Powered by Deep Web Technologies
Note: This page contains sample records for the topic "k-area transfer bay" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Finding of No Significant Impact for the Storage of Tritium-Producing Burnable Absorber Rods in K-Area Transfer Bay at the Savannah River Site (DOE/EA-1528) (06/01/05)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the the Storage of Tritium-Producing Burnable Absorber Rods in K-Area Transfer Bay at the Savannah River Site Agency: U.S. Department of Energy (DOE) Action: Finding of No Significant Impact Summary: The DOE Savannah River Operations Office (SR) and the National Nuclear Security Administration (NNSA) Savannah River Site Office (SRSO) have prepared an environmental assessment (EA), DOE/EA-1528, to evaluate the potential environmental impacts of the temporary dry storage of a cask containing Tritium- Producing Burnable Absorber Rods (TPBARs) in the Transfer Bay in K Area at the Savannah River Site (SRS). Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the

2

DOE/EA-1528: Environmental Assessment for the Storage of Tritium-Producing Burnable Absorber RODs in K-Area Transfer Bay at the Savannah River Site (6/2/05)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

28 28 JUNE 2005 U. S. DEPARTMENT OF ENERGY SAVANNAH RIVER OPERATIONS OFFICE SAVANNAH RIVER SITE ENVIRONMENTAL ASSESSMENT FOR THE STORAGE OF TRITIUM-PRODUCING BURNABLE ABSORBER RODS IN K-AREA TRANSFER BAY AT THE SAVANNAH RIVER SITE DOE/EA-1528 ENVIRONMENTAL ASSESSMENT FOR THE STORAGE OF TRITIUM-PRODUCING BURNABLE ABSORBER RODS IN K-AREA TRANSFER BAY AT THE SAVANNAH RIVER SITE June 2005 U. S. DEPARTMENT OF ENERGY SAVANNAH RIVER OPERATIONS OFFICE SAVANNAH RIVER SITE This page is intentionally left blank ii TABLE OF CONTENTS Page 1.0 INTRODUCTION 1 1.1 Background 1 1.2 Purpose and Need for Action 2 2.0 PROPOSED ACTION AND ALTERNATIVES 2 2.1 Proposed Action 2 2.2 Alternatives to the Proposed Action 3

3

Criticality safety evaluation for K Area Disassembly Basin cleanup  

SciTech Connect

Preparations are currently being made to remove sludge from the Disassembly Basin in all reactor areas. Because this sludge contains fissile isotopes, it is necessary to perform a criticality safety evaluation for the planned activities. A previous evaluation examined the criticality safety aspects of the sludge removal process for L Area. This document addresses the criticality safety aspects of the K Area Disassembly Basin cleanup work. The K Area Disassembly Basin cleanup will involve, as a first step, pumping the basin sludge into the Monitor Basin portion of the Disassembly Basin. From the Monitor Basin, the sludge will be pumped into tanks or containers for permanent disposition. The criticality safety evaluation discussed in this document covers the transfer of the sludge to the Monitor Basin.

Rosser, M.A.

1994-02-01T23:59:59.000Z

4

Session A1: Bilateral cooperation and technology transfer between France and China at Daya-Bay, Qinshan II and Yibin  

SciTech Connect

The Daya-Bay nuclear power station in Guangdong Province, the Qinshan phase II nuclear power station (NPS) in Zhejiang Province, and the fuel manufacturing facility at Yibin in Sichuan Province have all afforded Framatome the opportunity to develop wide-ranging bilateral cooperation and technology transfer with the People`s Republic of China. These projects are all good examples of how a country with some nuclear power experience, such as the now-operating Qinshan 1 (300 MWe) nuclear power unit designed and built by China itself, can make much more rapid progress in its civil nuclear power program through cooperation with an industry leader, such as Framatome.

Ma Fubang; Zeng Wen Xing; He Jia Cheng [and others

1994-12-31T23:59:59.000Z

5

Small Water System Management Program: 100 K Area  

SciTech Connect

Purposes of this document are: to provide an overview of the service and potable water system presently in service at the Hanford Site`s 100 K Area; to provide future system forecasts based on anticipated DOE activities and programs; to delineate performance, design, and operations criteria; and to describe planned improvements. The objective of the small water system management program is to assure the water system is properly and reliably managed and operated, and continues to exist as a functional and viable entity in accordance with WAC 246-290-410.

Hunacek, G.S. Jr. [Westinghouse Hanford Co., Richland, WA (United States)

1995-06-29T23:59:59.000Z

6

K-Area Acid/Caustic Basin groundwater monitoring report  

SciTech Connect

During second quarter 1992, samples from the seven older KAC monitoring wells at the K-Area Acid/Caustic Basin were analyzed for herbicides, indicator parameters, major ions, pesticides, radionuclides, turbidity, and other constituents. New wells FAC 8 and 9 received the first of four quarters of comprehensive analyses and GC/MS VOA (gas chromatograph/ mass spectrometer volatile organic analyses). Monitoring results that exceeded the US Environmental Protection Agency's Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standards during the quarter are discussed in this report.

Thompson, C.Y.

1992-09-01T23:59:59.000Z

7

San Diego Bay Bibliography  

E-Print Network (OSTI)

SDGE power plant; bay ABSTRACT: The marine organisms ofMarine Research KEYWORDS: San Diego Bay; programs; bay South Bay PowerMarine Organisms of South San Diego Bay and the Ecological Effects of Power

Brueggeman, Peter

1994-01-01T23:59:59.000Z

8

Microsoft Word - cx00015r0_100 K Area Utilities Reroute_20100526.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5, REV. 0 5, REV. 0 1 of 8 Categorical Exclusion for 100 K Area Utilities Reroute Hanford Site, Richland, Washington Proposed Action The U.S. Department of Energy, Richland Operations Office (RL), needs to accelerate decommissioning and demolition (D&D) of the 100 K Area ancillary facilities, 100 K Area waste site remediation, and 105-K East and 105-K West reactor disposition. The proposed activities would provide for the isolation of 100 K Area utilities to facilitate achieving cold and dark conditions for facilities subject to D&D and remediation. The proposed activities would include the elimination of raw water withdrawals from the Columbia River by closing the 183-K East waste supply station and installing a temporary supply system to provide water and not interfere with D&D activities. Electrical systems also would be re-routed to

9

K-Area Acid/Caustic Basin groundwater monitoring report. Third quarter 1994  

SciTech Connect

During third quarter 1994, samples from the KAC monitoring wells at the K-Area Acid/Caustic Basin were collected and analyzed for herbicides/pesticides, indicator parameters, metals, nitrate, radionuclide indicators, and other constituents. Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS), other Savannah River Site (SRS) Flag 2 criteria, or the SRS turbidity standard are provided in this report. No constituents exceeded the final PDWS in the KAC wells. Aluminum and iron exceeded other SRS flagging criteria in one or more of the downgradient wells. Groundwater flow direction and rate in the water table beneath the K-Area Acid/Caustic Basin were similar to past quarters.

NONE

1994-12-01T23:59:59.000Z

10

K-Area and Par Pond Sewage Sludge Application Sites groundwater monitoring report: Second quarter 1993  

Science Conference Proceedings (OSTI)

During second quarter 1993, samples from the three monitoring wells at the K-Area site (KSS series) and the three monitoring wells at the Par Pond site (PSS series) were analyzed for constituents required by South Carolina Department of Health and Environmental Control Construction Permit 13,173 and for other constituents as part of the Savannah River Site (SRS) Groundwater Monitoring Program. This report describes monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the SRS flagging criteria. During second quarter 1993, no constituents exceeded the final PDWS or any other flagging criteria at the K-Area and Par Pond Sewage Sludge Application Sites. During first quarter 1993, aluminum and iron exceeded the SRS Flag 2 criteria in one or more of the KSS and the PSS wells. These constituents were not analyzed second quarter 1993. In the KSS well series, the field measurement for alkalinity ranged as high as 35 mg/L in well KSS 1D. Alkalinity measurements were zero in the PSS wells, except for a single measurement of 1 mg/L in well PSS 1D. Historical and current water-level elevations at the K-Area Sewage Sludge Application Site indicate that the groundwater flow direction is south to southwest (SRS grid coordinates). The groundwater flow direction at the Par Pond Sewage Sludge Application Site could not be determined second quarter 1993.

Not Available

1993-10-01T23:59:59.000Z

11

K-Area Acid/Caustic Basin groundwater monitoring report. Second quarter report 1992  

Science Conference Proceedings (OSTI)

During second quarter 1992, samples from the seven older KAC monitoring wells at the K-Area Acid/Caustic Basin were analyzed for herbicides, indicator parameters, major ions, pesticides, radionuclides, turbidity, and other constituents. New wells FAC 8 and 9 received the first of four quarters of comprehensive analyses and GC/MS VOA (gas chromatograph/ mass spectrometer volatile organic analyses). Monitoring results that exceeded the US Environmental Protection Agency`s Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standards during the quarter are discussed in this report.

Thompson, C.Y.

1992-09-01T23:59:59.000Z

12

K-Area acid/caustic basin groundwater monitoring report. First quarter 1994  

SciTech Connect

During first quarter 1994, samples from the KAC monitoring wells at the K-Area Acid/Caustic Basin were collected and analyzed for herbicides/pesticides, indicator parameters, metals, nitrate, radionuclides, and other constituents. Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS), other Savannah River Site (SRS) Flag 2 criteria, or the SRS turbidity standard are provided in this report. No constituents exceeded the final PDWS in the KAC wells. Aluminum, iron, total organic halogens, and turbidity exceeded other SRS flagging criteria in one or more of the downgradient wells. The upgradient KAC wells contained no elevated constituents.

Not Available

1994-06-01T23:59:59.000Z

13

Savannah River Site/K Area Complex getter life extension report.  

DOE Green Energy (OSTI)

The K Area Complex (KAC) at the Savannah River Site (SRS) has been utilizing HiTop hydrogen getter material in 9975 Shipping Containers to prevent the development of flammable environments during storage of moisture-containing plutonium oxides. Previous testing and subsequent reports have been performed and produced by Sandia National Laboratories (SNL) to demonstrate the suitability and longevity of the getter during storage at bounding thermal conditions. To date, results have shown that after 18 months of continuous storage at 70 C, the getter is able to both recombine gaseous hydrogen and oxygen into water when oxygen is available, and irreversibly getter (i.e. scavenge) hydrogen from the vapor space when oxygen is not available, both under a CO{sub 2} environment. [Refs. 1-5] Both of these reactions are catalytically enhanced and thermodynamically favorable. The purpose of this paper is to establish the justification that maintaining the current efforts of biannual testing is no longer necessary due to the robust performance of the getter material, the very unlikely potential that the recombination reaction will fail during storage conditions in KAC, and the insignificant aging effects that have been seen in the testing to date.

Shepodd, Timothy J.; Woodsmall, Todd (Savannah River Site, Aiken, SC); Nissen, April

2008-08-01T23:59:59.000Z

14

Bay Area | Open Energy Information  

Open Energy Info (EERE)

Bay Area Bay Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Bay Area 1.1 Products and Services in the Bay Area 1.2 Research and Development Institutions in the Bay Area 1.3 Networking Organizations in the Bay Area 1.4 Investors and Financial Organizations in the Bay Area 1.5 Policy Organizations in the Bay Area Clean Energy Clusters in the Bay Area Products and Services in the Bay Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

15

Plutonium in groundwater at the 100K-Area of the U.S. DOE Hanford Site  

E-Print Network (OSTI)

Engineer Works (HEW) as the world's first Pu production facility constructed for the United StatesPlutonium in groundwater at the 100K-Area of the U.S. DOE Hanford Site Minhan Daia,b , Ken O.S. Department of Energy's (DOE) Hanford Site. Total concentrations of Pu isotopes were extremely low (10Ã?4 to 10

Buesseler, Ken

16

Plutonium in groundwater at the 100K-Area of the U.S. DOE Hanford Site  

E-Print Network (OSTI)

Plutonium in groundwater at the 100K-Area of the U.S. DOE Hanford Site Minhan Daia,b , Ken O.S. Department of Energy's (DOE) Hanford Site. Total concentrations of Pu isotopes were extremely low (10Ã?4 to 10 at least two local sources of groundwater Pu, namely, local Hanford reactor operations at the 100K

Buesseler, Ken

17

H-Area, K-Area, and Par Pond Sewage Sludge Application Sites Groundwater Monitoring Report. Second quarter 1995  

SciTech Connect

During second quarter 1995, samples from monitoring wells at the K-Area Sewage Sludge Application Site (KSS wells) and Par Pond Sewage Sludge Application Site (PSS wells) were analyzed for constituents required by SCDHEC Construction Permit 13,173. H-Area Sewage Sludge Application Site (HSS wells) samples were analyzed for constituents required by SCDHEC Construction Permit 12,076. All samples are also analyzed as requested for other constituents as part of the Savannah River Site (SRS) Groundwater Monitoring Program. Annual analyses for other constituents, primarily metals, also are required by the permits. There were no constituents which exceeded the SCDHEC final Primary Drinking Water Standard in any well from the H-Area, K-Area, and Par Pond Sewage Sludge Application Sites. There were also no constituents which were above the SRS Flag 2 criteria in any well at the three sites during second quarter 1995.

Chase, J.A.

1995-09-01T23:59:59.000Z

18

K-Area and Par Pond Sewage Sludge Application Sites Groundwater Monitoring Report. Fourth quarter 1992 and 1992 summary  

Science Conference Proceedings (OSTI)

During fourth quarter 1992, samples from the three monitoring wells at the K-Area site (KSS series) and the three monitoring wells at the Par Pond site (PSS series) were analyzed for constituents required by South Carolina Department of Health and Environmental Control Construction Permit 13, 173 and for other constituents as part of the Savannah River Site (SRS) Groundwater Monitoring Program. This report describes monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the SRS flagging criteria. During fourth quarter 1992, no constituents analyzed exceeded the PDWS or the SRS Flag 2 criteria at the K-Area and Par Pond Sewage Sludge Application Sites. In the KSS well series, the field measurement for alkalinity ranged as high as 26 mg/L in well KSS 1D. Alkalinity measurements were zero in the PSS wells. Historical and current water-level elevations at the K-Area and Par Pond Sewage Sludge Application Site indicate that the groundwater flow directions are south to southwest (SRS grid coordinates).

Thompson, C.Y.

1993-04-01T23:59:59.000Z

19

H-Area, K-Area, and Par Pond Sewage Sludge Application Sites groundwater monitoring report. Second quarter 1994  

SciTech Connect

Groundwater samples from the three wells at the H-Area Sewage Sludge Application Site (HSS wells) are analyzed quarterly for constituents as required by South Carolina Department of Health and Environmental Control (SCDHEC) Construction Permit 12,076. Samples from the three wells at the K-Area Sewage Sludge Application Site (KSS wells) and the three wells at the Par Pond Sewage Sludge Application Site (PSS wells) are analyzed quarterly for constituents required by SCDHEC Construction Permit 13,173. All samples are also analyzed as requested for other constituents as part of the Savannah River Site (SRS) Groundwater Monitoring Program. Annual analyses for other constituents, primarily metals, also are required by the permits. No constituents exceeded the SCDHEC final Primary Drinking Water Standard in any well from the H-Area, K-Area, and Par Pond Sewage Sludge Application Sites. Aluminum, iron, lead, and manganese, which were above standards and Flag 2 criteria in one or more wells in the three sites during first quarter 1994, were not analyzed this quarter. Second quarter results are similar to results for fourth quarter 1993.

1994-10-01T23:59:59.000Z

20

H-Area, K-Area, and Par Pond Sewage Sludge Application Sites groundwater monitoring report. Third quarter 1994  

SciTech Connect

Groundwater samples from the three wells at the H-Area Sewage Sludge Application Site (HSS wells) are analyzed quarterly for constituents as required by South Carolina Department of Health and Environmental Control (SCDHEC) Construction Permit 12,076. Samples from the three wells at the K-Area Sewage Sludge Application Site (KSS wells) and the three wells at the quired by SCDHEC Construction Permit 13,173. All samples are also analyzed as requested for other constituents as part of the Savannah River Site (SRS) Groundwater Monitoring Program. Annual analyses for other constituents, primarily metals, also are required by the permits. No constituents exceeded the SCDHEC final Primary Drinking Water Standard in any well from the H-Area, K-Area, and Par Pond Sewage Sludge Application Sites. Aluminum and iron were above Flag 2 criteria in one or more wells in the three sites during third quarter 1994. These constituents were not analyzed during the previous quarter. Third quarter results are similar to results for first quarter 1994.

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "k-area transfer bay" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

H-Area, K-Area, and Par Pond Sewage Sludge Application Sites groundwater monitoring report. First quarter 1994  

SciTech Connect

Samples from the three wells at the H-Area Sewage Sludge Application Site (HSS wells) are analyzed quarterly for constituents as required by South Carolina Department of Health and Environmental Control (SCDHEC) Construction Permit 12,076. Samples from the three Wells at the K-Area Sewage Sludge Application Site (KSS wells) and the three wells at the Par Pond Sewage Sludge Application Site (PSS wells) are analyzed quarterly for constituents required by SCDHEC Construction Permit 13,173. All samples are also analyzed as requested for other constituents as part of the Savannah River Site (SRS) Groundwater Monitoring Program. Annual analyses for other constituents, primarily metals, also are required by the permits. Lead presently exceeds the SCDHEC final Primary Drinking Water Standard in two wells from the three sites. As in third quarter 1993, aluminum, iron, and lead were reported in excess of the SRS Flag 2 criteria during first quarter 1994. An elevated concentration of manganese was found in one well at the K-Area Sewage Sludge Application Site during first quarter.

1994-07-01T23:59:59.000Z

22

H-Area, K-Area, and Par Pond Sewage Sludge Application sites groundwater monitoring report. First quarter 1995  

SciTech Connect

During first quarter 1995, samples from monitoring wells at the K-Area Sewage Sludge Application Site (KSS wells) and Par Pond Sewage Sludge Application Site (PSS wells) were analyzed for constituents required by SCDHEC Construction Permit 13,173. H-Area Sewage Sludge Application Site (HSS wells) samples were analyzed for constituents required by SCDHEC Construction Permit 12,076. All samples are also analyzed as requested for other constituents as part of the Savannah River Site (SRS) Groundwater Monitoring Program. Annual analyses for other constituents, primarily metals, also are required by the permits. The only constituent that exceeded the SCDHEC final Primary Drinking Water Standard in any well was lead which was found in wells HSS 3D and PSS 3D. Aluminum and iron were above Flag 2 criteria in one or more wells in the three sites during first quarter 1995.

Chase, J.A.

1995-06-01T23:59:59.000Z

23

Bay Biodiesel LLC | Open Energy Information  

Open Energy Info (EERE)

LLC Jump to: navigation, search Name Bay Biodiesel LLC Place Martinez, California Zip 94553 Product Biodiesel producers in Martinez, California. References Bay Biodiesel LLC1...

24

Vermilion Bay | Open Energy Information  

Open Energy Info (EERE)

Vermilion Bay Vermilion Bay Jump to: navigation, search Name Vermilion Bay Facility Vermilion Bay Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Coastal Point Energy LLC Developer Coastal Point Energy LLC Location Gulf of Mexico LA Coordinates 29.741°, -92.057° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.741,"lon":-92.057,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

25

St.Margarets Bay Halifax Harbour  

E-Print Network (OSTI)

St.Margarets Bay Queensland Beach Bayers Lake Bedford Basin Halifax Harbour Crystal Crescent Beach Mushaboom Harbour Ship Harbour Taylor Head ATLANTIC OCEAN Dollar Lake Musquodoboit River Lake Charlotte Shad Bay Whites Lake Terence Bay Prospect Pennant Pt Herring Cove Purcells Cove 349 306 Fall River

Beaumont, Christopher

26

H-Area, K-Area, and Par Pond Sewage Sludge Application Sites Groundwater Monitoring Report. Fourth quarter 1994 and 1994 summary  

SciTech Connect

Groundwater samples from the three wells at the H-Area Sewage Sludge Application Site (HSS wells) are analyzed quarterly for constituents as required by South Carolina Department of Health and Environmental Control Construction Permit 12,076. Samples from the three wells at the K-Area Sewage Sludge Application Site (KSS wells) and the three wells at the Par Pond Sewage Sludge Application Site (PSS wells) are analyzed quarterly for constituents required by SCDHEC Construction Permit 13,173. All samples are also analyzed as requested for other constituents as part of the Savannah River Site Groundwater Monitoring Program. Annual analyses for other constituents, primarily metals. also are required by the permits.

Chase, J.A.

1995-04-01T23:59:59.000Z

27

Daya Bay Reactor Neutrino Project at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Daya Bay Reactor Neutrino Daya Bay Reactor Neutrino Experiment Daya Bay Reactor Neutrino Experiment Daya Bay is an international neutrino-oscillation experiment designed to determine the last unknown neutrino mixing angle θ13 using anti-neutrinos produced by the Daya Bay and Ling Ao Nuclear Power Plant reactors. The experiment is being built by blasting three kilometers of tunnel through the granite rock under the mountains where the power plants are located. Data collection is now scheduled to start in in 2011. On the PDSF cluster at NERSC, Daya Bay performs simulations of the detectors, reactors, and surrounding mountains to help design and anticipate detector properties and behavior. Once real data are available, Daya Bay will be using NERSC to analyze data and NERSC HPSS will be the central U.S. repository for all raw

28

Berkeley Lab / Richmond Bay Campus  

NLE Websites -- All DOE Office Websites (Extended Search)

Second Campus Second Campus Long Range Development Plan Environmental Docs Department of Energy NEPA Environmental Documents Frequently Asked Questions (FAQ) Timeline Community Meetings Selection Process Contacts The Science The University of California, Berkeley and the University of California at the Lawrence Berkeley National Laboratory propose to establish a new research campus - the Richmond Bay Campus - in Richmond, California. The purpose of the proposed campus is to build upon the University of California's record of accomplishment in providing long-term societal benefits through discovery and the advancement of knowledge. UC Berkeley and Lawrence Berkeley National Laboratory's goals for the Richmond Bay Campus are: Advance LBNL and UC Berkeley's tradition of world class science by

29

Using Bayes' Theorem for Free Energy Calculations.  

E-Print Network (OSTI)

??Statistical mechanics is fundamentally based on calculating the probabilities of molecular-scaleevents. Although Bayes’ theorem has generally been recognized as providing key guiding principals for setup… (more)

Rogers, David M.

2009-01-01T23:59:59.000Z

30

Changes related to "Chesapeake Bay Test Site" | Open Energy Informatio...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Changes related to "Chesapeake Bay Test Site" Chesapeake Bay Test Site Jump to: navigation, search This is a list of...

31

Tampa Bay Area Ethanol Consortium | Open Energy Information  

Open Energy Info (EERE)

Tampa Bay Area Ethanol Consortium Jump to: navigation, search Name Tampa Bay Area Ethanol Consortium Place Tampa, Florida Sector Biomass Product Consortium researching ethanol from...

32

Status of the Daya Bay Reactor Neutrino Oscillation Experiment  

E-Print Network (OSTI)

Status of the Daya Bay Reactor Neutrino OscillationCheng-Ju Lin The Daya Bay reactor neutrino experiment [1] isneutrinos from the nuclear reactors at different baselines.

Lin, Cheng-Ju Stephen

2011-01-01T23:59:59.000Z

33

Category:Green Bay, WI | Open Energy Information  

Open Energy Info (EERE)

WI WI Jump to: navigation, search Go Back to PV Economics By Location Media in category "Green Bay, WI" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Green Bay WI Wisconsin Electric Power Co.png SVFullServiceRestauran... 79 KB SVQuickServiceRestaurant Green Bay WI Wisconsin Electric Power Co.png SVQuickServiceRestaura... 79 KB SVHospital Green Bay WI Wisconsin Electric Power Co.png SVHospital Green Bay W... 79 KB SVLargeHotel Green Bay WI Wisconsin Electric Power Co.png SVLargeHotel Green Bay... 78 KB SVLargeOffice Green Bay WI Wisconsin Electric Power Co.png SVLargeOffice Green Ba... 90 KB SVMediumOffice Green Bay WI Wisconsin Electric Power Co.png SVMediumOffice Green B... 78 KB SVMidriseApartment Green Bay WI Wisconsin Electric Power Co.png

34

Bristol Bay Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Bristol Bay Geothermal Area Bristol Bay Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Bristol Bay Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: Bristol Bay Borough, Alaska Exploration Region: Alaska Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

35

Tuscola Bay Wind | Open Energy Information  

Open Energy Info (EERE)

Tuscola Bay Wind Tuscola Bay Wind Jump to: navigation, search Name Tuscola Bay Wind Facility Tuscola Bay Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Detroit Edison Location Fairgrove MI Coordinates 43.52596°, -83.653106° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.52596,"lon":-83.653106,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

36

Chesapeake Bay Test Site | Open Energy Information  

Open Energy Info (EERE)

Chesapeake Bay Test Site Chesapeake Bay Test Site Jump to: navigation, search Name Chesapeake Bay Test Site Facility Chesapeake Bay Test Site Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Gamesa and Newport News Energy Developer Gamesa and Newport News Energy Location Atlantic Ocean VA Coordinates 37.243°, -76.062° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.243,"lon":-76.062,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

37

Felton Bay Logistics, LLC | Open Energy Information  

Open Energy Info (EERE)

Felton Bay Logistics, LLC Felton Bay Logistics, LLC Jump to: navigation, search Logo: Felton Bay Logistics, LLC Name Felton Bay Logistics, LLC Place San Diego Zip 92115 Sector Services Product Strategies for Sustainability Year founded 2010 Number of employees 1-10 Website http://www.feltonbay.com Coordinates 32.7612759°, -117.0735241° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.7612759,"lon":-117.0735241,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

38

Wakasa Bay: An AMSR Precipitation Validation Campaign  

Science Conference Proceedings (OSTI)

The “Wakasa Bay Experiment” was conducted in order to refine error models for oceanic precipitation from the Advanced Microwave Sounding Radiometer-Earth Observing System (AMSR-E) measurements and to develop algorithms for snowfall. The NASA P-3 ...

Elena S. Lobl; Kazumasa Aonashi; Masataka Murakami; Brian Griffith; Christian Kummerow; Guosheng Liu; Thomas Wilheit

2007-04-01T23:59:59.000Z

39

Climate Change and Bay Area Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Change and Bay Area Transportation Speaker(s): Bruce Riordan Date: April 5, 2007 - 12:00pm Location: 90-3122 Seminar HostPoint of Contact: Marcia Beck Bruce Riordan is a...

40

Deep Currents in the Bay of Campeche  

Science Conference Proceedings (OSTI)

Data from five moorings deployed in the Bay of Campeche during November 2007–July 2008 are used to analyze subinertial motions of waters below 1000-m depth. To the authors’ knowledge, this is the first time such a comprehensive observational ...

Nicolas Kolodziejczyk; José Ochoa; Julio Candela; Julio Sheinbaum

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "k-area transfer bay" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Tech Transfer  

Tech Transfer The Industrial Partnerships Office is improving tech transfer processes with our very own Yellow Belt. Several of the Lab's process ...

42

EA-1528: Finding of No Significant Impact | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

528: Finding of No Significant Impact 528: Finding of No Significant Impact EA-1528: Finding of No Significant Impact Storage of Tritium-Producing Burnable Absorber Rods in K-Area Transfer Bay at the Savannah River Site The proposed action is to implement the storage of TPBARs in the K-Area dry storage Transfer Bay for a period of up to two years. The Transfer Bay is proposed for the storage of TPBARs in a 10 CFR 71-certified shipping package that offers a high degree of protection for the tritiated rods. The shipping cask, its outer ISO container packaging, and the trailer portion of the tractor-trailer transporter would be parked in the Transfer Bay. The cask would remain in its assembled transport condition inside a closed ISO container for the duration of interim storage. The K-Area Transfer Bay has

43

Cleveland Bay Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Cleveland Bay Wind Farm Cleveland Bay Wind Farm Jump to: navigation, search Name Cleveland Bay Wind Farm Facility Cleveland Bay Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Developer Lake Erie Energy Development Corporation / Great Lakes Ohio Wind / Great Lakes Energy Wind LLC / Freshwater Wind LLC / Cavallo Great Lakes Ohio Wind LLC Location Cleveland Bay OH Coordinates 41.608°, -81.809° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.608,"lon":-81.809,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

44

Hooper Bay Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Hooper Bay Wind Farm Hooper Bay Wind Farm Jump to: navigation, search Name Hooper Bay Wind Farm Facility Hooper Bay Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Alaska Village Electric Coop (AVEC) Developer Alaska Village Electric Coop (AVEC) Energy Purchaser Alaska Village Electric Coop (AVEC) Location Hooper Bay AK Coordinates 61.53572°, -166.097182° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.53572,"lon":-166.097182,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

45

South Carolina | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site June 1, 2005 EA-1528: Finding of No Significant Impact Storage of Tritium-Producing Burnable Absorber Rods in K-Area Transfer Bay at the Savannah River Site...

46

New and Underutilized Technology: Efficient High Bay Fluorescent Lighting |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficient High Bay Fluorescent Efficient High Bay Fluorescent Lighting New and Underutilized Technology: Efficient High Bay Fluorescent Lighting October 7, 2013 - 8:54am Addthis The following information outlines key deployment considerations for efficient high bay fluorescent lighting within the Federal sector. Benefits Efficient high bay fluorescent lighting can include either T5 or T8 fluorescent lighting systems for high-bay applications currently using metal halide fixtures. Fluorescent fixtures offer better light distribution, better light maintenance over the life of the lamp, improved color quality, and on-off control (re-strike time) with lower energy consumption. Application Efficient high bay fluorescent lighting is applicable for facilities containing high bay areas. Key Factors for Deployment

47

Aerial survey of Bay Area continues through Saturday | National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Aerial survey of Bay Area continues through Saturday Aerial survey of Bay Area continues...

48

Glacier Bay Inc | Open Energy Information  

Open Energy Info (EERE)

Glacier Bay Inc Glacier Bay Inc Jump to: navigation, search Name Glacier Bay Inc Place Oakland, California Zip 94601 Product US-based, advanced thermal control, sound reduction, and DC power management technologies developer. Coordinates 37.805065°, -122.273024° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.805065,"lon":-122.273024,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

49

OCEANOGRAPHIC OBSERVATIONS IN BRISTOL BAY AND THE BERING SEA  

E-Print Network (OSTI)

381 OCEANOGRAPHIC OBSERVATIONS IN BRISTOL BAY AND THE BERING SEA 1939-41, USCGT Redwing L. o OCEANOGRAPHIC OBSERVATSONS IN BRBSTOL BAY AND THE BERING SEA 1939-41 (USCGT Redwing) by Felix Favorite, John W OBSERVATIONS IN BRISTOL BAY AND THE BERING SEA 1939-41 (USCGT Redwing) by Felix Favorite, John W. Schantz

50

Transferring Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Transferring Data Transferring Data to and from NERSC Yushu Yao 1 Tuesday, March 8, 2011 Overview 2 * Structure of NERSC Systems and Disks * Data Transfer Nodes * Transfer Data from/to NERSC - scp/sftp - bbcp - GridFTP * Sharing Data Within NERSC Tuesday, March 8, 2011 Systems and Disks 3 System Hopper Franklin Carver Euclid Data Transfer Node PDSF Global Home ($HOME) Global Scratch ($GSCRATCH) Project Directory Local Non-shared Scratch Data transfer nodes can access most of the disks, suggested for transferring data in/out NERSC Tuesday, March 8, 2011 Data Transfer Nodes * Two Servers Available Now: - dtn01.nersc.gov and dtn02.nersc.gov - Accessible by all NERSC users * Designed to Transfer Data: - High speed connection to HPSS and NGF (Global Home, Project, and Global Scratch) - High speed ethernet to wide area network

51

SF Bay Cores Uncovering Our Dirty Past  

E-Print Network (OSTI)

1956 1931 1898 #12;Dating: Radioisotopes (USC Hammond) · 137Cs in atom bomb ­ Post ~1950 ­ Max ~1960 reservoir · Much of SF Bay eroding · Ticking TIME BOMB?!!! Hornberger 1999 #12;· Need baywide inventory reviewed. Do not cite or quote. PCBs represents the sums of individual congeners reported by the RMP

52

BRISTOL BAY OCEANOGRAPHY AUGUST-SEPTEMBER, 1938  

E-Print Network (OSTI)

Chichagof 7 111 #12;U. S. Coast Guard Tug Redwing IV #12;BRISTOL BAY OCEANOGRAPHY, AUGUST-SEPTEMBER 1938 logs of the U. S. Coast Gucird Tug Redwing present values of temperature, salinity, density, dynamic£ird Tug Redwing equipped to make hydrographic casts, measure currents, and obtain bottom samples. Grateful

53

Prudhoe Bay Oil Production Optimization: Using Virtual  

E-Print Network (OSTI)

total field oil production by optimizing the gas discharge rates and pressures at the separation1 Prudhoe Bay Oil Production Optimization: Using Virtual Intelligence Techniques, Stage One: Neural Model Building Shahab D. Mohaghegh, West Virginia University Lynda A. Hutchins, BP Exploration (Alaska

Mohaghegh, Shahab

54

Responses of upland herpetofauna to the restoration of Carolina Bays and thinning of forested Bay Margins.  

Science Conference Proceedings (OSTI)

Research on the effects of wetland restoration on reptiles and amphibians is becoming more common, but almost all of these studies have observed the colonization of recently disturbed habitats that were completely dry at the time of restoration. In a similar manner, investigations herpetofaunal responses to forest management have focused on clearcuts, and less intensive stand manipulations are not as well studied. To evaluate community and population responses of reptiles and amphibians to hydrology restoration and canopy removal in the interior of previously degraded Carolina bays, I monitored herpetofauna in the uplands adjacent to six historically degraded Carolina bays at the Savannah River Site (SRS) in South Carolina for four years after restoration. To evaluate the effects of forest thinning on upland herpetofauna, forests were thinned in the margins of three of these bays. I used repeated measures ANOVA to compare species richness and diversity and the abundance of selected species and guilds between these bays and with those at three reference bays that were not historically drained and three control bays that remained degraded. I also used Non-metric Multidimensional Scaling (NMDS) to look for community-level patterns based treatments.

Ledvina, Joseph A.

2008-05-01T23:59:59.000Z

55

Technology Transfer  

A new search feature has been implemented, which allows searching of technology transfer information across the Department of Energy Laboratories.

56

Sonar imaging of bay bottom sediments and anthropogenic impacts in Galveston Bay, Texas  

E-Print Network (OSTI)

Knowledge of surface sediment distribution in Galveston Bay is important because it allows us to better understand how the bay works and how human activities impact the bay and its ecosystems. In this project, six areas of bay bottom were surveyed using acoustic techniques to make maps of bay bottom types and to investigate the types and extent of anthropogenic impacts. A total of 31 km2 was surveyed in six areas, one in Bolivar Roads (6.1 km2), one near Redfish Bar (3.1 km2), two in East Bay (12 km2), one southeast of the Clear Lake entrance (5.3 km2), and one in Trinity Bay (4.3 km2). Sidescan sonars (100 kHz and 600 kHz) were used to image the bay bottom, and a chirp sonar (2-12 kHz) was used to image subsurface sediment layers and bottom topography. In the side-scan records, objects as small as a few meters in extent were visible, whereas the chirp sonar records show a vertical resolution of a few tens of centimeters. The sidescan images display strong backscatter in some areas due to coarse sediments in addition to weak backscatter in areas of fine sediment. The bay bottom was classified using three levels of sonar backscatter ranging from high to low. Areas of differing sonar backscatter intensity were sampled with cores and grab-samples. High backscatter corresponded to coarse shell debris and oyster reefs, medium backscatter corresponded to a sand-silt-shell mixture, and low backscatter corresponded to silty loam. Chirp sonar records were classified as one of nine different bottom reflection types based on changes in amplitude and stratigraphy. Parallel, layered sediments are seen filling the bay valley and resting atop a sharp contact at which the acoustic signal fades out. Along the flanks of the valley fill the acoustic response revealed an absent or weakly laminated stratigraphy, whereas areas of high oyster productivity produced mounds, strong surface returns, and strong, shallow subsurface reflectors surrounding current oyster reefs. Anthropogenic features imaged with the sonar included sediment disruptions, such as the ship channels, dredge holes, gouges, and trawl marks, as well as debris, such as submerged boats, pipes, and unidentified objects.

Maddox, Donald Shea

2005-12-01T23:59:59.000Z

57

Bay Front Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Front Biomass Facility Front Biomass Facility Jump to: navigation, search Name Bay Front Biomass Facility Facility Bay Front Sector Biomass Location Ashland County, Wisconsin Coordinates 46.9794969°, -90.4824892° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.9794969,"lon":-90.4824892,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

58

BayWa Group | Open Energy Information  

Open Energy Info (EERE)

BayWa Group BayWa Group Jump to: navigation, search Name BayWa Group Place Munich, Germany Zip 81925 Sector Services, Solar Product Germany-based company with international operations specialised in wholesale and retail and in providing services. The company is also active in the biofuel and solar sectors. Coordinates 48.136415°, 11.577531° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.136415,"lon":11.577531,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

59

New and Underutilized Technology: High Bay LED Lighting | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Bay LED Lighting High Bay LED Lighting New and Underutilized Technology: High Bay LED Lighting October 7, 2013 - 8:55am Addthis The following information outlines key deployment considerations for high bay LED lighting within the Federal sector. Benefits LED light sources offer several potential benefits compared to metal halide or fluorescent lighting, including reduced energy consumption due to the ability to provide a more precise light distribution; longer operating life and lower maintenance requirements; less heat introduced into the space; and greater controllability for dimming and on/off control. Relevant to the cold storage application, LED performance improves in colder temperatures. Application High bay LED lighting is applicable for facilities containing high bay

60

California South/West Bay Area Regional Middle School Science...  

Office of Science (SC) Website

California SouthWest Bay Area Regional Middle School Science Bowl National Science Bowl (NSB) NSB Home About High School Middle School Middle School Students Middle School...

Note: This page contains sample records for the topic "k-area transfer bay" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Clean Cities: East Bay Clean Cities (Oakland) coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Battersby Richard Battersby is director of fleet services at the University of California, Davis and has been Coordinator of the East Bay (Oakland) Clean Cities coalition...

62

Microsoft Word - P-12711 Cobscook Bay Project EA.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

and vertical turbulence with no indications of significant stratification (Quoddy Bay LNG 2006). Mixing cools the surface waters in the summer, and limits the freezing...

63

Thermal Waters Along The Konocti Bay Fault Zone, Lake County...  

Open Energy Info (EERE)

Thermal Waters Along The Konocti Bay Fault Zone, Lake County, California- A Re-Evaluation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Thermal...

64

Chesapeake Bay, Drilling for Oil or Gas Prohibited (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

Drilling for oil or gas in the waters or within 500 hundred feet from the shoreline of the Chesapeake Bay or any of its tributaries is prohibited.

65

Big Bay, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bureau 2005 Place to 2006 CBSA Retrieved from "http:en.openei.orgwindex.php?titleBigBay,Michigan&oldid227742" Categories: Places Stubs Cities What links here Related...

66

Linking public health and the health of the Chesapeake Bay  

Science Conference Proceedings (OSTI)

The Chesapeake Bay has a profound impact on the lives of all who reside in the 64,000 square miles of its watershed. From crab cakes to sailboats, drinking water to naval ships, the Bay touches virtually every aspect of life in the region. The Bay has inspired literature, driven the regional economy, and shaped political decision making and development patterns for homes, industry, agriculture, and transportation. As population demands increase and urban boundaries expand into pristine landscapes, the sustainability of the Chesapeake Bay and its resources face unprecedented pressures. Consequently, the public's health also is vulnerable to Bay pollution and other stresses stemming from development activities and widespread growth occurring throughout the Chesapeake Bay watershed. This paper will examine the linkages between the environmental quality of the Bay and the population health status, recommend ways to bridge ecological and human health concerns in the context of the Bay, and finally present a framework for developing a public health report card for the Bay.

Burke, T.A.; Litt, J.S.; Fox, M.A.

2000-02-01T23:59:59.000Z

67

Green Bay, Wisconsin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Green Bay, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia...

68

Modeling nitrogen cycling in forested watersheds of Chesapeake Bay  

Science Conference Proceedings (OSTI)

The Chesapeake Bay Agreement calls for a 40% reduction of controllable phosphorus and nitrogen to the tidal Bay by the year 2000. To accomplish this goal the Chesapeake Bay Program needs accurate estimates of nutrient loadings, including atmospheric deposition, from various land uses. The literature was reviewed on forest nitrogen pools and fluxes, and nitrogen data from research catchments in the Chesapeake Basin were identified. The structure of a nitrogen module for forests is recommended for the Chesapeake Bay Watershed Model along with the possible functional forms for fluxes.

Hunsaker, C.T.; Garten, C.T.; Mulholland, P.J.

1995-03-01T23:59:59.000Z

69

Primary causes of wetland loss at Madison Bay, Terrebonne ...  

U.S. Energy Information Administration (EIA)

Get this from a library! Primary causes of wetland loss at Madison Bay, Terrebonne Parish, Louisiana. [Robert A Morton; Ginger Tiling; Nicholas F ...

70

Pages that link to "Chesapeake Bay Test Site" | Open Energy Informatio...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Pages that link to "Chesapeake Bay Test Site" Chesapeake Bay Test Site Jump to: navigation, search What links here Page:...

71

Intention Recognition via Causal Bayes Networks Plus Plan Generation  

Science Conference Proceedings (OSTI)

In this paper, we describe a novel approach to tackle intention recognition, by combining dynamically configurable and situation-sensitive Causal Bayes Networks plus plan generation techniques. Given some situation, such networks enable recognizing agent ... Keywords: ASCP, Causal Bayes Networks, Intention recognition, Logic Programming, P-log, Plan generation

Luís Moniz Pereira; Han The Anh

2009-10-01T23:59:59.000Z

72

MFR PAPER 1074 Effects of Prudhoe Bay Crude Oil on  

E-Print Network (OSTI)

MFR PAPER 1074 Effects of Prudhoe Bay Crude Oil on Molting Tanner Crabs, Chionoecetes bairdi JOHN F bairdi , from Alaska walers were exposed 10 Prudhoe Bay crude oil in sIalic bioassays ill Ih e laboralory. Crabs in bOlh slages were similarly susceplible 10 crude oil; Ihe eSlimaled 48-hour TLIIl (Illedian

73

TWO CHEMICAL SPILL PATTERNS IN TIDALLY DOMINATED SAN DIEGO BAY  

E-Print Network (OSTI)

6 TWO CHEMICAL SPILL PATTERNS IN TIDALLY DOMINATED SAN DIEGO BAY Peter C. Chu and Kleanthis, Inc., 70 Dean Knauss Drive, Narragansett, RI 02882, USA ABSTRACT A coupled hydrodynamic-chemical spill model is used to investigate the chemical spill in the San Diego Bay. The hydrodynamic model shows

Chu, Peter C.

74

Application of fuzzy logic for autonomous bay parking of automobiles  

Science Conference Proceedings (OSTI)

In this paper, we investigate the control problem of autonomous bay parking system. We choose a referenced parking lot and define a suitable parking spot based on some measurements at various places. A kinetic model is set up for the convenience of analysis ... Keywords: Fuzzy logic, autonomous vehicle control, bay parking, kinetic model, simulation

Zhao-Jian Wang; Jian-Wei Zhang; Ying-Ling Huang; Hui Zhang; Aryan Saadat Mehr

2011-11-01T23:59:59.000Z

75

Clean Cities: East Bay Clean Cities (Oakland) coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Bay Clean Cities (Oakland) Coalition Bay Clean Cities (Oakland) Coalition The East Bay Clean Cities (Oakland) coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. East Bay Clean Cities (Oakland) coalition Contact Information Richard Battersby 530-752-9666 rebattersby@ucdavis.edu Chris Ferrara 925-459-8062 caf3@pge.com Coalition Website Clean Cities Coordinators Coord Richard Battersby Coord Coord Chris Ferrara Coord Photo of Richard Battersby Richard Battersby is director of fleet services at the University of California, Davis and has been Coordinator of the East Bay (Oakland) Clean Cities coalition since 2003. Battersby has over 25 years of experience in the fleet industry and has written and participated in numerous local, state, and federal grant-funded

76

Chesapeake Bay Preservation Programs (Multiple States) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chesapeake Bay Preservation Programs (Multiple States) Chesapeake Bay Preservation Programs (Multiple States) Chesapeake Bay Preservation Programs (Multiple States) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maryland Program Type Siting and Permitting Provider Chesapeake Bay Program The Chesapeake Bay Program is a unique regional partnership that has led

77

Highlighting High Performance: The Philip Merrill Environmental Center; Chesapeake Bay Foundation, Annapolis, Maryland  

SciTech Connect

Case study on high performance building features of the Chesapeake Bay Foundation's Philip Merrill Environmental Center.

Not Available

2002-04-01T23:59:59.000Z

78

Chesapeake Bay Program Water Quality Database | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Chesapeake Bay Program Water Quality Database Chesapeake Bay Program Water Quality Database Ocean Data Tools Technical Guide Map Gallery Regional Planning Feedback Ocean You are here Data.gov » Communities » Ocean » Data Chesapeake Bay Program Water Quality Database Dataset Summary Description The Chesapeake Information Management System (CIMS), designed in 1996, is an integrated, accessible information management system for the Chesapeake Bay Region. CIMS is an organized, distributed library of information and software tools designed to increase basin-wide public access to Chesapeake Bay information. The information delivered by CIMS includes technical and public information, educational material, environmental indicators, policy documents, and scientific data. Through the use of relational databases, web-based programming, and web-based GIS a large number of Internet resources have been established. These resources include multiple distributed on-line databases, on-demand graphing and mapping of environmental data, and geographic searching tools for environmental information. Baseline monitoring data, summarized data and environmental indicators that document ecosystem status and trends, confirm linkages between water quality, habitat quality and abundance, and the distribution and integrity of biological populations are also available. One of the major features of the CIMS network is the Chesapeake Bay Program's Data Hub, providing users access to a suite of long- term water quality and living resources databases. Chesapeake Bay mainstem and tidal tributary water quality, benthic macroinvertebrates, toxics, plankton, and fluorescence data can be obtained for a network of over 800 monitoring stations.

79

Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency & Renewable and Energy - Commercialization Energy Efficiency & Renewable and Energy - Commercialization Deployment SBIR/STTR - Small Business Innovation Research and Small Business Technology Transfer USEFUL LINKS Contract Opportunities: FBO.gov FedConnect.net Grant Opportunities DOE Organization Chart Association of University Technology Managers (AUTM) Federal Laboratory Consortium (FLC) Feedback Contact us about Tech Transfer: Mary.McManmon@science.doe.gov Mary McManmon, 202-586-3509 link to Adobe PDF Reader link to Adobe Flash player Licensing Guide and Sample License The Technology Transfer Working Group (TTWG), made up of representatives from each DOE Laboratory and Facility, recently created a Licensing Guide and Sample License [762-KB PDF]. The Guide will serve to provide a general understanding of typical contract terms and provisions to help reduce both

80

Prospects For Precision Measurements with Reactor Antineutrinos at Daya Bay  

E-Print Network (OSTI)

In 2012 the Daya Bay experiment made an unambiguous observation of reactor antineutrino disappearance over kilometer-long baselines and determined that the neutrino mixing angle $\\theta_{13}$ is non-zero. The measurements of Daya Bay have provided the most precise determination of $\\theta_{13}$ to date. This whitepaper outlines the prospects for precision studies of reactor antineutrinos at Daya Bay in the coming years. This includes precision measurements of sin$^2 2\\theta_{13}$ and $\\Delta m^2_{ee}$ to $reactor flux and spectrum, and non-standard physics searches.

The Daya Bay Collaboration

2013-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "k-area transfer bay" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Massachusetts Bay Trans Auth | Open Energy Information  

Open Energy Info (EERE)

Auth Auth Jump to: navigation, search Name Massachusetts Bay Trans Auth Place Massachusetts Utility Id 49848 Utility Location Yes Ownership P NERC Location NPCC NERC NPCC Yes Operates Generating Plant Yes Activity Generation Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Commercial: $0.0896/kWh Transportation: $0.1250/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from

82

TEC Rail TG Summary_Green Bay  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 13-14, 2006 September 13-14, 2006 Green Bay, WI RAIL TOPIC GROUP Mr. Jay Jones began the meeting with a welcome and introduction of the topic members, other participants, and support staff. A brief overview was given of the topic group's activities since the last TEC meeting. This meeting focused on the Topic Group's subgroup activities. Key comments and discussions are summarized below. Status Update of the Rail Topic Group Mr. Jones mentioned the planned creation of a new topic group to be called the Routing Topic Group. The Rail Topic Group would still exist as a topic group. However, since the emphasis would be in developing routing criteria and ultimately a national suite of routes over the next year or so, this separate Routing Topic Group would be created to address

83

East Bay Municipal Util Dist | Open Energy Information  

Open Energy Info (EERE)

Bay Municipal Util Dist Bay Municipal Util Dist Jump to: navigation, search Name East Bay Municipal Util Dist Place California Utility Id 5571 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=East_Bay_Municipal_Util_Dist&oldid=41061

84

JAMAICA BAY TASK FORCE MEETING Tuesday April 6, 2010  

E-Print Network (OSTI)

Len Houston, U.S. Army Corps of Engineers (USACE) 7:30 Liquefied Natural Gas (LNG) Update Dan Mundy Jr., Jamaica Bay EcoWatchers 7:50 Recent Nitrogen Agreement with NYC Brad Sewell, Natural Resources Defense

Columbia University

85

Aerial survey of Bay Area continues through Saturday | National Nuclear  

National Nuclear Security Administration (NNSA)

of Bay Area continues through Saturday | National Nuclear of Bay Area continues through Saturday | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Aerial survey of Bay Area continues through Saturday Aerial survey of Bay Area continues through Saturday Posted By Office of Public Affairs NNSA Blog This week, a NNSA helicopter has been flying at a low-level altitude over

86

McKay Bay Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

McKay Bay Facility Biomass Facility McKay Bay Facility Biomass Facility Jump to: navigation, search Name McKay Bay Facility Biomass Facility Facility McKay Bay Facility Sector Biomass Facility Type Municipal Solid Waste Location Hillsborough County, Florida Coordinates 27.9903597°, -82.3017728° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.9903597,"lon":-82.3017728,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

87

Pedro Bay Village Council (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Pedro Bay Village Council (Utility Company) Pedro Bay Village Council (Utility Company) Jump to: navigation, search Name Pedro Bay Village Council Place Alaska Utility Id 14633 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Residential School Commercial Average Rates Residential: $0.9080/kWh Commercial: $0.8510/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Pedro_Bay_Village_Council_(Utility_Company)&oldid=411345

88

City of Larsen Bay, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Larsen Bay, Alaska (Utility Company) Larsen Bay, Alaska (Utility Company) Jump to: navigation, search Name City of Larsen Bay Place Alaska Utility Id 10716 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate Commercial Industrial Rate Industrial Residential Rate Residential Average Rates Residential: $0.3910/kWh Commercial: $0.3340/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Larsen_Bay,_Alaska_(Utility_Company)&oldid=40983

89

BayWa Sunways JV | Open Energy Information  

Open Energy Info (EERE)

JV that specialises in developing, planning and realizing medium-sized to large photovoltaic systems and solar plants. References BayWa & Sunways JV1 LinkedIn Connections...

90

Assembly and Installation of the Daya Bay Antineutrino Detectors  

E-Print Network (OSTI)

The Daya Bay reactor antineutrino experiment is designed to make a precision measurement of the neutrino mixing angle theta13, and recently made the definitive discovery of its nonzero value. It utilizes a set of eight, functionally identical antineutrino detectors to measure the reactor flux and spectrum at baselines of 300 - 2000m from the Daya Bay and Ling Ao Nuclear Power Plants. The Daya Bay antineutrino detectors were built in an above-ground facility and deployed side-by-side at three underground experimental sites near and far from the nuclear reactors. This configuration allows the experiment to make a precision measurement of reactor antineutrino disappearance over km-long baselines and reduces relative systematic uncertainties between detectors and nuclear reactors. This paper describes the assembly and installation of the Daya Bay antineutrino detectors.

H. R. Band; R. L. Brown; R. Carr; X. C. Chen; X. H. Chen; J. J. Cherwinka; M. C. Chu; E. Draeger; D. A. Dwyer; W. R. Edwards; R. Gill; J. Goett; L. S. Greenler; W. Q. Gu; W. S. He; K. M. Heeger; Y. K. Heng; P. Hinrichs; T. H. Ho; M. Hoff; Y. B. Hsiung; Y. Jin; L. Kang; S. H. Kettell; M. Kramer; K. K. Kwan; M. W. Kwok; C. A. Lewis; G. S. Li; N. Li; S. F. Li; X. N. Li; C. J. Lin; B. R. Littlejohn; J. L. Liu; K. B. Luk; X. L. Luo; X. Y. Ma; M. C. McFarlane; R. D. McKeown; Y. Nakajima; J. P. Ochoa-Ricoux; A. Pagac; X. Qian; B. Seilhan; K. Shih; H. Steiner; X. Tang; H. Themann; K. V. Tsang; R. H. M. Tsang; S. Virostek; L. Wang; W. Wang; Z. M. Wang; D. M. Webber; Y. D. Wei; L. J. Wen; D. L. Wenman; J. Wilhelmi; M. Wingert; T. Wise; H. L. H. Wong; F. F. Wu; Q. Xiao; L. Yang; Z. J. Zhang; W. L. Zhong; H. L. Zhuang

2013-09-06T23:59:59.000Z

91

Turbulence, Acoustic Backscatter, and Pelagic Nekton in Monterey Bay  

Science Conference Proceedings (OSTI)

During August 2006 aggregations of nekton, most likely small fish, intersected microstructure survey lines in Monterey Bay, California, providing an opportunity to examine biologically generated mixing. Some aggregations filled the water column, ...

Michael C. Gregg; John K. Horne

2009-05-01T23:59:59.000Z

92

Core Structure of a Bay of Bengal Monsoon Depression  

Science Conference Proceedings (OSTI)

Summer MONEX aircraft flight level and dropwindsonde data have been used to examine the central core structure of a mature Bay of Bengal monsoon depression on 7 July 1979. Continuous aircraft data including cloud photographs were obtained at ...

Charles Warner

1984-01-01T23:59:59.000Z

93

Space Conditioning Technology Options for High-Bay Facilities  

Science Conference Proceedings (OSTI)

High-bay facility owners are considering the addition of space conditioning systems and technologies to improve their operations. This trend creates an opportunity for utility representatives to provide sound guidance on space conditioning system selection alternatives and other energy efficiency options to cost-effectively meet the owner’s requirements. This report describes the common heating and cooling technologies applicable to high-bay facilities and analyzes the strengths and weaknesses of each in...

2007-12-18T23:59:59.000Z

94

TECHNOLOGY TRANSFER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

404-NOV. 1, 2000 404-NOV. 1, 2000 TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 VerDate 11-MAY-2000 04:52 Nov 16, 2000 Jkt 089139 PO 00000 Frm 00001 Fmt 6579 Sfmt 6579 E:\PUBLAW\PUBL404.106 APPS27 PsN: PUBL404 114 STAT. 1742 PUBLIC LAW 106-404-NOV. 1, 2000 Public Law 106-404 106th Congress An Act To improve the ability of Federal agencies to license federally owned inventions. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SECTION 1. SHORT TITLE. This Act may be cited as the ''Technology Transfer Commer- cialization Act of 2000''. SEC. 2. FINDINGS. The Congress finds that- (1) the importance of linking our unparalleled network of over 700 Federal laboratories and our Nation's universities with United States industry continues to hold great promise

95

Electron Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Pierre Kennepohl1,2 and Edward Solomon1* 1Department of Chemistry, Stanford University, Stanford, CA 94305 Electron transfer, or the act of moving an electron from one place to another, is amongst the simplest of chemical processes, yet certainly one of the most critical. The process of efficiently and controllably moving electrons around is one of the primary regulation mechanisms in biology. Without stringent control of electrons in living organisms, life could simply not exist. For example, photosynthesis and nitrogen fixation (to name but two of the most well-known biochemical activities) are driven by electron transfer processes. It is unsurprising, therefore, that much effort has been placed on understanding the fundamental principles that control and define the simple act of adding and/or removing electrons from chemical species.

96

NETL: Technology Transfer - History of Technology Transfer  

History of Technology Transfer Technology transfer differs from providing services or products (e.g., acquisition) and financial assistance (e.g., ...

97

Cathodic Protection of the Yaquina Bay Bridge  

SciTech Connect

The Yaquina Bay Bridge in Newport, Oregon, was designed by Conde B. McCullough and built in 1936. The 3,223-foot (982 m) structure is a combination of concrete arch approach spans and a steel through arch over the shipping channel. Cathodic protection is used to prevent corrosion damage to the concrete arches. The Oregon Department of Transportation (Oregon DOT) installed a carbon anode coating (DAC-85) on two of the north approach spans in 1985. This anode was operated at a current density of 6.6 mA/m2(0.6 mA/ft2). No failure of the conductive anode was observed in 1990, five years after application, or in 2000, 15 years after application. Thermal-sprayed zinc anodes 20 mils (0.5 mm) thick were applied to half the south approach spans beginning in 1990. Thermal-sprayed zinc anodes 15 mils (0.4 mm) thick were applied to the remaining spans in 1996. These anodes were operated at a current density of 2.2 mA/m2(0.2 mA/ft2). In 1999, four zones on the approach spans were included in a two-year field trial of humectants to improve zinc anode performance. The humectants LiNO3 and LiBr were applied to two zones; the two adjacent zones were left untreated as controls. The humectants substantially reduced circuit resistance compared to the controls.

Bullard, Sophie J.; Cramer, Stephen D.; Covino, Bernard S., Jr.; Holcomb, Gordon R.; Russell, James H.; Laylor, H.M.; Cryer, C.B.

2001-02-01T23:59:59.000Z

98

Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) |  

Open Energy Info (EERE)

Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Jump to: navigation, search Name Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Facility Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Gilbane Building Company Developer Narragansett Bay Commission Energy Purchaser Field's Point Location Providence RI Coordinates 41.79260859°, -71.3896966° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.79260859,"lon":-71.3896966,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

99

Bay County, Florida ASHRAE 169-2006 Climate Zone | Open Energy...  

Open Energy Info (EERE)

Bay County, Florida ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bay County, Florida ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

100

Energy Secretary Steven Chu to Travel to Bay Area to Highlight...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steven Chu to Travel to Bay Area to Highlight State of the Union Address, Commitment to Clean Energy Energy Secretary Steven Chu to Travel to Bay Area to Highlight State of the...

Note: This page contains sample records for the topic "k-area transfer bay" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Damping and Phase Advance of the Tide in Western Hudson Bay by the Annual Ice Cover  

Science Conference Proceedings (OSTI)

Admittance analysts of yearlong current meter records and tidal height data shows that the annual ice cover affects the tidal currents and heights in Hudson Bay. Along the west coast of the bay, the semidiurnal tidal current and height are ...

S. J. Prinsenberg

1988-11-01T23:59:59.000Z

102

Scaling up Secondary Unit Production in the East Bay: Impacts and Policy Implications  

E-Print Network (OSTI)

of  Oakland’s  housing  units.    The   neighborhoods  05 Scaling up Secondary Unit Production in the East Bay:S CALING  UP  SECONDARY  UNIT  PRODUCTION  IN  THE   E AST  

Wegmann, Jake; Nemirow, Alison; Chapple, Karen

2012-01-01T23:59:59.000Z

103

A Flushing Model of Onslow Bay, North Carolina, Based on Intrusion Volumes  

Science Conference Proceedings (OSTI)

Onslow Bay, North Carolina, is repeatedly flushed by intrusions of Gulf Stream water. An exponential dilution model based on intrusion models indicates 20–60 days are required for 50% dilution of Bay waters.

Larry P. Atkinson; Leonard J. Pietrafesa

1980-03-01T23:59:59.000Z

104

DOE - Office of Legacy Management -- W R Grace Co - Curtis Bay...  

Office of Legacy Management (LM)

Curtis Bay Plant Waste Disposal Area; October 5, 1978 MD.01-5 - ECT Follow-Up Report; An Aerial Radiological Survey of the Curtis Bay Facility of the W. R. Grace Company; November...

105

Recent Sediments of Bolinas Bay, California: Part C -- Interpretation and Summary of Results  

E-Print Network (OSTI)

Bay indicates a source in the Franciscan rocks bordering themetamorphic rock of minerals to represent sources. of rock (rock enters the bay, indicating significant contributions of sediment from these sources.

Wilde, Pat; Isselhardt, C.; Osuch, L.; Yancey, T.

1969-01-01T23:59:59.000Z

106

EA-1528: Final Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

528: Final Environmental Assessment 528: Final Environmental Assessment EA-1528: Final Environmental Assessment Storage of Tritium-Producing Burnable Absorber RODs in K-Area Transfer Bay at the Savannah River Site The U.S. Department of Energy (DOE) Savannah River Operations Office (SR) and the National Nuclear Security Administration (NNSA) Savannah River Site (SRS) Office prepared this environmental assessment (EA) to analyze the potential environmental impacts of the temporary dry storage of a cask containing Tritium-Producing Burnable Absorber Rods (TPBARs) in the Transfer Bay in K Area, at SRS, located near Aiken, South Carolina. DOE/EA-1528: Environmental Assessment for the Storage of Tritium-Producing Burnable Absorber RODs in K-Area Transfer Bay at the Savannah River Site (June 2005)

107

Bay Resource Management Center Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Center Biomass Facility Center Biomass Facility Jump to: navigation, search Name Bay Resource Management Center Biomass Facility Facility Bay Resource Management Center Sector Biomass Facility Type Municipal Solid Waste Location Bay County, Florida Coordinates 30.1805306°, -85.684578° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.1805306,"lon":-85.684578,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

108

Galveston Bay Biodiesel LP GBB | Open Energy Information  

Open Energy Info (EERE)

Galveston Bay Biodiesel LP GBB Galveston Bay Biodiesel LP GBB Jump to: navigation, search Name Galveston Bay Biodiesel LP (GBB) Place Houston, Texas Product Developer of a 75.8m litre per year biodiesel facility on the Galveston Bulk Terminal site, located on Galveston Island. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

109

Chesapeake Bay Restoration Act (Maryland) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Restoration Act (Maryland) Restoration Act (Maryland) Chesapeake Bay Restoration Act (Maryland) < Back Eligibility Agricultural Commercial Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maryland Program Type Environmental Regulations Provider Maryland Department of the Environment This legislation sets limits on development near Chesapeake Bay as well as on dredging and the deposition of dredged material into the bay. The legislation establishes the Cox Creek Citizens Oversight Committee (now mostly defunct); the Hart-Miller-Pleasure Island Oversight Committee, which provides oversight and monitoring of the future development, use, and

110

EIS-0494: Excelerate Liquefaction Solutions Lavaca Bay LNG Project, Calhoun  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Excelerate Liquefaction Solutions Lavaca Bay LNG Project, 4: Excelerate Liquefaction Solutions Lavaca Bay LNG Project, Calhoun and Jackson Counties, Texas EIS-0494: Excelerate Liquefaction Solutions Lavaca Bay LNG Project, Calhoun and Jackson Counties, Texas SUMMARY The Federal Energy Regulatory Commission (FERC) is preparing, with DOE as a cooperating agency, an EIS to analyze the potential environmental impacts of a proposal to construct and operate a liquefied natural gas terminal consisting of two floating liquefaction, storage and offloading units and a 29-mile pipeline header system to transport natural gas from existing pipeline systems to the LNG terminal facilities. PUBLIC COMMENT OPPORTUNITIES None at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD March 12, 2013 EIS-0494: Notice of Intent to Prepare an Environmental Impact Statement

111

Winchester Bay, Oregon: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Winchester Bay, Oregon: Energy Resources Winchester Bay, Oregon: Energy Resources (Redirected from Winchester Bay, OR) Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.6770608°, -124.1748369° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6770608,"lon":-124.1748369,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

112

City of Sturgeon Bay, Wisconsin (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Sturgeon Bay, Wisconsin (Utility Company) Sturgeon Bay, Wisconsin (Utility Company) Jump to: navigation, search Name Sturgeon Bay City of Place Wisconsin Utility Id 18249 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Commercial General Service TOU - 7am - 7pm Commercial General Service TOU - 8am - 8pm Commercial General Service TOU - 9am - 9pm Commercial General Service Three-phase Commercial General Service Three-phase TOU - 7am - 7pm Commercial

113

Exploring the Environmental Effects of Shale Gas Development in the Chesapeake Bay Watershed  

E-Print Network (OSTI)

Exploring the Environmental Effects of Shale Gas Development in the Chesapeake Bay Watershed STAC Committee). 2013. Exploring the environmental effects of shale gas development in the Chesapeake Bay of shale gas development in the Chesapeake Bay Watershed. The purpose of this workshop was to engage

114

ENSO modulated cyclogenesis over the Bay of Bengal  

Science Conference Proceedings (OSTI)

The role of El Niño Southern Oscillation (ENSO) on the modulation of tropical cyclone activity over the Bay of Bengal (BoB) for the 1979-2011 period is examined. It is shown that Niño3.4 sea surface temperature (SST) anomalies are negatively ...

Clifford S. Felton; Bulusu Subrahmanyam; V. S. N. Murty

115

Transferring Data at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Transferring Data Advice and Overview NERSC provides many facilities for storing data and performing analysis. However, transfering data - whether over the wide area network...

116

Jefferson Lab Technology Transfer  

What is Technology Transfer at Jefferson Lab? The transfer of technology (intellectual property) developed at JLab to the private sector is an ...

117

Accelerating the transfer in Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerating the transfer in Technology Transfer Accelerating the transfer in Technology Transfer Community Connections: Our link to Northern New Mexico Communities Latest Issue:Dec. 2013 - Jan. 2014 All Issues » submit Accelerating the transfer in Technology Transfer Express Licensing fast tracks commercialization. May 1, 2013 Division Leader Dave Pesiri Division Leader Dave Pesiri. Contact Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Express Licensing program To better serve its partners, one of the first improvements the Lab's Technology Transfer Division (TT) has made is through its new Express Licensing initiative. Standardized license agreements and fee structures will remove long and complicated negotiations and decrease the time required to get patented Lab technology and software into the hands of

118

Tonka Bay, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Tonka Bay, Minnesota: Energy Resources Tonka Bay, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9085741°, -93.5930133° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9085741,"lon":-93.5930133,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

119

Hampton Bays, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hampton Bays, New York: Energy Resources Hampton Bays, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.8689892°, -72.5175893° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.8689892,"lon":-72.5175893,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

120

South Bay, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bay, Florida: Energy Resources Bay, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.6639559°, -80.7161701° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.6639559,"lon":-80.7161701,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "k-area transfer bay" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Nassau Bay, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Nassau Bay, Texas: Energy Resources Nassau Bay, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 29.5446753°, -95.0910413° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.5446753,"lon":-95.0910413,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

122

Microsoft Word - Green Bay Notes - FINAL.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(DOE) (DOE) TRANSPORTATION EXTERNAL COORDINATION (TEC) WORKING GROUP MEETING September 13-14, 2006 Green Bay, WI Welcome and Meeting Overview The U.S. Department of Energy (DOE), Transportation External Coordination Working Group (TEC) held its 26 th meeting on September 13-14, 2006, in Green Bay, WI. One- hundred thirty-two participants, representing national, State, Tribal, and local government; industry; professional organizations; and other interested parties, met to address a variety of issues related to DOE's radioactive materials transportation activities. The TEC process includes the involvement of these key stakeholders in developing solutions to DOE transportation issues through their actual participation in the work product. These members provide continuing and improved coordination between DOE,

123

An Improved Measurement of Electron Antineutrino Disappearance at Daya Bay  

E-Print Network (OSTI)

The theory of neutrino oscillations explains changes in neutrino flavor, count rates, and spectra from solar, atmospheric, accelerator, and reactor neutrinos. These oscillations are characterized by three mixing angles and two mass-squared differences. The solar mixing angle, {\\theta}_12, and the atmospheric mixing angle, {\\theta}_23, have been well measured, but until recently the neutrino mixing angle {\\theta}_13 was not well known. The Daya Bay experiment, located northeast of Hong Kong at the Guangdong Nuclear Power Complex in China, has made a precise measurement of electron antineutrino disappearance using six functionally-identical gadolinium-doped liquid scintillator-based detectors at three sites with distances between 364 and 1900 meters from six reactor cores. This proceeding describes the Daya Bay updated result, using 127 days of good run time collected between December 24, 2011 and May 11, 2012. For the far site, the ratio of the observed number of events to the expected number of events assumin...

Webber, David M

2012-01-01T23:59:59.000Z

124

Buzzards Bay, Massachusetts: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Buzzards Bay, Massachusetts: Energy Resources Buzzards Bay, Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7453829°, -70.618087° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7453829,"lon":-70.618087,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

125

Lakes by the Bay, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

the Bay, Florida: Energy Resources the Bay, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.5723287°, -80.3253308° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.5723287,"lon":-80.3253308,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

126

Suttons Bay, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Suttons Bay, Michigan: Energy Resources Suttons Bay, Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9766663°, -85.6506387° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9766663,"lon":-85.6506387,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

127

Half Moon Bay, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bay, California: Energy Resources Bay, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.4635519°, -122.4285862° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.4635519,"lon":-122.4285862,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

128

MHK Projects/Whiskey Bay | Open Energy Information  

Open Energy Info (EERE)

Whiskey Bay Whiskey Bay < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.4014,"lon":-91.6961,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

129

Discovery Bay, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Discovery Bay, California: Energy Resources Discovery Bay, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.9085357°, -121.6002291° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9085357,"lon":-121.6002291,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

130

Morro Bay, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Morro Bay, California: Energy Resources Morro Bay, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.3658075°, -120.8499013° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.3658075,"lon":-120.8499013,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

131

The Daya Bay Reactor Neutrino Experiment Sees Evidence that Electron  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Highlights » 2013 Science Highlights » 2013 » The Daya Bay Reactor Neutrino Experiment Sees Evidence that Electron Neutrinos Turn into Muon Neutrinos High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees News & Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E: sc.hep@science.doe.gov More Information » June 2013 The Daya Bay Reactor Neutrino Experiment Sees Evidence that Electron Neutrinos Turn into Muon Neutrinos Surprisingly large effect greatly increases the probability that new neutrino experiments will be able to see the differences between matter and

132

Kawela Bay, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kawela Bay, Hawaii: Energy Resources Kawela Bay, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.7033333°, -158.01° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.7033333,"lon":-158.01,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

133

Put-in-Bay, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Put-in-Bay, Ohio: Energy Resources Put-in-Bay, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6542158°, -82.8207429° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6542158,"lon":-82.8207429,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

134

Cutler Bay, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cutler Bay, Florida: Energy Resources Cutler Bay, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.5783°, -80.3377° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.5783,"lon":-80.3377,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

135

MHK Projects/Swansea Bay | Open Energy Information  

Open Energy Info (EERE)

Swansea Bay Swansea Bay < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.5818,"lon":-3.89843,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

136

Runaway Bay, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Runaway Bay, Texas: Energy Resources Runaway Bay, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.1678941°, -97.8783696° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.1678941,"lon":-97.8783696,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

137

Microsoft Word - P-12711 Cobscook Bay Project EA.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ENVIRONMENTAL ASSESSMENT ENVIRONMENTAL ASSESSMENT FOR HYDROPOWER PROJECT PILOT LICENSE Cobscook Bay Tidal Energy Project-FERC Project No. 12711-005 (DOE/EA1916) Maine Federal Energy Regulatory Commission Office of Energy Projects Division of Hydropower Licensing 888 First Street, NE Washington, DC 20426 U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Golden Field Office 1617 Cole Boulevard Golden, Colorado 80401 January 2012 i TABLE OF CONTENTS LIST OF FIGURES ............................................................................................................ iv LIST OF TABLES............................................................................................................... v EXECUTIVE SUMMARY ................................................................................................

138

Cold Bay Hot Spring Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Cold Bay Hot Spring Geothermal Area Cold Bay Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Cold Bay Hot Spring Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.2217,"lon":-162.412,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

139

Hot Springs Bay Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hot Springs Bay Geothermal Area Hot Springs Bay Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hot Springs Bay Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":54.166666,"lon":-165.82,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

140

Bailey Bay Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Bailey Bay Hot Springs Geothermal Area Bailey Bay Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Bailey Bay Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.982,"lon":-131.6622,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "k-area transfer bay" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Near Fish Bay Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Near Fish Bay Geothermal Area Near Fish Bay Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Near Fish Bay Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.3509833,"lon":-135.4106696,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

142

Weighting and Bayes Nets for Rollup of Surveillance Metrics  

SciTech Connect

The LANL IKE team proposes that the surveillance metrics for several data stream that are used to detect the same failure mode be weighted. Similarly, the failure mode metrics are weighted to obtain a subsystem metric. E.g., if there n data streams (nodes 1-n), the failure mode (node 0) metric is obtained as M{sub 0} = w{sub 1}M{sub 1} + {hor_ellipsis} + w{sub n}M{sub n}, where {Sigma}{sub i=1}{sup n} w{sub i} = 1. This proposal has been implemented with Bayes Nets using the Netica/IKE software by specifying an appropriate conditional probability table (CPT). This CPT is calculated using the same form as (1), where the data stream metrics for the true (T) and false (F) states are replaced by 1 and 0, respectively. Then using this CPT, the failure mode metric calculated by Netica/IKE equals (1). This result has two nice features. First, the rollup Bayes nets is doing can be easily explained. Second, because Bayes Nets can implement this rollup using Netica/IKE, then data marshalling (allocating next year's budget) can be studied. A proof that the claim 'failure mode metric calculated by Netica/IKE equals (1)' for n = 2 and n = 3 follows as well as the sketch of a proof by induction for general n.

Henson, Kriste [Los Alamos National Laboratory; Sentz, Kari [Los Alamos National Laboratory; Hamada, Michael [Los Alamos National Laboratory

2012-04-30T23:59:59.000Z

143

FEMP ESPC Success Story - U.S. Naval Station, Guantanamo Bay...  

NLE Websites -- All DOE Office Websites (Extended Search)

Stewardship and Cost Savings These photographs chronicle the installation of the wind turbines at John Paul Jones Hill, Guantanamo Bay. The four wind turbine towers are...

144

Current Perspectives on the Physical and Biological Processes of Humboldt Bay  

E-Print Network (OSTI)

northern Alaska; Cosmopolitan ( Hartman 1969). Humboldt Bay,canyon depths in silty mud; Cosmopolitan (Hartman 1969). New1996). Distribution: Cosmopolitan, in intertidal sand flats

Schlosser, S. C.; Rasmussen, R.

2007-01-01T23:59:59.000Z

145

The hunt for theta13 at the Daya Bay nuclear power plant  

E-Print Network (OSTI)

The Daya Bay reactor neutrino experiment is located at the Daya Bay nuclear power plant in Shenzhen, China. The experiment deploys eight "identical" antineutrino detectors to measure antineutrino fluxes from six 2.9 GW_{th} reactor cores in three underground experimental halls at different distances. The target zone of the Daya Bay detector is filled with 20 t 0.1% Gd doped LAB liquid scintillator. The baseline uncorrelated detector uncertainty is ~0.38% using current experimental techniques. Daya Bay can reach a sensitivity of <0.01 to $sin^2 2theta_{13}$ with baseline uncertainties after 3 years of data taking.

Wei Wang; for the Daya Bay collaboration

2009-10-23T23:59:59.000Z

146

The hunt for theta13 at the Daya Bay nuclear power plant  

E-Print Network (OSTI)

The Daya Bay reactor neutrino experiment is located at the Daya Bay nuclear power plant in Shenzhen, China. The experiment deploys eight "identical" antineutrino detectors to measure antineutrino fluxes from six 2.9 GW_{th} reactor cores in three underground experimental halls at different distances. The target zone of the Daya Bay detector is filled with 20 t 0.1% Gd doped LAB liquid scintillator. The baseline uncorrelated detector uncertainty is ~0.38% using current experimental techniques. Daya Bay can reach a sensitivity of <0.01 to $sin^2 2theta_{13}$ with baseline uncertainties after 3 years of data taking.

Wang, Wei

2009-01-01T23:59:59.000Z

147

Argonne TDC: South Bay Technologies - Argonne National Laboratory  

... transmission, scanning ... "The bottom line is that the Argonne Technical Services Program made it possible for us to transfer Argonne ...

148

NERSC's Data Transfer Nodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Transfer Nodes Data Transfer Nodes Data Transfer Nodes Overview The data transfer nodes are NERSC servers dedicated to performing transfers between NERSC data storage resources such as HPSS and the NERSC Global Filesystem (NGF), and storage resources at other sites including the Leadership Computing Facility at ORNL (Oak Ridge National Laboratory). These nodes are being managed (and monitored for performance) as part of a collaborative effort between ESnet, NERSC, and ORNL to enable high performance data movement over the high-bandwidth 10Gb ESnet wide-area network (WAN). Restrictions In order to keep the data transfer nodes performing optimally for data transfers, we request that users restrict interactive use of these systems to tasks that are related to preparing data for transfer or are directly

149

Federal Laboratory Technology Transfer  

Science Conference Proceedings (OSTI)

... Department of Energy (DOE) ... and business development involved in successful technology transfer. 8. Government-industry interactions. ...

2012-11-14T23:59:59.000Z

150

SRNL - Technology Transfer - Home  

Technology Transfer. Research and Development Savannah River Nuclear Solutions, LLC (SRNS) scientists and engineers develop technologies designed to improve ...

151

Tech Transfer Report 2000  

Science Conference Proceedings (OSTI)

Page 1. Summary Report on Federal Laboratory Technology Transfer FY 2003 Activity Metrics and Outcomes 2004 Report ...

2010-07-27T23:59:59.000Z

152

Heat transfer system  

DOE Patents (OSTI)

A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

Not Available

1980-03-07T23:59:59.000Z

153

Heat transfer system  

DOE Patents (OSTI)

A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

McGuire, Joseph C. (Richland, WA)

1982-01-01T23:59:59.000Z

154

Meter-baseline tests of sterile neutrinos at Daya Bay  

E-Print Network (OSTI)

We explore the sensitivity of an experiment at the Daya Bay site, with a point radioactive source and a few meter baseline, to neutrino oscillations involving one or more eV mass sterile neutrinos. We find that within a year, the entire 3+2 and 1+3+1 parameter space preferred by global fits can be excluded at the 3\\sigma level, and if an oscillation signal is found, the 3+1 and 3+2 scenarios can be distinguished from each other at more than the 3\\sigma level provided one of the sterile neutrinos is lighter than 0.5 eV.

Y. Gao; D. Marfatia

2013-02-22T23:59:59.000Z

155

Numerical Simulation of a Satellite-Observed Calm Zone in Montetey Bay, California  

Science Conference Proceedings (OSTI)

Satellite imagery from 18 April 1978 suggests the presence of a semicircular zone of calm or new-calm seas in Monterey Bay, California. It is hypothesized that sea breeze circulations account for the calm zone in the bay, although a lack of in ...

Rolf H. Langland; Paul M. Tag; Robert W. Fett

1987-12-01T23:59:59.000Z

156

Comparing Bayes model averaging and stacking when model approximation error cannot be ignored  

Science Conference Proceedings (OSTI)

We compare Bayes Model Averaging, BMA, to a non-Bayes form of model averaging called stacking. In stacking, the weights are no longer posterior probabilities of models; they are obtained by a technique based on cross-validation. When the correct data ...

Bertrand Clarke

2003-12-01T23:59:59.000Z

157

Modelling the Mean Barotropic Circulation in the Bay of Fundy and Gulf of Maine  

Science Conference Proceedings (OSTI)

Two dimensional, nonlinear numerical models are used to study the residual barotropic circulation generated by tides and steady winds in the Bay of Fundy and Gulf of Maine. The first a multi-grid model, is used to examine the Bay of Fundy with a ...

David A. Greenberg

1983-05-01T23:59:59.000Z

158

Characteristics and Trends of River Discharge into Hudson, James, and Ungava Bays, 1964–2000  

Science Conference Proceedings (OSTI)

The characteristics and trends of observed river discharge into the Hudson, James, and Ungava Bays (HJUBs) for the period 1964–2000 are investigated. Forty-two rivers with outlets into these bays contribute on average 714 km3 yr?1 [= 0.023 Sv (1 ...

Stephen J. Déry; Marc Stieglitz; Edward C. McKenna; Eric F. Wood

2005-07-01T23:59:59.000Z

159

A Pb isotope record of mid-Atlantic US atmospheric Pb emissions in Chesapeake Bay sediments  

E-Print Network (OSTI)

A Pb isotope record of mid-Atlantic US atmospheric Pb emissions in Chesapeake Bay sediments Franco Marcantonio a,*, Andrew Zimmerman b,1 , Yingfeng Xu a , Elizabeth Canuel b a Department of Geology, Institute analyzed sediments from three sites in the mesohaline portion of Chesapeake Bay (CB) for Pb isotopes

160

Bay Area Transit Agencies Propel Fuel Cell Buses Toward Commercialization (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet describes the Zero Emission Bay Area (ZEBA) demonstration of the next generation of fuel cells buses. Several transit agencies in the San Francisco Bay Area are participating in demonstrating the largest single fleet of fuel cell buses in the United States.

Not Available

2010-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "k-area transfer bay" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Observations of Shallow-Water Transport and Shear in Western Florida Bay  

Science Conference Proceedings (OSTI)

Acoustic Doppler profiler (ADP) data are used to describe depth-integrated transport and vertical shear at two study sites along the open western boundary of Florida Bay. During a 404-day study period, transport was into the bay at the northern ...

Ned P. Smith

2000-07-01T23:59:59.000Z

162

Prudhoe Bay Oil Production Optimization: Using Virtual intelligence Techniques, Stage One: Neural Model Building  

E-Print Network (OSTI)

SPE 77659 Prudhoe Bay Oil Production Optimization: Using Virtual intelligence Techniques, Stage One Exploration (Alaska) and Carl D. Sisk SPE, BP Exploration Copyright 2002, Society of Petroleum Engineers Inc, TX 75083-3836, U.S.A., fax 01-972-952-9435. Abstract Field data from the Prudhoe Bay oil field

Mohaghegh, Shahab

163

Transfer Credit Approval Form For Transfer Terms and Exchange Programs  

E-Print Network (OSTI)

Transfer Credit Approval Form For Transfer Terms and Exchange Programs CONTINUED Student/transfer term is not a Dartmouth-sponsored program. ______ The regulations for exchange/transfer terms of the COI will review my transfer term application and I may only receive Dartmouth credit for a transfer

Myers, Lawrence C.

164

Photo of the Week: The Daya Bay Antineutrino Detector | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photo of the Week: The Daya Bay Antineutrino Detector Photo of the Week: The Daya Bay Antineutrino Detector Photo of the Week: The Daya Bay Antineutrino Detector September 7, 2012 - 3:07pm Addthis While they might look like drops of water or soap bubbles, these colorful figures are actually photomultiplier tubes that line the walls of the Daya Bay neutrino detector. Neutrinos and antineutrinos are neutral particles produced in nuclear beta decay when neutrons turn into protons. This experiment aims to measure the final unknown mixing angle that describes how neutrinos oscillate. The tubes are designed to amplify and record the faint flashes of light that signify an antineutrino interaction. Lawrence Berkeley and Brookhaven National Labs and a number of physicists at U.S. universities played leading roles in the Daya Bay experiment, from designing the detectors all the way through to analyzing the data gathered. | Photo by Roy Kaltschmidt, LBNL.

165

EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16: Ocean Renewable Power Company Maine, LLC Cobscook Bay 16: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine Summary This EA evaluates the environmental impacts of a project that would use the tidal currents of Cobscook Bay to generate electricity via cross-flow Kinetic System turbine generator units (TGU) mounted on the seafloor. The TGUs would capture energy from the flow in both ebb and flood directions. Public Comment Opportunities None available at this time. Documents Available for Download March 19, 2012 EA-1916: Finding of No Significant Impact Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot

166

Geek-Up[2.24.2011]: Dynamical Fingerprints and Daya Bay | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geek-Up[2.24.2011]: Dynamical Fingerprints and Daya Bay Geek-Up[2.24.2011]: Dynamical Fingerprints and Daya Bay Geek-Up[2.24.2011]: Dynamical Fingerprints and Daya Bay February 25, 2011 - 4:37pm Addthis Nuclear power plants like the twin Daya Bay reactors, yield large amounts of electron antineutrinos -- millions of quadrillions of them every second. | Photo Courtesy of Roy Kaltschmidt, Lawrence Berkeley National Laboratory Nuclear power plants like the twin Daya Bay reactors, yield large amounts of electron antineutrinos -- millions of quadrillions of them every second. | Photo Courtesy of Roy Kaltschmidt, Lawrence Berkeley National Laboratory Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Researchers at Oak Ridge National Lab have a developed "fingerprints" to match the results of experiments with data from supercomputer

167

Geek-Up[2.24.2011]: Dynamical Fingerprints and Daya Bay | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2.24.2011]: Dynamical Fingerprints and Daya Bay 2.24.2011]: Dynamical Fingerprints and Daya Bay Geek-Up[2.24.2011]: Dynamical Fingerprints and Daya Bay February 25, 2011 - 4:37pm Addthis Nuclear power plants like the twin Daya Bay reactors, yield large amounts of electron antineutrinos -- millions of quadrillions of them every second. | Photo Courtesy of Roy Kaltschmidt, Lawrence Berkeley National Laboratory Nuclear power plants like the twin Daya Bay reactors, yield large amounts of electron antineutrinos -- millions of quadrillions of them every second. | Photo Courtesy of Roy Kaltschmidt, Lawrence Berkeley National Laboratory Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Researchers at Oak Ridge National Lab have a developed "fingerprints" to match the results of experiments with data from supercomputer

168

EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay 1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine Summary This EA evaluates the environmental impacts of a project that would use the tidal currents of Cobscook Bay to generate electricity via cross-flow Kinetic System turbine generator units (TGU) mounted on the seafloor. The TGUs would capture energy from the flow in both ebb and flood directions. Public Comment Opportunities None available at this time. Documents Available for Download March 19, 2012 EA-1916: Finding of No Significant Impact Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot

169

Mercury in mussels of Bellingham Bay, Washington, (USA)  

SciTech Connect

Laboratory experiments demonstrated the existence of metallothionein-like, low molecular weight, mercury-binding proteins in the marine mussel Mytilus edulis. Relatively large quantities of mercury were associated with such proteins in gills and digestive gland, the organs of interest in the present study. /sup 14/C-incorporation indicated induction of the protein in gills, but not in digestive gland. Mercury in digestive gland may have bound to existing metal-binding proteins. Short-term incorporation of mercury occurred primarily in gills. The induction of mercury-binding proteins in gills may have facilitated detoxification of mercury at the site of uptake. Mercury in mussels of Bellingham Bay were shown to have decreased from 1970 to 1978, the collection date for the present study. Mercury levels were low but approximately three times higher than those from uncontaminated areas. Mercury associated with the mercury-binding protein of gills and digestive glands of Bellingham Bay mussels were low and reflected the concentrations measured in the whole tissues. However, the highest concentration of mercury was associated with the low molecular pool components, the identity of which is not presently known.

Roesijadi, G.; Drum, A.S.; Bridge, J.R.

1978-11-01T23:59:59.000Z

170

An Improved Measurement of Electron Antineutrino Disappearance at Daya Bay  

E-Print Network (OSTI)

The theory of neutrino oscillations explains changes in neutrino flavor, count rates, and spectra from solar, atmospheric, accelerator, and reactor neutrinos. These oscillations are characterized by three mixing angles and two mass-squared differences. The solar mixing angle, {\\theta}_12, and the atmospheric mixing angle, {\\theta}_23, have been well measured, but until recently the neutrino mixing angle {\\theta}_13 was not well known. The Daya Bay experiment, located northeast of Hong Kong at the Guangdong Nuclear Power Complex in China, has made a precise measurement of electron antineutrino disappearance using six functionally-identical gadolinium-doped liquid scintillator-based detectors at three sites with distances between 364 and 1900 meters from six reactor cores. This proceeding describes the Daya Bay updated result, using 127 days of good run time collected between December 24, 2011 and May 11, 2012. For the far site, the ratio of the observed number of events to the expected number of events assuming no neutrino oscillation is 0.944 +/- 0.007(stat) +/- 0.003(syst). A fit for {\\theta}_13 in the three-neutrino framework yields sin^2 2{\\theta}_13 = 0.089 +/- 0.010(stat) +/- 0.005(syst).

David M. Webber; for the Daya Bay Collaboration

2012-11-07T23:59:59.000Z

171

Fuel transfer system  

DOE Patents (OSTI)

A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool.

Townsend, Harold E. (Campbell, CA); Barbanti, Giancarlo (Cupertino, CA)

1994-01-01T23:59:59.000Z

172

ESnet, Orange Silicon Valley, and Bay Microsystems Demonstrate...  

NLE Websites -- All DOE Office Websites (Extended Search)

Microsystems Demonstrate the World's First Long Distance 40Gbps RDMA Data Transfer Public-Private Collaborative Demo Leveraged New ESnet Advanced Networking Initiative (ANI)...

173

NREL: Technology Transfer - About Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

About Technology Transfer About Technology Transfer Through technology partnerships, NREL seeks to reduce private sector risk and enable investment in the adoption of renewable energy and energy efficiency technologies. The transfer of these technologies to the marketplace helps displace oil, reduce carbon emissions, and increase U.S. industry competitiveness. Principles NREL develops and implements technology partnerships based on the standards established by the following principles: Balancing Public and Private Interest Form partnerships that serve the public interest and advance U.S. Department of Energy goals. Demonstrate appropriate stewardship of publicly funded assets, yielding national benefits. Provide value to the commercial partner. Focusing on Outcomes Develop mutually beneficial collaborations through processes, which are

174

Technology Transfer: About the Technology Transfer Department  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Technology Transfer and Intellectual Property Management About the Technology Transfer and Intellectual Property Management Department The Technology Transfer Department helps move technologies from the Lab to the marketplace to benefit society and the U. S. economy. We accomplish this through developing and managing an array of partnerships with the private and public sectors. What We Do We license a wide range of cutting-edge technologies to companies that have the financial, R & D, manufacturing, marketing, and managerial capabilities to successfully commercialize Lab inventions. In addition, we manage lab-industry research partnerships, ensure that inventions receive appropriate patent or copyright protection, license technology to start-up companies, distribute royalties to the Lab and to inventors and serve as

175

Memristive Transfer Matrices  

E-Print Network (OSTI)

An electrical analysis is performed for a memristor crossbar array integrated with operational amplifiers including the effects of parasitic or contact resistances. It is shown that the memristor crossbar array can act as a transfer matrix for a multiple input-multiple output signal processing system. Special cases of the transfer matrix are described related to reconfigurable analog filters, waveform generators, analog computing, and pattern similarity. Keywords: transfer matrix, memristor, analog electronics, crossbar, operational amplifier, reconfigurable electronics

Mouttet, Blaise

2010-01-01T23:59:59.000Z

176

Jefferson Lab Technology Transfer  

This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Technology Transfer.

177

NETL: Technology Transfer - DOE  

Home > Technology Transfer. ... and cheaper to design future power plants. ... we welcome the opportunity to build mutually beneficial partnerships with industry, ...

178

NREL: Technology Transfer - Contacts  

National Renewable Energy Laboratory Technology Transfer Contacts. Here you'll find contact information and resources to help answer any questions you may have about ...

179

SRNL - Technology Transfer - Ombudsman  

... complete fairness in the transfer of federally funded technologies into the marketplace for the benefit of the U.S. economy.

180

Partnerships and Technology Transfer  

Economic Development Overview. ORNL's Partnerships Staff works with a number of partners in the region, State, and across the nation to help transfer ORNL-developed ...

Note: This page contains sample records for the topic "k-area transfer bay" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

MATERIALS TRANSFER AGREEMENT  

NLE Websites -- All DOE Office Websites (Extended Search)

MTAXX-XXX 1 MATERIAL TRANSFER AGREEMENT for Manufacturing Demonstration Facility and Carbon Fiber Technology Facility In order for the RECIPIENT to obtain materials, the RECIPIENT...

182

Convection Heat Transfer  

Science Conference Proceedings (OSTI)

...Heat-Transfer Equations, Fundamentals of Modeling for Metals Processing, Vol 22A, ASM Handbook, ASM International, 2009, p 625â??658...

183

Heat transfer dynamics  

Science Conference Proceedings (OSTI)

As heat transfer technology increases in complexity, it becomes more difficult for those without thermal dynamics engineering training to choose between competitive heat transfer systems offered to meet their drying requirements. A step back to the basics of heat transfer can help professional managers and papermakers make informed decisions on alternative equipment and methods. The primary forms of heat and mass transfer are reviewed with emphasis on the basics, so a practical understanding of each is gained. Finally, the principles and benefits of generating infrared energy by combusting a gaseous hydrocarbon fuel are explained.

Smith, T.M. (Marsden, Inc., Pennsauken, NJ (United States))

1994-08-01T23:59:59.000Z

184

Facility Survey & Transfer  

Energy.gov (U.S. Department of Energy (DOE))

As DOE facilities become excess, many that are radioactively and/or chemically contaminated will become candidate for transfer to DOE-EM for deactivation and decommissioning.

185

Technology Transfer: For Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Available Technologies Licensing Berkeley Lab Technologies Partnering with Berkeley Lab Contact Us Receive Customized Tech Alerts Tech Transfer Site Map Last updated: 09172009...

186

Knowledge transfer frameworks  

Science Conference Proceedings (OSTI)

While theories abound concerning knowledge transfer in organisations, little empirical work has been undertaken to assess any possible relationship between repositories of knowledge and those responsible for the use of knowledge. This paper develops ... Keywords: hybrid approach, knowledge administration, knowledge management, knowledge storage, knowledge transfer framework

Sajjad M Jasimuddin; Nigel Connell; Jonathan H Klein

2012-05-01T23:59:59.000Z

187

Transfers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transfers Transfers Transfers Transfer means a change of an employee, from one Federal government branch (executive, legislative, judicial) to another or from one agency to another without a break in service of 1 full work day. Below are a few tips to better assist you when you transer agencies: If you have any dependents you must complete a standard Form 2809 during new employee orientation as this information does not transfer over automatically. You will not be able to change your coverage until open season or a life changing event occurs. At the time of new employee orientation you must provide your most recent leave and earning statement (LES) so that your leave may be updated accordingly. If you do not provide us with this document it will take approximately 6 weeks before your annual and sick leave is updated.

188

Data Transfer Examples  

NLE Websites -- All DOE Office Websites (Extended Search)

» Data Transfer Examples » Data Transfer Examples Data Transfer Examples Moving data to Projectb Projectb is where data should be written from jobs running on the cluster or Gpints. There are intermediate files or bad results from a run that didn't work out that don't need to be saved. By running these jobs in the SCRATCH areas, these files will be deleted for you by the puge. If you run in the SANDBOX, you will have to clean up after yourselves. Batch Scheduled Transfers Use any queues to schedule jobs that move data to Projectb. A basic transfer script is here: kmfagnan@genepool12 ~ $ cat data_to_projb.sh #!/bin/bash -l #$ -N data2projb /projectb/scratch// kmfagnan@genepool12 ~ $ qsub data_to_projb.sh

189

Multinucleon transfer reactions  

SciTech Connect

The development of higher energies and better resolution in heavy-ion beams has led to a resurgence of interest in transfer reactions at energies well above the Coulomb barrier. Direct reactions with heavy ions are discussed in some detail. Heavy-ion reactions open up the possibility of new methods of spectroscopy, e.g., elastic transfer. Differential cross sections for heavy-ion ' transfer reactions are often featureless; however, some data show diffractive effects. The high angular momenta associated with recoil effects in heavy-ion reactions can be exploited to perform selective spectroscopy on light nuclei. Although most heavy-iontransfer data suggest that reactions proceed in a direct fashion, recent experiments indicate the presence of second-order multistep processes. Correlated nucleon transfer and transfer of many nucleons (e.g., (12C, alpha )) are also being investigated. (20 figures, 3 tables, 93 references) (RWR)

Scott, D.K.

1973-08-01T23:59:59.000Z

190

Design and implementation of four enhanced recovery projects in bay fields of south Louisiana  

SciTech Connect

This paper reviews the design and implementation of four enhanced recovery projects that were initiated in the shallow-water environment of two bay fields located along the coastline of South Louisiana. These four projects are a caustic augmented waterflood, a miscible carbon dioxide waterflood, both in Quarantine Bay Field, and two polymer augmented waterfloods in the West Bay Field. The paper focuses on the design modifications required for the projects due to the hostile overwater environment and the logistics problems associated with the locations of the projects.

Boardman, R.S.; Moore, L.J.; Julian, M.H.; Bilbrey, D.G.; Moore, J.S.

1982-01-01T23:59:59.000Z

191

Design and implementation of four enhanced recovery projects in bay fields of South Louisiana  

SciTech Connect

This paper reviews the design and implementation of four enhanced recovery projects that were initiated in the shallow-water environment of two bay fields located along the coastline of South Louisiana. These four projects are a caustic augmented waterflood, a miscible carbon dioxide waterflood, both in Quarantine Bay Field, and two polymer augmented waterfloods in the West Bay Field. The paper focuses on the design modifications required for the projects due to the hostile overwater environment and the logistics problems associated with the locations of the projects. 4 refs.

Boardman, R.S.; Moore, L.J.; Julian, M.H.; Bilbrey, D.G.; Moore, J.S.

1982-01-01T23:59:59.000Z

192

City of Bay City, Michigan (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

City, Michigan (Utility Company) City, Michigan (Utility Company) Jump to: navigation, search Name City of Bay City Place Michigan Utility Id 1366 Utility Location Yes Ownership M NERC Location ECAR NERC RFC Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL DEMAND RATE Commercial COMPANY OWNED STREET LIGHTING (High Pressure Sodium - 100 WATTS) Lighting COMPANY OWNED STREET LIGHTING (High Pressure Sodium - 150 WATTS) Lighting COMPANY OWNED STREET LIGHTING (High Pressure Sodium - 250 WATTS) Lighting

193

Coos Bay, Oregon: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Oregon: Energy Resources Oregon: Energy Resources (Redirected from Coos Bay, OR) Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.3665007°, -124.2178903° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.3665007,"lon":-124.2178903,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

194

Multi-AUV control and adaptive sampling in Monterey Bay  

E-Print Network (OSTI)

Abstract—Operations with multiple autonomous underwater vehicles (AUVs) have a variety of underwater applications. For example, a coordinated group of vehicles with environmental sensors can perform adaptive ocean sampling at the appropriate spatial and temporal scales. We describe a methodology for cooperative control of multiple vehicles based on virtual bodies and artificial potentials (VBAP). This methodology allows for adaptable formation control and can be used for missions such as gradient climbing and feature tracking in an uncertain environment. We discuss our implementation on a fleet of autonomous underwater gliders and present results from sea trials in Monterey Bay in August, 2003. These at-sea demonstrations were performed as part of the Autonomous Ocean Sampling Network (AOSN) II project. Index Terms—Adaptive sampling, autonomous underwater vehicles (AUVs), cooperative control, formations, gradient climbing, underwater gliders. I.

Edward Fiorelli; Naomi Ehrich Leonard; Senior Member; Pradeep Bhatta; Derek A. Paley; Student Member; Ralf Bachmayer; David M. Fratantoni

2004-01-01T23:59:59.000Z

195

Manual Calibration System for Daya Bay Reactor Neutrino Experiment  

E-Print Network (OSTI)

The Daya Bay Reactor Neutrino Experiment has measured the last unknown neutrino mixing angle, {\\theta}13, to be non-zero at the 7.7{\\sigma} level. This is the most precise measurement to {\\theta}13 to date. To further enhance the understanding of the response of the antineutrino detectors (ADs), a detailed calibration of an AD with the Manual Calibration System (MCS) was undertaken during the summer 2012 shutdown. The MCS is capable of placing a radioactive source with a positional accuracy of 25 mm in R direction, 20 mm in Z axis and 0.5{\\deg} in {\\Phi} direction. A detailed description of the MCS is presented followed by a summary of its performance in the AD calibration run.

Hanxiong Huang; Xichao Ruan; Jie Ren; Chengjun Fan; Yannan Chen; Yinglong Lv; Zhaohui Wang; Zuying Zhou; Long Hou; Biao Xin; Chaoju Yu; Jiawen Zhang; Yinghong Zhang; Jingzhi Bai; Honglin Zhuang; Wei He; Jianglai Liu; Elizabeth Worcester; Harry Themann; Jeff Cherwinka; David M. Webber

2013-05-10T23:59:59.000Z

196

Forecasting the Bayes factor of a future observation  

E-Print Network (OSTI)

I present a new procedure to forecast the Bayes factor of a future observation by computing the Predictive Posterior Odds Distribution (PPOD). This can assess the power of future experiments to answer model selection questions and the probability of the outcome, and can be helpful in the context of experiment design. As an illustration, I consider a central quantity for our understanding of the cosmological concordance model, namely the scalar spectral index of primordial perturbations, n_S. I show that the Planck satellite has over 90% probability of gathering strong evidence against n_S = 1, thus conclusively disproving a scale-invariant spectrum. This result is robust with respect to a wide range of choices for the prior on n_S.

Roberto Trotta

2007-03-05T23:59:59.000Z

197

Surface Currents and Winds at the Delaware Bay Mouth  

SciTech Connect

Knowledge of the circulation of estuaries and adjacent shelf waters has relied on hydrographic measurements, moorings, and local wind observations usually removed from the region of interest. Although these observations are certainly sufficient to identify major characteristics, they lack both spatial resolution and temporal coverage. High resolution synoptic observations are required to identify important coastal processes at smaller scales. Long observation periods are needed to properly sample low-frequency processes that may also be important. The introduction of high-frequency (HF) radar measurements and regional wind models for coastal studies is changing this situation. Here we analyze synoptic, high-resolution surface winds and currents in the Delaware Bay mouth over an eight-month period (October 2007 through May 2008). The surface currents were measured by two high-frequency radars while the surface winds were extracted from a data-assimilating regional wind model. To illustrate the utility of these monitoring tools we focus on two 45-day periods which previously were shown to present contrasting pictures of the circulation. One, the low-outflow period is from 1 October through 14 November 2007; the other is the high-outflow period from 3 March through 16 April 2008. The large-scale characteristics noted by previous workers are clearly corroborated. Specifically the M2 tide dominates the surface currents, and the Delaware Bay outflow plume is clearly evident in the low frequency currents. Several new aspects of the surface circulation were also identified. These include a map of the spatial variability of the M2 tide (validating an earlier model study), persistent low-frequency cross-mouth flow, and a rapid response of the surface currents to a changing wind field. However, strong wind episodes did not persist long enough to set up a sustained Ekman response.

Muscarella, P A; Barton, N P; Lipphardt, B L; Veron, D E; Wong, K C; Kirwan, A D

2011-04-06T23:59:59.000Z

198

Eileen west end development, Prudhoe Bay field, Alaska  

SciTech Connect

The western periphery of Prudhoe Bay field is made of small faulted structures referred to as the Eileen West End area. Development plans for Eileen West End consist of drilling approximately 90 production wells on 80-ac spacing, two nonconventional (> 85{degree}) gas injectors, and one to two conventional gas injectors from two gravel pads (W and Z pads). The confirmation sequence of 20 wells was prioritized to provide information about the structure, fluid contacts, reservoir rock quality, and shale extent in the areas of the nonconventional gas injectors and to maximize, broad initial offtake. Drilling began with two rigs in February 1988, and production started up from Eileen West End in June 1988. In October 1989, 46 wells produced 50,000 BOPD. Peak capacity of 60,000 BOPD is expected by May 1990. Gas cap gas injection was initiated in the West End along with production. Two nonconventional gas injectors currently inject 90 MMCFD. A final injection rate for the West End is targeted at 130 MMCFD. Initiating injection concurrently with production will forestall additional pressure depletion from offtake in the Main field of Prudhoe Bay. Integration of geologic reservoir description and engineering data is crucial to optimize, reservoir development. Current effort include mud logging, sidewall core sampling, formation pressure testing, and fluid contact monitoring with open-hole and cased-hole logs. These data are interpreted to identify areas of gas or water influx and gas breakthrough to define the extent of permeability barriers, to evaluate pressure support requirements, and to effectively plan the remaining conventional and nonconventional producers.

Cooke, A. (BP Exploration, Anchorage, AK (USA))

1990-05-01T23:59:59.000Z

199

Technology transfer 1994  

SciTech Connect

This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

1994-01-01T23:59:59.000Z

200

Modeling Air–Land–Sea Interactions Using the Integrated Regional Model System in Monterey Bay, California  

Science Conference Proceedings (OSTI)

The air–land–sea interaction in the vicinity of Monterey Bay, California, is simulated and investigated using a new Integrated Regional Model System (I-RMS). This new model realistically resolves coastal processes and submesoscale features that ...

Yu-Heng Tseng; Shou-Hung Chien; Jiming Jin; Norman L. Miller

2012-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "k-area transfer bay" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Doe Bay Village Resort Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Doe Bay Village Resort Pool & Spa Low Temperature Geothermal Facility Doe Bay Village Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Doe Bay Village Resort Pool & Spa Low Temperature Geothermal Facility Facility Doe Bay Village Resort Sector Geothermal energy Type Pool and Spa Location Olga, Washington Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

202

Thermal Waters Along The Konocti Bay Fault Zone, Lake County, California- A  

Open Energy Info (EERE)

Waters Along The Konocti Bay Fault Zone, Lake County, California- A Waters Along The Konocti Bay Fault Zone, Lake County, California- A Re-Evaluation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Thermal Waters Along The Konocti Bay Fault Zone, Lake County, California- A Re-Evaluation Details Activities (3) Areas (1) Regions (0) Abstract: The Konocti Bay fault zone (KBFZ), initially regarded by some as a promising target for liquid-dominated geothermal systems, has been a disappointment. At least five exploratory wells were drilled in the vicinity of the KBFZ, but none were successful. Although the Na-K-Ca and Na-Li geothermometers indicate that the thermal waters discharging in the vicinity of Howard and Seigler Springs may have equilibrated at temperatures greater than 200°C, the spring temperatures and fluid

203

Aspects of the ecology and behaviour of bottlenose dolphins (Tursiops truncatus) in Santa Monica Bay, California  

E-Print Network (OSTI)

D.L. 1999. Inshore and offshore bottlenose dolphin (Tursiopsin deeper waters further offshore (>0.5km). No correlationsschools observed inshore and offshore in the bay, with the

Bearzi, Maddalena

2004-01-01T23:59:59.000Z

204

Mesoscale Organization and Cloud Microphysics in a Bay of Bengal Depression  

Science Conference Proceedings (OSTI)

Airborne radar and cloud microphysical data were obtained throughout a monsoon depression observed over the Bay of Bengal on 3–8 July 1979 during the Summer Monsoon Experiment of the Global Atmospheric Research Programme. The precipitation in the ...

Robert A. Houze Jr.; Dean D. Churchill

1987-07-01T23:59:59.000Z

205

Climate Change, Justice, and Adaptation among African American Communities in the Chesapeake Bay Region  

Science Conference Proceedings (OSTI)

In this paper, the authors present results from a study of climate change and community adaptation, focusing on two African American communities on the Eastern Shore of the Chesapeake Bay. These two communities are representative of small, ...

Michael Paolisso; Ellen Douglas; Ashley Enrici; Paul Kirshen; Chris Watson; Matthias Ruth

2012-01-01T23:59:59.000Z

206

Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations  

Energy.gov (U.S. Department of Energy (DOE))

NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and electric vehicle integration. This report summarizes the results of the assessment and provides energy recommendations.

207

Structure, Propagation, and Mixing of Energetic Baroclinic Tides in Mamala Bay, Oahu, Hawaii  

Science Conference Proceedings (OSTI)

Large semidiurnal vertical displacements (?100 m) and strong baroclinic currents (?0.5 m s?1; several times as large as barotropic currents) dominate motions in Mamala Bay, outside the mouth of Pearl Harbor, Hawaii. During September 2002, the ...

Matthew H. Alford; Michael C. Gregg; Mark A. Merrifield

2006-06-01T23:59:59.000Z

208

Energetics of Barotropic and Baroclinic Tides in the Monterey Bay Area  

Science Conference Proceedings (OSTI)

A detailed energy analysis of the barotropic and baroclinic M2 tides in the Monterey Bay area is performed. The authors first derive a theoretical framework for analyzing internal tide energetics based on the complete form of the barotropic and ...

Dujuan Kang; Oliver Fringer

2012-02-01T23:59:59.000Z

209

Multiscale Processes and Nonlinear Dynamics of the Circulation and Upwelling Events off Monterey Bay  

Science Conference Proceedings (OSTI)

The nonlinear multiscale dynamics of the Monterey Bay circulation during the Second Autonomous Ocean Sampling Network (AOSN-II) Experiment (August 2003) is investigated in an attempt to understand the complex processes underlying the highly ...

X. San Liang; Allan R. Robinson

2009-02-01T23:59:59.000Z

210

Scale-dependent dispersion within the stratified interior on the shelf of northern Monterey Bay  

Science Conference Proceedings (OSTI)

Autonomous underwater vehicle measurements are used to quantify lateral dispersion of a continuously released Rhodamine WT dye plume within the stratified interior of shelf waters in northern Monterey Bay, CA. The along-shelf evolution of the ...

Ryan J. Moniz; Derek A. Fong; C. Brock Woodson; Susan K. Willis; Mark T. Stacey; Stephen G. Monismith

211

Present Wave Climate in the Bay of Biscay: Spatiotemporal Variability and Trends from 1958 to 2001  

Science Conference Proceedings (OSTI)

Climate change impacts on wave conditions can increase the risk of offshore and coastal hazards. The present paper investigates wave climate multidecadal trends and interannual variability in the Bay of Biscay during the past decades (1958–2001). ...

Elodie Charles; Déborah Idier; Jérôme Thiébot; Gonéri Le Cozannet; Rodrigo Pedreros; Fabrice Ardhuin; Serge Planton

2012-03-01T23:59:59.000Z

212

Functional Empirical Bayes Methods for Identifying Genes with Different Time-course Expression Profiles  

E-Print Network (OSTI)

a mixed-e?ects model with B-splines. Bioinformatics, 19:474-Bayes, Gibbs-sampler, B-spline, False discovery rate, geneand propose to use cubic B-splines (De Boor, 1978) to

Hong, Fangxin; Li, Hongzhe

2004-01-01T23:59:59.000Z

213

Time-averaged fluxes of lead and fallout radionuclides to sediments in Florida Bay  

E-Print Network (OSTI)

Time-averaged fluxes of lead and fallout radionuclides to sediments in Florida Bay J. A. Robbins,1 between the maximum atmospheric radionuclide fallout and peaks in sediment temporal records of 137 Cs

214

Minimum bayes risk decoding with enlarged hypothesis space in system combination  

Science Conference Proceedings (OSTI)

This paper describes a new system combination strategy in Statistical Machine Translation. Tromble et al. (2008) introduced the evidence space into Minimum Bayes Risk decoding in order to quantify the relative performance within lattice or n-best output ...

Tsuyoshi Okita; Josef van Genabith

2012-03-01T23:59:59.000Z

215

An Advanced Data Assimilation System for the Chesapeake Bay: Performance Evaluation  

Science Conference Proceedings (OSTI)

An advanced data assimilation system, the local ensemble transform Kalman filter (LETKF), has been interfaced with a Regional Ocean Modeling System (ROMS) implementation on the Chesapeake Bay (ChesROMS) as a first step toward a reanalysis and ...

Matthew J. Hoffman; Takemasa Miyoshi; Thomas W. N. Haine; Kayo Ide; Christopher W. Brown; Raghu Murtugudde

2012-10-01T23:59:59.000Z

216

A study of on-line quasi-Bayes adaptation for CDHMM-based speech recognition  

Science Conference Proceedings (OSTI)

We present a framework of quasi-Bayes (QB) learning of the parameters of the continuous density hidden Markov model (CDHMM) with Gaussian mixture state observation densities. Based on the theory of recursive Bayesian inference, the QB algorithm is designed ...

Qiang Huo; Chin-Hui Lee

1996-05-01T23:59:59.000Z

217

Dynamics of Willapa Bay, Washington: A Highly Unsteady, Partially Mixed Estuary  

Science Conference Proceedings (OSTI)

Results from 3 yr of hydrographic time series are shown for Willapa Bay, Washington, a macrotidal, partially mixed estuary whose river and ocean end members are both highly variable. Fluctuating ocean conditions— alternations between wind-driven ...

N. S. Banas; B. M. Hickey; P. MacCready; J. A. Newton

2004-11-01T23:59:59.000Z

218

Abyssal Penetration and Bottom Reflection of Internal Tidal Energy in the Bay of Biscay  

Science Conference Proceedings (OSTI)

This paper describes field observations in the Bay of Biscay, and presents convincing evidence for the existence of a broad beam of internal tidal energy propagating downward from a source region on the upper continental slopes, which, after ...

R. D. Pingree; A. L. New

1991-01-01T23:59:59.000Z

219

Multiyear Observations of Cloud Lines Associated with the Chesapeake and Delaware Bays  

Science Conference Proceedings (OSTI)

Satellite and corresponding near-surface in situ observations have been made of single- and dual-band cloud events [dubbed anomalous cloud lines (ACLs)] associated with the Chesapeake and Delaware Bays. A previous study developed the basis for ...

Todd D. Sikora; David M. Halverson

2002-08-01T23:59:59.000Z

220

Summer Cumulus Cloud Seeding Experiments near Yellowknife and Thunder Bay, Canada  

Science Conference Proceedings (OSTI)

A summer (June and July) cumulus cloud seeding experiment was conducted in Canada near Yellowknife in 1975 and 1976, and Thunder Bay in 1977 and 1978. Microphysical and dynamical measurements were made with three instrumented aircraft, flying in ...

G. A. Isaac; J. W. Strapp; R. S. Schemenauer; J. I. Macpherson

1982-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "k-area transfer bay" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Dynamics and Ecosystem threats of Bidirectional Cordgrass Hybridization in San Francisco Bay  

E-Print Network (OSTI)

CALEPPC), October 2002, Sacramento, CA Sloop CM, Ayres DR,Delta Science Meeting, Sacramento, CA. Hall RJ , HastingsBay Delta Science Meeting, Sacramento, CA Sloop C, Ayres DR,

Strong, Donald R.; Ayres, D R

2005-01-01T23:59:59.000Z

222

Technology Transfer Summit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agenda as of April 9, 2012 Agenda as of April 9, 2012 Technology Transfer Summit April 16, 2012 IMC - Trinity Ballroom 4 8:00 - 8:10 Welcome & Introduction Pete Tseronis, DOE Chief Technology Officer 8:10 - 8:50 Accelerating Transfer Within an Innovation Ecosystem Debra M. Amidon, Founder and Chief Strategist, ENTOVATION International, and Author, The Innovation SuperHighway 8:50 - 9:20 Tech Transfer - Predicaments, Perplexities, and Possible Panaceas Rex Northen, Executive Director, Cleantech Open 9:20 - 9:50 A Systems Approach to Innovation Mike Schwenk, Vice President and Director Technology Deployment and Outreach, Pacific Northwest National Laboratory (PNNL) 9:50 - 10:15 DOE's Online Tech Transfer Ecosystem - aka...Stop Building Moai! Robert Bectel, Senior Policy Advisor / Chief Technology Officer

223

VOLUNTARY LEAVE TRANSFER PROGRAM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VOLUNTARY LEAVE TRANSFER PROGRAM VOLUNTARY LEAVE TRANSFER PROGRAM (Eligible employees are listed at the end of this narrative) Under the Voluntary Leave Transfer Program you can apply, based on a medical emergency, to receive annual leave donated by other employees. A medical emergency is generally defined as a medical condition of the employee or family member that is likely to keep you (the employee) away from work and cause a loss of pay of at least 24 hours. You are required to submit an Office of Personnel Management (OPM) Form 630, Application to Become A Leave Recipient Under the Voluntary Leave Transfer Program, through your supervisor to be considered for the program. The application must include an explanation of the reason the donation is needed (including a brief description of the

224

Technology Transfer: Success Stories  

NLE Websites -- All DOE Office Websites (Extended Search)

Lawrence Berkeley National Laboratory masthead A-Z Index Berkeley Lab masthead U.S. Department of Energy logo Phone Book Jobs Search Tech Transfer Tech Index For Industry For...

225

Multiscale photosynthetic exciton transfer  

E-Print Network (OSTI)

Photosynthetic light harvesting provides a natural blueprint for bioengineered and biomimetic solar energy and light detection technologies. Recent evidence suggests some individual light harvesting protein complexes (LHCs) and LHC subunits efficiently transfer excitons towards chemical reaction centers (RCs) via an interplay between excitonic quantum coherence, resonant protein vibrations, and thermal decoherence. The role of coherence in vivo is unclear however, where excitons are transferred through multi-LHC/RC aggregates over distances typically large compared with intra-LHC scales. Here we assess the possibility of long-range coherent transfer in a simple chromophore network with disordered site and transfer coupling energies. Through renormalization we find that, surprisingly, decoherence is diminished at larger scales, and long-range coherence is facilitated by chromophoric clustering. Conversely, static disorder in the site energies grows with length scale, forcing localization. Our results suggest s...

Ringsmuth, A K; Stace, T M; 10.1038/nphys2332

2012-01-01T23:59:59.000Z

226

Transfer reactions at ATLAS  

NLE Websites -- All DOE Office Websites (Extended Search)

Transfer reactions before, and with, HELIOS Or - "...seems like an awful lot of work just to do (d,p)..." Congratulations ATLAS Happy 25 th Prologue: Long before ATLAS... 11...

227

NREL: Technology Transfer - Ombuds - National Renewable Energy ...  

National Renewable Energy Laboratory Technology Transfer Technology Transfer Ombuds. NREL's Technology Transfer Ombuds offers an informal process to ...

228

ITL Staff Members Receive Tech Transfer Award  

Science Conference Proceedings (OSTI)

ITL Staff Members Receive Tech Transfer Award. ... Regional "Excellence in Technology Transfer" Award for ... the process of transferring a technology ...

2010-10-05T23:59:59.000Z

229

Evaluation of 1991-1992 Brood Overwinter-Reared Coho Released from Net Pens in Youngs Bay, Oregon : Final Completion Report Youngs Bay Terminal Fishery Project.  

DOE Green Energy (OSTI)

Funding from Bonneville Power Administration was provided to the Oregon Department of Fish and Wildlife and the Clatsop County Economic Development Council`s Fisheries Project to identify and develop terminal fishing opportunities. The 1991 and 1992 brood fingerling coho from Oregon Department of Fish and Wildlife hatcheries were successfully reared during the winter period to smolt stage in Youngs Bay utilizing floating net pens. Based on coded-wire-tag recoveries during 1991--93 from 2-week net-pen acclimation releases, total accountability of coho adults averaged 40,540 fish, with the Youngs Bay commercial harvest accounting for 39%. With reduced ocean harvest impacts during 1994 and 1995, 92% of 51,640 coho in 1994 and 68% of 23,599 coho in 1995 (based on coded-wire-tag recoveries) were accounted for in the Youngs Bay commercial fishery for combined 2-week and overwinter acclimation net-pen releases. Overwinter net-pen acclimation coho accounted for 35,063 and 15,775 coho adults in 1994 and 1995 with 93% and 68% accountable in the Youngs Bay commercial harvest. Based on coded-wire-tag recoveries, less than 1% of the adults resulting from releases at Youngs Bay net pens strayed to hatcheries, while none were recovered on spawning ground surveys during 1991--95. The highest survival rates were observed for 1991 and 1992 brood overwinter coho released in early May. Time of release, not rearing strategy, appears to be the determining factor affecting survival in Youngs Bay.

Hirose, Paul S.

1997-01-01T23:59:59.000Z

230

Technology Transfer Awards 2012  

Science Conference Proceedings (OSTI)

EPRI's 2012 Technology Transfer Awards recognize the leaders and the innovators who have transferred research into applied results. The 2012 award winners have shown exceptional application of EPRI research and technology to solve a problem of size and significance, to champion a technology both within their companies and across the industry, to drive progress in the electricity sector, and to provide meaningful benefits for stakeholders and for society.

2013-01-23T23:59:59.000Z

231

Jefferson Lab Technology Transfer - JLab  

What is Technology Transfer at Jefferson Lab? The transfer of technology (intellectual property) developed at JLab to the private sector is an important element of ...

232

Multiscale photosynthetic exciton transfer  

E-Print Network (OSTI)

Photosynthetic light harvesting provides a natural blueprint for bioengineered and biomimetic solar energy and light detection technologies. Recent evidence suggests some individual light harvesting protein complexes (LHCs) and LHC subunits efficiently transfer excitons towards chemical reaction centers (RCs) via an interplay between excitonic quantum coherence, resonant protein vibrations, and thermal decoherence. The role of coherence in vivo is unclear however, where excitons are transferred through multi-LHC/RC aggregates over distances typically large compared with intra-LHC scales. Here we assess the possibility of long-range coherent transfer in a simple chromophore network with disordered site and transfer coupling energies. Through renormalization we find that, surprisingly, decoherence is diminished at larger scales, and long-range coherence is facilitated by chromophoric clustering. Conversely, static disorder in the site energies grows with length scale, forcing localization. Our results suggest sustained coherent exciton transfer may be possible over distances large compared with nearest-neighbour (n-n) chromophore separations, at physiological temperatures, in a clustered network with small static disorder. This may support findings suggesting long-range coherence in algal chloroplasts, and provides a framework for engineering large chromophore or quantum dot high-temperature exciton transfer networks.

A. K. Ringsmuth; G. J. Milburn; T. M. Stace

2012-06-14T23:59:59.000Z

233

HOOPER BAY HOUSING ANALYSIS AND ENERGY FEASIBILITY REPORT  

Science Conference Proceedings (OSTI)

Sea Lion applied for and received a grant from the Department of Energy (DOE) towards this end titled â??Energy Efficiency Development and Deployment in Indian Countryâ?. The initial objectives of the Hooper Bay Energy Efficiency Feasibility Study were to demonstrate a 30% reduction in residential/commercial energy usage and identify the economic benefits of implementing energy efficiency measures to the Tribe through: (1) partnering with Whitney Construction and Solutions for Healthy Breathing in the training and hire of 2 local energy assessors to conduct energy audits of 9 representative housing models and 2 commercial units in the community. These homes are representative of 52 homes constructed across different eras. (2) partnering with Cold Climate Housing Research Center to document current electrical and heating energy consumption and analyze data for a final feasibility report (3) assessing the economics of electricity & heating fuel usage; (4) projecting energy savings or fossil fuel reduction by modeling of improvement scenarios and cost feasibility The following two objectives will be completed after the publication of this report: (5) the development of materials lists for energy efficiency improvements (6) identifying financing options for the follow-up energy efficiency implementation phase.

SEA LION CORPORATION; COLD CLIMATE HOUSING RESEARCH CENTER; SOLUTIONS FOR HEALTHY BREATHING; WHITNEY CONSTRUCTION

2012-12-30T23:59:59.000Z

234

CONFIRMATORY SURVEY RESULTS FOR PORTIONS OF THE MATERIALS AND EQUIPMENT FROM UNITS 1 AND 2 AT THE HUMBOLDT BAY POWER PLANT, EUREKA, CALIFORNIA  

DOE Green Energy (OSTI)

The Pacific Gas & Electric Company (PG&E) operated the Humboldt Bay Power Plant (HBPP) Unit 3 nuclear reactor near Eureka, California under Atomic Energy Commission (AEC) provisional license number DPR-7. HBPP Unit 3 achieved initial criticality in February 1963 and began commercial operations in August 1963. Unit 3 was a natural circulation boiling water reactor with a direct-cycle design. This design eliminated the need for heat transfer loops and large containment structures. Also, the pressure suppression containment design permitted below-ground construction. Stainless steel fuel claddings were used from startup until cladding failures resulted in plant system contamination—zircaloy-clad fuel was used exclusively starting in 1965 eliminating cladding-related contamination. A number of spills and gaseous releases were reported during operations resulting in a range of mitigative activities (see ESI 2008 for details).

W.C. Adams

2011-04-01T23:59:59.000Z

235

NREL: Technology Transfer - Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

Webmaster Webmaster To report any problems on or ask a question about the NREL Technology Transfer Web site, you may contact the Webmaster using the online form below. If you have a question or concern that's not related to this Web site, please see our list of contacts for assistance. To contact the Webmaster, please provide your name, e-mail address, and message below. When you are finished, click "Send Message." NOTE: If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements Research Facilities Commercialization Programs Success Stories News

236

NREL: Technology Transfer - Ombuds  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Transfer Ombuds Technology Transfer Ombuds NREL's Technology Transfer Ombuds offers an informal process to help resolve issues and concerns regarding the laboratory's technology partnership, patent, and licensing activities. As a designated neutral party, our ombuds provides confidential, resolution-focused services. Through the ombuds process, we encourage collaborative techniques such as mediation to facilitate the speedy and low-cost resolution of complaints and disputes, when appropriate. The NREL Ombuds does not: Handle contract negotiation or other legal issues Act as a decision maker or draw conclusions Investigate or make formal recommendations on findings of fact. The ombuds also does not replace, override, or influence formal review or appeal mechanisms, or serve as an intermediary when legal action is

237

Partnerships and Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooperative Research and Development Agreement Cooperative Research and Development Agreement visualization scientist A Cooperative Research and Development Agreement (CRADA) is a mechanism whereby non-federal entities (industry, universities, non-profits, etc.) can collaborate with federal laboratories on research and development projects. CRADAs are specifically technology transfer agreements; technologies developed under CRADAs are expected to be transferred to the private sector for commercial exploitation, either by the non-federal partner or another licensee of such technologies. CRADAs were authorized by the Stevenson-Wydler Technology Innovation Act of 1980 (Public Law 96-480); the authority for government-owned, contractor-operated laboratories such as ORNL to enter into CRADAs was granted by the National Competitiveness Technology Transfer Act of 1989

238

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Software and Information Technologies Software and Information Technologies Algorithm for Correcting Detector Nonlinearites Chatelet: More Accurate Modeling for Oil, Gas or Geothermal Well Production Collective Memory Transfers for Multi-Core Processors Energy Efficiency Software EnergyPlus:Energy Simulation Software for Buildings Tools, Guides and Software to Support the Design and Operation of Energy Efficient Buildings Flexible Bandwidth Reservations for Data Transfer Genomic and Proteomic Software LABELIT - Software for Macromolecular Diffraction Data Processing PHENIX - Software for Computational Crystallography Vista/AVID: Visualization and Allignment Software for Comparative Genomics Geophysical Software Accurate Identification, Imaging, and Monitoring of Fluid Saturated Underground Reservoirs

239

Applied heat transfer  

Science Conference Proceedings (OSTI)

Heat transfer principles are discussed with emphasis on the practical aspects of the problems. Correlations for heat transfer and pressure drop from several worldwide sources for flow inside and outside of tubes, including finned tubes are presented, along with design and performance calculations of heat exchangers economizers, air heaters, condensers, waste-heat boilers, fired heaters, superheaters, and boiler furnaces. Vibration analysis for tube bundles and heat exchangers are also discussed, as are estimating gas-mixture properties at atmospheric and elevated pressures and life-cycle costing techniques. (JMT)

Ganapathy, V.

1982-01-01T23:59:59.000Z

240

Technology transfer issue  

Science Conference Proceedings (OSTI)

Testimony by Lawrence J. Brady, Commerce Assistant Secretary for Trade Administration, at Congressional hearings on the national security issues of technology transfers to the Soviet Union identified steps the US needs to take to deal effectively with the problem. These steps include an understanding of how the Soviet Union has and will benefit militarily by acquiring Western technology and efforts to work with other countries, counterintelligence agencies, and industries to stem the flow of technological information. Brady outlined changes in technology development that complicate the enforcement of transfer rules, and emphasized the importance of a close relationship between the business community and the Commerce Department. (DCK)

Jacobson, C.

1982-05-31T23:59:59.000Z

Note: This page contains sample records for the topic "k-area transfer bay" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

SRNL - Technology Transfer - Ombudsman  

NLE Websites -- All DOE Office Websites (Extended Search)

Ombudsman Ombudsman Ombudsman Program Policy The Department of Energy and its management and operating contractors (M & O Contractors) engaging in technology partnership activities, share a mutual objective to ensure complete fairness in the transfer of federally funded technologies into the marketplace for the benefit of the U.S. economy. This includes an interest in open lines of communication and the early identification of issues, complaints and disputes between contractors and their existing or potential partners. The Technology Transfer Ombudsman Program provides an independent point of contact for concerns about technology transfer i SRS Sign ssues, complaints and disputes. The mission of the Ombudsman Program is to elevate to the appropriate SRNS officials the information needed to identify and resolve problems thereby improving satisfaction with SRNS practices and reducing the occasion for formal disputes and litigation. The Ombudsman will not be involved in the merits of cases that are the subject of ongoing dispute resolution or litigation, or investigation incidents thereto. The Ombudsman is not established to be a super-administrator, re-doing what specialized officials have already done. Rather, the Ombudsman is to ensure that appropriate SRNS officials consider all pertinent information when deciding the company's position on a technology transfer complaint. To request forms or acquire additional information contact: Michael Wamstad, 803-725-3751 or mike.wamstad@srs.gov.

242

Prudhoe Bay western peripheral development using three-dimensional seismic  

Science Conference Proceedings (OSTI)

The western periphery of the Prudhoe Bay field, known as the West End or Eileen area, is characterized by a relatively gentle southwestern regional dip cut by numerous normal faults with up to 500 ft of throw. These faults displace the Permian-Triassic reservoir sandstones against Jurassic shales. A detailed structural map was interpreted from three-dimensional seismic data acquired in 1984 and 1985. Three distinct and coherent trends of faulting are evident from the data: north-south, northwest-southeast, and east-west. These faults were aliased by the earlier two-dimensional data grid and could not be connected in a coherent manner consistent with suppositions of the stress directions. The added detail to the structural maps will allow development of narrow, oil-filled horst blocks and should prevent drilling of dry holes in narrow grabens as has occurred prior to the three-dimensional data acquisition. Seventy-two 80-ac wells and up to four horizontal gas injectors are planned for the area, with drilling commencing from new surface facilities in 1988. Upon the successful completion of a horizontal and an 88/sup 0/ highangle well from existing facilities, the utility and shortcomings of the data interpretations were illuminated. The high-angle well encountered only 40% of the prognosed oil column, which is believed to be a consequence of an unpredicted permafrost thickening. Thus, as with two-dimensional data, the uncertainty in the estimate of the velocity field is the dominant factor in estimating subsurface structure.

Guderjahn, C.G.

1988-01-01T23:59:59.000Z

243

FACILITY SURVEY & TRANSFER Facility Survey & Transfer Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SURVEY & TRANSFER SURVEY & TRANSFER Facility Survey & Transfer Overview Transfer Activities Checklist Pre-Survey Information Request Survey Report Content Detailed Walkdown Checklist Walkdown Checklist Clipboard Aids S & M Checklist Survey Report Example - Hot Storage Garden Survey Report Example - Tritium System Test Assembly Survey Report Example - Calutron Overview As DOE facilities become excess, many that are radioactively and/or chemically contaminated will become candidate for transfer to DOE-EM for deactivation and decommissioning. Requirements and guidance for such transfers are contained in:  DOE Order 430.1B Chg. 2, REAL PROPERTY & ASSET MANAGEMENT  DOE Guide 430.1-5, TRANSITION IMPLEMENTATION GUIDE The transfer process is illustrated in the Transfer Process figure. The purpose here is to provide examples of methods and

244

Energy Secretary Steven Chu to Travel to Bay Area to Highlight State of the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bay Area to Highlight Bay Area to Highlight State of the Union Address, Commitment to Clean Energy Energy Secretary Steven Chu to Travel to Bay Area to Highlight State of the Union Address, Commitment to Clean Energy January 31, 2012 - 7:38pm Addthis Washington, D.C. - As part of the Energy Department's ongoing efforts to highlight President Obama's State of the Union address and discuss the Obama Administration's commitment to American energy resources and innovation, tomorrow, Wednesday, February 1, U.S. Energy Secretary Steven Chu will headline a groundbreaking ceremony for Lawrence Berkeley National Laboratory's new Computational Research and Theory Facility, a cutting-edge supercomputing facility. Secretary Chu will also host a State of the Union Town Hall and take questions from students and faculty

245

A Precision Measurement of the Neutrino Mixing Angle theta_13 using Reactor Antineutrinos at Daya Bay  

E-Print Network (OSTI)

A reactor-neutrino experiment, Daya Bay, has been proposed to determine the least-known neutrino mixing angle theta_13 using electron antineutrinos produced at the Daya Bay nuclear power complex in China. Daya Bay is an international collaboration with institutions from China, the United States, the Czech Republic, Hong Kong, Russia, and Taiwan. The experiment will use eight identical detectors deployed at three different locations optimized for monitoring the antineutrino rates from the six reactors and for detecting any rate deficit and spectral distortion near the first oscillation maximum. The overburden of the under ground experimental halls, connected with tunnels, ranges from about 250 to 900 meters-water-equivalent so that the cosmogenic background is small compared to the number of observed antineutrino events. Civil construction of tunnels and experimental facilities is planned to start in 2007, with detector construction beginning in 2008. The experiment will begin collecting data in 2010. By compa...

Guo, Xinheng

2007-01-01T23:59:59.000Z

246

Technology Transfer: Site Map  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Map Site Map About Us About Technology Transfer Contact Us Available Technologies Advanced Materials Biofuels Biotechnology and Medicine Developing World Energy Environmental Technologies Imaging and Lasers Ion Sources and Beam Technologies Nanotechnology and Microtechnology Software and Information Technology For Industry Licensing Overview Frequently Asked Questions Partnering with Berkeley Lab Licensing Interest Form Receive New Tech Alerts For Researchers What You Need to Know and Do The Tech Transfer Process Forms Record of Invention (Word doc -- please do not use earlier PDF version of the form) Software Disclosure and Abstract (PDF, use Adobe Acrobat or Adobe Reader 9 and up ONLY to complete the form) Policies Conflict of Interest Outside Empolyment Export Control FAQs for Researchers

247

Technology Transfer Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Research Projects Agency-Energy (ARPA-E) Advanced Research Projects Agency-Energy (ARPA-E) Oil & Gas Technology Transfer Initiatives USEFUL LINKS Association of University Technology Managers (AUTM) Federal Laboratory Consortium (FLC) FLC Technology Locator Feedback Contact us about Tech Transfer: Mary.McManmon@science.doe.gov Mary McManmon, 202-586-3509 link to Adobe PDF Reader link to Adobe Flash player Reports Navigate Home About Us Contact Information Hide Thumbs First Previous Pause Next Last Set Speed Slideshow speed: 5 seconds Move Autoinduction system New Image Set Autoinduction Autoinduction System The award winning Overnight Express(tm) Autoinduction System developed at BNL simplifies protein production in the widely used T7 gene expression system. Decontamination Foam-based decontamination

248

NREL: Technology Transfer - Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Events Events February 2014 NASEO Energy Outlook Conference February 4 - 7, 2014 Washington , DC Add to calendar Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements Research Facilities Commercialization Programs Success Stories News Contacts Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to take a moment to tell us how we can improve this page? Submit We value your feedback. Thanks! We've received your feedback. Something went wrong. Please try again later. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Alliance for Sustainable Energy, LLC

249

Efficient Data Transfer Protocols  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficient Efficient Data Transfer Protocols for Big Data Brian Tierney ∗ , Ezra Kissel † , Martin Swany † , Eric Pouyoul ∗ ∗ Lawrence Berkeley National Laboratory, Berkeley, CA 94270 † School of Informatics and Computing, Indiana University, Bloomington, IN 47405 Abstract-Data set sizes are growing exponentially, so it is important to use data movement protocols that are the most efficient available. Most data movement tools today rely on TCP over sockets, which limits flows to around 20Gbps on today's hardware. RDMA over Converged Ethernet (RoCE) is a promising new technology for high-performance network data movement with minimal CPU impact over circuit-based infrastructures. We compare the performance of TCP, UDP, UDT, and RoCE over high latency 10Gbps and 40Gbps network paths, and show that RoCE-based data transfers can fill a 40Gbps path using much less CPU than other protocols.

250

Advanced Technology and Knowledge Transfer  

Science Conference Proceedings (OSTI)

This paper reports on a specific food and agribusiness industry project, employing new technological capabilities to better transfer expert knowledge. Knowledge transfer and technical support are key components of this project. VisIT, which stands for ...

Geetanjali Tandon; Steven T. Sonka

2003-01-01T23:59:59.000Z

251

Bay Controls & Ford Teaming Profile | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Bay Controls & Ford Teaming Profile Bay Controls & Ford Teaming Profile Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

252

Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations  

DOE Green Energy (OSTI)

DOD's U.S. Pacific Command has partnered with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to assess opportunities for increasing energy security through renewable energy and energy efficiency in Hawaii installations. NREL selected Marine Corps Base Hawaii (MCBH), Kaneohe Bay to receive technical support for net zero energy assessment and planning funded through the Hawaii Clean Energy Initiative (HCEI). NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and electric vehicle integration. This report summarizes the results of the assessment and provides energy recommendations.

Burman, K.; Kandt, A.; Lisell, L.; Booth, S.; Walker, A.; Roberts, J.; Falcey, J.

2011-11-01T23:59:59.000Z

253

NREL: Technology Transfer - Licensing Agreements  

National Renewable Energy Laboratory Technology Transfer Licensing Agreements. Through licensing agreements, NREL provides industry with an opportunity to ...

254

Heat Transfer Fluids Containing Nanoparticles  

commercial and industrial heat-transfer applications. ... Refrigeration and other cooling systems Nuclear reactors Aerospace Defense Grinding and ...

255

Argonne TDC: Material Transfer Agreements  

Material Transfer Agreements. Materials produced by researchers at Argonne National Laboratory are often of interest to the private sector.

256

LANL | Partnering | Material Transfer Agreement  

Contacts Event Calendar Maps Organization Phonebook Policy Center Emergency. NEWS. LIBRARY. JOBS. Technology Transfer, TT . Division Home; About Us; ...

257

Analysis of the Pass Cavallo shipwreck assemblage, Matagorda Bay, Texas  

E-Print Network (OSTI)

A survey conducted in February of 1998 located an anomaly originally believed to be the remains of L'Aimable. L'Aimable was one of four ships utilized by Rene-Robert Cavelier, Sieur de La Salle, for his voyage to colonize the Gulf Coast in 1684. The anomaly, a wrecked vessel with a heavy iron signature, was located outside the entrance to the historic pass into Matagorda Bay, Texas. Artifacts were extracted from the wreck site to aid in the identification of the vessel, which was subsequently determined to be more recent in origin. A preliminary examination of the artifacts indicates that the shipwreck dates to the first half of the 19th century. The survey recovered over two hundred artifacts. The assemblage of artifacts includes over 80 lead shot, over 40 examples of brass firearm furniture, over 15 firearm fragments, several pieces of copper sheathing, and iron bar stock. Almost two-thirds of the material is associated with small arms. The majority of the identifiable firearms are military arms of three patterns: the British Short Land Pattern, the British India Pattern, and the 1757 Spanish musket. Historical research has determined that these arms were circulating in Texas, New Orleans, and Mexico, as early as 1815. The British Pattern arms were both purchased for the Mexican army in the 1820s, and used by the British Infantry in the Battle of New Orleans in 1815. The 1757 Spanish musket was used chiefly by Spanish expeditionary forces in North America in the late 18th century. Evidence garnered from the artifacts suggest that the firearms were shipboard cargo onboard a small, wood-hulled sailing vessel that wrecked between the years 1815 and 1845. Archival and historical research isolated nine wreck candidates for this period. Historical research and artifact analysis suggest the Hannah Elizabeth as the primary candidate for this wreck site. The Hannah Elizabeth was a small merchant schooner from New Orleans laden with a munitions cargo for Texas troops stationed at Goliad. The vessel wrecked at the entrance of the historic Pass Cavallo while evading capture from a Mexican brig-of-war in November of 1835.

Borgens, Amy Anne

2005-05-01T23:59:59.000Z

258

Technology Transfer Reporting Form | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Transfer Reporting Form Technology Transfer Reporting Form Technology Transfer Reporting Form More Documents & Publications DOE F 3230.6A Technology Partnership...

259

Tech Transfer Summit Agenda | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tech Transfer Summit Agenda Tech Transfer Summit Agenda Tech Transfer Technology Summit Agenda 4.9.12.pdf More Documents & Publications Risk Management II Summit Agenda Special...

260

HIGEE Mass Transfer  

E-Print Network (OSTI)

Distillation, absorption, and gas stripping have traditionally been performed in tall columns utilizing trays or packing. Columns perform satisfactorily, but have characteristics which may be disadvantages in some applications: Large size, particularly height; high weight; high cost of installation; difficulty in modularization; foaming for certain systems; must be vertical, especially for trayed towers; large liquid inventory; difficulty in modifying column internals once installed; start up time to reach steady state conditions in excessive. Many of these disadvantages can be overcome by use of HIGEE, an innovative vapor-liquid mass transfer system which utilizes a rotating bed of packing to achieve high efficiency separations, and consequent reduction in size and weight.

Mohr, R. J.; Fowler, R.

1986-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "k-area transfer bay" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Manipulator mounted transfer platform  

DOE Patents (OSTI)

This invention is comprised of a transfer platform for the conveyance of objects by a manipulator includes a bed frame and saddle clamp secured along an edge of the bed fame and adapted so as to secure the bed frame to a horizontal crosspiece of the manipulator. The platform may thus move with the manipulator in a reciprocal linear path defined by a guide rail. A bed insert may be provided for the support of conveyed objects and a lifting bail may be provided to permit the manipulator arm to install the bed frame upon the crosspiece under remote control. 5 figs.

Dobbins, J.C.; Hoover, M.A.; May, K.W.; Ross, M.J.

1988-10-12T23:59:59.000Z

262

Manipulator mounted transfer platform  

Science Conference Proceedings (OSTI)

A transfer platform for the conveyance of objects by a manipulator includes a bed frame and saddle clamp secured along an edge of the bed frame and adapted so as to secure the bed frame to a horizontal crosspiece of the manipulator. The platform may thus move with the manipulator in a reciprocal linear path defined by a guide rail. A bed insert may be provided for the support of conveyed objects and a lifting bail may be provided to permit the manipulator arm to install the bed frame upon the crosspiece under remote control.

Dobbins, James C. (Idaho Falls, ID); Hoover, Mark A. (Idaho Falls, ID); May, Kay W. (Idaho Falls, ID); Ross, Maurice J. (Pocatello, ID)

1990-01-01T23:59:59.000Z

263

Manipulator mounted transfer platform  

Science Conference Proceedings (OSTI)

The patent describes in a manipulator system for use in hazardous environments including a manipulator adapted for reciprocal movement upon a guide device, a transfer platform. It comprises: a bed frame defining a generally horizontal bed projecting outwardly from the manipulator; and frame mounting means securing the bed frame to the manipulator in a generally cantilevered fashion, thereby essentially minimizing the structure necessary to support the platform outwardly of the manipulator while enhancing operator visibility of the platform and the manipulator during use of the manipulator system.

Dobbins, J.C.; Hoover, M.A.; May, K.W.; Ross, M.J.

1990-01-23T23:59:59.000Z

264

Bimodal Character of Cyclone Climatology in the Bay of Bengal Modulated by Monsoon Seasonal Cycle  

Science Conference Proceedings (OSTI)

The annual cycle of tropical cyclone (TC) frequency over the Bay of Bengal (BoB) exhibits a notable bimodal character, different from a single peak in other basins. The causes of this peculiar feature were investigated through the diagnosis of a ...

Zhi Li; Weidong Yu; Tim Li; V. S. N. Murty; Fredolin Tangang

2013-02-01T23:59:59.000Z

265

Using hydrodynamic modeling for estimating flooding and water depths in grand bay, alabama  

Science Conference Proceedings (OSTI)

This paper presents a methodology for using hydrodynamic modeling to estimate inundation areas and water depths during a hurricane event. The Environmental Fluid Dynamic Code (EFDC) is used in this research. EFDC is one of the most commonly applied models ... Keywords: EFDC, flooding, grand bay, grid generation, hydrodynamics, inundation, modeling

Vladimir J. Alarcon; William H. McAnally

2012-06-01T23:59:59.000Z

266

Storm-Induced Circulation in Lunenburg Bay of Nova Scotia: Observations and Numerical Simulations  

Science Conference Proceedings (OSTI)

An extreme weather event (Hurricane Juan) made landfall in Nova Scotia, Canada, in September 2003. The storm produced an 70-cm storm surge and 40 cm s?1 coastal currents in Lunenburg Bay, registered by a coastal observing system. A fine-...

Liang Wang; Jinyu Sheng; Alex E. Hay; Douglas J. Schillinger

2007-04-01T23:59:59.000Z

267

Marsh Island (PortersvIlle Bay) restoratIon Project General Project DescriPtion  

E-Print Network (OSTI)

spill. Total estimated Offsets for the Marsh Island Project are 540 DSAYs. estiMated cost: Construction of the Marsh Island Project would cost approximately $11,280,000. (Estimated costs for some of the projectsMarsh Island (PortersvIlle Bay) restoratIon Project General Project DescriPtion The Marsh Island

268

Intro Pb Model Gibbs Simus Multi Bayes Gibbs Simus Change-point Detection in Astronomical Data  

E-Print Network (OSTI)

. The Poisson rate parameter varies as determined by the actual changes in brightness of the Gamma Ray Burst, Bordeaux, '05 #12;Intro Pb Model Gibbs Simus Multi Bayes Gibbs Simus Introduction BATSE module Burst And Transient Source Experiment The Compton -Ray Observatory N. Dobigeon, J.-Y. Tourneret, J.D. Scargle IEEE

Tourneret, Jean-Yves

269

Systems Performance Analyses of Alaska Wind-Diesel Projects; Toksook Bay, Alaska (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet summarizes a systems performance analysis of the wind-diesel project in Toksook Bay, Alaska. Data provided for this project include community load data, average wind turbine output, average diesel plant output, thermal load data, average net capacity factor, optimal net capacity factor based on Alaska Energy Authority wind data, average net wind penetration, estimated fuel savings, and wind system availability.

Baring-Gould, I.

2009-04-01T23:59:59.000Z

270

Barotropic and Baroclinic M2 Tides in the Monterey Bay Region  

Science Conference Proceedings (OSTI)

A high-resolution (250 m) primitive equation model is used to simulate the depth-averaged and baroclinic M2 tides in the Monterey Bay region. The model shows a high level of skill in comparisons with sea level observations. ADCP current ...

G. S. Carter

2010-08-01T23:59:59.000Z

271

MAPPING OUR UNDERWATER MARINE RESOURCES The MapCoast and BayMap Partnerships  

E-Print Network (OSTI)

MAPPING OUR UNDERWATER MARINE RESOURCES The MapCoast and BayMap Partnerships BAYMAP: CHARTING communities and underwater archaeological sites in a readily accessible GIS format. An interdisciplinary team underwater resources, including bathymetry, habitat, geology, soils/ sediment, and archeological resources

Wang, Y.Q. "Yeqiao"

272

Remote monitoring of hypersaline environments in San Francisco Bay, CA, USA  

Science Conference Proceedings (OSTI)

As part of a historic remediation project, approximately 61 km2 of salt evaporation ponds in the southern portion of San Francisco Bay, CA (USA) are scheduled for restoration to natural tidal marsh habitat over the next several decades. We have ...

J. B. Dalton; L. J. Palmer-Moloney; D. Rogoff; C. Hlavka; C. Duncan

2009-01-01T23:59:59.000Z

273

Evolution of the Monterey Bay Sea-Breeze Layer As Observed by Pulsed Doppler Lidar  

Science Conference Proceedings (OSTI)

As part of the Land/Sea Breeze Experiment (LASBEX) to study the sea breeze at Monterey Bay, the pulsed Doppler lidar of the NOAA/ERL Wave Propagation Laboratory performed vertical and nearly horizontal scans of the developing sea breeze on 12 ...

Robert M. Banta; Lisa D. Olivier; David H. Levinson

1993-12-01T23:59:59.000Z

274

Recent ice loss from the Fleming and other glaciers, Wordie Bay, West Antarctic Peninsula  

E-Print Network (OSTI)

of phase aliasing caused by high rates of ice deformation. [6] Glacier grounding lines were derived fromRecent ice loss from the Fleming and other glaciers, Wordie Bay, West Antarctic Peninsula E. Rignot ice thickness data from 2002, reveal that the glaciers flowing into former Wordie Ice Shelf, West

Kansas, University of

275

Measuring Sin^22?_13 with the Daya Bay Nuclear Reactors  

E-Print Network (OSTI)

Angle \\theta_13 is one of the two unknown neutrino mixing parameters to be determined. Its value may determine the future trend of the neutrino physics. We propose to measure sin^22\\theta_13 with a sensitivity better than 0.01 (90% C.L) at the Daya Bay reactor power plant.

Yifang Wang

2006-10-09T23:59:59.000Z

276

Instrumented Aircraft Observations of the Katabatic Wind Regime Near Terra Nova Bay  

Science Conference Proceedings (OSTI)

Two aircraft missions to sample the boundary layer dynamics associated with the intense katabatic wind regime at Terra Nova Bay, Antarctica were flown on successive days in early November 1987. Light winds averaging 5 m s?1 were monitored at the ...

Thomas R. Parish; David H. Bromwich

1989-07-01T23:59:59.000Z

277

A Latent-and Sensible-Heat Polynya Model for the North Water, Northern Baffin Bay  

Science Conference Proceedings (OSTI)

The Pease latent-heat polynya model is coupled to a reduced-gravity, coastal upwelling model in order to simulate the formation and maintenance of the North Water (NOW), the Arctic's largest polynya, located in northern Beffin Bay. In this region,...

Lawrence A. Mysak; Fengting Huang

1992-06-01T23:59:59.000Z

278

Reducing methylmercury accumulation in the food webs of San Francisco Bay and its local watersheds  

Science Conference Proceedings (OSTI)

San Francisco Bay (California, USA) and its local watersheds present an interesting case study in estuarine mercury (Hg) contamination. This review focuses on the most promising avenues for attempting to reduce methylmercury (MeHg) contamination in Bay Area aquatic food webs and identifying the scientific information that is most urgently needed to support these efforts. Concern for human exposure to MeHg in the region has led to advisories for consumption of sport fish. Striped bass from the Bay have the highest average Hg concentration measured for this species in USA estuaries, and this degree of contamination has been constant for the past 40 years. Similarly, largemouth bass in some Bay Area reservoirs have some of the highest Hg concentrations observed in the entire US. Bay Area wildlife, particularly birds, face potential impacts to reproduction based on Hg concentrations in the tissues of several Bay species. Source control of Hg is one of the primary possible approaches for reducing MeHg accumulation in Bay Area aquatic food webs. Recent findings (particularly Hg isotope measurements) indicate that the decades-long residence time of particle-associated Hg in the Bay is sufficient to allow significant conversion of even the insoluble forms of Hg into MeHg. Past inputs have been thoroughly mixed throughout this shallow and dynamic estuary. The large pool of Hg already present in the ecosystem dominates the fraction converted to MeHg and accumulating in the food web. Consequently, decreasing external Hg inputs can be expected to reduce MeHg in the food web, but it will likely take many decades to centuries before those reductions are achieved. Extensive efforts to reduce loads from the largest Hg mining source (the historic New Almaden mining district) are underway. Hg is spread widely across the urban landscape, but there are a number of key sources, source areas, and pathways that provide opportunities to capture larger quantities of Hg and reduce loads from urban runoff. Atmospheric deposition is a lower priority for source control in the Bay Area due to a combination of a lack of major local sources. Internal net production of MeHg is the dominant source of MeHg that enters the food web. Controlling internal net production is the second primary management approach, and has the potential to reduce food web MeHg in some habitats more effectively and within a much shorter time-frame. Controlling net MeHg production and accumulation in the food web of upstream reservoirs and ponds is very promising due to the many features of these ecosystems that can be manipulated. The most feasible control options in tidal marshes relate to the design of flow patterns and subhabitats in restoration projects. Options for controlling MeHg production in open Bay habitat are limited due primarily to the highly dispersed distribution of Hg throughout the ecosystem. Other changes in these habitats may also have a large influence on food web MeHg, including temperature changes due to global warming, sea level rise, food web alterations due to introduced species and other causes, and changes in sediment supply. Other options for reducing or mitigating exposure and risk include controlling bioaccumulation, cleanup of contaminated sites, and reducing other factors (e.g., habitat availability) that limit at-risk wildlife populations.

Davis, J.A., E-mail: jay@sfei.org [San Francisco Estuary Institute, 4911 Central Avenue, Richmond, CA 94804 (United States); Looker, R.E. [San Francisco Bay Regional Water Quality Control Board, 1515 Clay Street, Suite 1400, Oakland, CA 94612 (United States)] [San Francisco Bay Regional Water Quality Control Board, 1515 Clay Street, Suite 1400, Oakland, CA 94612 (United States); Yee, D. [San Francisco Estuary Institute, 4911 Central Avenue, Richmond, CA 94804 (United States)] [San Francisco Estuary Institute, 4911 Central Avenue, Richmond, CA 94804 (United States); Marvin-Di Pasquale, M. [U.S. Geological Survey, Water Resources Division/MS 480, 345 Middlefield Road, Menlo Park, CA 94025 (United States)] [U.S. Geological Survey, Water Resources Division/MS 480, 345 Middlefield Road, Menlo Park, CA 94025 (United States); Grenier, J.L. [San Francisco Estuary Institute, 4911 Central Avenue, Richmond, CA 94804 (United States)] [San Francisco Estuary Institute, 4911 Central Avenue, Richmond, CA 94804 (United States); Austin, C.M. [San Francisco Bay Regional Water Quality Control Board, 1515 Clay Street, Suite 1400, Oakland, CA 94612 (United States)] [San Francisco Bay Regional Water Quality Control Board, 1515 Clay Street, Suite 1400, Oakland, CA 94612 (United States); McKee, L.J.; Greenfield, B.K. [San Francisco Estuary Institute, 4911 Central Avenue, Richmond, CA 94804 (United States)] [San Francisco Estuary Institute, 4911 Central Avenue, Richmond, CA 94804 (United States); Brodberg, R. [California Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, 1001 I Street, Sacramento, CA 95812 (United States)] [California Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, 1001 I Street, Sacramento, CA 95812 (United States); Blum, J.D. [Department of Geological Sciences, University of Michigan, 1100 North University Avenue, Ann Arbor, MI 48109 (United States)] [Department of Geological Sciences, University of Michigan, 1100 North University Avenue, Ann Arbor, MI 48109 (United States)

2012-11-15T23:59:59.000Z

279

Interline transfer CCD camera  

DOE Patents (OSTI)

An interline CCD sensing device for use in a camera system, includes an imaging area sensitive to impinging light, for generating charges corresponding to the intensity of the impinging light. Sixteen independent registers R1 - R16 sequentially receive the interline data from the imaging area, corresponding to the generated charges. Sixteen output amplifiers S1 - S16 and sixteen ports P1 - P16 for sequentially transferring the interline data, one pixel at a time, in order to supply a desired image transfer speed. The imaging area is segmented into sixteen independent imaging segments A1 - A16, each of which corresponds to one register, on output amplifier, and one output port. Each one of the imaging segments A1 - A16 includes an array of rows and columns of pixels. Each pixel includes a photogate area, an interline CCD channel area, and an anti-blooming area. The anti-blooming area is, in turn, divided into an anti-blooming barrier and an anti-blooming drain.

Prokop, M.S.; McCurnin, T.W.; Stump, C.J.; Stradling, G.L.

1993-12-31T23:59:59.000Z

280

Polarization transfer NMR imaging  

DOE Patents (OSTI)

A nuclear magnetic resonance (NMR) image is obtained with spatial information modulated by chemical information. The modulation is obtained through polarization transfer from a first element representing the desired chemical, or functional, information, which is covalently bonded and spin-spin coupled with a second element effective to provide the imaging data. First and second rf pulses are provided at first and second frequencies for exciting the imaging and functional elements, with imaging gradients applied therebetween to spatially separate the nuclei response for imaging. The second rf pulse is applied at a time after the first pulse which is the inverse of the spin coupling constant to select the transfer element nuclei which are spin coupled to the functional element nuclei for imaging. In a particular application, compounds such as glucose, lactate, or lactose, can be labeled with .sup.13 C and metabolic processes involving the compounds can be imaged with the sensitivity of .sup.1 H and the selectivity of .sup.13 C.

Sillerud, Laurel O. (Los Alamos, NM); van Hulsteyn, David B. (Santa Fe, NM)

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "k-area transfer bay" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Targeting Net Zero Energy at Marine Corps Base Hawaii, Kaneohe Bay: Preprint  

DOE Green Energy (OSTI)

This paper summarizes the results of an NREL assessment of Marine Corps Base Hawaii (MCBH), Kaneohe Bay to appraise the potential of achieving net zero energy status through energy efficiency, renewable energy, and hydrogen vehicle integration. In 2008, the U.S. Department of Defense's U.S. Pacific Command partnered with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to assess opportunities for increasing energy security through renewable energy and energy efficiency at Hawaii military installations. DOE selected Marine Corps Base Hawaii (MCBH), Kaneohe Bay, to receive technical support for net zero energy assessment and planning funded through the Hawaii Clean Energy Initiative (HCEI). NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and hydrogen vehicle integration. This paper summarizes the results of the assessment and provides energy recommendations. The analysis shows that MCBH Kaneohe Bay has the potential to make significant progress toward becoming a net zero installation. Wind, solar photovoltaics, solar hot water, and hydrogen production were assessed, as well as energy efficiency technologies. Deploying wind turbines is the most cost-effective energy production measure. If the identified energy projects and savings measures are implemented, the base will achieve a 96% site Btu reduction and a 99% source Btu reduction. Using excess wind and solar energy to produce hydrogen for a fleet and fuel cells could significantly reduce energy use and potentially bring MCBH Kaneohe Bay to net zero. Further analysis with an environmental impact and interconnection study will need to be completed. By achieving net zero status, the base will set an example for other military installations, provide environmental benefits, reduce costs, increase energy security, and exceed its energy goals and mandates.

Burman, K.; Kandt, A.; Lisell, L.; Booth, S.

2012-05-01T23:59:59.000Z

282

About Technology Transfer - National Renewable Energy ...  

National Renewable Energy Laboratory Technology Transfer About Technology Transfer. Through technology partnerships, NREL seeks to reduce private sector risk and ...

283

Heat transfer. [heat transfer roller employing a heat pipe  

SciTech Connect

A heat transfer roller embodying a heat pipe is disclosed. The heat pipe is mounted on a shaft, and the shaft is adapted for rotation on its axis.

Sarcia, D.S.

1978-05-23T23:59:59.000Z

284

Prospects for Money Transfer Models  

E-Print Network (OSTI)

Recently, in order to explore the mechanism behind wealth or income distribution, several models have been proposed by applying principles of statistical mechanics. These models share some characteristics, such as consisting of a group of individual agents, a pile of money and a specific trading rule. Whatever the trading rule is, the most noteworthy fact is that money is always transferred from one agent to another in the transferring process. So we call them money transfer models. Besides explaining income and wealth distributions, money transfer models can also be applied to other disciplines. In this paper we summarize these areas as statistical distribution, economic mobility, transfer rate and money creation. First, money distribution (or income distribution) can be exhibited by recording the money stock (flow). Second, the economic mobility can be shown by tracing the change in wealth or income over time for each agent. Third, the transfer rate of money and its determinants can be analyzed by tracing t...

Wang, Y; Xi, N; Wang, Yougui; Ding, Ning; Xi, Ning

2005-01-01T23:59:59.000Z

285

Frame Heat Transfer Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Developing Low-Conductance Window Frames: Capabilities and Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools Arild Gustavsen 1,* , Dariush Arasteh 2 , Bjørn Petter Jelle 3,4 , Charlie Curcija 5 and Christian Kohler 2 1 Department of Architectural Design, History and Technology, Norwegian University of Science and Technology, Alfred Getz vei 3, NO-7491 Trondheim, Norway 2 Windows and Daylighting Group, Lawrence Berkeley National Laboratory, 1 Cyclotron Road Mail Stop 90R3111, Berkeley, CA 94720- 8134, USA 3 Department of Civil and Transport Engineering, Norwegian University of Science and Technology, Høgskoleringen 7A, NO-7491 Trondheim, Norway 4 Department of Building Materials and Structures, SINTEF Building and Infrastructure, Høgskoleringen 7B,NO-7465 Trondheim, Norway

286

Technology Transfer Reporting Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

form is to be completed by the TTO for individual inquiry/case activity during the quarter as required form is to be completed by the TTO for individual inquiry/case activity during the quarter as required by the Technology Transfer Commercialization Act of 2000. Mouse over definitions and descriptions appear over text/check boxes where appropriate. After completing this form, click on the submit button. *If you have no TTO activity for the quarter, please fill in your name, FY and quarter, lab or facility and check the box "No Quarterly Activity". Initial Ombuds Contact: ____________________ Type: Inquiry Case Ombuds Name: __________________________ Time Spent: (Hours) ______________ Final Ombuds Involvement: _________________ Laboratory or Facility: AMES ANL BNL LBNL INL KCP LANL NREL LLNL NBL NETL PNNL NNSS ORNL PXSO SRNL

287

NREL: Technology Transfer - Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Contacts Here you'll find contact information and resources to help answer any questions you may have about NREL's technology transfer and commercialization opportunities. Agreement for Commercializing Technology For more information about NREL's agreements for commercializing technology, contact Anne Miller, 303-384-7353. Financial and Funding Assistance NREL does not provide financial or funding assistance for any research projects. If you're a startup company, small business, or an inventor, visit the following Web sites: Grants.gov Small Business Administration. Industry Growth Forum Visit the NREL Industry Growth Forum website or contact Kate Cheesbrough for more information about this event. Investors and Entrepreneurs For more information about NREL's Innovation and Entrepreneurship Center,

288

Transfer and Archive Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Management Please remove ALL data from /house! Do you still have data in /house/homedirs? Do you know if you have data in /house/homedirs? Please check now and make a plan for moving that data to the archiver or one of the NERSC file systems (for more information on these filesystems go to File storage and I/O). Moving data from house to DnA The DnA file system is primarily for finished projects, data that is ready to be archived, or data that is shared between groups. It is mounted read-only on the cluster, but you can write to directories on this file system in a few ways: Data Transfer Nodes until December 1, 2013 (examples here) xfer queue on the Genepool cluster until December 1, 2013 (examples here) Moving data from house to Projectb Projectb is where compute jobs run and output both intermediate files as

289

HEAT TRANSFER METHOD  

DOE Patents (OSTI)

A method is given for increasing burn-out heat fluxes under nucleate boiling conditions in heat exchanger tubes without incurring an increase in pumping power requirements. This increase is achieved by utilizing a spinning flow having a rotational velocity sufficient to produce a centrifugal acceleration of at least 10,000 g at the tube wall. At this acceleration the heat-transfer rate at burn out is nearly twice the rate which can be achieved in a similar tube utilizing axial flow at the same pumping power. At higher accelerations the improvement over axial flow is greater, and heat fluxes in excess of 50 x 10/sup 6/ Btu/hr/sq ft can be achieved.

Gambill, W.R.; Greene, N.D.

1960-08-30T23:59:59.000Z

290

Technology transfer 1995  

Science Conference Proceedings (OSTI)

Technology Transfer 1995 is intended to inform the US industrial and academic sectors about the many opportunities they have to form partnerships with the US Department of Energy (DOE) for the mutual advantage of the individual institutions, DOE, and the nation as a whole. It also describes some of the growing number of remarkable achievements resulting from such partnerships. These partnership success stories offer ample evidence that Americans are learning how to work together to secure major benefits for the nation--by combining the technological, scientific, and human resources resident in national laboratories with those in industry and academia. The benefits include more and better jobs for Americans, improved productivity and global competitiveness for technology-based industries, and a more efficient government laboratory system.

Not Available

1995-01-01T23:59:59.000Z

291

Jefferson Lab Technology Transfer - JLab  

Grants and cooperative agreements are entered into solely by the government with a recipient whereby money or property is transferred to the recipient to support ...

292

MOLTEN SALT HEAT TRANSFER FLUID  

thermal energy storage tanks Sandia has developed a heat transfer fluid (HTF) for use at elevated temperatures that has a lower freezing point

293

Handbook of heat transfer fundamentals  

SciTech Connect

This handbook is on the fundamentals of heat transfer. It provides coverage on conduction, convection, and radiation and on thermophysical properties of materials.

Rohsenow, W.M.; Hartnett, J.P.; Ganic, E.N.

1985-01-01T23:59:59.000Z

294

Partnerships and Technology Transfer - ORNL  

Carbon Fiber Consortium; Oak Ridge Science and Technology Park; Contact; Staff; Oak Ridge National Laboratory. Partnerships and Technology Transfer. User Facilities ...

295

NREL: Technology Transfer - Nondisclosure Agreements  

Technology Transfer ... Experience suggests that the fastest means to reach an agreement is through direct communications to create understanding and agree on actions. 1.

296

Technology Transfer | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

by facilitating development, transfer, and use of federally owned or originated technology to industry for public benefit and to leverage DOE resources through partnering with...

297

Electrohydrodynamically enhanced condensation heat transfer.  

E-Print Network (OSTI)

??In a condenser the thickness of the liquid condensate film covering the cooled surface constitutes a resistance to the heat transfer. By establishing a non… (more)

Wawzyniak, Markus

2012-01-01T23:59:59.000Z

298

Ombuds Services for Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

To learn about other Laboratory resources for businesses, please go to: BusinessTech Transfer Small Business Office Community Outreach Procurement, Vendor Information For...

299

Fostering Technology Transfer and Entrepreneurship  

Science Conference Proceedings (OSTI)

... agencies to take steps to enhance successful technology innovation networks ... is one of the partners working with NIST to foster tech transfer and its ...

2013-08-16T23:59:59.000Z

300

Theory of Spin Transfer Torque  

Science Conference Proceedings (OSTI)

... In the phenomenon known as spin transfer torque, a current can give a jolt to thin magnetic layers sandwiched between nonmagnetic materials. ...

2013-06-28T23:59:59.000Z

Note: This page contains sample records for the topic "k-area transfer bay" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

NREL: Technology Transfer Home Page  

The National Renewable Energy Laboratory (NREL) works with industry and organizations to transfer renewable energy and energy efficiency technologies into the ...

302

Partnering Today: Technology Transfer Highlights  

THE LLNL TECHNOLOGY COMPANY PRODUCTS Partnering Today: Technology Transfer Highlights 10 Ametek-Ortec: High-precision Radiation Detectors ORTEC, a unit of AMETEK, is ...

303

Urban Sewage Delivery Heat Transfer System (2): Heat Transfer  

E-Print Network (OSTI)

The thimble delivery heat-transfer (TDHT) system is one of the primary modes to utilize the energy of urban sewage. Using the efficiency-number of transfer units method ( ), the heat-transfer efficiencies of the parallel-flow and reverse-flow TDTH forms are analyzed and the calculation formulas and characteristic are also given. The results indicate that the efficiency of the parallel-flow form is greater than that of the reverse-flow, so the TDTH system must choose the parallel-flow form. The distance-load ratio (DLR) is defined and the minimum DLR is obtained by the technical and economic feasibility analysis. The paper will provide references for heat-transfer calculation and schematic determination of urban sewage cool or heat source applied delivery heat transfer methods.

Zhang, C.; Wu, R.; Li, X.; Li, G.; Zhuang, Z.; Sun, D.

2006-01-01T23:59:59.000Z

304

Trace metal contamination of waters, sediments, and organisms of the Swan Lake area of Galveston Bay  

E-Print Network (OSTI)

Swan Lake is a sub-bay of the Galveston Bay system. The area received runoff from a tin smelter via the Wah Chang Ditch which ran through it in the past but the ditch is now cut off by a hurricane protection levee. An industrial waste disposal facility (Gulf Coast Waste Disposal Authority) is located north of the Wah Chang Ditch. Consequently there have been concerns about possible metal contamination in this area. I determined trace metal concentrations in water, sediments, and organisms (oyster, mussel, snail, crab, fish, shrimp, and spartina) in the area. Sediments and organisms were analyzed for total Ag, Al, As, Cd, Cu, Fe, Hg, Mn, Ni, Pb, Se, Sn, and Zn. Water samples were analyzed for Cd, Cu, Fe, Mn, and Sn. The variabilities and geographic trends in sediment trace metals indicated that waste disposal and airborne inputs from facilities located at the Tex Tin site were likely sources for metal pollution found in the sediments. Sediments in the study area showed elevated trace metals relative to Galveston Bay and other Texas bay sediments. Three different samplings of the Wah Chang Ditch showed no temporal patterns in metal distribution in the sediments. Lead especially was uniformly high on the three different trips, respectively averaging 1250 (Trip 1), 893 (Trip H), and 1350 ppm (Trip V). Metal enrichments at depth in the sediment column indicated that the Swan Lake area has recently received less input of metal contaminated sediment than in the past. Anthropogenic inputs did not greatly influence the natural concentrations of Fe, Al, and Ni in sediments either in the past or at present. Most organisms showed very small spatial variations. However, the oysters in Swan Lake are enriched in most metals relative to Galveston Bay and other U. S. Gulf of Mexico oysters. The mussels in this study do not reflect the unusually elevated environmental metal concentration in the sediments from which they were taken. Iron and Pb concentrations in oysters seemed to be directly related to sediment concentrations at each location. Oysters show higher concentrations in most metals than those in mussels. The Zn level was II 3 times higher in oysters. For organisms collected from the Swan Lake area trace metal concentrations were generally in the order oysters > snail > crab > shrimp > fish. Metal concentrations in Wah Chang Ditch water were very elevated relative to those of the Brazos River and Galveston Bay and closely reflect those in sediments of the Wah Chang Ditch.

Park, Junesoo

1995-01-01T23:59:59.000Z

305

Application of the Weather Research and Forecasting Model for Air Quality Modeling in the San Francisco Bay Area  

Science Conference Proceedings (OSTI)

The Weather Research and Forecasting (WRF) model is evaluated by conducting various sensitivity experiments over central California including the San Francisco Bay Area (SFBA), with the goal of establishing a WRF model configuration to be used by ...

Raphael E. Rogers; Aijun Deng; David R. Stauffer; Brian J. Gaudet; Yiqin Jia; Su-Tzai Soong; Saffet Tanrikulu

2013-09-01T23:59:59.000Z

306

Air Pollution Impacts of Shifting San Pedro Bay Ports Freight from Truck to Rail in Southern California  

E-Print Network (OSTI)

Angeles. San Pedro Bay Ports Rail study update. 7. The Portnear-dock and off-dock rail yard locations. ACKNOWLEDGEMENTSThe Port of Long Beach. Rail Master Planning study. 2002.

You, Soyoung Iris; Lee, Gunwoo; Ritchie, Stephen G.; Saphores, Jean-Daniel; Sangkapichai, Mana; Ayala, Roberto

2010-01-01T23:59:59.000Z

307

The effect of anthropogenic development on sediment loading to bays on St. John, U.S. Virgin Islands  

E-Print Network (OSTI)

In order to assess the impact of anthropogenic development on sediment delivery rates to bays on St. John, U.S.V.I., I developed a sediment loading prediction model. Based on the modified universal soil loss equation, this ...

McCreery, Helen F

2007-01-01T23:59:59.000Z

308

Application of the Weather Research and Forecasting Model for Air Quality Modeling in the San Francisco Bay Area  

Science Conference Proceedings (OSTI)

The Weather Research and Forecasting (WRF) model is evaluated by conducting various sensitivity experiments over central California (CA) including the San Francisco Bay Area (SFBA), with the goal of establishing a WRF model configuration to be ...

Raphael E. Rogers; Aijun Deng; David R. Stauffer; Brian J. Gaudet; Yiqin Jia; Su-Tzai Soong; Saffet Tanrikulu

309

Wind, sea ice, inertial oscillations and upper ocean mixing in Marguerite Bay, Western Antarctic Peninsula : observations and modeling  

E-Print Network (OSTI)

Two years of moored oceanographic and automatic weather station data which span the winter ice seasons of 2001-2003 within Marguerite Bay on the western Antarctic Peninsula (wAP) shelf were collected as part of the Southern ...

Hyatt, Jason

2006-01-01T23:59:59.000Z

310

Aircraft Regional-Scale Flux Measurements over Complex Landscapes of Mangroves, Desert, and Marine Ecosystems of Magdalena Bay, Mexico  

Science Conference Proceedings (OSTI)

Natural ecosystems are rarely structurally simple or functionally homogeneous. This is true for the complex coastal region of Magdalena Bay, Baja California Sur, Mexico, where the spatial variability in ecosystem fluxes from the Pacific coastal ...

Rommel C. Zulueta; Walter C. Oechel; Joseph G. Verfaillie; Steven J. Hastings; Beniamino Gioli; William T. Lawrence; Kyaw Tha Paw U

2013-07-01T23:59:59.000Z

311

Cooper pair transfer in nuclei  

E-Print Network (OSTI)

The second order DWBA implementation of two-particle transfer direct reactions which includes simultaneous and successive transfer, properly corrected by non-orthogonality effects is tested with the help of controlled nuclear structure and reaction inputs against data spanning the whole mass table, and showed to constitute a quantitative probe of nuclear pairing correlations.

G. Potel; A. Idini; F. Barranco; E. Vigezzi; R. A. Broglia

2013-04-09T23:59:59.000Z

312

The boxer, the wrestler, and the coin flip: A paradox of Bayesian inference, robust Bayes, and belief functions  

E-Print Network (OSTI)

Bayesian inference requires all unknowns to be represented by probability distributions, which awkwardly implies that the probability of an event for which we are completely ignorant (e.g., that the world’s greatest boxer would defeat the world’s greatest wrestler) must be assigned a particular numerical value such as 1/2, as if it were known as precisely as the probability of a truly random event (e.g., a coin flip). Robust Bayes and belief functions are two methods that have been proposed to distinguish ignorance and randomness. In robust Bayes, a parameter can be restricted to a range, but without a prior distribution, yielding a range of potential posterior inferences. In belief functions (also known as the Dempster-Shafer theory), probability mass can be assigned to subsets of parameter space, so that randomness is represented by the probability distribution and uncertainty is represented by large subsets, within which the model does not attempt to assign probabilities. Through a simple example involving a coin flip and a boxing/wrestling match, we illustrate difficulties with pure Bayes, robust Bayes, and belief functions. In short: pure Bayes does not distinguish ignorance and randomness; robust Bayes allows ignorance to spread too broadly, and belief functions inappropriately collapse to simple Bayesian models.

Andrew Gelman

2005-01-01T23:59:59.000Z

313

Argonne TDC: Material Transfer Agreements  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Transfer Agreements Material Transfer Agreements Materials produced by researchers at Argonne National Laboratory are often of interest to the private sector. Depending on the circumstances under which the material was developed, such material may be transferred to industry for a number of reasons (e.g., testing, feasibility studies, etc.). This transfer is usually temporary and can initiate a more formal working arrangement. At this time, TDC, in conjunction with Argonne's Legal Department, provides such agreements on an as-needed basis. If you would like to acquire material produced by Argonne researchers during the course of a federally funded research project, please contact TDC or fill out a Material Transfer Agreement request form. Printed or electronically downloaded copies may become obsolete. Before using such a copy for work direction, employees must verify that it is current by comparing its revision number with that of the online version. Obsolete forms will be rejected.

314

Selby-on-the-Bay, Maryland: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Selby-on-the-Bay, Maryland: Energy Resources Selby-on-the-Bay, Maryland: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.9162245°, -76.52246° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9162245,"lon":-76.52246,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

315

Green Bay TEC Meeting -- Tribal Group Summary 10-26-06  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Bay, Wisconsin - September 14, 2006 Green Bay, Wisconsin - September 14, 2006 Session Chaired by: Jay Jones, DOE, Office of Civilian Radioactive Waste Management, OCRWM Regular Members in Attendance: Sandra Alexander (Confederated Tribes of the Umatilla Indian Reservation, CTUIR); Kenny Anderson, Las Vegas Paiute Tribe; Richard Arnold, Las Vegas Indian Center/Pahrump Paiute Tribe); Kevin Tafoya, Santa Clara Pueblo; Christina Nelson, National Conference of State Legislatures; Ed Gonzales, ELG Engineering/Pueblo de San Ildefonso; Judith Holm, OCRWM; Marsha Keister, Idaho National Laboratory; Joe Kennedy, Timbisha Shoshone Tribe; Daniel King, Oneida Nation of Wisconsin; Sue Loudner, Pueblo of Acoma; Bob Lupton, DOE Yucca Mountain Project; Corinne Macaluso, OCRWM; Kevin Mariano, Pueblo of Acoma; Calvin Meyers, Moapa

316

Fishery Resources Theodore R. Merrell, Jr. Northwest Fisheries Center, Auke Bay Fisheries  

Office of Legacy Management (LM)

Fishery Resources Theodore R. Merrell, Jr. Fishery Resources Theodore R. Merrell, Jr. Northwest Fisheries Center, Auke Bay Fisheries of the ~ a b o r a t o r y , National ~ a r i n e Fisheries Sewice, National Ocear~ic and Atmospl~eric Administration, Vestern Aleutians Auke Bay, Alaska Tlte fishery resources in the zuestent Aleutian Islnnds are diverse, nbtrnrlant, nrid heavily exploited, primarily by Japanese nnd Soviet fishermen. Seven groups make u p the bulk of the crcrrent catch: snlmo~t (sockeye, chum, and pink), king crabs, Pacific hnlibut, Pncific ocean perch, sablefish, wnlleye pollock, mid Pacific cod. Three species of whales (syenn, fin, and sei) are also caplared. Tlre marine enuironmerrt is highly prodirctiue and is relaliuely trn- nffecterl by ,,ton's activities otlter f h a i ~ fishing. Prospects for co,ttinaed or espanded fishery ltnruesls

317

MHK Projects/Willapa Bay Tidal Power Project | Open Energy Information  

Open Energy Info (EERE)

Willapa Bay Tidal Power Project Willapa Bay Tidal Power Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.7161,"lon":-124.038,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

318

EIA Report 8/10/06 - Alaska's Prudhoe Bay Crude Oil Pipeline Shutdown  

Gasoline and Diesel Fuel Update (EIA)

Alaska Prudhoe Bay Crude Oil Shut-in Alaska Prudhoe Bay Crude Oil Shut-in Facts and Impacts on the U.S. Oil Markets As of Thursday, August 10, 10:00 am Background on Alaska Crude Production and Transport Alaska ranks second, after Texas, among the States in crude oil reserves. On December 31, 2004, Alaska's proved reserves totaled 4,327 million barrels. Although Alaska's production declined from 2 million barrels per day (bbl/d) in 1988 to 864,000 bbl/d in 2005, it is still the second largest oil producing State when Federal offshore production is excluded. Alaskan Production Graph of US Crude Oil Production figure data The Trans-Alaska Pipeline Systems (TAPS) connects the North Slope oil fields with the Port of Valdez in southern Alaska. From Valdez, crude oil is shipped primarily to refineries located on the U.S. West Coast.

319

MHK Projects/Makah Bay Offshore Wave Pilot Project | Open Energy  

Open Energy Info (EERE)

Makah Bay Offshore Wave Pilot Project Makah Bay Offshore Wave Pilot Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.3238,"lon":-124.682,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

320

MHK Projects/Minas Basin Bay of Fundy Commercial Scale Demonstration | Open  

Open Energy Info (EERE)

Minas Basin Bay of Fundy Commercial Scale Demonstration Minas Basin Bay of Fundy Commercial Scale Demonstration < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.3658,"lon":-64.4294,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "k-area transfer bay" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

MHK Projects/Ocean Energy Galway Bay IE | Open Energy Information  

Open Energy Info (EERE)

Galway Bay IE Galway Bay IE < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.1879,"lon":-9.18125,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

322

FEMP ESPC Success Story - U.S. Naval Station, Guantanamo Bay, Cuba  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a m a m ESPC Success Stories Environmental Stewardship and Cost Savings These photographs chronicle the installation of the wind turbines at John Paul Jones Hill, Guantanamo Bay. The four wind turbine towers are about 185 feet high. The blade lengths are 90 feet. The top of the blades are about 275 feet off the g round. The blades rotate at a maximum of 22 RPM, or a rotation every three seconds. This translates to a blade tip speed of 140 mph. During construction there were as many as 20 workers on the project. However, operating the wind turbines will only take one part-time staff-person who will check on them daily. Photos courtesy of: Jeffrey M. Johnston, Public Works Officer, Guantanamo Bay; Paul DelSignore, NFESC; Daniel Ingold, NORESCO. U.S. NAVAL STATION

323

MHK Projects/OpenHydro Bay of Fundy Nova Scotia CA | Open Energy  

Open Energy Info (EERE)

Bay of Fundy Nova Scotia CA Bay of Fundy Nova Scotia CA < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.7728,"lon":-66.3096,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

324

MHK Projects/Coos Bay OPT Wave Park | Open Energy Information  

Open Energy Info (EERE)

Coos Bay OPT Wave Park Coos Bay OPT Wave Park < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.3664,"lon":-124.218,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

325

Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Targeting Net Zero Energy at Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations K. Burman, A. Kandt, L. Lisell, S. Booth, A. Walker, J. Roberts and J. Falcey Technical Report NREL/ TP-7A40-52897 November 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations K. Burman, A. Kandt, L. Lisell, S. Booth, A. Walker, J. Roberts and J. Falcey Prepared under Task No. IDHW.9180

326

California South/West Bay Area Regional Middle School Science Bowl  

Office of Science (SC) Website

California South/West California South/West Bay Area Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions California South/West Bay Area Regional Middle School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Ray Ng Email: RayNg97@gmail.com Regional Event Information Date: Saturday, March 8, 2014

327

MHK Projects/Kachemak Bay Tidal Energy Project | Open Energy Information  

Open Energy Info (EERE)

Kachemak Bay Tidal Energy Project Kachemak Bay Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.3378,"lon":-151.875,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

328

MHK Projects/General Sullivan and Little Bay BRI | Open Energy Information  

Open Energy Info (EERE)

General Sullivan and Little Bay BRI General Sullivan and Little Bay BRI < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.1055,"lon":-70.7912,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

329

MHK Projects/San Francisco Bay Tidal Energy Project | Open Energy  

Open Energy Info (EERE)

Francisco Bay Tidal Energy Project Francisco Bay Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.691,"lon":-122.311,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

330

The Daya Bay Antineutrino Detector Filling System and Liquid Mass Measurement  

E-Print Network (OSTI)

The Daya Bay Reactor Neutrino Experiment has measured the neutrino mixing angle \\theta_{13} to world-leading precision. The experiment uses eight antineutrino detectors filled with 20-tons of gadolinium-doped liquid scintillator to detect antineutrinos emitted from the Daya Bay nuclear power plant through the inverse beta decay reaction. The precision measurement of sin^{2}2\\theta_{13} relies on the relative antineutrino interaction rates between detectors at near (400 m) and far (roughly 1.8 km) distances from the nuclear reactors. The measured interaction rate in each detector is directly proportional to the number of protons in the liquid scintillator target. A precision detector filling system was developed to simultaneously fill the three liquid zones of the antineutrino detectors and measure the relative target mass between detectors to <0.02%. This paper describes the design, operation, and performance of the system and the resulting precision measurement of the detectors' target liquid masses.

H. R. Band; J. J. Cherwinka; E. Draeger; K. M. Heeger; P. Hinrichs; C. A. Lewis; H. Mattison; M. C. McFarlane; D. M. Webber; D. Wenman; W. Wang; T. Wise; Q. Xiao

2013-07-03T23:59:59.000Z

331

Successful Application of Heat Pumps to a DHC System in the Tokyo Bay Area  

E-Print Network (OSTI)

The Harumi-Island District Heating & Cooling (DHC), which is located in the Tokyo Bay area, introduced the heat pump and thermal storage system with the aim of achieving minimum energy consumption, minimum environmental load, and maximum economical efficiency. It started operating in 2001, achieving high efficiency and a large amount of reduction of greenhouse gas emission, as well as low heat-charge. The system performance was verified by the continued commissioning of the system.

Yanagihara, R.; Okagaki, A.

2006-01-01T23:59:59.000Z

332

Observations of Fallout from the Fukushima Reactor Accident in San Francisco Bay Area Rainwater  

E-Print Network (OSTI)

We have observed fallout from the recent Fukushima Dai-ichi reactor accident in samples of rainwater collected in the San Francisco Bay area. Gamma ray spectra measured from these samples show clear evidence of fission products - 131,132I, 132Te, and 134,137Cs. The activity levels we have measured for these isotopes are very low and pose no health risk to the public.

Norman, Eric B; Chodash, Perry A

2011-01-01T23:59:59.000Z

333

Observations of Fallout from the Fukushima Reactor Accident in San Francisco Bay Area Rainwater  

E-Print Network (OSTI)

We have observed fallout from the recent Fukushima Dai-ichi reactor accident in samples of rainwater collected in the San Francisco Bay area. Gamma ray spectra measured from these samples show clear evidence of fission products – 131,132 I, 132 Te, and 134,137 Cs. The activity levels we have measured for these isotopes are very low and pose no health risk to the public.

Eric B. Norman; Christopher T. Angell; Perry A. Chodash

2011-01-01T23:59:59.000Z

334

Observations of Fallout from the Fukushima Reactor Accident in San Francisco Bay Area Rainwater  

E-Print Network (OSTI)

We have observed fallout from the recent Fukushima Dai-ichi reactor accident in samples of rainwater collected in the San Francisco Bay area. Gamma ray spectra measured from these samples show clear evidence of fission products - 131,132I, 132Te, and 134,137Cs. The activity levels we have measured for these isotopes are very low and pose no health risk to the public.

Eric B. Norman; Christopher T. Angell; Perry A. Chodash

2011-03-30T23:59:59.000Z

335

Bay Ridge Gardens - Mixed-Humid Affordable Multifamily Housing Deep Energy Retrofit  

SciTech Connect

Under this project, Newport Partners (as part of the BA-PIRC research team) evaluated the installation, measured performance, and cost-effectiveness of efficiency upgrade measures for a tenant-in-place DER at the Bay Ridge multifamily (MF) development in Annapolis, Maryland. The design and construction phase of the Bay Ridge project was completed in August 2012. This report summarizes system commissioning, short-term test results, utility bill data analysis, and analysis of real-time data collected over a one-year period after the retrofit was complete. The Bay Ridge project is comprised of a 'base scope' retrofit which was estimated to achieve a 30%+ savings (relative to pre-retrofit) on 186 apartments, and a 'DER scope' which was estimated to achieve 50% savings (relative to pre-retrofit) on a 12-unit building. The base scope was applied to the entire apartment complex, except for one 12-unit building which underwent the DER scope. A wide range of efficiency measures was applied to pursue this savings target for the DER building, including improvements/replacements of mechanical equipment and distribution systems, appliances, lighting and lighting controls, the building envelope, hot water conservation measures, and resident education. The results of this research build upon the current body of knowledge of multifamily retrofits. Towards this end, the research team has collected and generated data on the selection of measures, their estimated performance, their measured performance, and risk factors and their impact on potential measures.

Lyons, J.; Moore, M.; Thompson, M.

2013-08-01T23:59:59.000Z

336

Determination of benzo(a)pyrene, hexachlorobenzene and pentachlorophenol in oysters from Galveston Bay, Texas. [None  

SciTech Connect

Intensive development of industrial plants located along the Houston Ship Channel is a major potential source of refractory organic contaminants to the Galveston Bay estuarine system. Petroleum production and shipping also contribute extensively to the pollutant load of the Bay. For example, previous workers have reported that oyster samples collected at the lower end of the Houston Ship Channel, particularly Morgan's Point, consistently revealed high levels (130 to 240 ppM) of petroleum hydrocarbons. As bivalves have been suggested as potentially valuable sentinel organisms for indicating levels of pollutants in coastal marine waters, this study was undertaken to analyze oysters from Galveston Bay for selected pollutants. Three compounds, each representing a particular class of organic pollutant, were selected for determination in oysters (Crassostrea virginica) collected near Morgan's Point. These were benzo(a)pyrene (polycyclic aromatic hydrocarbon), hexachlorobenzene (polycholoroaromatic hydrocarbon), and pentachlorophenol (chlorinated phenol). These compounds were selected because of their large annual production, patterns of use and disposal which favor their entry into the oceans, high toxicity, and persistence in the environment.

Murray, H.E.; Neff, G.S.; Hrung, Y.; Giam, C.S.

1980-10-01T23:59:59.000Z

337

Prospects for Money Transfer Models  

E-Print Network (OSTI)

Summary. Recently, in order to explore the mechanism behind wealth or income distribution, several models have been proposed by applying principles of statistical mechanics. These models share some characteristics, such as consisting of a group of individual agents, a pile of money and a specific trading rule. Whatever the trading rule is, the most noteworthy fact is that money is always transferred from one agent to another in the transferring process. So we call them money transfer models. Besides explaining income and wealth distributions, money transfer models can also be applied to other disciplines. In this paper we summarize these areas as statistical distribution, economic mobility, transfer rate and money creation. First, money distribution (or income distribution) can be exhibited by recording the money stock (flow). Second, the economic mobility can be shown by tracing the change in wealth or income over time for each agent. Third, the transfer rate of money and its determinants can be analyzed by tracing the transferring process of each one unit of money. Finally, money creation process can also be investigated by permitting agents go into debts. Some future extensions to these models are anticipated to be structural improvement and generalized mathematical analysis.

Yougui Wang; Ning Ding; Ning Xi

2005-01-01T23:59:59.000Z

338

NREL: Technology Transfer Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Transfer Technology Transfer Search More Search Options Site Map The National Renewable Energy Laboratory (NREL) works with industry and organizations to transfer renewable energy and energy efficiency technologies into the marketplace. Working with Us We offer many opportunities and ways for you to partner with us. Learn more about our technology partnership agreements and services: Agreements for Commercializing Technology Cooperative Research and Development Agreements Technologies Available for Licensing Technology Partnerships Work for Others Research Facilities NREL follows its principles for establishing mutually beneficial technology partnerships. Through our commercialization programs, we work to stimulate the market for clean energy technologies and foster the growth of clean energy start-ups.

339

Engineering directed excitonic energy transfer  

E-Print Network (OSTI)

We provide an intuitive platform for engineering exciton transfer dynamics. We show that careful consideration of the spectral density, which describes the system-bath interaction, leads to opportunities to engineer the transfer of an exciton. Since excitons in nanostructures are proposed for use in quantum information processing and artificial photosynthetic designs, our approach paves the way for engineering a wide range of desired exciton dynamics. We carefully describe the validity of the model and use experimentally relevant material parameters to show counter-intuitive examples of a directed exciton transfer in a linear chain of quantum dots.

Perdomo, Alejandro

2010-01-01T23:59:59.000Z

340

Education Program for Improved Water Quality in Copano Bay Final Report  

E-Print Network (OSTI)

The Copano Bay watershed covers approximately 1.4 million acres encompassing portions of Karnes, Bee, Goliad, Refugio, San Patricio and Aransas counties. Copano Bay and its main tributaries, the Mission and Aransas rivers, were placed on the Texas Commission on Environmental Quality (TCEQ) 303(d) list in 1998 due to levels of bacteria that exceed water quality standards established to protect oyster waters use. A Total Maximum Daily Load (TMDL) program was initiated in September 2003 to identify and assess sources of these bacteria. The Center for Research in Water Resources at the University of Texas at Austin (UT CRWR) was funded by TCEQ to conduct computer-based modeling to determine the bacterial loading and reductions necessary to attain water quality standards. Subsequently Texas A&M University-Corpus Christi (TAMU-CC) conducted bacterial source tracking (BST) with funding from Texas General Land Office (TGLO) and the Coastal Bend Bays and Estuaries Program (CBBEP) to determine actual sources of bacteria. Due to the findings of the initial efforts of the TMDL and concerns voiced by stakeholders in the watershed, Texas AgriLife Extension Service was awarded a Clean Water Act § 319(h) Nonpoint Source Grant from the Texas State Soil and Water Conservation Board (TSSWCB) and the U.S. Environmental Protection Agency. The overall goal of this project was to improve water quality in Copano Bay and its tributaries by increasing awareness of water quality issues throughout the watershed. This increased awareness was to be accomplished by providing education and demonstrations for land and livestock owners in the watershed on best management practices (BMPs) to decrease or prevent bacteria from entering waterways. Through creation of a project website, 52 educational programs, and nine one-on-one consultations over the span of the project, we have reached 5,408 residents in and around the Copano Bay watershed. Additionally, through this project all data collected for the initial TMDL efforts was re-evaluated and findings were presented in the “Task 2 Report.” Project members developed a curriculum for horse owners, “A Guide to Good Horsekeeping” that addressed BMPs specific to horse operations. Land and livestock owners who had already implemented BMPs or were interested in implementing BMPs were given a participation certificate.

Berthold, A.; Moench, E.; Wagner, K.; Paschal, J.

2012-05-17T23:59:59.000Z

Note: This page contains sample records for the topic "k-area transfer bay" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Predicting the behavior of nearshore feeder berms in the vicinity of Morro Bay, California  

E-Print Network (OSTI)

Being able to predict the final disposition of dredged material mounds is important in the planning of dredging operations. A computerized mathematical model, based on the sediment movement equations of Ackers and White, has been developed by the US Army Corps of Engineers. The model, called Long Term FATE (LTFATE), is a useful tool for making such predictions. The primary objective of this study is to compare the output from LTFATE with the actual movement of dredged material placement mounds placed in the vicinity of Morro Bay, CA in 1990. The secondary objective is to determine a mound shape that would provide the greatest benefit as a feeder berm, causing accretion on the nearby beach. The channel to the harbor at Morro Bay must be dredged on a regular basis, and the dredged material has historically been placed in a high-energy, nearshore area approximately 3 km (1.9 m) from the channel, and 200 m (650 ft) offshore of the MLW line. LTFATE was calibrated by being applied to two geometrically regularly shaped mounds: a cone, 200 m (660 ft) in diameter, and a log-shaped berm, 200 m (660 ft) x 400 m (1310 ft). These mounds were placed on a flat seabed. The model inputs were environmental variables measured during a study at Morro Bay in 1990. The Advanced Ocean Circulation Model ADCIRC was used to generate the wave heights and water levels. The model was then applied to the bathymetry of the mounds placed at Morro Bay, and the output compared to that measured at the site at the end of a five-month study. The mound movement predicted by the model differs from that shown by the final bathymetric study at Morro Bay, both in change of mound height and displacement of mound center of mass. Several reasons for these differences are given in the study. It is also shown that of the three mound configurations, for a given set of parameters, the log-shaped berm has the greatest horizontal displacement, indicating that if placed normal to the prevailing current and the shoreline, it would provide the greatest amount of sediment to accrete an adjacent beach.

Simon, Peter Arthur

2000-01-01T23:59:59.000Z

342

Heat and moisture transfer through clothing  

E-Print Network (OSTI)

R. C. Eberhart (ed), Heat transfer in medicine and biology.Convective and radiative heat transfer coefficients for2008. Study of heat and moisture transfer within multi-layer

Voelker, Conrad; Hoffmann, Sabine; Kornadt, Oliver; Arens, Edward; Zhang, Hui; Huizenga, Charlie

2009-01-01T23:59:59.000Z

343

Los Alamos Lab: Technology Transfer | Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Phone 505-665-9090 Address 2237 Trinity Dr., Bldg. 1 TA-00, Bldg. 1325 Map to TT (pdf) Tech Transfer Ombuds Technology Transfer The Laboratory's Technology Transfer Division...

344

Data Transfer Nodes Yield Results!  

NLE Websites -- All DOE Office Websites (Extended Search)

DTN DTN Data Transfer Nodes Yield Results August 1, 2011 | Tags: Accelerator Science, Data Transfer, ESnet Linda Vu, +1 510 495 2402, lvu@lbl.gov The ability to reliably move and share data around the globe is essential to scientific collaboration, that's why three Department of Energy (DOE) Scientific Computing Centers-Argonne and Oak Ridge Leadership Computing Facilities, and the National Energy Research Scientific Computing Center (NERSC)-have teamed up to focus on optimizing wide area network (WAN) transfers. This ongoing effort began several years ago when each site deployed dedicated transfer nodes (DTNs), optimized for carrying data between the DOE facilities. Today, engineers from each site continue to meet regularly with DOE's Energy Sciences Network staff (ESnet) to develop strategies

345

Contact NETL Technology Transfer Group  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL Technology Transfer Group techtransfer@netl.doe.gov May 2012 Significance * Applicable to subcritical and supercritical air-fired boiler designs * Eliminates the need to mimic air-fired heat transfer characteristics in order to meet existing dry steam load demands * Reduces retrofit complexity, time, and cost Applications * Retrofitting of conventional air-fired boilers Opportunity Research is active on the patent-pending technology, titled "Temperature

346

Method Of Transferring Strained Semiconductor Structures  

NLE Websites -- All DOE Office Websites (Extended Search)

Of Transferring Strained Semiconductor Structures Of Transferring Strained Semiconductor Structures Method Of Transferring Strained Semiconductor Structures The transfer of strained semiconductor layers from one substrate to another substrate involves depositing a multilayer structure on a substrate having surface contaminants. June 25, 2013 Method Of Transferring Strained Semiconductor Structures The transfer of strained semiconductor layers from one substrate to another substrate involves depositing a multilayer structure on a substrate having surface contaminants. Available for thumbnail of Feynman Center (505) 665-9090 Email Method Of Transferring Strained Semiconductor Structures The transfer of strained semiconductor layers from one substrate to another substrate involves depositing a multilayer structure on a substrate having

347

Smart Lawrence Berkeley National Laboratory Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

From Berkeley Lab to the Marketplace Smart Lawrence Berkeley National Laboratory Technology Transfer with Partner Lawrence Berkeley National Laboratory Technology Transfer at...

348

NREL: Technology Transfer - Webmaster - National Renewable ...  

National Renewable Energy Laboratory Technology Transfer Webmaster. To report any problems on or ask a question about the NREL Technology Transfer Web ...

349

Technology Transfer Commercialization Act of 2000 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Transfer Commercialization Act of 2000 Technology Transfer Commercialization Act of 2000 PUBLIC LAW 106-404-NOV. 1, 2000 To improve the ability of Federal agencies to...

350

Heat Transfer Enhancement in Thermoelectric Power Generation.  

E-Print Network (OSTI)

??Heat transfer plays an important role in thermoelectric (TE) power generation because the higher the heat-transfer rate from the hot to the cold side of… (more)

Hu, Shih-yung

2009-01-01T23:59:59.000Z

351

Fermilab | Office of Partnerships and Technology Transfer ...  

Quantum Diaries; Office of Partnerships and Technology Transfer. Feature. Tech Transfer at Fermilab. In an effort to fuel the economy and foster ...

352

Technology_Transfer_Memo.pdf | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TechnologyTransferMemo.pdf TechnologyTransferMemo.pdf TechnologyTransferMemo.pdf More Documents & Publications PolicyStatementonTechnologyTransfer.pdf...

353

Comments on ORNL Tech transfer.txt - Notepad | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

on ORNL Tech transfer.txt - Notepad Comments on ORNL Tech transfer.txt - Notepad Comments on ORNL Tech transfer.txt - Notepad More Documents & Publications TECHNOLOGY TRANSFER...

354

Canister Transfer System Description Document  

SciTech Connect

The Canister Transfer System receives transportation casks containing large and small disposable canisters, unloads the canisters from the casks, stores the canisters as required, loads them into disposal containers (DCs), and prepares the empty casks for re-shipment. Cask unloading begins with cask inspection, sampling, and lid bolt removal operations. The cask lids are removed and the canisters are unloaded. Small canisters are loaded directly into a DC, or are stored until enough canisters are available to fill a DC. Large canisters are loaded directly into a DC. Transportation casks and related components are decontaminated as required, and empty casks are prepared for re-shipment. One independent, remotely operated canister transfer line is provided in the Waste Handling Building System. The canister transfer line consists of a Cask Transport System, Cask Preparation System, Canister Handling System, Disposal Container Transport System, an off-normal canister handling cell with a transfer tunnel connecting the two cells, and Control and Tracking System. The Canister Transfer System operating sequence begins with moving transportation casks to the cask preparation area with the Cask Transport System. The Cask Preparation System prepares the cask for unloading and consists of cask preparation manipulator, cask inspection and sampling equipment, and decontamination equipment. The Canister Handling System unloads the canister(s) and places them into a DC. Handling equipment consists of a bridge crane/hoist, DC loading manipulator, lifting fixtures, and small canister staging racks. Once the cask has been unloaded, the Cask Preparation System decontaminates the cask exterior and returns it to the Carrier/Cask Handling System via the Cask Transport System. After the DC is fully loaded, the Disposal Container Transport System moves the DC to the Disposal Container Handling System for welding. To handle off-normal canisters, a separate off-normal canister handling cell is located adjacent to the canister transfer cell and is interconnected to the transfer cell by means of the off-normal canister transfer tunnel. All canister transfer operations are controlled by the Control and Tracking System. The system interfaces with the Carrier/Cask Handling System for incoming and outgoing transportation casks. The system also interfaces with the Disposal Container Handling System, which prepares the DC for loading and subsequently seals the loaded DC. The system support interfaces are the Waste Handling Building System and other internal Waste Handling Building (WHB) support systems.

NONE

2000-10-12T23:59:59.000Z

355

Polarisation Transfer in Proton Compton Scattering at High Momentum Transfer  

DOE Green Energy (OSTI)

The Jefferson Lab Hall A experiment E99-114 comprised a series of measurements to explore proton Compton scattering at high momentum transfer. For the first time, the polarisation transfer observables in the p (~ 0 ~ p) reaction were measured in the GeV energy range, where it is believed that quark-gluon degrees of freedom begin to dominate. The experiment utilised a circularly polarised photon beam incident on a liquid hydrogen target, with the scattered photon and recoil proton detected in a lead-glass calorimeter and a magnetic spectrometer, respectively.

David Hamilton

2004-12-31T23:59:59.000Z

356

Final Project Report, Bristol Bay Native Corporation Wind and Hydroelectric Feasibility Study  

DOE Green Energy (OSTI)

The Bristol Bay Native Corporation (BBNC) grant project focused on conducting nine wind resource studies in eight communities in the Bristol Bay region of southwest Alaska and was administered as a collaborative effort between BBNC, the Alaska Energy Authority, Alaska Village Electric Cooperative, Nushagak Electric Cooperative (NEC), Naknek Electric Association (NEA), and several individual village utilities in the region. BBNC’s technical contact and the project manager for this study was Douglas Vaught, P.E., of V3 Energy, LLC, in Eagle River, Alaska. The Bristol Bay region of Alaska is comprised of 29 communities ranging in size from the hub community of Dillingham with a population of approximately 3,000 people, to a few Native Alaska villages that have a few tens of residents. Communities chosen for inclusion in this project were Dillingham, Naknek, Togiak, New Stuyahok, Kokhanok, Perryville, Clark’s Point, and Koliganek. Selection criteria for conduction of wind resource assessments in these communities included population and commercial activity, utility interest, predicted Class 3 or better wind resource, absence of other sources of renewable energy, and geographical coverage of the region. Beginning with the first meteorological tower installation in October 2003, wind resource studies were completed at all sites with at least one year, and as much as two and a half years, of data. In general, the study results are very promising for wind power development in the region with Class 6 winds measured in Kokhanok; Class 4 winds in New Stuyahok, Clark’s Point, and Koliganek; Class 3 winds in Dillingham, Naknek, and Togiak; and Class 2 winds in Perryville. Measured annual average wind speeds and wind power densities at the 30 meter level varied from a high of 7.87 meters per second and 702 watts per square meter in Kokhanok (Class 6 winds), to a low of 4.60 meters per second and 185 watts per square meter in Perryville (Class 2 winds).

Vaught, Douglas J.

2007-03-31T23:59:59.000Z

357

Results of the first two seasons of underwater surveys at Episkopi Bay and Akrotiri, Cyprus  

E-Print Network (OSTI)

During the summers of 2003 and 2004, a small team of graduate students initiated an underwater archaeological survey off the coast of Cyprus as part of the University of Cincinnati excavations at Episkopi-Bamboula. With the support of the Institute of Nautical Archaeology (INA) at Texas A&M University and RPM Nautical Foundation, the project explored the seabed south and west of the Akrotiri Peninsula at Episkopi Bay. The overall aim of this ongoing diachronic survey is to determine the extent and nature of maritime contacts at Episkopi-Bamboula and its Greco-Roman successor, Kourion, from the Bronze Age through the Byzantine period. Efforts during these first two seasons concentrated on simple visual inspection of several promising areas near dangerous cliffs, offshore rocks and shallow reefs, as well as potential harbors and anchorages. The team recorded substantial pottery and anchor assemblages at Dreamer?s Bay, Cape Zevgari, and Avdimou Bay, including at least three shipwreck sites. Throughout the area, amphoras and anchors attest to varying levels of maritime activity over the past three millennia.The underwater material record reveals a modest level of Classical trade, followed by a respectable increase during the Hellenistic era. While very little material thus far can be attributed to the earlier Imperial centuries, the greatest quantities in terms of both individual sherds and coherent assemblages speaks strongly to intense trade during the Late Roman (Early Byzantine) period, from the fourth through the seventh century. Not surprisingly, this rapid floruit in maritime trade parallels the expansion of settlement throughout the island, including its eventual collapse in the middle of the seventh century.

Leidwanger, Justin Ryan

2005-12-01T23:59:59.000Z

358

Natural gas hydrates of the Prudhoe Bay and Kuparuk River area, North Slope, Alaska  

SciTech Connect

Gas hydrates are crystalline substances composed of water and gas, mainly methane, in which a solid-water lattice accommodates gas molecules in a cage-like structure, or clathrate. These substances commonly have been regarded as a potential unconventional source of natural gas because of their enormous gas-storage capacity. Significant quantities of naturally occurring gas hydrates have been detected in many regions of the Arctic, including Siberia, the Mackenzie River Delta, and the North Slope of Alaska. On the North Slope, the methane-hydrate stability zone is a really extensive beneath most of the coastal plain province and has thicknesses greater than 1000 m in the Prudhoe Bay area. Gas hydrates have been inferred to occur in 50 North Slope exploratory and production wells on the basis of well-log responses calibrated to the response of an interval in a well where gas hydrates were recovered in a core by ARCO and Exxon. Most North Slope gas hydrates occur in six laterally continuous lower Tertiary sandstones and conglomerates; all these gas hydrates are geographically restricted to the area overlying the eastern part of the Kuparuk River oil field and the western part of the Prudhoe Bay oil field. The volume of gas within these gas hydrates is estimated to be about 1.0 [times] 10[sup 12] to 1.2 [times] 10[sup 12] m[sup 3] (37 to 44 tcf), or about twice the volume of conventional gas in the Prudhoe Bay field. 52 refs., 13 figs., 2 tabs.

Collett, T.S. (Geological Survey, Denver, CO (United States))

1993-05-01T23:59:59.000Z

359

Bio-Imaging Technology Transfer and Commercialization ...  

Science Conference Proceedings (OSTI)

Bio-Imaging Technology Transfer and Commercialization Showcase. For Immediate Release: August 25, 2009. ...

2010-12-29T23:59:59.000Z

360

NREL: Technology Transfer - President Obama Unveils Climate ...  

National Renewable Energy Laboratory Technology Transfer President Obama Unveils Climate Action Plan

Note: This page contains sample records for the topic "k-area transfer bay" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Nanoscale heat transfer - from computation to experiment  

E-Print Network (OSTI)

Heat transfer can differ distinctly at the nanoscale from that at the macroscale. Recent advancement in

Luo, Tengfei

2013-04-09T23:59:59.000Z

362

Mercury speciation in Galveston Bay, Texas: the importance of complexation by natural organic ligands  

E-Print Network (OSTI)

The major goal of this research is the development of a competitive ligand equilibration-solvent solvent extraction (CLE-SSE) method to determine organically complexed mercury species in estuarine water. The method was applied to estuarine surface waters of Galveston Bay and the water column of Offatts Bayou. Thermodynamic equilibrium modeling estimated organically complexed mercury species in estuarine water using the conditional stability constants of mercury-organic complexes and the concentrations of organic ligands determined by CLE-SSE. Two competing ligands, chloride and thiosalicylic acid (TSA), were used for CLE-SSE. Chloride ion competition determined conditional stability constants for 1 : 1 mercury-ligand complexes ranging from ~1023 to ~1024 with concentrations of organic ligands at low nM levels. TSA competition determined stronger mercury-binding ligands by manipulating the TSA concentration such that a higher binding strength was achieved than that for the mercury-chloride complex. TSA competition determined conditional stability constants for 1 : 1 mercury-ligand complexes ranging from ~1027 to ~1029, with ligand concentrations ranging from 10 to 100 pM. Mercury-organic binding strengths in these ranges are consistent with bidentate mercury complexation by low molecular weight organic thiols. A linear relationship was observed between log stability constants for the mercury-ligand complex and log ligand concentrations, supporting the hypothesis that there is a continuum of mercury binding site strengths associated with dissolved organic matter. In Galveston Bay, organically complexed mercury accounted for > 95 % of the total dissolved mercury in surface water. Organic complexation of mercury coupled with mercury dissolution from particulate phases controls the filter-passing mercury distribution in surface waters of Galveston Bay. The estuarine distributional features of mercury-complexing organic ligands were similar to those of glutathione, supporting mercury complexation by a thiol binding group. In Offatts Bayou, a seasonally anoxic bayou on Galveston Bay, thermodynamic equilibrium modeling suggests that the speciation of dissolved mercury in anoxic systems is dominated by sulfide complexation rather than organic complexation.

Han, Seunghee

2004-12-01T23:59:59.000Z

363

Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration: First Results Report  

DOE Green Energy (OSTI)

This report documents the early implementation experience for the Zero Emission Bay Area (ZEBA) Demonstration, the largest fleet of fuel cell buses in the United States. The ZEBA Demonstration group includes five participating transit agencies: AC Transit (lead transit agency), Santa Clara Valley Transportation Authority (VTA), Golden Gate Transit (GGT), San Mateo County Transit District (SamTrans), and San Francisco Municipal Railway (Muni). The ZEBA partners are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service.

Chandler, K.; Eudy, L.

2011-08-01T23:59:59.000Z

364

Reaction mechanisms of pair transfer  

E-Print Network (OSTI)

The mechanisms of nuclear transfer reactions are described for the transfer of two nucleons from one nucleus to another. Two-nucleon overlap functions are defined in various coordinate systems, and their transformation coefficients given between coordinate systems. Post and prior couplings are defined for sequential transfer mechanisms, and it is demonstrated that the combination of `prior-post' couplings avoids non-orthogonality terms, but does not avoid couplings that do not have good zero-range approximations. The simultaneous and sequential mechanisms are demonstrated for the $^{124}$Sn(p,t)$^{122}$Sn reaction at 25 MeV using shell-model overlap functions. The interference between the various simultaneous and sequential amplitudes is shown.

Ian J. Thompson

2012-04-13T23:59:59.000Z

365

"S" Glass Manufacturing Technology Transfer  

SciTech Connect

A glass-ceramic-to metal sealing technology patented by Sandia National Laboratories, Albuquerque (SNLA) was developed by MRC-Mound for use in the manufacture of weapon components. Successful implementation attracted increasingly widespread weapon use of this technology. "S-glass" manufacturing technology was transferred to commercial vendors to ensure that weapons production schedules would be met in the coming years. Such transfer also provided sources of this fledgling technology for the Department of Defense (DOD), aerospace and other commercial uses. The steps involved in the technology transfer are described, from the initial cooperative development work of Sandia and Mound scientists and technologists to the final phase of qualifying commercial vendors for component manufacture.

Buckner, Dean, A.; McCollister, Howard, L.

1988-06-01T23:59:59.000Z

366

Technology transfer | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology transfer Technology transfer Technology available for licensing: CURLSNovember 21, 2013 Containment Unidirectional Resource Loading System expands flexibility of glove boxes and other containment systems. Read more about Technology available for licensing: CURLS Rhodobacter System for the Expression of Membrane Proteins Using photosynthetic bacteria (Rhodobacter) for the expression of heterologous membrane proteins Read more about Rhodobacter System for the Expression of Membrane Proteins Synthesizing Membrane Proteins Using In Vitro Methodology This in vitro, cell-free expression system caters to the production of protein types that are challenging to study: membrane proteins, membrane-associated proteins, and soluble proteins that require complex redox cofactors.

367

DEVELOPMENT OF A COASTAL MARGIN OBSERVATION AND ASSESSMENT SYSTEM (CMOAS) TO CAPTURE THE EPISODIC EVENTS IN A SHALLOW BAY  

E-Print Network (OSTI)

Corpus Christi Bay (TX, USA) is a shallow wind-driven bay which is designated as a National Estuary due to its impact on the economy. But this bay experiences periodic hypoxia (dissolved oxygen <2 mg/l) which threatens aerobic aquatic organisms. Development of the Coastal Margin Observation and Assessment System (CMOAS) through integration of real-time observations with numerical modeling helps to understand the processes causing hypoxia in this energetic bay. CMOAS also serves as a template for the implementation of observational systems in other dynamic ecosystems for characterizing and predicting other episodic events such as harmful algal blooms, accidental oil spills, sediment resuspension events, etc. State-of-the-art sensor technologies are involved in real-time monitoring of hydrodynamic, meteorological and water quality parameters in the bay. Three different platform types used for the installation of sensor systems are: 1) Fixed Robotic, 2) Mobile, and 3) Remote. An automated profiler system, installed on the fixed robotic platform, vertically moves a suite of in-situ sensors within the water column for continuous measurements. An Integrated Data Acquisition, Communication and Control system has been configured on our mobile platform (research vessel) for the synchronized measurements and real-time visualization of hydrodynamic and water quality parameters at greater spatial resolution. In addition, a high frequency (HF) radar system has been installed on remote platforms to generate surface current maps for Corpus Christi (CC) Bay and its offshore area. This data is made available to stakeholders in real-time through the development of cyberinfrastructure which includes establishment of communication network, software development, web services, database development, etc. Real-time availability of measured datasets assists in implementing an integrated sampling scheme for our monitoring systems installed at different platforms. With our integrated system, we were able to capture evidence of an hypoxic event in Summer 2007. Data collected from our monitoring systems are used to drive and validate numerical models developed in this study. The analysis of observational datasets and developed 2-D hydrodynamic model output suggests that a depth-integrated model is not able to capture the water current structure of CC Bay. Also, the development of a threedimensional mechanistic dissolved oxygen model and a particle aggregation transport model (PAT) helps to clarify the critical processes causing hypoxia in the bay. The various numerical models and monitoring systems developed in this study can serve as valuable tools for the understanding and prediction of various episodic events dominant in other dynamic ecosystems.

Islam, Mohammad S.

2009-05-01T23:59:59.000Z

368

The Golden Gate Textile Barrier: Preserving California Bay of San Francisco from a Rising North Pacific Ocean  

E-Print Network (OSTI)

Climate change in California may require construction of a barrier separating the Pacific Ocean from San Francisco Bay and the Sacramento River-San Joaquin River Delta simply because Southern California is remarkably dependent on freshwater exported from the Delta. We offer a new kind of salt barrier, a macroproject built of impermeable textile materials stretched across the Golden Gate beneath the famous bridge. We anticipate it might eventually substitute for a recently proposed San Francisco In-Stream Tidal Power Plant harnessing a 1.7 m tide at the Bay entrance if future climate conditions Statewide is conducive. First-glance physics underpin our macroproject.

Richart B. Cathcart; Alexander A. Bolonkin

2007-02-04T23:59:59.000Z

369

NREL: Technology Transfer - 22nd Industry Growth Forum ...  

22nd Industry Growth Forum Presentations. ... Technology: Energy storage ... Technology Transfer Home; About Technology Transfer;

370

Resource Center Workforce SBIR/STTR Technology Transfer ...  

Science Conference Proceedings (OSTI)

... Students in Today's Global Marketplace • Technology Transfer Benefits to Academia from Tech Transfer Partnerships RESOURCE CENTER ...

2013-08-21T23:59:59.000Z

371

Airborne gamma-ray spectrometer and magnetometer survey Coos Bay, Oregon. Final report  

Science Conference Proceedings (OSTI)

During the months of August, September, and October of 1980, Aero Service Division Western Geophysical Company of America conducted an airborne high sensitivity gamma-ray spectrometer and magnetometer survey over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Coos Bay, Oregon, map area. Line spacing was generally six miles for east/west traverses and eighteen miles for north/south tie lines over the northern one-half of the area. Traverses and tie lines were flown at three miles and twelve miles respectively over the southern one-half of the area. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 863.8 line miles are in this quadrangle.

Not Available

1981-05-01T23:59:59.000Z

372

Stratigraphic controls on fluid distribution: An example from Prudhoe Bay, Alaska  

SciTech Connect

Oil, gas, and water distribution in three drill sites (1 79 wells) studied in the Prudhoe Bay Field is controlled dominantly by sandstone and shale stratigraphy. Detailed reservoir description, encompassing genetic-stratigraphic correlations and three-dimensional reservoir modeling has provided a new look at the locations of remaining reserves in the upper Romeo and Tango intervals of the Ivishak Sandstone. Greater than 22 billion stock tank barrels constitute in-place oil reserves in Prudhoe Bay Field. Production in excess of nine billion barrels, in conjunction with waterflood and tertiary-recovery projects, has created a complex distribution of reservoir fluids. As oil is produced, the gas-cap expands and intersects laterally extensive shales to form gas underruns. Underruns are of great economic concern as they disrupt the NLOC and segregate oil lenses as well as causing high GOR wells. Recovering these oil lenses at low GORs requires precise analysis of in-place fluids, well placement, and completion strategy. Core descriptions and stratigraphic correlations provided the basis for facies interpretations and the deterministic division of the strata into twenty-four reservoir layers (twelve sandstone and shale units). Isochore, fluid-distribution, and NILOC maps were compiled for the reservoir horizons. Stratigraphic, structural, and fluid data integrated within a three-dimensional model resulted in an improved fluid-distribution picture and revealed numerous development opportunities including infill wells, sidetracks, and recompletions.

Burns, B.A.; Knock, D.; Tye, R.S. (ARCO Alaska, Anchorage, AK (United States))

1996-01-01T23:59:59.000Z

373

Performance analysis and optimization of the Prudhoe Bay miscible-gas project  

SciTech Connect

Because EOR oil response at Prudhoe Bay has been difficult to measure directly, a number of different types of field measurements have been made to evaluate the miscible-flood displacement efficiency. These measurements include water- and solvent-injection profiles, logging data from an observation well, and single-well tracer test (SWTT) data. Despite ambiguity in these data, the measurements support the simulation nd laboratory data and generally indicate that the Prudhoe Bay Miscible Gas Project (PBMGP) is performing well. The most useful EOR surveillance data have been the separator-gas-sample database, with {approx} 4,000 compositional analyses. Separator flash analysis and allocation programs use this data-base to infer EOR performance on the basis of produced solvent. Reservoir mechanisms that adversely affect the EOR process efficiency have been identified. The project has exceeded initial expectations in terms of solvent retained within the reservoir, which has favorable implications for solvent sweep efficiency. Procedures have been developed to use the field and simulation data to determine how the solvent should be allocated to the existing patterns and when the project should be expanded into new areas. these procedures are designed to maximize the value of the PBMGP.

McGuire, P.L. [Arco Alaska Inc., Prudhoe Bay, AK (United States); Stalkuup, F.I

1995-05-01T23:59:59.000Z

374

Semiclassical aspects of transfer reactions  

SciTech Connect

Semiclassical analysis of heavy ion induced transfer reactions are discussed for the quasielastic region. Some unique aspects of these reactions are shown, the variety of features which can be understood semiclassically is demonstrated, and some open problems are indicated. 28 refs., 16 figs. (LEW)

Bond, P.D.

1985-01-01T23:59:59.000Z

375

Submersible canned motor transfer pump  

DOE Patents (OSTI)

A transfer pump used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass therethrough, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank.

Guardiani, Richard F. (Ohio Township, Allegheny County, PA); Pollick, Richard D. (Sarver, PA); Nyilas, Charles P. (Monroeville, PA); Denmeade, Timothy J. (Lower Burrell, PA)

1997-01-01T23:59:59.000Z

376

NIH Technology Transfer Prepared by  

E-Print Network (OSTI)

Institutes of Health U.S. Department of Health & Human Services February 2013 #12;Table of Contents 2013 Federal Laboratory Consortium | National Award | Excellence in Technology Transfer Glybera®: First Gene.......................................................................................................................... 3 2012 National Institutes of Health | Inventors on NIH Patents Issued in FY 2012 Congratulations

Bandettini, Peter A.

377

Data Transfer | Argonne Leadership Computing Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Transfer Data Transfer The Blue Gene/P connects to other research institutions using a total of 20 GBs of public network connectivity. This allows scientists to transfer datasets to and from other institutions over fast research networks such as the Energy Science Network (ESNet) and the Metropolitan Research and Education Network (MREN). Data Transfer Node Overview Two data transfer nodes are available to all Intrepid users, that provide the ability to perform wide and local area data transfers. dtn01.intrepid.alcf.anl.gov (alias for gs1.intrepid.alcf.anl.gov) dtn02.intrepid.alcf.anl.gov (alias for gs2.intrepid.alcf.anl.gov) Data Transfer Utilities HSI/HTAR HSI and HTAR allow users to transfer data to and from HPSS Using HPSS on Intrepid GridFTP GridFTP provides the ability to transfer data between trusted sites such

378

Geo energy research and development: technology transfer  

DOE Green Energy (OSTI)

Sandia Geo Energy Programs related to geothermal, coal, oil and gas, and synfuel resources have provided a useful mechanism for transferring laboratory technologies to private industry. Significant transfer of hardware, computer programs, diagnostics and instrumentation, advanced materials, and in situ process understanding has occurred through US/DOE supported programs in the past five years. The text briefly reviews the technology transfer procedures and summarizes 32 items that have been transferred and another 20 technologies that are now being considered for possible transfer to industry. A major factor in successful transfer has been personal interactions between Sandia engineers and the technical staff from private industry during all aspects of the technology development.

Traeger, R.K.

1982-03-01T23:59:59.000Z

379

Geological, geochemical, and geophysical survey of the geothermal resources at Hot Springs Bay Valley, Akutan Island, Alaska  

DOE Green Energy (OSTI)

An extensive survey was conducted of the geothermal resource potential of Hot Springs Bay Valley on Akutan Island. A topographic base map was constructed, geologic mapping, geophysical and geochemical surveys were conducted, and the thermal waters and fumarolic gases were analyzed for major and minor element species and stable isotope composition. (ACR)

Motyka, R.J.; Wescott, E.M.; Turner, D.L.; Swanson, S.E.; Romick, J.D.; Moorman, M.A.; Poreda, R.J.; Witte, W.; Petzinger, B.; Allely, R.D.

1985-01-01T23:59:59.000Z

380

Origins and Levels of Seasonal Forecast Skill for Sea Ice in Hudson Bay Using Canonical Correlation Analysis  

Science Conference Proceedings (OSTI)

Canonical correlation analysis (CCA) is used to estimate the levels and sources of seasonal forecast skill for July ice concentration in Hudson Bay over the 1971–2005 period. July is an important transition month in the seasonal cycle of sea ice ...

Adrienne Tivy; Stephen E. L. Howell; Bea Alt; John J. Yackel; Thomas Carrieres

2011-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "k-area transfer bay" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

An Observation System Used To Study the Marine Boundary Layer Over the Bay of Bengal During Summer Monex 79  

Science Conference Proceedings (OSTI)

An observation system used to study the marine boundary layer over the Bay of Bengal at Digha Beach, West Bengal, India, as part of the International Monsoon Experiments (MONEX 79) is described in this paper. It was a portable system that was ...

S. SethuRaman; P. Michael; W. A. Tuthill; J. McNeil

1980-10-01T23:59:59.000Z

382

A Three-Dimensional Numerical Simulation of Hudson Bay Summer Ocean Circulation: Topographic Gyres, Separations, and Coastal Jets  

Science Conference Proceedings (OSTI)

The summer ocean circulation in Hudson Bay is studied numerically using the Blumberg-Mellor model with a 27.5 km × 27.5 km horizontal grid and a realistic bottom topography. In the control run 1) monthly climatological forcing fields of wind ...

Jia Wang; Lawrence A. Mysak; R. Grant Ingram

1994-12-01T23:59:59.000Z

383

Comparisons between Mesoscale Model Terrain Sensitivity Studies and Doppler Lidar Measurements of the Sea Breeze at Monterey Bay  

Science Conference Proceedings (OSTI)

A NOAA/Environmental Technology Laboratory Doppler lidar measured the life cycle of the land- and sea-breeze system at Monterey Bay, California, in 1987, during the Land–Sea Breeze Experiment (LASBEX). On days with offshore synoptic flow, the ...

Lisa S. Darby; Robert M. Banta; Roger A. Pielke Sr.

2002-12-01T23:59:59.000Z

384

Wind Stress Curl and Coastal Upwelling in the Area of Monterey Bay Observed during AOSN-II  

Science Conference Proceedings (OSTI)

Aircraft measurements obtained during the 2003–04 Autonomous Ocean Sampling Network (AOSN-II) project were used to study the effect of small-scale variations of near-surface wind stress on coastal upwelling in the area of Monterey Bay. Using 5-km-...

Q. Wang; J. A. Kalogiros; S. R. Ramp; J. D. Paduan; G. Buzorius; H. Jonsson

2011-05-01T23:59:59.000Z

385

NREL: Technology Transfer - Research Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Facilities Research Facilities Photo of Solar Energy Research Facility building at NREL. NREL's Solar Energy Research Facility is one of many world-class facilities available to public and private agencies. For developing commercially viable energy products, organizations may partner with NREL to use our state-of-the-art laboratories, and testing and user facilities. Visit NREL's Research Facilities Web site to learn more about them. We typically develop technology partnership agreements for using our facilities and/or working with our researchers. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements Research Facilities Commercialization Programs Success Stories News Contacts Did you find what you needed?

386

Submersible canned motor transfer pump  

DOE Patents (OSTI)

A transfer pump is described which is used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass there through, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank. 17 figs.

Guardiani, R.F.; Pollick, R.D.; Nyilas, C.P.; Denmeade, T.J.

1997-08-19T23:59:59.000Z

387

Enhanced heat transfer using nanofluids  

DOE Patents (OSTI)

This invention is directed to a method of and apparatus for enhancing heat transfer in fluids such as deionized water. ethylene glycol, or oil by dispersing nanocrystalline particles of substances such as copper, copper oxide, aluminum oxide, or the like in the fluids. Nanocrystalline particles are produced and dispersed in the fluid by heating the substance to be dispersed in a vacuum while passing a thin film of the fluid near the heated substance. The fluid is cooled to control its vapor pressure.

Choi, Stephen U. S. (Lisle, IL); Eastman, Jeffrey A. (Naperville, IL)

2001-01-01T23:59:59.000Z

388

Transfer Rate vs. I/O Units  

NLE Websites -- All DOE Office Websites (Extended Search)

O Units Transfer Rate vs. IO Units These plots show the transfer rate from the IO benchmarks as a function of the number of elizaio units in use for each particular eliza at the...

389

Adaptive file transfers for diverse environments  

Science Conference Proceedings (OSTI)

This paper presents dsync, a file transfer system that can dynamically adapt to a wide variety of environments. While many transfer systems work well in their specialized ontext, their performance comes at the cost of generality, and they perform poorly ...

Himabindu Pucha; Michael Kaminsky; David G. Andersen; Michael A. Kozuch

2008-06-01T23:59:59.000Z

390

Please transfer ALL data off /house  

NLE Websites -- All DOE Office Websites (Extended Search)

Please transfer ALL data off house before 1212013 Please transfer ALL data off house September 3, 2013 by Kjiersten Fagnan (0 Comments) We are happy to announce that all the...

391

A Global Diagnostic of Interocean Mass Transfers  

Science Conference Proceedings (OSTI)

An objective and quantitative estimate of all mean annual interocean mass transfers together with a picture of the associated mean pathways is presented. The global ocean circulation transfers mass, heat, and salinity between the various ocean ...

B. Blanke; S. Speich; G. Madec; K. Döös

2001-06-01T23:59:59.000Z

392

Authorized Signature Title Asset Transfer Authorization  

E-Print Network (OSTI)

of CREF, simply indicate "TIAA-CREF" below. For all other transfers, please provide the company's address separate forms. (This form cannot be used for TIAA Basic RA transfers. Please contact TIAA for form F6969

McGaughey, Alan

393

N-Stream Approximations to Radiative Transfer  

Science Conference Proceedings (OSTI)

Schuster's two-stream approximation is first derived from Chandrasekhar's radiative transfer equation, and then generalized to an arbitrary number of streams. The resulting technique for solving the transfer equation that is similar to the ...

Charles Acquista; Frederick House; James Jafolla

1981-07-01T23:59:59.000Z

394

Power transfer through strongly coupled resonances  

E-Print Network (OSTI)

Using self-resonant coils in a strongly coupled regime, we experimentally demonstrate efficient non-radiative power transfer over distances of up to eight times the radius of the coils. We use this system to transfer 60W ...

Kurs, André

2007-01-01T23:59:59.000Z

395

Attn Technology Transfer Questions.txt - Notepad  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Attn Technology Transfer Questions.txt From: eschaput esandc@prodigy.net Sent: Monday, January 26, 2009 10:31 PM To: GC-62 Subject: Attn: Technology Transfer Questions We have...

396

Transfer in Reinforcement Learning via Shared Features  

E-Print Network (OSTI)

We present a framework for transfer in reinforcement learning based on the idea that related tasks share some common features, and that transfer can be achieved via those shared features. The framework attempts to capture ...

Konidaris, George

397

Intermodal transfer of spent fuel  

Science Conference Proceedings (OSTI)

As a result of the international standardization of containerized cargo handling in ports around the world, maritime shipment handling is particularly uniform. Thus, handier exposure parameters will be relatively constant for ship-truck and ship-rail transfers at ports throughout the world. Inspectors' doses are expected to vary because of jurisdictional considerations. The results of this study should be applicable to truck-to-rail transfers. A study of the movement of spent fuel casks through ports, including the loading and unloading of containers from cargo vessels, afforded an opportunity to estimate the radiation doses to those individuals handling the spent fuels with doses to the public along subsequent transportation routes of the fuel. A number of states require redundant inspections and for escorts over long distances on highways; thus handlers, inspectors, escort personnel, and others who are not normally classified as radiation workers may sustain doses high enough to warrant concern about occupational safety. This paper addresses the question of radiation safety for these workers. Data were obtained during, observation of the offloading of reactor spent fuel (research reactor spent fuel, in this instance) which included estimates of exposure times and distances for handlers, inspectors and other workers during offloading and overnight storage. Exposure times and distance were also for other workers, including crane operators, scale operators, security personnel and truck drivers. RADTRAN calculational models and parameter values then facilitated estimation of the dose to workers during incident-free ship-to-truck transfer of spent fuel.

Neuhauser, K.S. (Sandia National Labs., Albuquerque, NM (United States)); Weiner, R.F. (Western Washington Univ., Bellingham, WA (United States))

1991-01-01T23:59:59.000Z

398

NREL: Technology Transfer - Solar Policy and Program ...  

National Renewable Energy Laboratory Technology Transfer ... Unbiased analysis of economic and market impacts related to policy changes;

399

NREL: Technology Transfer - NREL Launches Renewable Energy ...  

The National Renewable Energy Laboratory's (NREL's) ... For more information about REopt, visit the new website. Printable Version. Technology Transfer Home;

400

Modelling Carbon with Transferable Empirical Potentials  

Science Conference Proceedings (OSTI)

Complexities associated with hybridization and anisotropy meant that transferable potentials for carbon were slow to emerge, lagging decades behind similar ...

Note: This page contains sample records for the topic "k-area transfer bay" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Energy Innovation Portal Bridging Technology Transfer ...  

Call the Energy Innovation Portal (the Portal) a Craigslist for technology transfer, aimed at entrepreneurs, investors, and corporate technology scouts.

402

NREL: Technology Transfer - Materials Exposure Testing Market ...  

National Renewable Energy Laboratory Technology Transfer Materials Exposure Testing Market Expands with Ultra-Accelerated Weathering System

403

PNNL: Doing Business - Technology Transfer Contacts  

Search PNNL. PNNL Home; About; Research; Publications; Jobs; News; Contacts; PNNL's Technology Transfer team represents more than a century of ...

404

Available Technologies: Heat Transfer Interface for Thermo ...  

Refrigeration systems; Internal combustion engines; ... The components of the technology could be used to improve heat transfer in industrial, ...

405

Argonne National Laboratory - Office of Technology Transfer  

argonne national laboratory's office of technology transfer offers licensable technologies developed at the Laboratory and oversees other agreements with research ...

406

NREL: Technology Transfer - Clean Energy Investors Directory  

National Renewable Energy Laboratory Technology Transfer NREL is no longer maintaining the Clean Energy Investors Directory due to widely accessible ...

407

Transfer function identification in power system applications  

Science Conference Proceedings (OSTI)

This paper presents an introduction to concepts and applications of transfer function identification in power systems. The paper begins with a brief introduction to transfer function identification methods using least-squares approaches and then discusses applications which include SVC's, model validation applications, and software validation. A comparison is also made between eigenvalues obtained from transfer function identification and small signal analysis. Methods for testing the validity of identified transfer functions are also discussed.

Smith, J.R.; Fatehi, F.; Woods, C.S. (Montana State Univ., Bozeman, MT (United States)); Hauer, J.F. (Bonneville Power Administration, Portland, OR (United States)); Trudnowski, D.J. (Battelle Pacific Northwest Labs., Richland, WA (United States))

1993-08-01T23:59:59.000Z

408

NREL: Technology Transfer - Commercialization Assistance Program  

National Renewable Energy Laboratory Technology Transfer Commercialization Assistance Program. The NREL Commercialization Assistance Program (NCAP) helps emerging ...

409

NREL: Technology Transfer - Agreements for Commercializing ...  

National Renewable Energy Laboratory Technology Transfer Agreements for Commercializing Technology. NREL uses Agreements for Commercializing Technology (ACT) when a ...

410

NREL: Technology Transfer - Cooperative Research and ...  

National Renewable Energy Laboratory Technology Transfer Cooperative Research and Development Agreements. NREL uses a cooperative research and development agreement ...

411

Partnering Today: Technology Transfer Highlights Reactive ...  

THE LLNL TECHNOLOGY COMPANY PRODUCT Partnering Today: Technology Transfer Highlights Reactive NanoTechnologies Inc.: Temperature-controlled Precision Bonding

412

Los Alamos Lab: Technology Transfer | Home Page  

Contacts Event Calendar Maps Organization Phonebook Policy Center Emergency. NEWS. LIBRARY. JOBS. Technology Transfer, TT . Division Home; About Us; Organization;

413

FY 2008 Summary Federal Tech Transfer  

Science Conference Proceedings (OSTI)

Summary Report on Federal Laboratory Technology Transfer FY2008. For Immediate Release: April 30, 2010. Contact: Cathleen ...

2013-06-26T23:59:59.000Z

414

Jefferson Lab Technology Transfer - Thomas Jefferson National ...  

JSA Invention Disclosure; Technology Transfer Issues (Ombudsman) Programs and Facilities. Free-Electron Laser Program (FEL) Applied Research Center ...

415

Heat Transfer & Alternative Energy Systems Group Staff ...  

Science Conference Proceedings (OSTI)

Heat Transfer and Alternative Energy Systems Group Staff. Staff Listing. Dr. William M. Healy, Leader, Supervisory Mechanical ...

2013-08-07T23:59:59.000Z

416

Sandia National Laboratories : Licensing/Technology Transfer  

Search; About Sandia; Mission Areas; Newsroom; Careers; Doing Business; Education; Contact Us; Licensing and Technology Transfer. IP Home; Search ...

417

NREL: Technology Transfer - NREL Electrode Innovation ...  

National Renewable Energy Laboratory Technology Transfer NREL Electrode Innovation Poised to Shake Up the Li-ion Battery Industry

418

NETL: Technology Transfer - Available Technologies for Partnership  

Technology Transfer Available Technologies for Partnership Software and Modeling. Month Posted. Partnership Opportunity. Patent Information. 12/2011: ...

419

Policy 1305 Cost Transfers Involving Sponsored Projects  

E-Print Network (OSTI)

Policy 1305 Cost Transfers Involving Sponsored Projects Responsible Office Office of Grant transfer of payroll and other direct costs associated with sponsored projects. Purpose of the Policy are responsible for ensuring that transfers of costs to sponsored projects which represent corrections of errors

420

Office of Technology Transfer TES MICROBOLOMETER IMPROVED  

E-Print Network (OSTI)

in key areas for UW TechTransfer. UW researchers, faculty and staff reported 335 innovations, which TechTransfer programs like the Technology Gap Innovation Fund and LaunchPad continue to demonstrate and dedication of an exceptional team assembled at UW TechTransfer. This past year we have added staff in key

Kemner, Ken

Note: This page contains sample records for the topic "k-area transfer bay" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Understanding slow BGP routing table transfers  

Science Conference Proceedings (OSTI)

Researchers and network operators often say that BGP table transfers are slow. Despite this common knowledge, the reasons for slow BGP transfers are not well understood. This paper explains BGP table transfer delays by combining BGP messages collected ... Keywords: bgp, route propagation, routing convergence

Zied Ben Houidi; Mickael Meulle; Renata Teixeira

2009-11-01T23:59:59.000Z

422

Analyses of reliability characteristics of emergency diesel generator population using empirical Bayes methods  

SciTech Connect

Emergency Diesel Generators (EDGs) provide backup power to nuclear power plants in case of failure of AC buses. The reliability of EDGs is important to assure response to loss-of-offsite power accident scenarios, a dominant contributor to the plant risk. The reliable performance of EDGs has been of concern both for regulators and plant operators. In this paper the authors present an approach and results from the analysis of failure data from a large population of EDGs. They used empirical Bayes approach to obtain both the population distribution and the individual failure probabilities from EDGs failure to start and load-run data over 4 years for 194 EDGs at 63 plant units.

Vesely, W.E. [Science Applications International Corp., Dublin, OH (United States)]|[Brookhaven National Lab., Upton, NY (United States); Uryas`ev, S.P.; Samanta, P.K. [Brookhaven National Lab., Upton, NY (United States)

1993-06-01T23:59:59.000Z

423

Observation of electron antineutrino disappearance by the Daya Bay Reactor Neutrino Experiment  

E-Print Network (OSTI)

This presentation describes a measurement of the neutrino mixing parameter, sin^2(2theta_13), from the Daya Bay Reactor Neutrino Experiment. Disappearance of electron antineutrinos at a distance of ~2 km from a set of six reactors, where the reactor flux is constrained by near detectors, has been clearly observed. The result, based on the ratio of observed to expected rate of antineutrinos, using 139 days of data taken between December 24, 2011 and May 11, 2012, is sin^2(2theta_13) = 0.089 +/- 0.010(stat.) +/- 0.005(syst.). Improvements in sensitivity from inclusion of additional data, spectral analysis, and improved calibration are expected in the future.

Elizabeth Worcester for the Daya Bay Collaboration

2013-09-30T23:59:59.000Z

424

Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration: Second Results Report  

DOE Green Energy (OSTI)

This report presents results of a demonstration of 12 new fuel cell electric buses (FCEB) operating in Oakland, California. The 12 FCEBs operate as a part of the Zero Emission Bay Area (ZEBA) Demonstration, which also includes two new hydrogen fueling stations. This effort is the largest FCEB demonstration in the United States and involves five participating transit agencies. The ZEBA partners are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service. The first results report was published in August 2011, describing operation of these new FCEBs from September 2010 through May 2011. New results in this report provide an update through April 2012.

Eudy, L.; Chandler, K.

2012-07-01T23:59:59.000Z

425

Heat transfer via dropwise condensation on hydrophobic microstructured surfaces  

E-Print Network (OSTI)

Dropwise condensation has the potential to greatly increase heat transfer rates. Heat transfer coefficients by dropwise condensation and film condensation on microstructured silicon chips were compared. Heat transfer ...

Ruleman, Karlen E. (Karlen Elizabeth)

2009-01-01T23:59:59.000Z

426

TECHNOLOGY TRANSFER QUESTIONS..txt - Notepad | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TECHNOLOGY TRANSFER QUESTIONS..txt - Notepad TECHNOLOGY TRANSFER QUESTIONS..txt - Notepad TECHNOLOGY TRANSFER QUESTIONS..txt - Notepad More Documents & Publications Attn Technology...

427

TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 PDF | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 PDF TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 PDF TECHNOLOGY TRANSFERCOMMERCIALIZATION ACT OF 2000 TECHNOLOGY TRANSFER...

428

TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 PDF | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 PDF TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 PDF TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 PDF TECHNOLOGY...

429

Attn Technology Transfer Questions.txt - Notepad | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Attn Technology Transfer Questions.txt - Notepad Attn Technology Transfer Questions.txt - Notepad Attn Technology Transfer Questions.txt - Notepad More Documents & Publications...

430

HEAT TRANSFER IN UNDERGROUND HEATING EXPERIMENTS IN GRANITE, STRIPA, SWEDEN  

E-Print Network (OSTI)

Analysis of. Nonlinear Heat Transfer Problems." Report no.Berkeley, Ca. , APPENDIX A. HEAT TRANSFER BY CONDUCTION ANDMeeting, Technical Session on Heat Transfer in Nuclear Waste

Chan, T.

2010-01-01T23:59:59.000Z

431

Optimization of Phase Change Heat Transfer in Biporous Media  

E-Print Network (OSTI)

Aspectcs of Boiling Heat Transfer”. PhD Thesis dissertation,Celled Foams”. Numerical Heat Transfer, Vol. 54, issue 1,Dimensional Fluid Flow and Heat Transfer”. Numerical Heat

Reilly, Sean

2013-01-01T23:59:59.000Z

432

Technology Transfer Ombudsman Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Technology Transfer Ombudsman Program Technology Transfer Ombudsman Program The Technology Transfer Commercialization Act of 2000, Public Law 106-404 (PDF) was enacted in November 2000. Pursuant to Section 11, Technology Partnerships Ombudsman, each DOE national laboratory and research facility has appointed a technology partnership ombudsman (ombuds). The role of the ombuds is prevention and early resolution of disputes between the lab and inventors or private companies over technology transfer issues such as infringement, intellectual property rights, royalties and licensing, etc. The Director, Office of Conflict Prevention and Resolution, coordinates this program and compiles data for quarterly reports. See the Department of Energy Technology Transfer Ombuds (PDF).

433

Dry Transfer Systems for Used Nuclear Fuel  

Science Conference Proceedings (OSTI)

The potential need for a dry transfer system (DTS) to enable retrieval of used nuclear fuel (UNF) for inspection or repackaging will increase as the duration and quantity of fuel in dry storage increases. This report explores the uses for a DTS, identifies associated general functional requirements, and reviews existing and proposed systems that currently perform dry fuel transfers. The focus of this paper is on the need for a DTS to enable transfer of bare fuel assemblies. Dry transfer systems for UNF canisters are currently available and in use for transferring loaded canisters between the drying station and storage and transportation casks.

Brett W. Carlsen; Michaele BradyRaap

2012-05-01T23:59:59.000Z

434

Vibrational energy transfer in a diesel engine  

Science Conference Proceedings (OSTI)

The paths of vibrational energy transfer in a diesel engine were investigated in order to obtain insight into ways of reducing this transfer to the exterior surfaces and thereby reduce the radiated noise. The engine was tested in a nonrunning condition with simulated internal forces in order to study the different transfer paths separately. Vibration response measurements were made of individual engine components and lumped?parameter models were developed to simulate this response. These models were then used to determine component design changes that would reduce the energy transfer. Two design changes were implemented in the engine and a reduction of the energy transfer was achieved as predicted.

R. G. DeJong; R. H. Lyon

1977-01-01T23:59:59.000Z

435

DOE Technology Transfer Website Features New Tool to Search Tech Transfer  

Office of Scientific and Technical Information (OSTI)

Technology Transfer Website Features New Tool to Search Tech Transfer Technology Transfer Website Features New Tool to Search Tech Transfer Information from DOE National Laboratories December 3, 2012 DOE Technology Transfer Website Features New Tool to Search Tech Transfer Information from DOE National Laboratories The Department of Energy (DOE) Technology Transfer website has a new search feature that for the first time allows searching of technology transfer information across the DOE national laboratories. The new tool enables users to search all of DOE's technology transfer information, including inventions, patents and other applied research, available from DOE's national laboratories in real time. Using web-crawling technology, the search capability allows users to enter a single query for a technology transfer term; the search feature returns a

436

Definition: Transfer Capability | Open Energy Information  

Open Energy Info (EERE)

Transfer Capability Transfer Capability The measure of the ability of interconnected electric systems to move or transfer power in a reliable manner from one area to another over all transmission lines (or paths) between those areas under specified system conditions. The units of transfer capability are in terms of electric power, generally expressed in megawatts (MW). The transfer capability from 'Area A' to 'Area B' is not generally equal to the transfer capability from 'Area B' to 'Area A.'[1] Related Terms transmission lines, power, electricity generation, transmission line References ↑ Glossary of Terms Used in Reliability Standards An inl LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ine Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Transfer_Capability&oldid=480565"

437

Technology Transfer Overview | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Services » Technology Transfer and Procurement » Technology Services » Technology Transfer and Procurement » Technology Transfer & Intellectual Property » Technology Transfer Overview Technology Transfer Overview Through strategic investments in science and technology, the U.S. Department of Energy (DOE) helps power and secure America's future. DOE's capabilities, and the innovations it supports, help ensure the country's role as a leader in science and technology. In particular, technology transfer supports the maturation and deployment of DOE discoveries, providing ongoing economic, security and environmental benefits for all Americans. "Technology transfer" refers to the process by which knowledge, intellectual property, or capabilities developed at the Department of Energy's National Laboratories, single-purpose research facilities, plants,

438

Definition: Available Transfer Capability | Open Energy Information  

Open Energy Info (EERE)

Transfer Capability Transfer Capability Jump to: navigation, search Dictionary.png Available Transfer Capability A measure of the transfer capability remaining in the physical transmission network for further commercial activity over and above already committed uses. It is defined as Total Transfer Capability less existing transmission commitments (including retail customer service), less a Capacity Benefit Margin, less a Transmission Reliability Margin.[1] Related Terms transfer capability, transmission lines, transmission line, capacity benefit margin, smart grid References ↑ Glossary of Terms Used in Reliability Standards An inli LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ne Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Available_Transfer_Capability&oldid=502496

439

HYDROLASING OF CONTAMINATED UNDERWATER BASIN SURFACES AT THE HANFORD K-AREA  

SciTech Connect

This paper discusses selecting and Implementing hydrolasing technology to reduce radioactive contamination in preparing to dispose of the K Basins; two highly contaminated concrete basins at the Hanford Site. A large collection of spent nuclear fuel stored for many years underwater at the K Basins has been removed to stable, dry, safe storage. Remediation activities have begun for the remaining highly contaminated water, sludge, and concrete basin structures. Hydrolasing will be used to decontaminate and prepare the basin structures for disposal. The U. S. Department of Energy's (DOE) Hanford Site is considered the world's largest environmental cleanup project. The site covers 1,517 Km{sup 2} (586 square miles) along the Columbia River in an arid region of the northwest United States (U.S.). Hanford is the largest of the US former nuclear defense production sites. From the World War II era of the mid-1940s until the late-1980s when production stopped, Hanford produced 60 percent of the plutonium for nuclear defense and, as a consequence, produced a significant amount of environmental pollution now being addressed. Spent nuclear fuel was among the major challenges for DOE's environmental cleanup mission at Hanford. The end of production left Hanford with about 105,000 irradiated, solid uranium metal fuel assemblies--representing approximately 2,100 metric tons (80 percent of DOE's spent nuclear fuel). The fuel was ultimately stored in the K Basins water-filled, concrete basins attached to Hanford's K East (KE) and K West (KW) reactors. K Basin's fuel accounted for 95 percent of the total radioactivity in Hanford's former reactor production areas. Located about 457 meters (500 yards) from the Columbia River, the K Basins are two indoor, rectangular structures of reinforced concrete; each filled with more than 3.8 million liters (one million gallons) of water that has become highly contaminated with long-lived radionuclides. At the KW Basin, fuel was packaged and sealed in canisters. At the KE Basin, fuel was stored in open canisters that were exposed to water in the basin. The irradiated spent nuclear fuel corroded during long-term, wet storage; resulting in thousands of fuel assemblies becoming severely corroded and/or damaged. Corrosion, especially in the KE Basin, contributed to the formation of a layer of radioactive sludge in the basins. Sludge removal is now progressing and will be followed by dewatering and dispositioning the concrete structures. The DOE Richland Operations Office (RL) has given Fluor Hanford Inc./Fluor Government Group (Fluor) the task of preparing Hanford's K Basins for decontamination and disposal. Prior to dewatering, hydrolasing will be used to decontaminate the basin surfaces to prepare them for disposal. By removing highly contaminated surface layers of concrete, hydrolasing will be used to meet the dose objectives for protecting workers and complying with regulations for transporting demolition debris. Fluor has innovated, tested, and planned the application of the hydrolasing technology to meet the challenge of decontaminating highly radioactive concrete surfaces underwater. Newly existing technology is being adapted to this unique challenge.

CHRONISTER, G.B.

2005-06-14T23:59:59.000Z

440

NREL: Technology Transfer - Commercialization Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercialization Programs Commercialization Programs Through our commercialization programs, we help accelerate the transfer of renewable energy and energy efficiency technologies into the marketplace. Clean Energy Alliance The Clean Energy Alliance is an alliance of the nation's top business incubators that provide business services to nascent clean energy entrepreneurs. NREL partners with these elite business incubators to help foster the growth of robust clean energy businesses and commercialize their technologies. Colorado Center for Renewable Energy Economic Development Formerly the Colorado Cleantech Initiative program, the Colorado Center for Renewable Energy Economic Development (CREED) is a joint effort between NREL, the State of Colorado, and affiliated stakeholders to provide

Note: This page contains sample records for the topic "k-area transfer bay" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Development of a Three-Dimensional Meso-? Primitive Equation Model: Katabatic Winds Simulation in the Area of Terra Nova Bay, Antarctica  

Science Conference Proceedings (OSTI)

The spatial evolution of Antarctic katabatic winds in the area of Terra Nova Bay is examined using the three-dimensional version of the Université Catholique de Louvain-Modèle Atmosphérique Régional (UCL-MAR) mesoscale primitive equation models. ...

Hubert Gallée; Guy Schayes

1994-04-01T23:59:59.000Z

442

An Analysis of Near-Surface Winds, Air Temperature, and Cyclone Activity in Terra Nova Bay, Antarctica, from 1993 to 2009  

Science Conference Proceedings (OSTI)

In September 2009, the first unmanned aerial vehicles were flown over Terra Nova Bay, Antarctica, to collect information regarding air–sea interactions. Prior to the field season, wind and temperature data from a local automatic weather station (...

Shelley L. Knuth; John J. Cassano

2011-03-01T23:59:59.000Z

443

Studies of the Marine Inversion Over the San Francisco Bay Area … A Summary of the Work of Albert Miller, 1961–1978  

Science Conference Proceedings (OSTI)

During his tenure in the Meteorology Department at San Jose State University (1961–1978), Professor Albert Miller conducted extensive field investigations of the marine inversion over the San Francisco Bay Area. Measurements were made with ...

Peter F. Lester

1985-11-01T23:59:59.000Z

444

A high resolution geophysical investigation of spatial sedimentary processes in a paraglacial turbid outwash fjord: Simpson Bay, Prince William Sound, Alaska  

E-Print Network (OSTI)

Simpson Bay is a turbid, outwash fjord located in northeastern Prince William Sound, Alaska. A high ratio of watershead:basin surface area combined with high precipitation and an easily erodable catchment create high sediment inputs. Fresh water from heavy precipitation and meltwater from high alpine glaciers enter Simpson Bay through bay head rivers and small shoreline creeks that drain the catchment. Side scan sonar, seismic profiling, and high resolution bathymetry were used to investigate the record of modern sedimentary processes. Four bottom types and two seismic faces were described to delineate the distribution of sediment types and sedimentary processes in Simpson Bay. Sonar images showed areas of high backscatter (coarse grain sediment, bedrock outcrops and shorelines) in shallow areas and areas of low backscatter (estuarine mud) in deeper areas. Seismic profiles showed that high backscatter areas reflected emergent glacial surfaces while low backscatter areas indicated modern estuarine mud deposition. The data show terminal morainal bank systems and grounding line deposits at the mouth of the bay and rocky promontories, relict medial moraines, that extend as terrestrial features through the subtidal and into deeper waters. Tidal currents and mass wasting are the major influences on sediment distribution. Hydrographic data showed high spatial variability in surface and bottom currents throughout the bay. Bottom currents are tide dominated, and are generally weak (5-20 cm s-1) in the open water portions of the bay while faster currents are found associated with shorelines, outcrops, and restrictive sills. Tidal currents alone are not enough to cause the lack of estuarine mud deposition in shallow areas. Bathymetric data showed steep slopes throughout the bay suggesting sediment gravity flows. Central Alaska is a seismically active area, and earthquakes are most likely the triggering mechanism of the gravity flows.

Noll, Christian John, IV

2005-12-01T23:59:59.000Z

445

NREL Successfully Transfers VSHOT Technology to Solar Industry  

NREL Successfully Transfers VSHOT Technology to Solar Industry ... The increasing demand for concentrating solar power, ... Technology Transfer Home;

446

Photoinduced Charge-Transfer Materials For Nonlinear Optical...  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Technology & Communications Photoinduced Charge-Transfer Materials For Nonlinear Optical Applications Photoinduced Charge-Transfer Materials For Nonlinear Optical...

447

NREL: Technology Transfer Home Page - National Renewable Energy ...  

National Renewable Energy Laboratory Technology Transfer The National Renewable Energy Laboratory (NREL) works with industry and organizations to transfer renewable ...

448

HEAT TRANSFER IN UNDERGROUND HEATING EXPERIMENTS IN GRANITE, STRIPA, SWEDEN  

E-Print Network (OSTI)

standing of the heat transfer processes associated withto investigate the heat transfer and related processes in an

Chan, T.

2010-01-01T23:59:59.000Z

449

Heat transfer pathways in underfloor air distribution (UFAD) systems  

E-Print Network (OSTI)

the following heat transfer processes: conduction throughtudes of the major heat transfer processes in a typical room

Bauman, F.; Jin, H.; Webster, T.

2006-01-01T23:59:59.000Z

450

New Study Examines Methods for Technology Transfer from ...  

Science Conference Proceedings (OSTI)

... news announcement, “Study Highlights Diversity in Agency Technology Transfer Approaches” at www.nist.gov/director/tech-transfer-063011.cfm. ...

2012-05-08T23:59:59.000Z

451

Fate of corrosion products released from stainless steel in marine sediments and seawater. Part 2. Sequim Bay clayey silt  

Science Conference Proceedings (OSTI)

This report describes laboratory experiments in which neutron-activated 347 stainless steel specimens were exposed to clayey silt from Sequim Bay, Washington. The properties and trace metal geochemistry of the sediment and the amounts of corrosion products that were released under oxic and reduced conditions and their distribution among different chemical fractions of the sediment are discussed. The distributions of Cr, Mn, Fe, Ni and Cu among different chemical forms in the Sequim Bay sediment show that DTPA removed acetic acid) accounted for approx. 30% of total extractable Mn and approx. 10% or less of Cr, Fe, Ni and Cu. Major portions of Cr and Cu, and a large amount of Fe were in the organic fraction. Extractable Mn, Fe and Ni were associated with hydrous oxides likely as coatings on the mineral substrate of the sediment. No Co was detectable in any of the extracts. (PSB)

Schmidt, R.L.

1982-04-01T23:59:59.000Z

452

Handbook of heat transfer applications (2nd edition)  

Science Conference Proceedings (OSTI)

The applications of heat transfer in engineering problems are considered. Among the applications discussed are: mass transfer cooling; heat exchangers; and heat pipes. Consideration is also given to: heat transfer in nonNewtonian fluids; fluidized and packed beds; thermal energy storage; and heat transfer in solar collectors. Additional topics include: heat transfer in buildings; cooling towers and ponds; and geothermal heat transfer.

Rohsenow, W.M.; Hartnett, J.P.; Ganic, E.N.

1985-01-01T23:59:59.000Z

453

Displacement Transfer Zone | Open Energy Information  

Open Energy Info (EERE)

Displacement Transfer Zone Displacement Transfer Zone Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Displacement Transfer Zone Dictionary.png Displacement Transfer Zone: Displacement transfer zones facilitate the transfer of strain between normal and strike-slip faults. Intersections between strike-slip faults in the Walker Lane and N- to NNE-striking normal faults commonly host geothermal systems, focused along the normal faults proximal to their dilational intersections with nearby strike-slip faults. Other definitions:Wikipedia Reegle Controlling Structures List of controlling structures typically associated with geothermal systems: Major Normal Fault Termination of a Major Normal Fault Stepover or Relay Ramp in Normal Fault Zones Apex or Salient of Normal Fault

454

NERSC HPSS Bandwidth and Transfer Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

Activity Activity Bandwidth and Transfer Activity Data Rate vs. File Size The graph below shows the bandwidth for individual file transfers for one day. The graph also gives a quick overview of the traffic and maximum bandwidth and file size for a given day. Historical yearly peak days. Daily Rate vs. Size Aggregate Transfer Bandwidth This graph shows the aggregate transfer rate to the storage systems as a function of time of day. The red line is the peak bandwidth observed within each one minute interval. The green line is the average over ten minute intervals. Graphs for the last 8 days. Historical yearly peak days. Daily Aggregate Bandwidth Concurrent Transfers The third graph shows the number of concurrent transfers to the storage systems. The peak within each minute is shown, as well as a ten minute

455

Lower Flathead System Fisheries Study, South Bay of Flathead Lake, Volume III, 1983-1987 Final Report.  

DOE Green Energy (OSTI)

The Lower Flathead System Fisheries Study assessed the effects of Kerr Dam operation on the fisheries of the lower Flathead ecosystem. South Bay, the southern most lobe of Flathead Lake, is the most extensive area of shallow water, and therefore, most effected by changes in lake levels. This study began in January of 1984 and was completed in early 1987. Vegetative and structural cover are relatively limited in South Bay, a condition which could contribute to lower recruitment for some fish species. Our data show that the study area contained 0.04% structural and 5.4% vegetative cover in June at full pool. Both figures are less than 1.0% at minimum pool. Structural complexity mediates the ecological interactions between littoral zone fish and their prey, and can affect local productivity and growth in fish. Structural complexity may also be important to overwinter survival of young perch in Flathead Lake. Winter conditions, including ice cover and fall drawdown, seasonally eliminate the vegetative portion of most rooted macrophytes in South Bay. This results in substantial loss of what little structural cover exists, depriving the perch population of habitat which has been occupied all summer. The loss of cover from draw-down concentrates and probably exposes perch to greater predation, including cannibalism, than would occur if structural complexity were greater. 33 refs., 10 figs., 5 tabs.

Cross, David; Waite, Ian

1988-06-01T23:59:59.000Z

456

Does DaYa-Bay Reactor Play an Important Role in Theta_{13} of Lepton Mixing (PMNS) Matrix ?  

E-Print Network (OSTI)

Reactor neutrinos play an important role in determining parameter theta_{13} in the lepton mixing (PMNS) matrix. Next important step on measuring PMNS matrix could be to build another reactor neutrino experiment in DaYa bay, China, to search the possible oscillations via sin^2 (2theta_{13}) and Delta m^2_{13}. We consider 4 different schemes for positions of three 8-ton detectors of this experiment, and simulate the results with respect to an array of assumed ''true'' values of physics parameters. Using three kinds of analysis method, we suggest a best scheme for DaYa-Bay which is to place a detector 2200m ~ 2500m symmetrically away from two reactors, and to put the other two detectors closer to their corresponding reactors respectively, almost at a 100m \\~ 200m distance. Moreover, with conservative assumption on the experimental technique, we construct series of allowed regions from our simulation results, and give detailed explanations therein. The movable detectors in DaYa-Bay can measure solar neutrino pa...

Liu, Q Y; Chen, B L; Yang, P

2004-01-01T23:59:59.000Z

457

Acoustically Enhanced Boiling Heat Transfer  

E-Print Network (OSTI)

An acoustic field is used to increase the critical heat flux (CHF) of a flat-boiling-heat-transfer surface. The increase is a result of the acoustic effects on the vapor bubbles. Experiments are performed to explore the effects of an acoustic field on vapor bubbles in the vicinity of a rigid-heated wall. Work includes the construction of a novel heater used to produce a single vapor bubble of a prescribed size and at a prescribed location on a flatboiling surface for better study of an individual vapor bubble's reaction to the acoustic field. Work also includes application of the results from the single-bubble heater to a calibrated-copper heater used for quantifying the improvements in CHF.

Z. W. Douglas; M. K. Smith; A. Glezer

2008-01-07T23:59:59.000Z

458

Manipulability of Single Transferable Vote  

E-Print Network (OSTI)

For many voting rules, it is NP-hard to compute a successful manipulation. However, NP-hardness only bounds the worst-case complexity. Recent theoretical results suggest that manipulation may often be easy in practice. We study empirically the cost of manipulating the single transferable vote (STV) rule. This was one of the first rules shown to be NP-hard to manipulate. It also appears to be one of the harder rules to manipulate since it involves multiple rounds and since, unlike many other rules, it is NP-hard for a single agent to manipulate without weights on the votes or uncertainty about how the other agents have voted. In almost every election in our experiments, it was easy to compute how a single agent could manipulate the election or to prove that manipulation by a single agent was impossible. It remains an interesting open question if manipulation by a coalition of agents is hard to compute in practice.

Walsh, Toby

2009-01-01T23:59:59.000Z

459

Transfer Entropy Analysis of the Stock Market  

E-Print Network (OSTI)

In terms of transfer entropy, we investigated the strength and the direction of information transfer in the US stock market. Through the directionality of the information transfer, the more influential company between the correlated ones can be found and also the market leading companies are selected. Our entropy analysis shows that the companies related with energy industries such as oil, gas, and electricity influence the whole market.

Baek, S K; Kwon, O; Moon, H T; Baek, Seung Ki; Jung, Woo-Sung; Kwon, Okyu; Moon, Hie-Tae

2005-01-01T23:59:59.000Z

460

Sitewide Categorical Exclusion for Property Transfers,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sitewide Categorical Exclusion for Property Transfers, Sitewide Categorical Exclusion for Property Transfers, Pacific Northwest National Laboratory, Richland, Washington Proposed Action The U.S. Department of Energy (DOE), Pacific Northwest Site Office (PNSO) proposes to transfer, lease, disposition, or acquire interests in personal property or real property. Location of Action The proposed action would occur on the Pacific Northwest National Laboratory (PNNL) site and the Marine Sciences Laboratory and in the vicinity of PNNL facilities in the State of Washington.

Note: This page contains sample records for the topic "k-area transfer bay" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

NREL: Awards and Honors - Technology Transfer Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Transfer Awards Federal Laboratory Consortium (FLC) Awards These awards are given to scientists, researchers, and others who work for federal laboratories and agencies...

462

Secretary Bodman Announces DOE Technology Transfer Coordinator...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces DOE Technology Transfer Coordinator June 29, 2007 - 2:36pm Addthis Establishes Policy Board; Strengthens DOE Efforts to Bring Energy Options to the Marketplace...

463

NREL: Technology Transfer - Technologies Available for Licensing  

National Renewable Energy Laboratory Technology Transfer New Amber LEDs for High-Efficiency Solid-State Lighting. NREL is closing the LED "green gap" ...

464

Heat Transfer In Turbine Mid Structures.  

E-Print Network (OSTI)

??In order to estimate the life time of a cooled gas turbine component, knowledge of the heat transfer is essential in order to predict the… (more)

Abou-Taouk, Abdallah

2006-01-01T23:59:59.000Z

465

Containment condensing heat transfer. [PWR; BWR  

SciTech Connect

This report presents a mechanistic heat-transfer model that is valid for large scale containment heat sinks. The model development is based on the determination that the condensation is controlled by mass diffusion through the vapor-air boundary layer, and the application of the classic Reynolds' analogy to formulate expressions for the transfer of heat and mass based on hydrodynamic measurements of the momentum transfer. As a result, the analysis depends on the quantification of the shear stress (momentum transfer) at the interface between the condensate film and the vapor-air boundary layer. In addition, the currently used Tagami and Uchida test observations and their range of applicability are explained.

Gido, R.G.; Koestel, A.

1983-01-01T23:59:59.000Z

466

Heat transfer and heat exchangers reference handbook  

Science Conference Proceedings (OSTI)

The purpose of this handbook is to provide Rocky Flats personnel with an understanding of the basic concepts of heat transfer and the operation of heat exchangers.

Not Available

1991-01-15T23:59:59.000Z

467

Combustion Process Contact NETL Technology Transfer Group  

NLE Websites -- All DOE Office Websites (Extended Search)

the Reactivity and Capacity of Oxygen Carriers for the Chemical Looping Combustion Process Contact NETL Technology Transfer Group techtransfer@netl.doe.gov February 2013 This...

468

Partnerships and Technology Transfer - Oak Ridge National ...  

Distributed Energy Communications & Controls (DECC) Laboratory D. Tom Rizy; ... Partnerships and Technology Transfer. P.O. Box 2008, Oak Ridge, TN 37831.

469

Technology Transfer: For Industry:SBIR Opportunities  

Technology Transfer Opportunities (TTOs) for SBIR and STTR Programs. FY2013 Phase 1 Release 1. During the FOA open period August 13 - October 16, 2012,

470

Materials Licenses Available | Tech Transfer | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

in Liquid-Salt Cooled Energy Systems 201202989 Rapid Non-contact Energy Transfer for Additive Manufacturing Driven High Intensity Electromagnetic Fields 201302995 Low...

471

Enhanced Heat Transfer in Composite Materials.  

E-Print Network (OSTI)

??Many composite materials are composed of a matrix reinforced with fibers. Carbon fiber composites are currently being used for high heat transfer applications. Carbon fibers… (more)

Pathak, Sayali V.

2013-01-01T23:59:59.000Z

472

Technology Transfer and Procurement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Procurement Technology Transfer and Procurement Solar Panel Technician | Credit: DOE Archives Solar Panel Technician | Credit: DOE Archives Offices of the Deputy General Counsel...

473

Partnerships and Technology Transfer - Oak Ridge National ...  

Disclaimer; Oak Ridge National Laboratory; Ombudsman; Partnerships and Technology Transfer. P.O. Box 2008, Oak Ridge, TN 37831. Office: 865-574-4180 ...

474

Technology Transfer at Berkeley Lab: Ombuds  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Transfer Contact Us See Also Partner Smart with Berkeley Lab (Downloadable Copy, 1.4MB, PDF) Licensing Interest Form Receive New Tech Alerts Ombudsman Complaint...

475

Tech Transfer Event to Showcase NIST Microfluidics ...  

Science Conference Proceedings (OSTI)

From NIST Tech Beat: September 13, 2007. ... cooperation with the MIT Enterprise Forum™ and TEDCO, will host a technology transfer workshop on ...

2013-07-08T23:59:59.000Z

476

Argonne National Laboratory - Office of Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

at Argonne on or before November 15, 2013. Download the commercialization plan worksheet Tech Transfer Information for Employees Technology Corner Recent News Report an invention...

477

Study Highlights Diversity in Agency Technology Transfer ...  

Science Conference Proceedings (OSTI)

... capture the full range of the economic impact of federal research facilities.". ... to transfer technology from the federal laboratories is essential to the ...

2012-05-08T23:59:59.000Z

478

Peptide-Mediated Intramolecular Electron Transfer Complexes  

NLE Websites -- All DOE Office Websites (Extended Search)

Abstract: Electron transfer is one of the fundamental reactions in biological photosynthesis, respiration, and redox-mediated enzyme catalysis. Understanding the role of...

479

Fermilab | Office of Partnerships and Technology Transfer ...  

Quantum Diaries; Technology transfer at Fermilab. In an effort to fuel the economy and foster innovation, President Obama recently issued a directive ...

480

Electrostatic transfer of epitaxial graphene to glass.  

SciTech Connect

We report on a scalable electrostatic process to transfer epitaxial graphene to arbitrary glass substrates, including Pyrex and Zerodur. This transfer process could enable wafer-level integration of graphene with structured and electronically-active substrates such as MEMS and CMOS. We will describe the electrostatic transfer method and will compare the properties of the transferred graphene with nominally-equivalent 'as-grown' epitaxial graphene on SiC. The electronic properties of the graphene will be measured using magnetoresistive, four-probe, and graphene field effect transistor geometries [1]. To begin, high-quality epitaxial graphene (mobility 14,000 cm2/Vs and domains >100 {micro}m2) is grown on SiC in an argon-mediated environment [2,3]. The electrostatic transfer then takes place through the application of a large electric field between the donor graphene sample (anode) and the heated acceptor glass substrate (cathode). Using this electrostatic technique, both patterned few-layer graphene from SiC(000-1) and chip-scale monolayer graphene from SiC(0001) are transferred to Pyrex and Zerodur substrates. Subsequent examination of the transferred graphene by Raman spectroscopy confirms that the graphene can be transferred without inducing defects. Furthermore, the strain inherent in epitaxial graphene on SiC(0001) is found to be partially relaxed after the transfer to the glass substrates.

Ohta, Taisuke; Pan, Wei; Howell, Stephen Wayne; Biedermann, Laura Butler; Beechem Iii, Thomas Edwin; Ross, Anthony Joseph, III

2010-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "k-area transfer bay" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Role of Morphological Growth State and Gene Expression in Desulfovibrio africanus strain Walvis Bay Mercury Methylation  

Science Conference Proceedings (OSTI)

The biogeochemical transformations of mercury are a complex process, with the production of methylmercury, a potent human neurotoxin, repeatedly demonstrated in sulfate- and Fe(III)- reducing as well as methanogenic bacteria. However, little is known regarding the morphology, genes or proteins involved in methylmercury generation. Desulfovibrio africanus strain Walvis Bay is a Hg-methylating -proteobacterium with a sequenced genome and has unusual pleomorphic forms. In this study, a relationship between the pleomorphism and Hg methylation was investigated. Proportional increases in the sigmoidal (regular) cell form corresponded with increased net MeHg production, but decreased when the pinched cocci (persister) form became the major morphotype. D. africanus microarrays indicated that the ferrous iron transport genes (feoAB), as well as ribosomal genes and several genes whose products are predicted to have metal binding domains (CxxC), were up-regulated during exposure to Hg in the exponential phase. While no specific methylation pathways were identified, the finding that Hg may interfere with iron transport and the correlation of growth-phase dependent morphology with MeHg production are notable. The identification of these relationships between differential gene expression, morphology, and the growth phase dependence of Hg transformations suggests that actively growing cells are primarily responsible for methylation, and so areas with ample carbon and electron-acceptor concentrations may also generate a higher proportion of methylmercury than more oligotrophic environments. The observation of increased iron transporter expression also suggests that Hg methylation may interfere with iron biogeochemical cycles.

Moberly, James G [ORNL; Miller, Carrie L [ORNL; Brown, Steven D [ORNL; Biswas, Abir [ORNL; Brandt, Craig C [ORNL; Palumbo, Anthony Vito [ORNL; Elias, Dwayne A [ORNL

2012-01-01T23:59:59.000Z

482

Information summary, Area of Concern: Saginaw River and Saginaw Bay. Final report, Aug-Dec 88  

SciTech Connect

A 5-year study and demonstration project, Assessment and Remediation of Contaminated Sediments (ARCS) was authorized, with emphasis on the removal of toxic pollutants from bottom sediments. Information from the ARCS program is to be used to guide the development of Remedial Action Plans (RAPs) for 42 identified great Lakes Areas of Concern (AOC) as well as Lake-wide Management Plans. The AOCs are areas where serious impairment of beneficial uses of water or biota (drinking, swimming, fishing, navigation, etc.) is known to exist, or where environmental quality criteria are exceeded to the point that such impairment is likely. Research was conducted on the various aspects of contaminant mobility in the aquatic environment. A list of information was developed to evaluate the potential for contaminant mobility. This report summarizes the information obtained for the Saginaw River and Saginaw Bay AOC in Michigan. Data tables include information on discharge, volume and migration of contaminants, sediment transport, oil spills, hazardous materials, superfund sites, bioassay data and biological data (i.e. fish, wildlife habitats, plankton, fish and endangered species).

Brandon, D.L.; Lee, C.R.; Simmers, J.W.; Tatem, H.E.; Skogerboe, J.G.

1991-03-01T23:59:59.000Z

483

Effect of Hurricane Hugo on molluscan skeletal distributions, Salt River Bay, St. Croix, US Virgin Islands  

SciTech Connect

Just prior to the passage of Hurricane Hugo over St. Croix, U.S. Virgin Islands, 35 molluscan skeletal samples were collected at 30 m intervals along a sampling transect in Salt River Bay, on the north-central coast. Three months after the hurricane, the transect was resampled to permit direct assessment of storm effects on skeletal distributions. Results indicate that spatial zonation of molluscan accumulations, associated with environmental transitions along the transect, was maintained in the wake of the hurricane. However, limited transport was diagnosed by comparing the compositions of prestorm and poststorm samples from the deepest, mud-rich subenvironment on the transect. In aggregate, the species richness of samples from the southern half of this zone increased from 16 to 40, and the abundance of species that were not among the characteristic molluscs of this subenvironment increased from 11% to 26%. These storm effects could probably not have been recognized, and attributed directly to Hugo, had there been no prestorm samples with which to compare directly the poststorm samples.

Miller, A.I.; Llewellyn, G. (Univ. of Cincinnati, OH (United States)); Cummins, H.; Boardman, M.R. (Miami Univ., Oxford, OH (United States)); Greenstein, B.J. (Smith College, Northampton, MA (United States)); Jacobs, D.K. (Univ. of California, Berkeley (United States)); Parsons, K.M.

1992-01-01T23:59:59.000Z

484

Load test of the 277W Building high bay roof deck and support structure  

SciTech Connect

The 277W Building high bay roof area was load tested according to the approved load-test procedure, WHC-SD-GN-TP-30015, Revision 1. The 277W Building is located in the 200 West Area of the Hanford Site and has the following characteristics: roof deck -- wood decking supported by 4 x 14 timber purlins; roof membrane -- tar and gravel; roof slope -- flat (<10 deg); and roof elevation -- maximum height of about 63 ft. The 227W Building was visited in March 1994 for a visual inspection. During this inspection, cracked areas were visible in the decking, but it was not possible to determine whether these cracks extended completely through the decking, which is 2-in. thick. The building was revisited in March 1994 for the purpose of writing this test report. Because the roof requires personnel access, a test was determined to be the best way to qualify the roof. The conclusions are that the roof has been qualified for 500-lb total roof load and that the ``No Roof Access`` signs can be changed to ``Roof Access Restricted`` signs.

McCoy, R.M.

1994-12-02T23:59:59.000Z

485

Load test of the 277W Building high bay roof deck and support structure  

Science Conference Proceedings (OSTI)

The 277W Building high bay roof area was load tested according to the approved load-test procedure, WHC-SD-GN-TP-30015, Revision 1. The 277W Building is located in the 200 West Area of the Hanford Site and has the following characteristics: roof deck -- wood decking supported by 4 x 14 timber purlins; roof membrane -- tar and gravel; roof slope -- flat (roof elevation -- maximum height of about 63 ft. The 227W Building was visited in March 1994 for a visual inspection. During this inspection, cracked areas were visible in the decking, but it was not possible to determine whether these cracks extended completely through the decking, which is 2-in. thick. The building was revisited in March 1994 for the purpose of writing this test report. Because the roof requires personnel access, a test was determined to be the best way to qualify the roof. The conclusions are that the roof has been qualified for 500-lb total roof load and that the ``No Roof Access`` signs can be changed to ``Roof Access Restricted`` signs.

McCoy, R.M.

1994-12-02T23:59:59.000Z

486

CONFIRMATORY SURVEY OF THE FUEL OIL TANK AREA HUMBOLDT BAY POWER PLANT EUREKA, CALIFORNIA  

SciTech Connect

During the period of February 14 to 15, 2012, ORISE performed radiological confirmatory survey activities for the former Fuel Oil Tank Area (FOTA) and additional radiological surveys of portions of the Humboldt Bay Power Plant site in Eureka, California. The radiological survey results demonstrate that residual surface soil contamination was not present significantly above background levels within the FOTA. Therefore, it is ORISE’s opinion that the radiological conditions for the FOTA surveyed by ORISE are commensurate with the site release criteria for final status surveys as specified in PG&E’s Characterization Survey Planning Worksheet. In addition, the confirmatory results indicated that the ORISE FOTA survey unit Cs-137 mean concentrations results compared favorably with the PG&E FOTA Cs-137 mean concentration results, as determined by ORISE from the PG&E characterization data. The interlaboratory comparison analyses of the three soil samples analyzed by PG&E’s onsite laboratory and the ORISE laboratory indicated good agreement for the sample results and provided confidence in the PG&E analytical procedures and final status survey soil sample data reporting.

WADE C. ADAMS

2012-04-09T23:59:59.000Z

487

Updated User's Guide for Sammy: Multilevel R-Matrix Fits to Neutron Data Using Bayes' Equations  

SciTech Connect

In 1980 the multilevel multichannel R-matrix code SAMMY was released for use in analysis of neutron-induced cross section data at the Oak Ridge Electron Linear Accelerator. Since that time, SAMMY has evolved to the point where it is now in use around the world for analysis of many different types of data. SAMMY is not limited to incident neutrons but can also be used for incident protons, alpha particles, or other charged particles; likewise, Coulomb exit hannels can be included. Corrections for a wide variety of experimental conditions are available in the code: Doppler and resolution broadening, multiple-scattering corrections for capture or reaction yields, normalizations and backgrounds, to name but a few. The fitting procedure is Bayes' method, and data and parameter covariance matrices are properly treated within the code. Pre- and post-processing capabilities are also available, including (but not limited to) connections with the Evaluated Nuclear Data Files. Though originally designed for use in the resolved resonance region, SAMMY also includes a treatment for data analysis in the unresolved resonance region.

Larson, Nancy M [ORNL

2008-10-01T23:59:59.000Z

488

The Sequential Empirical Bayes Method: An Adaptive Constrained-Curve Fitting Algorithm for Lattice QCD  

E-Print Network (OSTI)

We introduce the ``Sequential Empirical Bayes Method'', an adaptive constrained-curve fitting procedure for extracting reliable priors. These are then used in standard augmented-$\\chi^2$ fits on separate data. This better stabilizes fits to lattice QCD overlap-fermion data at very low quark mass where {\\it a priori} values are not otherwise known. Lessons learned (including caveats limiting the scope of the method) from studying artificial data are presented. As an illustration, from local-local two-point correlation functions, we obtain masses and spectral weights for ground and first-excited states of the pion, give preliminary fits for the $a_0$ where ghost states (a quenched artifact) must be dealt with, and elaborate on the details of fits of the Roper resonance and $S_{11}(N^{1/2-})$ previously presented elsewhere. The data are from overlap fermions on a quenched $16^3\\times 28$ lattice with spatial size $La=3.2 {\\rm fm}$ and pion mass as low as $\\sim 180 {\\rm MeV}$.

Ying Chen; Shao-Jing Dong; Terrence Draper; Ivan Horvath; Keh-Fei Liu; Nilmani Mathur; Sonali Tamhankar; Cidambi Srinivasan; Frank X. Lee; Jianbo Zhang

2004-05-03T23:59:59.000Z

489

Bayes in the sky: Bayesian inference and model selection in cosmology  

E-Print Network (OSTI)

The application of Bayesian methods in cosmology and astrophysics has flourished over the past decade, spurred by data sets of increasing size and complexity. In many respects, Bayesian methods have proven to be vastly superior to more traditional statistical tools, offering the advantage of higher efficiency and of a consistent conceptual basis for dealing with the problem of induction in the presence of uncertainty. This trend is likely to continue in the future, when the way we collect, manipulate and analyse observations and compare them with theoretical models will assume an even more central role in cosmology. This review is an introduction to Bayesian methods in cosmology and astrophysics and recent results in the field. I first present Bayesian probability theory and its conceptual underpinnings, Bayes' Theorem and the role of priors. I discuss the problem of parameter inference and its general solution, along with numerical techniques such as Monte Carlo Markov Chain methods. I then review the theory and application of Bayesian model comparison, discussing the notions of Bayesian evidence and effective model complexity, and how to compute and interpret those quantities. Recent developments in cosmological parameter extraction and Bayesian cosmological model building are summarized, highlighting the challenges that lie ahead.

Roberto Trotta

2008-03-28T23:59:59.000Z

490

Sponsored Project Account Cost Transfer Explanation  

E-Print Network (OSTI)

Sponsored Project Account Cost Transfer Explanation Check-Off List December 2011 The explanations checked below best describe the reasons for why the cost transfers are being made. Costs as to how to allocate the cost, temporarily assigned the cost to an existing account that acted

He, Chuan

491

Exposing and understanding scrolling transfer functions  

Science Conference Proceedings (OSTI)

Scrolling is controlled through many forms of input devices, such as mouse wheels, trackpad gestures, arrow keys, and joysticks. Performance with these devices can be adjusted by introducing variable transfer functions to alter the range of expressible ... Keywords: control-display gain, scroll acceleration, scrolling, transfer functions

Philip Quinn; Andy Cockburn; Géry Casiez; Nicolas Roussel; Carl Gutwin

2012-10-01T23:59:59.000Z

492

Evolving Static Representations for Task Transfer  

Science Conference Proceedings (OSTI)

An important goal for machine learning is to transfer knowledge between tasks. For example, learning to play RoboCup Keepaway should contribute to learning the full game of RoboCup soccer. Previous approaches to transfer in Keepaway have focused on transforming ...

Phillip Verbancsics; Kenneth O. Stanley

2010-03-01T23:59:59.000Z

493

Silver lines electrode patterned by transfer printing  

Science Conference Proceedings (OSTI)

This paper reports a novel method for the fabrication of silver electrode with high resolution using transfer printing method. The resolution can reach to 30@mm with high electrical conductivity as we keep a large depth and micro-size particles of the ... Keywords: Transferring printing

Liangjin Ge; L. Jay Guo; Xudi Wang; Shaojun Fu

2012-09-01T23:59:59.000Z

494

Transfer in Reinforcement Learning via Shared Features  

Science Conference Proceedings (OSTI)

We present a framework for transfer in reinforcement learning based on the idea that related tasks share some common features, and that transfer can be achieved via those shared features. The framework attempts to capture the notion of tasks that are ...

George Konidaris; Ilya Scheidwasser; Andrew Barto

2012-06-01T23:59:59.000Z

495

Energy transfer processes in solar energy conversion  

DOE Green Energy (OSTI)

During the past year, we have been working in three general areas: electronic excitation transport in clustered chromophore systems and other complex systems, photo-induced electron transfer and back transfer in liquid solutions in which diffusion and charge interactions are important, and the construction of a new two color dye laser system to enhance our experimental capability.

Fayer, M.D.

1992-01-01T23:59:59.000Z

496

Please transfer ALL data off /house  

NLE Websites -- All DOE Office Websites (Extended Search)

Please transfer ALL data off /house before Please transfer ALL data off /house before 12/1/2013 Please transfer ALL data off house September 3, 2013 by Kjiersten Fagnan (0 Comments) We are happy to announce that all the file systems: /global/projectb, /global/dna and /webfs are available for use. We now strongly encourage users to begin the data transfer process from /house to the other file systems. House will retire on December 20, 2013! For more information on the best ways to transfer data and what each file system should be used for, check this page . Post your comment You cannot post comments until you have logged in. Login Here. Comments No one has commented on this page yet. RSS feed for comments on this page | RSS feed for all comments User Announcements Email announcement archive Subscribe via RSS

497

NETL Technologies Recognized for Technology Development, Transfer |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recognized for Technology Development, Transfer Recognized for Technology Development, Transfer NETL Technologies Recognized for Technology Development, Transfer October 25, 2013 - 1:31pm Addthis Did you know? The Federal Laboratory Consortium for Technology Transfer is the nationwide network of federal laboratories that provides the forum to develop strategies and opportunities for linking laboratory mission technologies and expertise with the marketplace. In consonance with the Federal Technology Transfer Act of 1986 and related federal policy, the mission of the FLC is to promote and facilitate the rapid movement of federal laboratory research results and technologies into the mainstream of the U.S. economy. Learn more about the FLC. A great invention that sits on a shelf, gathering dust, benefits no one.

498

A model for laboratory tech transfer investment  

Science Conference Proceedings (OSTI)

A simple model has been developed to address a pragmatic question: What fraction of its research and development budget should a national laboratory devote to enhancing technology in the private sector? In dealing with lab-wide budgets in an aggregate sense, the model uses three parameters - fraction of lab R&D transferable to industry, transfer efficiency and payback to laboratory missions - to partition fixed R&D resources between technology transfer and core missions. It is a steady-state model in that the transfer process is assumed to work in equilibrium with technology generation. The results presented should be of use to those engaged in managing and overseeing federal laboratory technology transfer activities.

Otey, G.R.; Carson, C.C.; Bomber, T.M.; Rogers, J.D.

1994-06-01T23:59:59.000Z

499

Enhanced heat transfer for thermionic power modules  

DOE Green Energy (OSTI)

The thermionic power module is capable of operating at very high heat fluxes, which in turn serve to reduce capital costs. The most efficient operation also requires uniform heat fluxes. The development of enhanced heat transfer systems is required to meet the demand for high heat fluxes (>20 w/cm/sup 2/) at high temperatures (>1500K) which advanced thermionic power modules place upon combustion systems. Energy transfer from the hot combustion gases may take place by convection, radiation, or a combination of radiation and convection. Enhanced convective heat transfer with a jet impingement system has been demonstrated in a thermionic converter. The recently-developed cellular ceramic radiative heat transfer system has also been applied to a thermionic converter. By comparing the jet impingement and cellular ceramic radiative heat transfer systems, an appropriate system may be selected for utilization in advanced thermionic power modules. Results are reported.

Johnson, D.C.

1981-07-01T23:59:59.000Z

500

Gas mass transfer for stratified flows  

SciTech Connect

We analyzed gas absorption and release in water bodies using existing surface renewal theory. We show a new relation between turbulent momentum and mass transfer from gas to water, including the effects of waves and wave roughness, by evaluating the equilibrum integral turbulent dissipation due to energy transfer to the water from the wind. Using Kolmogoroff turbulence arguments the gas transfer velocity, or mass transfer coefficient, is then naturally and straightforwardly obtained as a non-linear function of the wind speed drag coefficient and the square root of the molecular diffusion coefficient. In dimensionless form, the theory predicts the turbulent Sherwood number to be Sh{sub t} = (2/{radical}{pi}) Sc{sup 1/2}, where Sh{sub t} is based on an integral dissipation length scale in the air. The theory confirms the observed nonlinear variation of the mass transfer coefficient as a function of the wind speed; gives the correct transition with turbulence-centered models for smooth surfaces at low speeds; and predicts experimental data from both laboratory and environmental measurements within the data scatter. The differences between the available laboratory and field data measurements are due to the large differences in the drag coefficient between wind tunnels and oceans. The results also imply that the effect of direct aeration due to bubble entrainment at wave breaking is no more than a 20% increase in the mass transfer for the highest speeds. The theory has importance to mass transfer in both the geophysical and chemical engineering literature.

Duffey, R.B. [Brookhaven National Lab., Upton, NY (United States); Hughes, E.D. [CSA Inc., Idaho Falls, ID (United States)

1995-07-01T23:59:59.000Z