demonstrate that the 3-km simulation is able to reproduce the scaling between horizontal cell size and boundary layer height seen in satellite observations. However, the 9-km simulation is unable to resolve smaller circulations corresponding to shallower boundary layers, instead producing invariant MCC horizontal scale for all simulated boundary layers depths. The results imply that climate models with grid spacing of roughly 3 km or smaller may be needed to properly simulate the MCC structure in the marine stratocumulus regions.

  11. Fully-coupled engineering and mesoscale simulations of thermal conductivity in UO2 fuel using an implicit multiscale approach

    SciTech Connect (OSTI)

    Michael Tonks; Derek Gaston; Cody Permann; Paul Millett; Glen Hansen; Chris Newman

    2009-08-01

    Reactor fuel performance is sensitive to microstructure changes during irradiation (such as fission gas and pore formation). This study proposes an approach to capture microstructural changes in the fuel by a two-way coupling of a mesoscale phase field irradiation model to an engineering scale, finite element calculation. This work solves the multiphysics equation system at the engineering-scale in a parallel, fully-coupled, fully-implicit manner using a preconditioned Jacobian-free Newton Krylov method (JFNK). A sampling of the temperature at the Gauss points of the coarse scale is passed to a parallel sequence of mesoscale calculations within the JFNK function evaluation phase of the calculation. The mesoscale thermal conductivity is calculated in parallel, and the result is passed back to the engineering-scale calculation. As this algorithm is fully contained within the JFNK function evaluation, the mesoscale calculation is nonlinearly consistent with the engineering-scale calculation. Further, the action of the Jacobian is also consistent, so the composite algorithm provides the strong nonlinear convergence properties of Newton's method. The coupled model using INL's \\bison\\ code demonstrates quadratic nonlinear convergence and good parallel scalability. Initial results predict the formation of large pores in the hotter center of the pellet, but few pores on the outer circumference. Thus, the thermal conductivity is is reduced in the center of the pellet, leading to a higher internal temperature than that in an unirradiated pellet.

  12. Mesoscale simulations of shock initiation in energetic materials characterized by three-dimensional nanotomography.

    SciTech Connect (OSTI)

    Long, Gregory T.; Brundage, Aaron L.; Wixom, Ryan R.; Tappan, Alexander Smith

    2009-08-01

    Three-dimensional shock simulations of energetic materials have been conducted to improve our understanding of initiation at the mesoscale. Vapor-deposited films of PETN and pressed powders of HNS were characterized with a novel three-dimensional nanotomographic technique. Detailed microstructures were constructed experimentally from a stack of serial electron micrographs obtained by successive milling and imaging in a dual-beam FIB/SEM. These microstructures were digitized and imported into a multidimensional, multimaterial Eulerian shock physics code. The simulations provided insight into the mechanisms of pore collapse in PETN and HNS samples with distinctly different three-dimensional pore morphology and distribution. This modeling effort supports investigations of microscale explosive phenomenology and elucidates mechanisms governing initiation of secondary explosives.

  13. A creep-damage model for mesoscale simulations of concrete expansion-degradation phenomena

    SciTech Connect (OSTI)

    Giorla, Alain B; Le Pape, Yann

    2015-01-01

    Long-term performance of aging concrete in nuclear power plants (NPPs) requires a careful examination of the physical phenomena taking place in the material. Concrete under high neutron irradiation is subjected to large irreversible deformations as well as mechanical damage, caused by a swelling of the aggregates. However, these results, generally obtained in accelerated conditions in test reactors, cannot be directly applied to NPP irradiated structures, i.e., the biological shield, operating conditions due to difference in time scale and environmental conditions (temperature, humidity). Mesoscale numerical simulations are performed to separate the underlying mechanisms and their interactions. The cement paste creep-damage model accounts for the effect of the loading rate on the apparent damage properties of the material and uses an event-based approach to capture the competition between creep and damage. The model is applied to the simulation of irradiation experiments from the literature and shows a good agreement with the experimental data.

  14. Physically consistent simulation of mesoscale chemical kinetics: The non-negative FIS-{alpha} method

    SciTech Connect (OSTI)

    Dana, Saswati, E-mail: saswatid@rishi.serc.iisc.ernet.in [Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560012 (India); Raha, Soumyendu, E-mail: raha@serc.iisc.ernet.in [Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560012 (India)

    2011-10-01

    Biochemical pathways involving chemical kinetics in medium concentrations (i.e., at mesoscale) of the reacting molecules can be approximated as chemical Langevin equations (CLE) systems. We address the physically consistent non-negative simulation of the CLE sample paths as well as the issue of non-Lipschitz diffusion coefficients when a species approaches depletion and any stiffness due to faster reactions. The non-negative Fully Implicit Stochastic {alpha} (FIS {alpha}) method in which stopped reaction channels due to depleted reactants are deleted until a reactant concentration rises again, for non-negativity preservation and in which a positive definite Jacobian is maintained to deal with possible stiffness, is proposed and analysed. The method is illustrated with the computation of active Protein Kinase C response in the Protein Kinase C pathway.

  15. Mesoscale simulation of shocked poly-(4-methyl-1-pentene) (PMP) foams.

    SciTech Connect (OSTI)

    Schroen, Diana Grace; Flicker, Dawn G.; Haill, Thomas A.; Root, Seth; Mattsson, Thomas Kjell Rene

    2011-06-01

    Hydrocarbon foams are commonly used in HEDP experiments, and are subject to shock compression from tens to hundreds of GPa. Modeling foams is challenging due to the heterogeneous character of the foam. A quantitative understanding of foams under strong dynamic compression is sought. We use Sandia's ALEGRA-MHD code to simulate 3D mesoscale models of pure poly(4-methyl-1-petene) (PMP) foams. We employ two models of the initial polymer-void structure of the foam and analyze the statistical properties of the initial and shocked states. We compare the simulations to multi-Mbar shock experiments at various initial foam densities and flyer impact velocities. Scatter in the experimental data may be a consequence of the initial foam inhomogeneity. We compare the statistical properties the simulations with the scatter in the experimental data.

  16. Crossing the mesoscale no-mans land via parallel kinetic Monte Carlo.

    SciTech Connect (OSTI)

    Garcia Cardona, Cristina (San Diego State University); Webb, Edmund Blackburn, III; Wagner, Gregory John; Tikare, Veena; Holm, Elizabeth Ann; Plimpton, Steven James; Thompson, Aidan Patrick; Slepoy, Alexander (U. S. Department of Energy, NNSA); Zhou, Xiao Wang; Battaile, Corbett Chandler; Chandross, Michael Evan

    2009-10-01

    The kinetic Monte Carlo method and its variants are powerful tools for modeling materials at the mesoscale, meaning at length and time scales in between the atomic and continuum. We have completed a 3 year LDRD project with the goal of developing a parallel kinetic Monte Carlo capability and applying it to materials modeling problems of interest to Sandia. In this report we give an overview of the methods and algorithms developed, and describe our new open-source code called SPPARKS, for Stochastic Parallel PARticle Kinetic Simulator. We also highlight the development of several Monte Carlo models in SPPARKS for specific materials modeling applications, including grain growth, bubble formation, diffusion in nanoporous materials, defect formation in erbium hydrides, and surface growth and evolution.

  17. L3:VUQ.VVDA.P1-1.04 James Kamm, Gregory Weirs SNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    e.g., theory, implementation, and interpretation of convergence analysis). This body of knowledge is both large and multi-faceted; consequently, the determination of...

  18. L3:VUQ.VVDA.P1-1.04 James Kamm, Gregory Weirs SNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    e.g., theory, implementation, and interpretation of convergence analysis). This body of knowledge is both large and multi---faceted; consequently, the determination of...

  19. NIR-Selective electrochromic heteromaterial frameworks: a platform to understand mesoscale transport phenomena in solid-state electrochemical devices

    SciTech Connect (OSTI)

    Williams, TE; Chang, CM; Rosen, EL; Garcia, G; Runnerstrom, EL; Williams, BL; Koo, B; Buonsanti, R; Milliron, DJ; Helms, BA

    2014-01-01

    We report here the first solid-state, NIR-selective electrochromic devices. Critical to device performance is the arrangement of nanocrystal-derived electrodes into heteromaterial frameworks, where hierarchically porous ITO nanocrystal active layers are infiltrated by an ion-conducting polymer electrolyte with mesoscale periodicity. Enhanced coloration efficiency and transport are realized over unarchitectured electrodes in devices, paving the way towards new smart windows technologies.

  20. Temperature-dependent elastic anisotropy and mesoscale deformation in a nanostructured ferritic alloy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stoica, G. M.; Stoica, A. D.; Miller, M. K.; Ma, D.

    2014-10-10

    Nanostructured ferritic alloys (NFA) are a new class of ultrafine-grained oxide dispersion-strengthened steels, promising for service in extreme environments of high temperature and high irradiation in the next-generation of nuclear reactors. This is owing to the remarkable stability of their complex microstructures containing a high density of Y-Ti-O nanoclusters within grains and along the grain boundaries. While nanoclusters have been recognized to be the primary contributor to the exceptional resistance to irradiation and high-temperature creep, very little is known about the mechanical roles of the polycrystalline grains that constitute the bulk ferritic matrix. Here we report the mesoscale characterization ofmore » anisotropic responses of the ultrafine NFA grains to tensile stresses at various temperatures using the state-of-the-art in situ neutron diffraction. We show the first experimental determination of temperature-dependent single-crystal elastic constants for the NFA, and reveal a strong temperature-dependent elastic anisotropy due to a sharp decrease in the shear stiffness constant [c'=(c_11-c_12)/2] when a critical temperature ( T_c ) is approached, indicative of elastic softening and instability of the ferritic matrix. We also show, from anisotropy-induced intergranular strain/stress accumulations, that a common dislocation slip mechanism operates at the onset of yielding for low temperatures, while there is a deformation crossover from low-temperature lattice hardening to high temperature lattice softening in response to extensive plastic deformation.« less

  1. Refined BCF-type boundary conditions for mesoscale surface step dynamics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhao, Renjie; Ackerman, David M.; Evans, James W.

    2015-06-24

    Deposition on a vicinal surface with alternating rough and smooth steps is described by a solid-on-solid model with anisotropic interactions. Kinetic Monte Carlo (KMC) simulations of the model reveal step pairing in the absence of any additional step attachment barriers. We explore the description of this behavior within an analytic Burton-Cabrera-Frank (BCF)-type step dynamics treatment. Without attachment barriers, conventional kinetic coefficients for the rough and smooth steps are identical, as are the predicted step velocities for a vicinal surface with equal terrace widths. However, we determine refined kinetic coefficients from a two-dimensional discrete deposition-diffusion equation formalism which accounts for stepmore » structure. These coefficients are generally higher for rough steps than for smooth steps, reflecting a higher propensity for capture of diffusing terrace adatoms due to a higher kink density. Such refined coefficients also depend on the local environment of the step and can even become negative (corresponding to net detachment despite an excess adatom density) for a smooth step in close proximity to a rough step. Incorporation of these refined kinetic coefficients into a BCF-type step dynamics treatment recovers quantitatively the mesoscale step-pairing behavior observed in the KMC simulations.« less

  2. Refined BCF-type boundary conditions for mesoscale surface step dynamics

    SciTech Connect (OSTI)

    Zhao, Renjie; Ackerman, David M.; Evans, James W.

    2015-06-24

    Deposition on a vicinal surface with alternating rough and smooth steps is described by a solid-on-solid model with anisotropic interactions. Kinetic Monte Carlo (KMC) simulations of the model reveal step pairing in the absence of any additional step attachment barriers. We explore the description of this behavior within an analytic Burton-Cabrera-Frank (BCF)-type step dynamics treatment. Without attachment barriers, conventional kinetic coefficients for the rough and smooth steps are identical, as are the predicted step velocities for a vicinal surface with equal terrace widths. However, we determine refined kinetic coefficients from a two-dimensional discrete deposition-diffusion equation formalism which accounts for step structure. These coefficients are generally higher for rough steps than for smooth steps, reflecting a higher propensity for capture of diffusing terrace adatoms due to a higher kink density. Such refined coefficients also depend on the local environment of the step and can even become negative (corresponding to net detachment despite an excess adatom density) for a smooth step in close proximity to a rough step. Incorporation of these refined kinetic coefficients into a BCF-type step dynamics treatment recovers quantitatively the mesoscale step-pairing behavior observed in the KMC simulations.

  3. Equilibrium Structure of a Triblock Copolymer System Revealed by Mesoscale Simulation and Neutron Scattering

    SciTech Connect (OSTI)

    Do, Changwoo [ORNL] [ORNL; Chen, Wei-Ren [ORNL] [ORNL; Hong, Kunlun [ORNL] [ORNL; Smith, Gregory Scott [ORNL] [ORNL

    2013-01-01

    We have performed both mesoscale simulations and neutron scattering experiments on Pluronic L62, a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer system in aqueous solution. The influence of simulation variables such PEO/PPO block ratio, interaction parameters, and coarse-graining methods is extensively investigated by covering all permutations of parameters found in the literatures. Upon increasing the polymer weight fraction from 50 wt% to 90 wt%, the equilibrium structure of the isotropic, reverse micellar, bicontinuous, worm-like micelle network, and lamellar phases are respectively predicted from the simulation depending on the choices of simulation parameters. Small angle neutron scattering (SANS) measurements show that the same polymer systems exhibit the spherical micellar, lamellar, and reverse micellar phases with the increase of the copolymer concentration at room temperature. Detailed structural analysis and comparison with simulations suggest that one of the simulation parameter sets can provide reasonable agreement with the experimentally observed structures.

  4. Temperature-dependent elastic anisotropy and mesoscale deformation in a nanostructured ferritic alloy

    SciTech Connect (OSTI)

    Stoica, Grigoreta M [ORNL; Stoica, Alexandru Dan [ORNL; Miller, Michael K [ORNL; Ma, Dong [ORNL

    2014-01-01

    Nanostructured ferritic alloys (NFA) are a new class of ultrafine-grained oxide dispersion-strengthened steels, promising for service in extreme environments of high temperature and high irradiation in the next-generation of nuclear reactors. This is owing to the remarkable stability of their complex microstructures containing a high density of Y-Ti-O nanoclusters within grains and along the grain boundaries. While nanoclusters have been recognized to be the primary contributor to the exceptional resistance to irradiation and high-temperature creep, very little is known about the mechanical roles of the polycrystalline grains that constitute the bulk ferritic matrix. Here we report the mesoscale characterization of anisotropic responses of the ultrafine NFA grains to tensile stresses at various temperatures using the state-of-the-art in situ neutron diffraction. We show the first experimental determination of temperature-dependent single-crystal elastic constants for the NFA, and reveal a strong temperature-dependent elastic anisotropy due to a sharp decrease in the shear stiffness constant [c'=(c_11-c_12)/2] when a critical temperature ( T_c ) is approached, indicative of elastic softening and instability of the ferritic matrix. We also show, from anisotropy-induced intergranular strain/stress accumulations, that a common dislocation slip mechanism operates at the onset of yielding for low temperatures, while there is a deformation crossover from low-temperature lattice hardening to high temperature lattice softening in response to extensive plastic deformation.

  5. Measuring kinetic energy changes in the mesoscale with low acquisition rates

    SciTech Connect (OSTI)

    Roldn, .; Martnez, I. A.; Rica, R. A.; Dinis, L.

    2014-06-09

    We report on the measurement of the average kinetic energy changes in isothermal and non-isothermal quasistatic processes in the mesoscale, realized with a Brownian particle trapped with optical tweezers. Our estimation of the kinetic energy change allows to access to the full energetic description of the Brownian particle. Kinetic energy estimates are obtained from measurements of the mean square velocity of the trapped bead sampled at frequencies several orders of magnitude smaller than the momentum relaxation frequency. The velocity is tuned applying a noisy electric field that modulates the amplitude of the fluctuations of the position and velocity of the Brownian particle, whose motion is equivalent to that of a particle in a higher temperature reservoir. Additionally, we show that the dependence of the variance of the time-averaged velocity on the sampling frequency can be used to quantify properties of the electrophoretic mobility of a charged colloid. Our method could be applied to detect temperature gradients in inhomogeneous media and to characterize the complete thermodynamics of biological motors and of artificial micro and nanoscopic heat engines.

  6. Mesoscale Simulations of a Wind Ramping Event for Wind Energy Prediction

    SciTech Connect (OSTI)

    Rhodes, M; Lundquist, J K

    2011-09-21

    Ramping events, or rapid changes of wind speed and wind direction over a short period of time, present challenges to power grid operators in regions with significant penetrations of wind energy in the power grid portfolio. Improved predictions of wind power availability require adequate predictions of the timing of ramping events. For the ramping event investigated here, the Weather Research and Forecasting (WRF) model was run at three horizontal resolutions in 'mesoscale' mode: 8100m, 2700m, and 900m. Two Planetary Boundary Layer (PBL) schemes, the Yonsei University (YSU) and Mellor-Yamada-Janjic (MYJ) schemes, were run at each resolution as well. Simulations were not 'tuned' with nuanced choices of vertical resolution or tuning parameters so that these simulations may be considered 'out-of-the-box' tests of a numerical weather prediction code. Simulations are compared with sodar observations during a wind ramping event at a 'West Coast North America' wind farm. Despite differences in the boundary-layer schemes, no significant differences were observed in the abilities of the schemes to capture the timing of the ramping event. As collaborators have identified, the boundary conditions of these simulations probably dominate the physics of the simulations. They suggest that future investigations into characterization of ramping events employ ensembles of simulations, and that the ensembles include variations of boundary conditions. Furthermore, the failure of these simulations to capture not only the timing of the ramping event but the shape of the wind profile during the ramping event (regardless of its timing) indicates that the set-up and execution of such simulations for wind power forecasting requires skill and tuning of the simulations for a specific site.

  7. Using Mesoscale Weather Model Output as Boundary Conditions for Atmospheric Large-Eddy Simulations and Wind-Plant Aerodynamic Simulations (Presentation)

    SciTech Connect (OSTI)

    Churchfield, M. J.; Michalakes, J.; Vanderwende, B.; Lee, S.; Sprague, M. A.; Lundquist, J. K.; Moriarty, P. J.

    2013-10-01

    Wind plant aerodynamics are directly affected by the microscale weather, which is directly influenced by the mesoscale weather. Microscale weather refers to processes that occur within the atmospheric boundary layer with the largest scales being a few hundred meters to a few kilometers depending on the atmospheric stability of the boundary layer. Mesoscale weather refers to large weather patterns, such as weather fronts, with the largest scales being hundreds of kilometers wide. Sometimes microscale simulations that capture mesoscale-driven variations (changes in wind speed and direction over time or across the spatial extent of a wind plant) are important in wind plant analysis. In this paper, we present our preliminary work in coupling a mesoscale weather model with a microscale atmospheric large-eddy simulation model. The coupling is one-way beginning with the weather model and ending with a computational fluid dynamics solver using the weather model in coarse large-eddy simulation mode as an intermediary. We simulate one hour of daytime moderately convective microscale development driven by the mesoscale data, which are applied as initial and boundary conditions to the microscale domain, at a site in Iowa. We analyze the time and distance necessary for the smallest resolvable microscales to develop.

  8. Design and fabrication of a meso-scale stirling engine and combustor.

    SciTech Connect (OSTI)

    Echekki, Tarek (Sandia National Laboratories, Livermore, CA); Haroldsen, Brent L. (Sandia National Laboratories, Livermore, CA); Krafcik, Karen L. (Sandia National Laboratories, Livermore, CA); Morales, Alfredo Martin; Mills, Bernice E.; Liu, Shiling; Lee, Jeremiah C. (Sandia National Laboratories, Livermore, CA); Karpetis, Adionos N. (Sandia National Laboratories, Livermore, CA); Chen, Jacqueline H. (Sandia National Laboratories, Livermore, CA); Ceremuga, Joseph T. (Sandia National Laboratories, Livermore, CA); Raber, Thomas N.; Hekmuuaty, Michelle A.

    2005-05-01

    Power sources capable of supplying tens of watts are needed for a wide variety of applications including portable electronics, sensors, micro aerial vehicles, and mini-robotics systems. The utility of these devices is often limited by the energy and power density capabilities of batteries. A small combustion engine using liquid hydrocarbon fuel could potentially increase both power and energy density by an order of magnitude or more. This report describes initial development work on a meso-scale external combustion engine based on the Stirling cycle. Although other engine designs perform better at macro-scales, we believe the Stirling engine cycle is better suited to small-scale applications. The ideal Stirling cycle requires efficient heat transfer. Consequently, unlike other thermodynamic cycles, the high heat transfer rates that are inherent with miniature devices are an advantage for the Stirling cycle. Furthermore, since the Stirling engine uses external combustion, the combustor and engine can be scaled and optimized semi-independently. Continuous combustion minimizes issues with flame initiation and propagation. It also allows consideration of a variety of techniques to promote combustion that would be difficult in a miniature internal combustion engine. The project included design and fabrication of both the engine and the combustor. Two engine designs were developed. The first used a cylindrical piston design fabricated with conventional machining processes. The second design, based on the Wankel rotor geometry, was fabricated by through-mold electroforming of nickel in SU8 and LIGA micromolds. These technologies provided the requisite precision and tight tolerances needed for efficient micro-engine operation. Electroformed nickel is ideal for micro-engine applications because of its high strength and ductility. A rotary geometry was chosen because its planar geometry was more compatible with the fabrication process. SU8 lithography provided rapid prototypes to verify the design. A final high precision engine was created via LIGA. The micro-combustor was based on an excess enthalpy concept. Development of a micro-combustor included both modeling and experiments. We developed a suite of simulation tools both in support of the design of the prototype combustors, and to investigate more fundamental aspects of combustion at small scales. Issues of heat management and integration with the micro-scale Stirling engine were pursued using CFD simulations. We found that by choice of the operating conditions and channel dimensions energy conversion occurs by catalysis-dominated or catalysis-then-homogeneous phase combustion. The purpose of the experimental effort in micro-combustion was to study the feasibility and explore the design parameters of excess enthalpy combustors. The efforts were guided by the necessity for a practical device that could be implemented in a miniature power generator, or as a stand-alone device used for heat generation. Several devices were fabricated and successfully tested using methane as the fuel.

  9. Top-down estimate of methane emissions in California using a mesoscale inverse modeling technique: The South Coast Air Basin

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cui, Yu Yan; Brioude, Jerome; McKeen, Stuart A.; Angevine, Wayne M.; Kim, Si -Wan; Frost, Gregory J.; Ahmadov, Ravan; Peischl, Jeff; Bousserez, Nicolas; Liu, Zhen; et al

    2015-07-28

    Methane (CH4) is the primary component of natural gas and has a larger global warming potential than CO2. Some recent top-down studies based on observations showed CH4 emissions in California's South Coast Air Basin (SoCAB) were greater than those expected from population-apportioned bottom-up state inventories. In this study, we quantify CH4 emissions with an advanced mesoscale inverse modeling system at a resolution of 8 km × 8 km, using aircraft measurements in the SoCAB during the 2010 Nexus of Air Quality and Climate Change campaign to constrain the inversion. To simulate atmospheric transport, we use the FLEXible PARTicle-Weather Research andmore » Forecasting (FLEXPART-WRF) Lagrangian particle dispersion model driven by three configurations of the Weather Research and Forecasting (WRF) mesoscale model. We determine surface fluxes of CH4 using a Bayesian least squares method in a four-dimensional inversion. Simulated CH4 concentrations with the posterior emission inventory achieve much better correlations with the measurements (R2 = 0.7) than using the prior inventory (U.S. Environmental Protection Agency's National Emission Inventory 2005, R2 = 0.5). The emission estimates for CH4 in the posterior, 46.3 ± 9.2 Mg CH4/h, are consistent with published observation-based estimates. Changes in the spatial distribution of CH4 emissions in the SoCAB between the prior and posterior inventories are discussed. Missing or underestimated emissions from dairies, the oil/gas system, and landfills in the SoCAB seem to explain the differences between the prior and posterior inventories. Furthermore, we estimate that dairies contributed 5.9 ± 1.7 Mg CH4/h and the two sectors of oil and gas industries (production and downstream) and landfills together contributed 39.6 ± 8.1 Mg CH4/h in the SoCAB.« less

  10. Carbonaceous spheresan unusual template for solid metal oxide mesoscale spheres: Application to ZnO spheres

    SciTech Connect (OSTI)

    Patrinoiu, Greta; Caldern-Moreno, Jose Maria; Culita, Daniela C. [Illie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest (Romania); Birjega, Ruxandra [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box Mg27, Magurele, Bucharest (Romania); Ene, Ramona [Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest (Romania); Carp, Oana, E-mail: ocarp@icf.ro [Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest (Romania)

    2013-06-15

    A green template route for the synthesis of mesoscale solid ZnO spheres was ascertained. The protocol involves a double coating of the carbonaceous spheres with successive layers of zinc-containing species by alternating a non-ultrasound and ultrasound-assisted deposition, followed by calcination treatments. The composites were characterized by FTIR spectroscopy, thermal analysis, scanning electron microscopy while the obtained ZnO spheres by X-ray diffraction, Raman spectroscopy, scanning and transmission electron microscopy, N{sub 2} adsorptiondesorption isotherms and photoluminescence investigations. A growth mechanism of the solid spheres is advanced based on these results. While the spheres' diameters and the mean size values of ZnO are independent on deposition order, the surface area and the external porosity are fairly dependent. The photoluminescence measurements showed interesting emission features, with emission bands in the violet to orange region. The spheres present high photocatalytical activity towards the degradation of phenol under UV irradiation, the main reaction being its mineralization. - Graphical abstract: A novel and eco-friendly methodology for the synthesis of mesoscale solid ZnO spheres was developed. The protocol involves a double coating of the starch-derived carbonaceous spheres with successive layers of zinc-containing species by alternating a non-ultrasound and ultrasound-assisted deposition, followed by calcination treatments. - Highlights: ZnO solid spheres are obtained via a template route using carbonaceous spheres. Two-step coatings of interchangeable order are used as deposition procedure. The coating procedure influences the porosity and surface area. ZnO spheres exhibited interesting visible photoluminescence properties. Solid spheres showed photocatalytical activity in degradation of phenol.

  11. Top-down estimate of methane emissions in California using a mesoscale inverse modeling technique: The South Coast Air Basin

    SciTech Connect (OSTI)

    Cui, Yu Yan; Brioude, Jerome; McKeen, Stuart A.; Angevine, Wayne M.; Kim, Si -Wan; Frost, Gregory J.; Ahmadov, Ravan; Peischl, Jeff; Bousserez, Nicolas; Liu, Zhen; Ryerson, Thomas B.; Wofsy, Steve C.; Santoni, Gregory W.; Kort, Eric A.; Fischer, Marc L.; Trainer, Michael

    2015-07-28

    Methane (CH4) is the primary component of natural gas and has a larger global warming potential than CO2. Some recent top-down studies based on observations showed CH4 emissions in California's South Coast Air Basin (SoCAB) were greater than those expected from population-apportioned bottom-up state inventories. In this study, we quantify CH4 emissions with an advanced mesoscale inverse modeling system at a resolution of 8 km × 8 km, using aircraft measurements in the SoCAB during the 2010 Nexus of Air Quality and Climate Change campaign to constrain the inversion. To simulate atmospheric transport, we use the FLEXible PARTicle-Weather Research and Forecasting (FLEXPART-WRF) Lagrangian particle dispersion model driven by three configurations of the Weather Research and Forecasting (WRF) mesoscale model. We determine surface fluxes of CH4 using a Bayesian least squares method in a four-dimensional inversion. Simulated CH4 concentrations with the posterior emission inventory achieve much better correlations with the measurements (R2 = 0.7) than using the prior inventory (U.S. Environmental Protection Agency's National Emission Inventory 2005, R2 = 0.5). The emission estimates for CH4 in the posterior, 46.3 ± 9.2 Mg CH4/h, are consistent with published observation-based estimates. Changes in the spatial distribution of CH4 emissions in the SoCAB between the prior and posterior inventories are discussed. Missing or underestimated emissions from dairies, the oil/gas system, and landfills in the SoCAB seem to explain the differences between the prior and posterior inventories. Furthermore, we estimate that dairies contributed 5.9 ± 1.7 Mg CH4/h and the two sectors of oil and gas industries (production and downstream) and landfills together contributed 39.6 ± 8.1 Mg CH4/h in the SoCAB.

  12. An analytical coarse-graining method which preserves the free energy, structural correlations, and thermodynamic state of polymer melts from the atomistic to the mesoscale

    SciTech Connect (OSTI)

    McCarty, J.; Clark, A. J.; Copperman, J.; Guenza, M. G.

    2014-05-28

    Structural and thermodynamic consistency of coarse-graining models across multiple length scales is essential for the predictive role of multi-scale modeling and molecular dynamic simulations that use mesoscale descriptions. Our approach is a coarse-grained model based on integral equation theory, which can represent polymer chains at variable levels of chemical details. The model is analytical and depends on molecular and thermodynamic parameters of the system under study, as well as on the direct correlation function in the k ? 0 limit, c{sub 0}. A numerical solution to the PRISM integral equations is used to determine c{sub 0}, by adjusting the value of the effective hard sphere diameter, d{sub HS}, to agree with the predicted equation of state. This single quantity parameterizes the coarse-grained potential, which is used to perform mesoscale simulations that are directly compared with atomistic-level simulations of the same system. We test our coarse-graining formalism by comparing structural correlations, isothermal compressibility, equation of state, Helmholtz and Gibbs free energies, and potential energy and entropy using both united atom and coarse-grained descriptions. We find quantitative agreement between the analytical formalism for the thermodynamic properties, and the results of Molecular Dynamics simulations, independent of the chosen level of representation. In the mesoscale description, the potential energy of the soft-particle interaction becomes a free energy in the coarse-grained coordinates which preserves the excess free energy from an ideal gas across all levels of description. The structural consistency between the united-atom and mesoscale descriptions means the relative entropy between descriptions has been minimized without any variational optimization parameters. The approach is general and applicable to any polymeric system in different thermodynamic conditions.

  13. In Situ Decommissioning Sensor Network, Meso-Scale Test Bed - Phase 3 Fluid Injection Test Summary Report

    SciTech Connect (OSTI)

    Serrato, M. G.

    2013-09-27

    The DOE Office of Environmental management (DOE EM) faces the challenge of decommissioning thousands of excess nuclear facilities, many of which are highly contaminated. A number of these excess facilities are massive and robust concrete structures that are suitable for isolating the contained contamination for hundreds of years, and a permanent decommissioning end state option for these facilities is in situ decommissioning (ISD). The ISD option is feasible for a limited, but meaningfull number of DOE contaminated facilities for which there is substantial incremental environmental, safety, and cost benefits versus alternate actions to demolish and excavate the entire facility and transport the rubble to a radioactive waste landfill. A general description of an ISD project encompasses an entombed facility; in some cases limited to the blow-grade portion of a facility. However, monitoring of the ISD structures is needed to demonstrate that the building retains its structural integrity and the contaminants remain entombed within the grout stabilization matrix. The DOE EM Office of Deactivation and Decommissioning and Facility Engineering (EM-13) Program Goal is to develop a monitoring system to demonstrate long-term performance of closed nuclear facilities using the ISD approach. The Savannah River National Laboratory (SRNL) has designed and implemented the In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) to address the feasibility of deploying a long-term monitoring system into an ISD closed nuclear facility. The ISDSN-MSTB goal is to demonstrate the feasibility of installing and operating a remote sensor network to assess cementitious material durability, moisture-fluid flow through the cementitious material, and resulting transport potential for contaminate mobility in a decommissioned closed nuclear facility. The original ISDSN-MSTB installation and remote sensor network operation was demonstrated in FY 2011-12 at the ISDSN-MSTB test cube located at the Florida International University Applied Research Center, Miami, FL (FIU-ARC). A follow-on fluid injection test was developed to detect fluid and ion migration in a cementitious material/grouted test cube using a limited number of existing embedded sensor systems. This In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) - Phase 3 Fluid Injection Test Summary Report summarizes the test implementation, acquired and processed data, and results from the activated embedded sensor systems used during the fluid injection test. The ISDSN-MSTB Phase 3 Fluid Injection Test was conducted from August 27 through September 6, 2013 at the FIU-ARC ISDSN-MSTB test cube. The fluid injection test activated a portion of the existing embedded sensor systems in the ISDSN-MSTB test cube: Electrical Resistivity Tomography-Thermocouple Sensor Arrays, Advance Tensiometer Sensors, and Fiber Loop Ringdown Optical Sensors. These embedded sensor systems were activated 15 months after initial placement. All sensor systems were remotely operated and data acquisition was completed through the established Sensor Remote Access System (SRAS) hosted on the DOE D&D Knowledge Management Information Tool (D&D DKM-IT) server. The ISDN Phase 3 Fluid Injection Test successfully demonstrated the feasibility of embedding sensor systems to assess moisture-fluid flow and resulting transport potential for contaminate mobility through a cementitious material/grout monolith. The ISDSN embedded sensor systems activated for the fluid injection test highlighted the robustness of the sensor systems and the importance of configuring systems in-depth (i.e., complementary sensors and measurements) to alleviate data acquisition gaps.

  14. An Evaluation of Mesoscale Model Predictions of Down-Valley and Canyon Flows and Their Consequences Using Doppler Lidar Measurements During VTMX 2000

    SciTech Connect (OSTI)

    Fast, Jerome D.; Darby, Lisa S.

    2004-04-01

    A mesoscale model, a Lagrangian particle dispersion model, and extensive Doppler lidar wind measurements during the VTMX 2000 field campaign were used to examine converging flows over the Salt Lake Valley and their effect on vertical mixing of tracers at night and during the morning transition period. The simulated wind components were transformed into radial velocities to make a direct comparison with about 1.3 million Doppler lidar data points and critically evaluate, using correlation coefficients, the spatial variations in the simulated wind fields aloft. The mesoscale model captured reasonably well the general features of the observed circulations including the daytime up-valley flow, the nighttime slope, canyon, and down-valley flows, and the convergence of the flows over the valley. When there were errors in the simulated wind fields, they were usually associated with the timing, structure, or strength of specific flows. Simulated outflows from canyons along the Wasatch Mountains propagated over the valley and converged with the down-valley flow, but the advance and retreat of these simulated flows was often out of phase with the lidar measurements. While the flow reversal during the evening transition period produced rising motions over much of the valley atmosphere in the absence of significant ambient winds, average vertical velocities became close to zero as the down-valley flow developed. Still, vertical velocities between 5 and 15 cm s-1 occurred where down-slope, canyon and down-valley flows converged and vertical velocities greater than 50 cm s-1 were produced by hydraulic jumps at the base of the canyons. The presence of strong ambient winds resulted in smaller average rising motions during the evening transition period and larger average vertical velocities after that. A fraction of the tracer released at the surface was transported up to the height of the surrounding mountains; however, higher concentrations were produced aloft for evenings characterized by well-developed drainage circulations. Simulations with and without vertical motions in the particle model produced large differences in the tracer concentrations at specific locations and times; however, the overall ventilation of the valley atmosphere differed by only 5% or less. Despite the atmospheric stability, turbulence produced by vertical wind shears mixed particles well above the surface stable layer for the particle model simulation without vertical motions.

  15. Implementation and assessment of turbine wake models in the Weather Research and Forecasting model for both mesoscale and large-eddy simulation

    SciTech Connect (OSTI)

    Singer, M; Mirocha, J; Lundquist, J; Cleve, J

    2010-03-03

    Flow dynamics in large wind projects are influenced by the turbines located within. The turbine wakes, regions characterized by lower wind speeds and higher levels of turbulence than the surrounding free stream flow, can extend several rotor diameters downstream, and may meander and widen with increasing distance from the turbine. Turbine wakes can also reduce the power generated by downstream turbines and accelerate fatigue and damage to turbine components. An improved understanding of wake formation and transport within wind parks is essential for maximizing power output and increasing turbine lifespan. Moreover, the influence of wakes from large wind projects on neighboring wind farms, agricultural activities, and local climate are all areas of concern that can likewise be addressed by wake modeling. This work describes the formulation and application of an actuator disk model for studying flow dynamics of both individual turbines and arrays of turbines within wind projects. The actuator disk model is implemented in the Weather Research and Forecasting (WRF) model, which is an open-source atmospheric simulation code applicable to a wide range of scales, from mesoscale to large-eddy simulation. Preliminary results demonstrate the applicability of the actuator disk model within WRF to a moderately high-resolution large-eddy simulation study of a small array of turbines.

  16. Meso-scale cooling effects of high albedo surfaces: Analysis of meteorological data from White Sands National Monument and White Sands Missile Range

    SciTech Connect (OSTI)

    Fishman, B.; Taha, H.; Akbari, H.

    1994-05-20

    Urban summer daytime temperatures often exceed those of the surrounding rural areas. Summer ``urban heat islands`` are caused by dark roofs and paved surfaces as well as the lack of vegetation. Researchers at Lawrence Berkeley Laboratory are interested in studying the effects of increasing the albedo of roof tops and paved surfaces in order to reduce the impacts of summer urban heat islands. Increasing the albedo of urban surfaces may reduce this heat island effect in two ways, directly and indirectly. The direct effect involves reducing surface temperature and, therefore, heat conduction through the building envelope. This effect of surface albedo on surface temperatures is better understood and has been quantified in several studies. The indirect effect is the impact of high albedo surfaces on the near surface air temperatures. Although the indirect effect has been modeled for the Los Angeles basin by Sailor, direct field observations are required. The objective of this report is to investigate the meso-scale climate of a large high albedo area and identify the effects of albedo on the near surface air temperature. To accomplish this task, data from several surface weather stations at White Sands, New Mexico were analyzed. This report is organized into six sections in addition to this introduction. The first gives the general geological, topographic, and meteorological background of White Sands. The second is a discussion of the basic surface meteorology of the White Sands region. This section is followed by a general discussion of the instrumentation and available data. The fourth section is a description of the method used for data analyis. The fifth section which presents the results of this analysis. Finally, the last section is the summary and conclusion, where a discussion of the results is presented.

  17. Use of ARM observations and numerical models to determine radiative and latent heating profiles of mesoscale convective systems for general circulation models

    SciTech Connect (OSTI)

    Houze, Jr., Robert A.

    2013-11-13

    We examined cloud radar data in monsoon climates, using cloud radars at Darwin in the Australian monsoon, on a ship in the Bay of Bengal in the South Asian monsoon, and at Niamey in the West African monsoon. We followed on with a more in-depth study of the continental MCSs over West Africa. We investigated whether the West African anvil clouds connected with squall line MCSs passing over the Niamey ARM site could be simulated in a numerical model by comparing the observed anvil clouds to anvil structures generated by the Weather Research and Forecasting (WRF) mesoscale model at high resolution using six different ice-phase microphysical schemes. We carried out further simulations with a cloud-resolving model forced by sounding network budgets over the Niamey region and over the northern Australian region. We have devoted some of the effort of this project to examining how well satellite data can determine the global breadth of the anvil cloud measurements obtained at the ARM ground sites. We next considered whether satellite data could be objectively analyzed to so that their large global measurement sets can be systematically related to the ARM measurements. Further differences were detailed between the land and ocean MCS anvil clouds by examining the interior structure of the anvils with the satellite-detected the CloudSat Cloud Profiling Radar (CPR). The satellite survey of anvil clouds in the Indo-Pacific region was continued to determine the role of MCSs in producing the cloud pattern associated with the MJO.

  18. Use of ARM observations and numerical models to determine radiative and latent heating profiles of mesoscale convective systems for general circulation models

    SciTech Connect (OSTI)

    Tao, Wei-Kuo; Houze, Robert, A., Jr.; Zeng, Xiping

    2013-03-14

    This three-year project, in cooperation with Professor Bob Houze at University of Washington, has been successfully finished as planned. Both ARM (the Atmospheric Radiation Measurement Program) data and cloud-resolving model (CRM) simulations were used to identify the water budgets of clouds observed in two international field campaigns. The research results achieved shed light on several key processes of clouds in climate change (or general circulation models), which are summarized below. 1. Revealed the effect of mineral dust on mesoscale convective systems (MCSs) Two international field campaigns near a desert and a tropical coast provided unique data to drive and evaluate CRM simulations, which are TWP-ICE (the Tropical Warm Pool International Cloud Experiment) and AMMA (the African Monsoon Multidisciplinary Analysis). Studies of the two campaign data were contrasted, revealing that much mineral dust can bring about large MCSs via ice nucleation and clouds. This result was reported as a PI presentation in the 3rd ASR Science Team meeting held in Arlington, Virginia in March 2012. A paper on the studies was published in the Journal of the Atmospheric Sciences (Zeng et al. 2013). 2. Identified the effect of convective downdrafts on ice crystal concentration Using the large-scale forcing data from TWP-ICE, ARM-SGP (the Southern Great Plains) and other field campaigns, Goddard CRM simulations were carried out in comparison with radar and satellite observations. The comparison between model and observations revealed that convective downdrafts could increase ice crystal concentration by up to three or four orders, which is a key to quantitatively represent the indirect effects of ice nuclei, a kind of aerosol, on clouds and radiation in the Tropics. This result was published in the Journal of the Atmospheric Sciences (Zeng et al. 2011) and summarized in the DOE/ASR Research Highlights Summaries (see http://www.arm.gov/science/highlights/RMjY5/view). 3. Used radar observations to evaluate model simulations In cooperation with Profs. Bob Houze at University of Washington and Steven Rutledge at Colorado State University, numerical model results were evaluated with observations from W- and C-band radars and CloudSat/TRMM satellites. These studies exhibited some shortcomings of current numerical models, such as too little of thin anvil clouds, directing the future improvement of cloud microphysics parameterization in CRMs. Two papers of Powell et al (2012) and Zeng et al. (2013), summarizing these studies, were published in the Journal of the Atmospheric Sciences. 4. Analyzed the water budgets of MCSs Using ARM data from TWP-ICE, ARM-SGP and other field campaigns, the Goddard CRM simulations were carried out to analyze the water budgets of clouds from TWP-ICE and AMMA. The simulations generated a set of datasets on clouds and radiation, which are available http://cloud.gsfc.nasa.gov/. The cloud datasets were available for modelers and other researchers aiming to improve the representation of cloud processes in multi-scale modeling frameworks, GCMs and climate models. Special datasets, such as 3D cloud distributions every six minutes for TWP-ICE, were requested and generated for ARM/ASR investigators. Data server records show that 86,206 datasets were downloaded by 120 users between April of 2010 and January of 2012. 5. MMF simulations The Goddard MMF (multi-scale modeling framework) has been improved by coupling with the Goddard Land Information System (LIS) and the Goddard Earth Observing System Model, Version 5 (GOES5). It has also been optimized on NASA HEC supercomputers and can be run over 4000 CPUs. The improved MMF with high horizontal resolution (1 x 1 degree) is currently being applied to cases covering 2005 and 2006. The results show that the spatial distribution pattern of precipitation rate is well simulated by the MMF through comparisons with satellite retrievals from the CMOPRH and GPCP data sets. In addition, the MMF results were compared with three reanalyses (MERRA, ERA-Interim and CFSR). Although the MMF tends to produce a higher precipitation rate over some topical regions, it actually well captures the variations in the zonal and meridional means. Among the three reanalyses, ERA-Interim seems to have values close to those of the satellite retrievals especially for GPCP. It is interesting to note that the MMF obtained the best results in the rain forest of Africa even better than those of CFSR and ERA-Interim, when compared to CMORPH. MERRA fails to capture the precipitation in this region. We are now collaborating with Steve Rutledge (CSU) to validate the model results for AMMA 6. MC3E and the diurnal variation of precipitation processes The Midlatitude Continental Convective Clouds Experiment (MC3E) was a joint field campaign between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility and the NASA Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. It took place in central Oklahoma during the period April 22 _ June 6, 2011. Some of its major objectives involve the use of CRMs in precipitation science such as: (1) testing the fidelity of CRM simulations via intensive statistical comparisons between simulated and observed cloud properties and latent heating fields for a variety of case types, (2) establishing the limits of CRM space-time integration capabilities for quantitative precipitation estimates, and (3) supporting the development and refinement of physically-based GMI, DPR, and DPR-GMI combined retrieval algorithms using ground-based GPM GV Ku-Ka band radar and CRM simulations. The NASA unified WRF model (nu-WRF) was used for real time forecasts during the field campaign, and ten precipitation events were selected for post mission simulations. These events include well-organized squall lines, scattered storms and quasi-linear storms. A paper focused on the diurnal variation of precipitation will be submitted in September 2012. The major highlights are as follows: a. The results indicate that NU-WRF model could capture observed diurnal variation of rainfall (composite not individual); b. NU-WRF model could simulate two different types (propagating and local type) of the diurnal variation of rainfall; c. NU-WRF model simulation show very good agreement with observation in terms of precipitation pattern (linear MCS), radar reflectivity (a second low peak – shallow convection); d. NU-WRF model simulation indicates that the cool-pool dynamic is the main physical process for MCS propagation speed; e. Surface heat fluxes (including land surface model and initial surface condition) do not play a major role in phase of diurnal variation (change rainfall amount slightly); f. Terrain effect is important for initial stage of MCS (rainfall is increased and close to observation by increasing the terrain height that is also close to observed); g. Diurnal variation of radiation is not important for the simulated variation of rainfall. Publications: Zeng, X., W.-K. Tao, S. Powell, R. Houze, Jr., P. Ciesielski, N. Guy, H. Pierce and T. Matsui, 2012: A comparison of the water budgets between clouds from AMMA and TWP-ICE. J. Atmos. Sci., 70, 487-503. Powell, S. W., R. A. Houze, Jr., A. Kumar, and S. A. McFarlane, 2012: Comparison of simulated and observed continental tropical anvil clouds and their radiative heating profiles. J. Atmos. Sci., 69, 2662-2681. Zeng, X., W.-K. Tao, T. Matsui, S. Xie, S. Lang, M. Zhang, D. Starr, and X. Li, 2011: Estimating the Ice Crystal Enhancement Factor in the Tropics. J. Atmos. Sci., 68, 1424-1434. Conferences: Zeng, X., W.-K. Tao, S. Powell, R. Houze, Jr., P. Ciesielski, N. Guy, H. Pierce and T. Matsui, 2012: Comparison of water budget between AMMA and TWP-ICE clouds. The 3rd Annual ASR Science Team Meeting. Arlington, Virginia, Mar. 12-16, 2012. Zeng, X., W.-K. Tao, S. Powell, R. A. Houze Jr., and P. Ciesielski, 2011: Comparing the water budgets between AMMA and TWP-ICE clouds. Fall 2011 ASR Working Group Meeting. Annapolis, September 12-16, 2011. Zeng, X. et al., 2011: Introducing ice nuclei into turbulence parameterizations in CRMs. Fall 2011 ASR Working Group Meeting. Annapolis, September 12-16, 2011.

  19. DISMANTLING OF THE UPPER RPV COMPONENTS OF THE KARLSRUHE MULTI-PURPOSE RESEARCH REACTOR (MZFR), GERMANY

    SciTech Connect (OSTI)

    Prechtl, E.; Suessdorf, W.

    2003-02-27

    The Multi-purpose Research Reactor was a pressurized-water reactor cooled and moderated with heavy water. It was built from 1961 to 1966 and went critical for the first time on 29 September 1965. After nineteen years of successful operation, the reactor was de-activated on 3 May 1984. The reactor had a thermal output of 200 MW and an electrical output of 50 MW. The MZFR not only served to supply electrical power, but also as a test bed for: - research into various materials for reactor building (e. g. zirkaloy), - the manufacturing and operating industry to gain experience in erection and operation, - training scientific and technical reactor staff, and - power supply (first nuclear combined-heat-and-power system, 1979-1984). The experience gained in operating the MZFR was very helpful for the development and operation of power reactors. At first, safe containment and enclosure of the plant was planned, but then it was decided to dismantle the plant completely, step by step, in view o f the clear advantages of this approach. The decommissioning concept for the complete elimination of the plant down to a green-field site provides for eight steps. A separate decommissioning license is required for each step. As part of the dismantling, about 72,000 Mg [metric tons] of concrete and 7,200 Mg of metal (400 Mg RPV) must be removed. About 700 Mg of concrete (500 Mg biological shield) and 1300 Mg of metal must be classified as radioactive waste.

  20. Deterministic, Nanoscale Fabrication of Mesoscale Objects

    SciTech Connect (OSTI)

    Jr., R M; Shirk, M; Gilmer, G; Rubenchik, A

    2004-09-24

    Neither LLNL nor any other organization has the capability to perform deterministic fabrication of mm-sized objects with arbitrary, {micro}m-sized, 3-dimensional features with 20-nm-scale accuracy and smoothness. This is particularly true for materials such as high explosives and low-density aerogels. For deterministic fabrication of high energy-density physics (HEDP) targets, it will be necessary both to fabricate features in a wide variety of materials as well as to understand and simulate the fabrication process. We continue to investigate, both in experiment and in modeling, the ablation/surface-modification processes that occur with the use of laser pulses that are near the ablation threshold fluence. During the first two years, we studied ablation of metals, and we used sub-ps laser pulses, because pulses shorter than the electron-phonon relaxation time offered the most precise control of the energy that can be deposited into a metal surface. The use of sub-ps laser pulses also allowed a decoupling of the energy-deposition process from the ensuing movement/ablation of the atoms from the solid, which simplified the modeling. We investigated the ablation of material from copper, gold, and nickel substrates. We combined the power of the 1-D hydrocode ''HYADES'' with the state-of-the-art, 3-D molecular dynamics simulations ''MDCASK'' in our studies. For FY04, we have stretched ourselves to investigate laser ablation of carbon, including chemically-assisted processes. We undertook this research, because the energy deposition that is required to perform direct sublimation of carbon is much higher than that to stimulate the reaction 2C + O{sub 2} => 2CO. Thus, extremely fragile carbon aerogels might survive the chemically-assisted process more readily than ablation via direct laser sublimation. We had planned to start by studying vitreous carbon and move onto carbon aerogels. We were able to obtain flat, high-quality vitreous carbon, which was easy to work on, experimentally and relatively easy to model. We were provided with bulk samples of carbon aerogel by Dr. Joe Satcher, but the shop that would have prepared mounted samples for us was overwhelmed by programmatic assignments. We are pursuing aligned carbon nanotubes, provided to us by colleagues at NASA Ames Research Center, as an alternative to aerogels. Dr. Gilmer started modeling the laser/thermally accelerated reactions of carbon with H{sub 2}, rather than O{sub 2}, due to limited information on equation of state for CO. We have extended our molecular dynamics models of ablation to include carbon in the form of graphite, vitreous carbon, and aerogels. The computer code has features that allow control of temperature, absorption of shock waves, and for the ejection of material from the computational cell. We form vitreous carbon atomic configurations by melting graphite in a microcanonical cell at a temperature of about 5000K. Quenching the molten carbon at a controlled rate of cooling yields material with a structure close to that of the vitreous carbon produced in the laboratory. To represent the aerogel, we have a computer code that connects ''graphite'' rods to randomly placed points in the 3-D computational cell. Ablation simulations yield results for vitreous carbon similar to our previous results with copper, usually involving the transient melting of the material above the threshold energy density. However, some fracturing in the solid regions occurs in this case, but was never observed in copper. These simulations are continuing, together with studies of the reaction of hydrogen with vitreous graphite at high temperatures. These reactions are qualitatively similar to that of oxygen with the carbon atoms at the surface, and the simulations should provide insight into the applicability of the use of chemical reactions to shape the surfaces of aerogels.

  1. Mesoscale Modeling Framework Design: Subcontract Report Chen...

    Office of Scientific and Technical Information (OSTI)

    Tang, M; Heo, T W; Wood, B C 36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; 25 ENERGY STORAGE Abstract not provided Lawrence Livermore National Laboratory (LLNL),...

  2. Mesoscale hybrid calibration artifact (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    OSTI Identifier: 1014662 Assignee: Sandia Corporation (Albuquerque, NM) NNSASC Patent ...866,177 Contract Number: AC04-94AL85000 Research Org: Sandia Corporation (Albuquerque, NM

  3. Mesoscale Modeling Framework Design: Subcontract Report (Technical...

    Office of Scientific and Technical Information (OSTI)

    Research Org: Lawrence Livermore National Laboratory (LLNL), Livermore, CA Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 36 MATERIALS ...

  4. Optically Directed Assembly of Continuous Mesoscale Filaments...

    Office of Scientific and Technical Information (OSTI)

    None USDOE United States 2011-02-01 English Journal Article Journal Name: Physical Review Letters; Journal Volume: 106; Journal Issue: 9 Medium: X OSTI ID: 1099937, Legacy ID:...

  5. Silicon Micromachined Dimensional Calibration Artifact for Mesoscale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vision grid artifacts have accuracy on the order of 1 micrometer. State-of-the-art grid artifacts are made by patterning chrome on glass. The thin layer of chrome...

  6. Info-Gap Analysis of Truncation Errors in Numerical Simulations...

    Office of Scientific and Technical Information (OSTI)

    Title: Info-Gap Analysis of Truncation Errors in Numerical Simulations. Authors: Kamm, James R. ; Witkowski, Walter R. ; Rider, William J. ; Trucano, Timothy Guy ; Ben-Haim, Yakov. ...

  7. Info-Gap Analysis of the Numerical Uncertainty Associated with...

    Office of Scientific and Technical Information (OSTI)

    Abstract not provided. Authors: Kamm, James R ; Rider, William J. ; Witkowski, Walter R. ; Trucano, Timothy Guy ; Ben-Haim, Yakov Publication Date: 2012-03-01 OSTI Identifier: ...

  8. Info-Gap Analysis of Numerical Truncation Errors. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Title: Info-Gap Analysis of Numerical Truncation Errors. Authors: Kamm, James R. ; Witkowski, Walter R. ; Rider, William J. ; Trucano, Timothy Guy ; Ben-Haim, Yakov. Publication ...

  9. Quanta to the Continuum: Opportunities for Mesoscale Science...

    Office of Scientific and Technical Information (OSTI)

    APA Chicago Bibtex Export Metadata Endnote Excel CSV XML Save to My Library Send to Email Send to Email Email address: Content: Close Send Cite: MLA Format Close Cite: APA ...

  10. Quanta to the Continuum: Opportunities for Mesoscale Science...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Conference: Korean Institute for Basic Science seminar ; 2012-09-07 - 2012-09-07 ; Seoul, Korea, South Research Org: Los Alamos National Laboratory (LANL) ...

  11. Meso-scale controlled motion for a microfluidic drop ejector...

    Office of Scientific and Technical Information (OSTI)

    drops at 10 ms, (2) packaging--a compact ejector package based on a modified EMDIP (Electro-Microfluidic Dual In-line Package--SAND2002-1941) was fabricated, and (3) a vision...

  12. MESOSCALE BIOTRANSFORMATIONS OF URANIUM IN SEDIMENTS AND SOILS...

    Office of Scientific and Technical Information (OSTI)

    2 can occur even under reducing (methanogenic) conditions sustained by continuous infusion of lactate. The biogeochemical processes underlying this finding need to be...

  13. Mesoscale simulations of particulate flows with parallel distributed...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Journal Name: Computers and Fluids, vol. 48, no. 1, March 22, 2011, pp. ... States Language: English Subject: 71 CLASSICAL AND QUANTUMM MECHANICS, GENERAL PHYSICS

  14. Mesoscale simulations of particulate flows with parallel distributed...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Journal Name: Computers and Fluids, vol. 48, no. 1, March 22, 2011, pp. ... Language: English Subject: 71 CLASSICAL AND QUANTUMM MECHANICS, GENERAL PHYSICS Word Cloud ...

  15. LDRD final report : mesoscale modeling of dynamic loading of...

    Office of Scientific and Technical Information (OSTI)

    This report summarizes work performed as part of an LDRD effort (FY11 to FY13; project number 151364) to meet these needs. Authors: Robbins, Joshua ; Dingreville, Remi Philippe ...

  16. Unusual lithiation and fracture behavior of silicon mesoscale...

    Office of Scientific and Technical Information (OSTI)

    (LLNL), Livermore, CA Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 30 DIRECT ENERGY CONVERSION; 36 MATERIALS SCIENCE; 75 CONDENSED MATTER

  17. Precipitation characteristics of CAM5 physics at mesoscale resolution...

    Office of Scientific and Technical Information (OSTI)

    has recently been implemented in the Weather Research and Forecasting (WRF) model to ... The ETS is a contingency table based met- ric comparing ''the number of correct forecasts ...

  18. Mesoscale modeling of intergranular bubble percolation in nuclear fuels

    SciTech Connect (OSTI)

    Millett, Paul C.; Tonks, Michael; Biner, S. B.

    2012-04-15

    Phase-field simulations are used to examine the variability of intergranular fission gas bubble growth and percolation on uranium dioxide grain boundaries on a mesoscopic length scale. Three key parameters are systematically varied in this study: the contact angle (or dihedral angle) defining the bubble shape, the initial bubble density on the grain boundary plane, and the ratio of the gas diffusivity on the grain boundary versus the grain interiors. The simulation results agree well with previous experimental data obtained for bubble densities and average bubble areas during coalescence events. Interestingly, the rate of percolation is found to be highly variable, with a large dependency on the contact angle and the initial bubble density and little-to-no dependency on the grain boundary gas diffusivity.

  19. MESOSCALE MODELING OF INTERGRANULAR BUBBLE PERCOLATION IN NUCLEAR FUELS

    SciTech Connect (OSTI)

    Paul C. Millett; Michael Tonks; S. B. Biner

    2012-04-01

    Phase-field simulations are used to examine the variability of intergranular fission gas bubble growth and percolation on uranium dioxide grain boundaries on a mesoscopic length scale. Three key parameters are systematically varied in this study: the contact angle (or dihedral angle) defining the bubble shape, the initial bubble density on the grain boundary plane, and the ratio of the gas diffusivity on the grain boundary versus the grain interiors. The simulation results agree well with previous experimental data obtained for bubble densities and average bubble areas during coalescence events. Interestingly, the rate of percolation is found to be highly variable, with a large dependency on the contact angle and the initial bubble density, and little-to-no dependency on the grain boundary gas diffusivity.

  20. Precipitation characteristics of CAM5 physics at mesoscale resolution...

    Office of Scientific and Technical Information (OSTI)

    during the Midlatitude Continental Convective Clouds ... behavior at 32 km grid spacing to better ... ISSN 1942-2466 Publisher: American Geophysical Union (AGU) ...

  1. LDRD final report : mesoscale modeling of dynamic loading of...

    Office of Scientific and Technical Information (OSTI)

    Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  2. Mesoscale Simulations of Particulate Flows with Parallel Distributed

    Office of Scientific and Technical Information (OSTI)

    Distributed Lagrange Multiplier Technique Kanarska, Y 71 CLASSICAL AND QUANTUMM MECHANICS, GENERAL PHYSICS; ACCURACY; CONVERGENCE; FLUID FLOW; IMPLEMENTATION; MODIFICATIONS;...

  3. Soft X-ray techniques to study mesoscale magnetism

    SciTech Connect (OSTI)

    Kortright, Jeffrey B.

    2003-06-26

    Heterogeneity in magnetization (M) is ubiquitous in modern systems. Even in nominally homogeneous materials, domains or pinning centers typically mediate magnetization reversal. Fundamental lengths determining M structure include the domain wall width and the exchange stiffness length, typically in the 4-400 nm range. Chemical heterogeneity (phase separation, polycrystalline microstructure, lithographic or other patterning, etc.) with length scales from nanometers to microns is often introduced to influence magnetic properties. With 1-2 nm wavelengths {lambda}, soft x-rays in principle can resolve structure down to {lambda}/2, and are well suited to study these mesoscopic length scales [1, 2]. This article highlights recent advances in resonant soft x-ray methods to resolve lateral magnetic structure [3], and discusses some of their relative merits and limitations. Only techniques detecting x-ray photons (rather than photo-electrons) are considered [4], since they are compatible with strong applied fields to probe relatively deeply into samples. The magneto-optical (MO) effects discovered by Faraday and Kerr were observed in the x-ray range over a century later, first at ''hard'' wavelengths in diffraction experiments probing interatomic magnetic structure [5]. In the soft x-ray range, magnetic linear [6] and circular [7] dichroism spectroscopies first developed that average over lateral magnetic structure. These large resonant MO effects enable different approaches to study magnetic structure or heterogeneity that can be categorized as microscopy or scattering [1]. Direct images of magnetic structure result from photo-emission electron microscopes [4, 8] and zone-plate microscopes [9, 10]. Scattering techniques extended into the soft x-ray include familiar specular reflection that laterally averages over structure but can provide depth-resolved information, and diffuse scattering and diffraction that provide direct information about lateral magnetic structure. Scattering techniques are further classified as partially for fully coherent according to the extent of transverse coherence of the incident beam.

  4. Upscaling Calcite Growth Rates From the Mesoscale to the Macroscale

    SciTech Connect (OSTI)

    Bracco, Jacquelyn N [ORNL; Stack, Andrew G [ORNL; Steefel, Carl I [Lawrence Berkeley National Laboratory (LBNL)

    2013-01-01

    Quantitative prediction of mineral reaction rates in the subsurface remains a daunting task partly because a key parameter for macroscopic models, the reactive site density, is poorly constrained. Here we report atomic force microscopy (AFM) measurements on the calcite surface of monomolecular step densities, treated as equivalent to the reactive site density, as a function of aqueous calcium-to-carbonate ratio and saturation index. Data for the obtuse step orientation are combined with existing step velocity measurements to generate a model that predicts overall macroscopic calcite growth rates. The model is quantitatively consistent with several published macroscopic rates under a range of alkaline solution conditions, particularly for two of the most comprehensive data sets without the need for additional fit parameters. The model reproduces peak growth rates and its functional form is simple enough to be incorporated into reactive transport or other macroscopic models designed for predictions in porous media. However, it currently cannot model equilibrium, pH effects, and may overestimate rates at high aqueous calcium-to-carbonate ratios. The discrepancies in rates at high calcium-to-carbonate ratios may be due to differences in pre-treatment, such as exposing the seed material to SI 1.0 to generate/develop growth hillocks, or other factors.

  5. Dynamic mesoscale model of dipolar fluids via fluctuating hydrodynamics

    SciTech Connect (OSTI)

    Persson, Rasmus A. X.; Chu, Jhih-Wei, E-mail: jwchu@nctu.edu.tw [Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Voulgarakis, Nikolaos K. [Department of Mathematics, Washington State University, Richland, Washington 99372 (United States)

    2014-11-07

    Fluctuating hydrodynamics (FHD) is a general framework of mesoscopic modeling and simulation based on conservational laws and constitutive equations of linear and nonlinear responses. However, explicit representation of electrical forces in FHD has yet to appear. In this work, we devised an Ansatz for the dynamics of dipole moment densities that is linked with the Poisson equation of the electrical potential ? in coupling to the other equations of FHD. The resulting ?-FHD equations then serve as a platform for integrating the essential forces, including electrostatics in addition to hydrodynamics, pressure-volume equation of state, surface tension, and solvent-particle interactions that govern the emergent behaviors of molecular systems at an intermediate scale. This unique merit of ?-FHD is illustrated by showing that the water dielectric function and ion hydration free energies in homogeneous and heterogenous systems can be captured accurately via the mesoscopic simulation. Furthermore, we show that the field variables of ?-FHD can be mapped from the trajectory of an all-atom molecular dynamics simulation such that model development and parametrization can be based on the information obtained at a finer-grained scale. With the aforementioned multiscale capabilities and a spatial resolution as high as 5 , the ?-FHD equations represent a useful semi-explicit solvent model for the modeling and simulation of complex systems, such as biomolecular machines and nanofluidics.

  6. Coherent neutron scattering and collective dynamics on mesoscale

    SciTech Connect (OSTI)

    Novikov, Vladimir [ORNL; Schweizer, Kenneth S [ORNL; Sokolov, Alexei P [ORNL

    2013-01-01

    By combining, and modestly extending, a variety of theoretical concepts for the dynamics of liquids in the supercooled regime, we formulate a simple analytic model for the temperature and wavevector dependent collective density fluctuation relaxation time that is measurable using coherent dynamic neutron scattering. Comparison with experiments on the ionic glass-forming liquid Ca K NO3 in the lightly supercooled regime suggests the model captures the key physics in both the local cage and mesoscopic regimes, including the unusual wavevector dependence of the collective structural relaxation time. The model is consistent with the idea that the decoupling between diffusion and viscosity is reflected in a different temperature dependence of the collective relaxation time at intermediate wavevectors and near the main (cage) peak of the static structure factor. More generally, our analysis provides support for the ideas that decoupling information and growing dynamic length scales can be at least qualitatively deduced by analyzing the collective relaxation time as a function of temperature and wavevector, and that there is a strong link between dynamic heterogeneity phenomena at the single and many particle level. Though very simple, the model can be applied to other systems, such as molecular liquids.

  7. Computational Modeling of Heterogeneous Reactive Materials at the Mesoscale

    SciTech Connect (OSTI)

    BAER, MARVIN R.

    1999-09-22

    The mesoscopic processes of consolidation, deformation and reaction of shocked porous energetic materials are studied using shock physics analysis of impact on a collection of discrete ''crystals.'' Highly resolved three-dimensional CTH simulations indicate that rapid deformation occurs at material contact points causing large amplitude fluctuations of stress states with wavelengths of the order of several particle diameters. Localization of energy produces ''hot-spots'' due to shock focusing and plastic work near internal boundaries as material flows into interstitial regions. Numerical experiments indicate that ''hot-spots'' are strongly influenced by multiple crystal interactions. Chemical reaction processes also produce multiple wave structures associated with particle distribution effects. This study provides new insights into the micromechanical behavior of heterogeneous energetic materials strongly suggesting that initiation and sustained reaction of shocked heterogeneous materials involves states distinctly different from single jump state descriptions.

  8. Posters Mesoscale Simulations of Convective Systems with Data...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for wind components, vertical velocity, pressure perturbation, temperature, water vapor, ground temperature, and microphysical water and ice content variables. It has B-grid...

  9. From Quanta to the Continuum: Opportunities for Mesoscale Science...

    Office of Scientific and Technical Information (OSTI)

    Alamos, NM (United States) Univ. of California, Berkeley, CA (United States) MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States) Univ. of Minnesota,...

  10. Poster Sessions J. Dudhia Mesoscale and Microscale Meteorology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    used for data assimilation here will be the nudging method (Stauffer and Seaman 1990, Kuo and Guo 1989). Specifically, observational nudging where data at observational sites...

  11. Analysis of Mesoscale Model Data for Wind Integration (Poster)

    SciTech Connect (OSTI)

    Schwartz, M.; Elliott, D.; Lew, D.; Corbus, D.; Scott, G.; Haymes, S.; Wan, Y. H.

    2009-05-01

    Supports examination of implications of national 20% wind vision, and provides input to integration and transmission studies for operational impact of large penetrations of wind on the grid.

  12. STATISTICAL MECHANICS MODELING OF MESOSCALE DEFORMATION IN METALS...

    Office of Scientific and Technical Information (OSTI)

    in deformed crystals. 2) Formulating kinetic equations of dislocations and coupling ... the results from this investigation to complete the kinetic description of dislocations. ...

  13. STATISTICAL MECHANICS MODELING OF MESOSCALE DEFORMATION IN METALS...

    Office of Scientific and Technical Information (OSTI)

    These aspects of crystal deformation are manifestations of the evolution of the underlying ... When used to predict the evolution of the dislocation system, the planar motion of ...

  14. Mesoscale Simulations of Particulate Flows with Parallel Distributed...

    Office of Scientific and Technical Information (OSTI)

    Visit OSTI to utilize additional information resources in energy science and technology. A ... We propose a computational technique based on the direct numerical simulation of the ...

  15. From Quanta to the Continuum: Opportunities for Mesoscale Science...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 74 ATOMIC AND MOLECULAR PHYSICS; 36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; 97 MATHEMATICS AND COMPUTING Word Cloud More Like This Full ...

  16. SURF003495 DOEIALl62350-48F

    Office of Legacy Management (LM)

    ... 0 mglkg reported in beets and 9 0 0 0 mglkg in radishes (Kamm et al., 1965; Smith, 1966). ... Name Contribution B. Malczewska-Toth L. Flowers C. Day K. Smith A. Groffrnan D. Tarbox R. ...

  17. Experimental measurement of stress at a four-domain junction...

    Office of Scientific and Technical Information (OSTI)

    Petersenstrasse 23, D-64287 Darmstadt (Germany) (IKM), Universitaet Karlsruhe (Thailand), D-76131 Karlsruhe (Germany) Publication Date: 2005-05-01 OSTI Identifier: ...

  18. Microstructure and mesh sensitivities of mesoscale surrogate driving force measures for transgranular fatigue cracks in polycrystals

    SciTech Connect (OSTI)

    Castelluccio, Gustavo M.; McDowell, David L.

    2015-05-22

    The number of cycles required to form and grow microstructurally small fatigue cracks in metals exhibits substantial variability, particularly for low applied strain amplitudes. This variability is commonly attributed to the heterogeneity of cyclic plastic deformation within the microstructure, and presents a challenge to minimum life design of fatigue resistant components. Our paper analyzes sources of variability that contribute to the driving force of transgranular fatigue cracks within nucleant grains. We also employ crystal plasticity finite element simulations that explicitly render the polycrystalline microstructure and Fatigue Indicator Parameters (FIPs) averaged over different volume sizes and shapes relative to the anticipated fatigue damage process zone. Volume averaging is necessary to both achieve description of a finite fatigue damage process zone and to regularize mesh dependence in simulations. Furthermore, results from constant amplitude remote applied straining are characterized in terms of the extreme value distributions of volume averaged FIPs. Grain averaged FIP values effectively mitigate mesh sensitivity, but they smear out variability within grains. Furthermore, volume averaging over bands that encompass critical transgranular slip planes appear to present the most attractive approach to mitigate mesh sensitivity while preserving variability within grains.

  19. Lipid-Based Nanodiscs as Models for Studying Mesoscale Coalescence A Transport Limited Case

    SciTech Connect (OSTI)

    Hu, Andrew; Fan, Tai-Hsi; Katsaras, John; Xia, Yan; Li, Ming; Nieh, Mu-Ping

    2014-01-01

    Lipid-based nanodiscs (bicelles) are able to form in mixtures of long- and short-chain lipids. Initially, they are of uniform size but grow upon dilution. Previously, nanodisc growth kinetics have been studied using time-resolved small angle neutron scattering (SANS), a technique which is not well suited for probing their change in size immediately after dilution. To address this, we have used dynamic light scattering (DLS), a technique which permits the collection of useful data in a short span of time after dilution of the system. The DLS data indicate that the negatively charged lipids in nanodiscs play a significant role in disc stability and growth. Specifically, the charged lipids are most likely drawn out from the nanodiscs into solution, thereby reducing interparticle repulsion and enabling the discs to grow. We describe a population balance model, which takes into account Coulombic interactions and adequately predicts the initial growth of nanodiscs with a single parameter i.e., surface potential. The results presented here strongly support the notion that the disc coalescence rate strongly depends on nanoparticle charge density. The present system containing low-polydispersity lipid nanodiscs serves as a good model for understanding how charged discoidal micelles coalesce.

  20. Electric-field-induced local and mesoscale structural changes in polycrystalline dielectrics and ferroelectrics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Usher, Tedi -Marie; Levin, Igor; Daniels, John E.; Jones, Jacob L.

    2015-10-01

    In this study, the atomic-scale response of dielectrics/ferroelectrics to electric fields is central to their functionality. Here we introduce an in situ characterization method that reveals changes in the local atomic structure in polycrystalline materials under fields. The method employs atomic pair distribution functions (PDFs), determined from X-ray total scattering that depends on orientation relative to the applied field, to probe structural changes over length scales from sub-Ångstrom to several nanometres. The PDF is sensitive to local ionic displacements and their short-range order, a key uniqueness relative to other techniques. The method is applied to representative ferroelectrics, BaTiO3 and Na½Bi½TiO3,more » and dielectric SrTiO3. For Na½Bi½TiO3, the results reveal an abrupt field-induced monoclinic to rhombohedral phase transition, accompanied by ordering of the local Bi displacements and reorientation of the nanoscale ferroelectric domains. For BaTiO3 and SrTiO3, the local/nanoscale structural changes observed in the PDFs are dominated by piezoelectric lattice strain and ionic polarizability, respectively.« less

  1. North Pacific Mesoscale Coupled Air-Ocean Simulations Compared with Observations

    SciTech Connect (OSTI)

    Koracin, Darko; Cerovecki, Ivana; Vellore, Ramesh; Mejia, John; Hatchett, Benjamin; McCord, Travis; McLean, Julie; Dorman, Clive

    2013-04-11

    Executive summary The main objective of the study was to investigate atmospheric and ocean interaction processes in the western Pacific and, in particular, effects of significant ocean heat loss in the Kuroshio and Kuroshio Extension regions on the lower and upper atmosphere. It is yet to be determined how significant are these processes are on climate scales. The understanding of these processes led us also to development of the methodology of coupling the Weather and Research Forecasting model with the Parallel Ocean Program model for western Pacific regional weather and climate simulations. We tested NCAR-developed research software Coupler 7 for coupling of the WRF and POP models and assessed its usability for regional-scale applications. We completed test simulations using the Coupler 7 framework, but implemented a standard WRF model code with options for both one- and two-way mode coupling. This type of coupling will allow us to seamlessly incorporate new WRF updates and versions in the future. We also performed a long-term WRF simulation (15 years) covering the entire North Pacific as well as high-resolution simulations of a case study which included extreme ocean heat losses in the Kuroshio and Kuroshio Extension regions. Since the extreme ocean heat loss occurs during winter cold air outbreaks (CAO), we simulated and analyzed a case study of a severe CAO event in January 2000 in detail. We found that the ocean heat loss induced by CAOs is amplified by additional advection from mesocyclones forming on the southern part of the Japan Sea. Large scale synoptic patterns with anomalously strong anticyclone over Siberia and Mongolia, deep Aleutian Low, and the Pacific subtropical ridge are a crucial setup for the CAO. It was found that the onset of the CAO is related to the breaking of atmospheric Rossby waves and vertical transport of vorticity that facilitates meridional advection. The study also indicates that intrinsic parameterization of the surface fluxes within the WRF model needs more evaluation and analysis.

  2. Modeling Hot-Spot Contributions in Shocked High Explosives at the Mesoscale

    SciTech Connect (OSTI)

    Harrier, Danielle

    2015-08-12

    When looking at performance of high explosives, the defects within the explosive become very important. Plastic bonded explosives, or PBXs, contain voids of air and bonder between the particles of explosive material that aid in the ignition of the explosive. These voids collapse in high pressure shock conditions, which leads to the formation of hot spots. Hot spots are localized high temperature and high pressure regions that cause significant changes in the way the explosive material detonates. Previously hot spots have been overlooked with modeling, but now scientists are realizing their importance and new modeling systems that can accurately model hot spots are underway.

  3. Spatial organization and correlation properties quantify structural changes on mesoscale of parenchymatous plant tissue

    SciTech Connect (OSTI)

    Valous, N. A.; Delgado, A.; Sun, D.-W.; Drakakis, K.

    2014-02-14

    The study of plant tissue parenchyma's intercellular air spaces contributes to the understanding of anatomy and physiology. This is challenging due to difficulty in making direct measurements of the pore space and the complex mosaic of parenchymatous tissue. The architectural complexity of pore space has shown that single geometrical measurements are not sufficient for characterization. The inhomogeneity of distribution depends not only on the percentage content of phase, but also on how the phase fills the space. The lacunarity morphometric, as multiscale measure, provides information about the distribution of gaps that correspond to degree of spatial organization in parenchyma. Additionally, modern theories have suggested strategies, where the focus has shifted from the study of averages and histograms to the study of patterns in data fluctuations. Detrended fluctuation analysis provides information on the correlation properties of the parenchyma at different spatial scales. The aim is to quantify (with the aid of the aforementioned metrics), the mesostructural changes—that occur from one cycle of freezing and thawing—in the void phase of pome fruit parenchymatous tissue, acquired with X-ray microcomputed tomography. Complex systems methods provide numerical indices and detailed insights regarding the freezing-induced modifications upon the arrangement of cells and voids. These structural changes have the potential to lead to physiological disorders. The work can further stimulate interest for the analysis of internal plant tissue structures coupled with other physico-chemical processes or phenomena.

  4. Microstructure and mesh sensitivities of mesoscale surrogate driving force measures for transgranular fatigue cracks in polycrystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Castelluccio, Gustavo M.; McDowell, David L.

    2015-05-22

    The number of cycles required to form and grow microstructurally small fatigue cracks in metals exhibits substantial variability, particularly for low applied strain amplitudes. This variability is commonly attributed to the heterogeneity of cyclic plastic deformation within the microstructure, and presents a challenge to minimum life design of fatigue resistant components. Our paper analyzes sources of variability that contribute to the driving force of transgranular fatigue cracks within nucleant grains. We also employ crystal plasticity finite element simulations that explicitly render the polycrystalline microstructure and Fatigue Indicator Parameters (FIPs) averaged over different volume sizes and shapes relative to the anticipatedmore » fatigue damage process zone. Volume averaging is necessary to both achieve description of a finite fatigue damage process zone and to regularize mesh dependence in simulations. Furthermore, results from constant amplitude remote applied straining are characterized in terms of the extreme value distributions of volume averaged FIPs. Grain averaged FIP values effectively mitigate mesh sensitivity, but they smear out variability within grains. Furthermore, volume averaging over bands that encompass critical transgranular slip planes appear to present the most attractive approach to mitigate mesh sensitivity while preserving variability within grains.« less

  5. Mesoscale Phase-Field Modeling of Charge Transport in Nanocomposite Electrodes for Lithium-ion Batteries

    SciTech Connect (OSTI)

    Hu, Shenyang Y.; Li, Yulan; Rosso, Kevin M.; Sushko, Maria L.

    2013-01-10

    A phase-field model is developed to investigate the influence of microstructure, thermodynamic and kinetic properties, and charging conditions on charged particle transport in nanocomposite electrodes. Two sets of field variables are used to describe the microstructure. One is comprised of the order parameters describing size, orientation and spatial distributions of nanoparticles, and the other is comprised of the concentrations of mobile species. A porous nanoparticle microstructure filled with electrolyte is taken as a model system to test the phase-field model. Inhomogeneous and anisotropic dielectric constants and mobilities of charged particles, and stresses associated with lattice deformation due to Li-ion insertion/extraction are considered in the model. Iteration methods are used to find the elastic and electric fields in an elastically and electrically inhomogeneous medium. The results demonstrate that the model is capable of predicting charge separation associated with the formation of a double layer at the electrochemical interface between solid and electrolyte, and the effect of microstructure, inhomogeneous and anisotropic thermodynamic and kinetic properties, charge rates, and stresses on voltage versus current density and capacity during charging and discharging.

  6. Electric-field-induced local and mesoscale structural changes in polycrystalline dielectrics and ferroelectrics

    SciTech Connect (OSTI)

    Usher, Tedi -Marie; Levin, Igor; Daniels, John E.; Jones, Jacob L.

    2015-10-01

    In this study, the atomic-scale response of dielectrics/ferroelectrics to electric fields is central to their functionality. Here we introduce an in situ characterization method that reveals changes in the local atomic structure in polycrystalline materials under fields. The method employs atomic pair distribution functions (PDFs), determined from X-ray total scattering that depends on orientation relative to the applied field, to probe structural changes over length scales from sub-Ångstrom to several nanometres. The PDF is sensitive to local ionic displacements and their short-range order, a key uniqueness relative to other techniques. The method is applied to representative ferroelectrics, BaTiO3 and Na½Bi½TiO3, and dielectric SrTiO3. For Na½Bi½TiO3, the results reveal an abrupt field-induced monoclinic to rhombohedral phase transition, accompanied by ordering of the local Bi displacements and reorientation of the nanoscale ferroelectric domains. For BaTiO3 and SrTiO3, the local/nanoscale structural changes observed in the PDFs are dominated by piezoelectric lattice strain and ionic polarizability, respectively.

  7. Sorption Phase of Supercritical CO2 in Silica Aerogel: Experiments and Mesoscale Computer Simulations

    SciTech Connect (OSTI)

    Rother, Gernot [ORNL; Vlcek, Lukas [ORNL; Gruszkiewicz, Miroslaw {Mirek} S [ORNL; Chialvo, Ariel A [ORNL; Anovitz, Lawrence {Larry} M [ORNL; Banuelos, Jose Leo [ORNL; Wallacher, Dirk [Helmholtz-Zentrum Berlin; Grimm, Nico [Helmholtz-Zentrum Berlin; Cole, David [Ohio State University

    2014-01-01

    Adsorption of supercritical CO2 in nanoporous silica aerogel was investigated by a combination of experiments and molecular-level computer modeling. High-pressure gravimetric and vibrating tube densimetry techniques were used to measure the mean pore fluid density and excess sorption at 35 C and 50 C and pressures of 0-200 bar. Densification of the pore fluid was observed at bulk fluid densities below 0.7 g/cm3. Far above the bulk fluid density, near-zero sorption or weak depletion effects were measured, while broad excess sorption maxima form in the vicinity of the bulk critical density region. The CO2 sorption properties are very similar for two aerogels with different bulk densities of 0.1 g/cm3 and 0.2 g/cm3, respectively. The spatial distribution of the confined supercritical fluid was analyzed in terms of sorption- and bulk-phase densities by means of the Adsorbed Phase Model (APM), which used data from gravimetric sorption and small-angle neutron scattering experiments. To gain more detailed insight into supercritical fluid sorption, large-scale lattice gas GCMC simulations were utilized and tuned to resemble the experimental excess sorption data. The computed three-dimensional pore fluid density distributions show that the observed maximum of the excess sorption near the critical density originates from large density fluctuations pinned to the pore walls. At this maximum, the size of these fluctuations is comparable to the prevailing pore sizes.

  8. Microstructure and Mesh Sensitivities of Mesoscale Surrogate Driving Force Measures for Transgranular Fatigue Cracks in Polycrystals

    SciTech Connect (OSTI)

    Castelluccio, Gustavo M.; McDowell, David L.

    2015-05-22

    The number of cycles required to form and grow microstructurally small fatigue cracks in metals exhibits substantial variability, particularly for low applied strain amplitudes. This variability is commonly attributed to the heterogeneity of cyclic plastic deformation within the microstructure, and presents a challenge to minimum life design of fatigue resistant components. Our paper analyzes sources of variability that contribute to the driving force of transgranular fatigue cracks within nucleant grains. We also employ crystal plasticity finite element simulations that explicitly render the polycrystalline microstructure and Fatigue Indicator Parameters (FIPs) averaged over different volume sizes and shapes relative to the anticipated fatigue damage process zone. Volume averaging is necessary to both achieve description of a finite fatigue damage process zone and to regularize mesh dependence in simulations. Furthermore, results from constant amplitude remote applied straining are characterized in terms of the extreme value distributions of volume averaged FIPs. Grain averaged FIP values effectively mitigate mesh sensitivity, but they smear out variability within grains. Volume averaging over bands that encompass critical transgranular slip planes appear to present the most attractive approach to mitigate mesh sensitivity while preserving variability within grains.

  9. THE SIMULATION OF FINE SCALE NOCTURNAL BOUNDARY LAYER MOTIONS WITH A MESO-SCALE ATMOSPHERIC MODEL

    SciTech Connect (OSTI)

    Werth, D.; Kurzeja, R.; Parker, M.

    2009-04-02

    A field project over the Atmospheric Radiation Measurement-Clouds and Radiation Testbed (ARM-CART) site during a period of several nights in September, 2007 was conducted to explore the evolution of the low-level jet (LLJ). Data was collected from a tower and a sodar and analyzed for turbulent behavior. To study the full range of nocturnal boundary layer (NBL) behavior, the Regional Atmospheric Modeling System (RAMS) was used to simulate the ARM-CART NBL field experiment and validated against the data collected from the site. This model was run at high resolution, and is ideal for calculating the interactions among the various motions within the boundary layer and their influence on the surface. The model reproduces adequately the synoptic situation and the formation and dissolution cycles of the low-level jet, although it suffers from insufficient cloud production and excessive nocturnal cooling. The authors suggest that observed heat flux data may further improve the realism of the simulations both in the cloud formation and in the jet characteristics. In a higher resolution simulation, the NBL experiences motion on a range of timescales as revealed by a wavelet analysis, and these are affected by the presence of the LLJ. The model can therefore be used to provide information on activity throughout the depth of the NBL.

  10. Center for Mesoscale Transport Properties (m2M) | U.S. DOE Office...

    Office of Science (SC) Website

    Research Topics energy storage (including batteries and capacitors), charge transport, mesostructured materials Materials Studied Materials: metal, oxide Interfaces: organic...

  11. Microsoft PowerPoint - 090326_stm_poster_IWV.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DIAL, U. Hohenheim Rotational Raman Lidar, U. Hohenheim Cloud Radar, U. KarlsruheFZK Doppler Lidar, U. KarlsruheFZK ( g) * FZK cloud radar (45 scan) * UHOH X-Band...

  12. Soft X-Ray Lithography for High-Aspect Ratio Sub-Micrometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Karlsruhe Institute of Technology, Karlsruhe as part of a DARPA funded project 14,15. ... India, August 22-25, 2009, 212-216. 14 DARPA-MTO Grant: Hi-MEMS Processing, PI: J. ...

  13. Precipitation characteristics of CAM5 physics at mesoscale resolution during MC3E and the impact of convective timescale choice

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gustafson, William I.; Ma, Po-Lun; Singh, Balwinder

    2014-12-17

    The physics suite of the Community Atmosphere Model version 5 (CAM5) has recently been implemented in the Weather Research and Forecasting (WRF) model to explore the behavior of the parameterization suite at high resolution and in the more controlled setting of a limited area model. The initial paper documenting this capability characterized the behavior for northern high latitude conditions. This present paper characterizes the precipitation characteristics for continental, mid-latitude, springtime conditions during the Midlatitude Continental Convective Clouds Experiment (MC3E) over the central United States. This period exhibited a range of convective conditions from those driven strongly by large-scale synoptic regimesmore » to more locally driven convection. The study focuses on the precipitation behavior at 32 km grid spacing to better anticipate how the physics will behave in the global model when used at similar grid spacing in the coming years. Importantly, one change to the Zhang-McFarlane deep convective parameterization when implemented in WRF was to make the convective timescale parameter an explicit function of grid spacing. This study examines the sensitivity of the precipitation to the default value of the convective timescale in WRF, which is 600 seconds for 32 km grid spacing, to the value of 3600 seconds used for 2 degree grid spacing in CAM5. For comparison, an infinite convective timescale is also used. The results show that the 600 second timescale gives the most accurate precipitation over the central United States in terms of rain amount. However, this setting has the worst precipitation diurnal cycle, with the convection too tightly linked to the daytime surface heating. Longer timescales greatly improve the diurnal cycle but result in less precipitation and produce a low bias. An analysis of rain rates shows the accurate precipitation amount with the shorter timescale is assembled from an over abundance of drizzle combined with too little heavy rain events. With longer timescales one can improve the distribution, particularly for the extreme rain rates. Ultimately, without changing other aspects of the physics, one must choose between accurate diurnal timing and rain amount when choosing an appropriate convective timescale.« less

  14. Precipitation characteristics of CAM5 physics at mesoscale resolution during MC3E and the impact of convective timescale choice

    SciTech Connect (OSTI)

    Gustafson, William I.; Ma, Po-Lun; Singh, Balwinder

    2014-12-17

    The physics suite of the Community Atmosphere Model version 5 (CAM5) has recently been implemented in the Weather Research and Forecasting (WRF) model to explore the behavior of the parameterization suite at high resolution and in the more controlled setting of a limited area model. The initial paper documenting this capability characterized the behavior for northern high latitude conditions. This present paper characterizes the precipitation characteristics for continental, mid-latitude, springtime conditions during the Midlatitude Continental Convective Clouds Experiment (MC3E) over the central United States. This period exhibited a range of convective conditions from those driven strongly by large-scale synoptic regimes to more locally driven convection. The study focuses on the precipitation behavior at 32 km grid spacing to better anticipate how the physics will behave in the global model when used at similar grid spacing in the coming years. Importantly, one change to the Zhang-McFarlane deep convective parameterization when implemented in WRF was to make the convective timescale parameter an explicit function of grid spacing. This study examines the sensitivity of the precipitation to the default value of the convective timescale in WRF, which is 600 seconds for 32 km grid spacing, to the value of 3600 seconds used for 2 degree grid spacing in CAM5. For comparison, an infinite convective timescale is also used. The results show that the 600 second timescale gives the most accurate precipitation over the central United States in terms of rain amount. However, this setting has the worst precipitation diurnal cycle, with the convection too tightly linked to the daytime surface heating. Longer timescales greatly improve the diurnal cycle but result in less precipitation and produce a low bias. An analysis of rain rates shows the accurate precipitation amount with the shorter timescale is assembled from an over abundance of drizzle combined with too little heavy rain events. With longer timescales one can improve the distribution, particularly for the extreme rain rates. Ultimately, without changing other aspects of the physics, one must choose between accurate diurnal timing and rain amount when choosing an appropriate convective timescale.

  15. Precipitation characteristics of CAM5 physics at mesoscale resolution during MC3E and the impact of convective timescale choice

    SciTech Connect (OSTI)

    Gustafson, William I.; Ma, Po-Lun; Singh, Balwinder

    2014-12-01

    The physics suite of the Community Atmosphere Model version 5 (CAM5) has recently been implemented in the Weather Research and Forecasting (WRF) model to explore the behavior of the parameterization suite at high resolution and in the more controlled setting of a limited area model. The initial paper documenting this capability characterized the behavior for northern high latitude conditions. This present paper characterizes the precipitation characteristics for continental, mid-latitude, springtime conditions during the Midlatitude Continental Convective Clouds Experiment (MC3E) over the central United States. This period exhibited a range of convective conditions from those driven strongly by large-scale synoptic regimes to more locally driven convection. The study focuses on the precipitation behavior at 32 km grid spacing to better anticipate how the physics will behave in the global model when used at similar grid spacing in the coming years. Importantly, one change to the Zhang-McFarlane deep convective parameterization when implemented in WRF was to make the convective timescale parameter an explicit function of grid spacing. This study examines the sensitivity of the precipitation to the default value of the convective timescale in WRF, which is 600 seconds for 32 km grid spacing, to the value of 3600 seconds used for 2 degree grid spacing in CAM5. For comparison, an infinite convective timescale is also used. The results show that the 600 second timescale gives the most accurate precipitation over the central United States in terms of rain amount. However, this setting has the worst precipitation diurnal cycle, with the convection too tightly linked to the daytime surface heating. Longer timescales greatly improve the diurnal cycle but result in less precipitation and produce a low bias. An analysis of rain rates shows the accurate precipitation amount with the shorter timescale is assembled from an over abundance of drizzle combined with too little heavy rain events. With longer timescales one can improve the distribution, particularly for the extreme rain rates. Ultimately, without changing other aspects of the physics, one must choose between accurate diurnal timing and rain amount when choosing an appropriate convective timescale.

  16. Permeability and kinetic coefficients for mesoscale BCF surface step dynamics: Discrete two-dimensional deposition-diffusion equation analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhao, Renjie; Evans, James W.; Oliveira, Tiago J.

    2016-04-08

    Here, a discrete version of deposition-diffusion equations appropriate for description of step flow on a vicinal surface is analyzed for a two-dimensional grid of adsorption sites representing the stepped surface and explicitly incorporating kinks along the step edges. Model energetics and kinetics appropriately account for binding of adatoms at steps and kinks, distinct terrace and edge diffusion rates, and possible additional barriers for attachment to steps. Analysis of adatom attachment fluxes as well as limiting values of adatom densities at step edges for nonuniform deposition scenarios allows determination of both permeability and kinetic coefficients. Behavior of these quantities is assessedmore » as a function of key system parameters including kink density, step attachment barriers, and the step edge diffusion rate.« less

  17. Eigenfunction Expansion of the Space-Time Dependent Neutron Survival

    Office of Scientific and Technical Information (OSTI)

    Probability. (Conference) | SciTech Connect Eigenfunction Expansion of the Space-Time Dependent Neutron Survival Probability. Citation Details In-Document Search Title: Eigenfunction Expansion of the Space-Time Dependent Neutron Survival Probability. Abstract not provided. Authors: Kamm, Ryan James ; Prinja, Anil K. Publication Date: 2013-10-01 OSTI Identifier: 1117182 Report Number(s): SAND2013-9422C 480812 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation:

  18. Eigenfunction Expansion of the Space-Time Dependent Neutron Survival

    Office of Scientific and Technical Information (OSTI)

    Probability. (Journal Article) | SciTech Connect Journal Article: Eigenfunction Expansion of the Space-Time Dependent Neutron Survival Probability. Citation Details In-Document Search Title: Eigenfunction Expansion of the Space-Time Dependent Neutron Survival Probability. Abstract not provided. Authors: Kamm, Ryan James ; Prinja, Anil K. Publication Date: 2013-07-01 OSTI Identifier: 1106880 Report Number(s): SAND2013-5731J 465496 DOE Contract Number: AC04-94AL85000 Resource Type: Journal

  19. Department of Energy Technology and Energy Policy | Open Energy...

    Open Energy Info (EERE)

    and Energy Policy Jump to: navigation, search Name: Department of Energy Technology and Energy Policy Place: Karlsruhe, Germany Zip: 76139 Product: The department of Energy...

  20. Fortu PowerCell GmbH | Open Energy Information

    Open Energy Info (EERE)

    Karlsruhe, Baden-Wrttemberg, Germany Zip: 76131 Product: Developer of a high power lithium anorganic rechargeable battery. Coordinates: 49.01076, 8.408695 Show Map Loading...

  1. Metal-Ion-Mediated Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers from Patras (Greece), Nicosia (Cyprus), Karlsruhe (Germany), Zaragoza (Spain), and the ALS at Berkeley Lab have studied metal-ion-mediated reactions of...

  2. Sterling Motor Technologie | Open Energy Information

    Open Energy Info (EERE)

    Technologie Jump to: navigation, search Name: Sterling Motor Technologie Place: Karlsruhe, Baden-Wrttemberg, Germany Zip: 76131 Product: Development of sterling engines....

  3. Section 12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the account for the effect of the mesoscale organization of the momentum parameterization. ... rates and mesoscale eddy fluxes of entropy and water vapor in parameterization ...

  4. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    STATISTICAL MECHANICS MODELING OF MESOSCALE DEFORMATION IN METALS Anter El Azab MATERIALS SCIENCE dislocation dynamics mesoscale deformation of metals crystal mechanics dislocation...

  5. Towards a Fine-Resolution Global Coupled Climate System for Prediction...

    Office of Scientific and Technical Information (OSTI)

    58 GEOSCIENCES climate, numerical modeling, earth system model, ocean, sea-ice, mesoscale eddies climate, numerical modeling, earth system model, ocean, sea-ice, mesoscale...

  6. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Oceanography GEOSCIENCES climate numerical modeling earth system model ocean sea ice mesoscale eddies climate numerical modeling earth system model ocean sea ice mesoscale eddies...

  7. ARM - Publications: Science Team Meeting Documents: Evaluation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of mesoscale model cloud simulations of the March 2000 IOP Tselioudis, George NASAGoddard Institute for Space Studies A suite of mesoscale models was used to produce...

  8. Analysis of Cloud-resolving Simulations of a Tropical Mesoscale Convective System Observed during TWP-ICE: Vertical Fluxes and Draft Properties in Convective and Stratiform Regions

    SciTech Connect (OSTI)

    Mrowiec, Agnieszka A.; Rio, Catherine; Fridlind, Ann; Ackerman, Andrew; Del Genio, Anthony D.; Pauluis, Olivier; Varble, Adam; Fan, Jiwen

    2012-10-02

    We analyze three cloud-resolving model simulations of a strong convective event observed during the TWP-ICE campaign, differing in dynamical core, microphysical scheme or both. Based on simulated and observed radar reflectivity, simulations roughly reproduce observed convective and stratiform precipitating areas. To identify the characteristics of convective and stratiform drafts that are difficult to observe but relevant to climate model parameterization, independent vertical wind speed thresholds are calculated to capture 90% of total convective and stratiform updraft and downdraft mass fluxes. Convective updrafts are fairly consistent across simulations (likely owing to fixed large-scale forcings and surface conditions), except that hydrometeor loadings differ substantially. Convective downdraft and stratiform updraft and downdraft mass fluxes vary notably below the melting level, but share similar vertically uniform draft velocities despite differing hydrometeor loadings. All identified convective and stratiform downdrafts contain precipitation below ~10 km and nearly all updrafts are cloudy above the melting level. Cold pool properties diverge substantially in a manner that is consistent with convective downdraft mass flux differences below the melting level. Despite differences in hydrometeor loadings and cold pool properties, convective updraft and downdraft mass fluxes are linearly correlated with convective area, the ratio of ice in downdrafts to that in updrafts is ~0.5 independent of species, and the ratio of downdraft to updraft mass flux is ~0.5-0.6, which may represent a minimum evaporation efficiency under moist conditions. Hydrometeor loading in stratiform regions is found to be a fraction of hydrometeor loading in convective regions that ranges from ~10% (graupel) to ~90% (cloud ice). These findings may lead to improved convection parameterizations.

  9. Apparatus and method for determining microscale interactions based on compressive sensors such as crystal structures

    DOE Patents [OSTI]

    McAdams, Harley; AlQuraishi, Mohammed

    2015-04-21

    Techniques for determining values for a metric of microscale interactions include determining a mesoscale metric for a plurality of mesoscale interaction types, wherein a value of the mesoscale metric for each mesoscale interaction type is based on a corresponding function of values of the microscale metric for the plurality of the microscale interaction types. A plurality of observations that indicate the values of the mesoscale metric are determined for the plurality of mesoscale interaction types. Values of the microscale metric are determined for the plurality of microscale interaction types based on the plurality of observations and the corresponding functions and compressed sensing.

  10. EnergiePerformance Sugg GmbH | Open Energy Information

    Open Energy Info (EERE)

    GmbH Place: Karlsruhe, Baden-Wrttemberg, Germany Zip: 76131 Sector: Solar Product: German-based solar project developer, EnergiePerformance Sugg GmbH provides planning,...

  11. gtri

    National Nuclear Security Administration (NNSA)

    other JRC facilities, namely JRC-ITU (Institute of Transuranium Elements) in Karlsruhe, Germany and JRC-IS (Ispra Site) in Italy, by the 2016 Nuclear Security Summit.

    This...

  12. Biography Walter Steininger

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Walter Steininger Mr. Steininger is a representative of the sponsoring organization Project Management Agency Karlsruhe, Water Technology and Waste Management (PTKA-WTE) at the Karlsruhe Institute of Technology for this workshop. His introductory remarks will give an overview of the previous workshops. Walter Steininger is a physicist (University of Stuttgart). He made his doctoral thesis at the Max-Planck-Institute for Material Research, Material Science, and worked as a project scientist at

  13. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    "Forschungszentrum Karlsruhe, Institut fuer Kernphysik, Postfach 3640, 76021 Karlsruhe" Name Name ORCID Search Authors Type: All Book/Monograph Conference/Event Journal Article Miscellaneous Patent Program Document Software Manual Technical Report Thesis/Dissertation Subject: Identifier Numbers: Site: All Alaska Power Administration, Juneau, Alaska (United States) Albany Research Center (ARC), Albany, OR (United States) Albuquerque Complex - NNSA Albuquerque Operations Office,

  14. 3D Printing of nanostructured catalytic materials | The Ames...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the nano and the macro scales, this bridge is known as the mesoscale. We are currently learning and developing tools to orderly assemble nanostructures at the mesoscale, i.e....

  15. Chapter 9: Enabling Capabilities for Science and Energy | High...

    Energy Savers [EERE]

    ... management of nuclear waste Enabling mesoscale ... Advancing Internal Combustion Engine Simulations using Sensitivity ... Simulating Multiphase Heat Transfer in a Novel ...

  16. Section 95

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Severe Storms Laboratory Norman, Oklahoma D. V. Mitchell National Oceanic and ... Mesoscale Meteorological Studies Norman, Oklahoma Introduction Simulating the correct ...

  17. Linking Network Microstructure to Macroscopic Properties of Siloxane...

    Office of Scientific and Technical Information (OSTI)

    Linking Network Microstructure to Macroscopic Properties of Siloxane Elastomers Using Combined Nuclear Magnetic Resonance and Mesoscale Computational Modeling Citation Details ...

  18. Linking Network Microstructure to Macroscopic Properties of Siloxane

    Office of Scientific and Technical Information (OSTI)

    Elastomers Using Combined Nuclear Magnetic Resonance and Mesoscale Computational Modeling (Journal Article) | SciTech Connect Linking Network Microstructure to Macroscopic Properties of Siloxane Elastomers Using Combined Nuclear Magnetic Resonance and Mesoscale Computational Modeling Citation Details In-Document Search Title: Linking Network Microstructure to Macroscopic Properties of Siloxane Elastomers Using Combined Nuclear Magnetic Resonance and Mesoscale Computational Modeling Authors:

  19. Untitled

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Professor Hilbert von Löhneysen Karlsruhe Institute of Technology Director of the Institute for Solid State Physics Karlsruhe, Germany Entropy Landscape of Materials with Strong Electronic Correla$ons Near Quantum Cri$cality Tuesday, January 26, 2016 3:00 - 4:00pm MSL Auditorium (TA-03 - Bldg 1698 - Room A103) Abstract: In a number of materials, a second-order phase transi5on can be driven to zero temperature by a non-thermal control parameter such as pressure, magne5c or electric field, or

  20. 11th LANSCE School on Neutron Scattering | School Abstract

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials at the Mesoscale The 11th LANSCE School on Neutron Scattering will focus on science of Materials at the Mesoscale: the influence of surfaces, interfaces, and micro-structure in properties of materials and functionalities. The goal of the 11th School is to convey characterization of the hierarchical structure of materials from the nano- to the meso-scale, and the tailored control of their properties that have impact on the society (e.g. fracking, engineering materials, geological

  1. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, 2015 Time: 11:00 am Speaker: Gao Liu, LBNL Title: Mesoscale Origin of the Enhanced Cycling-Stability of the Si-Functional Conductive Polymer Anode for Li-ion Batteries Location: 67-3111 Chemla Room Abstract: Electrode used in lithium-ion battery is invariably a composite of multifunctional components. The performance of the electrode is controlled by the interactive function of all components at mesoscale. The functions of each component and its interaction in mesoscale will be discussed.

  2. Name of Project Pi(s)/Institution(s)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Role of Mesoscale Eddies in the Meridional Overturning Circulation: Overview PI: Paola Cessi, Scripps Institution of Oceanography, UCSD * Our project examines the role of mesoscale flows in the maintenance of the oceanic main thermocline, of the deep stratification, and in the heat transport. * Mesoscale flows are not resolved by climate models that are integrated over long times. * We study the climatological response of eddy-resolving ocean models to changes in external parameters, this

  3. OSTI, US Dept of Energy, Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond The In-Between World of the Mesoscale by Kathy Chambers on Tue, Jun 23, 2015 Argonne Leadership Computing Facility, Brown University: Brain blood flow simulation with NekTar; a continuum model Argonne Leadership Computing Facility, Brown University: Brain blood flow simulation with NekTar; a continuum modelEmerging mesoscale science opportunities are among the most promising for future research. The in-between world of the mesoscale

  4. Prediction of Oil Production With Confidence Intervals*

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meso-Scale during Electron Beam Additive Manufacturing (Conference) | SciTech Connect Conference: Prediction of Material Thermal Properties and Beam-Particle Interaction at Meso-Scale during Electron Beam Additive Manufacturing Citation Details In-Document Search Title: Prediction of Material Thermal Properties and Beam-Particle Interaction at Meso-Scale during Electron Beam Additive Manufacturing Authors: Chen, Jian [1] ; Zheng, Lili [1] ; Feng, Zhili [1] ; Zhang, Wei [1] ; Dehoff, Ryan R

  5. ARM XDC Datastreams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    StreamsMesoscale Analysis and Prediction System Documentation MAPS Instrument External Datastream Descriptions ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Mesoscale Analysis and Prediction System (MAPS) Information updated on August 10, 2006, 2:09 pm GMT General Data Description The Mesoscale Analysis and Prediction System (MAPS) refers to previous development versions of the RUC (Rapdi Updated Cycle). This

  6. DE-SC0001933 DOE Final Report

    SciTech Connect (OSTI)

    Cerovecki, Ivana

    2014-11-14

    The overall objective of this study was to improve the representation of regional ocean circulation in the North Pacific by using high resolution atmospheric forcing that accurately represents mesoscale processes in ocean-atmosphere regional (North Pacific) model configuration. The goal was to assess the importance of accurate representation of mesoscale processes in the atmosphere and the ocean on large scale circulation. This is an important question, as mesoscale processes in the atmosphere which are resolved by the high resolution mesoscale atmospheric models such as Weather Research and Forecasting (WRF), are absent in commonly used atmospheric forcing such as CORE forcing, employed in e.g. the Community Climate System Model (CCSM).

  7. Center for Lignocellulose Structure and Formation (CLSF) | U...

    Office of Science (SC) Website

    Pennsylvania State University Year Established 2009 Mission To develop a nano- to meso-scale understanding of plant cell walls, the main structural material in plants, and the ...

  8. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Theme 2: How plants assemble multi-functional cell walls: *Mesoscale architecture of the cell wall *Polymer interactions and conformations *NMR of primary and secondary walls, ...

  9. Sandia National Laboratories: Z Pulsed Power Facility: Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Author Title Journal Volume RE Falcon An experimental platform for creating white dwarf photospheres in the laboratory High Energy Density Physics 9 TA Haill Mesoscale simulation ...

  10. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Comparison of Mesoscale Model and Tower Measurements of Surface Fluxes During Winter Icing ... Data Assimilation of the Winter Icing and Storms ProgramAtmospheric Radiation ...

  11. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Radiation Measurement (ARM) Science Team Meeting Domain-averaged, broadband solar radiative budgets for an evolving tropical mesoscale convective cloud system are...

  12. splitt-98.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M. E. Splitt Cooperative Institute for Mesoscale Meteorological Studies University of Oklahoma Norman, Oklahoma Introduction Many studies within atmospheric radiation measurements ...

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fridlind, and AS Ackerman. 2015. "Properties of a mesoscale convective system in the context of an isentropic analysis." Journal of the Atmospheric Sciences, , doi:10.1175...

  14. ARM - Datastreams - allmaps60

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1994.07.07 Measurement Categories Atmospheric State Originating Instrument Mesoscale Analysis and Prediction System (MAPS) Measurements The measurements below provided by this...

  15. ARM - Datastreams - maps60

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1994.10.15 Measurement Categories Atmospheric State Originating Instrument Mesoscale Analysis and Prediction System (MAPS) Measurements The measurements below provided by this...

  16. Freeform Fluidics (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Previous work focused on mesoscale digital control valves (high pressure, low flow) and the integration of actuation and fluid passages directly with the structure, the primary ...

  17. X:\\ARM_19~1\\PGS1-8.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... eddy flux convergences of moisture and entropy within parameterized mesoscale updrafts and downdrafts. Our scheme accounts for the effect of organized convection on the ...

  18. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Thermal Properties and Beam-Particle Interaction at Meso-Scale during Electron Beam Additive Manufacturing","Chen, Jian ORNL ORNL; Zheng, Lili ORNL ORNL; Feng, Zhili...

  19. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    LDRD final report : mesoscale modeling of dynamic loading of heterogeneous materials. Robbins, Joshua ; Dingreville, Remi Philippe Michel ; Voth, Thomas Eugene ; Furnish, Michael ...

  20. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mesoscale Convective Systems Jasmine Cetrone and Robert Houze University of Washington Motivation Atmospheric heating by high clouds is important for tropical circulation. Many...

  1. mather-99.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scales, from hundreds of meters in the case of fair weather cumulus to thousands of kilometers in the case of mesoscale convective systems. Deep convection often reaches the...

  2. Roles of Wind Shear at Different Vertical Levels in Cloud System...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    thunderstorms, called mesoscale convective systems (MCSs), occur frequently across the globe and contribute greatly to the hydrologic cycle and atmospheric energy budget....

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    thunderstorms, called mesoscale convective systems (MCSs), occur frequently across the globe and contribute greatly to the hydrologic cycle and atmospheric energy budget....

  4. Microsoft PowerPoint - Nicholl_2016_UserProjectHighlight_NatComm...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Although graphene is one of the stiffest materials ever discovered, it is inevitably undulated due to atomistic, meso-scale and microscale phenomena. It has been hypothesized that...

  5. Pyrocumulus Collapse. Unpredicted Wildfire Dangers

    SciTech Connect (OSTI)

    Kim, Young-Joon; Linn, Rodman

    2015-12-07

    We validate our proposed mechanisms with the aid of numerical simulations using a mesoscale atmospheric model and LANL's local-scale dispersion model.

  6. ARM - Publications: Science Team Meeting Documents: Sensitivities...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CSU Multiscale-Modeling Framework (MMF) based on the NCAR Community Atmopshere Model (CAM). While individual deep clouds and meso-scale cloud systems are explicitly resolved by...

  7. Section 70

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Severe Storms Laboratory Norman, Oklahoma D.V. Mitchell National Oceanic and ... Mesoscale Meteorological Studies Norman, Oklahoma S. Pfeifer University of Oklahoma ...

  8. Section 56

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    S. J. Richardson and M. E. Splitt Cooperative Institute for Mesoscale Meteorological Studies University of Oklahoma Norman, Oklahoma Abstract This work describes in situ moisture ...

  9. Posters The Impacts of Data Error and Model Resolution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    S. Yang and Q. Xu Cooperative Institute of Mesoscale Meteorological Studies University of Oklahoma Norman, Oklahoma Introduction The representativeness and accuracy of the ...

  10. Posters Single-Column Model for Atmospheric Radiation Measurement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Q. Xu and M. Dong Cooperative Institute of Mesoscale Meteorological Studies University of Oklahoma Norman, Oklahoma A single-column model (SCM) is constructed by extracting the ...

  11. SAND2013-10271

    Office of Scientific and Technical Information (OSTI)

    10271 Unlimited Release Printed December 2013 LDRD Final Report: Mesoscale Modeling of Dynamic Loading of Heterogeneous Materials Joshua Robbins, Remi Dingreville, Thomas E. Voth,...

  12. Microsoft Word - MM5_LSM_JGR.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact of Agricultural Practice on Regional Climate in a Coupled Land Surface Mesoscale ... been shown to form strong feedbacks with climate due to linkages between atmospheric ...

  13. Center for Nanophase Materials Sciences (CNMS) - Archived CNMS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    together to form higher-level - mesoscale - structures, new collective phenomena emerge. Optimizing such systems requires embracing stochastic fluctuations in a manner similar...

  14. LANSCE | News & Media | Seminars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weapons Neutron Research - Ron Nelson April 16: TBD April 23: LANSCE Futures - Kurt Schoenberg Tentative Title April 30: Mesoscale Science at LANSCE - Rex Hjelm May 14: Physics of...

  15. Single-Column Modeling A Stratiform Cloud Parameterization for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    parameterization originally developed for mesoscale cloud models (Tripoli and Cotton 1980, Cotton et al. 1982 and 1986, Meyers et al. 1992). These approximations are...

  16. Alamos National Laboratory] Materials Science(36) Abstract Not...

    Office of Scientific and Technical Information (OSTI)

    Co-Design at the Mesoscale: Opportunities for NSLS-II Sarrao, John L. Los Alamos National Laboratory Materials Science(36) Abstract Not Provided Los Alamos National Laboratory...

  17. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mesoscale Model Investigations of the Lifecycles of Arctic Mixed-Phase Stratus Avramov, A., Harrington, J.Y., Verlinde, J., and Clothiaux, E.E., The Pennsylvania State...

  18. Barnes, Cris William [Los Alamos National Laboratory]; Kippen...

    Office of Scientific and Technical Information (OSTI)

    MaRIE: A facility for time-dependent materials science at the mesoscale Barnes, Cris William Los Alamos National Laboratory; Kippen, Karen Elizabeth Los Alamos National...

  19. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    MaRIE A facility for time dependent materials science at the mesoscale Barnes Cris William Los Alamos National Laboratory Kippen Karen Elizabeth Los Alamos National Laboratory...

  20. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    From Quanta to the Continuum Opportunities for Mesoscale Science Crabtree George Argonne National Lab ANL Argonne IL United States Sarrao John Los Alamos National Lab LANL Los...

  1. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    GEOSCIENCES climate, numerical modeling, earth system model, ocean, sea-ice, mesoscale eddies",,"The over-arching goal of this project was to contribute to the realization...

  2. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Co Design at the Mesoscale Opportunities for NSLS II Sarrao John L Los Alamos National Laboratory Materials Science Abstract Not Provided Los Alamos National Laboratory LANL DOE...

  3. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    The Matter-Radiation Interactions in Extremes Project, and the Challenge of Dynamic Mesoscale Imaging","Barnes, Cris William Los Alamos National Laboratory; Barber, John L....

  4. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Properties of Siloxane Elastomers Using Combined Nuclear Magnetic Resonance and Mesoscale Computational Modeling Mayer B P Lewicki J P Weisgraber T H Small W Chinn S C...

  5. materials. Robbins, Joshua; Dingreville, Remi Philippe Michel...

    Office of Scientific and Technical Information (OSTI)

    LDRD final report : mesoscale modeling of dynamic loading of heterogeneous materials. Robbins, Joshua; Dingreville, Remi Philippe Michel; Voth, Thomas Eugene; Furnish, Michael...

  6. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    From Quanta to the Continuum: Opportunities for Mesoscale Science","Crabtree, George Argonne National Lab. (ANL), Argonne, IL (United States); Sarrao, John Los Alamos National...

  7. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Properties of Siloxane Elastomers Using Combined Nuclear Magnetic Resonance and Mesoscale Computational Modeling","Mayer, B P; Lewicki, J P; Weisgraber, T H; Small, W; Chinn,...

  8. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Quanta to the Continuum Opportunities for Mesoscale Science Sarrao John L Los Alamos National Laboratory Crabtree George Argonne National Laboratory MATERIALS SCIENCE MATERIALS...

  9. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    MaRIE: A facility for time-dependent materials science at the mesoscale","Barnes, Cris William Los Alamos National Laboratory; Kippen, Karen Elizabeth Los Alamos National...

  10. Linking Network Microstructure to Macroscopic Properties of Siloxane

    Office of Scientific and Technical Information (OSTI)

    Properties of Siloxane Elastomers Using Combined Nuclear Magnetic Resonance and Mesoscale Computational Modeling Mayer, B P; Lewicki, J P; Weisgraber, T H; Small, W; Chinn, S...

  11. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    LDRD final report : mesoscale modeling of dynamic loading of heterogeneous materials.","Robbins, Joshua; Dingreville, Remi Philippe Michel; Voth, Thomas Eugene; Furnish, Michael...

  12. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    The Matter Radiation Interactions in Extremes Project and the Challenge of Dynamic Mesoscale Imaging Barnes Cris William Los Alamos National Laboratory Barber John L Los Alamos...

  13. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    LDRD final report mesoscale modeling of dynamic loading of heterogeneous materials Robbins Joshua Dingreville Remi Philippe Michel Voth Thomas Eugene Furnish Michael David Material...

  14. Poster Sessions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storms and Mesoscale Experiment (SESAME) program. 363 ARM Scien Meeting contributing to ground temperature tendencies. It also allows for ice, precipitation, and carbon dioxide...

  15. ARM - Measurement - Atmospheric pressure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System MAPS : Mesoscale Analysis and Prediction System MOLTS : Model Output Location Time Series NOAASURF : NOAA Surface Meteorology Data, collected by NWS and NCDC NCEPGFS :...

  16. ARM - Measurement - Atmospheric temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mesonet MAPS : Mesoscale Analysis and Prediction System MOLTS : Model Output Location Time Series NOAACRN : NOAA Climate Reference Network NOAASURF : NOAA Surface Meteorology...

  17. ARM - Measurement - Atmospheric moisture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mesonet MAPS : Mesoscale Analysis and Prediction System MOLTS : Model Output Location Time Series NOAASURF : NOAA Surface Meteorology Data, collected by NWS and NCDC NCEPGFS :...

  18. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Research Mesoscale Model 5 (MM5), in particular the shortwave downwelling (SW) flux calculations, is examined in this paper. Selected quantities output from the MM5...

  19. January 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 2015 1663 Los Alamos science and technology magazine Latest Issue:October 2015 past issues All Issues submit IN THIS ISSUE Articles Materials at the Mesoscale Designing...

  20. Section 46

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    evaluation by using observed meteorological fields assimilated in a mesoscale model. Approach Radiosonde, wind profiler, and surface meteorological data from the 10-day June 1993...

  1. Freeform Fluidics (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    actuation and control that enables high dexterity, low cost and a pathway towards energy efficiency. Previous work focused on mesoscale digital control valves (high ...

  2. Localized Scale Coupling and New Educational Paradigms in Multiscale Mathematics and Science

    SciTech Connect (OSTI)

    Ingber, Marc; Vorobieff, Peter

    2014-03-14

    We have experimentally demonstrated how microscale phenomena affect suspended particle behavior on the mesoscale, and how particle group behavior on the mesoscale influences the macroscale suspension behavior. Semi-analytical and numerical methods to treat flows on different scales have been developed, and a framework to combine these scale-dependent treatment has been described.

  3. Final Report: MATERIALS, STRANDS, AND CABLES FOR SUPERCONDUCTING ACCELERATOR MAGNETS [Grant Number DE-SC0010312

    SciTech Connect (OSTI)

    Sumption, Mike; Collings, E.

    2014-10-29

    Our program consisted of the two components: Strand Research and Cable Research, with a focus on Nb3Sn, Bi2212, and YBCO for accelerator magnet applications. We demonstrated a method to refine the grains in Nb3Sn by a factor of two, reaching 45 nm grain sizes, and layer Jcs of 6 kA/mm2 at 12 T. W also measured conductor magnetization for field quality. This has been done both with Nb3Sn conductor, as well as Bi:2212 strand. Work in support of quench studies of YBCO coils was also performed. Cable loss studies in Nb3Sn focused on connecting and comparing persistent magnetization and coupling magnetization for considering their relative impact on HEP machines. In the area of HTS cables, we have investigated both the quench in multistrand YBCO CORC cables, as well as the magnetization of these cables for use in high field magnets. In addition, we examined the magnetic and thermal properties of large (50 T) solenoids.

  4. A NEW INTERPHASE FORCE IN TWO-PHASE FLUIDIZED BEDS

    SciTech Connect (OSTI)

    D. ZHANG; W. VANDERHEYDEN

    2001-05-01

    Mesoscale structures such as particle clusters have been observed both in experiments and in numerical simulations of circulating fluidized beds. In a numerical simulation, in order to account for the effects of such mesoscale structures, the computational grids have to be fine enough. The use of such fine grids is impractical in engineering applications due to excessive computational costs. To predict the macroscopic behavior of a fluidized bed with reasonable computation cost, they perform a second average over the averaged equations for two-phase flows. A mesoscale inter-phase exchange force is found to be the correlation of the particle volume fraction and the pressure gradient. This force is related to the mesoscale added mass of the two-phase flow. Typically, added mass for particle scale interactions is negligible in gas-solid flows since the gas density is small compared to density of solid particles. However, for a mesoscale structure, such as a bubble, the surrounding media is the mixture of gas and particles. The surrounding fluid density experienced by the mesoscale structure is the density of the surrounding mixture. Therefore, the added mass of a mesoscale structure, such as bubbles, cannot be neglected. The property of this new force is studied based on the numerical simulation of a fluidized bed using high grid resolution. It is shown that this force is important in the region where the particle volume fraction is high. The effects of the inhomogeneity to the interphase drag are also studied.

  5. MaRIE Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Challenge of Dynamic Mesoscale Imaging (Conference) | SciTech Connect Conference: MaRIE 1.0: The Matter-Radiation Interactions in Extremes Project, and the Challenge of Dynamic Mesoscale Imaging Citation Details In-Document Search Title: MaRIE 1.0: The Matter-Radiation Interactions in Extremes Project, and the Challenge of Dynamic Mesoscale Imaging The Matter-Radiation Interactions in Extremes project will build the experimental facility for the time-dependent control of dynamic material

  6. The characteristics of local atmospheric circulation around the Wolsung NPP in Korea

    SciTech Connect (OSTI)

    Lee, G.B.; Lee, M.C.; Song, Y.I.

    1998-12-31

    The transport of air pollutants in coastal regions has been known to be strongly affected by the mesoscale atmospheric circulations such as sea-land breezes. These mesoscale atmospheric circulations depend on synoptic weather conditions. In this study, a three-dimensional sea-land breeze model was developed to evaluate the effects of the sea and land breezes on the atmospheric dispersion of radioactive materials released from nuclear power plants in Korea. In the model, the hydrostatic primitive equations in the terrain-following coordinate system were used. The mesoscale atmospheric circulation simulation were carried out under various synoptic weather conditions for all seasons around the Wolsung nuclear power plant site.

  7. Links - Madison Dynamo Experiment - Cary Forest Group - UW Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links UW Madison Madison Dynamo Experiment Links MDE HomeLinksNewsBackgroundPublicationsPresentationsContactsMDE People CPLA Home Directory Publications Links University of Wisconsin Physics Department Department of Energy National Science Foundation Local Links Plasma Physics in the UW Physics Department The Department of Physics University of Wisconsin - Madison Dynamo Links Riga Dynamo Experiment Karlsruhe Dynamo Experiment The Von-Karman Sodium Experiment Grenoble Geodynamo Experiment

  8. DB-Netz AG Offices

    High Performance Buildings Database

    Hamm, Germany The new office building for DB Netz AG was designed by the collaborative team of Architrav Architects and the Buildings Physics and Technical Building Services group of the University of Karlsruhe. The team developed an energy efficient building concept for the 64,304 sqft office building, located in Hamm, Germany. The design concept of the building is dominated by architectural solutions for ventilation, cooling and lighting. Use of HVAC and electric lighting is minimized as much as possible.

  9. General Observation Period 2007: Concept and first results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Orographically- induced Precipitation Study (COPS) AMF AMF Volker Wulfmeyer, Andreas Behrendt, and Hans-Stefan Bauer, University of Hohenheim Christoph Kottmeier and Ulrich Corsmeier, FZK Karlsruhe Gerhard Adrian, German Meteorological Service (DWD Alan Blyth, School of Environment, University of Leeds, UK George Craig, Ulrich Schumann, and Martin Hagen, DLR Susanne Crewell, University of Cologne Paolo Di Girolamo, Universita degli Studi della Basilicata, Potenza, Italy Cyrille Flamant,

  10. Volker Wulfmeyer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Set Up and Operation of the AMF Site in the Black Forest During COPS Volker Wulfmeyer 1 , Andreas Behrendt 1 , Dietrich Althausen 2 , Christian Barthlott 3 , Hans-Stefan Bauer 1 , Ulrich Corsmeier 3 , Susanne Crewell 4 , Galina Dick 5 , Christian Hauck 3 , Christoph Kottmeier 3 , Mark Miller 6 , Kim Nitschke 7 , Gerhard Peters 8 , and Dave Turner 9 1: University of Hohenheim, Stuttgart, Germany; 2: Institute for Tropospheric Research, Leipzig, Germany; 3: Karlsruhe University / Research Center,

  11. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    "/Hawaii U./UCLA/Hawaii U./Delaware U./University Coll., London/Chicago U./Stanford U., Phys. Dept./KIT, Karlsruhe, EKP" Name Name ORCID Search Authors Type: All Book/Monograph Conference/Event Journal Article Miscellaneous Patent Program Document Software Manual Technical Report Thesis/Dissertation Subject: Identifier Numbers: Site: All Alaska Power Administration, Juneau, Alaska (United States) Albany Research Center (ARC), Albany, OR (United States) Albuquerque Complex - NNSA

  12. ARQ07-4.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Actinide Research Quarterly Seaborg Institute for Transactinium Science/Los Alamos National Laboratory CSI: Karlsruhe Nuclear forensics sleuths trace the origin of traffi cked material 1 NNSA selects Los Alamos as preferred alternative site 10 Seaborg Institute postdoctoral research Heat capacity and the good old days of uranium 12 Plutonium Futures conference set for July in Dijon, France 16 ATOMICS: Changing safety behavior is no small matter 17 Contents 1 4th Quarter 2007 Actinide Research

  13. ARM - Events Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 31, 2007 [Events] Second International African Monsoon Multidisciplinary Analyses (AMMA) Conference Abstracts Due August 15 Bookmark and Share The Second International AMMA Conference will take place in Karlsruhe, Germany, November 26-30. Abstracts will be accepted in English and French until August 15. The conference aims to bring together researchers from around the world working on the Western African monsoon and its impacts, to review ongoing research and modeling activities, and to

  14. ARM - Events Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 7, 2007 [Events] 2nd International AMMA Conference Announces Call for Abstracts Bookmark and Share The African Monsoon Multidisciplinary Analysis (AMMA) will hold its second international conference on the West African Monsoon in Karlsruhe-Leopoldshafen, Germany, November 26-30, 2007. Aiming to bring researchers together from around the world, conference themes will focus on the following: West African monsoon and global climate Water cycle Land surface-atmosphere feedbacks Prediction

  15. AlumniLink: January 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit IN THIS ISSUE New Science 100 supercomputers later Explosives performance key to stockpile stewardship Software speeds detection of diseases and cancer-treatment targets Alumni spotlight Ni Ni: University of California - Los Angeles Francesco Grilli: Karlsruhe Institute of Technology Funding opportunities Potential partnerships and funding from a variety of sources

  16. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterizating Stratiform Clouds Variability from Millimeter-Wave Radar Data Kogan, Z.N.(a), Mechem, D.B.(b), and Kogan, Y.L.(c), Cooperative Institute for Mesoscale...

  17. X:\\ARM_19~1\\P273-281.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1. Simulation at 1800 GMT, +6 hrs. A Shallow Convection Parameterization for the Non-Hydrostatic MM5 Mesoscale Model N. L. Seaman, J. S. Kain, and A. Deng Pennsylvania State...

  18. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Status Website Peppler, R.A.(a), Sonntag, K.L.(a), Dean, A.R.(a), Bahrmann, C.P.(a), Moore, S.T.(b), and Bottone, S.(b), Cooperative Institute for Mesoscale Meteorological...

  19. Posters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cirrus anvil, we are using a cloud-scale model with a horizontal resolution of 1-2 kilometers, while for the transport of anvils by the large-scale flow, we are using a mesoscale...

  20. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links Between Mesoscale Dynamics and Cloud Water in High-Resolution March 2000 RAMS Simulations Weaver, C.P.(a), Gordon, N.D.(b), Norris, J.R.(b), and Klein, S.A.(d), Rutgers ...

  1. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Towards Parameterization of Frontal Mesoscale Circulations and Cloudiness in GCMs Based on ARM Observations Norris, J.R.(a), Weaver, C.P.(b), Gordon, N.D.(c), and Klein, S.A.(d), ...

  2. MaRIE 1.0: The Matter-Radiation Interactions in Extremes Project...

    Office of Scientific and Technical Information (OSTI)

    MaRIE 1.0: The Matter-Radiation Interactions in Extremes Project, and the Challenge of Dynamic Mesoscale Imaging Citation Details In-Document Search Title: MaRIE 1.0: The Matter-Ra...

  3. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mesoscale Phase Distribution in Li-ion Battery Electrode Materials May 2013 SSRL Science Summary by Lori Ann White, SLAC Office of Communications Figure Figure 1a) Chemical phase...

  4. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantifying Mesoscale Flows in the Troposphere Demoz, B.B., Evans, K.D., Melfi, S.H., and Cadirola, M., University of Maryland, Baltimore County; Starr, D.O'C., Whiteman, D.N., and...

  5. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Variability of Low Stratus Over the ARM SGP CART Based on Cloud Radar Data and LES Simulations Kogan, Z.N., Mechem, D.B., and Kogan, Y.L., Cooperative Institute for Mesoscale...

  6. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Optically Directed Assembly of Continuous Mesoscale Filaments","Bahns, J. T.; Sankaranarayanan, S. K. R. S.; Gray, S. K.; Chen, L.","2011-02-01T05:00:00Z",1099937,"10.1103...

  7. Lab researchers develop models to analyze mixing in the ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scales of less than 100 km and timescales on the order of a month. Mesoscale ocean eddies are currents which flow in a roughly circular motion around the center of the eddy. ...

  8. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    STATISTICAL MECHANICS MODELING OF MESOSCALE DEFORMATION IN METALS","Anter El-Azab","2013-04-08T04:00:00Z",1073049,"10.21721073049","DOE-ER46494","FG02-08ER46494",,"Technical...

  9. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Mesoscale Simulations of Particulate Flows with Parallel Distributed Lagrange Multiplier Technique","Kanarska, Y","2010-03-24T04:00:00Z",988956,,"LLNL-CONF-431051","W-7405-ENG-48",...

  10. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Mesoscale simulations of particulate flows with parallel distributed Lagrange multiplier technique","Kanarska, Y; Lomov, I; Antoun, T","2010-09-10T04:00:00Z",1120915,,"LLNL-JRNL-45...

  11. ARM - Instrument - maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Mesoscale Analysis and Prediction System (MAPS) Note: maps is currently inactive andor...

  12. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Mesoscale Modeling Framework Design: Subcontract Report","Chen, L Q; Tang, M; Heo, T W; Wood, B C","2014-01-09T05:00:00Z",1116973,"10.21721116973","LLNL-SR-648484","W-7405-ENG-48"...

  13. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Quanta to the Continuum: Opportunities for Mesoscale Science","Sarrao, John L Los Alamos National Laboratory; Crabtree, George Argonne National Laboratory","2012-09-06T04:00:00...

  14. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Optically Directed Assembly of Continuous Mesoscale Filaments Bahns J T Sankaranarayanan S K R S Gray S K Chen L Not Available American Physical Society None USDOE United States...

  15. Model for Simulation of Hydride Precipitation in Zr-Based Used Fuel Claddings: A Status Report on Current Model Capabilities

    Broader source: Energy.gov [DOE]

    The report demonstrates a meso-scale, microstructural evolution model for simulation of zirconium hydride precipitation in the cladding of used fuels during long-term dry-storage.

  16. Basic Energy Sciences (BES) at LLNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basic Energy Sciences at LLNL Eric Schwegler is the Point-of-Contact for DOE Office of Science Programs - Basic Energy Sciences (BES) at LLNL. Highlights Mesoscale Simulations of ...

  17. Effects of Plant Cell Wall Matrix Polysaccharides on Bacterial Cellulose Structure Studied with Vibrational Sum Frequency Generation Spectroscopy and X-ray Diffraction

    SciTech Connect (OSTI)

    Park, Yong Bum; Lee, Christopher M; Kafle, Kabindra; Park, Sunkyu; Cosgrove, Daniel; Kim, Seong H

    2014-07-14

    The crystallinity, allomorph content, and mesoscale ordering of cellulose produced by Gluconacetobacter xylinus cultured with different plant cell wall matrix polysaccharides were studied with vibrational sum frequency generation (SFG) spectroscopy and X-ray diffraction (XRD).

  18. Optimal Sizing of Energy Storage and Photovoltaic Power Systems for Demand Charge Mitigation (Poster), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Article) | SciTech Connect Optically Directed Assembly of Continuous Mesoscale Filaments Citation Details In-Document Search Title: Optically Directed Assembly of Continuous Mesoscale Filaments Authors: Bahns, J. T. ; Sankaranarayanan, S. K. R. S. ; Gray, S. K. ; Chen, L. Publication Date: 2011-02-28 OSTI Identifier: 1099937 Type: Publisher's Accepted Manuscript Journal Name: Physical Review Letters Additional Journal Information: Journal Volume: 106; Journal Issue: 9; Journal ID: ISSN

  19. P:\JODI\PGS77-91.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Assimilation of a Ten-Day Period During June 1993 Over the Southern Great Plains Site Using a Nested Mesoscale Model J. Dudhia and Y.-R. Guo Mesoscale and Microscale Meteorology Division National Center for Atmospheric Research Boulder, Colorado Introduction A goal of the Atmospheric Radiation Measurement (ARM) Program has been to obtain a complete representation of physical processes on the scale of a general circulation model (GCM) grid box in order to better parameterize radiative

  20. X:\ARM_19~1\P273-281.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RH c ) RH c RH c RH c Session Papers 273 Evaluation of Cloud Prediction and Determination of Critical Relative Humidity for a Mesoscale Numerical Weather Prediction Model N. L. Seaman, Z. Guo, and T. P. Ackerman Pennsylvania State University, Department of Meteorology University Park, Pennsylvania Predictions of cloud occurrence and vertical location from the Pennsylvania State University/National Center for Atmospheric Research nonhydrostatic mesoscale model (MM5) were evaluated statistically

  1. dudhia-99.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mesoscale Model Coupled to a Land-Surface Model to Simulate Surface Fluxes at High Resolution J. Dudhia Mesoscale and Microscale Meteorology Division National Center for Atmospheric Research Boulder, Colorado F. Chen Research Applications Program National Center for Atmospheric Research Boulder, Colorado Overview One goal of the Atmospheric Radiation Measurement (ARM) Program is to improve general circulation models (GCMs) by obtaining detailed meteorological information in limited areas of

  2. gottschalck(2)-99.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mesoscale Variability of a Continental Stratus Cloud Event at the SGP CART Site During 1999 J. C. Gottschalck and B. A. Albrecht University of Miami Miami, Florida Introduction Current observational data bases of continental stratus are mainly composed of observations from a single location. It has been shown, however, that marine stratus decks show both mesoscale and diurnal variability (Albrecht et al. 1988; Albrecht et al. 1995; Miller and Albrecht 1995; Miller et al. 1998). Such variability

  3. guo-99.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assimilation of ARM WVIOP-96 Data for an Oklahoma Mesoscale Convective System Y -R. Guo, Y.-H. Kuo, J. Dudhia, and D. B. Parsons National Center for Atmospheric Research Boulder, Colorado Introduction The mesoscale observations collected during the Atmospheric Radiation Measurement (ARM) Water Vapor Intensive Observation Period (WVIOP) from September 10 to 30, 1996, provided a unique opportunity to directly assimilate heterogeneous and high-resolution observations into a state-of-art

  4. LDRD joint computational/experimental project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    materials. (Technical Report) | SciTech Connect LDRD final report : mesoscale modeling of dynamic loading of heterogeneous materials. Citation Details In-Document Search Title: LDRD final report : mesoscale modeling of dynamic loading of heterogeneous materials. Material response to dynamic loading is often dominated by microstructure (grain structure, porosity, inclusions, defects). An example critically important to Sandia's mission is dynamic strength of polycrystalline metals where

  5. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Gives Nanoscale Views of Complex Systems Print Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks inside the mesoscale realm with unprecedented sensitivity and range. The new technique,

  6. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Gives Nanoscale Views of Complex Systems Print Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks inside the mesoscale realm with unprecedented sensitivity and range. The new technique,

  7. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Gives Nanoscale Views of Complex Systems Print Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks inside the mesoscale realm with unprecedented sensitivity and range. The new technique,

  8. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Gives Nanoscale Views of Complex Systems Print Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks inside the mesoscale realm with unprecedented sensitivity and range. The new technique,

  9. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Technique Gives Nanoscale Views of Complex Systems Print Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks inside the mesoscale realm with unprecedented sensitivity and range. The new technique,

  10. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Gives Nanoscale Views of Complex Systems Print Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks inside the mesoscale realm with unprecedented sensitivity and range. The new technique,

  11. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Comparison of Meteorological Measurements from Sparse and Dense Surface Observation Networks in the U.S. Southern Great Plains February 2008 J.W. Monroe Climate Research Section, Environmental Science Division/Argonne National Laboratory Cooperative Institute for Mesoscale Meteorological Studies/University of Oklahoma M.T. Ritsche, M. Franklin Climate Research Section, Environmental Science Division/Argonne National Laboratory, K.E. Kehoe Cooperative Institute for Mesoscale Meteorological

  12. COLLOQUIUM: Controlling the Production and Performance of Materials at the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mesoscale: The Matter-Radiation Interactions in Extremes (MaRIE) Capability | Princeton Plasma Physics Lab January 27, 2016, 4:15pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Controlling the Production and Performance of Materials at the Mesoscale: The Matter-Radiation Interactions in Extremes (MaRIE) Capability Dr. Cris Barnes Los Alamos National Laboratory The Matter-Radiation Interactions in Extremes (MaRIE) project will provide capability that will address the control of performance

  13. Modeling, Analysis and Simulation of Multiscale Preferential Flow - 8/05-8/10 - Final Report

    SciTech Connect (OSTI)

    Ralph Showalter; Malgorzata Peszynska

    2012-07-03

    The research agenda of this project are: (1) Modeling of preferential transport from mesoscale to macroscale; (2) Modeling of fast flow in narrow fractures in porous media; (3) Pseudo-parabolic Models of Dynamic Capillary Pressure; (4) Adaptive computational upscaling of flow with inertia from porescale to mesoscale; (5) Adaptive modeling of nonlinear coupled systems; and (6) Adaptive modeling and a-posteriori estimators for coupled systems with heterogeneous data.

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Global Variability of Mesoscale Convective System Anvil Structure from A-train Satellite Data Submitter: Yuan, J., Nanjing University Houze, R., University of Washington Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Yuan J and RA Houze. 2010. "Global variability of mesoscale convective system anvil structure from A-train satellite data." Journal of Climate, 23, 5864-5888. Figure. 1 Annual mean (2007) climatology of anvil

  15. Message from Hugh Montgomery Laboratory Staff Promotions | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | SciTech Connect Mesoscale Modeling Framework Design: Subcontract Report Citation Details In-Document Search Title: Mesoscale Modeling Framework Design: Subcontract Report Authors: Chen, L Q ; Tang, M ; Heo, T W ; Wood, B C Publication Date: 2014-01-09 OSTI Identifier: 1116973 Report Number(s): LLNL-SR-648484 DOE Contract Number: W-7405-ENG-48 Resource Type: Technical Report Research Org: Lawrence Livermore National Laboratory (LLNL), Livermore, CA Sponsoring Org: USDOE Country of

  16. ARMSMrv2.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Variability of Mesoscale Convective System Anvil Structure Jian Yuan, Robert A. Houze and Jasmine Cetrone University of Washington Introduction Mesoscale Convective Systems (MCSs) are identified both manually using geostationary satellite data and objectively using the AMSR-E rain rate and the IR brightness temperature from the MODIS. Anvil cloud structures associated with MCSs are then studied using CloudSat observations and compared with ARM ground measurements. This study lays the groundwork

  17. KCAT, Xradia, ALS and APS Performance Summary

    SciTech Connect (OSTI)

    Waters, A; Martz, H; Brown, W

    2004-09-30

    At Lawrence Livermore National Laboratory (LLNL) particular emphasis is being placed on the nondestructive characterization (NDC) of components, subassemblies and assemblies of millimeter-size extent with micrometer-size features (mesoscale). These mesoscale objects include materials that vary widely in composition, density, geometry and embedded features. Characterizing these mesoscale objects is critical for corroborating the physics codes that underlie LLNL's Stockpile Stewardship mission. In this report we present results from our efforts to quantitatively characterize the performance of several x-ray systems in an effort to benchmark existing systems and to determine which systems may have the best potential for our mesoscale imaging needs. Several different x-ray digital radiography (DR) and computed tomography (CT) systems exist that may be applicable to our mesoscale object characterization requirements, including microfocus and synchrotron systems. The systems we have benchmarked include KCAT (LLNL developed) and Xradia {mu}XCT (Xradia, Inc., Concord, CA), both microfocus systems, and Beamline 1-ID at the Advance Photon Source (APS) and the Tomography Beamline at the Advanced Light Source (ALS), both synchrotron based systems. The ALS Tomography Beamline is a new installation, and the data presented and analyzed here is some of the first to be acquired at the facility. It is important to note that the ALS system had not yet been optimized at the time we acquired data. Results for each of these systems has been independently documented elsewhere. In this report we summarize and compare the characterization results for these systems.

  18. Microenergetic research involving a coupled experimental and computational approach to evaluate microstructural effects on detonation and combustion at sub-millimeter geometries.

    SciTech Connect (OSTI)

    Nogan, John; Palmer, Jeremy Andrew; Brundage, Aaron L.; Long, Gregory T.; Wroblewski, Brian D.; Tappan, Alexander Smith; Renlund, Anita Mariana; Kravitz, Stanley H.; Baer, Melvin R.

    2006-07-01

    A new approach to explosive sample preparation is described in which microelectronics-related processing techniques are utilized. Fused silica and alumina substrates were prepared utilizing laser machining. Films of PETN were deposited into channels within the substrates by physical vapor deposition. Four distinct explosive behaviors were observed with high-speed framing photography by driving the films with a donor explosive. Initiation at hot spots was directly observed, followed by either energy dissipation leading to failure, or growth to a detonation. Unsteady behavior in velocity and structure was observed as reactive waves failed due to decreasing channel width. Mesoscale simulations were performed to assist in experiment development and understanding. We have demonstrated the ability to pattern these films of explosives and preliminary mesoscale simulations of arrays of voids showed effects dependent on void size and that detonation would not develop with voids below a certain size. Future work involves experimentation on deposited films with regular patterned porosity to elucidate mesoscale explosive behavior.

  19. Restoring The Azimuthal Symmetry Of Charged Particle Lateral Density In The Range Of KASCADE-Grande

    SciTech Connect (OSTI)

    Sima, O.; Rebel, H.; Apel, W. D.; Bekk, K.; Bozdog, H.; Daumiller, K.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Gils, H. J.; Haungs, A.; Heck, D.; Huege, T.; Isar, P. G.; Klages, H. O.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Nehls, S.

    2010-11-24

    KASCADE-Grande, an extension of the former KASCADE experiment, is a multi-component Extensive Air Shower (EAS) experiment located in Karlsruhe Institute of Technology (Campus North), Germany. An important observable for analyzing the EAS is the lateral density of charged particles in the intrinsic shower plane. This observable is deduced from the basic information provided by the Grande scintillators - the energy deposit - first in the observation plane, by using a Lateral Energy Correction Function (LECF), then in the intrinsic shower plane, by applying an adequate mapping procedure. In both steps azimuthal.

  20. Co-Design | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SciTech Connect Conference: Co-Design at the Mesoscale: Opportunities for NSLS-II Citation Details In-Document Search Title: Co-Design at the Mesoscale: Opportunities for NSLS-II Authors: Sarrao, John L. [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2013-08-15 OSTI Identifier: 1090634 Report Number(s): LA-UR-13-26447 DOE Contract Number: AC52-06NA25396 Resource Type: Conference Resource Relation: Conference: NSLS-II First Experiments Workshop ; 2013-08-12 -

  1. Quantification of Semi-Volatile Oxygenated Components of Pyrolysis Bio-Oil by Gas Chromatography/Mass Spectrometry (GC/MS): Laboratory Analytical Procedure (LAP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SciTech Connect Conference: Quanta to the Continuum: Opportunities for Mesoscale Science Citation Details In-Document Search Title: Quanta to the Continuum: Opportunities for Mesoscale Science No abstract prepared. Authors: Sarrao, John L [1] ; Crabtree, George [2] + Show Author Affiliations Los Alamos National Laboratory Argonne National Laboratory Publication Date: 2012-09-06 OSTI Identifier: 1050503 Report Number(s): LA-UR-12-24565 TRN: US201218%%1487 DOE Contract Number: AC52-06NA25396

  2. Ma_1995.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Technical Report) | SciTech Connect Technical Report: MaRIE: A facility for time-dependent materials science at the mesoscale Citation Details In-Document Search Title: MaRIE: A facility for time-dependent materials science at the mesoscale Authors: Barnes, Cris William [1] ; Kippen, Karen Elizabeth [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2015-02-11 OSTI Identifier: 1170260 Report Number(s): LA-UR-15-20995 DOE Contract Number: AC52-06NA25396 Resource

  3. ARM - Events Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, 2007 [Events] First U.S.-China Symposium on Meteorology to Take Place in Norman, Oklahoma Bookmark and Share The First U.S.-China Symposium on Meteorology: Mesoscale Meteorology and Data Assimilation will take place February 26-28 in Norman Oklahoma at the National Weather Center. The goals of the symposium are to define the state of knowledge in the two countries for mesoscale meteorology and data assimilation, and to identify the most important challenges for the next decade. The Symposium

  4. Simulations of Clouds and Sensitivity Study by Weather Research and Forecast Model for Atmospheric Radiation Measurement Case 4

    SciTech Connect (OSTI)

    Wu, J.; Zhang, M.

    2005-03-18

    One of the large errors in general circulation models (GCMs) cloud simulations is from the mid-latitude, synoptic-scale frontal cloud systems. Now, with the availability of the cloud observations from Atmospheric Radiation Measurement (ARM) 2000 cloud Intensive Operational Period (IOP) and other observational datasets, the community is able to document the model biases in comparison with the observations and make progress in development of better cloud schemes in models. Xie et al. (2004) documented the errors in midlatitude frontal cloud simulations for ARM Case 4 by single-column models (SCMs) and cloud resolving models (CRMs). According to them, the errors in the model simulated cloud field might be caused by following reasons: (1) lacking of sub-grid scale variability; (2) lacking of organized mesoscale cyclonic advection of hydrometeors behind a moving cyclone which may play important role to generate the clouds there. Mesoscale model, however, can be used to better under stand these controls on the subgrid variability of clouds. Few studies have focused on applying mesoscale models to the forecasting of cloud properties. Weaver et al. (2004) used a mesoscale model RAMS to study the frontal clouds for ARM Case 4 and documented the dynamical controls on the sub-GCM-grid-scale cloud variability.

  5. CCM3 to MM5 Data Conversion

    Energy Science and Technology Software Center (OSTI)

    2007-03-02

    The accompanying script (which uses the NCAR Command Language) ready output from the Community Climate Model Code, version 3 (CCM3) and converts it to input format for the Mesoscale Model, version 5 (MM5) code. The script utilizes a Fortran binary write routine.

  6. The T-REX valley wind intercomparison project

    SciTech Connect (OSTI)

    Schmidli, J; Billings, B J; Burton, R; Chow, F K; De Wekker, S; Doyle, J D; Grubisic, V; Holt, T R; Jiang, Q; Lundquist, K A; Ross, A N; Sheridan, P; Vosper, S; Whiteman, C D; Wyszogrodzki, A A; Zaengl, G; Zhong, S

    2008-08-07

    An accurate simulation of the evolution of the atmospheric boundary layer is very important, as the evolution of the boundary layer sets the stage for many weather phenomena, such as deep convection. Over mountain areas the evolution of the boundary layer is particularly complex, due to the nonlinear interaction between boundary layer turbulence and thermally-induced mesoscale wind systems, such as the slope and valley winds. As the horizontal resolution of operational forecasts progresses to finer and finer resolution, more and more of the thermally-induced mesoscale wind systems can be explicitly resolved, and it is very timely to document the current state-of-the-art of mesoscale models at simulating the coupled evolution of the mountain boundary layer and the valley wind system. In this paper we present an intercomparison of valley wind simulations for an idealized valley-plain configuration using eight state-of-the-art mesoscale models with a grid spacing of 1 km. Different sets of three-dimensional simulations are used to explore the effects of varying model dynamical cores and physical parameterizations. This intercomparison project was conducted as part of the Terrain-induced Rotor Experiment (T-REX; Grubisic et al., 2008).

  7. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Co-Design at the Mesoscale: Opportunities for NSLS-II","Sarrao, John L. Los Alamos National Laboratory","2013-08-15T04:00:00Z",1090634,,"LA-UR-13-26447","AC52-06NA25396",,"Confer...

  8. Thickness dependent hierarchical meso/nano scale morphologies of a metal-containing block copolymer thin film induced by hybrid annealing and their pattern transfer abilities.

    SciTech Connect (OSTI)

    Ramanathan, M.; Darling, S. B.; Center for Nanoscale Materials

    2009-01-01

    In this paper we describe dewetting phenomena in organic (polystyrene, PS)/inorganic (polyferrocenyldimethylsilane, PFS) block copolymer thin films. Mesoscale dendritic structures are induced when the spin-cast thin film of this polymer is subjected to so-called hybrid annealing, which involves both thermal and solvent annealing. We show that the development and arrangement of these mesoscale dendritic structures depends on the initial film thickness in addition to the annealing time. Importantly, there are two criteria that must be fulfilled to achieve these mesoscale morphologies: (i) the film has to be subjected to hybrid annealing, i.e. either only thermal or only solvent annealing does not produce any notable mesostructures and (ii) both PS and PFS blocks must be present during the thermal and solvent annealing procedures; if one of the blocks, for instance PS, is removed before annealing then there is no mesostructure. Various possible mechanisms for the formation of these structures are discussed and results indicate that the PFS block dominates the structure formation. We also observe a ring- or worm-like nanostructure which develops only when the film is subjected to hybrid annealing at a particular film thickness. Apart from these results, here we demonstrate that mesoscale structures can be successfully transferred onto underlying substrates.

  9. Moist multi-scale models for the hurricane embryo

    SciTech Connect (OSTI)

    Majda, Andrew J. [New York University; Xing, Yulong [ORNL; Mohammadian, Majid [University of Ottawa, Canada

    2010-01-01

    Determining the finite-amplitude preconditioned states in the hurricane embryo, which lead to tropical cyclogenesis, is a central issue in contemporary meteorology. In the embryo there is competition between different preconditioning mechanisms involving hydrodynamics and moist thermodynamics, which can lead to cyclogenesis. Here systematic asymptotic methods from applied mathematics are utilized to develop new simplified moist multi-scale models starting from the moist anelastic equations. Three interesting multi-scale models emerge in the analysis. The balanced mesoscale vortex (BMV) dynamics and the microscale balanced hot tower (BHT) dynamics involve simplified balanced equations without gravity waves for vertical vorticity amplification due to moist heat sources and incorporate nonlinear advective fluxes across scales. The BMV model is the central one for tropical cyclogenesis in the embryo. The moist mesoscale wave (MMW) dynamics involves simplified equations for mesoscale moisture fluctuations, as well as linear hydrostatic waves driven by heat sources from moisture and eddy flux divergences. A simplified cloud physics model for deep convection is introduced here and used to study moist axisymmetric plumes in the BHT model. A simple application in periodic geometry involving the effects of mesoscale vertical shear and moist microscale hot towers on vortex amplification is developed here to illustrate features of the coupled multi-scale models. These results illustrate the use of these models in isolating key mechanisms in the embryo in a simplified content.

  10. NEAMS FPL M2 Milestone Report: Development of a UO? Grain Size Model using Multicale Modeling and Simulation

    SciTech Connect (OSTI)

    Michael R Tonks; Yongfeng Zhang; Xianming Bai

    2014-06-01

    This report summarizes development work funded by the Nuclear Energy Advanced Modeling Simulation program's Fuels Product Line (FPL) to develop a mechanistic model for the average grain size in UO? fuel. The model is developed using a multiscale modeling and simulation approach involving atomistic simulations, as well as mesoscale simulations using INL's MARMOT code.

  11. Long range hopping mobility platform.

    SciTech Connect (OSTI)

    Spletzer, Barry Louis; Fischer, Gary John

    2003-03-01

    Sandia National Laboratories has developed a mesoscale hopping mobility platform (Hopper) to overcome the longstanding problems of mobility and power in small scale unmanned vehicles. The system provides mobility in situations such as negotiating tall obstacles and rough terrain that are prohibitive for other small ground base vehicles. The Defense Advanced Research Projects Administration (DARPA) provided the funding for the hopper project.

  12. Complete Monte Carlo Simulation of Neutron Scattering Experiments

    SciTech Connect (OSTI)

    Drosg, M.

    2011-12-13

    In the far past, it was not possible to accurately correct for the finite geometry and the finite sample size of a neutron scattering set-up. The limited calculation power of the ancient computers as well as the lack of powerful Monte Carlo codes and the limitation in the data base available then prevented a complete simulation of the actual experiment. Using e.g. the Monte Carlo neutron transport code MCNPX [1], neutron scattering experiments can be simulated almost completely with a high degree of precision using a modern PC, which has a computing power that is ten thousand times that of a super computer of the early 1970s. Thus, (better) corrections can also be obtained easily for previous published data provided that these experiments are sufficiently well documented. Better knowledge of reference data (e.g. atomic mass, relativistic correction, and monitor cross sections) further contributes to data improvement. Elastic neutron scattering experiments from liquid samples of the helium isotopes performed around 1970 at LANL happen to be very well documented. Considering that the cryogenic targets are expensive and complicated, it is certainly worthwhile to improve these data by correcting them using this comparatively straightforward method. As two thirds of all differential scattering cross section data of {sup 3}He(n,n){sup 3}He are connected to the LANL data, it became necessary to correct the dependent data measured in Karlsruhe, Germany, as well. A thorough simulation of both the LANL experiments and the Karlsruhe experiment is presented, starting from the neutron production, followed by the interaction in the air, the interaction with the cryostat structure, and finally the scattering medium itself. In addition, scattering from the hydrogen reference sample was simulated. For the LANL data, the multiple scattering corrections are smaller by a factor of five at least, making this work relevant. Even more important are the corrections to the Karlsruhe data due to the inclusion of the missing outgoing self-attenuation that amounts to up to 15%.

  13. Status of the KATRIN experiment and prospects to search for keV-mass sterile neutrinos in tritium β-decay

    SciTech Connect (OSTI)

    Mertens, Susanne

    2015-03-24

    In this contribution the current status and future perspectives of the Karlsruhe Tritium Neutrino (KATRIN) Experiment are presented. The prime goal of this single β-decay experiment is to probe the absolute neutrino mass scale with a sensitivity of 200 meV (90% CL). We discuss first results of the recent main spectrometer commissioning measurements, successfully verifying the spectrometer’s basic vacuum, transmission and background properties. We also discuss the prospects of making use of the KATRIN tritium source, to search for sterile neutrinos in the multi-keV mass range constituting a classical candidate for Warm Dark Matter. Due to the very high source luminosity, a statistical sensitivity down to active-sterile mixing angles of sin² θ < 1 · 10⁻⁷ (90% CL) could be reached.

  14. Measurement of the neutron capture cross section of {sup 15}N J

    SciTech Connect (OSTI)

    MeiBner, N.J.; Schatz, H.; Herndl, H.; Wiescher, M.

    1995-10-01

    Neutron capture reactions on fight nuclei may be of considerable importance for the s-process nucleosynthesis in red giant stars as well as in inhomogeneous big bang scenarios and high entropy supernovae neutrino bubbles. To determine the reaction rates for such different temperature conditions, the cross sections need to be known for a wide energy range. The reaction {sup 15}N(n,{gamma}) represents an important link in the reaction seququences for the production of heavier isotopes in such scenarios. At high temperature conditions, the cross section is not only influenced by a non resonant a-wave contribution but also by a non resonant p-wave contribution and higher energy resonances. The (n,{gamma}) cross section has been measured at the Forschungszentrum Karlsruhe for different neutron energies using a fast cyclic neutron activation technique. The technique and the results will be presented.

  15. Investigation of the EAS Lateral Particle Density at 500 m Distance from Shower Core

    SciTech Connect (OSTI)

    Toma, G.

    2008-01-24

    For the experimental conditions of the KASCADE-Grande experiment, the density of EAS charged particles at the distance of about 500 m from the shower core S(500) has been shown by detailed simulation studies to be an approximate energy estimator, being nearly independent of the mass of the primary particle. This report presents some experimentally observed features of the S(500) observable registered with the KASCADE-Grande array installed at the Forschungszentrum Karlsruhe, Germany The measured energy deposits of particles in the 37 scintillation detector stations have been used to reconstruct the lateral charged particle distributions that are described by a Linsley parameterization (LDF). Among other features, the S(500) dependence from the EAS angle of incidence has been studied.

  16. Nuclear waste repository research at the micro- to nanoscale

    SciTech Connect (OSTI)

    Schaefer, T.; Denecke, M. A.

    2010-04-06

    Micro- and nano-focused synchrotron radiation techniques to investigate determinant processes in contaminant transport in geological media are becoming especially an increasingly used tool in nuclear waste disposal research. There are a number of reasons for this but primarily they are driven by the need to characterize actinide speciation localized in components of heterogeneous natural systems. We summarize some of the recent research conducted by researchers of the Institute of Nuclear Waste Disposal (INE) at the Karlsruhe Institute of Technology using micro- and nano-focused X-ray beams for characterization of colloids and their interaction with minerals and of elemental and phase distributions in potential repository host rocks and actinide speciation in a repository natural analogues sample. Such investigations are prerequisite to ensuring reliable assessment of the long term radiological safety for proposed nuclear waste disposal sites.

  17. Neutron physics of the Re/Os clock. II. The (n,n{sup '}) cross section of {sup 187}Os at 30 keV neutron energy

    SciTech Connect (OSTI)

    Mosconi, M.; Heil, M.; Kaeppeler, F.; Plag, R.; Mengoni, A.

    2010-07-15

    The inelastic neutron-scattering cross section of {sup 187}Os has been determined in a time-of-flight experiment at the Karlsruhe 3.7-MV Van de Graaff accelerator. An almost monoenergetic beam of 30-keV neutrons was produced at the threshold of the {sup 7}Li(p,n){sup 7}Be reaction. Information on the inelastic channel is required for reliable calculations of the so-called stellar enhancement factor, by which the laboratory cross section of {sup 187}Os must be corrected in order to account for the thermal population of low-lying excited states at the temperatures of s-process nucleosynthesis, in particular of the important state at 9.75 keV. This correction represents a crucial step in the interpretation of the {sup 187}Os/{sup 187}Re pair as a cosmochronometer.

  18. Theory, design, and operation of liquid metal fast breeder reactors, including operational health physics

    SciTech Connect (OSTI)

    Adams, S.R.

    1985-10-01

    A comprehensive evaluation was conducted of the radiation protection practices and programs at prototype LMFBRs with long operational experience. Installations evaluated were the Fast Flux Test Facility (FFTF), Richland, Washington; Experimental Breeder Reactor II (EBR-II), Idaho Falls, Idaho; Prototype Fast Reactor (PFR) Dounreay, Scotland; Phenix, Marcoule, France; and Kompakte Natriumgekuhlte Kernreak Toranlange (KNK II), Karlsruhe, Federal Republic of Germany. The evaluation included external and internal exposure control, respiratory protection procedures, radiation surveillance practices, radioactive waste management, and engineering controls for confining radiation contamination. The theory, design, and operating experience at LMFBRs is described. Aspects of LMFBR health physics different from the LWR experience in the United States are identified. Suggestions are made for modifications to the NRC Standard Review Plan based on the differences.

  19. Dismantling of the PETRA glove box: tritium contamination and inventory assessment

    SciTech Connect (OSTI)

    Wagner, R.

    2015-03-15

    The PETRA facility is the first installation in which experiments with tritium were carried out at the Tritium Laboratory Karlsruhe. After completion of two main experimental programs, the decommissioning of PETRA was initiated with the aim to reuse the glove box and its main still valuable components. A decommissioning plan was engaged to: -) identify the source of tritium release in the glove box, -) clarify the status of the main components, -) assess residual tritium inventories, and -) de-tritiate the components to be disposed of as waste. Several analytical techniques - calorimetry on small solid samples, wipe test followed by liquid scintillation counting for surface contamination assessment, gas chromatography on gaseous samples - were deployed and cross-checked to assess the remaining tritium inventories and initiate the decommissioning process. The methodology and the main outcomes of the numerous different tritium measurements are presented and discussed. (authors)

  20. Pixelsex or Cosmic Revelation ? how art & science can meet in public space

    ScienceCinema (OSTI)

    None

    2011-10-06

    Tim Otto Roth is known for his large projects in public space linking art & science. In his presentation the German artist and media theorist demonstrates some of his latest projects - among others Cosmic Revelation which changed the KASCADE detector field for cosmic rays at the Karlsruhe Institute of Technology into a giant flashing light field. The Pixelsex project leads him to the question if the universe might be digital. In occasion of his one week residency at CERN Tim Otto Roth explores the material culture of particle physics and its ways of finding pictorial representations. Above all he is interested in methods like the Monte Carlo simulation, but also in CERN as giant collaborative institution and consequently as birthplace for the World Wide Web.

  1. Status of the KATRIN experiment and prospects to search for keV-mass sterile neutrinos in tritium β-decay

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mertens, Susanne

    2015-03-24

    In this contribution the current status and future perspectives of the Karlsruhe Tritium Neutrino (KATRIN) Experiment are presented. The prime goal of this single β-decay experiment is to probe the absolute neutrino mass scale with a sensitivity of 200 meV (90% CL). We discuss first results of the recent main spectrometer commissioning measurements, successfully verifying the spectrometer’s basic vacuum, transmission and background properties. We also discuss the prospects of making use of the KATRIN tritium source, to search for sterile neutrinos in the multi-keV mass range constituting a classical candidate for Warm Dark Matter. Due to the very high sourcemore » luminosity, a statistical sensitivity down to active-sterile mixing angles of sin² θ < 1 · 10⁻⁷ (90% CL) could be reached.« less

  2. Decommissioning of German Nuclear Research Facilities under the Governance of the Federal Ministry of Education and Research

    SciTech Connect (OSTI)

    Weigl, M. [Forschungszentrum Karlsruhe GmbH, Projekttragerforschungszentrum Karlsruhe (PTKA-WTE), Karlsruhe (Germany)

    2008-07-01

    Since the announcement of the first nuclear program in 1956, nuclear R and D in Germany has been supported by the Federal Government under four nuclear programs and later on under more general energy R and D programs. The original goal was to help German industry to achieve safe, low-cost generation of energy and self-sufficiency in the various branches of nuclear technology, including the fast breeder reactor and the fuel cycle. Several national research centers were established to host or operate experimental and demonstration plants. These are mainly located at the sites of the national research centers at Juelich and Karlsruhe. In the meantime, all these facilities were shut down and most of them are now in a state of decommissioning and dismantling (D and D). Meanwhile, Germany is one of the leading countries in the world in the field of D and D. Two big demonstration plants, the Niederaichbach Nuclear Power Plant (KKN) a heavy-water cooled pressure tube reactor with carbon-dioxide cooling and the Karlstein Superheated Steam Reactor (HDR) a boiling light water reactor with a thermal power of 100 MW, are totally dismantled and 'green field' is reached. For two other projects the return to 'green field' sites will be reached by the end of this decade. These are the dismantling of the Multi-Purpose Research Reactor (MZFR) and the Compact Sodium Cooled Reactor (KNK) both located at the Forschungszentrum Karlsruhe. Within these projects a lot of new solutions und innovative techniques were tested, which were developed at German universities and in small and medium sized companies mostly funded by the Federal Ministry of Education and Research (BMBF). For example, high performance underwater cutting technologies like plasma arc cutting and contact arc metal cutting. (authors)

  3. Assessment of Molecular Modeling & Simulation

    SciTech Connect (OSTI)

    2002-01-03

    This report reviews the development and applications of molecular and materials modeling in Europe and Japan in comparison to those in the United States. Topics covered include computational quantum chemistry, molecular simulations by molecular dynamics and Monte Carlo methods, mesoscale modeling of material domains, molecular-structure/macroscale property correlations like QSARs and QSPRs, and related information technologies like informatics and special-purpose molecular-modeling computers. The panel's findings include the following: The United States leads this field in many scientific areas. However, Canada has particular strengths in DFT methods and homogeneous catalysis; Europe in heterogeneous catalysis, mesoscale, and materials modeling; and Japan in materials modeling and special-purpose computing. Major government-industry initiatives are underway in Europe and Japan, notably in multi-scale materials modeling and in development of chemistry-capable ab-initio molecular dynamics codes.

  4. SISGR -- Domain Microstructures and Mechanisms for Large, Reversible and Anhysteretic Strain Behaviors in Phase Transforming Ferroelectric Materials

    SciTech Connect (OSTI)

    Wang, Yu U.

    2013-12-06

    This four-year project (including one-year no-cost extension) aimed to advance fundamental understanding of field-induced strain behaviors of phase transforming ferroelectrics. We performed meso-scale phase field modeling and computer simulation to study domain evolutions, mechanisms and engineering techniques, and developed computational techniques for nanodomain diffraction analysis; to further support above originally planned tasks, we also carried out preliminary first-principles density functional theory calculations of point defects and domain walls to complement meso-scale computations as well as performed in-situ high-energy synchrotron X-ray single crystal diffraction experiments to guide theoretical development (both without extra cost to the project thanks to XSEDE supercomputers and DOE user facility Advanced Photon Source).

  5. Multi-physics microstructural simulation of sintering.

    SciTech Connect (OSTI)

    Tikare, Veena

    2010-06-01

    Simulating the detailed evolution of microstructure at the mesoscale is increasingly being addressed by a number of methods. Discrete element modeling and Potts kinetic Monte Carlo have achieved success in capturing different aspects of sintering well. Discrete element cannot treat the details of neck formation and other shape evolution, especially when considering particles of arbitrary shapes. Potts kMC treats the micorstructural evolution very well, but cannot incorporate complex stress states that form especially during differential sintering. A model that is capable of simulating microstructural evolution during sintering at the mesoscale and can incorporate differential stresses is being developed. This multi-physics model that can treat both interfacial energies and the inter-particle stresses will be introduced. It will be applied to simulate microstructural evolution while resolving individual particles and the stresses that develop between them due to local shrinkage. Results will be presented and the future development of this model will be discussed.

  6. Phase field study of interfacial diffusion-driven spheroidization in a composite comprized of two mutually insoluble phases

    SciTech Connect (OSTI)

    Tian, Liang [Ames Laboratory; Russell, Alan [Ames Laboratory

    2014-03-27

    The phase field approach is a powerful computational technique to simulate morphological and microstructural evolution at the mesoscale. Spheroidization is a frequently observed morphological change of mesoscale heterogeneous structures during annealing. In this study, we used the diffuse interface phase field method to investigate the interfacial diffusion-driven spheroidization of cylindrical rod structures in a composite comprised of two mutually insoluble phases in a two-dimensional case. Perturbation of rod radius along a cylinder's axis has long been known to cause the necessary chemical potential gradient that drives spheroidization of the rod by Lord Rayleigh's instability theory. This theory indicates that a radius perturbation wavelength larger than the initial rod circumference would lead to cylindrical spheroidization. We investigated the effect of perturbation wavelength, interfacial energy, volume diffusion, phase composition, and interfacial percentage on the kinetics of spheroidization. The results match well with both the Rayleigh's instability criterion and experimental observations.

  7. Numerical method for shear bands in ductile metal with inclusions

    SciTech Connect (OSTI)

    Plohr, Jee Yeon N [Los Alamos National Laboratory; Plohr, Bradley J [Los Alamos National Laboratory

    2010-01-01

    A numerical method for mesoscale simulation of high strain-rate loading of ductile metal containing inclusions is described. Because of small-scale inhomogeneities, such a composite material is prone to localized shear deformation (adiabatic shear bands). The modeling framework is the Generalized Method of Cells of Paley and Aboudi [Mech. Materials, vol. 14, pp. /27-139, 1992], which ensures that the micromechanical response of the material is reflected in the behavior of the composite at the mesoscale. To calculate the effective plastic strain rate when shear bands are present, the analytic and numerical analysis of shear bands by Glimm, Plohr, and Sharp [Mech. Materials, vol. 24, pp. 31-41, 1996] is adapted and extended.

  8. The Lagrangian particle dispersion model FLEXPART-WRF VERSION 3.1

    SciTech Connect (OSTI)

    Brioude, J.; Arnold, D.; Stohl, A.; Cassiani, M.; Morton, Don; Seibert, P.; Angevine, W. M.; Evan, S.; Dingwell, A.; Fast, Jerome D.; Easter, Richard C.; Pisso, I.; Bukhart, J.; Wotawa, G.

    2013-11-01

    The Lagrangian particle dispersion model FLEXPART was originally designed for cal- culating long-range and mesoscale dispersion of air pollutants from point sources, such as after an accident in a nuclear power plant. In the meantime FLEXPART has evolved into a comprehensive tool for atmospheric transport modeling and analysis at different scales. This multiscale need from the modeler community has encouraged new developments in FLEXPART. In this document, we present a version that works with the Weather Research and Forecasting (WRF) mesoscale meteoro- logical model. Simple procedures on how to run FLEXPART-WRF are presented along with special options and features that differ from its predecessor versions. In addition, test case data, the source code and visualization tools are provided to the reader as supplementary material.

  9. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistical Formulations of Cloud Inhomegeneity Parameters Over the Southern Great Plains Z. N. Kogan, Y. L. Kogan, and D. Mechem Cooperative Institute of Mesoscale Meteorogical Studies University of Oklahoma Norman, Oklahoma Introduction Lack of data on cloud variability is one of the main reasons most current climate models consider clouds as plane-parallel, horizontally homogeneous combinations of cloudy and clear portions defined by cloud fraction. Accounting for cloud inhomogeneity should

  10. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Near-Real-Time Retrieval of Cloud Properties Over the ARM CART Area from GOES Data P. Minnis, W. L. Smith, Jr., D. F. Young, and L. Nguyen Atmospheric Sciences National Aeronautics and Space Administration Langley Research Center Hampton, Virginia A. D. Rapp, P. W. Heck, and M. M. Khaiyer Analytical Services & Materials, Inc. Hampton, Virginia Introduction Mesoscale cloud properties complement the point measurements of similar parameters at the Atmospheric Radiation Measurement (ARM) surface

  11. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensitivity of Satellite-Retrieved Cloud Properties to the Effective Variance of Cloud Droplet Size Distribution R.F. Arduini Science Applications International Corporation Hampton, Virginia P. Minnis and W.L. Smith, Jr. National Aeronautics and Space Administration Langley Research Center Hampton, Virginia J.K. Ayers and M.M. Khaiyer Analytical Services and Materials, Inc. P. Heck Coorperative Institute for Mesoscale Meteorological Studies/ University of Wisconsin-Madison Madison, Wisconsin

  12. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scale Dependence of Variability in Stratiform Clouds Based on Millimeter Wave Could Radar Z.N. Kogan, Y.L. Kogan, and D.B. Mechem Cooperative Institute for Mesoscale Meteorological Studies University of Oklahoma Norman, Oklahoma Introduction Internal variability of stratiform clouds is manifested on grid scales ranging from cloud resolving models to general circulation models, and its accurate formulation is one of the most important tasks in improvement of model predictions. Understanding cloud

  13. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Toward a Diurnal Climatology of Cold-Season Turbulence Statistics in Continental Stratocumulus as Observed by the Atmospheric Radiation Measurement Millimeter- Wavelength Cloud Radars D.B. Mechem and Y.L. Kogan Cooperative Institute for Mesoscale Meteorological Studies University of Oklahoma Norman, Oklahoma M.E. Childers and K.M. Donner School of Meteorology University of Oklahoma Norman, Oklahoma Introduction Numerous observational studies of marine stratocumulus have demonstrated a pronounced

  14. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Representing Cloud Processing of Aerosol in Numerical Models DB Mechem and YL Kogan Cooperative Institute for Mesoscale Meteorological Studies University of Oklahoma Norman, Oklahoma Introduction The satellite imagery in Figure 1 provides dramatic examples of how aerosol influences the cloud field. Aerosol from ship exhaust can serve as nucleation centers in otherwise cloud-free regions, forming ship tracks (top image), or can enhance the reflectance/albedo in already cloudy regions. This image

  15. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessing the Errors of Microphysical Retrievals Based on Doppler Radar Parameters Y.L. Kogan, Z.N. Kogan, and D.B. Mechem Cooperative Institute for Mesoscale Meteorological Studies University of Oklahoma Norman, Oklahoma Introduction The paper analyzes errors in retrievals of cloud liquid water content (Q l ) and precipitation flux (R) based on three different sets of parameters: a) radar reflectivity, Z, b) radar reflectivity and Doppler velocity, V , and c) radar reflectivity and Doppler

  16. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Background Climatology for the Atmospheric Radiation Measurement Program Mobile Facility Deployment in Niamey: Mean Annual Cycle and 2004-2005 Interannual Variability P.J. Lamb and M. Issa Lélé Cooperative Institute for Mesoscale Meteorological Studies The University of Oklahoma Norman, Oklahoma Abstract This study is comprised of two parts. The first part provides the long-term mean annual cycle context for the deployment of Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) in

  17. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improving the Representation of Aerosol-Cloud- Precipitation Interactions in Numerical Models D.B. Mechem and Y.L. Kogan Cooperative Institute for Mesoscale Meteorological Studies University of Oklahoma Norman, Oklahoma Introduction Accurately representing aerosol indirect effects in large-scale numerical models requires microphysical parameterizations that treat complex aerosol-cloud-precipitation interactions in a realistic manner. Here we address two important aspects of these microphysical

  18. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optical Depth Retrievals from Solar Background "Signal" of Micropulse Lidars W.J. Wiscombe and A. Marshak Climate and Radiation Branch National Aeronautics and Space Agency/Goddard Space Flight Center Greenbelt, Maryland J.C. Chiu Joint Center for Earth Systems Technology University of Maryland Baltimore County Baltimore, Maryland E.J. Welton Mesoscale Atmospheric Processes Branch National Aeronautics and Space Agency/Goddard Space Flight Center Greenbelt, Maryland S.C. Valencia

  19. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in-situ images of void collapse in explosives July 24, 2014 While creating the first-ever images of explosives using an x-ray free electron laser in California, Los Alamos researchers and collaborators demonstrated a crucial diagnostic for studying how voids affect explosives under shock loading. The in situ data constitute the first experimental step toward developing next-generation, physically based mesoscale models with predictive capability for high explosives. Significance of the research

  20. 11th LANSCE School on Neutron Scattering | Hands-On Experiments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sample picture Hands-on Experiments Students will have an opportunity to participate in experimental set-up and data-analysis of various exemplary neutron experiments in the areas of materials at the mesoscale. They will use several instruments utlizing different neutron scattering and complementary techniques. Featured Instruments (tentative) HIPPO: Texture Studies SPEAR: Study of nanoparticle assemblies with neutron reflectometry LQD: Self-Assembled Structures NPDF: Study of nanostructured

  1. Chapter 9: Enabling Capabilities for Science and Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: Enabling Capabilities for Science and Energy September 2015 Quadrennial Technology Review 9 Enabling Capabilities for Science and Energy Tools for Scientific Discovery and Technology Development  Investment in basic science research is expanding our understanding of how structure leads to function-from the atomic- and nanoscale to the mesoscale and beyond-in natural systems, and is enabling a transformation from observation to control and design of new systems with properties tailored to

  2. FEAB105 | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    05 Mesoscale Characterization of Natural and Synthetic Gas Hydrates FEAB105 Project Goal Develop the information needed to model various hydrate recovery schemes and assess and predict seafloor stability. Background Prior to this project, Oak Ridge National Laboratory (ORNL) had constructed a pressure cell to synthesize gas hydrates from water and gas and characterize the resulting atomic structures with in-situ neutron powder diffraction. As part of this earlier effort ORNL studied the

  3. Evaluation of Cloud-resolving and Limited Area Model Intercomparison

    Office of Scientific and Technical Information (OSTI)

    Simulations using TWP-ICE Observations. Part 1: Deep Convective Updraft Properties (Journal Article) | SciTech Connect 1: Deep Convective Updraft Properties Citation Details In-Document Search Title: Evaluation of Cloud-resolving and Limited Area Model Intercomparison Simulations using TWP-ICE Observations. Part 1: Deep Convective Updraft Properties Ten 3D cloud-resolving model (CRM) simulations and four 3D limited area model (LAM) simulations of an intense mesoscale convective system

  4. Evaluation of Cloud-resolving and Limited Area Model Intercomparison

    Office of Scientific and Technical Information (OSTI)

    Simulations using TWP-ICE Observations. Part 2: Rain Microphysics (Journal Article) | SciTech Connect 2: Rain Microphysics Citation Details In-Document Search Title: Evaluation of Cloud-resolving and Limited Area Model Intercomparison Simulations using TWP-ICE Observations. Part 2: Rain Microphysics Ten 3D cloud-resolving model (CRM) simulations and four 3D limited area model (LAM) simulations of an intense mesoscale convective system observed on January 23-24, 2006 during the Tropical Warm

  5. How is the Data Quality Office Doing?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How is the Data Quality Office Doing? K. L. Sonntag, R. A. Peppler, A. R. Dean, and C. M. Shafer Cooperative Institute for Mesoscale Meteorological Studies University of Oklahoma Norman, Oklahoma Introduction The Atmospheric Radiation Measurement (ARM) Program has collected data from its Southern Great Plains (SGP) climate research facility since late 1992, from its Tropical Western Pacific (TWP) site since 1996, and from its North Slope of Alaska (NSA) site since 1997. There are numerous

  6. Research | NEES - EFRC | University of Maryland Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Research NEES Mission NEES EFRC Research Overview NEES EFRC Research Overview To reveal scientific insights and design principles that enable a next-generation electrical energy storage technology based on dense mesoscale architectures of multifunctional nanostructures. The Challenge As demand for electrical energy storage (EES) reaches a critical point with increasing applications in transportation, grid storage and usage of renewable sources, energy research community seeks to

  7. Subtask 2: Molecules, Materials, and Systems for Solar Electricity | ANSER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center | Argonne-Northwestern National Laboratory 2: Molecules, Materials, and Systems for Solar Electricity Home > Research > Subtask 2 The above figure depicts the structure of active polymer layers in organic solar cells. The above figure depicts the structure of active polymer layers in organic solar cells. ANSER Center research tests theory-driven ideas to understand at a fundamental level how photovoltaic cell performance is affected by nanoscale/mesoscale

  8. The ARM Program Data Quality Office - A New Approach for Coordinating Data Quality Efforts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Program Data Quality Office - A New Approach for Coordinating Data Quality Efforts R. A. Peppler, K. L. Sonntag, and A. R. Dean Cooperative Institute for Mesoscale Meteorological Studies University of Oklahoma Norman, Oklahoma Introduction The Atmospheric Radiation Measurement (ARM) Program Data Quality (DQ) Office was established at the University of Oklahoma in July 2000 to coordinate the continued development and implementation of a program to ensure the quality of data collected by ARM's

  9. Tropical anvil cirrus evolution from observations and numerical simulations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tropical anvil cirrus evolution from observations and numerical simulations Deng, Min University of Utah Mace, Gerald University of Utah Category: Modeling The tropical anvil cirrus formation and maintenance mechanism evolves during the life cycle of the mesoscale complexes. The large heating-rate gradients within the cloud may induce dynamical responses which would tend to lift and spread the anvils (Ackerman, 1988). The radiation heating can act as sources of turbulence and affect the anvil

  10. Other Locales Gulf Stream Locale -A Field Laboratory for Cloud Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gulf Stream Locale -A Field Laboratory for Cloud Process S. Raman Department of Marine, Earth and Atmospheric Sciences North Carolina State University Raleigh, NC 27695-8028 Clouds associated with the Gulf Stream Locale, (Figure 1) are in general due to the cyclogenesis or redevelopments of the storms off the east coast of the United States in winters, movement along the coast of the storms that are generated over the Gulf of Mexico in the spring and fall and mesoscale convective circulations

  11. X:\ARM_19~1\PGS77-91.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Mean Properties of Simulated Convection in a Cloud-Resolving Model with Those Produced by Cumulus Parameterization J. Dudhia Mesoscale and Microscale Meteorology Division National Center for Atmospheric Research Boulder, Colorado D. B. Parsons Atmospheric Technology Division National Center for Atmospheric Research Boulder, Colorado Introduction An Intensive Observation Period (IOP) of the Atmospheric Radiation Measurement (ARM) Program took place at the Southern Great Plains (SGP)

  12. campbell-99.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Micropulse Lidar Data Sets and Initial Observations at Nauru Island J. R. Campbell and D. L. Hlavka Science Systems and Applications Inc. National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland J. D. Spinhirne Mesoscale and Atmospheric Processes Branch National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland C. J. Flynn Pacific Northwest National Laboratory Richland, Washington Introduction Full-time atmospheric profiling

  13. demoz-98.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Towards Quantifying Mesoscale Flows in the Troposphere Using Raman Lidar and Sondes B. B. Demoz, K. D. Evans, S. H. Melfi, and M. Cadirola University of Maryland Baltimore County Baltimore, Maryland D. O'C. Starr, D. N. Whiteman, and G. Schwemmer NASA-Goddard Space Flight Center Greenbelt, Maryland D. D. Turner Pacific Northwest National Laboratory Richland, Washington R. A. Ferrare NASA-Langley Research Center Hampton, Virginia J. E. M. Goldsmith Sandia National Laboratories Livermore,

  14. dudhia-98.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Verification of June 1993 IOP Assimilation Dataset and its Use in Driving a Single-Column CCM3 Model J. Dudhia Mesoscale and Microscale Meteorology Division National Center for Atmospheric Research Boulder, Colorado D. B. Parsons Atmospheric Technology Division National Center for Atmospheric Research Boulder, Colorado J. Petch Climate and Global Dynamics Division National Center for Atmospheric Research Boulder, Colorado Overview One goal of the Atmospheric Radiation Measurement (ARM) Program

  15. guichard(2)-99.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluating Mesoscale Model Predictions and Parameterizations Against SGP ARM Data on a Seasonal Timescale F. Guichard, D. B. Parsons, and J. Dudhia National Center for Atmospheric Research Boulder, Colorado Introduction A major objective of the Atmospheric Radiation Measurement (ARM) Program is to test and improve parameterizations for cloud and radiative processes. A common strategy adopted for this purpose within the ARM science team is to utilize single-column models (SCMs) driven by

  16. guo-98.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Assimilation of ARM WVIOP-96 Data with the MM5-4DVAR System Y.-R. Guo, Y.-H. Kuo, J. Dudhia, and D. B. Parsons National Center for Atmospheric Research Boulder, Colorado Introduction In the development of an Integrated Data Assimilation and Sounding System (IDASS) in support of the Atmospheric Radiation Measurement (ARM) Program, assimilation of heterogeneous mesoscale observations collected during the Water Vapor Intensive Observation Period of September 1996 (WVIOP-96) is one of the main

  17. kogan-98.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Effect of Cloud Geometrical Thickness Variability on Optical Depth Z. N. Kogan and Y. L. Kogan Cooperative Institute for Mesoscale Meteorological Studies University of Oklahoma Norman, Oklahoma Introduction The formulation of the cloud-radiation feedback is compounded by extreme variability of clouds over a wide range of scales. In this study, we address the problem of geometry and spatial inhomogeneity in stratiform cloud layers and its influence on cloud optical depth. The investigation is

  18. leoles_poster_v1.0.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observations and LES of Liquid Stratus over the ACRF D. B. Mechem and Y. L. Kogan Cooperative Institute for Mesoscale Meteorological Studies, The University of Oklahoma The evolution of low cloud systems is inextricably linked to dynamical processes: heat, moisture, mass, and momentum transports, and of course, entrainment. Studies employing continuous years of low cloud observations over the southern great plains ARM Climate Research Facility (ACRF) emphasized their climatological,

  19. Broadband Longwave Radiative Cooling Rates in Inhomogeneous Stratocumulus Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Broadband Longwave Radiative Cooling Rates in Inhomogeneous Stratocumulus Clouds M. Ovtchinnikov and T. P. Ackerman Pacific Northwest National Laboratory Richland, Washington D. B. Mechem and Y. L. Kogan Cooperative Institute for Mesoscale Meteorological Studies University of Oklahoma Norman, Oklahoma R. F. Cahalan National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland A. B. Davis Los Alamos National Laboratory Los Alamos, New Mexico R. G. Ellingson and E.

  20. Argonne National Laboratory Develops Extreme-Scale Wind Farm Simulation Capabilities

    Broader source: Energy.gov [DOE]

    Researchers at DOE's Argonne National Laboratory are developing a computational simulation tool to conduct studies of complex flow and wind turbine interactions in large land-based and offshore wind farms that will improve wind plant design and reduce the levelized cost of energy. Simulations on a wind-plant-scale require accurate simultaneous resolution of multiple flow scales, from mesoscale weather to turbine-blade scale turbulence, which presents special demands on the computational solver efficiency and requires extreme scalability.

  1. Assessment of Offshore Wind Energy Resources for the United States |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Assessment of Offshore Wind Energy Resources for the United States Assessment of Offshore Wind Energy Resources for the United States This report summarizes the offshore wind resource potential for the contiguous United States and Hawaii as of May 2009. The development of this assessment has evolved over multiple stages as new regional meso-scale assessments became available, new validation data was obtained, and better modeling capabilities were implemented. It is

  2. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rachel Segalman Appointed Acting Division Director for Materials Sciences Rachel Segalman has been appointed as the acting director of the Materials Sciences Division, effective July 8. The Molecular Foundry is a part of the Material Sciences Division. She is the lead principal investigator for the Thermoelectrics Program and project leader for the Membranes and Mesoscale Assembly at the Joint Center for Artificial Photosynthesis (JCAP). Segalman is also a professor of chemical engineering at UC

  3. ISDSN Sensor System Phase One Test Report

    SciTech Connect (OSTI)

    Gail Heath

    2011-09-01

    This Phase 1 Test Report documents the test activities and results completed for the Idaho National Laboratory (INL) sensor systems that will be deployed in the meso-scale test bed (MSTB) at Florida International University (FIU), as outlined in the ISDSN-MSTB Test Plan. This report captures the sensor system configuration tested; test parameters, testing procedure, any noted changes from the implementation plan, acquired test data sets, and processed results.

  4. Kogan-ZN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Drop Effective Radius for Drizzling Marine Stratus in Global Circulation Models Z. N. Kogan and Y. L. Kogan Cooperative Institute for Mesoscale Meteorological Studies University of Oklahoma Norman, Oklahoma Introduction The cloud drop effective radius, R e , is one of the most important parameters in calculations of cloud radiative properties. Numerous formulations of the effective radius have been developed for use in numerical models (see, e.g., review in Gultepe et al. 1996); however, to the

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Role of Microphysics Parameterization in Simulating Tropical Mesoscale Convective Systems Download a printable PDF Submitter: Van Weverberg, K., Brookhaven National Laboratory Vogelmann, A. M., Brookhaven National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Van Weverberg K, AM Vogelmann, W Lin, EP Luke, AT Cialella, P Minnis, MM Khaiyer, ER Boer, and MP Jensen. 2013. "The role of cloud microphysics parameterization in the simulation

  6. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Gives Nanoscale Views of Complex Systems New ALS Technique Gives Nanoscale Views of Complex Systems Print Wednesday, 28 May 2014 00:00 Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks

  7. Microsoft Word - FinalReport DE-FG02-08ER46494

    Office of Scientific and Technical Information (OSTI)

    STATISTICAL MECHANICS MODELING OF MESOSCALE DEFORMATION IN METALS DE-FG02-08ER46494 Period of Performance: June 1, 2008 - May 31, 2012 Submitted to Mechanical Behavior and Radiation Effects Program Division of Materials Science and Engineering/Office of Basic Energy Sciences U.S. Department of Energy Program Manager: Dr. John S. Vetrano Principal Investigator Anter El-Azab, Professor Current Affiliation and Contact Information: School of Nuclear Engineering and School of Materials Engineering

  8. Final Report for Integrated Multiscale Modeling of Molecular Computing Devices

    SciTech Connect (OSTI)

    Glotzer, Sharon C.

    2013-08-28

    In collaboration with researchers at Vanderbilt University, North Carolina State University, Princeton and Oakridge National Laboratory we developed multiscale modeling and simulation methods capable of modeling the synthesis, assembly, and operation of molecular electronics devices. Our role in this project included the development of coarse-grained molecular and mesoscale models and simulation methods capable of simulating the assembly of millions of organic conducting molecules and other molecular components into nanowires, crossbars, and other organized patterns.

  9. ovtchinnikov-99.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Water Retrieval Using Radar Measurements in Stratocumulus Clouds M. Ovtchinnikov and Y. L. Kogan Cooperative Institute for Mesoscale Meteorological Studies Norman, Oklahoma Introduction A universal relation between radar reflectivity factor, Z, and liquid water content (LWC), W, would be a useful tool in retrieving W from readily available reflectivity measurements. Several studies attempted to find the functional relation in the form: Z = aW b (1) One of the fundamental difficulties in

  10. peppler-98.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 ARM Fall 1997 Integrated IOP - A Look Back R. A. Peppler Cooperative Institute of Mesoscale Meteorological Studies (CIMMS) University of Oklahoma Norman, Oklahoma D. L. Sisterson Argonne National Laboratory Argonne, Illinois J. Teske ERC, Incorporated Billings, Oklahoma Introduction The Atmospheric Radiation Measurement (ARM) Program's largest intensive observation period (IOP) to date was conducted from September 15 to October 5, 1997, at and near the Southern Great Plains (SGP) Cloud and

  11. richardson(2)-99.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chilled Mirror Dew Point Hygrometer for Field Use S. J. Richardson Cooperative Institute for Mesoscale Meteorological Studies University of Oklahoma Norman, Oklahoma R. O. Knuteson and D. C. Tobin Space Science and Engineering Center University of Wisconsin Madison, Wisconsin Introduction Three chilled mirror (CM) dew point hygrometer systems have been developed at the University of Oklahoma to provide a method for obtaining NIST (National Institute for Standards and Testing) traceable

  12. richardson-98.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    47 In Situ Moisture Measurements Using Chilled Mirror Sensors S. J. Richardson Cooperative Institute for Mesoscale Meteorological Studies University of Oklahoma Norman, Oklahoma D. C. Tobin Space Science and Engineering Center University of Wisconsin - Madison Madison, Wisconsin Abstract Chilled mirror moisture measurement systems were installed at the Atmospheric Radiation Measurement (ARM) Cloud and Radiation Testbed (CART) Central Facility (CF) at the balloon borne sounding system (BBSS)

  13. splitt(2)-98.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Continued Assessment of WSR-88D Wind Data to Support ARM Single-Column Model IOPs M. E. Splitt Cooperative Institute for Mesoscale Meteorological Studies University of Oklahoma Norman, Oklahoma Introduction WSR-88D radar wind data from radars within the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site are used to provide vertical wind profiles of the horizontal wind and divergence. Assessment of the utility of this data is conducted as

  14. Biosciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biosciences Our Vision National User Facilities Research Areas In Focus Global Solutions ⇒ Navigate Section Our Vision National User Facilities Research Areas In Focus Global Solutions Molecular Biophysics and Integrated Bioimaging (MBIB) The Molecular Biophysics and Integrated Bioimaging Division generates a mechanistic and predictive understanding of biological processes, by developing and applying molecular- and meso-scale visualization and advanced spectroscopies, to enable the control,

  15. Assessment of Offshore Wind Energy Resources for the United States

    SciTech Connect (OSTI)

    Schwartz, M.; Heimiller, D.; Haymes, S.; Musial, W.

    2010-06-01

    This report summarizes the offshore wind resource potential for the contiguous United States and Hawaii as of May 2009. The development of this assessment has evolved over multiple stages as new regional meso-scale assessments became available, new validation data was obtained, and better modeling capabilities were implemented. It is expected that further updates to the current assessment will be made in future reports.

  16. Martin Holt | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Martin Holt Scientist Ph.D., University of Illinois at Urbana- Champaign Current research activity focuses on the use of nanoscale X-ray diffraction microscopy as a probe of local structural physics in materials. This is associated with multiple related areas: observation of nanoscale phase phenomena in active materials, observation of unique material behavior of nanoscale objects, and observation of emergent critical dynamics in engineered mesoscale material systems Telephone 630.252.5180 Fax

  17. Microsoft Word - Conference Agenda.Poster.Abstract Book.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Science and Optimal Learning for Materials Discovery and Design Agenda Hilton Santa Fe Historic Plaza 100 Sandoval Street Santa Fe, NM 87501 505-988-2811 May 16 - 18, 2016 Day 1: Monday, May 16, 2016 8:00 Breakfast Welcome Remarks: 8:30AM-9:30AM 8:30 Welcome, Program Overview, Logistics ............. Turab Lookman, Frank Alexander, Stephan Eidenbenz ...................................................... Workshop Organizers, Los Alamos National Laboratory (LANL) 8:40 Frontiers of Mesoscale

  18. Documentation of Hybrid Hydride Model for Incorporation into Moose-Bison

    Energy Savers [EERE]

    and Validation Strategy | Department of Energy Documentation of Hybrid Hydride Model for Incorporation into Moose-Bison and Validation Strategy Documentation of Hybrid Hydride Model for Incorporation into Moose-Bison and Validation Strategy This report documents the development, demonstration and validation of a mesoscale, microstructural evolution model for simulation of zirconium hydride d-ZrH1.5 precipitation in the cladding of used nuclear fuels that may occur during long-term dry

  19. Simulation of Post-Frontal Boundary Layers Observed During the ARM 2000 Cloud IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulation of Post-Frontal Boundary Layers Observed During the ARM 2000 Cloud IOP D. B. Mechem and Y. L. Kogan Cooperative Institute for Mesoscale Meteorological Studies University of Oklahoma Norman, Oklahoma M. Poellot University of North Dakota Grand Forks, North Dakota Introduction Large-eddy simulation (LES) models have been widely employed in the study of radiatively forced cloud topped boundary layers (CTBL). These boundary layers are typically well mixed and characterized by a sharp jump

  20. Electromagnetic rotational actuation.

    SciTech Connect (OSTI)

    Hogan, Alexander Lee

    2010-08-01

    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  1. Posters Introduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Posters Introduction A large irrigated vegetation area in a semiarid or relatively dry location is a strong surface forcing of thermal circulations (Hong et al., in press). Several observational studies have found that such thermally induced mesoscale circulation may contribute to the triggering and development of convective clouds (Barnston and Schickedanz 1984; Wilson and Schreiber 1986; Rabin et al. 1990). In the western United States, extensive areas of irrigated farmland are surrounded by

  2. Nondestructive volumetric 3-D chemical mapping of nickel-sulfur compounds at the nanoscale

    SciTech Connect (OSTI)

    Harris W. M.; Chu Y.; Nelson, G.J.; Kiss, A.M.; Izzo Jr, J.R.; Liu, Y.; Liu, M.; Wang, S.; Chiu W.K.S.

    2012-04-04

    Nano-structures of nickel (Ni) and nickel subsulfide (Ni{sub 3}S{sub 2}) materials were studied and mapped in 3D with high-resolution x-ray nanotomography combined with full field XANES spectroscopy. This method for characterizing these phases in complex microstructures is an important new analytical imaging technique, applicable to a wide range of nanoscale and mesoscale electrochemical systems.

  3. Final Technical Report for DOE Award DE-FG02-05ER63959

    SciTech Connect (OSTI)

    Christopher S. Bretherton

    2011-04-08

    The goals of this work were: (1) to improve the University of Washington shallow cumulus parameterization, first developed by the PI's group for better simulation of shallow oceanic cumulus convection in the MM5 mesoscale model (Bretherton et al., 2004, Mon. Wea. Rev.); (2) to explore its applicability to deep (precipitating) cumulus convection; and (3) to explore fundamental physical issues related to this cumulus parameterization.

  4. Update on INSIGHTS Development

    SciTech Connect (OSTI)

    Not Listed; Eric Burgett

    2011-09-01

    INSIGHTS is a transformational separate effects testing capability to perform in situ irradiation studies and characterization of the microscale behavior of nuclear fuel materials under a wide variety of in-pile conditions. Separate effects testing including growth, irradiation, and monitoring of these materials, and encompasses the full science based approach for fuels development from the nanoscale to the mesoscale behavior of the sample material and other defects driven by the modeling and simulation efforts of INL.

  5. Assessment of the Portsmouth/Paducah Project Office Conduct of Operations Oversight of the Depleted Uranium Hexafluoride Conversion Plants, May 2012

    Office of Environmental Management (EM)

    Department of Energy Offshore Wind Energy Resources for the United States Assessment of Offshore Wind Energy Resources for the United States This report summarizes the offshore wind resource potential for the contiguous United States and Hawaii as of May 2009. The development of this assessment has evolved over multiple stages as new regional meso-scale assessments became available, new validation data was obtained, and better modeling capabilities were implemented. It is expected that

  6. Four-Dimensional Data Assimilation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advances in the Development of an Integrated Data Assimilation and Sounding System W. F. Dabberdt, D. Parsons, Y.-H. Kuo, J. Dudhia, Y.-R. Guo, J. Van Baelen, C. Martin, and S. Oncley National Center for Atmospheric Research(a) Boulder, CO 80307-3000 Overview (including three components of wind , temperature, humidity, cloud water, and integrated moisture). The mesoscale data assimilation scheme is the Newtonian nudging technique. During the data assimilation period, observations of wind,

  7. Four-Dimensional Data Assimilation O. B. Toon, A. Ackerman, and E. Jensen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O. B. Toon, A. Ackerman, and E. Jensen National Aeronautics and Space Administration Ames Research Center Moffett Field, CA 94035 Center for Atmospheric Research (NCAR) mesoscale dynamical model and used to simulated cirrus clouds during the First ISCCpCa) Regional Experiment (FIRE) project. One of our goals in performing one-dimensional studies is to develop the microphysics for these three-dimensional simulations. However, since the microphysics itself is computationally very demanding, the

  8. Vision Statement for Research and Educationall Outreach for tl1e ARM CART Southern Great Plains Locale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Vision Statement for Research and Educationall Outreach for tl1e ARM CART Southern Great Plains Locale P. J. lamb Cooperative Institute for Mesoscale Meteorological Studies K. C. Crawford Oklahoma Climatological Survey F. V. Brock School of Meteorology R. M. Rabin National Severe Storms Laboratory University of Oklahoma/National Oceanic and Atmospheric Administration "Weather Center" Norman, OK 73019 .National Weather Service Forecast Office (NWSFO) Dennis H. McCarthy, Director As

  9. ARM Data Quality Office … Real-Time Assessment of Instrument Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Quality Office Real-Time Assessment of ARM Data *Ken Kehoe *Randy Peppler *Karen Sonntag *Terra Thompson *Nathan Hiers *Chris Schwarz Cooperative Institute for Mesoscale Meteorological Studies, The University of Oklahoma, Norman, OK *Sean Moore ATK Mission Research, Santa Barbara, CA ARM Data Quality History Originally, each Site Scientist and Instrument Mentor was responsible for data quality analysis. This resulted in uneven treatment of instruments at the different ARM climate research

  10. ARM Dev Workshop Plenary Presentation Gustafson 201507.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development of the LES ARM Symbiotic Simulation and Observation (LASSO) Workflow William I. Gustafson, Principal Investigator Pacific Northwest National Laboratory Andrew M. Vogelmann, Co-principal Investigator Brookhaven National Laboratory January 2014 Measurement Strategy Large-Eddy Simulation Scale (1 to 200 m) Cloud-Resolving Model Scale (1 to 4 km) Mesoscale Model Scale (4 to 20 km) Single-Column Model (100 km) General Circulation Model Scale (10 to 100 km, NCEP/ ECMWF Forcing) ARM

  11. ARM Program Data Quality Inspection and Assessment Activities: A Streamlined Approach

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Program Data Quality Inspection and Assessment Activities: A Streamlined Approach C. P. Bahrmann, R. A. Peppler, K. L. Sonntag, and A. R. Dean Cooperative Institute for Mesoscale Meteorological Studies University of Oklahoma Norman, Oklahoma S. T. Moore and S. Bottone Mission Research Corporation Santa Barbara, California Introduction A primary task of the Atmospheric Radiation Measurement (ARM) Program is to inspect and assess the quality of the data it collects. Cooperation between the

  12. ARM_STM_07_poster.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Precipitation Measurements in Oklahoma Using In-Situ and Remote Sensing Instrumentation Phillip B. Chilson 1 , Guifu Zhang 1 , Terry Schuur 2 , Alexander Ryzhkov 2 , Laura Kanofsky 2 , Qing Cao 2 , and Matt Van Every 2 (1) School of Meteorology & (2) Cooperative Institute for Mesoscale Meteorological Studies University of Oklahoma, Norman, OK Kessler Farm Field Laboratory Introduction Understanding the microphysics of precipitation and the atmosphere in which it forms and evolves is

  13. Accelerator Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Systems Accelerator Systems MaRIE will provide a capability to address the control of performance and production of weapons materials at the mesoscale. MaRIE fills a critical gap in length scale between the integral scale addressed by studies conducted at DARHT, U1a, NIF, and Z. CONTACT Richard Sheffield (505) 667-1237 Email Revolutionizing Microstructural Physics to Empower Nuclear Energy Realizing MaRIE's full suite of capabilities requires developing and integrating a suite of

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 15, 2008 [Facility News] CLASIC Discussed at Workshop in Oklahoma Bookmark and Share Participants at the CLASIC workshop in March 2008 listen intently to one of the many presenters. In June 2007, ARM led the multi-agency Cloud and Land Surface Interaction Campaign (CLASIC) conducted at the ARM Southern Great Plains site. With scientists beginning to analyze the data, the Cooperative Institute for Mesoscale Meteorological Studies at the University of Oklahoma hosted a workshop on March

  15. Better Catalysts through Microscopy: Nanometer Scale M1/M2 Intergrown Heterostructure in Mo-V-M Complex Oxides

    SciTech Connect (OSTI)

    He, Qian; Woo, Jungwon; Belianinov, Alex; Guliants, Vadim V.; Borisevich, Albina Y

    2015-01-01

    In recent decades, catalysis research has transformed from the predominantly empirical field to one where it is possible to control the catalytic properties via characterization and modification of the atomic-scale active centers. Many phenomena in catalysis, such as synergistic effect, however, transcend the atomic scale and also require the knowledge and control of the mesoscale structure of the specimen to harness. In this paper, we use our discovery of atomic-scale epitaxial interfaces in molybdenum vanadium based complex oxide catalysts systems (i.e., MoVMO, M = Ta, Te, Sb, Nb, etc.) to achieve control of the mesoscale structure of this complex mixture of very different active phases. We can now achieve true epitaxial intergrowth between the catalytically critical M1 and M2 phases in the system that are hypothesized to have synergistic interactions, and demonstrate that the resulting catalyst has improved selectivity in the initial studies. Finally, we highlight the crucial role atomic scale characterization and mesoscale structure control play in uncovering the complex underpinnings of the synergistic effect in catalysis.

  16. Better Catalysts through Microscopy: Nanometer Scale M1/M2 Intergrown Heterostructure in Mo-V-M Complex Oxides

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    He, Qian; Woo, Jungwon; Belianinov, Alex; Guliants, Vadim V.; Borisevich, Albina Y

    2015-01-01

    In recent decades, catalysis research has transformed from the predominantly empirical field to one where it is possible to control the catalytic properties via characterization and modification of the atomic-scale active centers. Many phenomena in catalysis, such as synergistic effect, however, transcend the atomic scale and also require the knowledge and control of the mesoscale structure of the specimen to harness. In this paper, we use our discovery of atomic-scale epitaxial interfaces in molybdenum vanadium based complex oxide catalysts systems (i.e., MoVMO, M = Ta, Te, Sb, Nb, etc.) to achieve control of the mesoscale structure of this complex mixturemore » of very different active phases. We can now achieve true epitaxial intergrowth between the catalytically critical M1 and M2 phases in the system that are hypothesized to have synergistic interactions, and demonstrate that the resulting catalyst has improved selectivity in the initial studies. Finally, we highlight the crucial role atomic scale characterization and mesoscale structure control play in uncovering the complex underpinnings of the synergistic effect in catalysis.« less

  17. Understanding Ice Supersaturation, Particle Growth, and Number Concentration in Cirrus Clouds

    SciTech Connect (OSTI)

    Comstock, Jennifer M.; Lin, Ruei-Fong; Starr, David O.; Yang, P.

    2008-12-10

    Many factors control the ice supersaturation and microphysical properties in cirrus clouds. We explore the effects of dynamic forcing, ice nucleation mechanisms, and ice crystal growth rate on the evolution and distribution of water vapor and cloud properties in cirrus clouds using a detailed microphysical model and remote sensing measurements obtained at the Department of Energys Atmospheric Radiation Measurement (ARM) Climate Research Facility located near Lamont, OK. To help understand dynamic scales important in cirrus formation, we force the model using both large-scale forcing derived using ARM variational analysis, and mean mesoscale velocity derived from radar Doppler velocity measurements. Both heterogeneous and homogeneous nucleation processes are explored, where we have implemented a rigorous classical theory heterogeneous nucleation scheme to compare with empirical representations. We evaluate model simulations by examining both bulk cloud properties and distributions of measured radar reflectivity, lidar extinction, and water vapor profiles, as well as retrieved cloud microphysical properties. This approach allows for independent verification of both the large and small particle modes of the particle size distribution. Our results suggest that mesoscale variability is the primary mechanism needed to reproduce observed quantities, while nucleation mechanism is secondary. Slow ice crystal growth tends to overestimate the number of small ice crystals, but does not seem to influence bulk properties such as ice water path and cloud thickness. The most realistic simulations as compared with observations are forced using mesoscale waves, include fast ice crystal growth, and initiate ice by either homogeneous or heterogeneous nucleation. Ice crystal number concentrations on the order of 10-100 L-1 produce results consistent with both lidar and radar observations during a cirrus event observed on 7 December 1999, which has an optical depth range typical of midlatitude cirrus.

  18. Cirrus clouds in a global climate model with a statistical cirrus cloud scheme

    SciTech Connect (OSTI)

    Wang, Minghuai; Penner, Joyce E.

    2010-06-21

    A statistical cirrus cloud scheme that accounts for mesoscale temperature perturbations is implemented in a coupled aerosol and atmospheric circulation model to better represent both subgrid-scale supersaturation and cloud formation. This new scheme treats the effects of aerosol on cloud formation and ice freezing in an improved manner, and both homogeneous freezing and heterogeneous freezing are included. The scheme is able to better simulate the observed probability distribution of relative humidity compared to the scheme that was implemented in an older version of the model. Heterogeneous ice nuclei (IN) are shown to decrease the frequency of occurrence of supersaturation, and improve the comparison with observations at 192 hPa. Homogeneous freezing alone can not reproduce observed ice crystal number concentrations at low temperatures (<205 K), but the addition of heterogeneous IN improves the comparison somewhat. Increases in heterogeneous IN affect both high level cirrus clouds and low level liquid clouds. Increases in cirrus clouds lead to a more cloudy and moist lower troposphere with less precipitation, effects which we associate with the decreased convective activity. The change in the net cloud forcing is not very sensitive to the change in ice crystal concentrations, but the change in the net radiative flux at the top of the atmosphere is still large because of changes in water vapor. Changes in the magnitude of the assumed mesoscale temperature perturbations by 25% alter the ice crystal number concentrations and the net radiative fluxes by an amount that is comparable to that from a factor of 10 change in the heterogeneous IN number concentrations. Further improvements on the representation of mesoscale temperature perturbations, heterogeneous IN and the competition between homogeneous freezing and heterogeneous freezing are needed.

  19. 10121-4802-01 - Phase 3 Final Summary Report and Recommendations - 11-19-15

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RPSEA Phase 3 Final Summary Report and Recommendations Document No. 10121.4802.01.Final3 Greg J Holland, James M Done, Cindy Bruyère, and Mari Tye Effect of Climate Variability and Change in Hurricane Activity in the North Atlantic Contract No. 10121-4802-01 Nov 19, 2015 PI: Greg J Holland Co-PI: James M Done NCAR Mesoscale and Microscale Meteorology Laboratory P.O. Box 3000 Boulder, CO, 80307 2 Phase 3 Report 10121-4802-01 LEGAL NOTICE This report was prepared by the National Center for

  20. In the News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In the News In the News MaRIE will provide a capability to address the control of performance and production of weapons materials at the mesoscale. MaRIE fills a critical gap in length scale between the integral scale addressed by studies conducted at DARHT, U1a, NIF, and Z. In the News Roadmap to MaRIE Los Alamos National Laboratory's proposed MaRIE facility is slated to introduce the world's highest energy hard x-ray free electron laser (XFEL). MaRIE Brochure Recruit (pdf) Roadmap for November

  1. Hierarchical Diagnosis J. E. Bossert, C.- Y .J. Kao, and J. L. Winterkamp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bossert, C.- Y .J. Kao, and J. L. Winterkamp Earth and Environmental Sciences Division Los Alamos National Laboratory Los Alamos, NM 87545 J. O. Roads and S.-C. Chen Scripps Institution of Oceanography University of California at San Diego La Jolla, CA 92093 Introduction for long-term simulations. While GCMs are global and were developed to run for extended periods, the evolution of mesoscale modeling has been far different and has focused upon short integration periods on the order of a diurnal

  2. SSRL HEADLINES May 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 - May 2013 View the Archives **Note for Outlook users: For easier reading, please click the bar at the top of this message that reads "This message was converted to plain text" and select "Display as HTML."** Science Highlights thumbnail Mesoscale Phase Distribution in Li-ion Battery Electrode Materials - Contact: Jordi Cabana (LBNL) Li-ion batteries are key elements in the effort to develop efficient chemical energy storage from sustainable energy sources. However, any

  3. Science Highlight Archives: 1995-2004

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlight Archives: 1995-2004 Print Archived Science Highlights Highlights posted before the year 2005 Biological Sciences Snapshots of Ribozyme Reaction States Reveal Structural Switch (11/04) Nerve Growth Factor Gets Good Reception (10/04) Bringing the Mesoscale into Focus (9/04) Targeting Proteins to Membranes (8/04) Starting the RNA Assembly Line (8/04) Structure of a DNA Clamp-Loader Complex (7/04) Structure of Telomere-Protecting Proteins (4/04) Designing a Novel Globular Protein

  4. X:\ARM_19~1\P139-154.WPD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dA / dN C N k ( 1 to 2 W/m 2 ) 40 3 (2 km) 3 Session Papers 147 (1) Evaluating Aerosol Indirect Effect Through Marine Stratocumulus Clouds Z. N. Kogan, Y. L. Kogan, and D. K. Lilly Cooperative Institute for Mesoscale Meteorological Studies University of Oklahoma Norman, Oklahoma Introduction During the last decade much attention has been focused on anthropogenic aerosols and their radiative influence on the global climate. Charlson et al. (1992) and Penner et al. (1994) have demonstrated that

  5. Active Climate Stabilization: Practical Physics-Based Approaches to Prevention of Climate Change

    DOE R&D Accomplishments [OSTI]

    Teller, E.; Hyde, T.; Wood, L.

    2002-04-18

    We offer a case for active technical management of the radiative forcing of the temperatures of the Earth's fluid envelopes, rather than administrative management of atmospheric greenhouse gas inputs, in order to stabilize both the global- and time-averaged climate and its mesoscale features. We suggest that active management of radiative forcing entails negligible--indeed, likely strongly negative--economic costs and environmental impacts, and thus best complies with the pertinent mandate of the UN Framework Convention on Climate Change. We propose that such approaches be swiftly evaluated in sub-scale in the course of an intensive international program.

  6. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuesday, March 11, 2014 Time: 11:00 am Speaker: Dr. Peter Fischer, Center for X-ray Optics, LBNL Title: Full-field soft x-ray microscopy: a unique tool for nano- and mesoscience Location: 67-3111 Chemla Room Image of Peter Fischer Abstract: For more than a decade research has focused on a fundamental understanding and control of nanoscale behavior. Recently, it has been recognized, that the next step beyond the nanoscale will be governed by mesoscale phenomena [1], since those are supposed to

  7. Co-Director Anna Llobet LANSCE Co-Director Heinz Nakotte NMSU

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director Anna Llobet LANSCE Co-Director Heinz Nakotte NMSU 11 th LANSCE School on Neutron Scattering Materials at the Mesoscale February 18 - 27, 2015 n e u t r o n s c h o o l . l a n l . g o v n e u t r o n s c h o o l @ l a n l . g o v Registration is free. | All local expenses covered. | Travel may be supported. Space is limited to 30 students. | Minorities are encouraged to apply. The School is primarily intended for graduate students & post-docs in chemistry, geosciences, materials

  8. Simulating atmosphere flow for wind energy applications with WRF-LES

    SciTech Connect (OSTI)

    Lundquist, J K; Mirocha, J D; Chow, F K; Kosovic, B; Lundquist, K A

    2008-01-14

    Forecasts of available wind energy resources at high spatial resolution enable users to site wind turbines in optimal locations, to forecast available resources for integration into power grids, to schedule maintenance on wind energy facilities, and to define design criteria for next-generation turbines. This array of research needs implies that an appropriate forecasting tool must be able to account for mesoscale processes like frontal passages, surface-atmosphere interactions inducing local-scale circulations, and the microscale effects of atmospheric stability such as breaking Kelvin-Helmholtz billows. This range of scales and processes demands a mesoscale model with large-eddy simulation (LES) capabilities which can also account for varying atmospheric stability. Numerical weather prediction models, such as the Weather and Research Forecasting model (WRF), excel at predicting synoptic and mesoscale phenomena. With grid spacings of less than 1 km (as is often required for wind energy applications), however, the limits of WRF's subfilter scale (SFS) turbulence parameterizations are exposed, and fundamental problems arise, associated with modeling the scales of motion between those which LES can represent and those for which large-scale PBL parameterizations apply. To address these issues, we have implemented significant modifications to the ARW core of the Weather Research and Forecasting model, including the Nonlinear Backscatter model with Anisotropy (NBA) SFS model following Kosovic (1997) and an explicit filtering and reconstruction technique to compute the Resolvable Subfilter-Scale (RSFS) stresses (following Chow et al, 2005).We are also modifying WRF's terrain-following coordinate system by implementing an immersed boundary method (IBM) approach to account for the effects of complex terrain. Companion papers presenting idealized simulations with NBA-RSFS-WRF (Mirocha et al.) and IBM-WRF (K. A. Lundquist et al.) are also presented. Observations of flow through the Altamont Pass (Northern California) wind farm are available for validation of the WRF modeling tool for wind energy applications. In this presentation, we use these data to evaluate simulations using the NBA-RSFS-WRF tool in multiple configurations. We vary nesting capabilities, multiple levels of RSFS reconstruction, SFS turbulence models (the new NBA turbulence model versus existing WRF SFS turbulence models) to illustrate the capabilities of the modeling tool and to prioritize recommendations for operational uses. Nested simulations which capture both significant mesoscale processes as well as local-scale stable boundary layer effects are required to effectively predict available wind resources at turbine height.

  9. Dissipative Particle Dynamics and Other Particle Methods for Multiphase Fluid Flow in Fractured and Porous Media

    SciTech Connect (OSTI)

    Paul Meakin; Zhijie Xu

    2009-08-01

    Particle methods are less computationally efficient than grid based numerical solution of the Navier Stokes equation. However, they have important advantages including rigorous mass conservation, momentum conservation and isotropy. In addition, there is no need for explicit interface tracking/capturing and code development effort is relatively low. We describe applications of three particle methods: molecular dynamics, dissipative particle dynamics and smoothed particle hydrodynamics. The mesoscale (between the molecular and continuum scales) dissipative particle dynamics method can be used to simulate systems that are too large to simulate using molecular dynamics but small enough for thermal fluctuations to play an important role.

  10. Science Highlight Archives: 1995-2004

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlight Archives: 1995-2004 Print Archived Science Highlights Highlights posted before the year 2005 Biological Sciences Snapshots of Ribozyme Reaction States Reveal Structural Switch (11/04) Nerve Growth Factor Gets Good Reception (10/04) Bringing the Mesoscale into Focus (9/04) Targeting Proteins to Membranes (8/04) Starting the RNA Assembly Line (8/04) Structure of a DNA Clamp-Loader Complex (7/04) Structure of Telomere-Protecting Proteins (4/04) Designing a Novel Globular Protein

  11. Science Highlight Archives: 1995-2004

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlight Archives: 1995-2004 Science Highlight Archives: 1995-2004 Print Thursday, 04 May 2000 08:31 Archived Science Highlights Highlights posted before the year 2005 Biological Sciences Snapshots of Ribozyme Reaction States Reveal Structural Switch (11/04) Nerve Growth Factor Gets Good Reception (10/04) Bringing the Mesoscale into Focus (9/04) Targeting Proteins to Membranes (8/04) Starting the RNA Assembly Line (8/04) Structure of a DNA Clamp-Loader Complex (7/04) Structure of

  12. Matter-Radiation Interactions in Extremes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Matter-Radiation Interactions in Extremes (MaRIE) /about/_assets/images/icon-faces.jpg Matter-Radiation Interactions in Extremes (MaRIE) MaRIE will provide a capability to address the control of performance and production of materials at the mesoscale. MaRIE fills a critical gap in length scale between studies conducted at the integral scale at DARHT and U1a, and at the atomic scale at NIF and Z. algae Why MaRIE... NNSA does not currently have a capability to understand and test materials

  13. Microsphere-chain waveguides: Focusing and transport properties

    SciTech Connect (OSTI)

    Allen, Kenneth W., E-mail: kallen62@uncc.edu; Astratov, Vasily N., E-mail: astratov@uncc.edu [Department of Physics and Optical Science, Center for Optoelectronics and Optical Communications, University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001 (United States); Air Force Research Laboratory, Sensors Directorate, Wright Patterson AFB, Ohio 45433 (United States); Darafsheh, Arash; Abolmaali, Farzaneh [Department of Physics and Optical Science, Center for Optoelectronics and Optical Communications, University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001 (United States); Mojaverian, Neda; Limberopoulos, Nicholaos I. [Air Force Research Laboratory, Sensors Directorate, Wright Patterson AFB, Ohio 45433 (United States); Lupu, Anatole [Institut d'Electronique Fondamentale, UMR 8622 CNRS, Universite Paris-Sud XI, 91405 Orsay (France)

    2014-07-14

    It is shown that the focusing properties of polystyrene microsphere-chain waveguides (MCWs) formed by sufficiently large spheres (D???20?, where D is the sphere diameter and ? is the wavelength of light) scale with the sphere diameter as predicted by geometrical optics. However, this scaling behavior does not hold for mesoscale MCWs with D???10? resulting in a periodical focusing with gradually reducing beam waists and in extremely small propagation losses. The observed effects are related to properties of nanojet-induced and periodically focused modes in such structures. The results can be used for developing focusing microprobes, laser scalpels, and polarization filters.

  14. Nanoscale structure in AgSbTe2 determined by diffuse elastic neutron scattering

    SciTech Connect (OSTI)

    Specht, Eliot D [ORNL; Ma, Jie [ORNL; Delaire, Olivier A [ORNL; Budai, John D [ORNL; May, Andrew F [ORNL; Karapetrova, Evguenia A. [Argonne National Laboratory (ANL)

    2015-01-01

    Diffuse elastic neutron scattering measurements confirm that AgSbTe2 has a hierarchical structure, with defects on length scales from nanometers to microns. While scattering from mesoscale structure is consistent with previously-proposed structures in which Ag and Sb order on a NaCl lattice, more diffuse scattering from nanoscale structure suggests a structural rearrangement in which hexagonal layers form a combination of (ABC), (ABA), and (AAB) stacking sequences. The AgCrSe2 structure is the best-fitting model for the local atomic arrangements.

  15. Four-Dimensional Data Assimilation S. P. Oncley and J. Dudhia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P. Oncley and J. Dudhia National Center for Atmospheric Research(a) Boulder, CO 80307-3000 Introduction Thisstudy is an evaluation of the ability of the Pennsylvania State University/National Center for Atmospheric Research (NCAR) mesoscale model (MM4) to determine surface fluxes to see if measured fluxes should be assimilated into model runs. Fluxes were compared from a high-resolution (5 km grid spacing) MM4 run during one day of the Winter Icing and Storms Programs/Atmospheric Radiation

  16. Scientific Achievement New

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New scaling rela-onships between mixer dimensions and opera-ng condi-ons are derived and verified experimentally to create a framework for designing ac-ve microfluidic mixers that can efficiently homogenize a wide range of materials at low Re. Significance and Impact Ac-ve mixing printheads enable mul-material 3D prin-ng of mesoscale func-onal architectures with programmable composi-on and proper-es. Research Details - The efficiency of passive and ac-ve mixers for a broad range of fluids was

  17. Testing and Commissioning of a Multifunctional Tool for the Dismantling of the Activated Internals of the KNK Reactor Shaft - 13524

    SciTech Connect (OSTI)

    Rothschmitt, Stefan; Graf, Anja; Bauer, Stefan; Klute, Stefan; Koselowski, Eiko

    2013-07-01

    The Compact Sodium Cooled Reactor Facility Karlsruhe (KNK), a prototype reactor to demonstrate the Fast Breeder Reactor Technology in Germany, was in operation from 1971 to 1991. The dismantling activities started in 1991. The project aim is the green field in 2020. Most of the reactor internals as well as the primary and secondary cooling loops are already dismantled. The total contaminated sodium inventory has already been disposed of. Only the high activated reactor vessel shielding structures are remaining. Due to the high dose rates these structures must be dismantled remotely. For the dismantling of the primary shielding of the reactor vessel, 12 stacked cast iron blocks with a total mass of 90 Mg and single masses up to 15.5 Mg, a remote-controlled multifunctional dismantling device (HWZ) was designed, manufactured and tested in a mock-up. After successful approval of the test sequences by the authorities, the HWZ was implemented into the reactor building containment for final assembling of the auxiliary equipment and subsequent hot commissioning in 2012. Dismantling of the primary shielding blocks is scheduled for early 2013. (authors)

  18. Cold Test Operation of the German VEK Vitrification Plant

    SciTech Connect (OSTI)

    Fleisch, J.; Schwaab, E.; Weishaupt, M. [WAK GmbH, Eggenstein-Leopoldshafen (Germany); Gruenewald, W.; Roth, G.; Tobie, W. [Forschungszentrum Karlsruhe, Institut fur Nukleare Entsorgung, Eggenstein-Leopoldshafen (Germany)

    2008-07-01

    In 2007 the German High-Level Liquid Waste (HLLW) Vitrification plant VEK (Verglasungseinrichtung Karlsruhe) has passed a three months integral cold test operation as final step before entering the hot phase. The overall performance of the vitrification process equipment with a liquid-fed ceramic glass melter as main component proved to be completely in line with the requirements of the regulatory body. The retention efficiency of main radioactive-bearing elements across melter and wet off-gas treatment system exceeded the design values distinctly. The strategy to produce a specified waste glass could be successfully demonstrated. The results of the cold test operation allow entering the next step of hot commissioning, i.e. processing of approximately 2 m{sup 3} of diluted HLLW. In summary: An important step of the VEK vitrification plant towards hot operation has been the performance of the cold test operation from April to July 2007. This first integral operation was carried out under boundary conditions and rules established for radioactive operation. Operation and process control were carried out following the procedure as documented in the licensed operational manuals. The function of the process technology and the safe operation could be demonstrated. No severe problems were encountered. Based on the positive results of the cold test, application of the license for hot operation has been initiated and is expected in the near future. (authors)

  19. The Status of Beryllium Research for Fusion in the United States

    SciTech Connect (OSTI)

    Glen R. Longhurst

    2003-12-01

    Use of beryllium in fusion reactors has been considered for neutron multiplication in breeding blankets and as an oxygen getter for plasma-facing surfaces. Previous beryllium research for fusion in the United States included issues of interest to fission (swelling and changes in mechanical and thermal properties) as well as interactions with plasmas and hydrogen isotopes and methods of fabrication. When the United States formally withdrew its participation in the International Thermonuclear Experimental Reactor (ITER) program, much of this effort was terminated. The focus in the U.S. has been mainly on toxic effects of beryllium and on industrial hygiene and health-related issues. Work continued at the INEEL and elsewhere on beryllium-containing molten salts. This activity is part of the JUPITER II Agreement. Plasma spray of ITER first wall samples at Los Alamos National Laboratory has been performed under the European Fusion Development Agreement. Effects of irradiation on beryllium structure are being studied at Oak Ridge National Laboratory. Numerical and phenomenological models are being developed and applied to better understand important processes and to assist with design. Presently, studies are underway at the University of California Los Angeles to investigate thermo-mechanical characteristics of beryllium pebble beds, similar to research being carried out at Forschungszentrum Karlsruhe and elsewhere. Additional work, not funded by the fusion program, has dealt with issues of disposal, and recycling.

  20. Piping system response during high-level simulated seismic tests at the Heissdampfreaktor Facility: (SHAM Test Facility)

    SciTech Connect (OSTI)

    Steele, R. Jr.; Nitzel, M.E.

    1992-07-01

    The SHAM seismic research program studied the effects of increasing levels of seismic excitation on a full-scale, in situ nuclear piping system containing a naturally aged United States (US) 8-in. motor-operated gate valve. The program was conducted by Kernforschungszentrum Karlsruhe at the Heissdampfreaktor near Frankfurt, Germany. Participants included the United States, Germany, and England. Fifty-one experiments were conducted, with the piping supported by six different piping support systems, including a typical stiff US piping support system of snubbers and rigid struts. This report specifically addresses the tests conducted with the US system. The piping system withstood large displacements caused by overload snubber failures and local piping strains. Although some limit switch chatter was observed, the motor operator and valve functioned smoothly throughout the tests. The results indicate that sufficient safety margins exist when commonly accepted design methods are applied and that piping systems will likely maintain their pressure boundary in the presence of severe loading and the loss of multiple supports.

  1. Capture and isotopic exchange method for water and hydrogen isotopes on zeolite catalysts up to technical scale for pre-study of processing highly tritiated water

    SciTech Connect (OSTI)

    Michling, R.; Braun, A.; Cristescu, I.; Dittrich, H.; Gramlich, N.; Lohr, N.; Glugla, M.; Shu, W.; Willms, S.

    2015-03-15

    Highly tritiated water (HTW) may be generated at ITER by various processes and, due to the excessive radio toxicity, the self-radiolysis and the exceedingly corrosive property of HTW, a potential hazard is associated with its storage and process. Therefore, the capture and exchange method for HTW utilizing Molecular Sieve Beds (MSB) was investigated in view of adsorption capacity, isotopic exchange performance and process parameters. For the MSB, different types of zeolite were selected. All zeolite materials were additionally coated with platinum. The following work comprised the selection of the most efficient zeolite candidate based on detailed parametric studies during the H{sub 2}/D{sub 2}O laboratory scale exchange experiments (about 25 g zeolite per bed) at the Tritium Laboratory Karlsruhe (TLK). For the zeolite, characterization analytical techniques such as Infrared Spectroscopy, Thermogravimetry and online mass spectrometry were implemented. Followed by further investigation of the selected zeolite catalyst under full technical operation, a MSB (about 22 kg zeolite) was processed with hydrogen flow rates up to 60 mol*h{sup -1} and deuterated water loads up to 1.6 kg in view of later ITER processing of arising HTW. (authors)

  2. THE CRYOPLANT FOR THE ITER NEUTRAL BEAM TEST FACILITY TO BE BUILT AT RFX IN PADOVA, ITALY

    SciTech Connect (OSTI)

    Pengo, R.; Fellin, F.; Sonato, P.

    2010-04-09

    The Neutral Beam Test Facility (NBTF), planned to be constructed in Padua (Italy), will constitute the prototype of the two Neutral Beam Injectors (NBI), which will be installed in the ITER plant (Cadarache-France). The NBTF is composed of a 1 MV accelerator that can produce a 40 A deuteron pulsed neutral beam particles. The necessary vacuum needed in the accelerator is achieved by two large cryopumps, designed by FZK-Karlsruhe, with radiation shields cooled between 65 K and 90 K and with cryopanels cooled by 4 bar supercritical helium (ScHe) between 4.5 K and 6.5 K. A new cryoplant facility will be installed with two large helium refrigerators: a Shield Refrigerator (SR), whose cooling capacity is up to 30 kW between 65 K and 90 K, and a helium Main Refrigerator (MR), whose equivalent cooling capacity is up to 800 W at 4.5 K. The cooling of the cryopanels is obtained with two (ScHe) 30 g/s pumps (one redundant), working in a closed cycle around 4 bar producing a pressure head of 100 mbar. Two heat exchangers are immersed in a buffer dewar connected to the MR. The MR and SR different operation modes are described in the paper, as well as the new cryoplant installation.

  3. Stellar (n,{gamma}) cross sections of p-process isotopes. II. {sup 168}Yb, {sup 180}W, {sup 184}Os, {sup 190}Pt, and {sup 196}Hg

    SciTech Connect (OSTI)

    Marganiec, J.; Dillmann, I.; Pardo, C. Domingo; Kaeppeler, F.; Walter, S.

    2010-09-15

    The neutron-capture cross sections of {sup 168}Yb, {sup 180}W, {sup 184}Os, {sup 190}Pt, and {sup 196}Hg have been measured by means of the activation technique. The samples were irradiated in a quasistellar neutron spectrum of kT=25 keV, which was produced at the Karlsruhe 3.7-MV Van de Graaff accelerator via the {sup 7}Li(p,n){sup 7}Be reaction. Systematic uncertainties were investigated in repeated activations with different samples and by variation of the experimental parameters, that is, irradiation times, neutron fluxes, and {gamma}-ray counting conditions. The measured data were converted into Maxwellian-averaged cross sections at kT=30 keV, yielding 1214{+-}61, 624{+-}54, 590{+-}43, 511{+-}46, and 201{+-}11 mb for {sup 168}Yb, {sup 180}W, {sup 184}Os, {sup 190}Pt, and {sup 196}Hg, respectively. The present results either represent first experimental data ({sup 168}Yb, {sup 184}Os, and {sup 196}Hg) or could be determined with significantly reduced uncertainties ({sup 180}W and {sup 190}Pt). These measurements are part of a systematic study of stellar (n,{gamma}) cross sections of the stable p isotopes.

  4. First calibration measurements of an FTIR absorption spectroscopy system for liquid hydrogen isotopologues for the isotope separation system of fusion power plants

    SciTech Connect (OSTI)

    Groessle, R.; Beck, A.; Bornschein, B.; Fischer, S.; Kraus, A.; Mirz, S.; Rupp, S.

    2015-03-15

    Fusion facilities like ITER and DEMO will circulate huge amounts of deuterium and tritium in their fuel cycle with an estimated throughput of kg per hour. One important capability of these fuel cycles is to separate the hydrogen isotopologues (H{sub 2}, D{sub 2}, T{sub 2}, HD, HT, DT). For this purpose the Isotope Separation System (ISS), using cryogenic distillation, as part of the Tritium Enrichment Test Assembly (TRENTA) is under development at Tritium Laboratory Karlsruhe. Fourier transform infrared absorption spectroscopy (FTIR) has been selected to prove its capability for online monitoring of the tritium concentration in the liquid phase at the bottom of the distillation column of the ISS. The actual research-development work is focusing on the calibration of such a system. Two major issues are the identification of appropriate absorption lines and their dependence on the isotopic concentrations and composition. For this purpose the Tritium Absorption IR spectroscopy experiment has been set up as an extension of TRENTA. For calibration a Raman spectroscopy system is used. First measurements, with equilibrated mixtures of H{sub 2}, D{sub 2} and HD demonstrate that FTIR can be used for quantitative analysis of liquid hydro-gen isotopologues and reveal a nonlinear dependence of the integrated absorbance from the D{sub 2} concentration in the second vibrational branch of D{sub 2} FTIR spectra. (authors)

  5. Dismantling of Highly Contaminated Process Installations of the German Reprocessing Facility (WAK) - Status of New Remote Handling Technology - 13287

    SciTech Connect (OSTI)

    Dux, Joachim; Friedrich, Daniel; Lutz, Werner; Ripholz, Martina

    2013-07-01

    Decommissioning and dismantling of the former German Pilot Reprocessing Plant Karlsruhe (WAK) including the Vitrification Facility (VEK) is being executed in different Project steps related to the reprocessing, HLLW storage and vitrification complexes /1/. While inside the reprocessing building the total inventory of process equipment has already been dismantled and disposed of, the HLLW storage and vitrification complex has been placed out of operation since vitrification and tank rinsing procedures where finalized in year 2010. This paper describes the progress made in dismantling of the shielded boxes of the highly contaminated laboratory as a precondition to get access to the hot cells of the HLLW storage. The major challenges of the dismantling of this laboratory were the high dose rates up to 700 mSv/h and the locking technology for the removal of the hot cell installations. In parallel extensive prototype testing of different carrier systems and power manipulators to be applied to dismantle the HLLW-tanks and other hot cell equipment is ongoing. First experiences with the new manipulator carrier system and a new master slave manipulator with force reflection will be reported. (authors)

  6. DECOMMISSIONING OF NUCLEAR FACILITIES IN GERMANY - STATUS AT BMBF SITES

    SciTech Connect (OSTI)

    Papp, R.; Komorowski, K.

    2002-02-25

    In a period of approximately 40 years prior to 1994, the German Federal Government had spent about {approx} 15 billion to promote nuclear technology. These funds were earmarked for R&D projects as well as demonstration facilities which took up operation between 1960 and 1980. These BMBF (Federal Ministry for Research) facilities were mainly located at the sites of the federal research centers at Juelich and Karlsruhe (the research reactors AVR, FR2, FRJ-1, KNK, and MZFR, the pilot reprocessing plant WAK) but included also the pilot plants SNR-300 and THTR-300 for fast breeder and high-temperature gas-cooled reactor development, respectively, and finally the salt mine Asse which had been used for waste emplacement prior to conversion into an underground research laboratory. In the meantime, almost all of these facilities were shut down and are now in a state of decommissioning and dismantling. This is mainly due to the facts that R&D needs are satisfied or do not exist any more and that, secondly, the lack of political consensus led to the cancellation of advanced nuclear technology.

  7. Synchrotron characterization of nanograined UO2 grain growth

    SciTech Connect (OSTI)

    Mo, Kun; Miao, Yinbin; Yun, Di; Jamison, Laura M.; Lian, Jie; Yao, Tiankei

    2015-09-30

    This activity is supported by the US Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Product Line (FPL) and aims at providing experimental data for the validation of the mesoscale simulation code MARMOT. MARMOT is a mesoscale multiphysics code that predicts the coevolution of microstructure and properties within reactor fuel during its lifetime in the reactor. It is an important component of the Moose-Bison-Marmot (MBM) code suite that has been developed by Idaho National Laboratory (INL) to enable next generation fuel performance modeling capability as part of the NEAMS Program FPL. In order to ensure the accuracy of the microstructure based materials models being developed within the MARMOT code, extensive validation efforts must be carried out. In this report, we summarize our preliminary synchrotron radiation experiments at APS to determine the grain size of nanograin UO2. The methodology and experimental setup developed in this experiment can directly apply to the proposed in-situ grain growth measurements. The investigation of the grain growth kinetics was conducted based on isothermal annealing and grain growth characterization as functions of duration and temperature. The kinetic parameters such as activation energy for grain growth for UO2 with different stoichiometry are obtained and compared with molecular dynamics (MD) simulations.

  8. Supplying materials needed for grain growth characterizations of nano-grained UO2

    SciTech Connect (OSTI)

    Mo, Kun; Miao, Yinbin; Yun, Di; Jamison, Laura M.; Lian, Jie; Yao, Tiankei

    2015-09-30

    This activity is supported by the US Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Product Line (FPL) and aims at providing experimental data for the validation of the mesoscale simulation code MARMOT. MARMOT is a mesoscale multiphysics code that predicts the coevolution of microstructure and properties within reactor fuel during its lifetime in the reactor. It is an important component of the Moose-Bison-Marmot (MBM) code suite that has been developed by Idaho National Laboratory (INL) to enable next generation fuel performance modeling capability as part of the NEAMS Program FPL. In order to ensure the accuracy of the microstructure based materials models being developed within the MARMOT code, extensive validation efforts must be carried out. In this report, we summarize our preliminary synchrotron radiation experiments at APS to determine the grain size of nanograin UO2. The methodology and experimental setup developed in this experiment can directly apply to the proposed in-situ grain growth measurements. The investigation of the grain growth kinetics was conducted based on isothermal annealing and grain growth characterization as functions of duration and temperature. The kinetic parameters such as activation energy for grain growth for UO2 with different stoichiometry are obtained and compared with molecular dynamics (MD) simulations.

  9. Precipitation and Air Pollution at Mountain and Plain Stations in Northern China: Insights Gained from Observations and Modeling

    SciTech Connect (OSTI)

    Guo, Jianping; Deng, Minjun; Fan, Jiwen; Li, Zhanqing; Chen, Qian; Zhai, Panmao; Dai, Zhijian; Li, Xiaowen

    2014-04-27

    We analyzed 40 year data sets of daily average visibility (a proxy for surface aerosol concentration) and hourly precipitation at seven weather stations, including three stations located on the Taihang Mountains, during the summertime in northern China. There was no significant trend in summertime total precipitation at almost all stations. However, light rain decreased, whereas heavy rain increased as visibility decreased over the period studied. The decrease in light rain was seen in both orographic-forced shallow clouds and mesoscale stratiform clouds. The consistent trends in observed changes in visibility, precipitation, and orographic factor appear to be a testimony to the effects of aerosols. The potential impact of large-scale environmental factors, such as precipitable water, convective available potential energy, and vertical wind shear, on precipitation was investigated. No direct links were found. To validate our observational hypothesis about aerosol effects, Weather Research and Forecasting model simulations with spectral-bin microphysics at the cloud-resolving scale were conducted. Model results confirmed the role of aerosol indirect effects in reducing the light rain amount and frequency in the mountainous area for both orographic-forced shallow clouds and mesoscale stratiform clouds and in eliciting a different response in the neighboring plains. The opposite response of light rain to the increase in pollution when there is no terrain included in the model suggests that orography is likely a significant factor contributing to the opposite trends in light rain seen in mountainous and plain areas.

  10. Transitions to improved confinement regimes induced by changes in heating in zero-dimensional models for tokamak plasmas

    SciTech Connect (OSTI)

    Zhu, H.; Chapman, S. C.; Dendy, R. O.; Itoh, K.

    2014-06-15

    It is shown that rapid substantial changes in heating rate can induce transitions to improved energy confinement regimes in zero-dimensional models for tokamak plasma phenomenology. We examine for the first time the effect of step changes in heating rate in the models of Kim and Diamond [Phys. Rev. Lett. 90, 185006 (2003)] and Malkov and Diamond [Phys. Plasmas 16, 012504 (2009)], which nonlinearly couple the evolving temperature gradient, micro-turbulence, and a mesoscale flow; and in the extension of Zhu et al. [Phys. Plasmas 20, 042302 (2013)], which couples to a second mesoscale flow component. The temperature gradient rises, as does the confinement time defined by analogy with the fusion context, while micro-turbulence is suppressed. This outcome is robust against variation of heating rise time and against introduction of an additional variable into the model. It is also demonstrated that oscillating changes in heating rate can drive the level of micro-turbulence through a period-doubling path to chaos, where the amplitude of the oscillatory component of the heating rate is the control parameter.

  11. Detection and Attribution of Regional Climate Change

    SciTech Connect (OSTI)

    Bala, G; Mirin, A

    2007-01-19

    We developed a high resolution global coupled modeling capability to perform breakthrough studies of the regional climate change. The atmospheric component in our simulation uses a 1{sup o} latitude x 1.25{sup o} longitude grid which is the finest resolution ever used for the NCAR coupled climate model CCSM3. Substantial testing and slight retuning was required to get an acceptable control simulation. The major accomplishment is the validation of this new high resolution configuration of CCSM3. There are major improvements in our simulation of the surface wind stress and sea ice thickness distribution in the Arctic. Surface wind stress and ocean circulation in the Antarctic Circumpolar Current are also improved. Our results demonstrate that the FV version of the CCSM coupled model is a state of the art climate model whose simulation capabilities are in the class of those used for IPCC assessments. We have also provided 1000 years of model data to Scripps Institution of Oceanography to estimate the natural variability of stream flow in California. In the future, our global model simulations will provide boundary data to high-resolution mesoscale model that will be used at LLNL. The mesoscale model would dynamically downscale the GCM climate to regional scale on climate time scales.

  12. Final Activity Report: The Effects of Iron Complexing Ligands on the Long Term Ecosystem Response to Iron Enrichment of HNLC waters

    SciTech Connect (OSTI)

    Trick, Charles Gordon

    2013-07-30

    Substantial increases in the concentrations of the stronger of two Fe(III) complexing organic ligand classes measured during the mesoscale Fe enrichment studies IronEx II and SOIREE appeared to sharply curtailed Fe availability to diatoms and thus limited the efficiency of carbon sequestration to the deep. Detailed observations during IronEx II (equatorial Pacific Ocean) and SOIREE (Southern Ocean –Pacific sector) indicate that the diatoms began re-experiencing Fe stress even though dissolved Fe concentrations remained elevated in the patch. This surprising outcome likely is related to the observed increased concentrations of strong Fe(III)-complexing ligands in seawater. Preliminary findings from other studies indicate that diatoms may not readily obtain Fe from these chemical species whereas Fe bound by strong ligands appears to support growth of cyanobacteria and nanoflagellates. The difficulty in assessing the likelihood of these changes with in-situ mesoscale experiments is the extended monitoring period needed to capture the long-term trajectory of the carbon cycle. A more detailed understanding of Fe complexing ligand effects on long-term ecosystem structure and carbon cycling is essential to ascertain not only the effect of Fe enrichment on short-term carbon sequestration in the oceans, but also the potential effect of Fe enrichment in modifying ecosystem structure and trajectory.

  13. Comparison of Simulated and Observed Continental Tropical Anvil Clouds and Their Radiative Heating Profiles

    SciTech Connect (OSTI)

    Powell, Scott W.; Houze, R.; Kumar, Anil; McFarlane, Sally A.

    2012-09-06

    Vertically pointing millimeter-wavelength radar observations of anvil clouds extending from mesoscale convective systems (MCSs) that pass over an Atmospheric Radiation Measurement Program (ARM) field site in Niamey, Niger, are compared to anvil structures generated by the Weather Research and Forecasting (WRF) mesoscale model using six different microphysical schemes. The radar data provide the statistical distribution of the radar reflectivity values as a function of height and anvil thickness. These statistics are compared to the statistics of the modeled anvil cloud reflectivity at all altitudes. Requiring the model to be statistically accurate at all altitudes is a stringent test of the model performance. The typical vertical profile of radiative heating in the anvil clouds is computed from the radar observations. Variability of anvil structures from the different microphysical schemes provides an estimate of the inherent uncertainty in anvil radiative heating profiles. All schemes underestimate the optical thickness of thin anvils and cirrus, resulting in a bias of excessive net anvil heating in all of the simulations.

  14. Fluctuation characteristics and transport properties of collisionless trapped electron mode turbulence

    SciTech Connect (OSTI)

    Xiao Yong; Holod, Ihor; Zhang Wenlu; Lin Zhihong [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Klasky, Scott [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2010-02-15

    The collisionless trapped electron mode turbulence is investigated by global gyrokinetic particle simulation. The zonal flow dominated by low frequency and short wavelength acts as a very important saturation mechanism. The turbulent eddies are mostly microscopic, but with a significant portion in the mesoscale. The ion heat transport is found to be diffusive and follows the local radial profile of the turbulence intensity. However, the electron heat transport demonstrates some nondiffusive features and only follows the global profile of the turbulence intensity. The nondiffusive features of the electron heat transport is further confirmed by nonlognormal statistics of the flux-surface-averaged electron heat flux. The radial and time correlation functions are calculated to obtain the radial correlation length and autocorrelation time. Characteristic time scale analysis shows that the zonal flow shearing time and eddy turnover time are very close to the effective decorrelation time, which suggests that the trapped electrons move with the fluid eddies. The fluidlike behaviors of the trapped electrons and the persistence of the mesoscale eddies contribute to the transition of the electron turbulent transport from gyro-Bohm scaling to Bohm scaling when the device size decreases.

  15. Determination of upwind and downwind areas of Seoul, Korea using trajectory analysis.

    SciTech Connect (OSTI)

    Oh, H. S.; Ghim, Y. S.; Kim, J. Y.; Chang, Y. S. (Environmental Science Division)

    2010-09-01

    To identify the domains that have the greatest impacts on air quality at the surface, both the upwind and downwind areas of Seoul were determined by season using refined wind fields. Four consecutive days were selected as the study period typical of each season. The mesoscale meteorology of the study period was reproduced by using the MM5 prognostic meteorological model (PSU/NCAR Mesoscale Model) with horizontally nested grids. The gridded meteorological field, which was used on the study area of 242 km x 226 km with grid spacing of 2 km, was generated by using the CALMET diagnostic meteorological model. Upwind and downwind areas of Seoul were determined by calculating 24-hour backward and forward air parcel trajectories, respectively, with u, v, and w velocity vectors. The results showed that the upwind and downwind areas were extended far to the northwest and the southeast as a result of high wind speeds in the spring and winter, while they were restricted on the fringe of Seoul in the summer and fall.

  16. Structure of the nocturnal boundary layer over a complex terrain

    SciTech Connect (OSTI)

    Parker, M.J. ); Raman, S. . Dept. of Marine, Earth and Atmospheric Sciences)

    1992-01-01

    The complex nature of the nocturnal boundary layer (NBL) has been shown extensively in the literature Project STABLE was conducted in 1988 to study NBL turbulence and diffusion over the complex terrain of the Savannah River Site (SRS) near Augusta, Georgia. The third night of the study was particularly interesting because of the unusual phenomena observed in the structure of the NBL. Further analyses of microscale and mesoscale data from this night are presented using data from SRS network of eight 61 m towers over 900 km{sup 2}, from six launches of an instrumented tethersonde, from permanent SRL meteorological instrumentation at seven levels of the 304 m (1,000 ft) WJBF-TV tower near SRS, and additional data collected at 36 m (CC) by North Carolina State University (NCSU) including a one dimensional sonic anemometer, fine wire thermocouple, and a three dimensional propeller anemometer. Also, data from the nearby Plant Vogtle nuclear power plant observation tower and the National Weather Service at Augusta's Bush Field (AGS) are presented. The passage of a mesoscale phenomenon, defined as a microfront (with an explanation of the nomenclature used), and a vertical composite schematic of the NBL which shows dual low level wind maxima, dual inversions, and a persistent, elevated turbulent layer over a complex terrain are described.

  17. Structure of the nocturnal boundary layer over a complex terrain

    SciTech Connect (OSTI)

    Parker, M.J.; Raman, S.

    1992-08-01

    The complex nature of the nocturnal boundary layer (NBL) has been shown extensively in the literature Project STABLE was conducted in 1988 to study NBL turbulence and diffusion over the complex terrain of the Savannah River Site (SRS) near Augusta, Georgia. The third night of the study was particularly interesting because of the unusual phenomena observed in the structure of the NBL. Further analyses of microscale and mesoscale data from this night are presented using data from SRS network of eight 61 m towers over 900 km{sup 2}, from six launches of an instrumented tethersonde, from permanent SRL meteorological instrumentation at seven levels of the 304 m (1,000 ft) WJBF-TV tower near SRS, and additional data collected at 36 m (CC) by North Carolina State University (NCSU) including a one dimensional sonic anemometer, fine wire thermocouple, and a three dimensional propeller anemometer. Also, data from the nearby Plant Vogtle nuclear power plant observation tower and the National Weather Service at Augusta`s Bush Field (AGS) are presented. The passage of a mesoscale phenomenon, defined as a microfront (with an explanation of the nomenclature used), and a vertical composite schematic of the NBL which shows dual low level wind maxima, dual inversions, and a persistent, elevated turbulent layer over a complex terrain are described.

  18. Discharge Performance of Li-O2 Batteries Using a Multiscale Modeling Approach

    SciTech Connect (OSTI)

    Bao, Jie; Xu, Wu; Bhattacharya, Priyanka; Stewart, Mark L.; Zhang, Jiguang; Pan, Wenxiao

    2015-06-10

    To study the discharge performance of Li–O2 batteries, we propose a multiscale modeling framework that links models in an upscaling fashion from the nanoscale to mesoscale and finally to the device scale. We have effectively reconstructed the microstructure of a Li–O2 air electrode in silico, conserving the porosity, surface-to-volume ratio, and pore size distribution of the real air electrode structure. The mechanism of rate-dependent morphology of Li2O2 growth is incorporated into the mesoscale model. The correlation between the active-surface-to-volume ratio and averaged Li2O2 concentration is derived to link different scales. The proposed approach’s accuracy is first demonstrated by comparing the predicted discharge curves of Li–O2 batteries with experimental results at the high current density. Next, the validated modeling approach effectively captures the significant improvement in discharge capacity due to the formation of Li2O2 particles. Finally, it predicts the discharge capacities of Li–O2 batteries with different air electrode microstructure designs and operating conditions.

  19. Collaborative project. Ocean-atmosphere interaction from meso- to planetary-scale. Mechanics, parameterization, and variability

    SciTech Connect (OSTI)

    Saravanan, Ramalingam; Small, Justin

    2015-12-01

    Most climate models are currently run with grid spacings of around 100km, which, with today’s computing power, allows for long (up to 1000 year) simulations, or ensembles of simulations to explore climate change and variability. However this grid spacing does not resolve important components of the weather/climate system such as atmospheric fronts and mesoscale systems, and ocean boundary currents and eddies. The overall aim of this project has been to look at the effect of these small-scale features on the weather/climate system using a suite of high and low resolution climate models, idealized models and observations. High-resolution global coupled integrations using CAM/CESM were carried out at NCAR by the lead PI. At TAMU, we have complemented the work at NCAR by analyzing datasets from the high-resolution (28km) CESM integrations (Small et al., 2014) as well as very high resolution (9km, 3km) runs using a coupled regional climate (CRCM) carried out locally. The main tasks carried out were: 1. Analysis of surface wind in observations and high-resolution CAM/CCSM simulations 2. Development of a feature-tracking algorithm for studying midlatitude air-sea interaction by following oceanic mesoscale eddies and creating composites of the atmospheric response overlying the eddies. 3. Applying the Lagrangian analysis technique in the Gulf Stream region to compare data from observational reanalyses, global CESM coupled simulations, 9km regional coupled simulations and 3km convection-resolving regional coupled simulations. Our main findings are that oceanic mesoscale eddies influence not just the atmospheric boundary layer above them, but also the lower portions of the free troposphere above the boundary layer. Such a vertical response could have implications for a remote influence of Gulf Stream oceanic eddies on North Atlantic weather patterns through modulation of the storm track, similar to what has been noted in the North Pacific. The coarse resolution observational reanalyses perhaps underestimate the atmospheric response, but the 28km global model resolution appears to be adequate to capture some, but not all, aspects of the boundary response. The higher resolution regional models show a stronger response in certain fields such as the latent heat flux.

  20. 20 years of cosmic muons research performed in IFIN-HH

    SciTech Connect (OSTI)

    Mitrica, Bogdan

    2012-11-20

    During the last two decades a modern direction in particle physics research has been developed in IFIN-HH Bucharest, Romania. The history started with the WILLI detector built in IFIN-HH Bucharest in collaboration with KIT Karlsruhe (formerly Forschungszentrum Karlsruhe). The detector was designed for measurements of the low energy muon charge ratio (< 1GeV) based on a delayed coincidence method, measuring the decay time of the muons stopped in the detector: the positive muons decay freely, but the negative muons are captured in the atom thus creating muonic atoms and decay depending on the nature of the host atom. In a first configuration, the WILLI detector was placed in a fixed position for measuring vertical muons. Further WILLI has been transformed in a rotatable device which allows directional measurements of muon charge ratio and muon flux. The results exhibit a pronounced azimuthal asymmetry (East-West effect) due to the different in fluence of the geomagnetic field on the trajectories of positive and negative muons in air. In parallel, flux measurement, taking into account muon events with nergies > 0.4GeV, show a diurnal modulation of the muon flux. The analysis of the muon events for energies < 0.6GeV reveals an aperiodic variation of the muon flux. A new detection system performing coincidence measurements between the WILLI calorimeter and a small array of 12 scintillators plates has been installed in IFIN-HH starting from the autumn of 2010. The aim of the system is to investigate muon charge ratio from individual EAS by using the mini-array as trigger for the WILLI calorimeter. Such experimental studies could provide detailed information on hadronic interaction models and primary cosmic ray composition at energies around 10{sup 15}eV. Simulation studies and preliminary experimental tests, regarding the performances of the mini-array, have been performed using H and Fe primaries, with energies in a range 10{sup 13}eV - 10{sup 15}eV. The results show detailed effects of the direction of EAS incidence relative to the geomagnetic field, depending, in particular, of the primary mass. Based on the results, we can say that WILLI-EAS experiment could be used for testing the hadronic interaction models. Measurements of the high energy muon flux in underground of the salt mine from Slanic Prahova, Romania was performed using a new mobile detector developed in IFIN-HH, Bucharest. Consisting of 2 scintillator plates measuring in coincidence, the detector is installed on a van which facilitates measurements on different positions at surface or in underground. The detector was used to measure muon fluxes in different locations at surface or in underground. The detector was used to measure muon fluxes at different sites of Romania and in the underground of the salt mines from Slanic Prahova, Romania where IFIN-HH has a modern underground laboratory. New methods for the detection of cosmic ray muons are investigated in our institute based on scintillator techniques using optical fiber and MPPC photodyodes.

  1. Validation of analysis methods for assessing flawed piping subjected to dynamic loading

    SciTech Connect (OSTI)

    Olson, R.J.; Wolterman, R.L.; Wilkowski, G.M.; Kot, C.A.

    1994-08-01

    Argonne National Laboratory and Battelle have jointly conducted a research program for the USNRC to evaluate the ability of current engineering analysis methods and one state-of-the-art analysis method to predict the behavior of circumferentially surface-cracked pipe system water-hammer experiment. The experimental data used in the evaluation were from the HDR Test Group E31 series conducted by the Kernforschungszentrum Karlsruhe (KfK) in Germany. The incentive for this evaluation was that simplified engineering methods, as well as newer ``state-of-the-art`` fracture analysis methods, have been typically validated only with static experimental data. Hence, these dynamic experiments were of high interest. High-rate dynamic loading can be classified as either repeating, e.g., seismic, or nonrepeating, e.g., water hammer. Development of experimental data and validation of cracked pipe analyses under seismic loading (repeating dynamic loads) are being pursued separately within the NRC`s International Piping Integrity Research Group (IPIRG) program. This report describes developmental and validation efforts to predict crack stability under water hammer loading, as well as comparisons using currently used analysis procedures. Current fracture analysis methods use the elastic stress analysis loads decoupled from the fracture mechanics analysis, while state-of-the-art methods employ nonlinear cracked-pipe time-history finite element analyses. The results showed that the current decoupled methods were conservative in their predictions, whereas the cracked pipe finite element analyses were more accurate, yet slightly conservative. The nonlinear time-history cracked-pipe finite element analyses conducted in this program were also attractive in that they were done on a small Apollo DN5500 workstation, whereas other cracked-pipe dynamic analyses conducted in Europe on the same experiments required the use of a CRAY2 supercomputer, and were less accurate.

  2. Thermo-mechanical Modelling of Pebble Beds in Fusion Blankets and its Implementation by a Return-Mapping Algorithm

    SciTech Connect (OSTI)

    Gan, Yixiang; Kamlah, Marc

    2008-07-01

    In this investigation, a thermo-mechanical model of pebble beds is adopted and developed based on experiments by Dr. Reimann at Forschungszentrum Karlsruhe (FZK). The framework of the present material model is composed of a non-linear elastic law, the Drucker-Prager-Cap theory, and a modified creep law. Furthermore, the volumetric inelastic strain dependent thermal conductivity of beryllium pebble beds is taken into account and full thermo-mechanical coupling is considered. Investigation showed that the Drucker-Prager-Cap model implemented in ABAQUS can not fulfill the requirements of both the prediction of large creep strains and the hardening behaviour caused by creep, which are of importance with respect to the application of pebble beds in fusion blankets. Therefore, UMAT (user defined material's mechanical behaviour) and UMATHT (user defined material's thermal behaviour) routines are used to re-implement the present thermo-mechanical model in ABAQUS. An elastic predictor radial return mapping algorithm is used to solve the non-associated plasticity iteratively, and a proper tangent stiffness matrix is obtained for cost-efficiency in the calculation. An explicit creep mechanism is adopted for the prediction of time-dependent behaviour in order to represent large creep strains in high temperature. Finally, the thermo-mechanical interactions are implemented in a UMATHT routine for the coupled analysis. The oedometric compression tests and creep tests of pebble beds at different temperatures are simulated with the help of the present UMAT and UMATHT routines, and the comparison between the simulation and the experiments is made. (authors)

  3. GASFLOW: A Computational Fluid Dynamics Code for Gases, Aerosols, and Combustion, Volume 2: User's Manual

    SciTech Connect (OSTI)

    B. D. Nichols; C. Mller; G. A. Necker; J. R. Travis; J. W. Spore; K. L. Lam; P. Royl; T. L. Wilson

    1998-10-01

    Los Alamos National Laboratory (LANL) and Forschungszentrum Karlsruhe (FzK) are developing GASFLOW, a three-dimensional (3D) fluid dynamics field code as a best-estimate tool to characterize local phenomena within a flow field. Examples of 3D phenomena include circulation patterns; flow stratification; hydrogen distribution mixing and stratification; combustion and flame propagation; effects of noncondensable gas distribution on local condensation and evaporation; and aerosol entrainment, transport, and deposition. An analysis with GASFLOW will result in a prediction of the gas composition and discrete particle distribution in space and time throughout the facility and the resulting pressure and temperature loadings on the walls and internal structures with or without combustion. A major application of GASFLOW is for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containment and other facilities. It has been applied to situations involving transporting and distributing combustible gas mixtures. It has been used to study gas dynamic behavior in low-speed, buoyancy-driven flows, as well as sonic flows or diffusion dominated flows; and during chemically reacting flows, including deflagrations. The effects of controlling such mixtures by safety systems can be analyzed. The code version described in this manual is designated GASFLOW 2.1, which combines previous versions of the United States Nuclear Regulatory Commission code HMS (for Hydrogen Mixing Studies) and the Department of Energy and FzK versions of GASFLOW. The code was written in standard Fortran 90. This manual comprises three volumes. Volume I describes the governing physical equations and computational model. Volume II describes how to use the code to set up a model geometry, specify gas species and material properties, define initial and boundary conditions, and specify different outputs, especially graphical displays. Sample problems are included. Volume III contains some of the assessments performed by LANL and FzK.

  4. Cryogenic experiences during W7-X HTS-current lead tests

    SciTech Connect (OSTI)

    Richter, Thomas; Lietzow, Ralph

    2014-01-29

    The Karlsruhe Institute of Technology (KIT) was responsible for design, production and test of the High Temperature Superconductor (HTS) current leads (CL) for the stellerator Wendelstein 7-X (W7-X). 16 current leads were delivered. Detailed prototype tests as well as the final acceptance tests were performed at KIT, using a dedicated test cryostat assembled beside and connected to the main vacuum vessel of the TOSKA facility. A unique feature is the upside down orientation of the current leads due to the location of the power supplies in the basement of the experimental area of W7-X. The HTS-CL consists of three main parts: the cold end for the connection to the bus bar at 4.5 K, the HTS part operating in the temperature range from 4.5 K to 65 K and a copper heat exchanger (HEX) in the temperature range from 65 K to room temperature, which is cooled with 50 K helium. Therefore in TOSKA it is possible to cool test specimens simultaneously with helium at two different temperature levels. The current lead tests included different scenarios with currents up to 18.2 kA. In total, 10 cryogenic test campaigns with a total time of about 24 weeks were performed till beginning of 2013. The test facility as well as the 2 kW cryogenic plant of ITEP showed a very good reliability. However, during such a long and complex experimental campaign, one has to deal with failures, technical difficulties and incidents. The paper gives a summary of the test performance comprising the test preparation and operation. This includes the performance and reliability of the refrigerator and the test facility with reference to the process measuring and control system, the data acquisition system, as well as the building infrastructure.

  5. Hydrogen combustion in a flat semi-confined layer with respect to the Fukushima Daiichi accident

    SciTech Connect (OSTI)

    Kuznetsov, M.; Yanez, J.; Grune, J.; Friedrich, A.; Jordan, T.

    2012-07-01

    The hydrogen accumulation at the top of containment or reactor building may occur due to an interaction of molten corium and water followed by a severe accident of a nuclear reactor (TMI, Chernobyl, Fukushima Daiichi). The hydrogen, released from the reactor, accumulates usually as a stratified semi-confined layer of hydrogen-air mixture. A series of large scale experiments on hydrogen combustion and explosion in a semi-confined layer of uniform and non-uniform hydrogen-air mixtures in presence of obstructions or without them was performed at the Karlsruhe Inst. of Technology (KIT). Different flame propagation regimes from slow subsonic to relative fast sonic flames and then to the detonations were experimentally investigated in different geometries and then simulated with COMSD code with respect to evaluate amount of burnt hydrogen taken place during the Fukushima Daiichi Accident (FDA). The experiments were performed in a horizontal semi-confined layer with dimensions of 9x3x0.6 m with/without obstacles opened from below. The hydrogen concentration in the mixtures with air was varied in the range of 0-34 vol. % without or with a gradient of 0-60 vol. %H{sub 2}/m. Effects of hydrogen concentration gradient, thickness of the layer, geometry of the obstructions, average and maximum hydrogen concentration on flame propagation regimes were investigated with respect to evaluate the maximum pressure loads of internal structures. Blast wave strength and dynamics of propagation after explosion of the layer of hydrogen-air mixture was numerically simulated to reproduce the hydrogen explosion process during the Fukushima Daiichi Accident. (authors)

  6. Multidimensional Fuel Performance Code: BISON

    SciTech Connect (OSTI)

    2014-09-03

    BISON is a finite element based nuclear fuel performance code applicable to a variety of fuel forms including light water reactor fuel rods, TRISO fuel particles, and metallic rod and plate fuel (Refs. [a, b, c]). It solves the fully-coupled equations of thermomechanics and species diffusion and includes important fuel physics such as fission gas release and material property degradation with burnup. BISON is based on the MOOSE framework (Ref. [d]) and can therefore efficiently solve problems on 1-, 2- or 3-D meshes using standard workstations or large high performance computers. BISON is also coupled to a MOOSE-based mesoscale phase field material property simulation capability (Refs. [e, f]). As described here, BISON includes the code library named FOX, which was developed concurrent with BISON. FOX contains material and behavioral models that are specific to oxide fuels.

  7. Topology-generating interfacial pattern formation during liquid metal dealloying

    SciTech Connect (OSTI)

    Geslin, Pierre -Antoine; McCue, Ian; Gaskey, Bernard; Erlebacher, Jonah; Karma, Alain

    2015-11-19

    Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growth of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Furthermore, we deduce scaling laws governing microstructural length scales and dealloying kinetics.

  8. Creating bulk nanocrystalline metal.

    SciTech Connect (OSTI)

    Fredenburg, D. Anthony; Saldana, Christopher J.; Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John; Vogler, Tracy John; Yang, Pin

    2008-10-01

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  9. Reactive triblock polymers from tandem ring-opening polymerization for nanostructured vinyl thermosets

    SciTech Connect (OSTI)

    Amendt, Mark A.; Pitet, Louis M.; Moench, Sarah; Hillmyer, Marc A.

    2013-03-07

    Multiply functional hydroxyl telechelic poly(cyclooctene-s-5-norbornene-2-methylene methacrylate) was synthesized by ring opening metathesis (co)polymerization of cis-cyclooctene and 5-norbornene-2-methylene methacrylate using the second generation Grubbs catalyst in combination with a symmetric chain transfer agent bearing hydroxyl functionality. The resulting hydroxyl-telechelic polymer was used as a macroinitiator for the ring opening transesterification polymerization of d,l-lactide to form reactive poly(lactide)-b-poly(cyclooctene-s-5-norbornene-2-methylene methacrylate)-b-poly(lactide) triblock polymers. Subsequently, the triblocks were crosslinked by free radical copolymerization with several vinyl monomers including styrene, divinylbenzene, methyl methacrylate, and ethyleneglycol dimethacrylate. Certain conditions led to optically transparent thermosets with mesoscale phase separation as evidenced by small angle X-ray scattering, differential scanning calorimetry and transmission electron microscopy. Disordered, bicontinuous structures with nanoscopic domains were generated in several cases, rendering the samples attractive for size-selective membrane applications.

  10. Modeling nanoscale hydrodynamics by smoothed dissipative particle dynamics

    SciTech Connect (OSTI)

    Lei, Huan; Mundy, Christopher J.; Schenter, Gregory K.; Voulgarakis, Nikolaos

    2015-05-21

    Thermal fluctuation and hydrophobicity are two hallmarks of fluid hydrodynamics on the nano-scale. It is a challenge to consistently couple the small length and time scale phenomena associated with molecular interaction with larger scale phenomena. The development of this consistency is the essence of mesoscale science. In this study, we develop a nanoscale fluid model based on smoothed dissipative particle dynamics that accounts for the phenomena of associated with density fluctuations and hydrophobicity. We show consistency in the fluctuation spectrum across scales. In doing so, it is necessary to account for finite fluid particle size. Furthermore, we demonstrate that the present model can capture of the void probability and solvation free energy of apolar particles of different sizes. The present fluid model is well suited for a understanding emergent phenomena in nano-scale fluid systems.

  11. Hybrid models for the simulation of microstructural evolution influenced by coupled, multiple physical processes.

    SciTech Connect (OSTI)

    Tikare, Veena; Hernandez-Rivera, Efrain; Madison, Jonathan D.; Holm, Elizabeth Ann; Patterson, Burton R.; Homer, Eric R.

    2013-09-01

    Most materials microstructural evolution processes progress with multiple processes occurring simultaneously. In this work, we have concentrated on the processes that are active in nuclear materials, in particular, nuclear fuels. These processes are coarsening, nucleation, differential diffusion, phase transformation, radiation-induced defect formation and swelling, often with temperature gradients present. All these couple and contribute to evolution that is unique to nuclear fuels and materials. Hybrid model that combines elements from the Potts Monte Carlo, phase-field models and others have been developed to address these multiple physical processes. These models are described and applied to several processes in this report. An important feature of the models developed are that they are coded as applications within SPPARKS, a Sandiadeveloped framework for simulation at the mesoscale of microstructural evolution processes by kinetic Monte Carlo methods. This makes these codes readily accessible and adaptable for future applications.

  12. Multiscale Multiphysics Developments for Accident Tolerant Fuel Concepts

    SciTech Connect (OSTI)

    Gamble, K. A.; Hales, J. D.; Yu, J.; Zhang, Y.; Bai, X.; Andersson, D.; Patra, A.; Wen, W.; Tome, C.; Baskes, M.; Martinez, E.; Stanek, C. R.; Miao, Y.; Ye, B.; Hofman, G. L.; Yacout, A. M.; Liu, W.

    2015-09-01

    U3Si2 and iron-chromium-aluminum (Fe-Cr-Al) alloys are two of many proposed accident tolerant fuel concepts for the fuel and cladding, respectively. The behavior of these materials under normal operating and accident reactor conditions is not well known. As part of the Department of Energy’s Accident Tolerant Fuel High Impact Problem program significant work has been conducted to investigate the U3Si2 and FeCrAl behavior under reactor conditions. This report presents the multiscale and multiphysics effort completed in fiscal year 2015. The report is split into four major categories including Density Functional Theory Developments, Molecular Dynamics Developments, Mesoscale Developments, and Engineering Scale Developments. The work shown here is a compilation of a collaborative effort between Idaho National Laboratory, Los Alamos National Laboratory, Argonne National Laboratory and Anatech Corp.

  13. Fundamental Studies of Charge Migration and Delocalization Relevant to Solar Energy Conversion

    SciTech Connect (OSTI)

    Michael J. Therien

    2012-06-01

    This program aimed to understand the molecular-level principles by which complex chemical systems carry out photochemical charge separation, transport, and storage, and how these insights could impact the design of practical solar energy conversion and storage devices. Towards these goals, this program focused on: (1) carrying out fundamental mechanistic and transient dynamical studies of proton-coupled electron-transfer (PCET) reactions; (2) characterizing and interrogating via electron paramagnetic resonance (EPR) spectroscopic methods novel conjugated materials that feature large charge delocalization lengths; and (3) exploring excitation delocalization and migration, as well as polaron transport properties of meso-scale assemblies that are capable of segregating light-harvesting antennae, nanoscale wire-like conduction elements, and distinct oxidizing and reducing environments.

  14. Topology-generating interfacial pattern formation during liquid metal dealloying

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Geslin, Pierre -Antoine; McCue, Ian; Gaskey, Bernard; Erlebacher, Jonah; Karma, Alain

    2015-11-19

    Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growthmore » of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Furthermore, we deduce scaling laws governing microstructural length scales and dealloying kinetics.« less

  15. Phased-Resolved Strain Measuremetns in Hydrated Ordinary Portland Cement Using Synchrotron x-Rays (Prop. 2003-033)

    SciTech Connect (OSTI)

    BIernacki, Joseph J.; Watkins, Thomas R; Parnham, C. J.; Hubbard, Camden R; Bai, J.

    2006-01-01

    X-ray diffraction methods developed for the determination of residual stress states in crystalline materials have been applied to study residual strains and strains because of mechanical loading of ordinary portland cement paste. Synchrotron X-rays were used to make in situ measurements of interplanar spacings in the calcium hydroxide (CH) phase of hydrated neat portland cement under uniaxial compression. The results indicate that strains on the order of 1/100 000 can be resolved providing an essentially new technique by which to measure the phase-resolved meso-scale mechanical behavior of cement under different loading conditions. Evaluation of these strain data in view of published elastic parameters for CH suggests that the CH carries a large fraction of the applied stress and that plastic interactions with the matrix are notable.

  16. Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lay, Erin H.; Shao, Xuan -Min; Kendrick, Alexander K.; Carrano, Charles S.

    2015-07-30

    Acoustic waves with periods of 2–4 min and gravity waves with periods of 6–16 min have been detected at ionospheric heights (25–350 km) using GPS total electron content measurements. The area disturbed by these waves and the wave amplitudes have been associated with underlying thunderstorm activity. A statistical study comparing Next Generation Weather Radar thunderstorm measurements with ionospheric acoustic and gravity waves in the midlatitude U.S. Great Plains region was performed for the time period of May–July 2005. An increase of ionospheric acoustic wave disturbed area and amplitude is primarily associated with large thunderstorms (mesoscale convective systems). Ionospheric gravity wavemore » disturbed area and amplitude scale with thunderstorm activity, with even small storms (i.e., individual storm cells) producing an increase of gravity waves.« less

  17. Stochastic Parallel PARticle Kinetic Simulator

    Energy Science and Technology Software Center (OSTI)

    2008-07-01

    SPPARKS is a kinetic Monte Carlo simulator which implements kinetic and Metropolis Monte Carlo solvers in a general way so that they can be hooked to applications of various kinds. Specific applications are implemented in SPPARKS as physical models which generate events (e.g. a diffusive hop or chemical reaction) and execute them one-by-one. Applications can run in paralle so long as the simulation domain can be partitoned spatially so that multiple events can be invokedmore » simultaneously. SPPARKS is used to model various kinds of mesoscale materials science scenarios such as grain growth, surface deposition and growth, and reaction kinetics. It can also be used to develop new Monte Carlo models that hook to the existing solver and paralle infrastructure provided by the code.« less

  18. Building Height-Characteristics in Three U.S. Cities

    SciTech Connect (OSTI)

    Burian, S. J.; Brown, M. J.; Velugubantla, S. P.

    2002-01-01

    Urban canopy parameterizations have been used to represent urban effects in numerical models of mesoscale meteorology, the surface energy budget, and pollutant dispersion. The urban canopy parameterization accounts for the drag exerted by urban roughness elements, the enhancement of turbulent kinetic energy, and the alteration of the surface energy budget (Brown 2000). Accurate representation of urban effects in numerical simulations requires the determination of urban morphological parameters, including building height statistics. Computer analysis of 3-D building digital datasets can provide details of the urban environment in an efficient manner. Ratti ut al. (2001) describe a method for obtaining urban canopy parameters from digital imagery using image processing techniques, Burian et al. (2002) present an alternative analysis approach using a geographic information system (GIS). In this paper, building height statistics computed for three U.S. cities following the GIS approach are presented.

  19. Development of an Immersed Boundary Method to Resolve Complex Terrain in the Weather Research and Forecasting Model

    SciTech Connect (OSTI)

    Lunquist, K A; Chow, F K; Lundquist, J K; Mirocha, J D

    2007-09-04

    Flow and dispersion processes in urban areas are profoundly influenced by the presence of buildings which divert mean flow, affect surface heating and cooling, and alter the structure of turbulence in the lower atmosphere. Accurate prediction of velocity, temperature, and turbulent kinetic energy fields are necessary for determining the transport and dispersion of scalars. Correct predictions of scalar concentrations are vital in densely populated urban areas where they are used to aid in emergency response planning for accidental or intentional releases of hazardous substances. Traditionally, urban flow simulations have been performed by computational fluid dynamics (CFD) codes which can accommodate the geometric complexity inherent to urban landscapes. In these types of models the grid is aligned with the solid boundaries, and the boundary conditions are applied to the computational nodes coincident with the surface. If the CFD code uses a structured curvilinear mesh, then time-consuming manual manipulation is needed to ensure that the mesh conforms to the solid boundaries while minimizing skewness. If the CFD code uses an unstructured grid, then the solver cannot be optimized for the underlying data structure which takes an irregular form. Unstructured solvers are therefore often slower and more memory intensive than their structured counterparts. Additionally, urban-scale CFD models are often forced at lateral boundaries with idealized flow, neglecting dynamic forcing due to synoptic scale weather patterns. These CFD codes solve the incompressible Navier-Stokes equations and include limited options for representing atmospheric processes such as surface fluxes and moisture. Traditional CFD codes therefore posses several drawbacks, due to the expense of either creating the grid or solving the resulting algebraic system of equations, and due to the idealized boundary conditions and the lack of full atmospheric physics. Meso-scale atmospheric boundary layer simulations, on the other hand, are performed by numerical weather prediction (NWP) codes, which cannot handle the geometry of the urban landscape, but do provide a more complete representation of atmospheric physics. NWP codes typically use structured grids with terrain-following vertical coordinates, include a full suite of atmospheric physics parameterizations, and allow for dynamic synoptic scale lateral forcing through grid nesting. Terrain following grids are unsuitable for urban terrain, as steep terrain gradients cause extreme distortion of the computational cells. In this work, we introduce and develop an immersed boundary method (IBM) to allow the favorable properties of a numerical weather prediction code to be combined with the ability to handle complex terrain. IBM uses a non-conforming structured grid, and allows solid boundaries to pass through the computational cells. As the terrain passes through the mesh in an arbitrary manner, the main goal of the IBM is to apply the boundary condition on the interior of the domain as accurately as possible. With the implementation of the IBM, numerical weather prediction codes can be used to explicitly resolve urban terrain. Heterogeneous urban domains using the IBM can be nested into larger mesoscale domains using a terrain-following coordinate. The larger mesoscale domain provides lateral boundary conditions to the urban domain with the correct forcing, allowing seamless integration between mesoscale and urban scale models. Further discussion of the scope of this project is given by Lundquist et al. [2007]. The current paper describes the implementation of an IBM into the Weather Research and Forecasting (WRF) model, which is an open source numerical weather prediction code. The WRF model solves the non-hydrostatic compressible Navier-Stokes equations, and employs an isobaric terrain-following vertical coordinate. Many types of IB methods have been developed by researchers; a comprehensive review can be found in Mittal and Iaccarino [2005]. To the authors knowledge, this is the first IBM approach that is able to

  20. Transient x-ray diffraction with simultaneous imaging under high strain-rate loading

    SciTech Connect (OSTI)

    Fan, D.; E, J. C.; Zhao, F.; Luo, S. N.; Lu, L.; Li, B.; Qi, M. L.; Sun, T.; Fezzaa, K.; Chen, W.

    2014-11-15

    Real time, in situ, multiframe, diffraction, and imaging measurements on bulk samples under high and ultrahigh strain-rate loading are highly desirable for micro- and mesoscale sciences. We present an experimental demonstration of multiframe transient x-ray diffraction (TXD) along with simultaneous imaging under high strain-rate loading at the Advanced Photon Source beamline 32ID. The feasibility study utilizes high strain-rate Hopkinson bar loading on a Mg alloy. The exposure time in TXD is 2–3 μs, and the frame interval is 26.7–62.5 μs. Various dynamic deformation mechanisms are revealed by TXD, including lattice expansion or compression, crystal plasticity, grain or lattice rotation, and likely grain refinement, as well as considerable anisotropy in deformation. Dynamic strain fields are mapped via x-ray digital image correlation, and are consistent with the diffraction measurements and loading histories.

  1. Force Field Parameter Estimation of Functional Perfluoropolyether Lubricants

    SciTech Connect (OSTI)

    Smith, R.; Chung, P.S.; Steckel, J; Jhon, M.S.; Biegler, L.T.

    2011-01-01

    The head disk interface in a hard disk drive can be considered to be one of the hierarchical multiscale systems, which require the hybridization of multiscale modeling methods with coarse-graining procedure. However, the fundamental force field parameters are required to enable the coarse-graining procedure from atomistic/molecular scale to mesoscale models. In this paper, we investigate beyond molecular level and perform ab initio calculations to obtain the force field parameters. Intramolecular force field parameters for Zdol and Ztetraol were evaluated with truncated PFPE molecules to allow for feasible quantum calculations while still maintaining the characteristic chemical structure of the end groups. Using the harmonic approximation to the bond and angle potentials, the parameters were derived from the Hessian matrix, and the dihedral force constants are fit to the torsional energy profiles generated by a series of constrained molecular geometry optimization.

  2. Warm Bias and Parameterization of Boundary Upwelling in Ocean Models

    SciTech Connect (OSTI)

    Cessi, Paola; Wolfe, Christopher

    2012-11-06

    It has been demonstrated that Eastern Boundary Currents (EBC) are a baroclinic intensification of the interior circulation of the ocean due to the emergence of mesoscale eddies in response to the sharp buoyancy gradients driven by the wind-stress and the thermal surface forcing. The eddies accomplish the heat and salt transport necessary to insure that the subsurface flow is adiabatic, compensating for the heat and salt transport effected by the mean currents. The EBC thus generated occurs on a cross-shore scale of order 20-100 km, and thus this scale needs to be resolved in climate models in order to capture the meridional transport by the EBC. Our result indicate that changes in the near shore currents on the oceanic eastern boundaries are linked not just to local forcing, such as coastal changes in the winds, but depend on the basin-wide circulation as well.

  3. Interaction between surface wind and ocean circulation in the Carolina Capes in a coupled low-order model

    SciTech Connect (OSTI)

    Xie, L.; Pietrafesa, L.J.; Raman, S.

    1997-03-18

    Interactions between surface winds and ocean currents over an east-coast continental shelf are studied using a simple mathematical model. The model physics include cross-shelf advection of sea surface temperature (SST) by Ekman drift, upwelling due to Ekman transport divergence, differential heating of the low-level atmosphere by a cross-shelf SST gradient, and the Coriolis effect. Additionally, the effects of diabatic cooling of surface waters due to air-sea heat exchange and of the vertical density stratification on the thickness of the upper ocean Ekman layer are considered. The model results are qualitatively consistent with observed wind-driven coastal ocean circulation and surface wind signatures induced by SST. This simple model also demonstrates that two-way air-sea interaction plays a significant role in the subtidal frequency variability of coastal ocean circulation and mesoscale variability of surface wind fields over coastal waters.

  4. Coupled ocean-atmosphere model system for studies of interannual-to-decadal climate variability over the North Pacific Basin and precipitation over the Southwestern United States

    SciTech Connect (OSTI)

    Lai, Chung-Chieng A.

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The ultimate objective of this research project is to make understanding and predicting regional climate easier. The long-term goals of this project are (1) to construct a coupled ocean-atmosphere model (COAM) system, (2) use it to explore the interannual-to-decadal climate variability over the North Pacific Basin, and (3) determine climate effects on the precipitation over the Southwestern United States. During this project life, three major tasks were completed: (1) Mesoscale ocean and atmospheric model; (2) global-coupled ocean and atmospheric modeling: completed the coupling of LANL POP global ocean model with NCAR CCM2+ global atmospheric model; and (3) global nested-grid ocean modeling: designed the boundary interface for the nested-grid ocean models.

  5. Multidimensional Fuel Performance Code: BISON

    Energy Science and Technology Software Center (OSTI)

    2014-09-03

    BISON is a finite element based nuclear fuel performance code applicable to a variety of fuel forms including light water reactor fuel rods, TRISO fuel particles, and metallic rod and plate fuel (Refs. [a, b, c]). It solves the fully-coupled equations of thermomechanics and species diffusion and includes important fuel physics such as fission gas release and material property degradation with burnup. BISON is based on the MOOSE framework (Ref. [d]) and can therefore efficientlymore » solve problems on 1-, 2- or 3-D meshes using standard workstations or large high performance computers. BISON is also coupled to a MOOSE-based mesoscale phase field material property simulation capability (Refs. [e, f]). As described here, BISON includes the code library named FOX, which was developed concurrent with BISON. FOX contains material and behavioral models that are specific to oxide fuels.« less

  6. Model Components of the Certification Framework for Geologic Carbon Sequestration Risk Assessment

    SciTech Connect (OSTI)

    Oldenburg, Curtis M.; Bryant, Steven L.; Nicot, Jean-Philippe; Kumar, Navanit; Zhang, Yingqi; Jordan, Preston; Pan, Lehua; Granvold, Patrick; Chow, Fotini K.

    2009-06-01

    We have developed a framework for assessing the leakage risk of geologic carbon sequestration sites. This framework, known as the Certification Framework (CF), emphasizes wells and faults as the primary potential leakage conduits. Vulnerable resources are grouped into compartments, and impacts due to leakage are quantified by the leakage flux or concentrations that could potentially occur in compartments under various scenarios. The CF utilizes several model components to simulate leakage scenarios. One model component is a catalog of results of reservoir simulations that can be queried to estimate plume travel distances and times, rather than requiring CF users to run new reservoir simulations for each case. Other model components developed for the CF and described here include fault characterization using fault-population statistics; fault connection probability using fuzzy rules; well-flow modeling with a drift-flux model implemented in TOUGH2; and atmospheric dense-gas dispersion using a mesoscale weather prediction code.

  7. Oscillation of Capacitance inside Nanopores

    SciTech Connect (OSTI)

    Jiang, Deen; Wu, Jianzhong; Jin, Zhehui

    2011-01-01

    materials for supercapacitors. Although great attention has been given to the anomalous increase of the capacitance as the pore size approaches the ionic dimensions, there remains a lack of full comprehension of the size dependence of the capacitance in nanopores. Here we predict from a classical density functional theory that the capacitance of an ionic-liquid electrolyte inside a nanopore oscillates with a decaying envelope as the pore size increases. The oscillatory behavior can be attributed to the interference of the overlapping electric double layers (EDLs); namely, the maxima in capacitance appear when superposition of the two EDLs is most constructive. The theoretical prediction agreeswell with the experiment when the pore size is less than twice the ionic diameter.Confirmation of the entire oscillatory spectruminvites future experiments with a precise control of the pore size from micro- to mesoscales.

  8. Final Report

    SciTech Connect (OSTI)

    Bauer, Susanne

    2015-02-09

    We participated in a FASTER SCM intercomparison for which we ran our SCM for 3 years at the SGP to analyze statistics of the precipitation field (Song et al., 2013). An important feature of these simulations was the use of relaxation forcing to observed T, q, which decouples the model convection from the forcing and allows precipitation errors to emerge. Because the GISS cumulus parameterization includes a trigger that prevents convection until sufficient lifting is present, and because convection at the SGP is usually triggered by mesoscale motions that are not represented in the forcing when relaxation is applied, the duration of SCM precipitation is shorter than observed (Del Genio and Wolf, 2012) and thus its mean precipitation less than observed. However, its diurnal cycle phase is correct, and it is the only operational cumulus parameterization in the intercomparison that does not produce excessive warm season precipitation under weak large-scale forcing conditions.

  9. Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms

    SciTech Connect (OSTI)

    Lay, Erin H.; Shao, Xuan -Min; Kendrick, Alexander K.; Carrano, Charles S.

    2015-07-30

    Acoustic waves with periods of 2–4 min and gravity waves with periods of 6–16 min have been detected at ionospheric heights (25–350 km) using GPS total electron content measurements. The area disturbed by these waves and the wave amplitudes have been associated with underlying thunderstorm activity. A statistical study comparing Next Generation Weather Radar thunderstorm measurements with ionospheric acoustic and gravity waves in the midlatitude U.S. Great Plains region was performed for the time period of May–July 2005. An increase of ionospheric acoustic wave disturbed area and amplitude is primarily associated with large thunderstorms (mesoscale convective systems). Ionospheric gravity wave disturbed area and amplitude scale with thunderstorm activity, with even small storms (i.e., individual storm cells) producing an increase of gravity waves.

  10. Graphene nanocomposites for electrochemical cell electrodes

    DOE Patents [OSTI]

    Zhamu, Aruna; Jang, Bor Z.; Shi, Jinjun

    2015-11-19

    A composite composition for electrochemical cell electrode applications, the composition comprising multiple solid particles, wherein (a) a solid particle is composed of graphene platelets dispersed in or bonded by a first matrix or binder material, wherein the graphene platelets are not obtained from graphitization of the first binder or matrix material; (b) the graphene platelets have a length or width in the range of 10 nm to 10 .mu.m; (c) the multiple solid particles are bonded by a second binder material; and (d) the first or second binder material is selected from a polymer, polymeric carbon, amorphous carbon, metal, glass, ceramic, oxide, organic material, or a combination thereof. For a lithium ion battery anode application, the first binder or matrix material is preferably amorphous carbon or polymeric carbon. Such a composite composition provides a high anode capacity and good cycling response. For a supercapacitor electrode application, the solid particles preferably have meso-scale pores therein to accommodate electrolyte.

  11. Final Project Report

    SciTech Connect (OSTI)

    Small, R. Justin; Bryan, Frank; Tribbia, Joseph; Park, Sungsu; Dennis, John; Saravanan, R.; Schneider, Niklas; Kwon, Young-Oh

    2015-06-01

    Most climate models are currently run with grid spacings of around 100km, which, with today’s computing power, allows for long (up to 1000 year) simulations, or ensembles of simulations to explore climate change and variability. However this grid spacing does not resolve important components of the weather/climate system such as atmospheric fronts and mesoscale systems, and ocean boundary currents and eddies. The overall aim of this project has been to look at the effect of these small-scale features on the weather/climate system using a suite of high and low resolution climate models, idealized models and observations. This project was only possible due to the highly scalable aspect of the CAM Spectral Element dynamical core, and the significant resources allocated at Yellowstone and NERSC for which we are grateful.

  12. Emergence of reconfigurable wires and spinners via dynamic self-assembly

    SciTech Connect (OSTI)

    Kokot, Gasper; Piet, David; Whitesides, George M.; Aranson, Igor S.; Snezhko, Alexey

    2015-03-26

    Dissipative colloidal materials use energy to generate and maintain structural complexity. The energy injection rate, and properties of the environment are important control parameters that influence the outcome of dynamic self-assembly. Here we demonstrate that dispersions of magnetic microparticles confined at the air-liquid interface, and energized by a uniaxial in-plane alternating magnetic field, self-assemble into a variety of structures that range from pulsating clusters and single-particle-thick wires to dynamic arrays of spinners (self-assembled short chains) rotating in either direction. The spinners emerge via spontaneous breaking of the uniaxial symmetry of the energizing magnetic field. Demonstration of the formation and disaggregation of particle assemblies suggests strategies to form new meso-scale structures with the potential to perform functions such as mixing and sensing.

  13. HIGH-RESOLUTION ATMOSPHERIC ENSEMBLE MODELING AT SRNL

    SciTech Connect (OSTI)

    Buckley, R.; Werth, D.; Chiswell, S.; Etherton, B.

    2011-05-10

    The High-Resolution Mid-Atlantic Forecasting Ensemble (HME) is a federated effort to improve operational forecasts related to precipitation, convection and boundary layer evolution, and fire weather utilizing data and computing resources from a diverse group of cooperating institutions in order to create a mesoscale ensemble from independent members. Collaborating organizations involved in the project include universities, National Weather Service offices, and national laboratories, including the Savannah River National Laboratory (SRNL). The ensemble system is produced from an overlapping numerical weather prediction model domain and parameter subsets provided by each contributing member. The coordination, synthesis, and dissemination of the ensemble information are performed by the Renaissance Computing Institute (RENCI) at the University of North Carolina-Chapel Hill. This paper discusses background related to the HME effort, SRNL participation, and example results available from the RENCI website.

  14. Multi-wavelength Raman scattering of nanostructured Al-doped zinc oxide

    SciTech Connect (OSTI)

    Russo, V.; Ghidelli, M.; Gondoni, P. [Dipartimento di Energia and NEMAS, Center for Nanoengineered Materials and Surfaces, Politecnico di Milano, via Ponzio 34/3, I-20133 Milano (Italy); Casari, C. S.; Li Bassi, A. [Dipartimento di Energia and NEMAS, Center for Nanoengineered Materials and Surfaces, Politecnico di Milano, via Ponzio 34/3, I-20133 Milano (Italy); Center for Nano Science and Technology PoliMI, Istituto Italiano di Tecnologia, Via Pascoli 70/3, I-20133 Milano (Italy)

    2014-02-21

    In this work we present a detailed Raman scattering investigation of zinc oxide and aluminum-doped zinc oxide (AZO) films characterized by a variety of nanoscale structures and morphologies and synthesized by pulsed laser deposition under different oxygen pressure conditions. The comparison of Raman spectra for pure ZnO and AZO films with similar morphology at the nano/mesoscale allows to investigate the relation between Raman features (peak or band positions, width, relative intensity) and material properties such as local structural order, stoichiometry, and doping. Moreover Raman measurements with three different excitation lines (532, 457, and 325?nm) point out a strong correlation between vibrational and electronic properties. This observation confirms the relevance of a multi-wavelength Raman investigation to obtain a complete structural characterization of advanced doped oxide materials.

  15. Low-energy planar magnetic defects in BaFe2As2: Nanotwins, twins, antiphase, and domain boundaries

    SciTech Connect (OSTI)

    Khan, Suffian N. [Ames Laboratory; Alam, Aftab [Ames Laboratory; Johnson, Duane D. [Ames Laboratory

    2013-11-27

    In BaFe2As2, structural and magnetic planar defects begin to proliferate below the structural phase transition, affecting descriptions of magnetism and superconductivity. We study, using density-functional theory, the stability and magnetic properties of competing antiphase and domain boundaries, twins and isolated nanotwins (twin nuclei), and spin excitations proposed and/or observed. These nanoscale defects have a very low surface energy (22210 m Jm?2), with twins favorable to the mesoscale. Defects exhibit smaller moments confined near their boundariesmaking a uniform-moment picture inappropriate for long-range magnetic order in real samples. Nanotwins explain features in measured pair distribution functions so should be considered when analyzing scattering data. All these defects can be weakly mobile and/or can have fluctuations that lower assessed ordered moments from longer spatial and/or time averaging and should be considered directly.

  16. Applications of free electron lasers and synchrotrons in industry and research

    SciTech Connect (OSTI)

    Barletta, William A. [Dept. of Physics, Massachusetts Institute of Technology Cambridge MA (United States)

    2013-04-19

    Synchrotron radiation sources have had a profound effect on both science and technology from their beginnings decades ago as parasitic operations on accelerators for high energy physics. Now the general area of photon science has opened up new experimental techniques which have become the mainstay tools of materials science, surface physics, protein crystallography, and nanotechnology. With the promise of ultra-bright beams from the latest generation of storage rings and free electron lasers with full coherence, the tools of photon science promise to open a new area of mesoscale science and technology as well as prove to be a disruptive wildcard in the search for sustainable energy technologies. This review will survey a range of applications and explore in greater depth the potential applications to EUV lithography and to technologies for solar energy.

  17. Low-energy planar magnetic defects in BaFe2As2: Nanotwins, twins, antiphase, and domain boundaries

    SciTech Connect (OSTI)

    Khan, S. N. [Ames Laboratory] [Ames Laboratory; Alam, A. [Ames Laboratory] [Ames Laboratory; Johnson, Duane D. [University of Illinois, Urbana-Champaign] [University of Illinois, Urbana-Champaign

    2013-01-01

    In BaFe2As2, structural and magnetic planar defects begin to proliferate below the structural phase transition, affecting descriptions of magnetism and superconductivity.We study, using density-functional theory, the stability and magnetic properties of competing antiphase and domain boundaries, twins and isolated nanotwins (twin nuclei), and spin excitations proposed and/or observed. These nanoscale defects have a very low surface energy (22 210 m Jm 2), with twins favorable to the mesoscale. Defects exhibit smaller moments confined near their boundaries making a uniform-moment picture inappropriate for long-range magnetic order in real samples. Nanotwins explain features in measured pair distribution functions so should be considered when analyzing scattering data. All these defects can be weakly mobile and/or can have fluctuations that lower

  18. Force Field Parameter Estimation of Functional Perfluoropolyether Lubricants

    SciTech Connect (OSTI)

    Smith, R.; Chung, P.S.; Steckel, J; Jhon, M.S.; Biegler, L.T.

    2011-01-01

    The head disk interface in hard disk drive can be considered one of the hierarchical multiscale systems, which require the hybridization of multiscale modeling methods with coarse-graining procedure. However, the fundamental force field parameters are required to enable the coarse-graining procedure from atomistic/molecular scale to mesoscale models .In this paper, we investigate beyond molecular level and perform ab-initio calculations to obtain the force field parameters. Intramolecular force field parameters for the Zdol and Ztetraol were evaluated with truncated PFPE molecules to allow for feasible quantum calculations while still maintaining the characteristic chemical structure of the end groups. Using the harmonic approximation to the bond and angle potentials, the parameters were derived from the Hessian matrix, and the dihedral force constants are fit to the torsional energy profiles generated by a series of constrained molecular geometry optimization.

  19. Freeform Fluidics

    SciTech Connect (OSTI)

    Love, Lonnie J [ORNL] [ORNL; Richardson, Bradley S [ORNL] [ORNL; Lind, Randall F [ORNL] [ORNL; Dehoff, Ryan R [ORNL] [ORNL; Peter, William H [ORNL] [ORNL; Lowe, Larry E [ORNL] [ORNL; Blue, Craig A [ORNL] [ORNL

    2013-01-01

    This work explores the integration of miniaturized fluid power and additive manufacturing. Oak Ridge National Laboratory (ORNL) has been developing an approach to miniaturized fluidic actuation and control that enables high dexterity, low cost and a pathway towards energy efficiency. Previous work focused on mesoscale digital control valves (high pressure, low flow) and the integration of actuation and fluid passages directly with the structure. The primary application being fluid powered robotics. The fundamental challenge was part complexity. Additive manufacturing technologies (E-Beam, Laser and Ultrasonic deposition) enable freeform manufacturing using conventional metal alloys with excellent mechanical properties. The combination of these two technologies (miniaturized fluid power and additive manufacturing) can enable a paradigm shift in fluid power, increasing efficiency while simultaneously reducing weight, size, complexity and cost.

  20. Multiscale atomistic simulation of metal-oxygen surface interactions: methodological development, theoretical investigation, and correlation with experiment

    SciTech Connect (OSTI)

    Yang, Judith C.

    2015-01-09

    The purpose of this grant is to develop the multi-scale theoretical methods to describe the nanoscale oxidation of metal thin films, as the PI (Yang) extensive previous experience in the experimental elucidation of the initial stages of Cu oxidation by primarily in situ transmission electron microscopy methods. Through the use and development of computational tools at varying length (and time) scales, from atomistic quantum mechanical calculation, force field mesoscale simulations, to large scale Kinetic Monte Carlo (KMC) modeling, the fundamental underpinings of the initial stages of Cu oxidation have been elucidated. The development of computational modeling tools allows for accelerated materials discovery. The theoretical tools developed from this program impact a wide range of technologies that depend on surface reactions, including corrosion, catalysis, and nanomaterials fabrication.

  1. Gradient Plasticity Model and its Implementation into MARMOT

    SciTech Connect (OSTI)

    Barker, Erin I.; Li, Dongsheng; Zbib, Hussein M.; Sun, Xin

    2013-08-01

    The influence of strain gradient on deformation behavior of nuclear structural materials, such as boby centered cubic (bcc) iron alloys has been investigated. We have developed and implemented a dislocation based strain gradient crystal plasticity material model. A mesoscale crystal plasticity model for inelastic deformation of metallic material, bcc steel, has been developed and implemented numerically. Continuum Dislocation Dynamics (CDD) with a novel constitutive law based on dislocation density evolution mechanisms was developed to investigate the deformation behaviors of single crystals, as well as polycrystalline materials by coupling CDD and crystal plasticity (CP). The dislocation density evolution law in this model is mechanism-based, with parameters measured from experiments or simulated with lower-length scale models, not an empirical law with parameters back-fitted from the flow curves.

  2. Creating physically-based three-dimensional microstructures: Bridging phase-field and crystal plasticity models.

    SciTech Connect (OSTI)

    Lim, Hojun; Owen, Steven J.; Abdeljawad, Fadi F.; Hanks, Byron; Battaile, Corbett Chandler

    2015-09-01

    In order to better incorporate microstructures in continuum scale models, we use a novel finite element (FE) meshing technique to generate three-dimensional polycrystalline aggregates from a phase field grain growth model of grain microstructures. The proposed meshing technique creates hexahedral FE meshes that capture smooth interfaces between adjacent grains. Three dimensional realizations of grain microstructures from the phase field model are used in crystal plasticity-finite element (CP-FE) simulations of polycrystalline a -iron. We show that the interface conformal meshes significantly reduce artificial stress localizations in voxelated meshes that exhibit the so-called "wedding cake" interfaces. This framework provides a direct link between two mesoscale models - phase field and crystal plasticity - and for the first time allows mechanics simulations of polycrystalline materials using three-dimensional hexahedral finite element meshes with realistic topological features.

  3. Emergence of reconfigurable wires and spinners via dynamic self-assembly

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kokot, Gasper; Piet, David; Whitesides, George M.; Aranson, Igor S.; Snezhko, Alexey

    2015-03-26

    Dissipative colloidal materials use energy to generate and maintain structural complexity. The energy injection rate, and properties of the environment are important control parameters that influence the outcome of dynamic self-assembly. Here we demonstrate that dispersions of magnetic microparticles confined at the air-liquid interface, and energized by a uniaxial in-plane alternating magnetic field, self-assemble into a variety of structures that range from pulsating clusters and single-particle-thick wires to dynamic arrays of spinners (self-assembled short chains) rotating in either direction. The spinners emerge via spontaneous breaking of the uniaxial symmetry of the energizing magnetic field. Demonstration of the formation and disaggregationmore » of particle assemblies suggests strategies to form new meso-scale structures with the potential to perform functions such as mixing and sensing.« less

  4. Updated Eastern Interconnect Wind Power Output and Forecasts for ERGIS: July 2012

    SciTech Connect (OSTI)

    Pennock, K.

    2012-10-01

    AWS Truepower, LLC (AWST) was retained by the National Renewable Energy Laboratory (NREL) to update wind resource, plant output, and wind power forecasts originally produced by the Eastern Wind Integration and Transmission Study (EWITS). The new data set was to incorporate AWST's updated 200-m wind speed map, additional tall towers that were not included in the original study, and new turbine power curves. Additionally, a primary objective of this new study was to employ new data synthesis techniques developed for the PJM Renewable Integration Study (PRIS) to eliminate diurnal discontinuities resulting from the assimilation of observations into mesoscale model runs. The updated data set covers the same geographic area, 10-minute time resolution, and 2004?2006 study period for the same onshore and offshore (Great Lakes and Atlantic coast) sites as the original EWITS data set.

  5. Final Report on the NCAR VTMX Effort

    SciTech Connect (OSTI)

    Parsons, David; Pinto, James; Brown, William; Cohen, Stephen; Morley, Bruce

    2007-02-13

    The NCAR effort is primarily focused on the analysis of a diverse suite of measurements taken at the southern end of the Salt Lake City Valley within the Jordan Narrows. These measurements include wind profiler, surface, lidar, radiosonde, multi-layered tether-sonde and sodar measurements. We are also collaborating with other VTMX investigators through linking our measurements within the Jordan Narrows with their investigations. The instrumentation was provided to interested VTMX investigators and was used extensively. Thus the NCAR data set played a large role in the results of the overall experiment. Our work under this proposal includes analysis of the observations, mesoscale modeling efforts in support of our VTMX analysis and general instrumentation development aimed at improving the measurement of vertical transport and mixing under stable conditions. This report is subdivided by research objectives.

  6. The handbook of fluid dynamics

    SciTech Connect (OSTI)

    Johnson, R.W.

    1998-07-01

    This book provides professionals in the field of fluid dynamics with a comprehensive guide and resource. The book balances three traditional areas of fluid mechanics--theoretical, computational, and experimental--and expounds on basic science and engineering techniques. Each chapter introduces a topic, discusses the primary issues related to this subject, outlines approaches taken by experts, and supplies references for further information. Topics discussed include: (1) basic engineering fluid dynamics; (2) classical fluid dynamics; (3) turbulence modeling; (4) reacting flows; (5) multiphase flows; (6) flow and porous media; (7) high Reynolds number asymptotic theories; (8) finite difference method; (9) finite volume method; (10) finite element methods; (11) spectral element methods for incompressible flows; (12) experimental methods, such as hot-wire anemometry, laser-Doppler velocimetry, and flow visualization; and (13) applications, such as axial-flow compressor and fan aerodynamics, turbomachinery, airfoils and wings, atmospheric flows, and mesoscale oceanic flows.

  7. FY 2011 Second Quarter: Demonstration of New Aerosol Measurement Verification Testbed for Present-Day Global Aerosol Simulations

    SciTech Connect (OSTI)

    Koch, D

    2011-03-20

    The regional-scale Weather Research and Forecasting (WRF) model is being used by a DOE Earth System Modeling (ESM) project titled Improving the Characterization of Clouds, Aerosols and the Cryosphere in Climate Models to evaluate the performance of atmospheric process modules that treat aerosols and aerosol radiative forcing in the Arctic. We are using a regional-scale modeling framework for three reasons: (1) It is easier to produce a useful comparison to observations with a high resolution model; (2) We can compare the behavior of the CAM parameterization suite with some of the more complex and computationally expensive parameterizations used in WRF; (3) we can explore the behavior of this parameterization suite at high resolution. Climate models like the Community Atmosphere Model version 5 (CAM5) being used within the Community Earth System Model (CESM) will not likely be run at mesoscale spatial resolutions (1020 km) until 510 years from now. The performance of the current suite of physics modules in CAM5 at such resolutions is not known, and current computing resources do not permit high-resolution global simulations to be performed routinely. We are taking advantage of two tools recently developed under PNNL Laboratory Directed Research and Development (LDRD) projects for this activity. The first is the Aerosol Modeling Testbed (Fast et al., 2011b), a new computational framework designed to streamline the process of testing and evaluating aerosol process modules over a range of spatial and temporal scales. The second is the CAM5 suite of physics parameterizations that have been ported into WRF so that their performance and scale dependency can be quantified at mesoscale spatial resolutions (Gustafson et al., 2010; with more publications in preparation).

  8. FY08 LDRD Final Report Regional Climate

    SciTech Connect (OSTI)

    Bader, D C; Chin, H; Caldwell, P M

    2009-05-19

    An integrated, multi-model capability for regional climate change simulation is needed to perform original analyses to understand and prepare for the impacts of climate change on the time and space scales that are critical to California's future environmental quality and economic prosperity. Our intent was to develop a very high resolution regional simulation capability to address consequences of climate change in California to complement the global modeling capability that is supported by DOE at LLNL and other institutions to inform national and international energy policies. The California state government, through the California Energy Commission (CEC), institutionalized the State's climate change assessment process through its biennial climate change reports. The bases for these reports, however, are global climate change simulations for future scenarios designed to inform international policy negotiations, and are primarily focused on the global to continental scale impacts of increasing emissions of greenhouse gases. These simulations do not meet the needs of California public and private officials who will make major decisions in the next decade that require an understanding of climate change in California for the next thirty to fifty years and its effects on energy use, water utilization, air quality, agriculture and natural ecosystems. With the additional development of regional dynamical climate modeling capability, LLNL will be able to design and execute global simulations specifically for scenarios important to the state, then use those results to drive regional simulations of the impacts of the simulated climate change for regions as small as individual cities or watersheds. Through this project, we systematically studied the strengths and weaknesses of downscaling global model results with a regional mesoscale model to guide others, particularly university researchers, who are using the technique based on models with less complete parameterizations or coarser spatial resolution. Further, LLNL has now built a capability in state-of-the-science mesoscale climate modeling that complements that which it has in global climate simulation, providing potential sponsors with an end-to-end simulation and analysis program.

  9. Evaluation of Cloud-resolving and Limited Area Model Intercomparison Simulations using TWP-ICE Observations. Part 2: Rain Microphysics

    SciTech Connect (OSTI)

    Varble, Adam; Zipser, Edward J.; Fridlind, Ann; Zhu, Ping; Ackerman, Andrew; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; Shipway, Ben; Williams, Christopher R.

    2014-12-27

    Ten 3D cloud-resolving model (CRM) simulations and four 3D limited area model (LAM) simulations of an intense mesoscale convective system observed on January 23-24, 2006 during the Tropical Warm Pool International Cloud Experiment (TWP-ICE) are compared with each other and with observations and retrievals from a scanning polarimetric radar, co-located UHF and VHF vertical profilers, and a Joss-Waldvogel disdrometer in an attempt to explain published results showing a low bias in simulated stratiform rainfall. Despite different forcing methodologies, similar precipitation microphysics errors appear in CRMs and LAMs with differences that depend on the details of the bulk microphysics scheme used. One-moment schemes produce too many small raindrops, which biases Doppler velocities low, but produces rain water contents (RWCs) that are similar to observed. Two-moment rain schemes with a gamma shape parameter (?) of 0 produce excessive size sorting, which leads to larger Doppler velocities than those produced in one-moment schemes, but lower RWCs than observed. Two moment schemes also produce a convective median volume diameter distribution that is too broad relative to observations and thus, may have issues balancing raindrop formation, collision coalescence, and raindrop breakup. Assuming a ? of 2.5 rather than 0 for the raindrop size distribution improves one-moment scheme biases, and allowing ? to have values greater than 0 may improve two-moment schemes. Under-predicted stratiform rain rates are associated with under-predicted ice water contents at the melting level rather than excessive rain evaporation, in turn likely associated with convective detrainment that is too high in the troposphere and mesoscale circulations that are too weak. In addition to stronger convective updrafts than observed, limited domain size prevents a large, well-developed stratiform region from developing in CRMs, while a dry bias in ECMWF analyses does the same to the LAMs.

  10. Silicon bulk micromachined hybrid dimensional artifact.

    SciTech Connect (OSTI)

    Claudet, Andre A.; Tran, Hy D.; Bauer, Todd Marks; Shilling, Katherine Meghan; Oliver, Andrew David

    2010-03-01

    A mesoscale dimensional artifact based on silicon bulk micromachining fabrication has been developed and manufactured with the intention of evaluating the artifact both on a high precision coordinate measuring machine (CMM) and video-probe based measuring systems. This hybrid artifact has features that can be located by both a touch probe and a video probe system with a k=2 uncertainty of 0.4 {micro}m, more than twice as good as a glass reference artifact. We also present evidence that this uncertainty could be lowered to as little as 50 nm (k=2). While video-probe based systems are commonly used to inspect mesoscale mechanical components, a video-probe system's certified accuracy is generally much worse than its repeatability. To solve this problem, an artifact has been developed which can be calibrated using a commercially available high-accuracy tactile system and then be used to calibrate typical production vision-based measurement systems. This allows for error mapping to a higher degree of accuracy than is possible with a glass reference artifact. Details of the designed features and manufacturing process of the hybrid dimensional artifact are given and a comparison of the designed features to the measured features of the manufactured artifact is presented and discussed. Measurement results from vision and touch probe systems are compared and evaluated to determine the capability of the manufactured artifact to serve as a calibration tool for video-probe systems. An uncertainty analysis for calibration of the artifact using a CMM is presented.

  11. Macro-to-microchannel transition in two-phase flow: Part 1 - Two-phase flow patterns and film thickness measurements

    SciTech Connect (OSTI)

    Ong, C.L.; Thome, J.R. [Ecole Polytechnique Federale de Lausanne, EPFL-STI-IGM-LTCM, Station 9, CH-1015 Lausanne (Switzerland)

    2011-01-15

    The classification of macroscale, mesoscale and microscale channels with respect to two-phase processes is still an open question. The main objective of this study focuses on investigating the macro-to-microscale transition during flow boiling in small scale channels of three different sizes with three different refrigerants over a range of saturation conditions to investigate the effects of channel confinement on two-phase flow patterns and liquid film stratification in a single circular horizontal channel (Part 2 covers the flow boiling heat transfer and critical heat flux). This paper presents the experimental two-phase flow pattern transition data together with a top/bottom liquid film thickness comparison for refrigerants R134a, R236fa and R245fa during flow boiling in small channels of 1.03, 2.20 and 3.04 mm diameter. Based on this work, an improved flow pattern map has been proposed by determining the flow patterns transitions existing under different conditions including the transition to macroscale slug/plug flow at a confinement number of Co {approx} 0.3-0.4. From the top/bottom liquid film thickness comparison results, it was observed that the gravity forces are fully suppressed and overcome by the surface tension and shear forces when the confinement number approaches 1, Co {approx} 1. Thus, as a new approximate rule, the lower threshold of macroscale flow is Co = 0.3-0.4 while the upper threshold of symmetric microscale flow is Co {approx} 1 with a transition (or mesoscale) region in-between. (author)

  12. The Role of Moist Processes in the Intrinsic Predictability of Indian Ocean Cyclones

    SciTech Connect (OSTI)

    Taraphdar, Sourav; Mukhopadhyay, P.; Leung, Lai-Yung R.; Zhang, Fuqing; Abhilash, S.; Goswami, B. N.

    2014-07-16

    The role of moist processes and the possibility of error cascade from cloud scale processes affecting the intrinsic predictable time scale of a high resolution convection permitting model within the environment of tropical cyclones (TCs) over the Indian region are investigated. Consistent with past studies of extra-tropical cyclones, it is demonstrated that moist processes play a major role in forecast error growth which may ultimately limit the intrinsic predictability of the TCs. Small errors in the initial conditions may grow rapidly and cascades from smaller scales to the larger scales through strong diabatic heating and nonlinearities associated with moist convection. Results from a suite of twin perturbation experiments for four tropical cyclones suggest that the error growth is significantly higher in cloud permitting simulation at 3.3 km resolutions compared to simulations at 3.3 km and 10 km resolution with parameterized convection. Convective parameterizations with prescribed convective time scales typically longer than the model time step allows the effects of microphysical tendencies to average out so convection responds to a smoother dynamical forcing. Without convective parameterizations, the finer-scale instabilities resolved at 3.3 km resolution and stronger vertical motion that results from the cloud microphysical parameterizations removing super-saturation at each model time step can ultimately feed the error growth in convection permitting simulations. This implies that careful considerations and/or improvements in cloud parameterizations are needed if numerical predictions are to be improved through increased model resolution. Rapid upscale error growth from convective scales may ultimately limit the intrinsic mesoscale predictability of the TCs, which further supports the needs for probabilistic forecasts of these events, even at the mesoscales.

  13. Enhanced Generic Phase-field Model of Irradiation Materials: Fission Gas Bubble Growth Kinetics in Polycrystalline UO2

    SciTech Connect (OSTI)

    Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert O.; Gao, Fei; Sun, Xin

    2012-05-30

    Experiments show that inter-granular and intra-granular gas bubbles have different growth kinetics which results in heterogeneous gas bubble microstructures in irradiated nuclear fuels. A science-based model predicting the heterogeneous microstructure evolution kinetics is desired, which enables one to study the effect of thermodynamic and kinetic properties of the system on gas bubble microstructure evolution kinetics and morphology, improve the understanding of the formation mechanisms of heterogeneous gas bubble microstructure, and provide the microstructure to macroscale approaches to study their impact on thermo-mechanical properties such as thermo-conductivity, gas release, volume swelling, and cracking. In our previous report 'Mesoscale Benchmark Demonstration, Problem 1: Mesoscale Simulations of Intra-granular Fission Gas Bubbles in UO2 under Post-irradiation Thermal Annealing', we developed a phase-field model to simulate the intra-granular gas bubble evolution in a single crystal during post-irradiation thermal annealing. In this work, we enhanced the model by incorporating thermodynamic and kinetic properties at grain boundaries, which can be obtained from atomistic simulations, to simulate fission gas bubble growth kinetics in polycrystalline UO2 fuels. The model takes into account of gas atom and vacancy diffusion, vacancy trapping and emission at defects, gas atom absorption and resolution at gas bubbles, internal pressure in gas bubbles, elastic interaction between defects and gas bubbles, and the difference of thermodynamic and kinetic properties in matrix and grain boundaries. We applied the model to simulate gas atom segregation at grain boundaries and the effect of interfacial energy and gas mobility on gas bubble morphology and growth kinetics in a bi-crystal UO2 during post-irradiation thermal annealing. The preliminary results demonstrate that the model can produce the equilibrium thermodynamic properties and the morphology of gas bubbles at grain boundaries for given grain boundary properties. More validation of the model capability in polycrystalline is underway.

  14. Concepts and Tests for the Remote-Controlled Dismantling of the Biological Shield and Form work of the KNK Reactor - 13425

    SciTech Connect (OSTI)

    Neff, Sylvia; Graf, Anja; Petrick, Holger; Rothschmitt, Stefan; Klute, Stefan

    2013-07-01

    The compact sodium-cooled nuclear reactor facility Karlsruhe (KNK), a prototype Fast Breeder, is currently in an advanced stage of dismantling. Complete dismantling is based on 10 partial licensing steps. In the frame of the 9. decommissioning permit, which is currently ongoing, the dismantling of the biological shield is foreseen. The biological shield consists of heavy reinforced concrete with built-in steel fitments, such as form-work of the reactor tank, pipe sleeves, ventilation channels, and measuring devices. Due to the activation of the inner part of the biological shield, dismantling has to be done remote-controlled. During a comprehensive basic design phase a practical dismantling strategy was developed. Necessary equipment and tools were defined. Preliminary tests revealed that hot wire plasma cutting is the most favorable cutting technology due to the geometrical boundary conditions, the varying distance between cutter and material, and the heavy concrete behind the steel form-work. The cutting devices will be operated remotely via a carrier system with an industrial manipulator. The carrier system has expandable claws to adjust to the varying diameter of the reactor shaft during dismantling progress. For design approval of this prototype development, interaction between manipulator and hot wire plasma cutting was tested in a real configuration. For the demolition of the concrete structure, an excavator with appropriate tools, such as a hydraulic hammer, was selected. Other mechanical cutting devices, such as a grinder or rope saw, were eliminated because of concrete containing steel spheres added to increase the shielding factor of the heavy concrete. Dismantling of the biological shield will be done in a ring-wise manner due to static reasons. During the demolition process, the excavator is positioned on its tripod in three concrete recesses made prior to the dismantling of the separate concrete rings. The excavator and the manipulator carrier system will be operated alternately. Main boundary condition for all the newly designed equipment is the decommissioning housing of limited space within the reactor building containment. To allow for a continuous removal of the concrete rubble, an additional opening on the lowest level of the reactor shaft will be made. All equipment and the interaction of the tools have to be tested before use in the controlled area. Therefore a full-scale model of the biological shield will be provided in a mock-up. The tests will be performed in early 2014. The dismantling of the biological shield is scheduled for 2015. (authors)

  15. GASFLOW: A Computational Fluid Dynamics Code for Gases, Aerosols, and Combustion, Volume 1: Theory and Computational Model

    SciTech Connect (OSTI)

    Nichols, B.D.; Mueller, C.; Necker, G.A.; Travis, J.R.; Spore, J.W.; Lam, K.L.; Royl, P.; Redlinger, R.; Wilson, T.L.

    1998-10-01

    Los Alamos National Laboratory (LANL) and Forschungszentrum Karlsruhe (FzK) are developing GASFLOW, a three-dimensional (3D) fluid dynamics field code as a best-estimate tool to characterize local phenomena within a flow field. Examples of 3D phenomena include circulation patterns; flow stratification; hydrogen distribution mixing and stratification; combustion and flame propagation; effects of noncondensable gas distribution on local condensation and evaporation; and aerosol entrainment, transport, and deposition. An analysis with GASFLOW will result in a prediction of the gas composition and discrete particle distribution in space and time throughout the facility and the resulting pressure and temperature loadings on the walls and internal structures with or without combustion. A major application of GASFLOW is for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containments and other facilities. It has been applied to situations involving transporting and distributing combustible gas mixtures. It has been used to study gas dynamic behavior (1) in low-speed, buoyancy-driven flows, as well as sonic flows or diffusion dominated flows; and (2) during chemically reacting flows, including deflagrations. The effects of controlling such mixtures by safety systems can be analyzed. The code version described in this manual is designated GASFLOW 2.1, which combines previous versions of the United States Nuclear Regulatory Commission code HMS (for Hydrogen Mixing Studies) and the Department of Energy and FzK versions of GASFLOW. The code was written in standard Fortran 90. This manual comprises three volumes. Volume I describes the governing physical equations and computational model. Volume II describes how to use the code to set up a model geometry, specify gas species and material properties, define initial and boundary conditions, and specify different outputs, especially graphical displays. Sample problems are included. Volume III contains some of the assessments performed by LANL and FzK. GASFLOW is under continual development, assessment, and application by LANL and FzK. This manual is considered a living document and will be updated as warranted.

  16. State-of-the-art and recent developments of high-power gyrotron oscillators

    SciTech Connect (OSTI)

    Thumm, Manfred [Forschungszentrum Karlsruhe, Association EURATOM-FZK, ITP, P.O. Box 3640, D-76012 Karlsruhe (Germany); Universitaet Karlsruhe, Institut fuer Hoechstfrequenztechnik und Elektronik, Kaiserstrasse 12, D-76128 Karlsruhe (Germany)

    1999-05-07

    Gyrotron oscillators (gyromonotrons) are mainly used as high-power millimeter wave sources for electron cyclotron resonance heating (ECRH) and diagnostics of magnetically confined plasmas for generation of energy by controlled thermonuclear fusion. High unit power and high efficiency single-mode CW gyrotrons with conventional cylindrical (1 MW) and advanced coaxial (2 MW) cavities are worldwide under development. 118 GHz, 140 GHz and 170 GHz conventional cavity gyrotrons with output power P{sub out}{approx_equal}0.5 MW, pulse length {tau}{approx_equal}5.0 s and efficiency {eta}{approx_equal}35% are commercially available. Advanced internal quasi-optical mode converters generate linearly polarized output wave beams from the high-order cavity modes (e.g., TE{sub 22,6}) with efficiencies of 90-95% and separate the millimeter-wave beam from the electron beam, thus allowing the use of large CW-relevant depressed collectors for energy recovery. Overall efficiencies between 50 and 60% have been already achieved at JAERI, FZK, and GYCOM employing single-stage depressed collectors (SDC). First successful experiments at FZK employing a broadband Brewster window gave up to 1.5 MW output power at around 50% efficiency (SDC) for all operating mode series in the frequency range from 114 to 166 GHz (frequency tuning in 3.7 GHz steps by variation of the magnetic field strength in the cavity). Gyrotrons with advanced coaxial cavities designed for operation in the TE{sub 28,16} and TE{sub 31,17} modes at 140 and 165 GHz, respectively, are under development and test at IAP Nizhny Novgorod and FZK Karlsruhe. A maximum output power of 1.7 MW has been measured at 165 GHz with an efficiency of 35.2% (SDC, FZK). Cryogenically edge-cooled single-disk sapphire (T=77 K) and Au-doped silicon (T=230 K) windows as well as CVD-diamond windows with water edge-cooling at room temperature are under investigation in order to solve the window problem. Commercial CVD-diamond disks will easily allow the transmission of 2 MW power level at 170 GHz, CW. Bonding and brazing techniques are available. Recently, gyrotron oscillators have also been successfully used in materials processing. Such technological applications require gyrotrons with the following parameters: ISM frequency f{>=}24 GHz, P{sub out}=10-50 kW, CW, {eta}=30%. The present paper reviews recent developments and the state-of-the-art of high-power gyrotron oscillators for fusion plasma and industrial applications.

  17. Testing, Modeling, and Monitoring to Enable Simpler, Cheaper, Longer-Lived Surface Caps

    SciTech Connect (OSTI)

    Piet, Steven James; Breckenridge, Robert Paul; Burns, Douglas Edward

    2003-02-01

    Society has and will continue to generate hazardous wastes whose risks must be managed. For exceptionally toxic, long-lived, and feared waste, the solution is deep burial, e.g., deep geological disposal at Yucca Mtn. For some waste, recycle or destruction/treatment is possible. The alternative for other wastes is storage at or near the ground level (in someones back yard); most of these storage sites include a surface barrier (cap) to prevent downward water migration. Some of the hazards will persist indefinitely. As society and regulators have demanded additional proof that caps are robust against more threats and for longer time periods, the caps have become increasingly complex and expensive. As in other industries, increased complexity will eventually increase the difficulty in estimating performance, in monitoring system/component performance, and in repairing or upgrading barriers as risks are managed. An approach leading to simpler, less expensive, longer-lived, more manageable caps is needed. Our project, which started in April 2002, aims to catalyze a Barrier Improvement Cycle (iterative learning and application) and thus enable Remediation System Performance Management (doing the right maintenance neither too early nor too late). The knowledge gained and the capabilities built will help verify the adequacy of past remedial decisions, improve barrier management, and enable improved solutions for future decisions. We believe it will be possible to develop simpler, longer-lived, less expensive caps that are easier to monitor, manage, and repair. The project is planned to: a) improve the knowledge of degradation mechanisms in times shorter than service life; b) improve modeling of barrier degradation dynamics; c) develop sensor systems to identify early degradation; and d) provide a better basis for developing and testing of new barrier systems. This project combines selected exploratory studies (benchtop and field scale), coupled effects accelerated aging testing at the intermediate meso-scale, testing of new monitoring concepts, and modeling of dynamic systems. The emphasis on meso-scale (coupled) tests, accelerated effects testing, and dynamic modeling differentiates the project from other efforts, while simultaneously building on that body of knowledge. The performance of evapotranspiration, capillary, and grout-based barriers is being examined. To date, the project can report new approaches to the problem, building new experimental and modeling capabilities, and a few preliminary results.

  18. Testing, Modeling, and Monitoring to Enable Simpler, Cheaper, Longer-lived Surface Caps

    SciTech Connect (OSTI)

    Piet, S. J.; Breckenridge, R. P.; Burns, D. E.

    2003-02-25

    Society has and will continue to generate hazardous wastes whose risks must be managed. For exceptionally toxic, long-lived, and feared waste, the solution is deep burial, e.g., deep geological disposal at Yucca Mtn. For some waste, recycle or destruction/treatment is possible. The alternative for other wastes is storage at or near the ground level (in someone's back yard); most of these storage sites include a surface barrier (cap) to prevent downward water migration. Some of the hazards will persist indefinitely. As society and regulators have demanded additional proof that caps are robust against more threats and for longer time periods, the caps have become increasingly complex and expensive. As in other industries, increased complexity will eventually increase the difficulty in estimating performance, in monitoring system/component performance, and in repairing or upgrading barriers as risks are managed. An approach leading to simpler, less expensive, longer-lived, more manageable caps is needed. Our project, which started in April 2002, aims to catalyze a Barrier Improvement Cycle (iterative learning and application) and thus enable Remediation System Performance Management (doing the right maintenance neither too early nor too late). The knowledge gained and the capabilities built will help verify the adequacy of past remedial decisions, improve barrier management, and enable improved solutions for future decisions. We believe it will be possible to develop simpler, longer-lived, less expensive caps that are easier to monitor, manage, and repair. The project is planned to: (a) improve the knowledge of degradation mechanisms in times shorter than service life; (b) improve modeling of barrier degradation dynamics; (c) develop sensor systems to identify early degradation; and (d) provide a better basis for developing and testing of new barrier systems. This project combines selected exploratory studies (benchtop and field scale), coupled effects accelerated aging testing at the intermediate meso-scale, testing of new monitoring concepts, and modeling of dynamic systems. The emphasis on meso-scale (coupled) tests, accelerated effects testing, and dynamic modeling differentiates the project from other efforts, while simultaneously building on that body of knowledge. The performance of evapotranspiration, capillary, and grout-based barriers is being examined. To date, the project can report new approaches to the problem, building new experimental and modeling capabilities, and a few preliminary results.

  19. Roles of Wind Shear at Different Vertical Levels, Part I: Cloud System Organization and Properties

    SciTech Connect (OSTI)

    Chen, Qian; Fan, Jiwen; Hagos, Samson M.; Gustafson, William I.; Berg, Larry K.

    2015-07-16

    Understanding of critical processes that contribute to the organization of mesoscale convective systems is important for accurate weather forecast and climate prediction. In this study, we investigate the effects of wind shear at different vertical levels on the organization and properties of cloud systems using the Weather Research & Forecasting (WRF) model with a spectral-bin microphysical scheme. The sensitivity experiments are performed by increasing wind shear at the lower (0-5 km), middle (5-10 km), upper (> 10 km) and the entire troposphere, respectively, based on a control run for a mesoscale convective system (MCS) with weak wind shear. We find that increasing wind shear at the both lower and middle vertical levels reduces the domain-accumulated precipitation and the occurrence of heavy rain, while increasing wind shear at the upper levels changes little on precipitation. Although increasing wind shear at the lower-levels is favorable for a more organized quasi-line system which leads to enlarged updraft core area, and enhanced updraft velocities and vertical mass fluxes, the precipitation is still reduced by 18.6% compared with the control run due to stronger rain evaporation induced by the low-level wind shear. Strong wind shear in the middle levels only produces a strong super-cell over a narrow area, leading to 67.3% reduction of precipitation over the domain. By increasing wind shear at the upper levels only, the organization of the convection is not changed much, but the increased cloudiness at the upper-levels leads to stronger surface cooling and then stabilizes the atmosphere and weakens the convection. When strong wind shear exists over the entire vertical profile, a deep dry layer (2-9 km) is produced and convection is severely suppressed. There are fewer very-high (cloud top height (CTH) > 15 km) and very-deep (cloud thickness > 15 km) clouds, and the precipitation is only about 11.8% of the control run. The changes in cloud microphysical properties further explain the reduction of surface rain by strong wind shear especially at the lower- and middle-levels. The insights obtained from this study help us better understand the cloud system organization and provide foundation for better parameterizing organized MCS.

  20. NEAMS update quarterly report for January - March 2012.

    SciTech Connect (OSTI)

    Bradley, K.S.; Hayes, S.; Pointer, D.; Summers, R.; Sadasivan, P.; Sun, X.; Bernholdt, D.; Miller, M.; Stewart, J.

    2012-05-10

    Quarterly highlights are: (1) The integration of Denovo and AMP was demonstrated in an AMP simulation of the thermo-mechanics of a complete fuel assembly; (2) Bison was enhanced with a mechanistic fuel cracking model; (3) Mechanistic algorithms were incorporated into various lower-length-scale models to represent fission gases and dislocations in UO2 fuels; (4) Marmot was improved to allow faster testing of mesoscale models using larger problem domains; (5) Component models of reactor piping were developed for use in Relap-7; (6) The mesh generator of Proteus was updated to accept a mesh specification from Moose and equations were formulated for the intermediate-fidelity Proteus-2D1D module; (7) A new pressure solver was implemented in Nek5000 and demonstrated to work 2.5 times faster than the previous solver; (8) Work continued on volume-holdup models for two fuel reprocessing operations: voloxidation and dissolution; (9) Progress was made on a pyroprocessing model and the characterization of pyroprocessing emission signatures; (10) A new 1D groundwater waste transport code was delivered to the used fuel disposition (UFD) campaign; (11) Efforts on waste form modeling included empirical simulation of sodium-borosilicate glass compositions; (12) The Waste team developed three prototypes for modeling hydride reorientation in fuel cladding during very long-term fuel storage; (13) A benchmark demonstration problem (fission gas bubble growth) was modeled to evaluate the capabilities of different meso-scale numerical methods; (14) Work continued on a hierarchical up-scaling framework to model structural materials by directly coupling dislocation dynamics and crystal plasticity; (15) New 'importance sampling' methods were developed and demonstrated to reduce the computational cost of rare-event inference; (16) The survey and evaluation of existing data and knowledge bases was updated for NE-KAMS; (17) The NEAMS Early User Program was launched; (18) The Nuclear Regulatory Commission (NRC) Office of Regulatory Research was introduced to the NEAMS program; (19) The NEAMS overall software quality assurance plan (SQAP) was revised to version 1.5; and (20) Work continued on NiCE and its plug-ins and other utilities, such as Cubit and VisIt.