Powered by Deep Web Technologies
Note: This page contains sample records for the topic "jupiter laser facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Jupiter Laser Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region serviceMission Statement Titan TargetInJupiter Laser Facility The

2

Jupiter Laser Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home| Visitors|UpcomingElectrolyte GenomeNews itemPLS

3

Janus Laser Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region serviceMission Statement Titan Target Chamber The JupiterJLFJanus

4

Titan Laser Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System BurstLongTitan Titan is a two-beam laser

5

Laser Facilities, Laser-Plasmas & Diagnostics Plasmas Division  

E-Print Network [OSTI]

of freely moving ions and free electrons. Figure 1: The large NOVA laser at Lawrence Livermore National Facility (NIF) is the world's largest and highest-energy laser (Figure 2). It houses 192 intense laser and of a single wavelength. There are a large number of Figure 2: NIF from above & the target chamber. Figure 4

Strathclyde, University of

6

Jupiter Laser Facility Target Fab Request Requester: Date Requested:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation forTechnologiesDialysis Provider3 | National64to5 June/

7

Results of initial operation of the Jupiter Oxygen Corporation oxy-fuel 15 MWth burner test facility  

SciTech Connect (OSTI)

Jupiter Oxygen Corporation (JOC), in cooperation with the National Energy Technology Laboratory (NETL), constructed a 15 MWth oxy-fuel burner test facility with Integrated Pollutant Removal (IPRTM) to test high flame temperature oxy-fuel combustion and advanced carbon capture. Combustion protocols include baseline air firing with natural gas, oxygen and natural gas firing with and without flue gas recirculation, and oxygen and pulverized coal firing with flue gas recirculation. Testing focuses on characterizing burner performance, determining heat transfer characteristics, optimizing CO2 capture, and maximizing heat recovery, with an emphasis on data traceability to address retrofit of existing boilers by directly transforming burner systems to oxy-fuel firing.

Thomas Ochs, Danylo Oryshchyn, Rigel Woodside, Cathy Summers, Brian Patrick, Dietrich Gross, Mark Schoenfield, Thomas Weber and Dan O'Brien

2009-04-01T23:59:59.000Z

8

Ultrafast Laser Facility | Photosynthetic Antenna Research Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof2014 EIA Energy40081AEnergyUltrafast Laser Facility

9

Laser and Spectroscopy Facility Center For Microanalysis of Materials  

E-Print Network [OSTI]

Laser and Spectroscopy Facility Center For Microanalysis of Materials Frederick Seitz Materials Research Laboratory Form revised 03 November 2009 Precautions for the safe use of lasers 1. NEVER LOOK DIRECTLY INTO ANY LASER BEAM, REGARDLESS OF POWER. 2. The lab door safety lamp "LASER in USE" must

Braun, Paul

10

The Central Laser Facility at the Pierre Auger Observatory  

E-Print Network [OSTI]

The Central Laser Facility is located near the middle of the Pierre Auger Observatory in Argentina. It features a UV laser and optics that direct a beam of calibrated pulsed light into the sky. Light scattered from this beam produces tracks in the Auger optical detectors which normally record nitrogen fluorescence tracks from cosmic ray air showers. The Central Laser Facility provides a "test beam" to investigate properties of the atmosphere and the fluorescence detectors. The laser can send light via optical fiber simultaneously to the nearest surface detector tank for hybrid timing analyses. We describe the facility and show some examples of its many uses.

F. Arqueros; J. Bellido; C. Covault; D. D'Urso; C. Di Giulio; P. Facal; B. Fick; F. Guarino; M. Malek; J. A. J. Matthews; J. Matthews; R. Meyhandan; M. Monasor; M. Mostafa; P. Petrinca; M. Roberts; P. Sommers; P. Travnicek; L. Valore; V. Verzi; L. Wiencke

2005-07-13T23:59:59.000Z

11

Conceptional Design of the Laser Ion Source based Hadrontherapy Facility  

E-Print Network [OSTI]

Laser ion source (LIS), which can provide carbon beam with highly stripped state (C6+) and high intensity (several tens mA), would significantly change the overall design of the hadrontherapy facility. A LIS based hadrontherapy facility is proposed with the advantage of short linac length, simple injection scheme and small synchrotron size. With the experience from the DPIS and HITFiL project that had conducted in IMP, a conceptional design of the LIS based hadrontherapy facility will be present with special dedication to APF type IH DTL design and simulation.

Xie, Xiucui; Zhang, Xiaohu

2013-01-01T23:59:59.000Z

12

Ultraviolet Free Electron Laser Facility preliminary design report  

SciTech Connect (OSTI)

This document, the Preliminary Design Report (PDR) for the Brookhaven Ultraviolet Free Electron Laser (UV FEL) facility, describes all the elements of a facility proposed to meet the needs of a research community which requires ultraviolet sources not currently available as laboratory based lasers. Further, for these experiments, the requisite properties are not extant in either the existing second or upcoming third generation synchrotron light sources. This document is the result of our effort at BNL to identify potential users, determine the requirements of their experiments, and to design a facility which can not only satisfy the existing need, but have adequate flexibility for possible future extensions as need dictates and as evolving technology allows. The PDR is comprised of three volumes. In this, the first volume, background for the development of the proposal is given, including descriptions of the UV FEL facility, and representative examples of the science it was designed to perform. Discussion of the limitations and potential directions for growth are also included. A detailed description of the facility design is then provided, which addresses the accelerator, optical, and experimental systems. Information regarding the conventional construction for the facility is contained in an addendum to volume one (IA).

Ben-Zvi, I. (ed.)

1993-02-01T23:59:59.000Z

13

Laser Plasma Particle Accelerators: Large Fields for Smaller Facility Sources  

E-Print Network [OSTI]

of high- gradient, laser plasma particle accelerators.accelerators that use laser-driven plasma waves. Theseleft) showing the laser (red), plasma wake density (purple-

Geddes, Cameron G.R.

2010-01-01T23:59:59.000Z

14

National Ignition Facility system design requirements Laser System SDR002  

SciTech Connect (OSTI)

This System Design Requirement document establishes the performance, design, development, and test requirements for the NIP Laser System. The Laser System generates and delivers high-power optical pulses to the target chamber, and is composed of all optical puke creating and transport elements from Puke Generation through Final Optics as well as the special equipment that supports, energizes and controls them. The Laser System consists of the following WBS elements: 1.3 Laser System 1.4 Beam Transport System 1.6 Optical Components 1.7 Laser Control 1.8.7 Final Optics.

Larson, D.W.; Bowers, J.M.; Bliss, E.S.; Karpenko, V.P.; English, E.

1996-08-20T23:59:59.000Z

15

Engineering design of the Nova Laser Facility for inertial-confinement fusion  

SciTech Connect (OSTI)

The design of the Nova Laser Facility for inertial confinement fusion experiments at Lawrence Livermore National Laboratory is presented from an engineering perspective. Emphasis is placed upon design-to-performance requirements as they impact the various subsystems that comprise this complex experimental facility.

Simmons, W W; Godwin, R O; Hurley, C A; Wallerstein, E. P.; Whitham, K.; Murray, J. E.; Bliss, E. S.; Ozarski, R. G.; Summers, M. A.; Rienecker, F.; Gritton, D. G.; Holloway, F. W.; Suski, G. J.; Severyn, J. R.

1982-01-25T23:59:59.000Z

16

Laser Plasma Particle Accelerators: Large Fields for Smaller Facility Sources  

E-Print Network [OSTI]

essential understanding of accelerator physics to advanceof high- gradient, laser plasma particle accelerators.to conventional particle accelerators, plasmas can sustain

Geddes, Cameron G.R.

2010-01-01T23:59:59.000Z

17

Distributed Feedback Fiber Laser The Heart of the National Ignition Facility  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) is a world-class laser fusion machine that is currently under construction at Lawrence Livermore National Laboratory (LLNL). The 192 laser beams that converge on the target at the output of the NIF laser system originate from a low power fiber laser in the Master Oscillator Room (MOR). The MOR is responsible for generating the single pulse that seeds the entire NIF laser system. This single pulse is phase-modulated to add bandwidth, and then amplified and split into 48 separate beam lines all in single-mode polarizing fiber. Before leaving the MOR, each of the 48 output beams are temporally sculpted into high contrast shapes using Arbitrary Waveform Generators. The 48 output beams of the MOR are amplified in the Preamplifier Modules (PAMs), split and amplified again to generate 192 laser beams. The 192 laser beams are frequency converted to the third harmonic and then focused at the center of a 10-meter diameter target chamber. The MOR is an all fiber-based system utilizing highly reliable Telecom-Industry type hardware. The nearly 2,000,000 joules of energy at the output of the NIF laser system starts from a single fiber oscillator that fits in the palm of your hand. This paper describes the design and performance of the laser source that provides the precision light to the National Ignition Facility. Shown below is a simplified diagram illustrating the MOR's basic functions.

Browning, D F; Erbert, G V

2003-12-01T23:59:59.000Z

18

"Defense-in-Depth" Laser Safety and the National Ignition Facility  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) is the largest and most energetic laser in the world contained in a complex the size of a football stadium. From the initial laser pulse, provided by telecommunication style infrared nanoJoule pulsed lasers, to the final 192 laser beams (1.8 Mega Joules total energy in the ultraviolet) converging on a target the size of a pencil eraser, laser safety is of paramount concern. In addition to this, there are numerous high-powered (Class 3B and 4) diagnostic lasers in use that can potentially send their laser radiation travelling throughout the facility. With individual beam paths of up to 1500 meters and a workforce of more than one thousand, the potential for exposure is significant. Simple laser safety practices utilized in typical laser labs just don't apply. To mitigate these hazards, NIF incorporates a multi layered approach to laser safety or 'Defense in Depth.' Most typical high-powered laser operations are contained and controlled within a single room using relatively simplistic controls to protect both the worker and the public. Laser workers are trained, use a standard operating procedure, and are required to wear Personal Protective Equipment (PPE) such as Laser Protective Eyewear (LPE) if the system is not fully enclosed. Non-workers are protected by means of posting the room with a warning sign and a flashing light. In the best of cases, a Safety Interlock System (SIS) will be employed which will 'safe' the laser in the case of unauthorized access. This type of laser operation is relatively easy to employ and manage. As the operation becomes more complex, higher levels of control are required to ensure personnel safety. Examples requiring enhanced controls are outdoor and multi-room laser operations. At the NIF there are 192 beam lines and numerous other Class 4 diagnostic lasers that can potentially deliver their hazardous energy to locations far from the laser source. This presents a serious and complex potential hazard to personnel. Because of this, a multilayered approach to safety is taken. This paper presents the philosophy and approach taken at the NIF in the multi-layered 'defense-in-depth' approach to laser safety.

King, J J

2010-12-02T23:59:59.000Z

19

A New Gated X-Ray Detector for the Orion Laser Facility  

SciTech Connect (OSTI)

Gated X-Ray Detectors (GXD) are considered the work-horse target diagnostic of the laser based inertial confinement fusion (ICF) program. Recently, Los Alamos National Laboratory (LANL) has constructed three new GXDs for the Orion laser facility at the Atomic Weapons Establishment (AWE) in the United Kingdom. What sets these three new instruments apart from the what has previously been constructed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is: improvements in detector head microwave transmission lines, solid state embedded hard drive and updated control software, and lighter air box design and other incremental mechanical improvements. In this paper we will present the latest GXD design enhancements and sample calibration data taken on the Trident laser facility at Los Alamos National Laboratory using the newly constructed instruments.

Clark, David D. [Los Alamos National Laboratory; Aragonez, Robert J. [Los Alamos National Laboratory; Archuleta, Thomas N. [Los Alamos National Laboratory; Fatherley, Valerie E. [Los Alamos National Laboratory; Hsu, Albert H. [Los Alamos National Laboratory; Jorgenson, H. J. [Los Alamos National Laboratory; Mares, Danielle [Los Alamos National Laboratory; Oertel, John A. [Los Alamos National Laboratory; Oades, Kevin [Atomic Weapons Establishment; Kemshall, Paul [Atomic Weapons Establishment; Thomas, Philip [Atomic Weapons Establishment; Young, Trevor [Atomic Weapons Establishment; Pederson, Neal [VI Control Systems

2012-08-08T23:59:59.000Z

20

Fluence Thresholds for Laser-Induced Damage of Optical Components in the Injector Laser of the SSRL Gun Test Facility  

SciTech Connect (OSTI)

Damage threshold fluences for several optical components were measured at three wavelengths using the injector laser at SSRL's Gun Test Facility. Measurements were conducted using the fundamental ir wavelength at 1053 nanometers and harmonics at 526 nm and 263 nm with 3.4ps pulses (1/e{sup 2} full width intensity); ir measurements were also conducted with 850 ps pulses. Practical surfaces relevant to the laser system performance are emphasized. Damage onset was evidenced by an alteration of the specular reflection of a cw probe laser (650 nm) from the irradiated region of the target surface. For the case of stretched ir pulses, damage to a Nd:glass rod was observed to begin at a site within the bulk material and to progress back toward the incident surface.

Boton, P

2005-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "jupiter laser facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Isentropic expansion of copper plasma in Mbar pressure range at “Luch” laser facility  

SciTech Connect (OSTI)

We present experimental results on thermodynamic properties of dense copper plasma in Mbar pressure range. The laser facility “Luch” with laser intensity 10{sup 14}?W/cm{sup 2} is used to compress copper up to ?8?Mbar by a strong shock wave; subsequent expansion of copper plasma into Al, Ti, Sn allows us to obtain release isentropes of copper by the impedance–matching method. A theoretical analysis and quantum simulations show that in our experiments strongly coupled quantum plasma is generated.

Bel'kov, S. A.; Derkach, V. N.; Garanin, S. G.; Mitrofanov, E. I.; Voronich, I. N. [Russian Federal Nuclear Center – VNIIEF, Sarov (Russian Federation); Fortov, V. E.; Levashov, P. R.; Minakov, D. V. [Joint Institute for High Temperatures, Moscow, Russia and Moscow Institute of Physics and Technology (State University), Dolgoprudny (Russian Federation)

2014-01-21T23:59:59.000Z

22

Distributed computer control system in the Nova Laser Fusion Test Facility  

SciTech Connect (OSTI)

The EE Technical Review has two purposes - to inform readers of various activities within the Electronics Engineering Department and to promote the exchange of ideas. The articles, by design, are brief summaries of EE work. The articles included in this report are as follows: Overview - Nova Control System; Centralized Computer-Based Controls for the Nova Laser Facility; Nova Pulse-Power Control System; Nova Laser Alignment Control System; Nova Beam Diagnostic System; Nova Target-Diagnostics Control System; and Nova Shot Scheduler. The 7 papers are individually abstracted.

Not Available

1985-09-01T23:59:59.000Z

23

The National Ignition Facility National Ignition Campaign Short Pulse Lasers High-Average-Power Laser  

E-Print Network [OSTI]

-Average-Power Laser NIF-1005-11471 07BEW/dj P9765 Agenda #12;P9516NIF-0805-11197 01EIM/dj Stockpile Stewardship #12;P9504NIF-0404-08345r2 27EIM/ld Basic Science and Cosmology #12;NIF-0702-05346rIFSA Fusion Energy Campaign and point design NIF-0305-10564 23MLS/cld P8719 The NIF Laser User Optics Physics Operations

24

Design of an XUV FEL Driven by the Laser-Plasma Accelerator at the LBNL LOASIS Facility  

E-Print Network [OSTI]

A445 (2000) 59. [13] W. M. Fawley, LBNL Technical Report No.LBNL-49625 (2002); see also paper MOPPH073, theseLASER-PLASMA ACCELERATOR AT THE LBNL LOASIS FACILITY ? C. B.

Schroeder, Carl B.; Fawley, W.M.; Esarey, Eric; Leemans, W.P.

2006-01-01T23:59:59.000Z

25

Operational Radiation Protection in Synchrotron Light and Free Electron Laser Facilities  

SciTech Connect (OSTI)

The 3rd generation synchrotron radiation (SR) facilities are storage ring based facilities with many insertion devices and photon beamlines, and have low injection beam power (< few tens of watts), but extremely high stored beam power ({approx} 1 GW). The 4th generation x-ray free electron laser (FEL) facilities are based on an electron Linac with a long undulator and have high injection beam power (a few kW). Due to its electron and photon beam characteristics and modes of operation, storage ring and photon beamlines have unique safety aspects, which are the main subjects of this paper. The shielding design limits, operational modes, and beam losses are first reviewed. Shielding analysis (source terms and methodologies) and interlocked safety systems for storage ring and photon beamlines (including SR and gas bremsstrahlung) are described. Specific safety issues for storage ring top-off injection operation and FEL facilities are discussed. The operational safety program, e.g., operation authorization, commissioning, training, and radiation measurements, for SR facilities is also presented.

Liu, James C.; Rokni, Sayed H.; /SLAC; Vylet, Vaclav; /Jefferson Lab

2009-12-11T23:59:59.000Z

26

Data acquisition and processing system at the NOVETTE laser fusion facility  

SciTech Connect (OSTI)

This paper describes the computer hardware and software used for acquisition and processing of data from experiments at the NOVETTE laser fusion facility. Nearly two hundred sensors are used to measure the performance of millimeter extent targets irradiated by multi-kilojoule laser pulses. Sensor output is recorded on CAMAC based digitzers, CCD arrays, and film. CAMAC instrument outputs are acquired and collected by a network of LSI-11 microprocessors centrally controlled by a VAX 11/780. The user controls the system through menus presented on color video displays equipped with touch panels. The control VAX collects data from all microprocessors and CCD arrays and stores them in a file for transport to a second VAX 11/780 which is used for processing and final analysis. Transfer is done through a high speed fiber-optic link. Relational data bases are used extensively in the processing and archiving of data.

Averbach, J.M.; Kroepfl, D.J.; Severyn, J.R.

1983-02-01T23:59:59.000Z

27

Indirect-drive ablative Rayleigh-Taylor growth experiments on the Shenguang-II laser facility  

SciTech Connect (OSTI)

In this research, a series of single-mode, indirect-drive, ablative Rayleigh-Taylor (RT) instability experiments performed on the Shenguang-II laser facility [X. T. He and W. Y. Zhang, Eur. Phys. J. D 44, 227 (2007)] using planar target is reported. The simulation results from the one-dimensional hydrocode for the planar foil trajectory experiment indicate that the energy flux at the hohlraum wall is obviously less than that at the laser entrance hole. Furthermore, the non-Planckian spectra of x-ray source can strikingly affect the dynamics of the foil flight and the perturbation growth. Clear images recorded by an x-ray framing camera for the RT growth initiated by small- and large-amplitude perturbations are obtained. The observed onset of harmonic generation and transition from linear to nonlinear growth regime is well predicted by two-dimensional hydrocode simulations.

Wu, J. F.; Fan, Z. F.; Zheng, W. D.; Wang, M.; Pei, W. B.; Zhu, S. P.; Zhang, W. Y. [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China)] [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Miao, W. Y.; Yuan, Y. T.; Cao, Z. R.; Deng, B.; Jiang, S. E.; Liu, S. Y.; Ding, Y. K. [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China)] [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Wang, L. F.; Ye, W. H., E-mail: ye-wenhua@iapcm.ac.cn; He, X. T. [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China) [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871 (China)

2014-04-15T23:59:59.000Z

28

Numerical analysis of the direct drive illumination uniformity for the Laser MegaJoule facility  

SciTech Connect (OSTI)

The illumination uniformity provided during the initial imprinting phase of the laser foot pulse in a direct drive scenario at the Laser MegaJoule facility has been analyzed. This study analyzes the quality of the illumination of a spherical capsule and concerns the uniformity of the first shock generate in the absorber of an Inertial Confinement Fusion capsule. Four configurations making use of all or some of the 80 laser beams organized in the 20 quads of the cones at 49° and 131° with respect to the polar axis have been considered in order to assemble the foot pulse. Elliptical and circular super-gaussian laser intensity profiles taking into account beam-to-beam power imbalance (10%), pointing error (50??m), and target positioning (20??m) have been considered. It has been found that the use of the Polar Direct Drive technique can in some cases reduce the irradiation non-uniformity by a factor as high as 50%. In all cases, elliptical profile provides better results in comparison with the circular one and it is shown that the minimum of the non-uniformity is also a function of the capsule radius.

Temporal, M., E-mail: mauro.temporal@hotmail.com [Centre de Mathématiques et de Leurs Applications, ENS Cachan and CNRS, 61 Av. du President Wilson, F-94235 Cachan Cedex (France); Canaud, B. [CEA, DIF, F-91297 Arpajon Cedex (France)] [CEA, DIF, F-91297 Arpajon Cedex (France); Garbett, W. J. [AWE plc, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom)] [AWE plc, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Ramis, R. [ETSI Aeronáuticos, Universidad Politécnica de Madrid, 28040 Madrid (Spain)] [ETSI Aeronáuticos, Universidad Politécnica de Madrid, 28040 Madrid (Spain)

2014-01-15T23:59:59.000Z

29

R&D for a Soft X-Ray Free Electron Laser Facility  

SciTech Connect (OSTI)

Several recent reports have identified the scientific requirements for a future soft x-ray light source, and a high-repetition-rate free-electron laser (FEL) facility that is responsive to these requirements is now on the horizon. R&D in some critical areas is needed, however, to demonstrate technical performance, thus reducing technical risks and construction costs. Such a facility most likely will be based on a CW superconducting linear accelerator with beam supplied by a high-brightness, high-repetition-rate photocathode electron gun operating in CW mode, and on an array of FELs to which the accelerated beam is distributed, each operating at high repetition rate and with even pulse spacing. Dependent on experimental requirements, the individual FELs can be configured for either self-amplified spontaneous emission (SASE), seeded, or oscillator mode of operation, including the use of high-gain harmonic generation (HGHG), echo-enhanced harmonic generation (EEHG), harmonic cascade, or other configurations. In this White Paper we identify the overall accelerator R&D needs, and highlight the most important pre-construction R&D tasks required to value-engineer the design configuration and deliverables for such a facility. In Section 1.4 we identify the comprehensive R&D ultimately needed. We identify below the highest-priority requirements for understanding machine performance and reduce risk and costs at this pre-conceptual design stage. Details of implementing the required tasks will be the subject of future evaluation. Our highest-priority R&D program is the injector, which must be capable of delivering a beam with bunches up to a nanocoulomb at MHz repetition rate and with normalized emittance {le} 1 mm {center_dot} mrad. This will require integrated accelerating structure, cathode, and laser systems development. Cathode materials will impact the choice of laser technology in wavelength and energy per pulse, as well as vacuum requirements in the accelerating structure. Demonstration experiments in advanced seeding techniques, such as EEHG, and other optical manipulations to enhance the FEL process are required to reduce technical risk in producing temporally coherent and ultrashort x-ray output using optical seed lasers. Success of EEHG in particular would result in reduced development and cost of laser systems and accelerator hardware for seeded FELs. With a 1.5-2.5 GeV linac, FELs could operate in the VUV-soft x-ray range, where the actual beam energy will be determined by undulator technology; for example, to use the lower energy would require the use of advanced designs for which undulator R&D is needed. Significant reductions in both unit costs and accelerator costs resulting from the lower electron beam energy required to achieve lasing at a particular wavelength could be obtained with undulator development. Characterization of the wakefields of the vacuum chambers in narrow-gap undulators will be needed to minimize risk in ability to deliver close to transform limited pulses. CW superconducting RF technology for an FEL facility with short bunches at MHz rate and up to mA average current will require selection of design choices in cavity frequency and geometry, higher order mode suppression and power dissipation, RF power supply and distribution, accelerating gradient, and cryogenics systems. R&D is needed to define a cost and performance optimum. Developments in laser technology are proceeding at rapid pace, and progress in high-power lasers, harmonic generation, and tunable sources will need to be tracked.

Corlett, John; Attwood, David; Byrd, John; Denes, Peter; Falcone, Roger; Heimann, Phil; Leemans, Wim; Padmore, Howard; Prestemon, Soren; Sannibale, Fernando; Schlueter, Ross; Schroeder, Carl; Staples, John; Venturini, Marco; Warwick, Tony; Wells, Russell; Wilcox, Russell; Zholent, Alexander; Adolphsen, Chris; Arthur, John; Bergmann, Uwe; Cai, Yunhai; Colby, Eric; Dowell, David; Emma, Paul; Fox, John; Frisch, Josef; Galayda, John; Hettel, Robert; Huang, Zhirong; Phinney, Nan; Rabedeau, Tom; Raubenheimer, Tor; Reis, David; Schmerge, John; St& #246; hr, Joachim; Stupakov, Gennady; White, Bill; Xiang, Dao

2009-06-08T23:59:59.000Z

30

High-energy x-ray microscopy of laser-fusion plasmas at the National Ignition Facility  

SciTech Connect (OSTI)

Multi-keV x-ray microscopy will be an important laser-produced plasma diagnostic at future megajoule facilities such as the National Ignition Facility (NIF).In preparation for the construction of this facility, we have investigated several instrumentation options in detail, and we conclude that near normal incidence single spherical or toroidal crystals may offer the best general solution for high-energy x-raymicroscopy at NIF and at similar large facilities. Kirkpatrick-Baez microscopes using multi-layer mirrors may also be good secondary options, particularly if apertures are used to increase the band-width limited field of view.

Koch, J.A.; Landen, O.L.; Hammel, B.A. [and others

1997-08-26T23:59:59.000Z

31

National Ignition Facility subsystem design requirements laser {ampersand} target area building (LTAB) SSDR 1.2.2.1  

SciTech Connect (OSTI)

This Subsystem Design Requirements (SSDR) document establishes the performance, design, and verification requirements for the conventional building systems and subsystems of the Laser and Target Area Building (LTAB), including those that house and support the operation of high-energy laser equipment and the operational flow of personnel and materials throughout the facility. This SSDR addresses the following subsystems associated with the LTAB: Building structural systems for the Target Bay, Switchyards, Diagnostic Building, Decontamination Area, Laser Bays, Capacitor Bays and Operations Support Area, and the necessary space associated with building-support equipment; Architectural building features associated with housing the space and with the operational cleanliness of the functional operation of the facilities; Heating, Ventilating, and Air Conditioning (HVAC) systems for maintaining a clean and thermally stable ambient environment within the facilities; Plumbing systems that provide potable water and sanitary facilities for the occupants, plus stormwater drainage for transporting rainwater; Fire Protection systems that guard against fire damage to the facilities and their contents; Material handling systems for transporting personnel and heavy materials within the building areas; Mechanical process piping systems for liquids and gases that provide cooling and other service to experimental laser equipment and components; Electrical power and grounding systems that provide service and standby power to building and experimental equipment, including lighting distribution and communications systems for the facilities; Instrumentation and control systems that ensure the safe operation of conventional facilities systems, such as those listed above. Detailed requirements for building subsystems that are not addressed in this document (such as specific sizes, locations, or capacities) are included in detail-level NIP Project Interface Control Documents (ICDS).

Kempel, P.; Hands, J.

1996-08-19T23:59:59.000Z

32

The Omega Laser FaciLiTy Users grOUp WOrkshOp LLE Review, Volume 120 161  

E-Print Network [OSTI]

(NNSA) already allocated for student/postdoctoral travel expenses. #12;The Omega Laser FaciLiTy Users gr Administration (NNSA) mission. The next section of this article contains a summary of the range of presentations-two students and postdoctoral fellows (Fig. 120.2), 27 of whom were supported by travel grants from NNSA

33

The effects of early time laser drive on hydrodynamic instability growth in National Ignition Facility implosions  

SciTech Connect (OSTI)

Defects on inertial confinement fusion capsule surfaces can seed hydrodynamic instability growth and adversely affect capsule performance. The dynamics of shocks launched during the early period of x-ray driven National Ignition Facility (NIF) implosions determine whether perturbations will grow inward or outward at peak implosion velocity and final compression. In particular, the strength of the first shock, launched at the beginning of the laser pulse, plays an important role in determining Richtmyer-Meshkov (RM) oscillations on the ablation front. These surface oscillations can couple to the capsule interior through subsequent shocks before experiencing Rayleigh-Taylor (RT) growth. We compare radiation hydrodynamic simulations of NIF implosions to analytic theories of the ablative RM and RT instabilities to illustrate how early time laser strength can alter peak velocity growth. We develop a model that couples the RM and RT implosion phases and captures key features of full simulations. We also show how three key parameters can control the modal demarcation between outward and inward growth.

Peterson, J. L.; Clark, D. S.; Suter, L. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Masse, L. P. [CEA, DAM, DIF, 91297 Arpajon (France)

2014-09-15T23:59:59.000Z

34

Designing symmetric polar direct drive implosions on the Omega laser facility  

SciTech Connect (OSTI)

Achieving symmetric capsule implosions with Polar Direct Drive [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004); R. S. Craxton et al., Phys. Plasmas 12, 056304 (2005); F. J. Marshall et al., J. Phys. IV France 133, 153–157 (2006)] has been explored during recent Defect Induced Mix Experiment campaign on the Omega facility at the Laboratory for Laser Energetics. To minimize the implosion asymmetry due to laser drive, optimized laser cone powers, as well as improved beam pointings, were designed using 3D radiation-hydrodynamics code HYDRA [M. M. Marinak et al., Phys. Plasmas 3, 2070 (1996)]. Experimental back-lit radiographic and self-emission images revealed improved polar symmetry and increased neutron yield which were in good agreement with 2D HYDRA simulations. In particular, by reducing the energy in Omega's 21.4° polar rings by 16.75%, while increasing the energy in the 58.9° equatorial rings by 8.25% in such a way as to keep the overall energy to the target at 16?kJ, the second Legendre mode (P{sub 2}) was reduced by a factor of 2, to less than 4% at bang time. At the same time the neutron yield increased by 62%. The polar symmetry was also improved relative to nominal DIME settings by a more radical repointing of OMEGA's 42.0° and 58.9° degree beams, to compensate for oblique incidence and reduced absorption at the equator, resulting in virtually no P{sub 2} around bang time and 33% more yield.

Krasheninnikova, Natalia S.; Cobble, James A.; Murphy, Thomas J.; Tregillis, Ian L.; Bradley, Paul A.; Hakel, Peter; Hsu, Scott C.; Kyrala, George A.; Obrey, Kimberly A.; Schmitt, Mark J.; Baumgaertel, Jessica A.; Batha, Steven H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2014-04-15T23:59:59.000Z

35

Fast-ion spectrometry of ICF implosions and laser-foil experiments at the omega and MTW laser facilities  

E-Print Network [OSTI]

Fast ions generated from laser-plasma interactions (LPI) have been used to study inertial confinement fusion (ICF) implosions and laser-foil interactions. LPI, which vary in nature depending on the wavelength and intensity ...

Sinenian, Nareg

2013-01-01T23:59:59.000Z

36

Models of Jupiter's Polar Aurora  

E-Print Network [OSTI]

Auroral emissions from Jupiter have been observed across the photon spectrum including ultraviolet and x-ray wavelengths. UV observations suggest an input flux power of 1013 - 1014 W for the aurora in each hemisphere. X-ray ...

Ozak Munoz, Nataly

2012-08-31T23:59:59.000Z

37

Three-dimensional symmetry analysis of a direct-drive irradiation scheme for the laser megajoule facility  

SciTech Connect (OSTI)

The symmetry of a Direct-Drive (DD) irradiation scheme has been analyzed by means of three-dimensional (3D) simulations carried out by the code MULTI (R. Ramis et al., Comput. Phys. Commun. 49, 475 (1988)) that includes hydrodynamics, heat transport, and 3D laser ray-tracing. The implosion phase of a target irradiated by the Laser Megajoule (LMJ) facility in the context of the Shock Ignition scheme has been considered. The LMJ facility has been designed for Indirect-Drive, and by this reason that the irradiation scheme must be modified when used for DD. Thus, to improve the implosion uniformity to acceptable levels, the beam centerlines should be realigned and the beam power balance should be adjusted. Several alternatives with different levels of complexity are presented and discussed.

Ramis, R., E-mail: rafael.ramis@upm.es [E.T.S.I. Aeronáuticos, Universidad Politécnica de Madrid, P. Cardenal Cisneros 3, E-28040 Madrid (Spain); Temporal, M. [Centre de Mathématiques et de Leurs Applications, ENS Cachan and CNRS, 61 Av. du President Wilson, F-94235 Cachan Cedex (France); Canaud, B.; Brandon, V. [CEA, DIF, F-91297 Arpajon (France)

2014-08-15T23:59:59.000Z

38

Particle-in-cell simulations of magnetic reconnection in laser-plasma experiments on Shenguang-II facility  

SciTech Connect (OSTI)

Recently, magnetic reconnection has been realized in high-energy-density laser-produced plasmas. Plasma bubbles with self-generated magnetic fields are created by focusing laser beams to small-scale spots on a foil. The bubbles expand into each other, which may then drive magnetic reconnection. The reconnection experiment in laser-produced plasmas has also been conducted at Shenguang-II (SG-II) laser facility, and the existence of a plasmoid was identified in the experiment [Dong et al., Phys. Rev. Lett. 108, 215001 (2012)]. In this paper, by performing two-dimensional (2-D) particle-in-cell simulations, we investigate such a process of magnetic reconnection based on the experiment on SG-II facility, and a possible explanation for the formation of the plasmoid is proposed. The results show that before magnetic reconnection occurs, the bubbles squeeze strongly each other and a very thin current sheet is formed. The current sheet is unstable to the tearing mode instability, and we can then observe the formation of plasmoid(s) in such a multiple X-lines reconnection.

Lu, San; Lu, Quanming; Huang, Can; Wang, Shui [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Science, University of Science and Technology of China, Hefei 230026 (China)] [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Science, University of Science and Technology of China, Hefei 230026 (China); Dong, Quanli [School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025 (China)] [School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025 (China); Zhu, Jianqiang [CAS Key Laboratory for High Power Laser Physics, Chinese Academy of Sciences, Shanghai 201800 (China)] [CAS Key Laboratory for High Power Laser Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Sheng, Zhengming; Zhang, Jie [Key Laboratory for Laser Plasmas (MoE) and Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China)] [Key Laboratory for Laser Plasmas (MoE) and Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China)

2013-11-15T23:59:59.000Z

39

The National Ignition Facility Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies  

E-Print Network [OSTI]

The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control roo...

Moses, E I

2001-01-01T23:59:59.000Z

40

Laser radiation scattering from the wires and fibers of imploding arrays on the Angara-5-1 facility  

SciTech Connect (OSTI)

A method is developed for measurements of laser radiation scattering by wires and fibers in different types of imploding arrays in the initial stage of plasma production at discharge currents per wire of up to 2 kA for aluminum arrays and up to 8 kA for tungsten arrays. The experiments were carried out on the Angara-5-1 facility at a current density in the wires of 10{sup 8} A/cm{sup 2} and current growth rate of {approx}10{sup 13} A/s. It is found that the indicatrix of laser radiation reflected from the wires (fibers) in cylindrical and conical arrays is modified at currents of 0.1-10 kA per wire (fiber). The experimental data on the reflection and scattering of laser radiation from wires and fibers are compared with the results of numerical simulations of their electric explosion in vacuum. It is proposed that the change in the reflection indicatrix of laser radiation is caused by the onset of thermal instabilities. The typical size of density and temperature inhomogeneities on the wire surface is in a range of 10-20 {mu}m, which probably results in a transition from specular to diffuse reflection of laser radiation. A simultaneous abrupt (over 2-3 ns) reduction in the reflection intensity from several wires of an array indicates a homogeneous distribution of the discharge current over the irradiated wires. This closes the issue of the quality of the contact between the wires and the electrodes. The obtained experimental information is of considerable importance for the development of numerical codes for simulations of the implosion of wire arrays and the refinement of the wire parameters in the initial stage of plasma production.

Grabovski, E. V.; Gritsuk, A. N.; Smirnov, V. P.; Aleksandrov, V. V.; Oleinik, G. M. [Troitsk Institute for Innovation and Fusion Research (Russian Federation); Oreshkin, V. I. [Russian Academy of Sciences, Institute of High-Current Electronics, Siberian Branch (Russian Federation); Frolov, I. N.; Laukhin, Ya. N.; Gribov, A. N.; Samokhin, A. A. [Troitsk Institute for Innovation and Fusion Research (Russian Federation); Sasorov, P. V. [Alikhanov Institute for Theoretical and Experimental Physics (Russian Federation); Mitrofanov, K. N.; Medovshchikov, S. F. [Troitsk Institute for Innovation and Fusion Research (Russian Federation); Khishchenko, K. V. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Rupasov, A. A.; Bolkhovitinov, E. A. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

2011-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "jupiter laser facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies  

E-Print Network [OSTI]

The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control room presents facility-wide status and orchestrates experiments using operating parameters predicted by physics models. A network of several hundred front-end processors (FEPs) implements device control. The object-oriented software system is implemented in the Ada and Java languages and emphasizes CORBA distribution of reusable software objects. NIF is currently scheduled to provide first light in 2004 and will be completed in 2008.

E. I. Moses

2001-11-09T23:59:59.000Z

42

R&D for a Soft X-Ray Free Electron Laser Facility  

E-Print Network [OSTI]

A CW normal-conductive RF gun for free electron laser andincluding state-of-the-art RF guns. High-power RF sourcesand first production RF gun for the DESY TESLA SASE FEL.

Staples, John

2009-01-01T23:59:59.000Z

43

Laser damage testing of small optics for the National Ignition Facility  

SciTech Connect (OSTI)

A damage test procedure was established for optical components that have large incident beam footprints. The procedure was applied on coated samples for a high-powered 1053-nm, 3-ns pulse-length laser system.

Chow, Robert; Runkel, Mike; Taylor, John R

2005-06-10T23:59:59.000Z

44

National Ignition Facility subsystem design requirements laser auxiliary subsystem SSDR 1.3.5  

SciTech Connect (OSTI)

This system design requirement document establishes the performance, design, development and test requirements for the NIF Laser Auxiliary Systems. The Laser Auxiliary Systems consist of: a. Gas Cooling System; b. Low conductivity cooling water system; C. Deionized cooling water system; d. Electrical power distribution system. The gas cooling system will be used for cooling the main laser amplifier flashlamps and some smaller quantities will be used for purging Pockels cells and for diode pumps in preamplifier. The low conductivity cooling water system will be used for cooling the capacitor banks. The deionized cooling water system will be used to cool the multi-pass amplifier in the OPG PAM. Electrical power will be required for the OPG systems, Pockels cells, power conditioning, and amplifier support equipment.

Mukherji, S.

1996-10-24T23:59:59.000Z

45

A Brief Note on Jupiter's Magnetism  

E-Print Network [OSTI]

A recent model which gives the contribution of the earth's solid core to geo magnetism is seen to explain Jupiter's magnetism also.

B. G. Sidharth

1999-05-06T23:59:59.000Z

46

Thunderstriking Constraints with JUPITER Christos Kloukinas  

E-Print Network [OSTI]

, response jitter, memory, energy consumption, QoS, depend- ability, etc. Unfortunately, we are still lackingThunderstriking Constraints with JUPITER Christos Kloukinas City University Department of Computing Northampton Sq., London EC1V 0HB, U.K. C.Kloukinas(at)soi.city.ac.uk Abstract We present JUPITER, a tool

Weyde, Tillman

47

Test Facility Daniil Stolyarov, Accelerator Test Facility User...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development of the Solid-State Laser System for the Accelerator Test Facility Daniil Stolyarov, Accelerator Test Facility User's Meeting April 3, 2009 Outline Motivation for...

48

HILL: The High-Intensity Laser Laboratory Core Team's Reply to Questions from the NNSA Experimental Facilities Panel  

SciTech Connect (OSTI)

Question 1 - The type of physics regimes that HILL can access for weapons studies is quite interesting. The question that arises for the proposal team is what priority does this type of experimental data have versus data that can be obtained with NIF, and Z. How does HILL rank in priority compared to MARIE 1.0 in terms of the experimental data it will provide? We reiterate that isochoric heating experiments to be conducted with HILL are complementary to the high energy density physics experiments at NIF and Z and uniquely access states of matter that neither other facility can access. It is our belief that HILL will enable several important questions, e.g., as related to mix morphology, radiation transfer from corrugated surfaces, and equations of state, to be run to ground through carefully diagnosed, 'unit-physics' experiments. Such experiments will substantially improve confidence in our computer models and provide a rigorous science basis for certification. Question 2 - A secondary question relates to the interests of LLNL and SNL in the physics that HILL can address. This should be spelled out clearly. I would like to see the other labs be part of the discussion regarding how important this capability would be if built. Both sister Labs have a keen interest in the physics enabled by high-intensity, high-energy lasers, as evinced by the Z Petawatt and NIF ARC upgrades to their signature facilities. LANL scientists have teamed with scientists from both Laboratories in high-intensity laser 'first experiments' envisioned for HILL and we fully intend to continue these profitable discussions going forward. In the preparation of the HILL proposal, feedback was solicited from the broader HEDP and weapons science communities. The consensus view was that HILL filled a critical gap and that there was a need for a facility like HILL to address outstanding questions in weapons science. It was recognized that co-location of HILL with a facility such as MaRIE 1.0, Z, NIF, or Omega may offer additional advantages and we would expect these to be explored and evaluated during the CD process. Question 3 - A laser/optics experts group should review this proposal to ensure the level of R&D is reasonable to provide a sufficient chance of success (>50%). In the preparation of the HILL proposal, we sent our proposal and cost estimates to laser designers/scientists across the complex. Though risks were identified with our design, the prevailing view of those we engaged was that the risks were appropriately represented by the TRL levels assigned and that the enabling R&D planned in our proposal was adequate for risk mitigation. Question 4 - More data and peer review is needed from its sister facilities around the world. It is our specific intent to conduct both scientific and technical workshops with the user community if the High Intensity Science field is further encouraged as part of the NNSA Roadmap. Question 5 - Does HILL have to be co-located with MARIE 1.0? Is that feasible from the point of view of TA-53 real estate? Multiple siting options were considered for HILL, including co-location with MaRIE 1.0 (the most cost-effective and flexible option), as well as in a separate, stand-alone building and in a retro-fitted existing building. The cost estimate included these contingencies and candidate locations for HILL in TA-53 were identified. There is actually significant space at TA-53 on the hill in the northeast end of the mesa. Question 6 - What would be the impact on the weapons program if this facility were NOT built? An inability to elucidate aspects of weapons science in the dense plasma regime and validate computer models for same. This will lead to reduced confidence in the computer tools used for certification. Question 7 - Will HILL allow some of the x-ray vulnerability studies proposed by SPARC? If so what does Sandia's vulnerability group think of this method versus SPARC. It is possible that some of the scope envisioned for SPARC could be achieved on HILL, although likely that the energy produced at HILL not bei

Albright, B J [Los Alamos National Laboratory

2012-08-02T23:59:59.000Z

49

Radiation transport and energetics of laser-driven half-hohlraums at the National Ignition Facility  

SciTech Connect (OSTI)

Experiments that characterize and develop a high energy-density half-hohlraum platform for use in benchmarking radiation hydrodynamics models have been conducted at the National Ignition Facility (NIF). Results from the experiments are used to quantitatively compare with simulations of the radiation transported through an evolving plasma density structure, colloquially known as an N-wave. A half-hohlraum is heated by 80 NIF beams to a temperature of 240?eV. This creates a subsonic diffusive Marshak wave, which propagates into a high atomic number Ta{sub 2}O{sub 5} aerogel. The subsequent radiation transport through the aerogel and through slots cut into the aerogel layer is investigated. We describe a set of experiments that test the hohlraum performance and report on a range of x-ray measurements that absolutely quantify the energetics and radiation partition inside the target.

Moore, A. S., E-mail: alastair.moore@physics.org; Graham, P.; Comley, A. J.; Foster, J. [Directorate Science and Technology, AWE Aldermaston, Reading RG7 4PR (United Kingdom); Cooper, A. B. R.; Schneider, M. B.; MacLaren, S.; Lu, K.; Seugling, R.; Satcher, J.; Klingmann, J.; Marrs, R.; May, M.; Widmann, K.; Glendinning, G.; Castor, J.; Sain, J.; Baker, K.; Hsing, W. W.; Young, B. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); and others

2014-06-15T23:59:59.000Z

50

Kepler constraints on planets near hot Jupiters  

SciTech Connect (OSTI)

We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 2:1 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history.

Steffen, Jason H.; /Fermilab; Ragozzine, Darin; /Harvard-Smithsonian Ctr. Astrophys.; Fabrycky, Daniel C.; /UC, Santa Cruz, Astron. Astrophys.; Carter, Joshua A.; /Harvard-Smithsonian Ctr. Astrophys.; Ford, Eric B.; /Florida U.; Holman, Matthew J.; /Harvard-Smithsonian Ctr. Astrophys.; Rowe, Jason F.; /NASA, Ames; Welsh, William F.; /San Diego State U., Astron. Dept.; Borucki, William J.; /NASA, Ames; Boss, Alan P.; /Carnegie Inst., Wash., D.C., DTM; Ciardi, David R.; /Caltech /Harvard-Smithsonian Ctr. Astrophys.

2012-05-01T23:59:59.000Z

51

The FiFTh Omega Laser FaciLiTy Users grOUp WOrkshOp LLE Review, Volume 136 237  

E-Print Network [OSTI]

in high-energy-density physics. The next annual OLUG Workshop will occur 23­25 April 2014. U1627JR #12;TheThe FiFTh Omega Laser FaciLiTy Users grOUp WOrkshOp LLE Review, Volume 136 237 Introduction of high-energy- density physics and is also one of the most active. The first two mornings of the workshop

52

University of Rochester Laboratory for Laser Energetics annual report, 1 October 1990--30 September 1991  

SciTech Connect (OSTI)

This report discusses: progress in laser fusion; advanced technology developments; national laser users facility news; and laser system report.

Not Available

1992-01-01T23:59:59.000Z

53

Capture of Irregular Satellites at Jupiter  

E-Print Network [OSTI]

The irregular satellites of outer planets are thought to have been captured from heliocentric orbits. The exact nature of the capture process, however, remains uncertain. We examine the possibility that irregular satellites were captured from the planetesimal disk during the early Solar System instability when encounters between the outer planets occurred (Nesvorny, Vokrouhlicky & Morbidelli 2007, AJ 133; hereafter NVM07). NVM07 already showed that the irregular satellites of Saturn, Uranus and Neptune were plausibly captured during planetary encounters. Here we find that the current instability models present favorable conditions for capture of irregular satellites at Jupiter as well, mainly because Jupiter undergoes a phase of close encounters with an ice giant. We show that the orbital distribution of bodies captured during planetary encounters provides a good match to the observed distribution of irregular satellites at Jupiter. The capture efficiency for each particle in the original transplanetary d...

Nesvorny, D; Deienno, R

2014-01-01T23:59:59.000Z

54

Synchronization of x-ray pulses to the pump laser in an ultrafast x-ray facility  

E-Print Network [OSTI]

Accurate timing of ultrafast x-ray probe pulses emitted fromOF X-RAY PULSES TO THE PUMP LASER IN AN ULTRAFAST X-RAY

Corlett, J.N.; Barry, W.; Byrd, J.M.; Schoenlein, R.; Zholents, A.

2002-01-01T23:59:59.000Z

55

Trident Laser Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System BurstLongTitanConsortium Universities

56

COMET Laser Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASL Symposium: CelebratingMission Welcomefor Gasfor6,

57

Europa Laser Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERP isTechnologies |Technologies

58

Design of a free-electron laser driven by the LBNL laser-plasma-accelerator  

E-Print Network [OSTI]

plasma accelerator at the LBNL LOASIS facility”, in: Proc.electron laser driven by the LBNL laser-plasma-accelerator ?National Laboratory (LBNL) laser-plasma accelerator, whose

2008-01-01T23:59:59.000Z

59

Free-electron laser driven by the LBNL laser-plasma accelerator  

E-Print Network [OSTI]

XPLOTGIN, Technical Report LBNL-49625, Lawrence BerkeleyLASER-PLASMA ACCELERATOR AT THE LBNL LOASIS FACILITY,” inelectron laser driven by the LBNL laser-plasma accelerator

Schroeder, C. B.

2010-01-01T23:59:59.000Z

60

Techniques for synchronization of X-Ray pulses to the pump laser in an ultrafast X-Ray facility  

E-Print Network [OSTI]

synchronization of ultrafast x-ray pulses produced in theAccurate timing of ultrafast x-ray probe pulses emitted fromOF X-RAY PULSES TO THE PUMP LASER IN AN ULTRAFAST X-RAY

Corlett, J.N.; Doolittle, L.; Schoenlein, R.; Staples, J.; Wilcox, R.; Zholents, A.

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "jupiter laser facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The Third Omega Laser FaciLiTy Users'grOUp WOrkshOp LLE Review, Volume 128250  

E-Print Network [OSTI]

of the National Users' Facility Organization, which in turn promotes science education and outreach throughout from these updates. The overview sci- ence talks, given by leading world authorities, described

62

Jupiter, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6 Climate ZoneJeromeCounty isJupiter Oxygen

63

CAPTURE OF TROJANS BY JUMPING JUPITER  

SciTech Connect (OSTI)

Jupiter Trojans are thought to be survivors of a much larger population of planetesimals that existed in the planetary region when planets formed. They can provide important constraints on the mass and properties of the planetesimal disk, and its dispersal during planet migration. Here, we tested a possibility that the Trojans were captured during the early dynamical instability among the outer planets (aka the Nice model), when the semimajor axis of Jupiter was changing as a result of scattering encounters with an ice giant. The capture occurs in this model when Jupiter's orbit and its Lagrange points become radially displaced in a scattering event and fall into a region populated by planetesimals (that previously evolved from their natal transplanetary disk to {approx}5 AU during the instability). Our numerical simulations of the new capture model, hereafter jump capture, satisfactorily reproduce the orbital distribution of the Trojans and their total mass. The jump capture is potentially capable of explaining the observed asymmetry in the number of leading and trailing Trojans. We find that the capture probability is (6-8) Multiplication-Sign 10{sup -7} for each particle in the original transplanetary disk, implying that the disk contained (3-4) Multiplication-Sign 10{sup 7} planetesimals with absolute magnitude H < 9 (corresponding to diameter D = 80 km for a 7% albedo). The disk mass inferred from this work, M{sub disk} {approx} 14-28 M{sub Earth}, is consistent with the mass deduced from recent dynamical simulations of the planetary instability.

Nesvorny, David [Department of Space Studies, Southwest Research Institute, 1050 Walnut St., Suite 300, Boulder, CO 80302 (United States); Vokrouhlicky, David [Institute of Astronomy, Charles University, V Holesovickach 2, 180 00 Prague 8 (Czech Republic); Morbidelli, Alessandro [Departement Cassiopee, University of Nice, CNRS, Observatoire de la Cote d'Azur, Nice, F-06304 (France)

2013-05-01T23:59:59.000Z

64

DarkLight: A Search for Dark Forces at the Jefferson Laboratory Free-Electron Laser Facility  

SciTech Connect (OSTI)

We give a short overview of the DarkLight detector concept which is designed to search for a heavy photon A' with a mass in the range 10 MeV/c^2 < m(A') < 90 MeV/c^2 and which decays to lepton pairs. We describe the intended operating environment, the Jefferson Laboratory free electon laser, and a way to extend DarkLight's reach using A' --> invisible decays.

Balewski, Jan; Bernauer, J.; Bertozzi, William; Bessuille, Jason; Buck, B.; Cowan, Ray; Dow, K.; Epstein, C.; Fisher, Peter; Gilad, Shalev; Ihloff, Ernest; Kahn, Yonatan; Kelleher, Aidan; Kelsey, J.; Milner, Richard; Moran, C.; Ou, Longwu; Russell, R.; Schmookler, Barak; Thaler, J.; Tschalar, C.; Vidal, Christopher; Winnebeck, A.; Benson, Stephen [JLAB; Gould, Christopher [JLAB; Biallas, George [JLAB; Boyce, James [JLAB; Coleman, James [JLAB; Douglas, David [JLAB; Ent, Rolf [JLAB; Evtushenko, Pavel [JLAB; Fenker, Howard [JLAB; Gubeli, Joseph [JLAB; Hannon, Fay [JLAB; Huang, Jia [JLAB; Jordan, Kevin [JLAB; Legg, Robert [JLAB; Marchlik, Matthew [JLAB; Moore, Steven [JLAB; Neil, George [JLAB; Shinn, Michelle D [JLAB; Tennant, Christopher [JLAB; Walker, Richard [JLAB; Williams, Gwyn [JLAB; Zhang, Shukui [JLAB; Freytsis, M.; Fiorito, Ralph; O'Shea, P.; Alarcon, Ricardo; Dipert, R.; Ovanesyan, G.; Gunter, Thoth; Kalantarians, Narbe; Kohl, M.; Albayrak, Ibrahim; Horn, Tanja; Gunarathne, D. S.; Martoff, C. J.; Olvitt, D. L.; Surrow, Bernd; Lia, X.; Beck, Reinhard; Schmitz, R.; Walther, D.; Brinkmann, K.; Zaunig, H.

2014-05-01T23:59:59.000Z

65

Jupiter Oxygen Corporation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6 Climate ZoneJeromeCounty isJupiter Oxygen Corporation

66

advanced isol facility: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ion beam facilities: ISOLDE (CERN, Switzerland) and the IGISOL facility (Jyvaskyla, Finland). The scope of the Resonance Ionization Laser Ion Source has been extended to 27...

67

ORION laser target diagnostics  

SciTech Connect (OSTI)

The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics.

Bentley, C. D.; Edwards, R. D.; Andrew, J. E.; James, S. F.; Gardner, M. D.; Comley, A. J.; Vaughan, K.; Horsfield, C. J.; Rubery, M. S.; Rothman, S. D.; Daykin, S.; Masoero, S. J.; Palmer, J. B.; Meadowcroft, A. L.; Williams, B. M.; Gumbrell, E. T.; Fyrth, J. D.; Brown, C. R. D.; Hill, M. P.; Oades, K. [Plasma Physics Department, Atomic Weapons Establishment, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); and others

2012-10-15T23:59:59.000Z

68

Omega Laser Facility - Laboratory for Laser Energetics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home|Physics Research High-Energy- OakOne-stop hydro-

69

JUPITER-II Molten Salt Flibe Research: An Update On Tritium, Mobilization and Redox Chemistry Experiments  

SciTech Connect (OSTI)

The second Japan/US Program on Irradiation Tests for Fusion Research (JUPITER-II) began on April 1, 2001. Part of the collaborative research centers on studies of the molten salt 2LiF2–BeF2 (also known as Flibe) for fusion applications. Flibe has been proposed as a self-cooled breeder in both magnetic and inertial fusion power plant designs over the last 25 years. The key feasibility issues associated with the use of Flibe are the corrosion of structural material by the molten salt, tritium behavior and control in the molten salt blanket system, and safe handling practices and releases from Flibe during an accidental spill. These issues are all being addressed under the JUPITER-II program at the Idaho National Laboratory in the Safety and Tritium Applied Research (STAR) facility. In this paper, we review the program to date in the area of tritium/deuterium behavior, Flibe mobilization under accident conditions and testing of Be as a redox agent to control corrosion. Future activities planned through the end of the collaboration are also presented.

D.A. Petti; D. A. Petti; G. R. Smolik; Michael F. Simpson; John P. Sharpe; R. A. Anderl; S. Fukada; Y. Hatano; Masanori Hara; Y. Oya; T. Terai; D.-K. Sze; S. Tanaka

2005-05-01T23:59:59.000Z

70

Evaporation rate of hot Jupiters and formation of Chthonian planets  

E-Print Network [OSTI]

Among the hundred of known extrasolar planets, about 15% are closer than 0.1 AU from their parent stars. But there are extremely few detections of planets orbiting in less than 3 days. At this limit the planet HD209458b has been found to have an extended upper atmosphere of escaping hydrogen. This suggests that the so-called hot Jupiters which are close to their parent stars could evaporate. Here we estimate the evaporation rate of hydrogen from extrasolar planets in the star vicinity. With high exospheric temperatures, and owing to the tidal forces, planets evaporate through a geometrical blow-off. This may explain the absence of Jupiter mass planets below a critical distance from the stars. Below this critical distance, we infer the existence of a new class of planets made of the residual central core of former hot Jupiters, which we propose to call the ``Chthonian'' planets.

G. Hébrard; A. Lecavelier des Étangs; A. Vidal-Madjar; J. -M. Désert; R. Ferlet

2003-12-15T23:59:59.000Z

71

Lagrangian Coherent Structures from Video Streams of Jupiter  

E-Print Network [OSTI]

Jupiter's fast rotation - one rotation over 10 hours - creates strong jet streams, smearing its clouds into linear bands of dark and light zonal belts that circle the planet on lines of almost constant latitude. Such a high degree of axisymmetry is absent in our own atmosphere. Moreover, Jupiter has the largest and longest-living known atmospheric vortex, the Great Red Spot (GRS). Such vortices abound in nature, but GRS's size, long-term persistence, and temporal longitudinal oscillations make it unique. Here, we uncover, for the first time, unsteady material structures that form the cores of zonal jets and the boundary of the GRS in Jupiter's atmosphere. We perform our analysis on a velocity field extracted from a video footage acquired by the NASA Cassini spacecraft.

Alireza Hadjighasem; George Haller

2014-07-15T23:59:59.000Z

72

National Ignition Facility system design requirements conventional facilities SDR001  

SciTech Connect (OSTI)

This System Design Requirements (SDR) document specifies the functions to be performed and the minimum design requirements for the National Ignition Facility (NIF) site infrastructure and conventional facilities. These consist of the physical site and buildings necessary to house the laser, target chamber, target preparation areas, optics support and ancillary functions.

Hands, J.

1996-04-09T23:59:59.000Z

73

LANL | Physics | Trident Laser Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJeffersonJonathanMultimaterial2Recovery ActNuclear WeaponsDiscovery

74

Laser Programs Highlight 1995  

SciTech Connect (OSTI)

Our contributions to laser science and technology and corresponding applications range from concept to design of the National Ignition Facility, transfer of Atomic Vapor Laser Isotope Separation technology to the private sector, and from new initiatives in industry and defense to micro-optics for improving human vision.

Jacobs, R.R.

1997-01-31T23:59:59.000Z

75

Facility Microgrids  

SciTech Connect (OSTI)

Microgrids are receiving a considerable interest from the power industry, partly because their business and technical structure shows promise as a means of taking full advantage of distributed generation. This report investigates three issues associated with facility microgrids: (1) Multiple-distributed generation facility microgrids' unintentional islanding protection, (2) Facility microgrids' response to bulk grid disturbances, and (3) Facility microgrids' intentional islanding.

Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.

2005-05-01T23:59:59.000Z

76

Jupiter and Super-Earth embedded in a gaseous disc  

E-Print Network [OSTI]

In this paper we investigate the evolution of a pair of interacting planets - a Jupiter mass planet and a Super-Earth with the 5.5 Earth masses - orbiting a Solar type star and embedded in a gaseous protoplanetary disc. We focus on the effects of type I and II orbital migrations, caused by the planet-disc interaction, leading to the Super-Earth capture in first order mean motion resonances by the Jupiter. The stability of the resulting resonant system in which the Super-Earth is on the internal orbit relatively to the Jupiter has been studied numerically by means of full 2D hydrodynamical simulations. Our main motivation is to determine the Super-Earth behaviour in the presence of the gas giant in the system. It has been found that the Jupiter captures the Super-Earth into the interior 3:2 or 4:3 mean motion resonances and the stability of such configurations depends on the initial planet positions and eccentricity evolution. If the initial separation of planet orbits is larger or close to that required for the exact resonance than the final outcome is the migration of the pair of planets with the rate similar to that of the gas giant at least for time of our simulations. Otherwise we observe a scattering of the Super-Earth from the disc. The evolution of planets immersed in the gaseous disc has been compared with their behaviour in the case of the classical three-body problem when the disc is absent.

E. Podlewska; E. Szuszkiewicz

2007-12-19T23:59:59.000Z

77

LANSCE | Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region serviceMission Statement Titan TargetInJupiterUser LosLos AlamosLos

78

Observation of strong electromagnetic fields around laser-entrance holes of ignition-scale hohlraums in inertial-confinement fusion experiments at the National Ignition Facility  

E-Print Network [OSTI]

Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139 USA 2 Lawrence Livermore National Laboratory, Livermore, CA 94550 USA 3 Los Alamos National Laboratory, Los Alamos, NM) experiments utilizing ignition-scaled hohlraums at the National Ignition Facility (NIF). A striking

79

High resolution soft x-ray spectroscopy of low Z K-shell emission from laser-produced plasmas  

SciTech Connect (OSTI)

A large radius, R = 44.3 m, High Resolution Grating Spectrometer (HRGS) with 2400 line/mm variable line spacing has been designed for laser-produced plasma experiments conducted at the Lawrence Livermore National Laboratory Jupiter Laser Facility. The instrument has been run with a low-noise, charge-coupled device detector to record high signal-to-noise spectra in the 10-50 {angstrom} wavelength range. The instrument can be run with a 10-20 {micro}m wide slit to achieve the best spectral resolving power, approaching 1000 and similar to crystal spectrometers at 12-20 {angstrom}, or in slitless operation with a small symmetrical emission source. We describe preliminary spectra emitted from various H-like and He-like low Z ion plasmas heated by 100-500 ps (FWHM), 527 nm wavelength laser pulses. This instrument can be developed as a useful spectroscopy platform relevant to laboratory-based astrophysics as well as high energy density plasma studies.

Dunn, J; Magee, E W; Shepherd, R; Chen, H; Hansen, S B; Moon, S J; Brown, G V; Gu, M; Beiersdorfer, P; Purvis, M A

2008-05-21T23:59:59.000Z

80

Jupiter Oxygen Corporation/Albany Research Center Crada Progress Report, September  

SciTech Connect (OSTI)

The Albany Research Center (ARC) has developed a new Integrated Pollutant Removal (IPR) process for fossil-fueled boilers. Pursuant to a cooperative research and development agreement (CRADA) with Jupiter Oxygen Corporation, ARC currently is studying the IPR process as applied to the oxygen fuel technology developed by Jupiter. As discussed further below, these two new technologies are complementary. This interim report summarizes the study results to date and outlines the potential activities under the next phase of the CRADA with Jupiter.

Turner, Paul C.; Schoenfield, Mark (Jupiter Oxygen Corp.)

2004-09-13T23:59:59.000Z

Note: This page contains sample records for the topic "jupiter laser facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

1996-10-24T23:59:59.000Z

82

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

1995-11-16T23:59:59.000Z

83

International Facility Management Association Strategic Facility  

Broader source: Energy.gov (indexed) [DOE]

Facility Management Association Strategic Facility Planning: A WhIte PAPer Strategic Facility Planning: A White Paper on Strategic Facility Planning 2009 | International...

84

DOPPLER SIGNATURES OF THE ATMOSPHERIC CIRCULATION ON HOT JUPITERS  

SciTech Connect (OSTI)

The meteorology of hot Jupiters has been characterized primarily with thermal measurements, but recent observations suggest the possibility of directly detecting the winds by observing the Doppler shift of spectral lines seen during transit. Motivated by these observations, we show how Doppler measurements can place powerful constraints on the meteorology. We show that the atmospheric circulation-and Doppler signature-of hot Jupiters splits into two regimes. Under weak stellar insolation, the day-night thermal forcing generates fast zonal jet streams from the interaction of atmospheric waves with the mean flow. In this regime, air along the terminator (as seen during transit) flows toward Earth in some regions and away from Earth in others, leading to a Doppler signature exhibiting superposed blueshifted and redshifted components. Under intense stellar insolation, however, the strong thermal forcing damps these planetary-scale waves, inhibiting their ability to generate jets. Strong frictional drag likewise damps these waves and inhibits jet formation. As a result, this second regime exhibits a circulation dominated by high-altitude, day-to-night airflow, leading to a predominantly blueshifted Doppler signature during transit. We present state-of-the-art circulation models including non-gray radiative transfer to quantify this regime shift and the resulting Doppler signatures; these models suggest that cool planets like GJ 436b lie in the first regime, HD 189733b is transitional, while planets hotter than HD 209458b lie in the second regime. Moreover, we show how the amplitude of the Doppler shifts constrains the strength of frictional drag in the upper atmospheres of hot Jupiters. If due to winds, the {approx}2 km s{sup -1} blueshift inferred on HD 209458b may require drag time constants as short as 10{sup 4}-10{sup 6} s, possibly the result of Lorentz-force braking on this planet's hot dayside.

Showman, Adam P.; Lewis, Nikole K. [Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, 1629 University Boulevard, Tucson, AZ 85721 (United States)] [Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, 1629 University Boulevard, Tucson, AZ 85721 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)] [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Shabram, Megan, E-mail: showman@lpl.arizona.edu [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611-2055 (United States)] [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611-2055 (United States)

2013-01-01T23:59:59.000Z

85

Power spectral analysis of Jupiter's clouds and kinetic energy from Cassini David S. Choi  

E-Print Network [OSTI]

of wind vectors and atmospheric kinetic energy within Jupiter's troposphere. We computed power spectraPower spectral analysis of Jupiter's clouds and kinetic energy from Cassini David S. Choi , Adam P o Article history: Received 16 December 2010 Revised 8 September 2011 Accepted 6 October 2011

86

Author's personal copy Power spectral analysis of Jupiter's clouds and kinetic energy from Cassini  

E-Print Network [OSTI]

full-longitudinal maps of wind vectors and atmospheric kinetic energy within Jupiter's troposphere. WeAuthor's personal copy Power spectral analysis of Jupiter's clouds and kinetic energy from Cassini 85721, USA a r t i c l e i n f o Article history: Received 16 December 2010 Revised 8 September 2011

Choi, David S.

87

UCRL-PRES-225531 National ignition facility  

E-Print Network [OSTI]

Title Page UCRL-PRES-225531 #12;National ignition facility #12;NIF is 705,000 #12;NIF laser system #12;NIF us 885 #12;NIF-0506-11956 Laser bay 2 #12;Switchyard 2 #12;Target chamber in the air #12 experiments on NIF have demonstrated #12;21 1 MJ shaping results: Comparison of requested vs measured 3 pulse

88

A RESTRICTED FOUR-BODY MODEL FOR THE DYNAMICS NEAR THE LAGRANGIAN POINTS OF THE SUN-JUPITER  

E-Print Network [OSTI]

A RESTRICTED FOUR-BODY MODEL FOR THE DYNAMICS NEAR THE LAGRANGIAN POINTS OF THE SUN-JUPITER SYSTEM focus on the dynamics of a small particle near the Lagrangian points of the Sun-Jupiter system. To try solution of the planar three-body problem for Sun, Jupiter and Saturn, close to the real motion

89

Hot-Jupiter Inflation due to Deep Energy Deposition  

E-Print Network [OSTI]

Some extrasolar giant planets in close orbits---"hot Jupiters"---exhibit larger radii than that of a passively cooling planet. The extreme irradiation $L_{\\rm eq}$ these hot Jupiters receive from their close in stars creates a thick isothermal layer in their envelopes, which slows down their convective cooling, allowing them to retain their inflated size for longer. This is yet insufficient to explain the observed sizes of the most inflated planets. Some models invoke an additional power source, deposited deep in the planet's envelope. Here we present an analytical model for the cooling of such irradiated, and internally heated gas giants. We show that a power source $L_{\\rm dep}$, deposited at an optical depth $\\tau_{\\rm dep}$, creates an exterior convective region, between optical depths $L_{\\rm eq}/L_{\\rm dep}$ and $\\tau_{\\rm dep}$, beyond which a thicker isothermal layer exists, which in extreme cases may extend to the center of the planet. This convective layer, which occurs only for $L_{\\rm dep}\\tau_{\\r...

Ginzburg, Sivan

2015-01-01T23:59:59.000Z

90

The spectroscopic signature of hot Jupiters in FU Orionis objects  

E-Print Network [OSTI]

We show that if FU Orionis objects harbour hot Jupiters embedded in their discs, the resulting non-axisymmetric dissipation profile in the disc would be manifest as time-dependent distortions in the absorption line profiles of these objects. In order to affect the infrared line profiles, planets must lie within approximately 0.5 au of the central star, whereas only planets within 0.1 au would influence the optical line profiles. The timescale for modulation of the line profiles is relatively short (months) in each case, so that the effect could not have been discovered from published spectra (which combine data taken in different observing seasons). The detection of hot Jupiters in FU Orionis objects would be in line with the expectations of tidal migration theories (which predict a high incidence of close planets around young stars) and would also lend support to models which link the triggering of rapid rise FU Orionis events to the existence of a close massive planet.

Cathie J. Clarke; Philip J. Armitage

2003-07-04T23:59:59.000Z

91

OHMIC DISSIPATION IN THE INTERIORS OF HOT JUPITERS  

SciTech Connect (OSTI)

We present models of ohmic heating in the interiors of hot Jupiters in which we decouple the interior and the wind zone by replacing the wind zone with a boundary temperature T{sub iso} and magnetic field B{sub {phi}0}. Ohmic heating influences the contraction of gas giants in two ways: by direct heating within the convection zone and by heating outside the convection zone, which increases the effective insulation of the interior. We calculate these effects and show that internal ohmic heating is only able to slow the contraction rate of a cooling gas giant once the planet reaches a critical value of internal entropy. We determine the age of the gas giant when ohmic heating becomes important as a function of mass, T{sub iso}, and induced B{sub {phi}0}. With this survey of parameter space complete, we then adopt the wind zone scalings of Menou and calculate the expected evolution of gas giants with different levels of irradiation. We find that, with this prescription of magnetic drag, it is difficult to inflate massive planets or those with strong irradiation using ohmic heating, meaning that we are unable to account for many of the observed hot Jupiter radii. This is in contrast to previous evolutionary models that assumed that a constant fraction of the irradiation is transformed into ohmic power.

Huang Xu [Department of Astrophysical Sciences, 4 Ivy Lane, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Cumming, Andrew, E-mail: xuhuang@princeton.edu, E-mail: cumming@physics.mcgill.ca [Department of Physics, McGill University, 3600 Rue University, Montreal, QC H3A 2T8 (Canada)

2012-09-20T23:59:59.000Z

92

Discovery of a Jupiter/Saturn Analog with Gravitational Microlensing  

E-Print Network [OSTI]

Searches for extrasolar planets have uncovered an astonishing diversity of planetary systems, yet the frequency of solar system analogs remains unknown. The gravitational microlensing planet search method is potentially sensitive to multiple-planet systems containing analogs of all the solar system planets except Mercury. We report the detection of a multiple-planet system with microlensing. We identify two planets with masses of ~0.71 and ~0.27 times the mass of Jupiter and orbital separations of ~2.3 and ~4.6 astronomical units orbiting a primary star of mass ~0.50 solar masses at a distance of ~1.5 kiloparsecs. This system resembles a scaled version of our solar system in that the mass ratio, separation ratio, and equilibrium temperatures of the planets are similar to those of Jupiter and Saturn. These planets could not have been detected with other techniques; their discovery from only six confirmed microlensing planet detections suggests that solar system analogs may be common.

B. S. Gaudi; D. P. Bennett; A. Udalski; A. Gould; G. W. Christie; D. Maoz; S. Dong; J. McCormick; M. K. Szymanski; P. J. Tristram; S. Nikolaev; B. Paczynski; M. Kubiak; G. Pietrzynski; I. Soszynski; O. Szewczyk; K. Ulaczyk; L. Wyrzykowski; D. L. DePoy; C. Han; S. Kaspi; C. -U. Lee; F. Mallia; T. Natusch; R. W. Pogge; B. -G. Park; F. Abe; I. A. Bond; C. S. Botzler; A. Fukui; J. B. Hearnshaw; Y. Itow; K. Kamiya; A. V. Korpela; P. M. Kilmartin; W. Lin; K. Masuda; Y. Matsubara; M. Motomura; Y. Muraki; S. Nakamura; T. Okumura; K. Ohnishi; N. J. Rattenbury; T. Sako; To. Saito; S. Sato; L. Skuljan; D. J. Sullivan; T. Sumi; W. L. Sweatman; P. C. M. Yock; M. D. Albrow; A. Allan; J. -P. Beaulieu; M. J. Burgdorf; K. H. Cook; C. Coutures; M. Dominik; S. Dieters; P. Fouque; J. Greenhill; K. Horne; I. Steele; Y. Tsapras; B. Chaboyer; A. Crocker; S. Frank; B. Macintosh

2008-03-19T23:59:59.000Z

93

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

2005-12-22T23:59:59.000Z

94

Instability, mixing, and transition to turbulence in a laser-driven counterflowing shear experiment  

SciTech Connect (OSTI)

In a turbulence experiment conducted at the Omega Laser Facility [Boehly et al., Opt. Commun. 133, 495 (1997)

Doss, F. W.; Loomis, E. N.; Welser-Sherrill, L.; Fincke, J. R.; Flippo, K. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Keiter, P. A. [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States)

2013-01-15T23:59:59.000Z

95

X-Ray Emission from Jupiter, Saturn, and Earth: A Short Review  

E-Print Network [OSTI]

Jupiter, Saturn, and Earth - the three planets having dense atmosphere and a well developed magnetosphere - are known to emit X-rays. Recently, Chandra X-ray Observatory has observed X-rays from these planets, and XMM-Newton has observed them from Jupiter and Saturn. These observations have provided improved morphological, temporal, and spectral characteristics of X-rays from these planets. Both auroral and non-auroral (low-latitude) 'disk' X-ray emissions have been observed on Earth and Jupiter. X-rays have been detected from Saturn's disk, but no convincing evidence for X-ray aurora on Saturn has been observed. The non-auroral disk X-ray emissions from Jupiter, Saturn, and Earth, are mostly produced due to scattering of solar X-rays. X-ray aurora on Earth is mainly generated via bremsstrahlung from precipitating electrons and on Jupiter via charge exchange of highlyionized energetic heavy ions precipitating into the polar atmosphere. Recent unpublished work suggests that at higher (>2 keV) energies electron bremsstrahlung also plays a role in Jupiter's X-ray aurora. This paper summarizes the recent results of X-ray observations on Jupiter, Saturn, and Earth mainly in the soft energy (~0.1-2.0 keV) band and provides a comparative overview.

Anil Bhardwaj

2006-05-11T23:59:59.000Z

96

Study of an HHG-Seeded Free-Electron Laser for the LBNL Next Generation Light Source  

E-Print Network [OSTI]

Electron Laser for the LBNL Next Generation Light SourceElectron Laser for the LBNL Next Generation Light SourceBerkeley National Laboratory (LBNL). The proposed facil- ity

Thompson, Neil

2011-01-01T23:59:59.000Z

97

Thomas Jefferson National Accelerator Facility  

SciTech Connect (OSTI)

The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. The technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.

Joseph Grames, Douglas Higinbotham, Hugh Montgomery

2010-09-01T23:59:59.000Z

98

New concept for internal heat production in hot Jupiter exo-planets, thermonuclear ignition of dark  

E-Print Network [OSTI]

Discovery of hot Jupiter exo-planets, those with anomalously inflated size and low density relative to Jupiter, has evoked much discussion as to possible sources of internal heat production. But to date, no explanations have come forth that are generally applicable. The explanations advanced typically involve presumed tidal dissipation and/or converted incident stellar radiation. The present, brief communication suggests a novel interfacial nuclear fission-fusion source of internal heat production for hot Jupiters that has been overlooked by theoreticians and which has potentially general applicability.

J. Marvin Herndon

2008-01-01T23:59:59.000Z

99

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

2002-05-20T23:59:59.000Z

100

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

2013-06-21T23:59:59.000Z

Note: This page contains sample records for the topic "jupiter laser facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

2005-12-22T23:59:59.000Z

102

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

2000-11-20T23:59:59.000Z

103

Comparison of Jupiter Interior Models Derived from First-Principles Simulations  

E-Print Network [OSTI]

Recently two groups used first-principles computer simulations to model Jupiter's interior. While both studies relied on the same simulation technique, density functional molecular dynamics, the groups derived very different conclusions. In particular estimates for the size of Jupiter's core and the metallicity of its hydrogen-helium mantle differed substantially. In this paper, we discuss the differences of the approaches and give an explanation for the differing conclusions.

B. Militzer; W. B. Hubbard

2008-07-27T23:59:59.000Z

104

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

2012-12-04T23:59:59.000Z

105

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

1995-10-13T23:59:59.000Z

106

Digital multimirror devices for precision laser micromachining  

E-Print Network [OSTI]

DMD LIFT results 24 PMMA donors New 3D printing technology! BiTe semiconductor film New laser 3D printing facility...An ORC breakthrough 75 µm #12;Summary · DMDs are very useful for precise ablation

107

A Passive Probe for Subsurface Oceans and Liquid Water in Jupiter's Icy Moons  

E-Print Network [OSTI]

We describe an interferometric reflectometer method for passive detection of subsurface oceans and liquid water in Jovian icy moons using Jupiter's decametric radio emission (DAM). The DAM flux density exceeds 3,000 times the galactic background in the neighborhood of the Jovian icy moons, providing a signal that could be used for passive radio sounding. An instrument located between the icy moon and Jupiter could sample the DAM emission along with its echoes reflected in the ice layer of the target moon. Cross-correlating the direct emission with the echoes would provide a measurement of the ice shell thickness along with its dielectric properties. The interferometric reflectometer provides a simple solution to sub-Jovian radio sounding of ice shells that is complementary to ice penetrating radar measurements better suited to measurements in the anti-Jovian hemisphere that shadows Jupiter's strong decametric emission. The passive nature of this technique also serves as risk reduction in case of radar transmi...

Romero-Wolf, Andrew; Maiwald, Frank; Heggy, Essam; Ries, Paul; Liewer, Kurt

2014-01-01T23:59:59.000Z

108

Omega Laser Facility Schedule - Laboratory for Laser Energetics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat CornellInternships, ScholarshipsSpeedingOil &

109

Laser program annual report, 1980  

SciTech Connect (OSTI)

Volume 1 provides a Program Overview, presenting highlights of the technical accomplishments of the elements of the Program, a summary of activities carried out under the Glass Laser Experiments Lead Laboratory Program, as well as discussions of Program resources and facilities. Section 2, also in the first volume, covers the work on solid state Nd:glass lasers, including systems operations, Nova and Novette system development, and supporting research and development activities.

Coleman, L.W.; Krupke, W.F.; Strack, J.R. (eds.)

1981-06-01T23:59:59.000Z

110

LANL, LLNL researchers among Early Career Research Program award...  

National Nuclear Security Administration (NNSA)

Urban Right photo: LLNL's Yuan Ping stands next to the target chamber in the Europa laser bay, part of the Jupiter Laser Facility. LANL, LLNL researchers among Early Career...

111

Development of advanced blanket performance under irradiation and system integration through JUPITER-II project  

SciTech Connect (OSTI)

This report describes an outline of the activities of the JUPITER-II collaboration (japan-USA program of Irradiation/Integration test for Fusion Research-II), Which has bee carried out through six years (2001-2006) under Phase 4 of the collabroation implemented by Amendment 4 of Annex 1 to the DOE (United States Department of Energy)-MEXT (Ministry of Education ,Culture,Sports,Science and Technology) Cooperation. This program followed the RTNS-II Program (Phase1:1982-4986), the FFTF/MOTA Program (Phase2:1987-1994) and the JUPITER Program (Phase 3: 1995-2000) [1].

Abe, Katsunori; Kohyama, Akira; Tanaka, Satoru; Namba, C.; Terai, T.; Kunugi, T.; Muroga, Takeo; Hasegawa, Akira; Sagara, A.; Berk, S.; Zinkle, Steven J.; Sze, Dai Kai; Petti, D. A.; Abdou, Mohamed A.; Morley, Neil B.; Kurtz, Richard J.; Snead, Lance L.; Ghoniem, Nasr M.

2008-12-01T23:59:59.000Z

112

The BNL Accelerator Test Facility control system  

SciTech Connect (OSTI)

Described is the VAX/CAMAC-based control system for Brookhaven National Laboratory's Accelerator Test Facility, a laser/linac research complex. Details of hardware and software configurations are presented along with experiences of using Vsystem, a commercial control system package.

Malone, R.; Bottke, I.; Fernow, R.; Ben-Zvi, I.

1993-01-01T23:59:59.000Z

113

Fabrication of Separator Demonstration Facility process vessel  

SciTech Connect (OSTI)

The process vessel system is the central element in the Separator Development Facility (SDF). It houses the two major process components, i.e., the laser-beam folding optics and the separators pods. This major subsystem is the critical-path procurement for the SDF project. Details of the vaious parts of the process vessel are given.

Oberst, E.F.

1985-01-15T23:59:59.000Z

114

FDA Exemption Letter, 78EL-01DOE by LSSG for GOCG Facilities  

Broader source: Energy.gov [DOE]

Food and Drug Administration response to Department of Energy's request for clarification of the circumstances under which a DOE Government Owned Contractor Operated (GOCO) facility may be considered a laser manufacturer and subject to FDA laser manufacturer requirements and other points of interpretation of the FDA Exemption Letter, 78EL-01DOE (DOE exemption or exemption) by the LSSG for GOCG facilities.

115

National Ignition Facility faces an uncertain future David Kramer  

E-Print Network [OSTI]

-member user group, with 22% of its members coming from host Lawrence Livermore National Laboratory (LLNL at the National Ignition Facility to achieve a self-sustaining fusion reaction fell short. Now NIF stands to lose that were specified for NIF when the massive laser facility was ap- proved for construction in 1996

116

Analysis of Capillary Guided Laser Plasma Accelerator Experiments at LBNL  

E-Print Network [OSTI]

Analysis of Capillary Guided Laser Plasma Accelerator Experiments at LBNL K. Nakamura , A. J (LBNL) [5, 6]. In this scheme, intense laser pulses were guided over a distance 10 times the Rayleigh facility at LBNL. The laser was focused onto the entrance of a capillary discharge waveguide by an f/25 off

Geddes, Cameron Guy Robinson

117

FORUM | PLANETARY SCIENCE & ASTROBIOLOGY Jupiter exploration: high risk and high rewards  

E-Print Network [OSTI]

-delivered or generated in-situ by UV irradiation and the implantation of ionized particles from Jupiter's radiation belts Department of Energy (DoE)/NASA programme to develop advanced radioisotope power sources and nuclear fission, and might enable lengthy unmanned voyages to exotic destinations beyond Saturn. Radiosotope Thermoelectric

Kite, Edwin

118

PHASE LIGHT CURVES FOR EXTRASOLAR JUPITERS AND SATURNS Ulyana A. Dyudina,1, 2  

E-Print Network [OSTI]

approaching the precision at which reflected light from extra- solar planets can be detected directly (JenkinsPHASE LIGHT CURVES FOR EXTRASOLAR JUPITERS AND SATURNS Ulyana A. Dyudina,1, 2 Penny D. Sackett,2 C. Porco CICLOPS, Space Science Institute, 3100 Marine Street, Suite A353, Boulder, CO 80303

Throop, Henry

119

Constraints on the atmospheric circulation and variability of the eccentric hot Jupiter Xo-3b  

E-Print Network [OSTI]

We report secondary eclipse photometry of the hot Jupiter XO-3b in the 4.5 ?m band taken with the Infrared Array Camera on the Spitzer Space Telescope. We measure individual eclipse depths and center of eclipse times for ...

Wong, Ian

120

BOCA RATON DANIA BEACH DAVIE FORT LAUDERDALE HARBOR BRANCH JUPITER PORT ST. LUCIE Educational Plant Survey  

E-Print Network [OSTI]

BOCA RATON DANIA BEACH DAVIE FORT LAUDERDALE HARBOR BRANCH JUPITER PORT ST. LUCIE Educational Plant Survey 2011/2012 ­ 2016/2017 Approved by FAU BOT on June 15, 2011 #12;EDUCATIONAL PLANT SURVEY Florida ...................................................................................................................... ii Educational Plant Survey Team

Fernandez, Eduardo

Note: This page contains sample records for the topic "jupiter laser facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Electron acceleration at Jupiter: input from cyclotron-resonant interaction with whistler-mode chorus waves  

E-Print Network [OSTI]

Jupiter has the most intense radiation belts of all the outer planets. It is not yet known how electrons can be accelerated to energies of 10 MeV or more. It has been suggested that cyclotron-resonant wave-particle ...

Woodfield, E. E.

122

So Far Unfruitful, Fusion Project Faces a Frugal Congress National Ignition Facility  

E-Print Network [OSTI]

laser at the Lawrence Livermore National Laboratory in California. By WILLIAM J. BROAD September 29 have broad repercussions not only for the big laser, which is based at the Lawrence Livermore National the government have long assailed the laser project, known as the National Ignition Facility, or NIF

123

Laser program annual report, 1979  

SciTech Connect (OSTI)

This volume provides a program overview, presenting highlights of the technical accomplishments of the elements of the program, as well as discussions of program resources and facilities. Also covered are the work of the Solid-State Laser program element, which includes systems operations, Nova, and research and development activities. (MOW)

Coleman, L.W.; Strack, J.R. (eds.)

1980-03-01T23:59:59.000Z

124

Facilities Services Overview & Discussion  

E-Print Network [OSTI]

& Finance Facilities Services Director: Jeff Butler Human Resources Administrative Services Engineering) Environmental Services Morrison (3) Admin Services Evans (1) Human Resources Engineering (4) ·EngineeringFacilities Services Overview & Discussion Jeff Butler Director ­ Facilities Services November 2011

Maxwell, Bruce D.

125

Page 1Laser Safety Training Laser Institute of America Laser Safety Laser Institute of America  

E-Print Network [OSTI]

Page 1Laser Safety Training © Laser Institute of America 1 Laser Safety © Laser Institute of America Laser Safety: Hazards, Bioeffects, and Control Measures Laser Institute of America Gus Anibarro Education Manager 2Laser Safety © Laser Institute of America Laser Safety Overview Laser Safety Accidents

Farritor, Shane

126

Laser Telecommunication timeLaser beam  

E-Print Network [OSTI]

Laser Telecommunication Experiment Laser time Laser beam intensity timeLaser beam Laser battery Laser connected to a circuit without a modulator. Bottom graph illustrates what happen when a modulating signal is superimposed to the DC voltage driving the laser Laser beam intensity DC Input voltage DC

La Rosa, Andres H.

127

from Isotope Production Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cancer-fighting treatment gets boost from Isotope Production Facility April 13, 2012 Isotope Production Facility produces cancer-fighting actinium 2:32 Isotope cancer treatment...

128

Fuel Fabrication Facility  

National Nuclear Security Administration (NNSA)

Construction of the Mixed Oxide Fuel Fabrication Facility Construction of the Mixed Oxide Fuel Fabrication Facility November 2005 May 2007 June 2008 May 2012...

129

Laser microphone  

DOE Patents [OSTI]

A microphone for detecting sound pressure waves includes a laser resonator having a laser gain material aligned coaxially between a pair of first and second mirrors for producing a laser beam. A reference cell is disposed between the laser material and one of the mirrors for transmitting a reference portion of the laser beam between the mirrors. A sensing cell is disposed between the laser material and one of the mirrors, and is laterally displaced from the reference cell for transmitting a signal portion of the laser beam, with the sensing cell being open for receiving the sound waves. A photodetector is disposed in optical communication with the first mirror for receiving the laser beam, and produces an acoustic signal therefrom for the sound waves.

Veligdan, James T. (Manorville, NY)

2000-11-14T23:59:59.000Z

130

Guide to research facilities  

SciTech Connect (OSTI)

This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

Not Available

1993-06-01T23:59:59.000Z

131

Pathway to a lower cost high repetition rate ignition facility  

SciTech Connect (OSTI)

An approach to a high-repetition ignition facility based on direct drive with the krypton-fluoride laser is presented. The objective is development of a 'Fusion Test Facility' that has sufficient fusion power to be useful as a development test bed for power plant materials and components. Calculations with modern pellet designs indicate that laser energies well below a megajoule may be sufficient. A smaller driver would result in an overall smaller, less complex and lower cost facility. While this facility might appear to have most direct utility to inertial fusion energy, the high flux of neutrons would also be able to address important issues concerning materials and components for other approaches to fusion energy. The physics and technological basis for the Fusion Test Facility are presented along with a discussion of its applications.

Obenschain, S.P.; Colombant, D.G.; Schmitt, A.J.; Sethian, J.D.; McGeoch, M. W. [Plasma Physics Division, U.S. Naval Research Laboratory, Washington, D.C. 20375 (United States); Plex LLC, Brookline, Massachusetts 02446-5478 (United States)

2006-05-15T23:59:59.000Z

132

Future Fixed Target Facilities  

SciTech Connect (OSTI)

We review plans for future fixed target lepton- and hadron-scattering facilities, including the 12 GeV upgraded CEBAF accelerator at Jefferson Lab, neutrino beam facilities at Fermilab, and the antiproton PANDA facility at FAIR. We also briefly review recent theoretical developments which will aid in the interpretation of the data expected from these facilities.

Melnitchouk, Wolodymyr

2009-01-01T23:59:59.000Z

133

Laser device  

DOE Patents [OSTI]

A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

Scott, Jill R. (Idaho Falls, ID); Tremblay, Paul L. (Idaho Falls, ID)

2007-07-10T23:59:59.000Z

134

Meteoritical and dynamical constraints on the growth mechanisms and formation times of asteroids and Jupiter  

E-Print Network [OSTI]

Peak temperatures inside meteorite parent bodies are closely linked to accretion times. Most iron meteorites come from bodies that accreted 3-5 Myr after CAIs formed. This precludes formation of Jupiter via a gravitational instability <1 Myr after the solar nebula formed, and strongly favors core accretion. Shocks formed by gravitational instabilities in the disk, proto-Jupiter, or by planetary embryos may have produced some chondrules. The minimum lifetime for the solar nebula of 3-5 Myr inferred from CAI and chondrule ages may exceed the median 3 Myr lifetime for protoplanetary disks, but is well within the total 1-10 Myr range. Shorter formation times for extrasolar planets may help to explain why their orbits are unlike those of solar giant planets.

Edward R. D. Scott

2006-07-13T23:59:59.000Z

135

Geodesic Transport Barriers in Jupiter's Atmosphere: A Video-Based Analysis  

E-Print Network [OSTI]

Jupiter's zonal jets and Great Red Spot are well known from still images. Yet the planet's atmosphere is highly unsteady, which suggests that the actual material transport barriers delineating its main features should be time-dependent. Rare video footages of Jupiter's clouds provide an opportunity to verify this expectation from optically reconstructed velocity fields. Available videos, however, provide short-time and temporally aperiodic velocity fields that defy classical dynamical systems analyses focused on asymptotic features. To this end, we use here the recent theory of geodesic transport barriers to uncover finite-time mixing barriers in the wind field extracted from a video captured by NASA's Cassini space mission. More broadly, the approach described here provides a systematic and frame-invariant way to extract dynamic coherent structures from time-resolved remote observations of unsteady continua.

Alireza Hadjighasem; George Haller

2014-08-24T23:59:59.000Z

136

A NEARLY POLAR ORBIT FOR THE EXTRASOLAR HOT JUPITER WASP-79b  

SciTech Connect (OSTI)

We report the measurement of a spin-orbit misalignment for WASP-79b, a recently discovered, bloated hot Jupiter from the Wide Angle Search for Planets (WASP) survey. Data were obtained using the CYCLOPS2 optical-fiber bundle and its simultaneous calibration system feeding the UCLES spectrograph on the Anglo-Australian Telescope. We have used the Rossiter-McLaughlin effect to determine the sky-projected spin-orbit angle to be {lambda}= -106{sup +19}{sub -13} {sup o}. This result indicates a significant misalignment between the spin axis of the host star and the orbital plane of the planet-the planet being in a nearly polar orbit. WASP-79 is consistent with other stars that have T{sub eff} > 6250 K and host hot Jupiters in spin-orbit misalignment.

Addison, B. C.; Tinney, C. G.; Wright, D. J. [Exoplanetary Science Group, School of Physics, University of New South Wales, NSW 2052 (Australia); Bayliss, D.; Zhou, G.; Schmidt, B. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Hartman, J. D.; Bakos, G. A., E-mail: b.addison@unsw.edu.au [Department of Astrophysical Sciences, Princeton University, NJ 08544 (United States)

2013-09-01T23:59:59.000Z

137

Friends of Hot Jupiters II: No Correspondence Between Hot-Jupiter Spin-Orbit Misalignment and the Incidence of Directly Imaged Stellar Companions  

E-Print Network [OSTI]

Multi-star systems are common, yet little is known about a stellar companion's influence on the formation and evolution of planetary systems. For instance, stellar companions may have facilitated the inward migration of hot Jupiters towards to their present day positions. Many observed short period gas giant planets also have orbits that are misaligned with respect to their star's spin axis, which has also been attributed to the presence of a massive outer companion on a non-coplanar orbit. We present the results of a multi-band direct imaging survey using Keck NIRC2 to measure the fraction of short period gas giant planets found in multi-star systems. Over three years, we completed a survey of 50 targets ("Friends of Hot Jupiters") with 27 targets showing some signature of multi-body interaction (misaligned or eccentric orbits) and 23 targets in a control sample (well-aligned and circular orbits). We report the masses, projected separations, and confirmed common proper motion for the 19 stellar companions fo...

Ngo, Henry; Hinkley, Sasha; Crepp, Justin R; Bechter, Eric B; Batygin, Konstantin; Howard, Andrew W; Johnson, John A; Morton, Timothy D; Muirhead, Philip S

2015-01-01T23:59:59.000Z

138

Memorandum requesting a clarification of the circumstances under which a DOE Government Owned Contractor Operated (GOCO) facility  

Broader source: Energy.gov [DOE]

Memorandum requesting a clarification of the circumstances under which a DOE Government Owned Contractor Operated (GOCO) facility may be considered a laser manufacturer and subject to FDA laser manufacturer requirements and other points of interpretation of the FDA Exemption Letter, 78EL-01DOE (DOE exemption or exemption) by the LSSG for GOCG facilities.

139

Polarization measurement of laser-accelerated protons  

SciTech Connect (OSTI)

We report on the successful use of a laser-driven few-MeV proton source to measure the differential cross section of a hadronic scattering reaction as well as on the measurement and simulation study of polarization observables of the laser-accelerated charged particle beams. These investigations were carried out with thin foil targets, illuminated by 100 TW laser pulses at the Arcturus laser facility; the polarization measurement is based on the spin dependence of hadronic proton scattering off nuclei in a Silicon target. We find proton beam polarizations consistent with zero magnitude which indicates that for these particular laser-target parameters the particle spins are not aligned by the strong magnetic fields inside the laser-generated plasmas.

Raab, Natascha; Engels, Ralf; Engin, Ilhan; Greven, Patrick; Holler, Astrid; Lehrach, Andreas; Maier, Rudolf [Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, 52425 Jülich (Germany)] [Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, 52425 Jülich (Germany); Büscher, Markus, E-mail: m.buescher@fz-juelich.de [Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, 52425 Jülich (Germany) [Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, 52425 Jülich (Germany); Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich, 52425 Jülich (Germany); Institute for Laser- and Plasma Physics, Heinrich-Heine Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf (Germany); Cerchez, Mirela; Swantusch, Marco; Toncian, Monika; Toncian, Toma; Willi, Oswald [Institute for Laser- and Plasma Physics, Heinrich-Heine Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf (Germany)] [Institute for Laser- and Plasma Physics, Heinrich-Heine Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf (Germany); Gibbon, Paul; Karmakar, Anupam [Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich (Germany)] [Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich (Germany)

2014-02-15T23:59:59.000Z

140

CRAD, Facility Safety- Nuclear Facility Safety Basis  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis.

Note: This page contains sample records for the topic "jupiter laser facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Laser ignition  

DOE Patents [OSTI]

In the apparatus of the invention, a first excitation laser or other excitation light source capable of producing alternating beams of light having different wavelengths is used in tandem with one or more ignitor lasers to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using the single remote excitation light source for pumping one or more small lasers located proximate to one or more fuel combustion zones with alternating wavelengths of light.

Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

2002-01-01T23:59:59.000Z

142

Analysis of Capillary Guided Laser Plasma Accelerator Experiments at LBNL  

E-Print Network [OSTI]

Accelerator Experiments at LBNL K. Nakamura ?,† , A. J.National Labo- ratory (LBNL) [5, 6]. In this scheme, intenseof the LOASIS facility at LBNL. The laser beam was focused

Nakamura, Kei; Advanced Light Source

2009-01-01T23:59:59.000Z

143

Oxy-Combustion Burner and Integrated Pollutant Removal Research and Development Test Facility  

SciTech Connect (OSTI)

A high flame temperature oxy-combustion test facility consisting of a 5 MWe equivalent test boiler facility and 20 KWe equivalent IPR® was constructed at the Hammond, Indiana manufacturing site. The test facility was operated natural gas and coal fuels and parametric studies were performed to determine the optimal performance conditions and generated the necessary technical data required to demonstrate the technologies are viable for technical and economic scale-up. Flame temperatures between 4930-6120F were achieved with high flame temperature oxy-natural gas combustion depending on whether additional recirculated flue gases are added to balance the heat transfer. For high flame temperature oxy-coal combustion, flame temperatures in excess of 4500F were achieved and demonstrated to be consistent with computational fluid dynamic modeling of the burner system. The project demonstrated feasibility and effectiveness of the Jupiter Oxygen high flame temperature oxy-combustion process with Integrated Pollutant Removal process for CCS and CCUS. With these technologies total parasitic power requirements for both oxygen production and carbon capture currently are in the range of 20% of the gross power output. The Jupiter Oxygen high flame temperature oxy-combustion process has been demonstrated at a Technology Readiness Level of 6 and is ready for commencement of a demonstration project.

Mark Schoenfield; Manny Menendez; Thomas Ochs; Rigel Woodside; Danylo Oryshchyn

2012-09-30T23:59:59.000Z

144

FACILITY SAFETY (FS)  

Broader source: Energy.gov (indexed) [DOE]

FACILITY SAFETY (FS) OBJECTIVE FS.1 - (Core Requirement 7) Facility safety documentation in support of SN process operations,is in place and has been implemented that describes the...

145

Technology Transitions Facilities Database  

Broader source: Energy.gov [DOE]

The types of R&D facilities at the DOE Laboratories available to the public typically fall into three broad classes depending on the mode of access: Designated User Facilities, Shared R&D...

146

Adventures in Laser Produced Plasma Research  

SciTech Connect (OSTI)

In the UK the study of laser produced plasmas and their applications began in the universities and evolved to a current system where the research is mainly carried out at the Rutherford Appleton Laboratory Central Laser Facility ( CLF) which is provided to support the universities. My own research work has been closely tied to this evolution and in this review I describe the history with particular reference to my participation in it.

Key, M

2006-01-13T23:59:59.000Z

147

Better building: LEEDing new facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Better building: LEEDing new facilities Better building: LEEDing new facilities We're taking big steps on-site to create energy efficient facilities and improve infrastructure....

148

Laser device  

DOE Patents [OSTI]

A laser device includes a virtual source configured to aim laser energy that originates from a true source. The virtual source has a vertical rotational axis during vertical motion of the virtual source and the vertical axis passes through an exit point from which the laser energy emanates independent of virtual source position. The emanating laser energy is collinear with an orientation line. The laser device includes a virtual source manipulation mechanism that positions the virtual source. The manipulation mechanism has a center of lateral pivot approximately coincident with a lateral index and a center of vertical pivot approximately coincident with a vertical index. The vertical index and lateral index intersect at an index origin. The virtual source and manipulation mechanism auto align the orientation line through the index origin during virtual source motion.

Scott, Jill R. (Idaho Falls, ID); Tremblay, Paul L. (Idaho Falls, ID)

2008-08-19T23:59:59.000Z

149

BDS Thin Film UV Antireflection Laser Damage Competition  

SciTech Connect (OSTI)

UV antireflection coatings are a challenging coating for high power laser applications as exemplified by the use of uncoated Brewster's windows in laser cavities. In order to understand the current laser resistance of UV AR coatings in the industrial and university sectors, a double blind laser damage competition was performed. The coatings have a maximum reflectance of 0.5% at 355 nm at normal incidence. Damage testing will be performed using the raster scan method with a 7.5 ns pulse length on a single testing facility to facilitate direct comparisons. In addition to the laser resistance results, details of deposition processes and coating materials will also be shared.

Stolz, C J

2010-10-26T23:59:59.000Z

150

Resonator design for a visible wavelength free-electron laser (*)  

SciTech Connect (OSTI)

Design requirements for a visible wavelength free-electron laser being developed at the Accelerator Test Facility at Brookhaven National Laboratory are presented along with predictions of laser performance from 3-D numerical simulations. The design and construction of the optical resonator, its alignment and control systems are also described. 15 refs., 8 figs., 4 tabs.

Bhowmik, A.; Lordi, N. (Rockwell International Corp., Canoga Park, CA (United States). Rocketdyne Div.); Ben-Zvi, I.; Gallardo, J. (Brookhaven National Lab., Upton, NY (United States))

1990-01-01T23:59:59.000Z

151

Ab initio Equation of State data for hydrogen, helium, and water and the internal structure of Jupiter  

E-Print Network [OSTI]

The equation of state of hydrogen, helium, and water effects interior structure models of giant planets significantly. We present a new equation of state data table, LM-REOS, generated by large scale quantum molecular dynamics simulations for hydrogen, helium, and water in the warm dense matter regime, i.e.for megabar pressures and temperatures of several thousand Kelvin, and by advanced chemical methods in the complementary regions. The influence of LM-REOS on the structure of Jupiter is investigated and compared with state-of-the-art results within a standard three-layer model consistent with astrophysical observations of Jupiter. Our new Jupiter models predict an important impact of mixing effects of helium in hydrogen with respect to an altered compressibility and immiscibility.

N. Nettelmann; B. Holst; A. Kietzmann; M. French; R. Redmer; D. Blaschke

2007-12-06T23:59:59.000Z

152

Small Power Production Facilities (Montana)  

Broader source: Energy.gov [DOE]

For the purpose of these regulations, a small power production facility is defined as a facility that:...

153

Spectroscopy of betatron radiation emitted from laser-produced wakefield accelerated electronsa...  

E-Print Network [OSTI]

laser facilities in which the nature divergence and total x-ray flux of the betatron radiation has been is able to discern changes of the betatron emission x-ray spec- trum with differing laser parametersSpectroscopy of betatron radiation emitted from laser-produced wakefield accelerated electronsa

Geddes, Cameron Guy Robinson

154

Mercury: A second-generation KrF laser for inertial fusion research  

SciTech Connect (OSTI)

The ``Mercury`` KrF laser facility at Los Alamos is being built with the benefit of lessons learned from the Aurora KrF laser. An increased understanding of KrF laser engineering, and the designed implementation of system flexibility, will permit Mercury to serve as a testbed for a variety of advanced KrF technology concepts.

Bigio, I.J.; York, G.; McLeod, J.; Czuchlewski, J.; Rose, E.; Hanson, D.E.; Kurnit, N.A.; McCown, A.

1992-10-01T23:59:59.000Z

155

Mercury: A second-generation KrF laser for inertial fusion research  

SciTech Connect (OSTI)

The Mercury'' KrF laser facility at Los Alamos is being built with the benefit of lessons learned from the Aurora KrF laser. An increased understanding of KrF laser engineering, and the designed implementation of system flexibility, will permit Mercury to serve as a testbed for a variety of advanced KrF technology concepts.

Bigio, I.J.; York, G.; McLeod, J.; Czuchlewski, J.; Rose, E.; Hanson, D.E.; Kurnit, N.A.; McCown, A.

1992-01-01T23:59:59.000Z

156

Laser goniometer  

DOE Patents [OSTI]

The laser goniometer is an apparatus which permits an operator to sight along a geologic feature and orient a collimated lamer beam to match the attitude of the feature directly. The horizontal orientation (strike) and the angle from horizontal (dip), are detected by rotary incremental encoders attached to the laser goniometer which provide a digital readout of the azimuth and tilt of the collimated laser beam. A microprocessor then translates the square wave signal encoder outputs into an ASCII signal for use by data recording equipment.

Fairer, George M. (Boulder, CO); Boernge, James M. (Lakewood, CO); Harris, David W. (Lakewood, CO); Campbell, DeWayne A. (Littleton, CO); Tuttle, Gene E. (Littleton, CO); McKeown, Mark H. (Golden, CO); Beason, Steven C. (Lakewood, CO)

1993-01-01T23:59:59.000Z

157

Dual wavelength laser damage testing for high energy lasers.  

SciTech Connect (OSTI)

As high energy laser systems evolve towards higher energies, fundamental material properties such as the laser-induced damage threshold (LIDT) of the optics limit the overall system performance. The Z-Backlighter Laser Facility at Sandia National Laboratories uses a pair of such kiljoule-class Nd:Phosphate Glass lasers for x-ray radiography of high energy density physics events on the Z-Accelerator. These two systems, the Z-Beamlet system operating at 527nm/ 1ns and the Z-Petawatt system operating at 1054nm/ 0.5ps, can be combined for some experimental applications. In these scenarios, dichroic beam combining optics and subsequent dual wavelength high reflectors will see a high fluence from combined simultaneous laser exposure and may even see lingering effects when used for pump-probe configurations. Only recently have researchers begun to explore such concerns, looking at individual and simultaneous exposures of optics to 1064 and third harmonic 355nm light from Nd:YAG [1]. However, to our knowledge, measurements of simultaneous and delayed dual wavelength damage thresholds on such optics have not been performed for exposure to 1054nm and its second harmonic light, especially when the pulses are of disparate pulse duration. The Z-Backlighter Facility has an instrumented damage tester setup to examine the issues of laser-induced damage thresholds in a variety of such situations [2] . Using this damage tester, we have measured the LIDT of dual wavelength high reflectors at 1054nm/0.5ps and 532nm/7ns, separately and spatially combined, both co-temporal and delayed, with single and multiple exposures. We found that the LIDT of the sample at 1054nm/0.5ps can be significantly lowered, from 1.32J/cm{sup 2} damage fluence with 1054/0.5ps only to 1.05 J/cm{sup 2} with the simultaneous presence of 532nm/7ns laser light at a fluence of 8.1 J/cm{sup 2}. This reduction of LIDT of the sample at 1054nm/0.5ps continues as the fluence of 532nm/7ns laser light simultaneously present increases. The reduction of LIDT does not occur when the 2 pulses are temporally separated. This paper will also present dual wavelength LIDT results of commercial dichroic beam-combining optics simultaneously exposed with laser light at 1054nm/2.5ns and 532nm/7ns.

Atherton, Briggs W.; Rambo, Patrick K.; Schwarz, Jens; Kimmel, Mark W.

2010-05-01T23:59:59.000Z

158

LASER ACCELERATORS  

E-Print Network [OSTI]

UNIVERSITY OF CALIFORNIA Accelerator & Fusion Researchat the 1983 Particle Accelerator Conference, Santa Fe, NM,March 21-23, 1983 LASER ACCELERATORS A.M. Sessler TWO-WEEK

Sessler, A.M.

2008-01-01T23:59:59.000Z

159

Laser barometer  

SciTech Connect (OSTI)

This paper describes an invention of a pressure measuring instrument which uses laser radiation to sense the pressure in an enclosed environment by means of measuring the change in refractive index of a gas - which is pressure dependent.

Abercrombie, K.R.; Shiels, D.; Rash, T.

1998-04-01T23:59:59.000Z

160

Laser Optomechanics  

E-Print Network [OSTI]

Cavity optomechanics explores the coupling between the optical field and the mechanical oscillation to induce cooling and regenerative oscillation in a mechanical oscillator. So far, optomechanics relies on the detuning between the cavity and an external pump laser, where the laser acts only as a power supply. Here, we report a new scheme with mutual coupling between a mechanical oscillator that supports a mirror of a vertical-cavity surface-emitting laser (VCSEL) and the optical field, greatly enhancing the light-matter energy transfer. In this work, we used an ultra-light-weight (130 pg) high-contrast-grating (HCG) mirror in a VCSEL, whose reflectivity spectrum is designed to facilitate strong optomechanical coupling, to demonstrate optomechanically-induced regenerative oscillation of the laser optomechanical cavity with > 550 nm self-oscillation amplitude of the micro-mechanical oscillator, two to three orders of magnitude larger than typical. This new scheme not only offers an efficient approach for high-...

Yang, Weijian; Ng, Kar Wei; Rao, Yi; Chase, Christopher; Chang-Hasnain, Connie J

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "jupiter laser facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

OHMIC HEATING SUSPENDS, NOT REVERSES, THE COOLING CONTRACTION OF HOT JUPITERS  

SciTech Connect (OSTI)

We study the radius evolution of close-in extra-solar Jupiters under Ohmic heating, a mechanism that was recently proposed to explain the large observed sizes of many of these planets. Planets are born with high entropy and they subsequently cool and contract. We focus on two cases: first, that Ohmic heating commences when the planet is hot (high entropy); and second, that it commences after the planet has cooled. In the former case, we use analytical scaling and numerical experiments to confirm that Ohmic heating is capable of suspending the cooling as long as a few percent of the stellar irradiation is converted into Ohmic heating and the planet has a surface wind that extends to pressures of {approx}10 bar or deeper. For these parameters, the radii at which cooling is stalled are consistent with (or larger than) the observed radii of most planets. The only two exceptions are WASP-17b and HAT-P-32b. In contrast to the high entropy case, we show that Ohmic heating cannot significantly re-inflate planets after they have already cooled. This leads us to suggest that the diversity of radii observed in hot Jupiters may be partially explained by the different epochs at which they are migrated to their current locations.

Wu, Yanqin [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada)] [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Lithwick, Yoram [Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States)] [Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States)

2013-01-20T23:59:59.000Z

162

Laser EYE SURGERY LASIK and Excimer Lasers  

E-Print Network [OSTI]

Laser EYE SURGERY LASIK and Excimer Lasers Michael Hutchins #12;The PROBLEM opia - near sightedness - Laser Assisted in SItu Keratomileusis atomileusis is the procedure of opening the eye and ring the cornea. SIK uses an excimer laser to perform the alterations an er a knife or a femtosecond laser

Fygenson, Deborah Kuchnir

163

Science and Technology Facility  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

IBRF Project Lessons Learned Report Integrated Biorefinery Research Facility Lessons Learned - Stage I Acquisition through Stage II Construction Completion August 2011 This...

164

Programs & User Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Facility Climate, Ocean, and Sea Ice Modeling (COSIM) Terrestrial Ecosystem and Climate Dynamics Fusion Energy Sciences Magnetic Fusion Experiments Plasma Surface...

165

FACILITY SAFETY (FS)  

Broader source: Energy.gov (indexed) [DOE]

- (Core Requirements 4 and 6) Sufficient numbers of qualified personnel are available to conduct and support operations. Adequate facilities and equipment are available to ensure...

166

ARM Mobile Facilities  

ScienceCinema (OSTI)

This video provides an overview of the ARM Mobile Facilities, two portable climate laboratories that can deploy anywhere in the world for campaigns of at least six months.

Orr, Brad; Coulter, Rich

2014-09-15T23:59:59.000Z

167

Existing Facilities Program  

Broader source: Energy.gov [DOE]

The NYSERDA Existing Facilities program merges the former Peak Load Reduction and Enhanced Commercial and Industrial Performance programs. The new program offers a broad array of different...

168

Idaho National Laboratory Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Scientific User Facility Center for Advanced Energy Studies Light Water Reactor Sustainability Idaho Regional Optical Network LDRD Next Generation Nuclear Plant Docs...

169

Supercomputing | Facilities | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

facilities, and authorization checks for physical access. An integrated cyber security plan encompasses all aspects of computing. Cyber security plans are risk-based....

170

Facility Survey & Transfer  

Broader source: Energy.gov [DOE]

As DOE facilities become excess, many that are radioactively and/or chemically contaminated will become candidate for transfer to DOE-EM for deactivation and decommissioning.

171

Hot Fuel Examination Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Working with INL Community Outreach Visitor Information Calendar of Events ATR National Scientific User Facility Center for Advanced Energy Studies Light Water Reactor...

172

DOE Designated Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reactor** Lawrence Berkeley National Laboratory Joint Genome Institute - Production Genomics Facility (PGF)** (joint with LLNL, LANL, ORNL and PNNL) Advanced Light Source (ALS)...

173

Nuclear diagnostics for the National Ignition Facility ,,invited... Thomas J. Murphy,a)  

E-Print Network [OSTI]

Facility NIF , currently under construction at the Lawrence Livermore National Laboratory, will provide Ignition Facility1 NIF is a 192 beam laser system Fig. 1 currently under construction at Lawrence Livermore. Sangster Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 R. J. Leeper

174

OPERATIONAL EXPERIENCE WITH THE TEST FACILITIES FOR TESLA H. Weise, DESY, Hamburg, Germany  

E-Print Network [OSTI]

OPERATIONAL EXPERIENCE WITH THE TEST FACILITIES FOR TESLA H. Weise, DESY, Hamburg, Germany Abstract The TESLA superconducting electron-positron linear collider with an integrated X-ray laser laboratory government in matters of science. In preparation of this, the TESLA Test Facility was set up at DESY. More

175

ND:GLASS LASER DESIGN FOR LASER ICF FISSION ENERGY (LIFE)  

SciTech Connect (OSTI)

We have developed preliminary conceptual laser system designs for the Laser ICF (Inertial Confinement Fusion) Fission Energy (LIFE) application. Our approach leverages experience in high-energy Nd:glass laser technology developed for the National Ignition Facility (NIF), along with high-energy-class diode-pumped solid-state laser (HEC-DPSSL) technology developed for the DOE's High Average Power Laser (HAPL) Program and embodied in LLNL's Mercury laser system. We present laser system designs suitable for both indirect-drive, hot spot ignition and indirect-drive, fast ignition targets. Main amplifiers for both systems use laser-diode-pumped Nd:glass slabs oriented at Brewster's angle, as in NIF, but the slabs are much thinner to allow for cooling by high-velocity helium gas as in the Mercury laser system. We also describe a plan to mass-produce pump-diode lasers to bring diode costs down to the order of $0.01 per Watt of peak output power, as needed to make the LIFE application economically attractive.

Caird, J A; Agrawal, V; Bayramian, A; Beach, R; Britten, J; Chen, D; Cross, R; Ebbers, C; Erlandson, A; Feit, M; Freitas, B; Ghosh, C; Haefner, C; Homoelle, D; Ladran, T; Latkowski, J; Molander, W; Murray, J; Rubenchik, S; Schaffers, K; Siders, C W; Stappaerts, E; Sutton, S; Telford, S; Trenholme, J; Barty, C J

2008-10-28T23:59:59.000Z

176

1981 laser program annual report  

SciTech Connect (OSTI)

This report is published in sections that correspond to the division of technical activity in the Program. Section 1 provides a Program Overview, presenting highlights of the technical accomplishments of the elements of the Program, a summary of activities carried out under the Glass Laser Experiments Lead Laboratory Program, as well as discussions of Program resources and facilities. Section 2 covers the work on solid-state Nd:glass lasers, including systems operations and Nova and Novette systems development. Section 3 reports on target-design activities, plasma theory and simulation, code development, and atomic theory. Section 4 presents the accomplishments of the Target Fabrication group, Section 5 contains the results of our diagnostics development, and Section 6 reports the results of laser-target experiments conducted during the year, along with supporting research and development activities. Section 7 presents the results from laser research and development, including solid-state R and D and the theoretical and experimental research on advanced lasers. Section 8 contains the results of studies in areas of energy and military applications, including those relating to electrical energy production by inertial-confinement fusion systems.

Not Available

1982-08-01T23:59:59.000Z

177

Along the Laser Beampath  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 20 | Next | Last Back to Index NIF Laser Bay Each NIF laser bay is 122 meters (400 feet) long and contains 96 beamlines. This side view of Laser Bay 2 shows the four-high laser...

178

Laser Safety Introduction  

E-Print Network [OSTI]

Laser Safety #12;Introduction · A Laser is a device that controls the way energized atoms release photons. · LASER is an acronym for "Light Amplification by Stimulated Emission of Radiation" · The light emitted by a laser is non

McQuade, D. Tyler

179

Privacy Impact Assessment OFEO Facilities Management System Facilities Center  

E-Print Network [OSTI]

Privacy Impact Assessment OFEO Facilities Management System ­ Facilities Center I. System Identification 1. IT System Name: Facilities Management System - FacilityCenter 2. IT System Sponsor: Office. IT System Manager: Michelle T. Gooch, Facilities Management Systems Manager 5. PIA Author: Michelle T. Gooch

Mathis, Wayne N.

180

3Solar Energy and the Distance to Juno from the Sun As the Juno spacecraft travels to Jupiter,  

E-Print Network [OSTI]

3Solar Energy and the Distance to Juno from the Sun As the Juno spacecraft travels to Jupiter spacecraft? Problem 2 ­ If the amount of solar energy falling on the Juno solar panels is determined by the inverse-square law, and the amount of solar energy generated by the solar panels at r = 1.0 AU is exactly

Note: This page contains sample records for the topic "jupiter laser facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Facilities Management CAD Standards  

E-Print Network [OSTI]

Facilities Management CAD Standards 2011 #12;Facilities Management CAD Standards Providing: Layering Standards 2.1 Layer Name Format 2.2 Layer Name Modifiers 2.3 Layer Attributes 2.4 Special Layer of PDF and DWG Files APPENDIX A: DAL FM CAD Standard Layers APPENDIX B: DAL FM CAD Special Layers

Brownstone, Rob

182

Cornell University Facilities Services  

E-Print Network [OSTI]

requirements, building code, and sustainability objectives. This plan takes a long- term view, projecting workCornell University Facilities Services Contract Colleges Facilities Fernow and Rice Hall in Fernow, Rice, Bruckner, Bradfield and Plant Science buildings. It includes a surging and phasing plan

Manning, Sturt

183

Argonne Leadership Computing Facility  

E-Print Network [OSTI]

Argonne Leadership Computing Facility Argonne Leadership Computing Facility 2010 ANNUAL REPORT S C I E N C E P O W E R E D B Y S U P E R C O M P U T I N G ANL-11/15 The Argonne Leadership Computing States Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees

Kemner, Ken

184

A Materials Facilities Initiative -  

E-Print Network [OSTI]

A Materials Facilities Initiative - FMITS & MPEX D.L. Hillis and ORNL Team Fusion & Materials for Nuclear Systems Division July 10, 2014 #12;2 Materials Facilities Initiative JET ITER FNSF Fusion Reactor Challenges for materials: fluxes and fluence, temperatures 50 x divertor ion fluxes up to 100 x neutron

185

Nanotechnology User Facility for  

E-Print Network [OSTI]

A National Nanotechnology User Facility for Industry Academia Government #12;The National Institute of Commerce's nanotechnology user facility. The CNST enables innovation by providing rapid access to the tools new measurement and fabrication methods in response to national nanotechnology needs. www

186

Science &Technology Facilities Council  

E-Print Network [OSTI]

and Science & Technology Facilities Council invite you to The ESA Technology Transfer Network SpaceTech2012Science &Technology Facilities Council Innovations Issue 31 October 2012 This issue: 1 STFC International prize for `no needles' breast cancer diagnosis technique 6 CEOI Challenge Workshop ­ Current

187

Emergency Facilities and Equipment  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This volume clarifies requirements of DOE O 151.1 to ensure that emergency facilities and equipment are considered as part of emergency management program and that activities conducted at these emergency facilities are fully integrated. Canceled by DOE G 151.1-4.

1997-08-21T23:59:59.000Z

188

Laser Cosmology  

E-Print Network [OSTI]

Recent years have seen tremendous progress in our understanding of the cosmos, which in turn points to even deeper questions to be further addressed. Concurrently the laser technology has undergone dramatic revolutions, providing exciting opportunity for science applications. History has shown that the symbiosis between direct observations and laboratory investigation is instrumental in the progress of astrophysics. We believe that this remains true in cosmology. Current frontier phenomena related to particle astrophysics and cosmology typically involve one or more of the following conditions: (1) extremely high energy events; (2) very high density, high temperature processes; (3) super strong field environments. Laboratory experiments using high intensity lasers can calibrate astrophysical observations, investigate underlying dynamics of astrophysical phenomena, and probe fundamental physics in extreme limits. In this article we give an overview of the exciting prospect of laser cosmology. In particular, we showcase its unique capability of investigating frontier cosmology issues such as cosmic accelerator and quantum gravity.

Pisin Chen

2014-02-24T23:59:59.000Z

189

Department of Residential Facilities Facilities Student Employment Office  

E-Print Network [OSTI]

Department of Residential Facilities Facilities Student Employment Office 1205E Leonardtown Service Updated 3/09 #12;EMPLOYMENT HISTORY Have you worked for Residential Facilities before? Yes No If so list

Hill, Wendell T.

190

Laser/matter interactions by laser-launched plates and direct laser shocks  

SciTech Connect (OSTI)

Explosives, gas guns, laser-launched flyer plates, and direct laser-irradiation can be used to generate shocks and high-stress in materials. Each method has a unique diameter and thickness of shock that can be generated. In past years, small laboratory lasers have been used to launch flyer plates 2 - 200-pm thick to terminal velocities 0.1 to 5 k d s . Over the past few years we have been using our TRIDENT laser facility (1kJ in 0.2 to 2ps) to accelerate larger diameter (8 mm) and thicker (0.1 - 1.5 mm) flyer plates. These larger diameters and thicker one-dimensional plates more closely compliment traditional experimental methods such as gas guns. The 8-mm diameter and 1-mm thick flyer plates can impart shocks in metals for constitutive dynamic property measurements. The versatility of laser-driven plates permits spatial and temporal profiles of the flyer plate impact on sample targets. LASNEX models and parameters of the laser drive can be used to optimize optical coupling efficiency. The flyer plate launch, acceleration, terminal velocity, and, depending on the experiment, flyer plate impact on to target materials are recorded using point-interferometry (VISAR), and line-imaging interferometry. These high speed optical and laser experimental methods will be described along with ancillary methods, and material data. Constitutive properties of bulk materials, rate effects, and grain size and/or orientation have been studied for several metals including copper, beryllium, gold, and some alloys.

Paisley, Dennis L.; Swift, D. C. (Damian C.); Kopp, R. A. (Roger A.); Montgomery, D. S. (David S.); Johnson, R. P. (Randall P.); Munson, C. P. (Carter P.); Letzring, S. A. (Samuel A.); Niemczura, J. G. (Johnathan G.)

2003-01-01T23:59:59.000Z

191

The National Ignition Facility (NIF) A Path to Fusion Energy  

SciTech Connect (OSTI)

Fusion energy has long been considered a promising clean, nearly inexhaustible source of energy. Power production by fusion micro-explosions of inertial confinement fusion (ICF) targets has been a long term research goal since the invention of the first laser in 1960. The NIF is poised to take the next important step in the journey by beginning experiments researching ICF ignition. Ignition on NIF will be the culmination of over thirty years of ICF research on high-powered laser systems such as the Nova laser at LLNL and the OMEGA laser at the University of Rochester as well as smaller systems around the world. NIF is a 192 beam Nd-glass laser facility at LLNL that is more than 90% complete. The first cluster of 48 beams is operational in the laser bay, the second cluster is now being commissioned, and the beam path to the target chamber is being installed. The Project will be completed in 2009 and ignition experiments will start in 2010. When completed NIF will produce up to 1.8 MJ of 0.35 {micro}m light in highly shaped pulses required for ignition. It will have beam stability and control to higher precision than any other laser fusion facility. Experiments using one of the beams of NIF have demonstrated that NIF can meet its beam performance goals. The National Ignition Campaign (NIC) has been established to manage the ignition effort on NIF. NIC has all of the research and development required to execute the ignition plan and to develop NIF into a fully operational facility. NIF will explore the ignition space, including direct drive, 2{omega} ignition, and fast ignition, to optimize target efficiency for developing fusion as an energy source. In addition to efficient target performance, fusion energy requires significant advances in high repetition rate lasers and fusion reactor technology. The Mercury laser at LLNL is a high repetition rate Nd-glass laser for fusion energy driver development. Mercury uses state-o-the art technology such as ceramic laser slabs and light diode pumping for improved efficiency and thermal management. Progress in NIF, NIC, Mercury, and the path forward for fusion energy will be presented.

Moses, E

2006-11-27T23:59:59.000Z

192

Laser barometer  

DOE Patents [OSTI]

A pressure measuring instrument that utilizes the change of the refractive index of a gas as a function of pressure and the coherent nature of a laser light to determine the barometric pressure within an environment. As the gas pressure in a closed environment varies, the index of refraction of the gas changes. The amount of change is a function of the gas pressure. By illuminating the gas with a laser light source, causing the wavelength of the light to change, pressure can be quantified by measuring the shift in fringes (alternating light and dark bands produced when coherent light is mixed) in an interferometer.

Abercrombie, Kevin R. (Westminster, CO); Shiels, David (Thornton, CO); Rash, Tim (Aurora, CO)

2001-02-06T23:59:59.000Z

193

JUPITER-II Program: ANL analysis of ZPPR-13A and ZPPR-13B  

SciTech Connect (OSTI)

The ZPPR-13 experiments provide basic physics data for radial heterogeneous LMFBR cores of approximately 700MWe size. Assemblies ZPPR-13A, ZPPR-13B and ZPPR-13A comprised the JUPITER-II cooperative program between the U.S. Department of Energy (US DOE) and PNC of Japan. The measurements were made between August 1982 and April 1984. The core designs and the measurements were planned jointly by the two parties with substantial input from U.S. industrial interests to ensure coverage of the design requirements. This report describes in detail the results of the Argonne National Laboratory (ANL) analyses of phases 13A and 13B/1 and includes preliminary results for the later assemblies of phase 13B..

Collins, P.J.; Brumbach, S.B. [comps.

1984-08-01T23:59:59.000Z

194

High-energy irradiation and mass loss rates of hot Jupiters in the solar neighborhood  

E-Print Network [OSTI]

Giant gas planets in close proximity to their host stars experience strong irradiation. In extreme cases photoevaporation causes a transonic, planetary wind and the persistent mass loss can possibly affect the planetary evolution. We have identified nine hot Jupiter systems in the vicinity of the Sun, in which expanded planetary atmospheres should be detectable through Lyman alpha transit spectroscopy according to predictions. We use X-ray observations with Chandra and XMM-Newton of seven of these targets to derive the high-energy irradiation level of the planetary atmospheres and the resulting mass loss rates. We further derive improved Lyman alpha luminosity estimates for the host stars including interstellar absorption. According to our estimates WASP-80 b, WASP-77 b, and WASP-43 b experience the strongest mass loss rates, exceeding the mass loss rate of HD 209458 b, where an expanded atmosphere has been confirmed. Furthermore, seven out of nine targets might be amenable to Lyman alpha transit spectroscopy...

Salz, M; Czesla, S; Schmitt, J H M M

2015-01-01T23:59:59.000Z

195

New concept for internal heat production in hot Jupiter exo-planets, thermonuclear ignition of dark galaxies, and the basis for galactic luminous star distributions  

E-Print Network [OSTI]

Discovery of hot Jupiter exo-planets, those with anomalously inflated size and low density relative to Jupiter, has evoked much discussion as to possible sources of internal heat production. But to date, no explanations have come forth that are generally applicable. The explanations advanced typically involve presumed tidal dissipation and/or converted incident stellar radiation. The present, brief communication suggests a novel interfacial nuclear fission-fusion source of internal heat production for hot Jupiters that has been overlooked by theoreticians and which has potentially general applicability.

J. Marvin Herndon

2008-01-01T23:59:59.000Z

196

An Injector Test Facility for the LCLS  

SciTech Connect (OSTI)

SLAC is in the privileged position of being the site for the world's first 4th generation light source as well as having a premier accelerator research staff and facilities. Operation of the world's first x-ray free electron laser (FEL) facility will require innovations in electron injectors to provide electron beams of unprecedented quality. Upgrades to provide ever shorter wavelength x-ray beams of increasing intensity will require significant advances in the state-of-the-art. The BESAC 20-Year Facilities Roadmap identifies the electron gun as ''the critical enabling technology to advance linac-based light sources'' and recognizes that the sources for next-generation light sources are ''the highest-leveraged technology'', and that ''BES should strongly support and coordinate research and development in this unique and critical technology''.[1] This white paper presents an R&D plan and a description of a facility for developing the knowledge and technology required to successfully achieve these upgrades, and to coordinate efforts on short-pulse source development for linac-based light sources.

Colby, E., (ed.); /SLAC

2007-03-14T23:59:59.000Z

197

Wall and laser spot motion in cylindrical hohlraums  

SciTech Connect (OSTI)

Wall and laser spot motion measurements in empty, propane-filled and plastic (CH)-lined gold coated cylindrical hohlraums were performed on the Omega laser facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Wall motion was measured using axial two-dimensional (2D) x-ray imaging and laser spot motion was perpendicularly observed through a thinned wall using streaked hard x-ray imaging. Experimental results and 2D hydrodynamic simulations show that while empty targets exhibit on-axis plasma collision, CH-lined and propane-filled targets inhibit wall expansion, corroborated with perpendicular streaked imaging showing a slower motion of laser spots.

Huser, G.; Courtois, C.; Monteil, M.-C. [CEA, DAM, DIF, F-91297 Arpajon (France)

2009-03-15T23:59:59.000Z

198

THREE-DIMENSIONAL ATMOSPHERIC CIRCULATION OF HOT JUPITERS ON HIGHLY ECCENTRIC ORBITS  

SciTech Connect (OSTI)

Of the over 800 exoplanets detected to date, over half are on non-circular orbits, with eccentricities as high as 0.93. Such orbits lead to time-variable stellar heating, which has major implications for the planet's atmospheric dynamical regime. However, little is known about the fundamental dynamical regime of such planetary atmospheres, and how it may influence the observations of these planets. Therefore, we present a systematic study of hot Jupiters on highly eccentric orbits using the SPARC/MITgcm, a model which couples a three-dimensional general circulation model (the MITgcm) with a plane-parallel, two-stream, non-gray radiative transfer model. In our study, we vary the eccentricity and orbit-average stellar flux over a wide range. We demonstrate that the eccentric hot Jupiter regime is qualitatively similar to that of planets on circular orbits; the planets possess a superrotating equatorial jet and exhibit large day-night temperature variations. As in Showman and Polvani, we show that the day-night heating variations induce momentum fluxes equatorward to maintain the superrotating jet throughout its orbit. We find that as the eccentricity and/or stellar flux is increased (corresponding to shorter orbital periods), the superrotating jet strengthens and narrows, due to a smaller Rossby deformation radius. For a select number of model integrations, we generate full-orbit light curves and find that the timing of transit and secondary eclipse viewed from Earth with respect to periapse and apoapse can greatly affect what we see in infrared (IR) light curves; the peak in IR flux can lead or lag secondary eclipse depending on the geometry. For those planets that have large temperature differences from dayside to nightside and rapid rotation rates, we find that the light curves can exhibit 'ringing' as the planet's hottest region rotates in and out of view from Earth. These results can be used to explain future observations of eccentric transiting exoplanets.

Kataria, T.; Showman, A. P.; Lewis, N. K. [Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States)] [Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Fortney, J. J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)] [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Marley, M. S.; Freedman, R. S., E-mail: tkataria@lpl.arizona.edu [NASA Ames Research Center 245-3, Moffett Field, CA 94035 (United States)

2013-04-10T23:59:59.000Z

199

National Ignition Facility Quality Assurance Program Plan. Revision 1  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) is a key constituent of the Department of Energy`s Stockpile Stewardship Program. The NIF will use inertial confinement fusion (ICF) to produce ignition and energy gain in ICF targets, and will perform weapons physics and high-energy- density experiments in support of national security and civilian objectives. The NIF Project is a national facility involving the collaboration of several DOE laboratories and subcontractors, including Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Laser Energetics (UR/LLE). The primary mission of the NIF Project is the construction and start-up operation of laser-based facilities that will demonstrate fusion ignition in the laboratory to provide nuclear-weapons-related physics data, and secondarily, to propagate fusion burn aimed at developing a potential source of civilian energy. To support the accomplishment of this very important mission, the LLNL Laser Directorate created the NIF Project Office to organize and bring about the Project. The NIF Project Office has established this Quality Assurance Program to ensure its success. This issue of the Quality Assurance Program Plan (QAPP) adds the requirements for the conduct of Title 11 design, construction, procurement, and Title III engineering. This QAPP defines and describes the program-the management system-for specifying, achieving, and assuring the quality of all NIF Project work consistent with the policies of the Laboratory and the Laser Directorate.

Wolfe, C.R.; Yatabe, J.

1996-09-01T23:59:59.000Z

200

Photovoltaic Research Facilities  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) funds photovoltaic (PV) research and development (R&D) at its national laboratory facilities located throughout the country. To encourage further innovation,...

Note: This page contains sample records for the topic "jupiter laser facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

NETL - Fuel Reforming Facilities  

ScienceCinema (OSTI)

Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

None

2014-06-27T23:59:59.000Z

202

NEW RENEWABLE FACILITIES PROGRAM  

E-Print Network [OSTI]

's electricity from renewable resources by 2010. The Guidebook outlines eligibility and legal requirementsCALIFORNIA ENERGY COMMISSION ` NEW RENEWABLE FACILITIES PROGRAM GUIDEBOOK March 2007 CEC-300 Executive Director Heather Raitt Technical Director RENEWABLE ENERGY OFFICE CALIFORNIA ENERGY COMMISSION

203

NEW RENEWABLE FACILITIES PROGRAM  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION NEW RENEWABLE FACILITIES PROGRAM GUIDEBOOK APRIL 2006 CEC-300 Director Heather Raitt Technical Director Renewable Energy Program Drake Johnson Office Manager Renewable Energy Office Valerie Hall Deputy Director Efficiency, Renewables, and Demand Analysis Division #12;These

204

Liquidity facilities and signaling  

E-Print Network [OSTI]

This dissertation studies the role of signaling concerns in discouraging access to liquidity facilities like the IMF contingent credit lines (CCL) and the Discount Window (DW). In Chapter 1, I analyze the introduction of ...

Arregui, Nicolás

2010-01-01T23:59:59.000Z

205

NETL - Fuel Reforming Facilities  

SciTech Connect (OSTI)

Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

None

2013-06-12T23:59:59.000Z

206

Cornell University Facilities Services  

E-Print Network [OSTI]

Description: The Large Animal Teaching Complex (LATC) will be a joint facility for the College of Veterinary or increase operating costs of the dairy barn; therefore, the College of Veterinary Medicine has agreed

Manning, Sturt

207

B Plant facility description  

SciTech Connect (OSTI)

Buildings 225B, 272B, 282B, 282BA, and 294B were removed from the B Plant facility description. Minor corrections were made for tank sizes and hazardous and toxic inventories.

Chalk, S.E.

1996-10-04T23:59:59.000Z

208

Facilities Management Department Restructuring  

E-Print Network [OSTI]

­ Zone 2 ­ Mission Bay/East Side: Includes Mission Bay, Mission Center Bldg, Buchanan Dental, Hunters Point, 654 Minnesota, Oyster Point 2. Recommendation that UCSF align all Facility Services and O

Mullins, Dyche

209

Hazardous Waste Facilities Siting (Connecticut)  

Broader source: Energy.gov [DOE]

These regulations describe the siting and permitting process for hazardous waste facilities and reference rules for construction, operation, closure, and post-closure of these facilities.

210

Nuclear Power Generating Facilities (Maine)  

Broader source: Energy.gov [DOE]

The first subchapter of the statute concerning Nuclear Power Generating Facilities provides for direct citizen participation in the decision to construct any nuclear power generating facility in...

211

Pollution Control Facilities (South Carolina)  

Broader source: Energy.gov [DOE]

For the purpose of this legislation, pollution control facilities are defined as any facilities designed for the elimination, mitigation or prevention of air or water pollution, including all...

212

Working with SRNL - Our Facilities - Glovebox Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun1 Table 1.14Working WithGlovebox Facilities

213

Brookhaven Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais a village in Cook County, Illinois. ItBrookhaven Facility

214

Documentation - Laboratory for Laser Energetics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. The DesertDirectionsWorkplace »Omega Laser Facility

215

Laser Roadshow  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space CombinedValuesRevolutionizingLaser

216

UNIVERSITY BOULEVARD FAU Research Facility  

E-Print Network [OSTI]

Harriet L.Wilkes Honors College FAU Research Facility Expansion Satellite Utility Plant Chiller Lift

Fernandez, Eduardo

217

Hanford facility contingency plan  

SciTech Connect (OSTI)

The Hanford Facility Contingency Plan, together with each TSD unit- specific contingency plan, meets the WAC 173-303 requirements for a contingency plan. Applicability of this plan to Hanford Facility activities is described in the Hanford Facility RCRA Permit, Dangerous Waste Portion, General Condition II.A. General Condition II.A applies to Part III TSD units, Part V TSD units, and to releases of hazardous substances which threaten human health or the environment. Additional information about the applicability of this document may also be found in the Hanford Facility RCRA Permit Handbook (DOE/RL-96-10). This plan includes descriptions of responses to a nonradiological hazardous substance spill or release at Hanford Facility locations not covered by TSD unit-specific contingency plans or building emergency plans. The term hazardous substances is defined in WAC 173-303-040 as: ``any liquid, solid, gas, or sludge, including any material, substance, product, commodity, or waste, regardless of quantity, that exhibits any of the physical, chemical or biological properties described in WAC 173-303-090 or 173-303-100.`` Whenever the term hazardous substances is used in this document, it will be used in the context of this definition. This plan includes descriptions of responses for spills or releases of hazardous substances occurring at areas between TSD units that may, or may not, threaten human health or the environment.

Sutton, L.N.

1996-07-01T23:59:59.000Z

218

The BErkeley Lab Laser Accelerator (BELLA): A 10 GeV Laser Plasma Accelerator  

SciTech Connect (OSTI)

An overview is presented of the design of a 10 GeV laser plasma accelerator (LPA) that will be driven by a PW-class laser system and of the BELLA Project, which has as its primary goal to build and install the required Ti:sapphire laser system for the acceleration experiments. The basic design of the 10 GeV stage aims at operation in the quasi-linear regime, where the laser excited wakes are largely sinusoidal and offer the possibility of accelerating both electrons and positrons. Simulations show that a 10 GeV electron beam can be generated in a meter scale plasma channel guided LPA operating at a density of about 1017 cm-3 and powered by laser pulses containing 30-40 J of energy in a 50- 200 fs duration pulse, focused to a spotsize of 50-100 micron. The lay-out of the facility and laser system will be presented as well as the progress on building the facility.

Leemans, W.P.; Duarte, R.; Esarey, E.; Fournier, S.; Geddes, C.G.R.; Lockhart, D.; Schroeder, C.B.; Toth, C.; Vay, J.-L.; Zimmermann, S.

2010-06-01T23:59:59.000Z

219

The Observer March 2003 page 3 CSU Fresno 16" SCT at f/38 & Jupiter's Great Red Spot  

E-Print Network [OSTI]

The Observer March 2003 page 3 CSU Fresno 16" SCT at f/38 & Jupiter's Great Red Spot By Greg Morgan in March that the Great Red Spot will be making a central meridian crossing along with the shadow of one in the region of the Great Red Spot. Similarly, on Tuesday evening April 1st , from 10:24 PM to 1:48 AM PDT, Io

Ringwald, Frederick A.

220

Laser and Optical Fiber Metrology in Romania  

SciTech Connect (OSTI)

The Romanian government established in the last five years a National Program for the improvement of country's infrastructure of metrology. The set goal was to develop and accredit testing and calibration laboratories, as well as certification bodies, according to the ISO 17025:2005 norm. Our Institute benefited from this policy, and developed a laboratory for laser and optical fibers metrology in order to provide testing and calibration services for the certification of laser-based industrial, medical and communication products. The paper will present the laboratory accredited facilities and some of the results obtained in the evaluation of irradiation effects of optical and optoelectronic parts, tests run under the EU's Fusion Program.

Sporea, Dan; Sporea, Adelina [National Institute for Lasers, Plasma and Radiation Physics Laser Metrology and Standardization Laboratory 409 Atomistilor St., Magurele, RO-077125 (Romania)

2008-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "jupiter laser facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Hypersonic gasdynamic laser system  

SciTech Connect (OSTI)

This patent describes a visible, or near to mid infra-red, hypersonic gas dynamic laser system. It comprises: a hypersonic vehicle for carrying the hypersonic gas dynamic laser system, and also providing high energy ram air for thermodynamic excitation and supply of the laser gas; a laser cavity defined within the hypersonic vehicle and having a laser cavity inlet for the laser cavity formed by an opening in the hypersonic vehicle, such that ram air directed through the laser cavity opening supports gas dynamic lasing operations at wavelengths less than 10.6{mu} meters in the laser cavity; and an optical train for collecting the laser radiation from the laser cavity and directing it as a substantially collimated laser beam to an output aperture defined by an opening in the hypersonic vehicle to allow the laser beam to be directed against a target.

Foreman, K.M.; Maciulaitis, A.

1990-05-22T23:59:59.000Z

222

Fitness facilities, facilities for extracurricular activities and other purposes Facility Location Department in charge  

E-Print Network [OSTI]

Facility Location Department in charge Student Hall (1) Common Facility 1 for Extracurricular Activities (2 tennis courts, Swimming pool (25 m, not officially approved) Rokkodai Area (Tsurukabuto 2 Campus) Martial art training facility, Japanese archery training facility, Playground, 4 tennis courts, Swimming pool

Banbara, Mutsunori

223

RCRA facility stabilization initiative  

SciTech Connect (OSTI)

The RCRA Facility Stabilization Initiative was developed as a means of implementing the Corrective Action Program`s management goals recommended by the RIS for stabilizing actual or imminent releases from solid waste management units that threaten human health and the environment. The overall goal of stabilization is to, as situations warrant, control or abate threats to human health and/or the environment from releases at RCRA facilities, and/or to prevent or minimize the further spread of contamination while long-term remedies are pursued. The Stabilization initiative is a management philosophy and should not be confused with stabilization technologies.

Not Available

1995-02-01T23:59:59.000Z

224

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1, 2012 [Facility

225

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1, 2012 [FacilityMay

226

Facility Data Policy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFOR IMMEDIATE5Facilities SomeFacilities Glove

227

EXPERIENCE AND PLANS OF THE JLAB FEL FACILITY AS A USER FACILITY  

SciTech Connect (OSTI)

Jefferson Lab's IR Upgrade FEL building was planned from the beginning to be a user facility, and includes an associated 600 m2 area containing seven laboratories. The high average power capability (multikilowatt-level) in the near-infrared (1-3 microns), and many hundreds of watts at longer wavelengths, along with an ultrafast (~ 1 ps) high PRF (10's MHz) temporal structure makes this laser a unique source for both applied and basic research. In addition to the FEL, we have a dedicated laboratory capable of delivering high power (many tens of watts) of broadband THz light. After commissioning the IR Upgrade, we once again began delivering beam to users in 2005. In this presentation, I will give an overview of the FEL facility and its current performance, lessons learned over the last two years, and a synopsis of current and future experiments.

Michelle D. Shinn

2007-08-26T23:59:59.000Z

228

National Ignition Facility project acquisition plan  

SciTech Connect (OSTI)

The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility (NIF) Project. The scope of the plan describes the procurement activities and acquisition strategy for the following phases of the NIF Project, each of which receives either plant and capital equipment (PACE) or other project cost (OPC) funds: Title 1 and 2 design and Title 3 engineering (PACE); Optics manufacturing facilitization and pilot production (OPC); Convention facility construction (PACE); Procurement, installation, and acceptance testing of equipment (PACE); and Start-up (OPC). Activities that are part of the base Inertial Confinement Fusion (ICF) Program are not included in this plan. The University of California (UC), operating Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory, and Lockheed-Martin, which operates Sandia National Laboratory (SNL) and the University of Rochester Laboratory for Laser Energetics (UR-LLE), will conduct the acquisition of needed products and services in support of their assigned responsibilities within the NIF Project structure in accordance with their prime contracts with the Department of Energy (DOE). LLNL, designated as the lead Laboratory, will have responsibility for all procurements required for construction, installation, activation, and startup of the NIF.

Callaghan, R.W.

1996-04-01T23:59:59.000Z

229

Laser programs highlights 1994  

SciTech Connect (OSTI)

This report provides highlights of the Lawrence Livermore National Laboratories` laser programs. Laser uses and technology assessment and utilization are provided.

NONE

1994-12-31T23:59:59.000Z

230

Laser Desorption Analysis | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laser Desorption Analysis Laser Desorption Analysis EMSL offers a suite of instrumentation dedicated to understanding photoreactivity in the condensed phase, on surfaces, and at...

231

Laser Safety Management Policy Statement ............................................................................................................1  

E-Print Network [OSTI]

Laser Safety Management Policy Statement...........................................................2 Laser Users.............................................................................................................2 Unit Laser Safety Officer (ULSO

Davidson, Fordyce A.

232

THE INFLUENCE OF ATMOSPHERIC SCATTERING AND ABSORPTION ON OHMIC DISSIPATION IN HOT JUPITERS  

SciTech Connect (OSTI)

Using semi-analytical, one-dimensional models, we elucidate the influence of scattering and absorption on the degree of Ohmic dissipation in hot Jovian atmospheres. With the assumption of Saha equilibrium, the variation in temperature is the main driver of the variations in the electrical conductivity, induced current, and Ohmic power dissipated. Atmospheres possessing temperature inversions tend to dissipate most of the Ohmic power superficially, at high altitudes, whereas those without temperature inversions are capable of greater dissipation deeper down. Scattering in the optical range of wavelengths tends to cool the lower atmosphere, thus reducing the degree of dissipation at depth. Purely absorbing cloud decks (in the infrared), of a finite extent in height, allow for localized reductions in dissipation and may reverse a temperature inversion if they are dense and thick enough, thus greatly enhancing the dissipation at depth. If Ohmic dissipation is the mechanism for inflating hot Jupiters, then variations in the atmospheric opacity (which may be interpreted as arising from variations in metallicity and cloud/haze properties) and magnetic field strength naturally produce a scatter in the measured radii at a given strength of irradiation. Future work will determine if these effects are dominant over evolutionary effects, which also contribute a scatter to the measured radii.

Heng, Kevin [ETH Zuerich, Institute for Astronomy, Wolfgang-Pauli-Strasse 27, CH-8093 Zuerich (Switzerland)

2012-03-20T23:59:59.000Z

233

OBLIQUITIES OF HOT JUPITER HOST STARS: EVIDENCE FOR TIDAL INTERACTIONS AND PRIMORDIAL MISALIGNMENTS  

SciTech Connect (OSTI)

We provide evidence that the obliquities of stars with close-in giant planets were initially nearly random, and that the low obliquities that are often observed are a consequence of star-planet tidal interactions. The evidence is based on 14 new measurements of the Rossiter-McLaughlin effect (for the systems HAT-P-6, HAT-P-7, HAT-P-16, HAT-P-24, HAT-P-32, HAT-P-34, WASP-12, WASP-16, WASP-18, WASP-19, WASP-26, WASP-31, Gl 436, and Kepler-8), as well as a critical review of previous observations. The low-obliquity (well-aligned) systems are those for which the expected tidal timescale is short, and likewise the high-obliquity (misaligned and retrograde) systems are those for which the expected timescale is long. At face value, this finding indicates that the origin of hot Jupiters involves dynamical interactions like planet-planet interactions or the Kozai effect that tilt their orbits rather than inspiraling due to interaction with a protoplanetary disk. We discuss the status of this hypothesis and the observations that are needed for a more definitive conclusion.

Albrecht, Simon; Winn, Joshua N. [Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Johnson, John A. [Department of Astrophysics, California Institute of Technology, MC249-17, Pasadena, CA 91125 (United States); Howard, Andrew W.; Marcy, Geoffrey W. [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Butler, R. Paul [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington, DC 20015 (United States); Arriagada, Pamela [Department of Astronomy, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Crane, Jeffrey D.; Shectman, Stephen A.; Thompson, Ian B. [The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Hirano, Teruyuki [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Bakos, Gaspar; Hartman, Joel D. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544 (United States)

2012-09-20T23:59:59.000Z

234

On the formation of terrestrial planets in hot-Jupiter systems  

E-Print Network [OSTI]

We present a series of calculations aimed at examining how an inner system of planetesimals/protoplanets, undergoing terrestrial planet formation, evolves under the influence of a giant planet undergoing inward type II migration through the region bounded between 5 - 0.1 AU. We find that > 60% of the solids disk survives by being scattered by the giant planet into external orbits. Planetesimals are scattered outward almost as efficiently as protoplanets, resulting in the regeneration of a solids disk where dynamical friction is strong and terrestrial planet formation is able to resume. A simulation extended for a few Myr after the migration of the giant planet halted at 0.1 AU, resulted in an apparently stable planet of ~ 2 Earth masses forming in the habitable zone. Migration-induced mixing of volatile-rich material from beyond the `snowline' into the inner disk regions means that terrestrial planets that form there are likely to be water-rich. We predict that hot--Jupiter systems are likely to harbor water-rich terrestrial planets in their habitable zones. These planets may be detected by future planet search missions.

Martyn J. Fogg; Richard P. Nelson

2006-10-11T23:59:59.000Z

235

CHARACTERIZING THE COOL KOIs. II. THE M DWARF KOI-254 AND ITS HOT JUPITER  

SciTech Connect (OSTI)

We report the confirmation and characterization of a transiting gas giant planet orbiting the M dwarf KOI-254 every 2.455239 days, which was originally discovered by the Kepler mission. We use radial velocity measurements, adaptive optics imaging, and near-infrared spectroscopy to confirm the planetary nature of the transit events. KOI-254 b is the first hot Jupiter discovered around an M-type dwarf star. We also present a new model-independent method of using broadband photometry to estimate the mass and metallicity of an M dwarf without relying on a direct distance measurement. Included in this methodology is a new photometric metallicity calibration based on J - K colors. We use this technique to measure the physical properties of KOI-254 and its planet. We measure a planet mass of M{sub P} = 0.505 M{sub Jup}, radius R{sub P} = 0.96 R{sub Jup}, and semimajor axis a = 0.030 AU, based on our measured stellar mass M{sub *} = 0.59 M{sub Sun} and radius R{sub *} = 0.55 R{sub Sun }. We also find that the host star is metal-rich, which is consistent with the sample of M-type stars known to harbor giant planets.

Johnson, John Asher; Muirhead, Philip S.; Crepp, Justin R.; Morton, Timothy D. [Department of Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Gazak, J. Zachary [Institute for Astronomy, University of Hawai'i, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Apps, Kevin [Cheyne Walk Observatory, 75B Cheyne Walk, Horley, Surrey, RH6 7LR (United Kingdom); Crossfield, Ian J. M. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095 (United States); Tabetha Boyajian [Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, P.O. Box 4106, Atlanta, GA 30302-4106 (United States); Von Braun, Kaspar [NASA Exoplanet Science Institute (NExScI), CIT Mail Code 100-22, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Rojas-Ayala, Barbara [Department of Astrophysics, Division of Physical Sciences, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); Howard, Andrew W.; Marcy, Geoffrey W. [Department of Astronomy, University of California, Mail Code 3411, Berkeley, CA 94720 (United States); Covey, Kevin R.; Schlawin, Everett; Lloyd, James P. [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Hamren, Katherine, E-mail: johnjohn@astro.caltech.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

2012-05-15T23:59:59.000Z

236

Laser Faraday  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 CERN 73-11LargeLaser Enables InexpensiveFaraday

237

Fiber Lasers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI HomeTours, Programs and EventsFiber Lasers NIF

238

Service & Reliability Equipment & Facilities  

E-Print Network [OSTI]

termites E5 Marine applications, panel & block E7 Field Stake tests (FST colonies) E9 Above ground L-joint stake test (Formosan termites & decay), E9 L- joint, E16 (horizontal lap-joint), E18 ground proximity facilities for AWPA test: A9 X-ray, E1 (termites), E10 (soil block), E11 (leaching), E12 metal corrosion

239

Graph algorithms experimentation facility  

E-Print Network [OSTI]

DRAWADJMAT 2 ~e ~l 2. ~f ~2 2 ~t ~& [g H 2 O? Z Mwd a P d ed d Aid~a sae R 2-BE& T C dbms Fig. 2. External Algorithm Handler The facility is menu driven and implemented as a client to XAGE. Our implementation follows very closely the functionality...

Sonom, Donald George

1994-01-01T23:59:59.000Z

240

Strategies for Facilities Renewal  

E-Print Network [OSTI]

of steam production is from exothermic chem ical processes. A large gas fired cogeneration unit was completed in 1987 and supplies 90% of the facil ities' electrical needs and 25% of total steam demand (the remaining steam is supplied by process heat...

Good, R. L.

Note: This page contains sample records for the topic "jupiter laser facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

FACILITIES INSTRUCTIONS, STANDARDS, & TECHNIQUES  

E-Print Network [OSTI]

to the repair of hydraulic turbine runners and large pump impellers. Reclamation operates and maintains a wideFACILITIES INSTRUCTIONS, STANDARDS, & TECHNIQUES VOLUME 2-5 TURBINE REPAIR Internet Version variety of reaction and impulse turbines as well as axial flow, mixed flow, radial flow pumps and pump

Laughlin, Robert B.

242

Assessment and Mitigation of Diagnostic-Generated Electromagnetic Interference at the National Ignition Facility  

SciTech Connect (OSTI)

Electromagnetic interference (EMI) is an ever-present challenge at laser facilities such as the National Ignition Facility (NIF). The major source of EMI at such facilities is laser-target interaction that can generate intense electromagnetic fields within, and outside of, the laser target chamber. In addition, the diagnostics themselves can be a source of EMI, even interfering with themselves. In this paper we describe EMI generated by ARIANE and DIXI, present measurements, and discuss effects of the diagnostic-generated EMI on ARIANE's CCD and on a PMT nearby DIXI. Finally we present some of the efforts we have made to mitigate the effects of diagnostic-generated EMI on NIF diagnostics.

Brown, C G; Ayers, M J; Felker, B; Ferguson, W; Holder, J P; Nagel, S R; Piston, K W; Simanovskaia, N; Throop, A L; Chung, M; Hilsabeck, T

2012-04-20T23:59:59.000Z

243

National Laser User Facilities Program | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F.DemonstrateScientists Win

244

National Laser Users' Facility Grant Program | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F.DemonstrateScientists WinAdministration

245

High Energy Laser for Space Debris Removal  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) and Photon Science Directorate at Lawrence Livermore National Laboratory (LLNL) has substantial relevant experience in the construction of high energy lasers, and more recently in the development of advanced high average power solid state lasers. We are currently developing new concepts for advanced solid state laser drivers for the Laser Inertial Fusion Energy (LIFE) application, and other high average power laser applications that could become central technologies for use in space debris removal. The debris population most readily addressed by our laser technology is that of 0.1-10 cm sized debris in low earth orbit (LEO). In this application, a ground based laser system would engage an orbiting target and slow it down by ablating material from its surface which leads to reentry into the atmosphere, as proposed by NASA's ORION Project. The ORION concept of operations (CONOPS) is also described in general terms by Phipps. Key aspects of this approach include the need for high irradiance on target, 10{sup 8} to 10{sup 9} W/cm{sup 2}, which favors short (i.e., picoseconds to nanoseconds) laser pulse durations and high energy per pulse ({approx} > 10 kJ). Due to the target's orbital velocity, the potential duration of engagement is only of order 100 seconds, so a high pulse repetition rate is also essential. The laser technology needed for this application did not exist when ORION was first proposed, but today, a unique combination of emerging technologies could create a path to enable deployment in the near future. Our concepts for the laser system architecture are an extension of what was developed for the National Ignition Facility (NIF), combined with high repetition rate laser technology developed for Inertial Fusion Energy (IFE), and heat capacity laser technology developed for military applications. The 'front-end' seed pulse generator would be fiber-optics based, and would generate a temporally, and spectrally tailored pulse designed for high transmission through the atmosphere, as well as efficient ablative coupling to the target. The main amplifier would use either diode-pumped or flashlamp-pumped solid state gain media, depending on budget constraints of the project. A continuously operating system would use the gas-cooled amplifier technology developed for Mercury, while a burst-mode option would use the heat capacity laser technology. The ground-based system that we propose is capable of rapid engagement of targets whose orbits cross over the site, with potential for kill on a single pass. Very little target mass is ablated per pulse so the potential to create additional hazardous orbiting debris is minimal. Our cost estimates range from $2500 to $5000 per J depending on choices for laser gain medium, amplifier pump source, and thermal management method. A flashlamp-pumped, Nd:glass heat-capacity laser operating in the burst mode would have costs at the lower end of this spectrum and would suffice to demonstrate the efficacy of this approach as a prototype system. A diode-pumped, gas-cooled laser would have higher costs but could be operated continuously, and might be desirable for more demanding mission needs. Maneuverability can be incorporated in the system design if the additional cost is deemed acceptable. The laser system would need to be coupled with a target pointing and tracking telescope with guide-star-like wavefront correction capability.

Barty, C; Caird, J; Erlandson, A; Beach, R; Rubenchik, A

2009-10-30T23:59:59.000Z

246

Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)  

Broader source: Energy.gov [DOE]

The Indiana Department of Environmental Management requires permits before the construction or expansion of biomass anaerobic digestion or gasification facilities.

247

A proposed high-power UV industrial demonstration laser at CEBAF  

SciTech Connect (OSTI)

The Laser Processing Consortium, a collaboration of industries, universities, and the Continuous Electron Beam Accelerator Facility (CEBAF) in Newport News, Virginia, has proposed building a demonstration industrial processing laser for surface treatment and micro-machining. The laser is a free-electron laser (FEL) with average power output exceeding 1 kW in the ultraviolet (UV). The design calls for a novel driver accelerator that recovers most of the energy of the exhaust electron beam to produce laser light with good wall-plug efficiency. The laser and accelerator design use technologies that are scalable to much higher power. The authors describe the critical design issues in the laser such as the stability, power handling, and losses of the optical resonator, and the quality, power, and reliability of the electron beam. They also describe the calculated laser performance. Finally progress to date on accelerator development and resonator modeling will be reported.

Benson, S.V.; Bisognano, J.J.; Bohn, C.L. [Continuous Electron Beam Accelerator Facility, Newport News, VA (United States)] [and others

1996-04-01T23:59:59.000Z

248

Narrow gap laser welding  

DOE Patents [OSTI]

A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables.

Milewski, John O. (Santa Fe, NM); Sklar, Edward (Santa Fe, NM)

1998-01-01T23:59:59.000Z

249

Narrow gap laser welding  

DOE Patents [OSTI]

A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables. 34 figs.

Milewski, J.O.; Sklar, E.

1998-06-02T23:59:59.000Z

250

Short wavelength laser  

DOE Patents [OSTI]

A short wavelength laser is provided that is driven by conventional-laser pulses. A multiplicity of panels, mounted on substrates, are supported in two separated and alternately staggered facing and parallel arrays disposed along an approximately linear path. When the panels are illuminated by the conventional-laser pulses, single pass EUV or soft x-ray laser pulses are produced.

Hagelstein, P.L.

1984-06-25T23:59:59.000Z

251

Longitudinal discharge laser baffles  

DOE Patents [OSTI]

The IR baffles placed between the window and the electrode of a longitudinal discharge laser improve laser performance by intercepting off-axis IR radiation from the laser and in doing so reduce window heating and subsequent optical distortion of the laser beam. 1 fig.

Warner, B.E.; Ault, E.R.

1994-06-07T23:59:59.000Z

252

ablation laser spectrometer  

E-Print Network [OSTI]

ablation laser mass spectrometer molecular beam REMPI laser NREL has designed and developed a combined laser ablation/ pulsed sample introduction/mass spectrometry platform that integrates pyrolysis and/or laser ablation with resonance- enhanced multiphoton ionization (REMPI) time-of-flight mass

253

Biomass Feedstock National User Facility  

Broader source: Energy.gov [DOE]

Breakout Session 1B—Integration of Supply Chains I: Breaking Down Barriers Biomass Feedstock National User Facility Kevin L. Kenney, Director, Biomass Feedstock National User Facility, Idaho National Laboratory

254

The Caterpillar Coal Gasification Facility  

E-Print Network [OSTI]

This paper is a review of one of America's premier coal gasification installations. The caterpillar coal gasification facility located in York, Pennsylvania is an award winning facility. The plant was recognized as the 'pace setter plant of the year...

Welsh, J.; Coffeen, W. G., III

1983-01-01T23:59:59.000Z

255

Facilities evaluation report  

SciTech Connect (OSTI)

The Buried Waste Integrated Demonstration (BWID) is a program of the Department of Energy (DOE) Office of Technology Development whose mission is to evaluate different new and existing technologies and determine how well they address DOE community waste remediation problems. Twenty-three Technical Task Plans (TTPs) have been identified to support this mission during FY-92; 10 of these have identified some support requirements when demonstrations take place. Section 1 of this report describes the tasks supported by BWID, determines if a technical demonstration is proposed, and if so, identifies the support requirements requested by the TTP Principal Investigators. Section 2 of this report is an evaluation identifying facility characteristics of existing Idaho National Engineering Laboratory (INEL) facilities that may be considered for use in BWID technology demonstration activities.

Sloan, P.A.; Edinborough, C.R.

1992-04-01T23:59:59.000Z

256

PUREX facility preclosure work plan  

SciTech Connect (OSTI)

This preclosure work plan presents a description of the PUREX Facility, the history of the waste managed, and addresses transition phase activities that position the PUREX Facility into a safe and environmentally secure configuration. For purposes of this documentation, the PUREX Facility does not include the PUREX Storage Tunnels (DOE/RL-90/24). Information concerning solid waste management units is discussed in the Hanford Facility Dangerous Waste Permit Application, General Information Portion (DOE/RL-91-28, Appendix 2D).

Engelmann, R.H.

1997-04-24T23:59:59.000Z

257

Reed Reactor Facility Annual Report  

SciTech Connect (OSTI)

This is the report of the operations, experiments, modifications, and other aspects of the Reed Reactor Facility for the year.

Frantz, Stephen G.

2000-09-01T23:59:59.000Z

258

Lunch & Learn Facilities &  

E-Print Network [OSTI]

" 3 #12;What are F&A costs? OMB Circular A-21 provides guidance on F&A costs F&A a.k.a. Overhead a #12;F&A Rate Development Process FSU's process must be designed to ensure that Federal sponsors do usage ­ Allocate facilities costs ­ Provide productivity analysis Space survey tool WebSpace ­ On-line

McQuade, D. Tyler

259

ARM - SGP Intermediate Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC :ProductsSCM Forcing Data DerivedInstrumentsPolarExtended Facility

260

Facilities | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombined Heat & PowerEnergy BlogExchangeSummary TableFacilities

Note: This page contains sample records for the topic "jupiter laser facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Pulsed Power for Solid-State Lasers  

SciTech Connect (OSTI)

Beginning in the early 1970s, a number of research and development efforts were undertaken at U.S. National Laboratories with a goal of developing high power lasers whose characteristics were suitable for investigating the feasibility of laser-driven fusion. A number of different laser systems were developed and tested at ever larger scale in pursuit of the optimum driver for laser fusion experiments. Each of these systems had associated with it a unique pulsed power option. A considerable amount of original and innovative engineering was carried out in support of these options. Ultimately, the Solid-state Laser approach was selected as the optimum driver for the application. Following this, the Laser Program at the Lawrence Livermore National Laboratory and the University of Rochester undertook aggressive efforts directed at developing the technology. In particular, at Lawrence Livermore National Laboratory, a series of laser systems beginning with the Cyclops laser and culminating in the present with the National Ignition Facility were developed and tested. As a result, a large amount of design information for solid-state laser pulsed power systems has been documented. Some of it is in the form of published papers, but most of it is buried in internal memoranda, engineering reports and LLNL annual reports. One of the goals of this book is to gather this information into a single useable format, such that it is easily accessed and understood by other engineers and physicists for use with future designs. It can also serve as a primer, which when seriously studied, makes the subsequent reading of original work and follow-up references considerably easier. While this book deals only with the solid-state laser pulsed power systems, in the bibliography we have included a representative cross section of papers and references from much of the very fine work carried out at other institutions in support of different laser approaches. Finally, in recent years, there has been a renewed interest in high-average-power solid-state glass lasers. Much of the prime power technology developed in support of this has definite applications in the long term for fusion power plant scenarios.

Gagnon, W; Albrecht, G; Trenholme, J; Newton, M

2007-04-19T23:59:59.000Z

262

CFTF | Carbon Fiber Technology Facility | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BTRIC CNMS CSMB CFTF Working with CFTF HFIR MDF NTRC OLCF SNS Carbon Fiber Technology Facility Home | User Facilities | CFTF CFTF | Carbon Fiber Technology Facility SHARE Oak...

263

CRAD, Nuclear Facility Construction - Structural Concrete, May...  

Broader source: Energy.gov (indexed) [DOE]

CRAD, Nuclear Facility Construction - Structural Concrete, May 29, 2009 CRAD, Nuclear Facility Construction - Structural Concrete, May 29, 2009 May 29, 2009 Nuclear Facility...

264

Planet-bound dark matter and the internal heat of Uranus, Neptune, and hot-Jupiter exoplanets  

E-Print Network [OSTI]

We suggest that accretion of planet-bound dark matter by the Jovian planets, and by hot-Jupiter exoplanets, could be a significant source of their internal heat. The anomalously low internal heat of Uranus would then be explained if the collision believed to have tilted the axis of Uranus also knocked it free of most of its associated dark matter cloud. Our considerations focus on the efficient capture of non-self-annihilating dark matter, but could also apply to self-annihilating dark matter, provided the capture efficiency is small enough that the earth heat balance constraint is obeyed.

Stephen L. Adler

2008-12-09T23:59:59.000Z

265

Final Report to Jupiter Oxygen Corporation on CRADA Phase 1 Activities, January 1, 2004, through June 30, 2005  

SciTech Connect (OSTI)

In January of 2004, a Cooperative Research and Development Agreement was signed with the Jupiter Oxygen Corporation; its term extends from January 2004 to January 1, 2009. The statement of work is attached as Appendix A. Under Phase I of this agreement, ARC was to provide technical expertise to develop computer models of existing power plants relative to retrofitting with oxy-fuel combustion; help design experiments to verify models and analyze data from experiments; help produce designs at larger scales; help design a new technology oxy-fuel power plant; and co-author technical papers on this work for presentation at appropriate conferences.

Summers, Cathy A.; Oryshchyn, Danylo B.; Ochs, Thomas L.; Turner, Paul C.

2005-06-30T23:59:59.000Z

266

Jupiter as an exoplanet: UV to NIR transmission spectrum reveals hazes, a Na layer and possibly stratospheric H2O-ice clouds  

E-Print Network [OSTI]

Currently, the analysis of transmission spectra is the most successful technique to probe the chemical composition of exoplanet atmospheres. But the accuracy of these measurements is constrained by observational limitations and the diversity of possible atmospheric compositions. Here we show the UV-VIS-IR transmission spectrum of Jupiter, as if it were a transiting exoplanet, obtained by observing one of its satellites, Ganymede, while passing through Jupiter's shadow i.e., during a solar eclipse from Ganymede. The spectrum shows strong extinction due to the presence of clouds (aerosols) and haze in the atmosphere, and strong absorption features from CH4. More interestingly, the comparison with radiative transfer models reveals a spectral signature, which we attribute here to a Jupiter stratospheric layer of crystalline H2O ice. The atomic transitions of Na are also present. These results are relevant for the modeling and interpretation of giant transiting exoplanets. They also open a new technique to explore...

Montańes-Rodriguez, P; Palle, E; Lopez-Puertas, M; Garcia-Melendo, E

2015-01-01T23:59:59.000Z

267

SLAC low emittance accelerator test facility  

SciTech Connect (OSTI)

SLAC is proposing to build a new Accelerator Test Facility (ATF) capable of producing a 50 MeV electron beam with an extremely low geometric tranverse emittance (1.5 x 10/sup -10/ rad.m) for the purpose of testing new methods of acceleration. The low emittance will be achieved by assembling a linear accelerator using one standard SLAC three-meter section and a 400 kV electron gun with a very small photocathode (40 microns in diameter). The photocathode will be illuminated from the back by short bursts (on the order of 6 ps) of visible laser light which will produce bunches of about 10/sup 5/ electrons. Higher currents could be obtained by illuminating the cathode from the front. The gun will be mounted directly against the accelerator section. Calculations show that in the absence of an rf buncher, injection of these 400 keV small radius electron bunches roughly 30/sup 0/ ahead of crest produces negligible transverse emittance growth due to radial rf forces. Acceleration of the electrons up to 50 MeV followed by collimation, energy slits and focusing will provide a 3.2 mm long waist of under 1.5 ..mu..m in diameter where laser acceleration and other techniques can be tested.

Loew, G.A.; Miller, R.H.; Sinclair, C.K.

1986-05-01T23:59:59.000Z

268

Proposed laser ion source for the Columbia University microbeam  

E-Print Network [OSTI]

Proposed laser ion source for the Columbia University microbeam Alan W. Bigelow *, G. Randers-Pehrson, D.J. Brenner Center for Radiological Research, Columbia University, New York, NY 10032, USA Abstract analyzer 1. Introduction At Columbia UniversityĂ?s Radiological Re- search Accelerator Facility (RARAF

269

Canyon Facilities - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy,MUSEUM DISPLAY STATUS4Tours SHARE ToursCanyon Facilities

270

NREL: Photovoltaics Research - Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National NuclearoverAcquisitionEnergy153014TheFacilities NREL's

271

ARM - SGP Extended Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC :ProductsSCM Forcing Data DerivedInstrumentsPolarExtended Facility SGP Related

272

Accelerator Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre the Effects ofAboutTest Facility Vitaly Yakimenko October 6-7,

273

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News] Final Recovery Act Milestone Complete!

274

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News] Final Recovery Act Milestone

275

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News] Final Recovery Act MilestoneOctober

276

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News] Final Recovery Act

277

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News] Final Recovery ActJanuary 20, 2015

278

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News] Final Recovery ActJanuary 20, 2015June

279

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News] Final Recovery ActJanuary 20,

280

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News] Final Recovery ActJanuary 20,August

Note: This page contains sample records for the topic "jupiter laser facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News] Final Recovery ActJanuary

282

ARM - Guest Instrument Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [FacilityIndiaGVAX News GangesListGreenhouse

283

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010 [DataDatastreamstoms3,4,3, 200828,15, 2005 [Facility

284

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010 [DataDatastreamstoms3,4,3, 200828,15, 2005 [Facility31,

285

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010 [DataDatastreamstoms3,4,3,October 28, 2010 [Facility

286

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010 [DataDatastreamstoms3,4,3,October 28, 2010 [FacilityUser

287

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010 [DataDatastreamstoms3,4,3,October15, 2005 [Facility

288

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010 [DataDatastreamstoms3,4,3,October15, 2005 [Facility31,

289

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] New Instrumentation on

290

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] New Instrumentation

291

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] New

292

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNew Look for

293

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNew Look

294

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNew Look15, 2004

295

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNew Look15,

296

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNew Look15,August

297

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNew

298

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNewAugust 15, 2004

299

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNewAugust 15,

300

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNewAugust

Note: This page contains sample records for the topic "jupiter laser facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNewAugustHigh Speed

302

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNewAugustHigh

303

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNewAugustHighArctic

304

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]

305

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster Plan Deflects

306

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster Plan

307

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster PlanFebruary

308

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster PlanFebruary5,

309

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster

310

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster9, 2011

311

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster9, 201125, 2011

312

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster9, 201125,

313

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster9, 201125,May

314

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster9,

315

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster9,Website

316

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster9,WebsiteApril

317

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility

318

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011 [Education,

319

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011

320

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May 20, 2011

Note: This page contains sample records for the topic "jupiter laser facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May 20, 2011,

322

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May 20, 2011,5,

323

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May 20,

324

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May 20,9, 2011

325

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May 20,9, 201110,

326

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May 20,9,

327

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May 20,9,23, 2011

328

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May 20,9,23,

329

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May 20,9,23,31,

330

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May

331

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011MayMilitary

332

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011MayMilitary30,

333

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011MayMilitary30,New

334

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,

335

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,October 27, 2011

336

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,October 27, 2011CIMEL

337

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,October 27,

338

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,October 27,, 2011

339

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,October 27,, 20114,

340

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,October 27,, 20114,22,

Note: This page contains sample records for the topic "jupiter laser facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,October 27,,

342

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,October 27,,22, 2012

343

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,October 27,,22,

344

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,October 27,,22,27,

345

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,October

346

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,OctoberSunphotometer

347

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay

348

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1, 2012

349

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1, 2012Upgrades to

350

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1, 2012Upgrades

351

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,

352

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,The Tale of the

353

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,The Tale of

354

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,The Tale

355

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,The TaleEddy

356

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,The TaleEddyRecord

357

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,The

358

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,TheNovember 14,

359

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,TheNovember 14,5,

360

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,TheNovember

Note: This page contains sample records for the topic "jupiter laser facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,TheNovember6, 2012

362

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,TheNovember6,

363

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,TheNovember6,5,

364

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1,TheNovember6,5,May

365

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch

366

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMay 18, 2012

367

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMay 18, 2012October

368

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMay 18,

369

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMay 18,July 10, 2012

370

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMay 18,July 10,

371

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMay 18,July 10,14,

372

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMay 18,July 10,14,23,

373

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMay 18,July

374

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMay 18,July4, 2012

375

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMay 18,July4, 20127,

376

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMay 18,July4,

377

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMay 18,July4,October

378

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMay

379

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayApril 24, 2013

380

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayApril 24,

Note: This page contains sample records for the topic "jupiter laser facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayApril 24,2, 2012

382

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayApril 24,2, 20128,

383

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayApril 24,2,

384

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayApril 24,2,October

385

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayApril

386

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayAprilApril 8, 2013

387

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayAprilApril 8,

388

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayAprilApril 8,17,

389

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayAprilApril

390

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayAprilAprilMay 10,

391

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayAprilAprilMay

392

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarchMayAprilAprilMayApril

393

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004Airborne InstrumentationARM Facility

394

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004AirborneJune 28, 2013 [Facility News]

395

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004AirborneJune 28, 2013 [Facility

396

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004AirborneJune 28, 2013 [FacilityJuly 10,

397

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004AirborneJune 28, 2013 [FacilityJuly

398

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004AirborneJune13, 2014 [Facility News]

399

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004AirborneJune13, 2014 [Facility News]22,

400

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004AirborneJune13, 2014 [Facility

Note: This page contains sample records for the topic "jupiter laser facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004AirborneJune13, 2014 [FacilityJune 2,

402

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004AirborneJune13, 2014 [FacilityJune

403

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004AirborneJune13, 2014 [FacilityJuneApril

404

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [Facility News] Mobile

405

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [Facility News] MobileMarch

406

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [Facility News]

407

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [Facility News]June 15, 2008

408

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [Facility News]June 15,

409

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [Facility News]June 15,June

410

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [Facility News]June

411

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [Facility News]JuneAugust 6,

412

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [Facility News]JuneAugust

413

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [Facility

414

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [FacilityAugust 31, 2009

415

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [FacilityAugust 31,

416

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [FacilityAugust 31,February

417

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [FacilityAugust

418

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [FacilityAugust24, 2009

419

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [FacilityAugust24,

420

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [FacilityAugust24,New

Note: This page contains sample records for the topic "jupiter laser facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009 [FacilityAugust24,NewJanuary

422

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,June 24, 2009January 15, 2008 [Facility

423

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15, 2006 [Facility News] New

424

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15, 2006 [Facility News] NewApril

425

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15, 2006 [Facility News]

426

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15, 2006 [Facility News]April 30,

427

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15, 2006 [Facility News]April 30,May

428

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15, 2006 [Facility News]April

429

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15, 2006 [Facility News]AprilMarch

430

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15, 2006 [Facility

431

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15, 2006 [FacilityIncreased Weather

432

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15, 2006 [FacilityIncreased

433

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15, 2006 [FacilityIncreased30, 2010

434

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15, 2006 [FacilityIncreased30,

435

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15, 2006April 30,31, 2010 [Facility

436

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15,October 6, 2010 [Facility News]

437

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMay 15,October 6, 2010 [Facility

438

Facilities | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFOR IMMEDIATE5Facilities Some of the nation's most

439

NREL: Biomass Research - Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of Women |hitsAwards andAnalysesData andFacilities

440

User Facilities | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduledProductionCCEIResearch UpperFacilities at aUSER

Note: This page contains sample records for the topic "jupiter laser facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Sandia National Laboratories: Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS Exhibit at Explora Museum On AprilExploraSandiaFacilities

442

SERAPH facility capabilities  

SciTech Connect (OSTI)

The SERAPH (Solar Energy Research and Applications in Process Heat) facility addresses technical issues concerning solar thermal energy implementation in industry. Work will include computer predictive modeling (refinement and validation), system control and evaluation, and the accumulation of operation and maintenance experience. Procedures will be consistent (to the extent possible) with those of industry. SERAPH has four major components: the solar energy delivery system (SEDS); control and data acquisition (including sequencing and emergency supervision); energy distribution system (EDS); and areas allocated for storage development and load devices.

Castle, J.; Su, W.

1980-06-01T23:59:59.000Z

443

Study of radiative blast waves generated on the Z-beamlet laser.  

SciTech Connect (OSTI)

This document describes the original goals of the project to study the Vishniac Overstability on blast waves produced using the Z-Beamlet laser facility as well as the actual results. The proposed work was to build on earlier work on the facility and result in the best characterized set of data for such phenomena in the laboratory. To accomplish the goals it was necessary to modify the existing probe laser at the facility so that it could take multiple images over the course of 1-2 microseconds. Troubles with modifying the probe laser are detailed as well as the work that went into said modifications. The probe laser modification ended up taking the entire length of the project and were the major accomplishment of the research.

Edens, Aaron D.; Schwarz, Jens

2012-02-01T23:59:59.000Z

444

The National Ignition Facility and the Path to Fusion Energy  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) is operational and conducting experiments at the Lawrence Livermore National Laboratory (LLNL). The NIF is the world's largest and most energetic laser experimental facility with 192 beams capable of delivering 1.8 megajoules of 500-terawatt ultraviolet laser energy, over 60 times more energy than any previous laser system. The NIF can create temperatures of more than 100 million degrees and pressures more than 100 billion times Earth's atmospheric pressure. These conditions, similar to those at the center of the sun, have never been created in the laboratory and will allow scientists to probe the physics of planetary interiors, supernovae, black holes, and other phenomena. The NIF's laser beams are designed to compress fusion targets to the conditions required for thermonuclear burn, liberating more energy than is required to initiate the fusion reactions. Experiments on the NIF are focusing on demonstrating fusion ignition and burn via inertial confinement fusion (ICF). The ignition program is conducted via the National Ignition Campaign (NIC) - a partnership among LLNL, Los Alamos National Laboratory, Sandia National Laboratories, University of Rochester Laboratory for Laser Energetics, and General Atomics. The NIC program has also established collaborations with the Atomic Weapons Establishment in the United Kingdom, Commissariat a Energie Atomique in France, Massachusetts Institute of Technology, Lawrence Berkeley National Laboratory, and many others. Ignition experiments have begun that form the basis of the overall NIF strategy for achieving ignition. Accomplishing this goal will demonstrate the feasibility of fusion as a source of limitless, clean energy for the future. This paper discusses the current status of the NIC, the experimental steps needed toward achieving ignition and the steps required to demonstrate and enable the delivery of fusion energy as a viable carbon-free energy source.

Moses, E

2011-07-26T23:59:59.000Z

445

Ignition and Inertial Confinement Fusion at The National Ignition Facility  

SciTech Connect (OSTI)

The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and for studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF is now conducting experiments to commission the laser drive, the hohlraum and the capsule and to develop the infrastructure needed to begin the first ignition experiments in FY 2010. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. NIF will achieve this by concentrating the energy from the 192 beams into a mm{sup 3}-sized target and igniting a deuterium-tritium mix, liberating more energy than is required to initiate the fusion reaction. NIF's ignition program is a national effort managed via the National Ignition Campaign (NIC). The NIC has two major goals: execution of DT ignition experiments starting in FY2010 with the goal of demonstrating ignition and a reliable, repeatable ignition platform by the conclusion of the NIC at the end of FY2012. The NIC will also develop the infrastructure and the processes required to operate NIF as a national user facility. The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on laser fusion as a viable energy option. A laser fusion-based energy concept that builds on NIF, known as LIFE (Laser Inertial Fusion Energy), is currently under development. LIFE is inherently safe and can provide a global carbon-free energy generation solution in the 21st century. This paper describes recent progress on NIF, NIC, and the LIFE concept.

Moses, E

2009-10-01T23:59:59.000Z

446

FRACTURING FLUID CHARACTERIZATION FACILITY  

SciTech Connect (OSTI)

Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

Subhash Shah

2000-08-01T23:59:59.000Z

447

PUREX facility hazards assessment  

SciTech Connect (OSTI)

This report documents the hazards assessment for the Plutonium Uranium Extraction Plant (PUREX) located on the US Department of Energy (DOE) Hanford Site. Operation of PUREX is the responsibility of Westinghouse Hanford Company (WHC). This hazards assessment was conducted to provide the emergency planning technical basis for PUREX. DOE Order 5500.3A requires an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification. In October of 1990, WHC was directed to place PUREX in standby. In December of 1992 the DOE Assistant Secretary for Environmental Restoration and Waste Management authorized the termination of PUREX and directed DOE-RL to proceed with shutdown planning and terminal clean out activities. Prior to this action, its mission was to reprocess irradiated fuels for the recovery of uranium and plutonium. The present mission is to establish a passively safe and environmentally secure configuration at the PUREX facility and to preserve that condition for 10 years. The ten year time frame represents the typical duration expended to define, authorize and initiate follow-on decommissioning and decontamination activities.

Sutton, L.N.

1994-09-23T23:59:59.000Z

448

Studsvik Processing Facility Update  

SciTech Connect (OSTI)

Studsvik has completed over four years of operation at its Erwin, TN facility. During this time period Studsvik processed over 3.3 million pounds (1.5 million kgs) of radioactive ion exchange bead resin, powdered filter media, and activated carbon, which comprised a cumulative total activity of 18,852.5 Ci (6.98E+08 MBq). To date, the highest radiation level for an incoming resin container has been 395 R/hr (3.95 Sv/h). The Studsvik Processing Facility (SPF) has the capability to safely and efficiently receive and process a wide variety of solid and liquid Low Level Radioactive Waste (LLRW) streams including: Ion Exchange Resins (IER), activated carbon (charcoal), graphite, oils, solvents, and cleaning solutions with contact radiation levels of up to 400 R/hr (4.0 Sv/h). The licensed and heavily shielded SPF can receive and process liquid and solid LLRWs with high water and/or organic content. This paper provides an overview of the last four years of commercial operations processing radioactive LLRW from commercial nuclear power plants. Process improvements and lessons learned will be discussed.

Mason, J. B.; Oliver, T. W.; Hill, G. M.; Davin, P. F.; Ping, M. R.

2003-02-25T23:59:59.000Z

449

Physics of laser fusion. Volume II. Diagnostics of experiments on laser fusion targets at LLNL  

SciTech Connect (OSTI)

These notes present the experimental basis and status for laser fusion as developed at LLNL. There are two other volumes in this series: Vol. I, by C.E. Max, presents the theoretical laser-plasma interaction physics; Vol. III, by J.F. Holzrichter et al., presents the theory and design of high-power pulsed lasers. A fourth volume will present the theoretical implosion physics. The notes consist of six sections. The first, an introductory section, provides some of the history of inertial fusion and a simple explanation of the concepts involved. The second section presents an extensive discussion of diagnostic instrumentation used in the LLNL Laser Fusion Program. The third section is a presentation of laser facilities and capabilities at LLNL. The purpose here is to define capability, not to derive how it was obtained. The fourth and fifth sections present the experimental data on laser-plasma interaction and implosion physics. The last chapter is a short projection of the future.

Ahlstrom, H.G.

1982-01-01T23:59:59.000Z

450

The source of widespread 3-$\\mu$m absorption in Jupiter's clouds: Constraints from 2000 Cassini VIMS observations  

E-Print Network [OSTI]

The Cassini flyby of Jupiter in 2000 provided spatially resolved spectra of Jupiter's atmosphere using the Visual and Infrared Mapping Spectrometer (VIMS). These spectra contain a strong absorption at wavelengths from about 2.9 $\\mu$m to 3.1 $\\mu$m, previously noticed in a 3-$\\mu$m spectrum obtained by the Infrared Space Observatory (ISO) in 1996. While Brooke et al. (1998, Icarus 136, 1-13) were able to fit the ISO spectrum very well using ammonia ice as the sole source of particulate absorption, Sromovsky and Fry (2010, Icarus 210, 211-229), using significantly revised NH$_3$ gas absorption models, showed that ammonium hydrosulfide (NH$_4$SH) provided a better fit to the ISO spectrum than NH$_3$ , but that the best fit was obtained when both NH$_3$ and NH$_4$SH were present. Although the large FOV of the ISO instrument precluded identification of the spatial distribution of these two components, the VIMS spectra at low and intermediate phase angles show that 3-$\\mu$m absorption is present in zones and belts...

Sromovsky, Lawrence

2015-01-01T23:59:59.000Z

451

Laser-assisted electrochemistry  

SciTech Connect (OSTI)

The effect of laser irradiation on electrodeposition processes has been investigated. These studies demonstrated that the addition of laser irradiation to an electroplating process can dramatically enhance plating rates and current efficiencies, as well as improve the morphology of the resultant electrodeposit. During the course of these investigations, the mechanism for the laser enhancement of electrodeposition processes was determined. Experimental evidence was obtained to show that laser irradiation of the substrate results in increased metal ion concentrations at the surface of the electrode due to a laser-induced Soret effect. The laser-induced Soret effect has important implications for laser-assisted electrochemical processing. The increase in the surface concentration of ions allows efficient electrodeposition from dilute solutions. As such, laser- assisted electrodeposition may develop into an environmentally conscious manufacturing process by reducing waste and limiting worker exposure to toxic chemicals.

Glenn, D.F.

1995-05-01T23:59:59.000Z

452

Along the Laser Beampath  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 20 | Next | Last Back to Index NIF Laser Bay Seen from above, each of NIF's two identical laser bays has two clusters of 48 beamlines, one on either side of the utility spine...

453

Laser particle sorter  

DOE Patents [OSTI]

Method and apparatus are provided for sorting particles, such as biological particles. A first laser is used to define an optical path having an intensity gradient which is effective to propel the particles along the path but which is sufficiently weak that the particles are not trapped in an axial direction. A probe laser beam is provided for interrogating the particles to identify predetermined phenotypical characteristics of the particles. A second laser beam is provided to intersect the driving first laser beam, wherein the second laser beam is activated by an output signal indicative of a predetermined characteristic. The second laser beam is switchable between a first intensity and a second intensity, where the first intensity is effective to displace selected particles from the driving laser beam and the second intensity is effective to propel selected particles along the deflection laser beam. The selected particles may then be propelled by the deflection beam to a location effective for further analysis. 2 figs.

Martin, J.C.; Buican, T.N.

1987-11-30T23:59:59.000Z

454

Along the Laser Beampath  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

has been installed in the preamplifier modules (PAMs) at the front end of the NIF laser system. The spatial shapers can obscure the laser light at programmed locations within...

455

National Ignition Facility Project Completion and Control System Status  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) is the world's largest and most energetic laser experimental system providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. Completed in 2009, NIF is a stadium-sized facility containing a 1.8-MJ, 500-TW 192-beam ultraviolet laser and target chamber. A cryogenic tritium target system and suite of optical, X-ray and nuclear diagnostics will support experiments in a strategy to achieve fusion ignition starting in 2010. Automatic control of NIF is performed by the large-scale Integrated Computer Control System (ICCS), which is implemented by 2 MSLOC of Java and Ada running on 1300 front-end processors and servers. The ICCS framework uses CORBA distribution for interoperation between heterogeneous languages and computers. Laser setup is guided by a physics model and shots are coordinated by data-driven distributed workflow engines. The NIF information system includes operational tools and a peta-scale repository for provisioning experimental results. This paper discusses results achieved and the effort now underway to conduct full-scale operations and prepare for ignition.

Van Arsdall, P J; Azevedo, S G; Beeler, R G; Bryant, R M; Carey, R W; Demaret, R D; Fisher, J M; Frazier, T M; Lagin, L J; Ludwigsen, A P; Marshall, C D; Mathisen, D G; Reed, R K

2009-10-02T23:59:59.000Z

456

National Ignition Facility and Managing Location, Component, and State  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility that contains a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system coupled with a 10-meter diameter target chamber. There are over 6,200 Line Replaceable Units (LRUs) comprised of more than 104,000 serialized parts that make up the NIF. Each LRU is a modular unit typically composed of a mechanical housing, laser optics (glass, lenses, or mirrors), and utilities. To date, there are more than 120,000 data sets created to characterize the attributes of these parts. Greater than 51,000 Work Permits have been issued to install, maintain, and troubleshoot the components. One integrated system is used to manage these data, and more. The Location Component and State (LoCoS) system is a web application built using Java Enterprise Edition technologies and is accessed by over 1,200 users. It is either directly or indirectly involved with each aspect of NIF work activity, and interfaces with ten external systems including the Integrated Computer Control System (ICCS) and the Laser Performance Operations Model (LPOM). Besides providing business functionality, LoCoS also acts as the NIF enterprise service bus. In this role, numerous integration approaches had to be adopted including: file exchange, database sharing, queuing, and web services in order to accommodate various business, technical, and security requirements. Architecture and implementation decisions are discussed.

Foxworthy, C; Fung, T; Beeler, R; Li, J; Dugorepec, J; Chang, C

2011-07-25T23:59:59.000Z

457

Regulatory facility guide for Ohio  

SciTech Connect (OSTI)

The Regulatory Facility Guide (RFG) has been developed for the DOE and contractor facilities located in the state of Ohio. It provides detailed compilations of international, federal, and state transportation-related regulations applicable to shipments originating at destined to Ohio facilities. This RFG was developed as an additional resource tool for use both by traffic managers who must ensure that transportation operations are in full compliance with all applicable regulatory requirements and by oversight personnel who must verify compliance activities.

Anderson, S.S.; Bock, R.E.; Francis, M.W.; Gove, R.M.; Johnson, P.E.; Kovac, F.M.; Mynatt, J.O. [Oak Ridge National Lab., TN (United States); Rymer, A.C. [Transportation Consulting Services, Knoxville, TN (United States)

1994-02-28T23:59:59.000Z

458

Short wavelength laser  

DOE Patents [OSTI]

A short wavelength laser (28) is provided that is driven by conventional-laser pulses (30, 31). A multiplicity of panels (32), mounted on substrates (34), are supported in two separated and alternately staggered facing and parallel arrays disposed along an approximately linear path (42). When the panels (32) are illuminated by the conventional-laser pulses (30, 31), single pass EUV or soft x-ray laser pulses (44, 46) are produced.

Hagelstein, Peter L. (Livermore, CA)

1986-01-01T23:59:59.000Z

459

Facilities | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Research and Development manages and oversees the operation of an exceptional suite of science, technology and engineering facilities that support and further the national...

460

About the Geocentrifuge Research Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Facility is being used to improve mathematical models for the movement of fluids and contaminants and long-term performance of engineered caps and barriers used for...

Note: This page contains sample records for the topic "jupiter laser facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Toda Cathode Materials Production Facility  

Broader source: Energy.gov (indexed) [DOE]

Cathode Materials Production Facility 2013 DOE Vehicle Technologies Annual Merit Review May 13-17, 2013 David Han, Yasuhiro Abe Toda America Inc. Project ID: ARRAVT017...

462

Reed Reactor Facility. Final report  

SciTech Connect (OSTI)

This report discusses the operation and maintenance of the Reed Reactor Facility. The Reed reactor is mostly used for education and train purposes.

Frantz, S.G.

1994-12-31T23:59:59.000Z

463

Space & Security Power Systems Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Working with INL Community Outreach Visitor Information Calendar of Events ATR National Scientific User Facility Center for Advanced Energy Studies Light Water Reactor...

464

MDF | Manufacturing Demonstration Facility | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MDF Working with MDF NTRC OLCF SNS Titanium robotic hand holding sphere fabricated using additive manufacturing Home | User Facilities | MDF MDF | Manufacturing Demonstration...

465

Establishing nuclear facility drill programs  

SciTech Connect (OSTI)

The purpose of DOE Handbook, Establishing Nuclear Facility Drill Programs, is to provide DOE contractor organizations with guidance for development or modification of drill programs that both train on and evaluate facility training and procedures dealing with a variety of abnormal and emergency operating situations likely to occur at a facility. The handbook focuses on conducting drills as part of a training and qualification program (typically within a single facility), and is not intended to included responses of personnel beyond the site boundary, e.g. Local or State Emergency Management, Law Enforcement, etc. Each facility is expected to develop its own facility specific scenarios, and should not limit them to equipment failures but should include personnel injuries and other likely events. A well-developed and consistently administered drill program can effectively provide training and evaluation of facility operating personnel in controlling abnormal and emergency operating situations. To ensure the drills are meeting their intended purpose they should have evaluation criteria for evaluating the knowledge and skills of the facility operating personnel. Training and evaluation of staff skills and knowledge such as component and system interrelationship, reasoning and judgment, team interactions, and communications can be accomplished with drills. The appendices to this Handbook contain both models and additional guidance for establishing drill programs at the Department`s nuclear facilities.

NONE

1996-03-01T23:59:59.000Z

466

Power Systems Development Facility  

SciTech Connect (OSTI)

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

Southern Company Services

2009-01-31T23:59:59.000Z

467

Laser bottom hole assembly  

DOE Patents [OSTI]

There is provided for laser bottom hole assembly for providing a high power laser beam having greater than 5 kW of power for a laser mechanical drilling process to advance a borehole. This assembly utilizes a reverse Moineau motor type power section and provides a self-regulating system that addresses fluid flows relating to motive force, cooling and removal of cuttings.

Underwood, Lance D; Norton, Ryan J; McKay, Ryan P; Mesnard, David R; Fraze, Jason D; Zediker, Mark S; Faircloth, Brian O

2014-01-14T23:59:59.000Z

468

LaserFest Celebration  

SciTech Connect (OSTI)

LaserFest was the yearlong celebration, during 2010, of the 50th anniversary of the demonstration of the first working laser. The goals of LaserFest were: to highlight the impact of the laser in its manifold commercial, industrial and medical applications, and as a tool for ongoing scientific research; to use the laser as one example that illustrates, more generally, the route from scientific innovation to technological application; to use the laser as a vehicle for outreach, to stimulate interest among students and the public in aspects of physical science; to recognize and honor the pioneers who developed the laser and its many applications; to increase awareness among policymakers of the importance of R&D funding as evidenced by such technology as lasers. One way in which LaserFest sought to meet its goals was to encourage relevant activities at a local level all across the country -- and also abroad -- that would be identified with the larger purposes of the celebration and would carry the LaserFest name. Organizers were encouraged to record and advertise these events through a continually updated web-based calendar. Four projects were explicitly detailed in the proposals: 1) LaserFest on the Road; 2) Videos; 3) Educational material; and 4) Laser Days.

Dr. Alan Chodos; Elizabeth A. Rogan

2011-08-25T23:59:59.000Z

469

Nano Research Facility Lab Safety Manual Nano Research Facility  

E-Print Network [OSTI]

1 Nano Research Facility Lab Safety Manual Nano Research Facility: Weining Wang Office: Brauer rules and procedures (a) Accidents and spills for chemicals Not containing Nano-Materials Spills of non for chemicals Containing Nano-Materials In a fume hood small spills of nano-materials in a liquid may

Subramanian, Venkat

470

Safety approaches for high power modular laser operation  

SciTech Connect (OSTI)

Approximately 20 years ago, a program was initiated at the Lawrence Livermore National Laboratory (LLNL) to study the feasibility of using lasers to separate isotopes of uranium and other materials. Of particular interest has been the development of a uranium enrichment method for the production of commercial nuclear power reactor fuel to replace current more expensive methods. The Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) Program has progressed to the point where a plant-scale facility to demonstrate commercial feasibility has been built and is being tested. The U-AVLIS Program uses copper vapor lasers which pump frequency selective dye lasers to photoionize uranium vapor produced by an electron beam. The selectively ionized isotopes are electrostatically collected. The copper lasers are arranged in oscillator/amplifier chains. The current configuration consists of 12 chains, each with a nominal output of 800 W for a system output in excess of 9 kW. The system requirements are for continuous operation (24 h a day, 7 days a week) and high availability. To meet these requirements, the lasers are designed in a modular form allowing for rapid change-out of the lasers requiring maintenance. Since beginning operation in early 1985, the copper lasers have accumulated over 2 million unit hours at a >90% availability. The dye laser system provides approximately 2.5 kW average power in the visible wavelength range. This large-scale laser system has many safety considerations, including high-power laser beams, high voltage, and large quantities ({approximately}3000 gal) of ethanol dye solutions. The Laboratory`s safety policy requires that safety controls be designed into any process, equipment, or apparatus in the form of engineering controls. Administrative controls further reduce the risk to an acceptable level. Selected examples of engineering and administrative controls currently being used in the U-AVLIS Program are described.

Handren, R.T.

1993-03-01T23:59:59.000Z

471

Painter Greenhouse Guidelines Contact: All emails regarding facilities, facilities equipment, supplies at facilities, or watering  

E-Print Network [OSTI]

, supplies at facilities, or watering concerns to both the greenhouse manager, Shane Merrell Greenhouses is supplemented by heating and cooling from the main Painter Building. The smaller Painter

472

X-ray laser  

DOE Patents [OSTI]

An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

Nilsen, Joseph (Livermore, CA)

1991-01-01T23:59:59.000Z

473

Big Explosives Experimental Facility - BEEF  

SciTech Connect (OSTI)

The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.

None

2014-10-31T23:59:59.000Z

474

End points for facility deactivation  

SciTech Connect (OSTI)

DOE`s Office of Nuclear Material and Facility Stabilization mission includes deactivating surplus nuclear facilities. Each deactivation project requires a systematic and explicit specification of the conditions to be established. End Point methods for doing so have been field developed and implemented. These methods have worked well and are being made available throughout the DOE establishment.

Szilagyi, A.P. [Dept. of Energy, Germantown, MD (United States); Negin, C.A. [Oak Technologies, Washington Grove, MD (United States); Stefanski, L.D. [Westinghouse Hanford, Richland, WA (United States)

1996-12-31T23:59:59.000Z

475

Big Explosives Experimental Facility - BEEF  

ScienceCinema (OSTI)

The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.

None

2015-01-07T23:59:59.000Z

476

Energy Systems Integration Facility Overview  

ScienceCinema (OSTI)

The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.

Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith

2014-06-10T23:59:59.000Z

477

Alpha Gamma Hot Cell Facility  

E-Print Network [OSTI]

-reactor nuclear facility being decommissioned. It is also used to support the de-inventory of other facilities PROGRAM Contact: Yung Y. Liu Senior Nuclear Engineer, Section Manager Argonne National Laboratory yyliu on the Argonne site. As part of decommissioning, large quantities of radioactive material and waste are being

Kemner, Ken

478

COMPARATIVE MEDICINE LABORATORY ANIMAL FACILITIES  

E-Print Network [OSTI]

3.E.1 COMPARATIVE MEDICINE LABORATORY ANIMAL FACILITIES STANDARD OPERATING PROCEDURES for ACCESS, and the correct way to leave the facility. 2.0 Scope: This procedure applies to all CMLAF staff, maintenance, ENTRY, AND EXIT PROCEDURES FOR THE ANIMAL BIOSAFETY SUITE ROOM 305 BEB 1.0 Purpose: The Biosafety suite

Krovi, Venkat

479

COMPARATIVE MEDICINE LABORATORY ANIMAL FACILITIES  

E-Print Network [OSTI]

1.E.1 COMPARATIVE MEDICINE LABORATORY ANIMAL FACILITIES STANDARD OPERATING PROCEDURE for ENTRY RODENT FACILITY 1. I have read, understand, and will follow the Standard Operating Procedures listed: This procedure applies to all CMLAF, principal investigator and maintenance personnel 3.0 Procedure: 3

Krovi, Venkat

480

Licensed fuel facility status report  

SciTech Connect (OSTI)

NRC is committed to the periodic publication of licensed fuel facilities inventory difference data, following agency review of the information and completion of any related NRC investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233.

Joy, D.; Brown, C.

1993-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "jupiter laser facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Laser Guide Star Adaptive Optics without Tip-tilt  

E-Print Network [OSTI]

Adaptive optics (AO) systems allow a telescope to reach its diffraction limit at near infrared wavelengths. But to achieve this, a bright natural guide star (NGS) is needed for the wavefront sensing, severely limiting the fraction of the sky over which AO can be used. To some extent this can be overcome with a laser guide star (LGS). While the laser can be pointed anywhere in the sky, one still needs to have a natural star, albeit fainter, reasonably close to correct the image motion (tip-tilt) to which laser guide stars are insensitive. There are in fact many astronomical targets without suitable tip-tilt stars, but for which the enhanced resolution obtained with the Laser Guide Star Facility (LGSF) would still be very beneficial. This article explores what adaptive optics performance one might expect if one dispenses with the tip-tilt star, and in what situations this mode of observing might be needed.

R. Davies; S. Rabien; C. Lidman; M. Le Louarn; M. Kasper; N. M. Forster Schreiber; V. Roccatagliata; N. Ageorges; P. Amico; C. Dumas; F. Mannucci

2008-01-24T23:59:59.000Z

482

CANISTER HANDLING FACILITY DESCRIPTION DOCUMENT  

SciTech Connect (OSTI)

The purpose of this facility description document (FDD) is to establish requirements and associated bases that drive the design of the Canister Handling Facility (CHF), which will allow the design effort to proceed to license application. This FDD will be revised at strategic points as the design matures. This FDD identifies the requirements and describes the facility design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This FDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This FDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the facility. Knowledge of these requirements is essential in performing the design process. The FDD follows the design with regard to the description of the facility. The description provided in this FDD reflects the current results of the design process.

J.F. Beesley

2005-04-21T23:59:59.000Z

483

Canastota Renewable Energy Facility Project  

SciTech Connect (OSTI)

The project was implemented at the Madison County Landfill located in the Town of Lincoln, Madison County, New York. Madison County has owned and operated the solid waste and recycling facilities at the Buyea Road site since 1974. At the onset of the project, the County owned and operated facilities there to include three separate landfills, a residential solid waste disposal and recycled material drop-off facility, a recycling facility and associated administrative, support and environmental control facilities. This putrescible waste undergoes anaerobic decomposition within the waste mass and generates landfill gas, which is approximately 50% methane. In order to recover this gas, the landfill was equipped with gas collection systems on both the east and west sides of Buyea Road which bring the gas to a central point for destruction. In order to derive a beneficial use from the collected landfill gases, the County decided to issue a Request for Proposals (RFP) for the future use of the generated gas.

Blake, Jillian; Hunt, Allen

2013-12-13T23:59:59.000Z

484

Heavy-ion emission from short-pulse laser-plasma interactions with thin N. Sinenian, G. Fiksel, J. A. Frenje, C. G. Freeman, M. J.-E. Manuel et al.  

E-Print Network [OSTI]

, Cambridge, Massachusetts 02139, USA 2 Laboratory for Laser Energetics, Rochester, New York 14623, USA 3 State University of New York at Geneseo, Geneseo, New York 14454, USA (Received 10 February 2012, implemented on the Laboratory for Laser Energetics Multi- Terawatt laser facility, has been used to study

485

Power Systems Development Facility  

SciTech Connect (OSTI)

This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

None

2003-07-01T23:59:59.000Z

486

PFBC HGCU Test Facility  

SciTech Connect (OSTI)

This is the thirteenth Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC Hot Gas Clean Up Test Facility. This report covers the period of work completed during the Fourth Quarter of CY 1992. The following are highlights of the activities that occurred during this report period: Initial operation of the Advanced Particle Filter (APF) occurred during this quarter. The following table summarizes the operating dates and times. HGCU ash lockhopper valve plugged with ash. Primary cyclone ash pluggage. Problems with the coal water paste. Unit restarted warm 13 hours later. HGCU expansion joint No. 7 leak in internal ply of bellows. Problems encountered during these initial tests included hot spots on the APP, backup cyclone and instrumentation spools, two breakdowns of the backpulse air compressor, pluggage of the APF hopper and ash removal system, failure (breakage) of 21 filter candles, leakage of the inner ply of one (1) expansion joint bellows, and numerous other smaller problems. These operating problems are discussed in detail in a subsequent section of this report. Following shutdown and equipment inspection in December, design modifications were initiated to correct the problems noted above. The system is scheduled to resume operation in March, 1993.

Not Available

1993-01-01T23:59:59.000Z

487

Power Systems Development Facility  

SciTech Connect (OSTI)

This report discusses Test Campaign TC15 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Power Generation, Inc. (SPG) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC15 began on April 19, 2004, with the startup of the main air compressor and the lighting of the gasifier startup burner. The Transport Gasifier was shutdown on April 29, 2004, accumulating 200 hours of operation using Powder River Basin (PRB) subbituminous coal. About 91 hours of the test run occurred during oxygen-blown operations. Another 6 hours of the test run was in enriched-air mode. The remainder of the test run, approximately 103 hours, took place during air-blown operations. The highest operating temperature in the gasifier mixing zone mostly varied from 1,800 to 1,850 F. The gasifier exit pressure ran between 200 and 230 psig during air-blown operations and between 110 and 150 psig in oxygen-enhanced air operations.

Southern Company Services

2004-04-30T23:59:59.000Z

488

Advanced hybrid gasification facility  

SciTech Connect (OSTI)

The objective of this procurement is to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology for electric power generation applications. The proprietary CRS Sirrine Engineers, Inc. PyGas{trademark} staged gasifier has been selected as the initial gasifier to be developed under this program. The gasifier is expected to avoid agglomeration when used on caking coals. It is also being designed to crack tar vapors and ammonia, and to provide an environment in which volatilized alkali may react with aluminosilicates in the coal ash thereby minimizing their concentration in the hot raw coal gas passing through the system to the gas turbine. This paper describes a novel, staged, airblown, fixed-bed gasifier designed to solve both through the incorporation of pyrolysis (carbonization) with gasification. It employs a pyrolyzer (carbonizer) to avoid sticky coal agglomeration which occurs in a fixed-bed process when coal is gradually heated through the 400{degrees}F to 900{degrees}F range. In a pyrolyzer, the coal is rapidly heated such that coal tar is immediately vaporized. Gaseous tars are then thermally cracked prior to the completion of the gasification process. During the subsequent endothermic gasification reactions, volatilized alkali can be chemically bound to aluminosilicates in (or added to) the ash. To reduce NOx from fuel home nitrogen, moisture is minimized to control ammonia generation, and HCN in the upper gasifier region is partially oxidized to NO which reacts with NH3/HCN to form N2.

Sadowski, R.S.; Skinner, W.H. [CRS Sirrine, Inc., Greenville, SC (United States); Johnson, S.A. [PSI Technology Co., Andover, MA (United States); Dixit, V.B. [Riley Stoker Corp., Worcester, MA (United States). Riley Research Center

1993-08-01T23:59:59.000Z

489

340 waste handling facility interim safety basis  

SciTech Connect (OSTI)

This document presents an interim safety basis for the 340 Waste Handling Facility classifying the 340 Facility as a Hazard Category 3 facility. The hazard analysis quantifies the operating safety envelop for this facility and demonstrates that the facility can be operated without a significant threat to onsite or offsite people.

VAIL, T.S.

1999-04-01T23:59:59.000Z

490

340 Waste handling facility interim safety basis  

SciTech Connect (OSTI)

This document presents an interim safety basis for the 340 Waste Handling Facility classifying the 340 Facility as a Hazard Category 3 facility. The hazard analysis quantifies the operating safety envelop for this facility and demonstrates that the facility can be operated without a significant threat to onsite or offsite people.

Stordeur, R.T.

1996-10-04T23:59:59.000Z

491

Laser system using ultra-short laser pulses  

DOE Patents [OSTI]

A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

Dantus, Marcos (Okemos, MI); Lozovoy, Vadim V. (Okemos, MI); Comstock, Matthew (Milford, MI)

2009-10-27T23:59:59.000Z

492

Facility effluent monitoring plan for the tank farm facility  

SciTech Connect (OSTI)

A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements.

Crummel, G.M.

1998-05-18T23:59:59.000Z

493

High power KrF laser development at Los Alamos  

SciTech Connect (OSTI)

The objective of the high power laser development program at Los Alamos is to appraise the potential of the KrF laser as a driver for inertial confinement fusion (ICF), ultimately at energy levels that will produce high target gain (gain of order 100). A KrF laser system prototype, the 10-kJ Aurora laser, which is nearing initial system operation, will serve as a feasibility demonstration of KrF technology and system design concepts appropriate to large scale ICF driver systems. The issues of affordable cost, which is a major concern for all ICF drivers now under development, and technology scaling are also being examined. It is found that, through technology advances and component cost reductions, the potential exists for a KrF driver to achieve a cost goal in the neighborhood of $100 per joule. The authors suggest that the next step toward a multimegajoule laboratory microfusion facility (LMF) is an ''Intermediate Driver'' facility in the few hundred kilojoule to one megajoule range, which will help verify the scaling of driver technology and cost to an LMF size. An Intermediate Driver facility would also increase the confidence in the estimates of energy needed for an LMF and would reduce the risk in target performance. 5 refs., 4 figs., 1 tab.

McDonald, T.; Cartwright, D.; Fenstermacher, C.; Figueira, J.; Goldstone, P.; Harris, D.; Mead, W.; Rosocha, L.

1988-01-01T23:59:59.000Z

494

Neutron Scattering Facilities | U.S. DOE Office of Science (SC...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Neutron Scattering Facilities User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities X-Ray Light Sources...

495

SNS Laser Stripping for H- Injection  

SciTech Connect (OSTI)

The ORNL spallation neutron source (SNS) user facility requires a reliable, intense beams of protons. The technique of H- charge exchange injection into a storage ring or synchrotron has the potential to provide the needed beam currents, but it will be limited by intrinsic limitations of carbon and diamond stripping foils. A laser in combination with magnetic stripping has been used to demonstrate a new technique for high intensity proton injection, but several problems need to be solved before a practical system can be realized. Technology developed for use in Free Electron Lasers is being used to address the remaining challenges to practical implementation of laser controlled H- charge exchange injection for the SNS. These technical challenges include (1) operation in vacuum, (2) the control of the UV laser beam to synchronize with the H- beam and to shape the proton beam, (3) the control and stabilization of the Fabry-Perot resonator, and (4) protection of the mirrors from radiation.

V.V. Danilov, Y. Liu, K.B. Beard, V.G. Dudnikov, R.P. Johnson, Michelle D. Shinn

2009-05-01T23:59:59.000Z

496

Laser Electron Gamma Source. Biennial progress report  

SciTech Connect (OSTI)

The LEGS facility provides intense, polarized, monochromatic {gamma}-ray beams by Compton backscattering laser light from relativistic electrons circulating in the X-Ray storage ring of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. With the start of ring operations at 2.8 GeV, LEGS {gamma}-ray energies now extend to 370 MeV. Considerable progress has been made in the development of a new laser system that will increase the beam energies to 470 MeV, and this system is expected to come into operation before the next biennial report. The total flux is administratively held at 6 {times} 10{sup 6} s{sup {minus}1}. The {gamma}-ray energy is determined, with a resolution of 5.5 MeV, by detecting the scattering electrons in a magnetic spectrometer. This spectrometer can `tag` all {gamma}-rays with energies from 185 MeV up to the Compton edge. The beam spot size at the target position is 8 mm (V) {times} 18 mm (H), FWHM. For a single laser wavelength, the linear polarization of the beam is 98% at the Compton edge and decreases to 50% at about 1/2 the energy of the edge. By choosing the laser wavelengths appropriately the polarization can be maintained above 85% throughout the tagging range. During the last two years, experimental running at LEGS occupied an average of 3000 hours annually. Highlights of some of the programs are discussed below.

Sandorfi, A.M. [ed.; Caracappa, A.; Kuczewski, A.; Kistner, O.C.; Lincoln, F.; Miceli, L.; Thorn, C.E. [Brookhaven National Lab., Upton, NY (United States); Hoblit, S. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Physics; Khandaker, M. [Brookhaven National Lab., Upton, NY (United States)]|[Virginia Polytechnic Institute & State Univ., Blacksburg, VA (United States). Dept. of Physics

1994-06-01T23:59:59.000Z

497

Laser Oil and Gas Well Drilling Demonstration Videos  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

ANL's Laser Applications Laboratory and collaborators are examining the feasibility of adapting high-power laser technology to drilling for gas and oil. The initial phase is designed to establish a scientific basis for developing a commercial laser drilling system and determine the level of gas industry interest in pursuing future research. Using lasers to bore a hole offers an entirely new approach to mechanical drilling. The novel drilling system would transfer light energy from lasers on the surface, down a borehole by a fiber optic bundle, to a series of lenses that would direct the laser light to the rock face. Researchers believe that state-of-the-art lasers have the potential to penetrate rock many times faster than conventional boring technologies - a huge benefit in reducing the high costs of operating a drill rig. Because the laser head does not contact the rock, there is no need to stop drilling to replace a mechanical bit. Moreover, researchers believe that lasers have the ability to melt the rock in a way that creates a ceramic sheath in the wellbore, eliminating the expense of buying and setting steel well casing. A laser system could also contain a variety of downhole sensors, including visual imaging systems that could communicate with the surface through the fiber optic cabling. Earlier studies have been promising, but there is still much to learn. One of the primary objectives of the new study will be to obtain much more precise measurements of the energy requirements needed to transmit light from surface lasers down a borehole with enough power to bore through rocks as much as 20,000 feet or more below the surface. Another objective will be to determine if sending the laser light in sharp pulses, rather than as a continuous stream, could further increase the rate of rock penetration. A third aspect will be to determine if lasers can be used in the presence of drilling fluids. In most wells, thick fluids called "drilling muds" are injected into the borehole to wash out rock cuttings and keep water and other fluids from the underground formations from seeping into the well. The technical challenge will be to determine whether too much laser energy is expended to clear away the fluid where the drilling is occurring. (Copied with editing from http://www.ne.anl.gov/facilities/lal/laser_drilling.html). The demonstration videos, provided here in QuickTime format, are accompanied by patent documents and PDF reports that, together, provide an overall picture of this fascinating project.

498

Irradiation facilities at the Los Alamos Meson Physics Facility  

SciTech Connect (OSTI)

The irradiation facilities for testing SSC components and detector systems are described. Very high intensity proton, neutron, and pion fluxes are available with beam kinetic energies of up to 800 MeV. 4 refs., 12 figs., 2 tabs.

Sandberg, V.

1990-01-01T23:59:59.000Z

499

Facility effluent monitoring plan for the Plutonium Uranium Extraction Facility  

SciTech Connect (OSTI)

A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan will ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, at a minimum, every 3 years.

Greager, E.M.

1997-12-11T23:59:59.000Z

500

Facility effluent monitoring plan for the plutonium uranium extraction facility  

SciTech Connect (OSTI)

A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

Wiegand, D.L.

1994-09-01T23:59:59.000Z