Powered by Deep Web Technologies
Note: This page contains sample records for the topic "junction office statistical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Office of Survey Development and Statistical Integration  

U.S. Energy Information Administration (EIA) Indexed Site

Steve Harvey Steve Harvey April 27, 2011 | Washington, D.C. Tough Choices in U.S. EIA's Data Programs Agenda * Office of Oil, Gas, and Coal Supply Statistics * Office of Petroleum and Biofuels Statistics * Office of Electricity, Renewables, and Uranium Statistics * Office of Energy Consumption and Efficiency Statistics * Office of Survey Development and Statistical Integration 2 Presenter name, Presentation location, Presentation date Coal Data Collection Program 3 James Kendell Washington, DC, April 27, 2011 Quarterly Coal Consumption and Quality Report, Manufacturing and Transformation/Processing Coal Plants and Commercial and Institutional Coal Users EIA-3 Quarterly Coal Consumption and Quality Report - Coke Plants EIA-5 Coal Production and Preparation

2

EA-1338: Transfer of the Department of Energy Grand Junction Office to  

Broader source: Energy.gov (indexed) [DOE]

8: Transfer of the Department of Energy Grand Junction Office 8: Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership, Grand Junction, Colorado EA-1338: Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership, Grand Junction, Colorado SUMMARY This EA evaluates the environmental impacts for the proposed transfer of real and personal property at the U.S. Department of Energy's Grand Junction Office to non-DOE ownership. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 25, 2000 EA-1338: Finding of No Significant Impact Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership April 25, 2000 EA-1338: Final Environmental Assessment Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership

3

DOE/Grand Junction Office Bluewater LTSP July 1997 Doc. No. S00012AA, Page iii  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE/Grand Junction Office Bluewater LTSP DOE/Grand Junction Office Bluewater LTSP July 1997 Doc. No. S00012AA, Page iii Contents Page 1.0 Introduction .........................................................................................................................................1 1.1 Purpose ................................................................................................................................1 1.2 Legal and Regulatory Requirements .................................................................................. 1 1.3 Role of the Department of Energy ..................................................................................... 2 1.4 Disposal of Mill Waste Containing Polychlorinated Biphenyls ........................................ 2 2.0 Bluewater Disposal Site .....................................................................................................................

4

Workforce Statistics - Sandia Field Office | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Sandia Field Office | National Nuclear Security Sandia Field Office | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Workforce Statistics - Sandia Field Office Home > About Us > Our Operations > Management and Budget > Office of Civil Rights > Workforce Statistics > Workforce Statistics - Sandia Field Office Workforce Statistics - Sandia Field Office

5

Workforce Statistics - Pantex Field Office | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Pantex Field Office | National Nuclear Security Pantex Field Office | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Workforce Statistics - Pantex Field Office Home > About Us > Our Operations > Management and Budget > Office of Civil Rights > Workforce Statistics > Workforce Statistics - Pantex Field Office Workforce Statistics - Pantex Field Office

6

Workforce Statistics - Livermore Field Office | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Livermore Field Office | National Nuclear Security Livermore Field Office | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Workforce Statistics - Livermore Field Office Home > About Us > Our Operations > Management and Budget > Office of Civil Rights > Workforce Statistics > Workforce Statistics - Livermore Field Office Workforce Statistics - Livermore Field Office

7

Workforce Statistics - Nevada Field Office | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Nevada Field Office | National Nuclear Security Nevada Field Office | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Workforce Statistics - Nevada Field Office Home > About Us > Our Operations > Management and Budget > Office of Civil Rights > Workforce Statistics > Workforce Statistics - Nevada Field Office Workforce Statistics - Nevada Field Office

8

Statistics of avalanches in the self-organized criticality state of a Josephson junction  

SciTech Connect (OSTI)

Magnetic flux avalanches in Josephson junctions that include superconductor-insulator-superconductor (SIS) tunnel junctions and are magnetized at temperatures lower than approximately 5 K have been studied in detail. Avalanches are of stochastic character and appear when the magnetic field penetration depth {lambda} into a junction becomes equal to the length a of the Josephson junction with a decrease in the temperature. The statistical properties of such avalanches are presented. The size distribution of the avalanches is a power law with a negative noninteger exponent about unity, indicating the self-organized criticality state. The self-organized criticality state is not observed in Josephson junctions with a superconductor-normal metal-superconductor (SNS) junction.

Matizen, E. V.; Martynets, V. G., E-mail: mart@niic.nsc.ru; Bezverkhii, P. P. [Russian Academy of Sciences, Nikolaev Institute of Inorganic Chemistry, Siberian Division (Russian Federation)

2010-08-15T23:59:59.000Z

9

Workforce Statistics - Office of Secure Transportation | National Nuclear  

National Nuclear Security Administration (NNSA)

Office of Secure Transportation | National Nuclear Office of Secure Transportation | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Workforce Statistics - Office of Secure Transportation Home > About Us > Our Operations > Management and Budget > Office of Civil Rights > Workforce Statistics > Workforce Statistics - Office of Secure

10

Workforce Statistics - Los Alamos Field Office | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Los Alamos Field Office | National Nuclear Security Los Alamos Field Office | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Workforce Statistics - Los Alamos Field Office Home > About Us > Our Operations > Management and Budget > Office of Civil Rights > Workforce Statistics > Workforce Statistics - Los Alamos Field Office

11

Workforce Statistics - Savannah River Field Office | National Nuclear  

National Nuclear Security Administration (NNSA)

Savannah River Field Office | National Nuclear Savannah River Field Office | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Workforce Statistics - Savannah River Field Office Home > About Us > Our Operations > Management and Budget > Office of Civil Rights > Workforce Statistics > Workforce Statistics - Savannah River Field

12

Workforce Statistics - Office of Secure Transportation | National...  

National Nuclear Security Administration (NNSA)

Office of Secure Transportation | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation...

13

DOE/EA-1338: Finding of No Significant Impact Transfer of the Department of Energy Grand Junction Project Office To Non-DOE Ownership (04/25/00)  

Broader source: Energy.gov (indexed) [DOE]

8 8 F I N A L Environmental Assessment for the Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership April 2000 U.S. Department of Energy * Grand Junction Office * 2597 B ¾ Road * Grand Junction, CO 81503 Grand Junction Office Environmental Assessment Final DOE/EA-1338 FINAL Environmental Assessment for the Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership April 2000 U.S. Department of Energy Grand Junction Office 2597 B ¾ Road Grand Junction, CO 81503 Grand Junction Office Environmental Assessment Final i April 2000 TABLE OF CONTENTS Title Page Table of Contents ......................................................................................................................................... i List of Figures ............................................................................................................................................iii

14

Detection of coherent superpositions of phase states by full counting statistics in a Bose Josephson junction  

SciTech Connect (OSTI)

We study a Bose Josephson junction realized with a double-well potential. We propose a strategy to observe the coherent superpositions of phase states occurring during the time evolution after a sudden rise of the barrier separating the two wells. We show that their phase content can be obtained by the full counting statistics of the spin-boson operators characterizing the junction, which could be mapped out by repeated measurements of the population imbalance after rotation of the state. This measurement can distinguish between coherent superpositions and incoherent mixtures, and can be used for a two-dimensional tomographic reconstruction of the phase content of the state.

Ferrini, G.; Minguzzi, A.; Hekking, F. W. J. [Laboratoire de Physique et Modelisation des Milieux Condenses, Universite Joseph Fourier-CNRS, BP 166, 38042 Grenoble (France)

2009-10-15T23:59:59.000Z

15

Lessons Learned: The Grand Junction Office Site Transfer to Private Ownership  

SciTech Connect (OSTI)

The U.S. Department of Energy Grand Junction Office (DOE?GJO) in Grand Junction, Colorado, has played an integral role within the DOE complex for many years. GJO has a reputation for outstanding quality in the performance of complex environmental restoration projects, utilizing state-of-the-art technology. Many of the GJO missions have been completed in recent years. In 1998, DOE Headquarters directed GJO to reduce its mortgage costs by transferring ownership of the site and to lease space at a reasonable rate for its ongoing work. A local community group and GJO have entered into a sales contract; signing of the Quitclaim Deed is planned for February 16, 2001. Site transfer tasks were organized as a project with a critical-path schedule to track activities and a Site Transition Decision Plan was prepared that included a decision process flow chart, key tasks, and responsibilities. Specifically, GJO identified the end state with affected parties early on, successfully dealt with site contamination issues, and negotiated a lease-back arrangement, resulting in an estimated savings of more than 60 percent of facility maintenance costs annually. Lessons learned regarding these transition activities could be beneficial to many other sites.

none,

2001-02-01T23:59:59.000Z

16

DAVID E. TYLER Department of Statistics Office: (848) 445-7646  

E-Print Network [OSTI]

Rankin High School, Rankin, PA, 1968 EMPLOYMENT 1983-present Department of Statistics, Rutgers UniversityMay, 2014 DAVID E. TYLER Department of Statistics Office: (848) 445-7646 Rutgers, The State of Statistics, 1979 M.A., Department of Statistics, 1976 University of Massachusetts, Amherst M.A., Department

Shepp, Larry

17

Welcome Doug MacIntyre, Director, Office of Petroleum and Biofuels Statistics, U.S. Energy Information  

U.S. Energy Information Administration (EIA) Indexed Site

2012 State Heating Oil and Propane (SHOPP) Webinar 2012 State Heating Oil and Propane (SHOPP) Webinar August 14, 2012 (9:30 am - 12:00 pm, Eastern Time) 9:30 am - 9:45 am Welcome Doug MacIntyre, Director, Office of Petroleum and Biofuels Statistics, U.S. Energy Information Administration Mr. MacIntyre is the Director of the Office of Petroleum and Biofuels Statistics and has a long and varied history with the organization. His purview now includes SHOPP which he is familiar with, having been a presenter at previous SHOPP Conferences. 9:45-10:15 am Heating Fuels Outlook Crude Oil, Heating Fuel, and Propane Tancred Lidderdale, Office of Integrated and International Energy Analysis, U.S. Energy Information Administration Dr. Lidderdale will present highlights from the August Short-Term Energy Outlook, a monthly

18

Nanotube junctions  

DOE Patents [OSTI]

The present invention comprises a new nanoscale metal-semiconductor, semiconductor-semiconductor, or metal-metal junction, designed by introducing topological or chemical defects in the atomic structure of the nanotube. Nanotubes comprising adjacent sections having differing electrical properties are described. These nanotubes can be constructed from combinations of carbon, boron, nitrogen and other elements. The nanotube can be designed having different indices on either side of a junction point in a continuous tube so that the electrical properties on either side of the junction vary in a useful fashion. For example, the inventive nanotube may be electrically conducting on one side of a junction and semiconducting on the other side. An example of a semiconductor-metal junction is a Schottky barrier. Alternatively, the nanotube may exhibit different semiconductor properties on either side of the junction. Nanotubes containing heterojunctions, Schottky barriers, and metal-metal junctions are useful for microcircuitry.

Crespi, Vincent Henry (Darien, IL); Cohen, Marvin Lou (Berkeley, CA); Louie, Steven Gwon Sheng (Berkeley, CA); Zettl, Alexander Karlwalter (Kensington, CA)

2003-01-01T23:59:59.000Z

19

EA-0930: Facility Operations at the U.S. DOE Grand Junction Projects  

Broader source: Energy.gov (indexed) [DOE]

30: Facility Operations at the U.S. DOE Grand Junction 30: Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand Junction, Colorado EA-0930: Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand Junction, Colorado SUMMARY This EA evaluates the environmental impacts of the proposal to expand and upgrade the U.S. Department of Energy's Grand Junction Projects Office facilities and operations in Grand Junction, Colorado. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD June 8, 1996 EA-0930: Finding of No Significant Impact Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand Junction, Colorado June 8, 1996 EA-0930: Final Environmental Assessment Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand

20

Josephson junction  

SciTech Connect (OSTI)

A novel method for fabricating nanometer geometry electronic devices is described. Such Josephson junctions can be accurately and reproducibly manufactured employing photolithographic and direct write electron beam lithography techniques in combination with aqueous etchants. In particular, a method is described for manufacturing planar Josephson junctions from high temperature superconducting material.

Wendt, Joel R. (Albuquerque, NM); Plut, Thomas A. (Albuquerque, NM); Martens, Jon S. (Sunnyvale, CA)

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "junction office statistical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Josephson junction  

SciTech Connect (OSTI)

A novel method for fabricating nanometer geometry electronic devices is described. Such Josephson junctions can be accurately and reproducibly manufactured employing photolithographic and direct write electron beam lithography techniques in combination with aqueous etchants. In particular, a method is described for manufacturing planar Josephson junctions from high temperature superconducting material. 10 figs.

Wendt, J.R.; Plut, T.A.; Martens, J.S.

1995-05-02T23:59:59.000Z

22

Statistics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Statistics Statistics 1 32. STATISTICS Revised April 1998 by F. James (CERN); February 2000 by R. Cousins (UCLA); October 2001, October 2003, and August 2005 by G. Cowan (RHUL). This chapter gives an overview of statistical methods used in High Energy Physics. In statistics we are interested in using a given sample of data to make inferences about a probabilistic model, e.g., to assess the model's validity or to determine the values of its parameters. There are two main approaches to statistical inference, which we may call frequentist and Bayesian. In frequentist statistics, probability is interpreted as the frequency of the outcome of a repeatable experiment. The most important tools in this framework are parameter estimation, covered in Section 32.1, and statistical tests, discussed in Section 32.2. Frequentist confidence intervals, which are constructed so as to cover the true value of

23

Statistical data of the uranium industry  

SciTech Connect (OSTI)

Data are presented on US uranium reserves, potential resources, exploration, mining, drilling, milling, and other activities of the uranium industry through 1980. The compendium reflects the basic programs of the Grand Junction Office. Statistics are based primarily on information provided by the uranium exploration, mining, and milling companies. Data on commercial U/sub 3/O/sub 8/ sales and purchases are included. Data on non-US uranium production and resources are presented in the appendix. (DMC)

none,

1981-01-01T23:59:59.000Z

24

Statistical data of the uranium industry  

SciTech Connect (OSTI)

This report is a compendium of information relating to US uranium reserves and potential resources and to exploration, mining, milling, and other activities of the uranium industry through 1982. The statistics are based primarily on data provided voluntarily by the uranium exploration, mining and milling companies. The compendium has been published annually since 1968 and reflects the basic programs of the Grand Junction Area Office of the US Department of Energy. Statistical data obtained from surveys conducted by the Energy Information Administration are included in Section IX. The production, reserves, and drilling data are reported in a manner which avoids disclosure of proprietary information.

none,

1983-01-01T23:59:59.000Z

25

Statistical data of the uranium industry  

SciTech Connect (OSTI)

Statistical Data of the Uranium Industry is a compendium of information relating to US uranium reserves and potential resources and to exploration, mining, milling, and other activities of the uranium industry through 1981. The statistics are based primarily on data provided voluntarily by the uranium exploration, mining, and milling companies. The compendium has been published annually since 1968 and reflects the basic programs of the Grand Junction Area Office (GJAO) of the US Department of Energy. The production, reserves, and drilling information is reported in a manner which avoids disclosure of proprietary information.

none,

1982-01-01T23:59:59.000Z

26

Solar Junction | Open Energy Information  

Open Energy Info (EERE)

Junction Jump to: navigation, search Name: Solar Junction Place: San Jose, California Zip: CA 95131 Sector: Efficiency, Solar Product: Solar Junction is developing high efficiency...

27

Holographic Josephson Junctions  

SciTech Connect (OSTI)

We construct a gravitational dual of a Josephson junction. Calculations on the gravity side reproduce the standard relation between the current across the junction and the phase difference of the condensate. We also study the dependence of the maximum current on the temperature and size of the junction and reproduce familiar results.

Horowitz, Gary T.; Santos, Jorge E.; Way, Benson [Department of Physics, University of California, Santa Barbara, California 93106-4030 (United States)

2011-06-03T23:59:59.000Z

28

A Holographic Josephson Junction  

E-Print Network [OSTI]

We construct a gravitational dual of a Josephson junction. Calculations on the gravity side reproduce the standard relation between the current across the junction and the phase difference of the condensate. We also study the dependence of the maximum current on the temperature and size of the junction and reproduce familiar results.

Gary T. Horowitz; Jorge E. Santos; Benson Way

2012-02-23T23:59:59.000Z

29

Josephson junctions and dark energy  

E-Print Network [OSTI]

In a recent paper Beck and Mackey [astro-ph/0603397] argue that the argument we gave in our paper [Phys. Lett. B 606, 77 (2005)] to disprove their claim that dark energy can be discovered in the Lab through noise measurements of Josephson junctions is incorrect. In particular, they emphasize that the measured noise spectrum in Josephson junctions is a consequence of the fluctuation dissipation theorem, while our argument was based on equilibrium statistical mechanics. In this note we show that the fluctuation dissipation relation does not depend upon any shift of vacuum (zero-point) energies, and therefore, as already concluded in our previous paper, dark energy has nothing to do with the proposed measurements.

Philippe Jetzer; Norbert Straumann

2006-04-25T23:59:59.000Z

30

Profiling the Thermoelectric Power of Semiconductor Junctions with  

E-Print Network [OSTI]

sources realize energy conversion between heat and electricity without the use of moving me- chanical the thermoelectric power, band struc- tures, and carrier concentrations of semiconductor junctions that constitute S is governed by local carrier statistics, SThEM allows us to profile precise elec- tronic junction locations

31

DOE Grand Junction Projects Office Parkersburg LTSP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Parkersburg LTSP Parkersburg LTSP September 1995 Page ii Contents Page 1.0 Introduction.........................................................................................................................................1 1.1 Purpose ..........................................................................................................................................1 1.2 Background ...................................................................................................................................1 1.3 Regulatory Requirements .............................................................................................................1 2.0 Site Description and History .............................................................................................................3

32

DOE Grand Junction Projects Office Edgemont LTSP  

Office of Legacy Management (LM)

Edgemont LTSP Edgemont LTSP June 1996 Page ii Contents Page 1.0 Introduction ....................................................................................................................................... 1 1.1 Purpose ..................................................................................................................................... 1 1.2 Legal and Regulatory Requirements ........................................................................................ 1 1.3 Role of the Department of Energy ........................................................................................... 2 2.0 Final Site Conditions ......................................................................................................................... 3

33

Holographic SIS Josephson Junction  

E-Print Network [OSTI]

We construct a holographic model for the superconductor-insulator-superconductor (SIS) Josephson junction at zero temperature by considering a complex scalar field coupled with a U(1) gauge field in the four dimensional Anti de Sitter soliton background. As a result, we successfully reproduce many characteristic features of the Josephson junction in condensed matter physics, such as the sine relation between the DC current and the phase difference across the junction.

Wang, Yong-Qiang; Cai, Rong-Gen; Takeuchi, Shingo; Zhang, Hai-Qing

2012-01-01T23:59:59.000Z

34

Quantum Junction Solar Cells  

Science Journals Connector (OSTI)

Quantum Junction Solar Cells ... Department of Electrical and Computer Engineering, University of Toronto, 10 Kings College Road, Toronto, Ontario, M5S 3G4, Canada ...

Jiang Tang; Huan Liu; David Zhitomirsky; Sjoerd Hoogland; Xihua Wang; Melissa Furukawa; Larissa Levina; Edward H. Sargent

2012-08-10T23:59:59.000Z

35

DOE/EA-1312: Environmental Assessment of Ground Water Compliance at the Grand Junction UMTRA Project Site (Climax Uranium Millsite) (September 1999)  

Broader source: Energy.gov (indexed) [DOE]

2 2 Rev. 0 Environmental Assessment of Ground Water Compliance at the Grand Junction UMTRA Project Site (Climax Uranium Millsite) Final September 1999 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-96GJ87335 for the U.S. Department of Energy EA of Ground Water Compliance at the Grand Junction UMTRA Project Site DOE Grand Junction Office Page ii Final September 1999 Contents Executive Summary.........................................................................................................................v 1.0 Introduction...............................................................................................................................1 1.1 Grand Junction UMTRA Project Site Location and Description.........................................1

36

Josephson junction element  

SciTech Connect (OSTI)

A sandwich-type josephson junction element wherein a counter electrode is made of a mo-re alloy which contains 10-90 atomic-% of re. The josephson junction element has a high operating temperature, and any deterioration thereof attributed to a thermal cycle is not noted.

Kawabe, U.; Tarutani, Y.; Yamada, H.

1982-03-09T23:59:59.000Z

37

Three-junction solar cell  

DOE Patents [OSTI]

A photovoltaic solar cell is formed in a monolithic semiconductor. The cell contains three junctions. In sequence from the light-entering face, the junctions have a high, a medium, and a low energy gap. The lower junctions are connected in series by one or more metallic members connecting the top of the lower junction through apertures to the bottom of the middle junction. The upper junction is connected in voltage opposition to the lower and middle junctions by second metallic electrodes deposited in holes 60 through the upper junction. The second electrodes are connected to an external terminal.

Ludowise, Michael J. (Cupertino, CA)

1986-01-01T23:59:59.000Z

38

Holographic SIS Josephson Junction  

E-Print Network [OSTI]

We construct a holographic model for the superconductor-insulator-superconductor (SIS) Josephson junction at zero temperature by considering a complex scalar field coupled with a Maxwell field in the four-dimensional anti-de Sitter soliton background. From the gravity side we reproduce the sine relation between the Josephson current and the phase difference across the junction. We also study the dependence of the maximal current on the dimension of the condensate operator and on the width of the junction, and obtain expected results.

Yong-Qiang Wang; Yu-Xiao Liu; Rong-Gen Cai; Shingo Takeuchi; Hai-Qing Zhang

2012-09-23T23:59:59.000Z

39

EA-1037: Uranium Lease Management Program, Grand Junction, Colorado |  

Broader source: Energy.gov (indexed) [DOE]

37: Uranium Lease Management Program, Grand Junction, Colorado 37: Uranium Lease Management Program, Grand Junction, Colorado EA-1037: Uranium Lease Management Program, Grand Junction, Colorado SUMMARY This EA evaluates the environmental impacts of the U.S. Department of Energy's Grand Junction Projects Office's proposal to maintain and preserve the nation's immediately accessible supply of domestic uranium and vanadium ores, to maintain a viable domestic mining and milling infrastructure required to produce and mill these ores, and to provide assurance of a fair monetary return to the U.S. Government. The Uranium Lease Management Program gives The Department of Energy the flexibility to continue leasing these lands. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 22, 1995

40

Modeling Schottky barrier SINIS junctions  

E-Print Network [OSTI]

: cond-mat/0001269 J. K. Freericks, Georgetown University, Josephson Junction talk, 2001 #12;Josephson). J. K. Freericks, Georgetown University, Josephson Junction talk, 2001 S I S I I V V Ic #12 University, Josephson Junction talk, 2001 S N S I I V V Ic #12;Digital Electronics and RSFQ logic · Rapid

Freericks, Jim

Note: This page contains sample records for the topic "junction office statistical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Superconductive tunnel junction integrated circuit  

SciTech Connect (OSTI)

Josephson Junction integrated circuits of the current injection type and magnetically controlled type utilize a superconductive layer that forms both Josephson Junction electrode for the Josephson Junction devices on the integrated circuit as well as a ground plane for the integrated circuit. Large area Josephson Junctions are utilized for effecting contact to lower superconductive layers and islands are formed in superconductive layers to provide isolation between the groundplane function and the Josephson Junction electrode function as well as to effect crossovers. A superconductor-barrier-superconductor trilayer patterned by local anodization is also utilized with additional layers formed thereover. Methods of manufacturing the embodiments of the invention are disclosed.

Jillie, D.W. Jr.; Smith, L.N.

1984-02-07T23:59:59.000Z

42

Spin Torques in Magnetic and Superconducting Tunnel Junctions  

E-Print Network [OSTI]

Josephson Junctions . . . . . . . . . . . . . . . . . . . . .Nonlinear Dynamics in a Magnetic Josephson Junction . . . .in a magnetic Josephson junction. Phys. Rev. B, 86:

Hoffman, Silas Eli

2012-01-01T23:59:59.000Z

43

Ann. Phys. (Leipzig) 16, No. 1011, 736750 (2007) / DOI 10.1002/andp.200710263 Josephson junctions as detectors for non-Gaussian noise  

E-Print Network [OSTI]

Ann. Phys. (Leipzig) 16, No. 10­11, 736­750 (2007) / DOI 10.1002/andp.200710263 Josephson junctions 2007 Key words Josephson junction, noise, counting statistics. PACS 72.70.+m, 74.40.+k, 74.50.+r of the electrical current can be detected with a Josephson junction placed on-chip with the noise source. We present

Birge, Norman

44

Macroscopic quantum tunneling in Josephson junctions -  

E-Print Network [OSTI]

Macroscopic quantum tunneling in Josephson junctions - a method to characterise a well-shielded low Theory 5 1. The classical theory of Josephson junctions . . . . . . . . . . . . . . . . . 9 1-Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2. Josephson junction dynamics . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1 The basics

Gross, Rudolf

45

Statistics | Data.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Statistics Statistics Agriculture Community Menu DATA APPS EVENTS DEVELOPER STATISTICS COLLABORATE ABOUT Agriculture You are here Data.gov » Communities » Agriculture Agricultural and Rural Statistics This website is supported by the Interagency Council on Agricultural and Rural Statistics (ICARS). ICARS is the effort of the US federal government's statistical agencies in support of the "Global Strategy to Improve Agriculture and Rural Statistics" which was developed under the United Nations Statistical Commission. The impetus for the Global Strategy was the recognition that agriculture and rural statistics are declining across the globe at the same time as new data requirements are emerging. The ICARS was established in 2010 with approval from Office of Management

46

Offices | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Offices Offices Offices All Offices Program Offices Advanced Research Projects Agency - Energy Loan Programs Office Office of Electricity Delivery & Energy Reliability Office of Energy Efficiency & Renewable Energy Office of Environmental Management Office of Fossil Energy Office of Indian Energy Policy and Programs Office of Legacy Management Office of Nuclear Energy Office of Science Staff Offices Office of Congressional and Intergovernmental Affairs Office of Economic Impact and Diversity Office of Energy Policy and Systems Analysis Office of Health, Safety and Security Office of Hearings and Appeals Office of Inspector General Office of Intelligence and Counterintelligence Office of Management Office of NEPA Policy and Compliance Office of Policy and International Affairs

47

Office of Legacy Management Categorical Exclusion Determination Form  

Broader source: Energy.gov (indexed) [DOE]

Office of Legacy Management Office of Legacy Management Categorical Exclusion Determination Form Prog ram or Field Office: Office of Legacy Management Proj ect Tit le and 1.0. No.: Routine Maintenance Activities at the Grand Junction Regional Airport, Colorado, Calibration Model Facility. LM # 44 -11. Location: Grand Junction, Colorado Proposed Action or Proj ect Description: DO E proposes to conduct routine maintenance actions as needed at a facility containing five concrete calibration pads. The facility is located at the Grand Junction Regional Airport on property leased from the Airport Authority. Renewal of the lease generally takes place every 5 years with the next renewal anticipated in 2013. Routine maintenance actions might include site inspections and vehicle vacuum sweeping of the pads. The small amount

48

Badge Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Badge Office Badge Office Badge Office The central point where badges are issued to employees and official visitors. Contact Badge Office (505) 667-6901 Email Badge Office location As the central point where badges are issued to employees and official visitors, the Badge Office is located on the second floor of the Otowi Building (TA-3, Bldg. 261). Badge Office map Printable 2-page map to the Badge Office (pdf) More maps and directions Badge Office hours Monday-Friday: 7:30 am - 4 pm Wednesday: Closed 11 am - 12:30 pm Badge requirements US citizen employees must present a photo ID and proof of US citizenship. See Security Smart on Proof of United States Citizenship for the Badge Office (pdf). Foreign national guests and employees must have an approved visit and present a valid passport and documentation of US legal status and work

49

Josephson junction Q-spoiler  

DOE Patents [OSTI]

An automatic Q-spoiler comprising at least one Josephson tunnel junction connected in an LC circuit for flow of resonant current therethrough. When in use in a system for detecting the magnetic resonance of a gyromagnetic particle system, a high energy pulse of high frequency energy irradiating the particle system will cause the critical current through the Josephson tunnel junctions to be exceeded, causing the tunnel junctions to act as resistors and thereby damp the ringing of the high-Q detection circuit after the pulse. When the current has damped to below the critical current, the Josephson tunnel junctions revert to their zero-resistance state, restoring the Q of the detection circuit and enabling the low energy magnetic resonance signals to be detected.

Clarke, John (Berkeley, CA); Hilbert, Claude (Austin, TX); Hahn, Erwin L. (Berkeley, CA); Sleator, Tycho (Berkeley, CA)

1988-01-01T23:59:59.000Z

50

Josephson junction Q-spoiler  

DOE Patents [OSTI]

An automatic Q-spoiler comprising at least one Josephson tunnel junction connected in an LC circuit for flow of resonant current therethrough. When in use in a system for detecting the magnetic resonance of a gyromagnetic particle system, a high energy pulse of high frequency energy irradiating the particle system will cause the critical current through the Josephson tunnel junctions to be exceeded, causing the tunnel junctions to act as resistors and thereby damp the ringing of the high-Q detection circuit after the pulse. When the current has damped to below the critical current, the Josephson tunnel junctions revert to their zero-resistance state, restoring the Q of the detection circuit and enabling the low energy magnetic resonance signals to be detected.

Clarke, J.; Hilbert, C.; Hahn, E.L.; Sleator, T.

1986-03-25T23:59:59.000Z

51

Duality in Josephson Junction Arrays  

E-Print Network [OSTI]

Various properties of mesoscopic two-dimensional Josephson junction arrays are reviewed. Particular attention is paid to structure of the topological excitations, charges and vortices, which are shown to be dual to each other. This duality persists in the presence of external magnetic fields and offset charges, which influence vortices and charges in an equivalent way. A double-layer junction array is also considered, where an even further reaching duality is discovered.

Ya. M. Blanter; Rosario Fazio; Gerd Schoen

1997-01-30T23:59:59.000Z

52

Electromagnetically Induced Transparency in a Double Well Atomic Josephson Junction  

E-Print Network [OSTI]

observation of these Josephson junction resonances. 2.dressed Bose condensed Josephson junction Let us consider ain a Double Well Atomic Josephson Junction J.O. Weatherall

Weatherall, J. O.; Search, C. P.

2009-01-01T23:59:59.000Z

53

Campus Sustainability Office Campus Planning Office  

E-Print Network [OSTI]

Campus Sustainability Office (CSO) Campus Planning Office (CPO) Campus Sustainability Manager (Molly Bressers) Campus Sustainability Office and Campus Planning Office September 2014 Student Employee

Caughman, John

54

SECRETARY'S OFFICE  

Science Journals Connector (OSTI)

SECRETARY'S OFFICE ... This is especially true with respect to reference hooks and magazines in the field of science. ...

1958-09-15T23:59:59.000Z

55

INVESTMENT MANAGEMENT OFFICE MANAGEMENT OFFICE  

E-Print Network [OSTI]

INVESTMENT MANAGEMENT OFFICE INVESTMENT MANAGEMENT OFFICE THE UNIVERSITY OF UTAH University of Utah | Investment Management Office Quarterly Summary The Endowment Pool had a positive first quarter (ending March gain from investments of $7.8 million. The Endowment Pool unit value of $100 has grown to $175 in 10

56

Vehicle Technologies Office: 2009 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 Archive to someone 9 Archive to someone by E-mail Share Vehicle Technologies Office: 2009 Archive on Facebook Tweet about Vehicle Technologies Office: 2009 Archive on Twitter Bookmark Vehicle Technologies Office: 2009 Archive on Google Bookmark Vehicle Technologies Office: 2009 Archive on Delicious Rank Vehicle Technologies Office: 2009 Archive on Digg Find More places to share Vehicle Technologies Office: 2009 Archive on AddThis.com... 2009 Archive #603 Where Does Lithium Come From? December 28, 2009 #602 Freight Statistics by Mode, 2007 Commodity Flow Survey December 21, 2009 #601 World Motor Vehicle Production December 14, 2009 #600 China Produced More Vehicles than the U.S. in 2008 December 7, 2009 #599 Historical Trend for Light Vehicle Sales November 30, 2009

57

Alexey Ustinov Two-level fluctuators in Josephson junctions Josephson junction as a tool to  

E-Print Network [OSTI]

Alexey Ustinov Two-level fluctuators in Josephson junctions Josephson junction as a tool;Alexey Ustinov Two-level fluctuators in Josephson junctions Outline JJ phase qubit Microwave spectroscopy. Ustinov. ArXiv:0909.3425 #12;Alexey Ustinov Two-level fluctuators in Josephson junctions Josephson tunnel

Fominov, Yakov

58

Precision measurement with an optical Josephson junction  

E-Print Network [OSTI]

We study a new type of Josephson device, the so-called "optical Josephson junction" as proposed in Phys. Rev. Lett. {\\bf 95}, 170402 (2005). Two condensates are optically coupled through a waveguide by a pair of Bragg beams. This optical Josephson junction is analogous to the usual Josephson junction of two condensates weakly coupled via tunneling. We discuss the use of this optical Josephson junction, for making precision measurements.

H. T. Ng; K. Burnett; J. A. Dunningham

2006-11-18T23:59:59.000Z

59

Precision measurement with an optical Josephson junction  

SciTech Connect (OSTI)

We present a theoretical study of a type of Josephson device, the so-called 'optical Josephson junction' [Y. Shin et al. Phys. Rev. Lett. 95, 170402 (2005).]. In this device, two condensates are optically coupled through a waveguide by a pair of Bragg beams. This optical Josephson junction differs from the usual Josephson junction where condensates are weakly coupled by tunneling through a barrier. We discuss the use of this optical Josephson junction, for making precision measurements.

Ng, H. T.; Burnett, K. [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Dunningham, J. A. [School of Physics and Astronomy, University of Leeds, LS2 9JT (United Kingdom)

2007-06-15T23:59:59.000Z

60

Dynamics of Josephson-junction ladders  

SciTech Connect (OSTI)

We have numerically studied dynamical behaviors of Josephson-junction ladders consisting of [ital N][sub [ital p

Kim, J. (Department of Physics, Basic Science Research Institute, Pohang Institute of Science and Technology, Pohang P.O. Box 125, Kyungbuk 790-600 (Korea, Republic of) Division of Basic Science Research, Research Institute of Industrial Science and Technology, Pohang P.O. Box 135, Kyungbuk 790-600 (Korea, Republic of)); Choe, W.G.; Kim, S. (Department of Physics, Basic Science Research Institute, Pohang Institute of Science and Technology, Pohang P.O. Box 125, Kyungbuk 790-600 (Korea, Republic of)); Lee, H.J. (Department of Physics, Basic Science Research Institute, Pohang Institute of Science and Technology, Pohang P.O. Box 125, Kyungbuk 790-600 (Korea, Republic of) Division of Basic Science Research, Research Institute of Industrial Science and Technology, Pohang P.O. Box 135, Kyungbuk 790-600 (Korea, Republic of))

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "junction office statistical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Quantum effects in nanoscale Josephson junction circuits  

E-Print Network [OSTI]

Quantum effects in nanoscale Josephson junction circuits SILVIA CORLEVI Doctoral Thesis Stockholm Josephson junction arrays with SQUID geometry. TRITA FYS 2006:31 ISSN 0280-316X ISRN KTH/FYS/­06:31­SE ISBN study on single-charge effects in nanoscale Josephson junctions and Cooper pair transistors (CPTs

Haviland, David

62

Josephson-junction logic device  

SciTech Connect (OSTI)

A Josephson-junction logic device having inductances and forming and AND circuit is described comprising: at least two superconductive loops, each having at least two Josephson-junction elements and a loop inductance connected between each of at least two Josephson-junction elements; at least two logic input signal lines, operatively connected to receive input currents, for supplying logic input signals; a bias line, operatively connected to at least two super conductive loops, for supplying a bias current to at least two superconductive loops, the bias current satisfying the condition vertical bar I/sub ml/ vertical bar > vertical bar I/sub mo/ vertical bar, where I/sub ml/ is a first threshold current, for switching the AND circuit, determined when at least two logic input signal lines receive different magnitude input currents and where I/sub mo/ is a second threshold current for switching the AND circuit, determined when at least two logic input signal lines receive the same magnitude input currents; and output terminals, operatively connected to one of at least two Josephson-junction elements, for outputting a logic output signal as a result of a logic operation performed on the logic input signals, whereby an operating margin of the AND circuit is expanded.

Suzuki, H.

1987-12-01T23:59:59.000Z

63

The Junction Diode Basic Operation  

E-Print Network [OSTI]

section of the diode. The junction is the dividing line between the n-type and p-type sides. Thermal biased diode. Figure 1(b) shows the diode with a battery connected across it. The polarity of the battery. Figure 1(c) shows the diode with the battery polarity reversed. The battery now tends to cancel out

Leach Jr.,W. Marshall

64

LCLS Publications: Statistics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LCLS Publications: Statistics LCLS Publications: Statistics Sign In Launch the Developer Dashboard SLAC National Accelerator Laboratory DOE | Stanford | SLAC | SSRL | LCLS | AD | PPA | Photon Science | PULSE | SIMES LCLS : LCLS Publications: Statistics Linac Coherent Light Source An Office of Science User Facility Search this site... Search Help (new window) Top Link Bar LCLS Lasers Expand Lasers LCLS Quick Launch Home About LCLS Expand About LCLS LCLS News Expand LCLS News User Resources Expand User Resources Instruments Expand Instruments Proposals Publications Expand Publications Schedules Machine Status Machine FAQs Safety Organization Expand Organization Directories Expand Directories Staff Resources Contact Us All Site Content Department of Energy Page Content LCLS Publications: Statistics 2013 | 2012 | 2011 | 2010 | 2009 | Archive | Citations | Statistics

65

Vehicle Technologies Office: Vehicle Technologies Office Recognizes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicle Technologies Vehicle Technologies Office Recognizes Outstanding Researchers to someone by E-mail Share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Facebook Tweet about Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Twitter Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Google Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Delicious Rank Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Digg Find More places to share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on AddThis.com...

66

SECRETARY'S OFFICE  

Science Journals Connector (OSTI)

SECRETARY'S OFFICE ... The October 4, 1957 launching of Sputnik instigated a scurried emphasis on science or accentuated the lack of it in the United States. ...

1961-03-06T23:59:59.000Z

67

SECRETARY'S OFFICE  

Science Journals Connector (OSTI)

SECRETARY'S OFFICE ... Contact with an inspiring elementary school science teacher or a challenging course in high school chemistry may have contributed to the change. ...

ROBERT L. SILVER

1962-04-02T23:59:59.000Z

68

Office Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Since they comprised 18 percent of commercial floorspace, this means that their total energy intensity was just slightly above average. Office buildings predominantly used...

69

Method of manufacturing Josephson junction integrated circuits  

SciTech Connect (OSTI)

Josephson junction integrated circuits of the current injection type and magnetically controlled type utilize a superconductive layer that forms both Josephson junction electrode for the Josephson junction devices on the integrated circuit as well as a ground plane for the integrated circuit. Large area Josephson junctions are utilized for effecting contact to lower superconductive layers and islands are formed in superconductive layers to provide isolation between the groudplane function and the Josephson junction electrode function as well as to effect crossovers. A superconductor-barrier-superconductor trilayer patterned by local anodization is also utilized with additional layers formed thereover. Methods of manufacturing the embodiments of the invention are disclosed.

Jillie Jr., D. W.; Smith, L. N.

1985-02-12T23:59:59.000Z

70

Vehicle Technologies Office: Fact #602: December 21, 2009 Freight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2: December 21, 2: December 21, 2009 Freight Statistics by Mode, 2007 Commodity Flow Survey to someone by E-mail Share Vehicle Technologies Office: Fact #602: December 21, 2009 Freight Statistics by Mode, 2007 Commodity Flow Survey on Facebook Tweet about Vehicle Technologies Office: Fact #602: December 21, 2009 Freight Statistics by Mode, 2007 Commodity Flow Survey on Twitter Bookmark Vehicle Technologies Office: Fact #602: December 21, 2009 Freight Statistics by Mode, 2007 Commodity Flow Survey on Google Bookmark Vehicle Technologies Office: Fact #602: December 21, 2009 Freight Statistics by Mode, 2007 Commodity Flow Survey on Delicious Rank Vehicle Technologies Office: Fact #602: December 21, 2009 Freight Statistics by Mode, 2007 Commodity Flow Survey on Digg Find More places to share Vehicle Technologies Office: Fact #602:

71

Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8: April 12, 8: April 12, 2010 Vehicles per Household and Other Demographic Statistics to someone by E-mail Share Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Facebook Tweet about Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Twitter Bookmark Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Google Bookmark Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Delicious Rank Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Digg Find More places to share Vehicle Technologies Office: Fact #618:

72

OBSERVATION OF ZERO POINT FLUCTUATIONS IN A RESISTIVELY SHUNTED JOSEPHSON TUNNEL JUNCTION  

E-Print Network [OSTI]

resistively shunted Josephson junctions in which quantumresistively shunted Josephson junction. For measurementresistively shunted Josephson junction in the quantum limit.

Koch, Roger H.

2012-01-01T23:59:59.000Z

73

Program or Field Office: Project Title and I.D. No.:  

Broader source: Energy.gov (indexed) [DOE]

D. No.: D. No.: u.s. Department of Energy Office of Legacy Management Categorical Exclusion Determination Form Office of Legacy Management Routine Maintenance Activities at th e Grand Junction, Colorado, Calibration Model Facility. LM # 42-11. Location: Grand Junction , Colorado Proposed Action or Project Description: DOE proposes to conduct routine maintenance actions as needed at a facility containing calibration borehole test pits. The facility is located just behind the U.S. Department of Energy Grand Junction Office Site on land leased from the Riverview Technology Corporation . Property adjacent to the east side of the facility is owned by the Union Pacific Railroad; east of that is a City of Grand Junction municipal cemetery. Renewal of the lease generally occurs every 5 years

74

String junctions and holographic interfaces  

Science Journals Connector (OSTI)

In this paper we study half-BPS type IIB supergravity solutions with multiple AdS3S3M4 asymptotic regions, where M4 is either T4 or K3. These solutions were first constructed in [M. Chiodaroli, M. Gutperle, and D. Krym, J. High Energy Phys. 02 (2010) 066.] and have geometries given by the warped product of AdS2S2M4 over ?, where ? is a Riemann surface. We show that the holographic boundary has the structure of a star graph, i.e. n half-lines joined at a point. The attractor mechanism and the relation of the solutions to junctions of self-dual strings in six-dimensional supergravity are discussed. The solutions of [M. Chiodaroli, M. Gutperle, and D. Krym, J. High Energy Phys. 02 (2010) 066.] are constructed introducing two meromorphic and two harmonic functions defined on ?. We focus our analysis on solutions corresponding to junctions of three different conformal field theories and show that the conditions for having a solution charged only under Ramond-Ramond three-form fields reduce to relations involving the positions of the poles and the residues of the relevant harmonic and meromorphic functions. The degeneration limit in which some of the poles collide is analyzed in detail. Finally, we calculate the holographic boundary entropy for a junction of three CFTs and obtain a simple expression in terms of poles and residues.

Marco Chiodaroli, Michael Gutperle, Ling-Yan Hung, and Darya Krym

2011-01-05T23:59:59.000Z

75

Sustainability Performance Office | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sustainability Performance Office Sustainability Performance Office Sustainability Performance Office Sustainability Performance Office Sustainability Performance Office...

76

Replica Theory and Large D Josephson Junction Hypercubic Models  

E-Print Network [OSTI]

We study the statistical mechanics of a $D$-dimensional array of Josephson junctions in presence of a magnetic field on a lattice of side $2$. In the high temperature region the thermodynamical properties can be computed in the limit $D \\to \\infty$. A conjectural form of the thermodynamic properties in the low temperature phase is obtained by assuming that they are the same of an appropriate spin glass system, based on quenched disordered couplings. Numerical simulations show that this conjecture is very accurate in one regime of the magnetic field, while it is probably slightly inaccurate in a second regime.

Enzo Marinari; Giorgio Parisi; Felix Ritort

1995-02-16T23:59:59.000Z

77

Holographic p-wave Josephson junction  

E-Print Network [OSTI]

In this work we generalized holographic model for s-wave DC Josephson junction constructed in arXiv:1101.3326[hep-th] to a holographic description for p-wave Josephson junction. By solving numerically the coupled equations of motion of Yang-Mills theory for a non-Abelian SU(2) gauge fields in (3+1)-dimensional AdS spacetimes, we shown that DC current of the p-wave Josephson junction is proportional to the sine of the phase difference across the junction like the s-wave case.

Wang, Yong-Qiang; Zhao, Zhen-Hua

2011-01-01T23:59:59.000Z

78

Holographic p-wave Josephson junction  

E-Print Network [OSTI]

In this work we generalized holographic model for s-wave DC Josephson junction constructed in arXiv:1101.3326[hep-th] to a holographic description for p-wave Josephson junction. By solving numerically the coupled equations of motion of Yang-Mills theory for a non-Abelian SU(2) gauge fields in (3+1)-dimensional AdS spacetimes, we shown that DC current of the p-wave Josephson junction is proportional to the sine of the phase difference across the junction like the s-wave case.

Yong-Qiang Wang; Yu-Xiao Liu; Zhen-Hua Zhao

2011-09-20T23:59:59.000Z

79

Microwave photonics with Josephson junction arrays  

E-Print Network [OSTI]

We introduce an architecture for a photonic crystal in the microwave regime based on superconducting transmission lines interrupted by Josephson junctions. A study of the scattering properties of a single junction in the line shows that the junction behaves as a perfect mirror when the photon frequency matches the Josephson plasma frequency. We generalize our calculations to periodic arrangements of junctions, demonstrating that they can be used for tunable band engineering, forming what we call a quantum circuit crystal. As a relevant application, we discuss the creation of stationary entanglement between two superconducting qubits interacting through a disordered media.

Zueco, David; Solano, Enrique; Garca-Ripoll, Juan Jos

2011-01-01T23:59:59.000Z

80

Office of Chief Financial Officer  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order implements the provisions of the Chief Financial Officers Act of 1990 within the Department of Energy. Cancels SEN 34-91. Canceled by DOE O 520.1A.

2001-01-19T23:59:59.000Z

Note: This page contains sample records for the topic "junction office statistical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Office of Information Resources  

Broader source: Energy.gov (indexed) [DOE]

Form EIA-457AlG Residential Energy Consumption Survey Form EIA-457AlG Residential Energy Consumption Survey Bureau: U.S. Department of EnergyIEnergy Information Administration Project Unique ID: Date: May 30,2008 A. CONTACT INFORMATION 1. Who is the person completing this document? Jacob Bournazian Statistics & Methods Group Energy Information Administration Ernail: Jacob.bournazian@,eia.doe.~?;ov Phone number: (202) 586-5562 2. Who is the system owner? Stephanie Battles Director, Energy Consumption Division, Office of Energy Markets and End Use Energy Information Administration Email: Stephanie.battles@eia.doe.gov Phone number: (202) 586-7237 3. Who is the system manager for this system o r application? Eileen O'Brien Consumption Data Management Team, Energy Consumption Division, Office of Energy Markets and End Use

82

Categorical Exclusion Determinations: Golden Field Office | Department of  

Broader source: Energy.gov (indexed) [DOE]

June 7, 2010 June 7, 2010 CX-002683: Categorical Exclusion Determination Cincinnati City American Recovery and Reinvestment Act - Energy Efficiency and Conservation Block Grant Act 4 (Ohio River Trail - Corbin to Collins) CX(s) Applied: A9, A11, B5.1 Date: 06/07/2010 Location(s): Cincinnati, Ohio Office(s): Energy Efficiency and Renewable Energy, Golden Field Office June 7, 2010 CX-002678: Categorical Exclusion Determination South District County Waster and Sewer Department - lnstallation of Co-Generation Units 4 & 5 and Landfill Gas Pipeline Construction CX(s) Applied: B5.1 Date: 06/07/2010 Location(s): Miami-Dade County, Florida Office(s): Energy Efficiency and Renewable Energy, Golden Field Office June 3, 2010 CX-002453: Categorical Exclusion Determination Commercialization of New Lattice Matched Multi-Junction; National Renewable

83

Dark energy and Josephson junctions  

SciTech Connect (OSTI)

It has been recently claimed that dark energy can be (and has been) observed in laboratory experiments by measuring the power spectrum S{sub I}(?) of the noise current in a resistively shunted Josephson junction and that in new dedicated experiments, which will soon test a higher frequency range, S{sub I}(?) should show a deviation from the linear rising observed in the lower frequency region because higher frequencies should not contribute to dark energy. Based on previous work on theoretical aspects of the fluctuation-dissipation theorem, we carefully investigate these issues and show that these claims are based on a misunderstanding of the physical origin of the spectral function S{sub I}(?). According to our analysis, dark energy has never been (and will never be) observed in Josephson junctions experiments. We also predict that no deviation from the linear rising behavior of S{sub I}(?) will be observed in forthcoming experiments. Our findings provide new (we believe definite) arguments which strongly support previous criticisms.

Branchina, Vincenzo [Department of Physics, University of Catania, Via Santa Sofia 64, I-95123, Catania (Italy); Liberto, Marco Di; Lodato, Ivano, E-mail: vincenzo.branchina@ct.infn.it, E-mail: madiliberto@ssc.unict.it, E-mail: ivlodato@ssc.unict.it [Scuola Superiore di Catania, Via S. Nullo 5/i, Catania (Italy)

2009-08-01T23:59:59.000Z

84

Microwave-induced ''Devil's Staircase'' structure and ''Chaotic'' behavior in current-fed Josephson junctions  

SciTech Connect (OSTI)

We have obtained the various types of I-V characteristics measured experimentally and in analog simulations, by merely changing the junction and the microwave parameters within the same resistively shunted junction model with purely sinusoidal current-phase relation. It was found that the subharmonic steps do exist in the limit b/sub c/..-->..0, though they can have finite rounding without thermal noise. The statistical properties of the ''chaotic'' solutions wer e discussed and their effective temperature was defined and calculated.

Ben-Jacob, E.; Braiman, Y.; Shainsky, R.; Imry, Y.

1981-05-15T23:59:59.000Z

85

Quantum Junction Solar Cells Jiang Tang,,  

E-Print Network [OSTI]

Quantum Junction Solar Cells Jiang Tang,, Huan Liu,, David Zhitomirsky,§ Sjoerd Hoogland,§ Xihua, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada *S Supporting Information-type and p-type materials to create the first quantum junction solar cells. We present a family

86

Director's Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Director's Office Director's Office Director's Office Print Roger Falcone Director, Advanced Light Source, Ernest Orlando Lawrence Berkeley National Laboratory and Professor of Physics, University of California, Berkeley. Roger Falcone Web page at the University of California, Berkeley Advanced Light Source Lawrence Berkeley National Laboratory 1 Cyclotron Road, MS 80R0114 Berkeley, CA 94720 USA Tel. (510) 486-6692 Fax (510) 486-4960 Email: This e-mail address is being protected from spambots. You need JavaScript enabled to view it Roger Falcone, University of California, Berkeley physics professor and veteran ALS user, succeeded Janos Kirz as ALS Division Director on September 1, 2006. Dr. Falcone received his undergraduate degree in physics from Princeton University in 1974. He earned an M.S. and Ph.D. in

87

Junction Hilltop Wind | Open Energy Information  

Open Energy Info (EERE)

Junction Hilltop Wind Junction Hilltop Wind Jump to: navigation, search Name Junction Hilltop Wind Facility Junction Hilltop Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Community Owned Developer Tom Wind & Bill Sutton Energy Purchaser Interstate Power and Light (Alliant Energy) Location Grand Junction IA Coordinates 42.04671131°, -94.23969269° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.04671131,"lon":-94.23969269,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

88

Design of Flexible-Duct Junction Boxes  

Broader source: Energy.gov (indexed) [DOE]

Design of Flexible-duct Design of Flexible-duct Junction Boxes Robert Beach, IBACOS Duncan Prahl, IBACOS Design of Flexible-duct Junction Boxes Presentation Outline * Current Standards and Practice * Analysis Methods * Recommendations Design of Flexible-duct Junction Boxes * Detailed report is in peer review anticipated to be published T3 this year. - http://www1.eere.energy.gov/library/default.aspx?page=2&spi d=2. * Measure guide to be part of Building America Solutions Center - http://basc.pnnl.gov/ Design of Flexible-duct Junction Boxes Typical Installations As Plenum As Monster Design of Flexible-duct Junction Boxes Current Standards * ASHRAE 2012 HVAC Systems and Equipment, Box Plenum Systems Using Flexible Duct - Constrains Box Width to 2-3x Entrance Width - Constrains Box Length to 2 x Box Width

89

Delta Junction Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Delta Junction Wind Farm Delta Junction Wind Farm Jump to: navigation, search Name Delta Junction Wind Farm Facility Delta Junction Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Alaska Environmental Power Developer Alaska Environmental Power Location South of Delta Junction AK Coordinates 64.069461°, -145.717661° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.069461,"lon":-145.717661,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

90

Technology Areas and Offices  

Office of Energy Efficiency and Renewable Energy (EERE)

The Office of Energy Efficiency and Renewable Energy (EERE) consists of several offices that support EERE's mission. This page lists all of the major offices and their websites.

91

Nonequilibrium transport through quantum-wire junctions and boundary defects for free massless bosonic fields  

E-Print Network [OSTI]

We consider a model of quantum-wire junctions where the latter are described by conformal-invariant boundary conditions of the simplest type in the multicomponent compactified massless scalar free field theory representing the bosonized Luttinger liquids in the bulk of wires. The boundary conditions result in the scattering of charges across the junction with nontrivial reflection and transmission amplitudes. The equilibrium state of such a system, corresponding to inverse temperature $\\beta$ and electric potential $V$, is explicitly constructed both for finite and for semi-infinite wires. In the latter case, a stationary nonequilibrium state describing the wires kept at different temperatures and potentials may be also constructed. The main result of the present paper is the calculation of the full counting statistics (FCS) of the charge and energy transfers through the junction in a nonequilibrium situation. Explicit expressions are worked out for the generating function of FCS and its large-deviations asym...

Gaw?dzki, Krzysztof

2015-01-01T23:59:59.000Z

92

Chief Financial Officer, Oak Ridge Office  

Broader source: Energy.gov [DOE]

A successful candidate in this position will serve as the Chief Financial Officer, Oak Ridge Office, providing overall executive leadership for financial management, budgeting, contractor...

93

Office of Chief Financial Officer  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Page Change 1 to DOE O 520.1 modifies the responsibility statement to include NNSA Field CFO positions, modifies Heads of Field Elements responsibilities for consistency with the CFO responsibilities, and makes a minor change to reflect the establishment of the Office of Management, Budget and Evaluation. Cancels SEN 34-9.

2001-11-27T23:59:59.000Z

94

33. Statistics 1 33. STATISTICS  

E-Print Network [OSTI]

inference, which we may call frequentist and Bayesian. In frequentist statistics, probability is interpreted probability, are treated in Section 33.3.2. Note that in frequentist statistics one does not define a probability for a hypothesis or for a parameter. Frequentist statistics provides the usual tools for reporting

95

36. Statistics 1 36. STATISTICS  

E-Print Network [OSTI]

inference, which we may call frequentist and Bayesian. In frequentist statistics, probability is interpreted probability, are treated in Section 36.3.2. Note that in frequentist statistics one does not define a probability for a hypothesis or for a parameter. Frequentist statistics provides the usual tools for reporting

96

ME366, Section A1 Probability and Statistics for Mechanical Engineers  

E-Print Network [OSTI]

ME366, Section A1 Probability and Statistics for Mechanical Engineers FALL of probability and statistics including events, Bayes' theorem, random variables, joint for yourself). DISCUSSION: None, see TF office hours TEXT: Applied Statistics

Lin, Xi

97

Self-consistent modeling of charge redistributions in Josephson junctions  

E-Print Network [OSTI]

Self-consistent modeling of charge redistributions in Josephson junctions J. K. Freericks, Josephson Junction talk, 2000 #12;Josephson Proximity-Effect Junctions · A Superconductor-Normal metal, Georgetown University, Josephson Junction talk, 2000 S N S I I V V Ic #12;Andreev Bound States · At an N

Freericks, Jim

98

Superconductor-Correlated metal-Superconductor Josephson junctions  

E-Print Network [OSTI]

Superconductor-Correlated metal- Superconductor Josephson junctions for high-speed digital. Freericks, Georgetown University, Josephson Junction talk, 2002 #12;Josephson Tunnel Junctions). J. K. Freericks, Georgetown University, Josephson Junction talk, 2002 S I S I I V V Ic #12

Freericks, Jim

99

Self-consistent modeling of SINIS and SNSNS Josephson junctions  

E-Print Network [OSTI]

Self-consistent modeling of SINIS and SNSNS Josephson junctions J. K. Freericks Collaborators: Paul of Naval Research. J. K. Freericks, Georgetown University, Josephson Junction talk, 2000 #12;Josephson University, Josephson Junction talk, 2000 S I S I I V V Ic #12;Josephson Proximity-Effect Junctions

Freericks, Jim

100

Tuning a short coherence length Josephson junction through a  

E-Print Network [OSTI]

Tuning a short coherence length Josephson junction through a metal-insulator transition J. K University, Josephson Junction talk, 2001 #12;Josephson Tunnel Junctions · A Superconductor maintaining nonhysteretic behavior. J. K. Freericks, Georgetown University, Josephson Junction talk, 2001 S N

Freericks, Jim

Note: This page contains sample records for the topic "junction office statistical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Tunnel junction multiple wavelength light-emitting diodes  

DOE Patents [OSTI]

A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect. 5 figs.

Olson, J.M.; Kurtz, S.R.

1992-11-24T23:59:59.000Z

102

THE USE OF SUPERCONDUCTING JUNCTIONS IN MAGNETOMETRY By J. CLARKE,  

E-Print Network [OSTI]

-8 gauss. In the second part, we discuss the properties of a type of Josephson junction in which] junctions in parallel. A Josephson junction consists of two superconductors separated by an insulating =|03C8|ei~, where 1 03C8|2 represents the density of condensed pairs. In a Josephson junction

Boyer, Edmond

103

Do ridge^ridge^fault triple junctions exist on Earth? Evidence from the Aden^Owen^Carlsberg junction in  

E-Print Network [OSTI]

Transform and the East Paci¢c Rise and the Aden^ Owen^Carlsberg (AOC) triple junction between the Owen fracture zone (OFZ to the ridges. Here, we report the results of a marine geophysical survey of the AOC triple junction, which took.The AOC triple junction appears to be in a transient stage between a former triple junction of the ridge

Nicolas, Chamot-Rooke

104

Optoelectronic switching of addressable molecular crossbar junctions  

E-Print Network [OSTI]

This letter reports on the observation of optoelectronic switching in addressable molecular crossbar junctions fabricated using polymer stamp-printing method. The active medium in the junction is a molecular self-assembled monolayer softly sandwiched between gold electrodes. The molecular junctions are investigated through currentvoltage measurements at varied temperature (from 95 to 300 K) in high vacuum condition. The junctions show reversible optoelectronic switching with the highest on/off ratio of 3 orders of magnitude at 95 K. The switching behavior is independent of both optical wavelength and molecular structure, while it strongly depends on the temperature. Initial analysis indicates that the distinct binding nature of the molecule/electrode interfaces play a dominant role in the switching performance.

J. C. Li

2006-11-22T23:59:59.000Z

105

Thinfilm trilayer manganate junctions  

Science Journals Connector (OSTI)

...relation in the high temperature region between 130 K and room temperature. Figure reproduced from Sun et al. (1997...lowering of sample temperature. These junctions...caused by voltage distribution inside the base electrode...

1998-01-01T23:59:59.000Z

106

Cluster Statistics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Genepool Memory Heatmaps Usage Statistics UGE Scheduler Cycle Time File storage and IO Data Management Supported Systems FAQ Performance and Optimization Genepool Completed Jobs...

107

Quantum Coherence in a Superfluid Josephson Junction  

SciTech Connect (OSTI)

We report a new kind of experiment in which we take an array of nanoscale apertures that form a superfluid {sup 4}He Josephson junction and apply quantum phase gradients directly along the array. We observe collective coherent behaviors from aperture elements, leading to quantum interference. Connections to superconducting and Bose-Einstein condensate Josephson junctions as well as phase coherence among the superfluid aperture array are discussed.

Narayana, Supradeep; Sato, Yuki [Rowland Institute at Harvard, Harvard University, Cambridge, Massachusetts 02142 (United States)

2011-02-04T23:59:59.000Z

108

Office Buildings - Types of Office Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

PDF Office Buildings PDF Office Buildings Types of Office Buildings | Energy Consumption | End-Use Equipment Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a follow-up list of specific office types to choose from. Although we have not presented the

109

Bureau of Justice Statistics Program Report  

E-Print Network [OSTI]

Bureau of Justice Statistics Program Report July 2006, NCJ 211485 U.S. Department of Justice Office security, employment, licensing, and related economic purposes, as required under recent legislation. The Bureau of Justice Statistics' National Criminal History Improvement Program (NCHIP) provides grants

Hemmers, Oliver

110

Office | Open Energy Information  

Open Energy Info (EERE)

Building Type Office Building Type Office Definition Buildings used for general office space, professional office, or administrative offices. Medical offices are included here if they do not use any type of diagnostic medical equipment (if they do, they are categorized as an outpatient health care building). Sub Categories administrative or professional office; government office; mixed-use office; bank or other financial institution; medical office; sales office; contractor's office (e.g. construction, plumbing, HVAC); non-profit or social services; research and development; city hall or city center; religious office; call center References EIA CBECS Building Types [1] References ↑ EIA CBECS Building Types U.S. Energy Information Administration (Oct 2008) Retrieved from "http://en.openei.org/w/index.php?title=Office&oldid=270116

111

Thermodynamic Signatures of Half-Quantum Vortices in p+ip Josephson Junction Arrays  

E-Print Network [OSTI]

bind a Majorana Fermion . . 3 Josephson Junction Arrays 3.14 p + ip Josephson Junction Arrays 4.1Bind a Majorana Fermion . . . . . . . . . Josephson Junction

Krahn, Graham Joel

2012-01-01T23:59:59.000Z

112

Temporal stability of Y Ba Cu O nano Josephson junctions from ion irradiation  

E-Print Network [OSTI]

planar high temperature Josephson junctions fabricated usingYBa 2 Cu 3 O 7-? Josephson junctions via nanolithography andsuperconductor Josephson junctions, J. Vac. Sci. Technol.

Cybart, Shane A.

2014-01-01T23:59:59.000Z

113

T-557: Microsoft Office Excel Office Art Object Parsing Remote...  

Broader source: Energy.gov (indexed) [DOE]

7: Microsoft Office Excel Office Art Object Parsing Remote Code Execution Vulnerability T-557: Microsoft Office Excel Office Art Object Parsing Remote Code Execution Vulnerability...

114

Office of Personnel Management (OPM) Billing System PIA, Office...  

Office of Environmental Management (EM)

Office of Personnel Management (OPM) Billing System PIA, Office of Health, Safety and Security Office of Personnel Management (OPM) Billing System PIA, Office of Health, Safety and...

115

Abrikosov vortices in long Josephson junctions  

Science Journals Connector (OSTI)

We have developed a theory of the critical current Ic of a long Josephson junction in the presence of a finite density of Abrikosov vortices trapped in the electrodes in the immediate vicinity of the plane of the junction. We show that under these conditions the Josephson phase difference can be finite even well inside the junction in such a way as to result in a nonmonotonous dependence of Ic on the concentration of the perturbing vortices, a behavior at variance with that of a short junction. As the average distance between the vortices decreases, Ic reaches a maximum. The location, magnitude, and sharpness of this feature are strongly dependent on the ratio ??J/r0, where r0 and ? are respectively the range and the strength of the effective interaction between the Abrikosov vortices and the Josephson fluxons while ?J is the Josephson penetration length. The results obtained are used to discuss the behavior of the critical current recently observed in Josephson junctions based on Nb films.

Mikhail V. Fistul and Gabriele F. Giuliani

1998-10-01T23:59:59.000Z

116

Numerical Investigation of Josephson Junction Structures  

SciTech Connect (OSTI)

Multilayered long Josephson Junction Structures form an interesting physical system where both nonlinearity and interaction between subsystems play an important role. Such systems allow to study physical effects that do not occur in single Josephson junction.The Sakai-Bodin-Pedersen model--a system of perturbed sine-Gordon equations--is used to study the dynamic states of stacks of inductively coupled long Josephson Junctions (LJJs). The corresponding static problem is numerically investigated as well. In order to study the stability of possible static solutions a Sturm-Liouville problem is generated and solved.The transitions from static to dynamic state and the scenario of these transitions are analyzed depending on the model parameters. Different physical characteristics--current-voltage characteristics, individual instant voltages and internal magnetic fields, are calculated and interpreted.

Hristov, I.; Dimova, S.; Boyadjiev, T. [Faculty of Mathematics and Informatics, Sofia University 5 James Bourchier Blvd., 1164 Sofia (Bulgaria)

2009-10-29T23:59:59.000Z

117

Decoherence in a Josephson junction qubit  

E-Print Network [OSTI]

The zero-voltage state of a Josephson junction biased with constant current consists of a set of metastable quantum energy levels. We probe the spacings of these levels by using microwave spectroscopy to enhance the escape rate to the voltage state. The widths of the resonances give a measurement of the coherence time of the two states involved in the transitions. We observe a decoherence time shorter than that expected from dissipation alone in resonantly isolated 20 um x 5 um Al/AlOx/Al junctions at 60 mK. The data is well fit by a model including dephasing effects of both low-frequency current noise and the escape rate to the continuum voltage states. We discuss implications for quantum computation using current-biased Josephson junction qubits, including the minimum number of levels needed in the well to obtain an acceptable error limit per gate.

A. J. Berkley; H. Xu; M. A. Gubrud; R. C. Ramos; J. R. Anderson; C. J. Lobb; F. C. Wellstood

2003-03-01T23:59:59.000Z

118

Office of the Chief Financial Officer  

Broader source: Energy.gov [DOE]

Welcome to the U.S. Department of Energy, Office of the Chief Financial Officer. The mission of the Office of the Chief Financial Officer is to assure the effective management and financial integrity of Department of Energy programs, activities, and resources by developing and implementing and monitoring Department-wide policies and systems in the areas of budget administration, program analysis and evaluation, finance and accounting, internal controls, corporate financial systems, and strategic planning.

119

Workforce Management Office  

Office of Energy Efficiency and Renewable Energy (EERE)

The Workforce Management Office provides leadership, policy guidance, and technical advice to Office of Energy Efficiency and Renewable Energy (EERE) managers, supervisors, and employees on a broad...

120

Project Management Coordination Office  

Broader source: Energy.gov [DOE]

The Project Management Coordination Office (PMCO) provides guidance, leadership, training, and tools to Office of Energy Efficiency and Renewable Energy (EERE) management and the field in the area...

Note: This page contains sample records for the topic "junction office statistical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Vehicle Technologies Office: Conferences  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office supports and sponsors conferences related to the Office's goals and objectives. When such conferences are planned and conference information becomes available, it...

122

Contracting Officers Guidebook  

Broader source: Energy.gov (indexed) [DOE]

Contracting Officers Guidebook Energy Lawyers and Contracting Officers Working Group April 12, 2012 Federal Utility Partnership Working Group Spring 2012 Jekyll Island, GA UESC...

123

Dynamical properties of high-temperature-superconductor granular bridge junctions: Inhomogeneous Josephson-junction-array model  

SciTech Connect (OSTI)

As an attempt to understand the dynamical behavior of the high-temperature-superconductor (HTSC) granular bridge junction, we model the granular HTSC bridge junction consisting of many small grains inside by an inhomogeneous Josephson junction array, i.e., randomly arranged Josephson junction arrays (JJA). To describe randomly distributed critical currents between the grains inside the HTSC granular bridge junction, we chose various possible configurations in {l_brace}{ital I}{sub {ital ij}}{sup {ital c}}{r_brace} and {l_brace}{ital R}{sub {ital ij}}{r_brace} for the one-dimensional (1D) and 2D inhomogeneous Josephson junctions, and calculated the current-voltage ({ital IV}) characteristics and self-radiation spectral densities of the 1D and 2D inhomogeneous Josephson junctions. As a result, depending upon the distribution of critical currents and shunted resistances, it is found that there are large variations of {ital IV} characteristics. In contrast to the appearance of giant Shapiro steps in the regular ordered array, such Shapiro steps disappear in the case of the disordered JJA due to the increased randomness in the distribution of critical currents. On the contrary, however, when there exists a correlation between critical currents and resistances, i.e., a constant Josephson voltage, {ital I}{sub {ital ij}}{sup {ital c}}{ital R}{sub {ital ij}}={ital V}{sub {ital J}} (constant), the fundamental Shapiro step emerges despite the disordered distribution of {ital I}{sub {ital ij}}{sup {ital c}}. The relevance of this model to the HTSC granular bridge junctions is discussed. In particular, experimentally observed dynamical behaviors of the HTSC granular bridge junctions are shown to be closely related to the case of the correlated distribution with constant Josephson voltage. {copyright} {ital 1996 The American Physical Society.}

Lee, J.; Lee, S.; Yu, J.; Park, G. [Department of Physics, Sogang University, Seoul 121-742 (Korea)] [Department of Physics, Sogang University, Seoul 121-742 (Korea)

1996-02-01T23:59:59.000Z

124

Responsible University Officer Chief Information Officer  

E-Print Network [OSTI]

technology and that contains procedures on how to handle Information Security Incidents, including contactResponsible University Officer Chief Information Officer Responsible Office Information Technology and manage their own Information Technology must designate employees as primary and back-up Information

Whitton, Mary C.

125

Responsible University Officer Chief Information Officer  

E-Print Network [OSTI]

Technology Services granted by UNC-Chapel Hill. It also applies to each business unit at the University procedures on how to handle Information Security Incidents, including contact information for business unitResponsible University Officer Chief Information Officer Responsible Office Information Technology

Whitton, Mary C.

126

PSU Business Affairs Office Purchasing Office  

E-Print Network [OSTI]

PSU Business Affairs Office Purchasing Office Costco Warehouse Program CARD USER AGREEMENT For each to the PSU Purchasing Office by the following date/time:____________________________________________. All admittance and make purchases at Costco. These cards and the original receipt will be promptly returned

Caughman, John

127

Axion physics in a Josephson junction environment  

E-Print Network [OSTI]

We show that recent experiments based on Josephson junctions, SQUIDS, and coupled Josephson qubits have a cosmological interpretation in terms of axionic dark matter physics, in the sense that they allow for analogue simulation of early-universe axion physics. We propose new experimental setups in which SQUID-like axionic interactions in a resonant Josephson junction environment can be tested, similar in nature to recent experiments that test for quantum entanglement of two coupled Josephson qubits. We point out that the parameter values relevant for early-universe axion cosmology are accessible with present day's achievements in nanotechnology.

Christian Beck

2011-11-23T23:59:59.000Z

128

Complementary junction heterostructure field-effect transistor  

DOE Patents [OSTI]

A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits. 10 figs.

Baca, A.G.; Drummond, T.J.; Robertson, P.J.; Zipperian, T.E.

1995-12-26T23:59:59.000Z

129

Holographic Josephson Junction in 3+1 dimensions  

E-Print Network [OSTI]

In arXiv:1101.3326[hep-th], a (2+1)-dimensional holographic Josephson junction was constructed, and it was shown that the DC Josephson current is proportional to the sine of the phase difference across the junction. In this paper, we extend this study to a holographic description for the (3+1)-dimensional holographic DC Josephson junction. By solving numerically the coupled differential equations, we also obtain the familiar characteristics of Josephson junctions.

Yong-Qiang Wang; Yu-Xiao Liu; Zhen-Hua Zhao

2011-04-21T23:59:59.000Z

130

Holographic Josephson Junction in 3+1 dimensions  

E-Print Network [OSTI]

In arXiv:1101.3326[hep-th], a (2+1)-dimensional holographic Josephson junction was constructed, and it was shown that the DC Josephson current is proportional to the sine of the phase difference across the junction. In this paper, we extend this study to a holographic description for the (3+1)-dimensional holographic DC Josephson junction. By solving numerically the coupled differential equations, we also obtain the familiar characteristics of Josephson junctions.

Wang, Yong-Qiang; Zhao, Zhen-Hua

2011-01-01T23:59:59.000Z

131

Phase Transition in Compact QED(3) and the Josephson Junction  

E-Print Network [OSTI]

We study the finite temperature phase transition in 2+1 dimensional compact QED and its dual theory: Josephson junction. Duality of these theories at zero temperature was established long time ago by Hosotani. Phase transition in compact QED is well studied and we employ the `duality' to study the superconductivity phase transition in a Josephson junction. For a thick junction we obtain a critical temperature in terms of the geometrical properties of the junction.

Vakif K. Onemli; Murat Tas; Bayram Tekin

2001-08-22T23:59:59.000Z

132

Solar Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE supported the development of Solar Junction's concentrated photovoltaic technology that set a world record for conversion efficiency.

133

Superconductor-Correlated metal-Superconductor Josephson junctions  

E-Print Network [OSTI]

Superconductor-Correlated metal- Superconductor Josephson junctions for high-speed digital. Freericks, Georgetown University, Josephson Junction talk, 2002 #12;Digital Electronics and RSFQ logic, Georgetown University, Josephson Junction talk, 2002 X X Binary 0, no flux Binary 1, one flux quantum #12

Freericks, Jim

134

Localized mode interactions in 0-Josephson junctions Hadi Susanto1  

E-Print Network [OSTI]

Localized mode interactions in 0- Josephson junctions Hadi Susanto1 and Gianne Derks2 1 School of Mathematics, University of Surrey, Guildford, Surrey, GU2 7XH, UK A long Josephson junction containing regions in the system, it is shown that Josephson junctions with phase-shift can be an ideal setting for studying

Wirosoetisno, Djoko

135

Superconductor-Correlated metal-Superconductor Josephson junctions  

E-Print Network [OSTI]

Superconductor-Correlated metal- Superconductor Josephson junctions for high-speed digital. Freericks, Georgetown University, Josephson Junction talk, 2003 #12;Digital Electronics and RSFQ logic, Georgetown University, Josephson Junction talk, 2003 X X Binary 0, no flux Binary 1, one flux quantum #12

Freericks, Jim

136

Multi-Scroll and Hypercube Attractors from Josephson Junctions  

E-Print Network [OSTI]

Multi-Scroll and Hypercube Attractors from Josephson Junctions M¨us¸tak E. Yalc¸in Istanbul Leuven, Belgium Email: Johan.Suykens@esat.kuleuven.ac.be Abstract-- In this paper Josephson junctions of the Josephson junction in a general Jerk circuit in such a way that there is no need for synthesizing

137

SOME CHARACTERISTICS OF JOSEPHSON JUNCTIONS AS RADIATION DETECTORS  

E-Print Network [OSTI]

125 SOME CHARACTERISTICS OF JOSEPHSON JUNCTIONS AS RADIATION DETECTORS Yu. Ya. DIVIN, F. Ya. NAD les microponts. Abstract. 2014 The V-I characteristic of Josephson junction with an external parallel admittance, the high frequency impedance and high frequency response of a Josephson junction to small

Paris-Sud XI, Université de

138

PARAMETRIC EXCITATION OF PLASMA OSCILLATIONS IN JOSEPHSON JUNCTIONS  

E-Print Network [OSTI]

223 PARAMETRIC EXCITATION OF PLASMA OSCILLATIONS IN JOSEPHSON JUNCTIONS N. F. PEDERSEN, M. R'équation différentielle de Mathieu. Abstract. 2014 Experiments on a Josephson junction analog showed a parametric in Josephson junctions at finite voltages have been discussed earlier [1]-[4]. In this communication we report

Boyer, Edmond

139

Dependence of single molecule junction conductance on molecular conformation  

E-Print Network [OSTI]

1 Dependence of single molecule junction conductance on molecular conformation Latha Venkataraman1 of a single metal-molecule-metal junction depends not only on the chemical nature of the molecule used in unimolecular devices. Here, using amine link groups13 to form single molecule junctions, we show a clear

Hone, James

140

Fermi Site Office Post Office Box 2000  

Broader source: Energy.gov (indexed) [DOE]

Fermi Site Office Fermi Site Office Post Office Box 2000 Batavia, Illinois 60510 JAN 14 2011 Scott Blake Harris, General Counsel GC-1 FORS SUBJECT: FERMl SITE OFFICE (FSO) 201 1 ANNUAL NATIONAL ENVIRONMENTAL POLICY ACT (NEPA) PLANNING SUIMMARY The Department of Energy (DOE) Order 451 .I B, Change 2, requires Secretarial Officers and Heads of Field Organizations to submit a NEPA Annual Planning Summary to the Office of General Counsel. Per your December 8, 2010 memorandum and guidance provided by the Office of NEPA Policy and Compliance (GC-54), our Annual NEPA Planning Summary is enclosed. We have identified one on-going environmental assessment (EA). No environmental impact statements (EISs) are on-going and two new EAs and one EIS are expected to be prepared beginning in the next 12 to 24 months.

Note: This page contains sample records for the topic "junction office statistical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Fast algorithms for triangular Josephson junction arrays  

SciTech Connect (OSTI)

We develop fast algorithms for the numerical study of two-dimensional triangular Josephson junction arrays. The Dirac bra-ket formalism is introduced in the context of such arrays. We note that triangular arrays can have both hexagonal and rectangular periodicity and develop algorithms for each. Boundaries are next introduced and fast algorithms for finite arrays are developed. 40 refs., 4 figs.

Datta, S.; Sahdev, D. [Indian Institute of Technology, Kanpur (India)] [Indian Institute of Technology, Kanpur (India)

1997-04-01T23:59:59.000Z

142

Measuring Vacuum Polarization with Josephson Junctions  

SciTech Connect (OSTI)

We argue that the vacuum polarization by the virtual electron-positron pairs can be measured by studying a Josephson junction in a strong magnetic field. The vacuum polarization results in a weak dependence of the Josephson constant on the magnetic field strength which is within the reach of the existing experimental techniques.

Penin, Alexander A. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada) and Institute for Nuclear Research of Russian Academy of Sciences, 117312 Moscow (Russian Federation)

2010-03-05T23:59:59.000Z

143

Axion mass estimates from resonant Josephson junctions  

E-Print Network [OSTI]

Recently it has been proposed that dark matter axions from the galactic halo can produce a small Shapiro step-like signal in Josephson junctions whose Josephson frequency resonates with the axion mass [C. Beck, PRL 111, 231801 (2013)]. Here we show that the axion field equations in a voltage-driven Josephson junction environment allow for a nontrivial solution where the axion-induced electric current manifests itself as an oscillating supercurrent. The linear change of phase associated with this nontrivial solution implies the formal existence of a large magnetic field in a tiny surface area of the weak link region of the junction which makes incoming axions decay into microwave photons. We derive a condition for the design of Josephson junction experiments so that they can act as optimum axion detectors. Four independent recent experiments are discussed in this context. The observed Shapiro step anomalies of all four experiments consistently point towards an axion mass of $(110 \\pm 2)\\mu $eV. This mass value is compatible with the recent BICEP2 results and implies that Peccei-Quinn symmetry breaking was taking place after inflation.

Christian Beck

2014-06-10T23:59:59.000Z

144

Topological Order in Frustrated Josephson Junction Arrays  

E-Print Network [OSTI]

We show that electrically and magnetically frustrated Josephson junction arrays (JJAs) realize topological order with a non-trivial ground state degeneracy on manifolds with non-trivial topology. The low-energy theory has the same gauge dynamics of the unfrustrated JJAs but for different, "fractional" degrees of freedom, a principle reminescent of Jain's composite electrons in the fractional quantum Hall effect.

M. C. Diamantini; P. Sodano; C. A. Trugenberger

2008-06-02T23:59:59.000Z

145

Superconducting Topological Fluids in Josephson Junction Arrays  

E-Print Network [OSTI]

We argue that the frustrated Josephson junction arrays may support a topologically ordered superconducting ground state, characterized by a non-trivial ground state degeneracy on the torus. This superconducting quantum fluid provides an explicit example of a system in which superconductivity arises from a topological mechanism rather than from the usual Landau-Ginzburg mechanism.

M. Cristina Diamantini; Pasquale Sodano; Carlo A. Trugenberger

2006-04-21T23:59:59.000Z

146

Millimeter-Wave Mixing with Josephson Junctions  

Science Journals Connector (OSTI)

Experiments are reported in which two millimeter-wave signals incident on point-contact Josephson junctions produced changes in the junction dc voltage versus current characteristic and an intermediate frequency output whose amplitude depended sensitively on both junction bias and applied power. Equations are derived, based on Josephson's phenomenological equations, for the Josephson current in a junction exposed to two applied rf signals. When the applied signals differ appreciably in frequency, additional constant-voltage steps in the V-I curve are predicted which are spaced at the difference frequency. These steps have been observed in experiments employing sources at 64 and 72 Gc/sec. Results of mixing experiments utilizing two sources nearly equal in frequency are reported at 23 and at 72 Gc/sec. In this case the two waves beat together and are equivalent in their effect to a single signal amplitude modulated at the difference frequency. Also explained on the same basis are experiments in which the third harmonic of a signal at 24 Gc/sec mixed with a signal at 72 Gc/sec. These results demonstrate the existence of the Josephson mixing mechanism as opposed to classical nonlinear mixing, and they show that it is operative at microwave and millimeter-wave frequencies over a wide range of power.

C. C. Grimes and Sidney Shapiro

1968-05-10T23:59:59.000Z

147

Gallium nitride junction field-effect transistor  

DOE Patents [OSTI]

An all-ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorous co-implantation, in selected III-V semiconductor materials.

Zolper, John C. (Albuquerque, NM); Shul, Randy J. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

148

Axion mass estimates from resonant Josephson junctions  

E-Print Network [OSTI]

Recently it has been proposed that dark matter axions from the galactic halo can produce a small Shapiro step-like signal in Josephson junctions whose Josephson frequency resonates with the axion mass [C. Beck, PRL 111, 231801 (2013)]. Here we show that the axion field equations in a voltage-driven Josephson junction environment allow for a nontrivial solution where the axion-induced electric current manifests itself as an oscillating supercurrent. The linear change of phase associated with this nontrivial solution implies the existence of a large magnetic field in a tiny surface area of the weak link region of the junction which makes incoming axions decay into microwave photons. We derive a condition for the design of Josephson junction experiments so that they can act as optimum axion detectors. Four independent recent experiments are discussed in this context. The observed Shapiro step anomalies of all four experiments consistently point towards an axion mass of $(110 \\pm 2)\\mu $eV. This mass value is com...

Beck, Christian

2014-01-01T23:59:59.000Z

149

Gallium nitride junction field-effect transistor  

DOE Patents [OSTI]

An ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same are disclosed. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorus co-implantation, in selected III-V semiconductor materials. 19 figs.

Zolper, J.C.; Shul, R.J.

1999-02-02T23:59:59.000Z

150

THE SECRETARY'S OFFICE  

Science Journals Connector (OSTI)

THE SECRETARY'S OFFICE ... Fields such as engineering and science that attract principally men were affected most. ...

1952-03-24T23:59:59.000Z

151

Workforce Statistics - NNSA | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

NNSA | National Nuclear Security Administration NNSA | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Workforce Statistics - NNSA Home > About Us > Our Operations > Management and Budget > Office of Civil Rights > Workforce Statistics > Workforce Statistics - NNSA Workforce Statistics - NNSA NNSA FY13 NNSA Semi Annual Workforce Diversity Report

152

Building Technologies Office: Webinars  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Webinars Webinars Printable Version Share this resource Send a link to Building Technologies Office: Webinars to someone by E-mail Share Building Technologies Office: Webinars on Facebook Tweet about Building Technologies Office: Webinars on Twitter Bookmark Building Technologies Office: Webinars on Google Bookmark Building Technologies Office: Webinars on Delicious Rank Building Technologies Office: Webinars on Digg Find More places to share Building Technologies Office: Webinars on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program Building Energy Software Tools Directory High Performance Buildings Database

153

Office Buildings - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

Office Buildings - Full Report Office Buildings - Full Report file:///C|/mydocs/CBECS2003/PBA%20report/office%20report/office_pdf.html[9/24/2010 3:33:25 PM] Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a

154

Department of Statistics STATISTICS COLLOQUIUM  

E-Print Network [OSTI]

for Partical Astrophysics Probing Cosmic Acceleration with the Dark Energy Survey: Statistical Challenges remains a mys- tery. The Dark Energy Survey (DES) aims to address the questions: why is the expansion speeding up? Is cosmic acceleration due to dark energy or does it require a modification of Einstein

Stephens, Matthew

155

JGI - Statistics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Statistics Statistics FY 2014 Overall Sequencing Progress, Updated Quarterly Quarter Total Bases (trillions) Operating Hours Goal Actual Total* Actual % of Goal Goal (hours)** Actual Total Actual % Goal Q1 2014 15,000 18.827 126% 2,164 2208 102% Q2 2014 17,000 2,117 Q3 2014 18,000 2,140 Q4 2014 18,000 2,164 FY 2014 Total 68,000 18.827 28% 8,585 2208 26% * Includes Illumina HiSeq, MiSeq and PacBio sequencing platforms. ** Operating Hour target is based on 98% of the total available hours. FY 2013 Overall Sequencing Progress, Updated Quarterly Quarter Total Bases (Billions) Operating Hours Goal Actual Total* Actual % of Goal Goal (hours)** Actual Total Actual % Goal Q1 2013 15,000 20,004 133% 2,164 2,208 102%

156

OFFICE OF THE CHIEF INFORMATION OFFICER (OCIO)  

Broader source: Energy.gov (indexed) [DOE]

THE CHIEF INFORMATION OFFICER (OCIO) THE CHIEF INFORMATION OFFICER (OCIO) FY 2014 HUMAN CAPITAL MANAGEMENT PLAN Executive Summary: The mission of the Office of the Chief Information Officer (OCIO) is to enable the Department of Energy's urgent missions in energy, science, and nuclear security through the power of information and technology in a manner that balances risk with required outcomes in programs that span from open science to national security. DOE promotes effective operations by encouraging performance-based management and facilitating the restructuring of mission- and business-related processes, where appropriate, before making significant IT investments to improve the performance and cost-effectiveness of the Department's information

157

DOE Office of Science - Chicago Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages

spacer spacer spacer spacer About DOE Organization News Contact Us Search Go Button spacer U.S. Department of Energy Science & Technology Energy Sources Energy Efficiency The Environment Prices & Trends National Security Safety & Health spacer Office of Science Chicago Office - Integrated Support Center spacer spacer CURRENT SOLICITATIONS Open Solicitations Unsolicited Proposals spacer spacer BUSINESS OPPORTUNITIES Office of Acquisition and Assistance Energy Related Inventions Doing Business with DOE spacer spacer HOW DO I FIND OUT ABOUT? Educational Materials Frequently Asked Questions Links Human Resources Services Office of Chief Counsel spacer spacer COMMUNITY Special Events Laboratory Community Involvement Programs Public Participation Policy Speakers Bureau

158

Physics 112 Thermodynamics and Statistical Physics Winter 2000 Instructor: Howard Haber  

E-Print Network [OSTI]

Physics 112 Thermodynamics and Statistical Physics Winter 2000 Instructor: Howard Haber Office Hall--Room 289 REQUIRED TEXTBOOK: Thermal Physics, by Ralph Baierlein Recommended Outside Reading: Thermal Physics, by Charles Kittel and Herbert Kroemer Fundamentals of Statistical and Thermal Physics

California at Santa Cruz, University of

159

Office Buildings - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

PDF PDF Office Buildings Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a follow-up list of specific office types to choose from. Although we have not presented the office sub-category information in the detailed tables we make information

160

Building Technologies Office: Subscribe to Building Technologies Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Webinars Webinars Printable Version Share this resource Send a link to Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates to someone by E-mail Share Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Facebook Tweet about Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Twitter Bookmark Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Google Bookmark Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Delicious Rank Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Digg

Note: This page contains sample records for the topic "junction office statistical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Building Technologies Office: Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resources to someone by Resources to someone by E-mail Share Building Technologies Office: Resources on Facebook Tweet about Building Technologies Office: Resources on Twitter Bookmark Building Technologies Office: Resources on Google Bookmark Building Technologies Office: Resources on Delicious Rank Building Technologies Office: Resources on Digg Find More places to share Building Technologies Office: Resources on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Partner Log In Become a Partner Criteria Partner Locator Resources Housing Innovation Awards Events Guidelines for Home Energy Professionals Technology Research, Standards, & Codes

162

Vehicle Technologies Office: Ambassadors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ambassadors to someone Ambassadors to someone by E-mail Share Vehicle Technologies Office: Ambassadors on Facebook Tweet about Vehicle Technologies Office: Ambassadors on Twitter Bookmark Vehicle Technologies Office: Ambassadors on Google Bookmark Vehicle Technologies Office: Ambassadors on Delicious Rank Vehicle Technologies Office: Ambassadors on Digg Find More places to share Vehicle Technologies Office: Ambassadors on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Ambassadors Workplace Charging Challenge Clean Cities Coalitions Clean Cities logo. Clean Cities National: A network of nearly 100 Clean Cities coalitions, supported by the

163

Heat flow in nonlinear molecular junctions  

E-Print Network [OSTI]

We investigate the heat conduction properties of molecular junctions comprising anharmonic interactions. We find that nonlinear interactions can lead to novel phenomena: it negative differential thermal conductance and heat rectification. Based on analytically solvable models we derive an expression for the heat current that clearly reflects the interplay between anharmonic interactions, strengths of coupling to the thermal reservoirs, and junction asymmetry. This expression indicates that negative differential thermal conductance shows up when the molecule is strongly coupled to the thermal baths, even in the absence of internal molecular nonlinearities. In contrast, diode like behavior is expected for a highly anharmonic molecule with an inherent structural asymmetry. Anharmonic interactions are also necessary for manifesting Fourier type transport. We briefly present an extension of our model system that can lead to this behavior.

Dvira Segal

2005-12-22T23:59:59.000Z

164

Defect formation in long Josephson junctions  

SciTech Connect (OSTI)

We study numerically a mechanism of vortex formation in a long Josephson junction within the framework of the one-dimensional sine-Gordon model. This mechanism is switched on below the critical temperature. It is shown that the number of fluxons versus velocity of cooling roughly scales according to the power law with the exponent of either 0.25 or 0.5 depending on the temperature variation in the critical current density.

Gordeeva, Anna V. [Institute for Physics of Microstructures, RAS, GSP-105, Nizhny Novgorod 603950 (Russian Federation); Department of Physics, B309, Technical University of Denmark, DK-2800 Lyngby (Denmark); Pankratov, Andrey L. [Institute for Physics of Microstructures, RAS, GSP-105, Nizhny Novgorod 603950 (Russian Federation)

2010-06-01T23:59:59.000Z

165

Quantum dynamics in the bosonic Josephson junction  

SciTech Connect (OSTI)

We employ a semiclassical picture to study dynamics in a bosonic Josephson junction with various initial conditions. Phase diffusion of coherent preparations in the Josephson regime is shown to depend on the initial relative phase between the two condensates. For initially incoherent condensates, we find a universal value for the buildup of coherence in the Josephson regime. In addition, we contrast two seemingly similar on-separatrix coherent preparations, finding striking differences in their convergence to classicality as the number of particles increases.

Chuchem, Maya; Cohen, Doron [Department of Physics, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105 (Israel); Smith-Mannschott, Katrina [Department of Physics, Wesleyan University, Middletown, Connecticut 06459 (United States); MPI for Dynamics and Self-Organization, Bunsenstrasse 10, D-37073 Goettingen (Germany); Hiller, Moritz [Physikalisches Institut, Albert-Ludwigs-Universitaet, Hermann-Herder-Strasse 3, D-79104 Freiburg (Germany); Kottos, Tsampikos [Department of Physics, Wesleyan University, Middletown, Connecticut 06459 (United States); Vardi, Amichay [Department of Chemistry, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105 (Israel); Institute for Theoretical Atomic, Molecular and Optical Physics, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138 (United States)

2010-11-15T23:59:59.000Z

166

Screening current effects in Josephson junction arrays  

E-Print Network [OSTI]

The purpose of this work is to compare the dynamics of arrays of Josephson junctions in presence of magnetic field in two different frameworks: the so called XY frustrated model with no self inductance and an approach that takes into account the screening currents (considering self inductances only). We show that while for a range of parameters the simpler model is sufficiently accurate, in a region of the parameter space solutions arise that are not contained in the XY model equations.

A. Petraglia; G. Filatrella; G. Rotoli

1995-07-28T23:59:59.000Z

167

q-deformed dynamics and Josephson junction  

E-Print Network [OSTI]

We define a generalized rate equation for an observable in quantum mechanics, that involves a parameter q and whose limit $q\\to 1$ gives the standard Heisenberg equation. The generalized rate equation is used to study dynamics of current biased Josephson junction. It is observed that this toy model incorporates diffraction like effects in the critical current. Physical interpretation for q is provided which is also shown to be q-deformation parameter.

Ramandeep S. Johal

2000-10-04T23:59:59.000Z

168

Peltier Junction heats and cools car seat  

SciTech Connect (OSTI)

Electrically heated seats may soon become heated and cooled seats. The design called the CCS module exploits the heat-pump capability of a class of semiconductor thermoelectric devices (TEDs) known as Peltier Junction. Every CCS module contain two TEDs. Heating and cooling occurs through convection and conduction. The heart of the system is the thermoelectric heat pump. This is originally conceived as the sole heating/cooling options for a prototype electric vehicle.

Gottschalk, M.A.

1994-10-10T23:59:59.000Z

169

Magnetism in Thiolated Gold Model Junctions  

Science Journals Connector (OSTI)

Magnetism in Thiolated Gold Model Junctions ... Nanoparticles revealing magnetism and their assemblies are of importance in nanotechnology and spintronics,(26, 27) in fundamental quantum-mechanical experiments,(28) and potentially in quantum computing. ... (47) Even though the magnetism has not yet been explicitly demonstrated in pure, neutral, and small thiolated AuNPs, it may be readily promoted by transition-metal doping of AuNP cores. ...

Mat Dubeck; Haibin Su

2012-07-24T23:59:59.000Z

170

Josephson junction in a thin film  

SciTech Connect (OSTI)

The phase difference {phi}(y) for a vortex at a line Josephson junction in a thin film attenuates at large distances as a power law, unlike the case of a bulk junction where it approaches exponentially the constant values at infinities. The field of a Josephson vortex is a superposition of fields of standard Pearl vortices distributed along the junction with the line density {phi}'(y)/2{pi}. We study the integral equation for {phi}(y) and show that the phase is sensitive to the ratio l/{Lambda}, where l={lambda}{sub J}{sup 2}/{lambda}{sub L}, {Lambda}=2{lambda}{sub L}{sup 2}/d, {lambda}{sub L}, and {lambda}{sub J} are the London and Josephson penetration depths, and d is the film thickness. For l<<{Lambda}, the vortex ''core'' of the size l is nearly temperature independent, while the phase ''tail'' scales as l{Lambda}/y{sup 2}={lambda}{sub J}2{lambda}{sub L}/d/y{sup 2}; i.e., it diverges as T{yields}T{sub c}. For l>>{Lambda}, both the core and the tail have nearly the same characteristic length l{Lambda}.

Kogan, V. G.; Dobrovitski, V. V.; Clem, J. R.; Mawatari, Yasunori; Mints, R. G.

2001-04-01T23:59:59.000Z

171

Statistical Digest No. 70 Fishery Statistics of  

E-Print Network [OSTI]

. These statistics include data on the volume and value of landed catches, employment, quantity of gear operatedStatistical Digest No. 70 Statistics of the United States 1976 Washington National Marine Fisheries Service #12;#12;Statistical Digest No. 70 Fishery Statistics of the United States

172

Office of Information Resources  

Broader source: Energy.gov (indexed) [DOE]

US Department of Energy US Department of Energy FOIA/PA Contact List Operations Offices Chicago Office Privacy Act Officer FOIA Officer Miriam Legan Miriam Legan U.S. Department of Energy Chicago Office 9800 S. Cass Avenue Argonne, IL 60439 miriam.legan@ch.doe.gov Phone: 630-252-2041 Fax: 630-252-2183 U.S. Department of Energy Chicago Office 9800 S. Cass Avenue Argonne, IL 60439 miriam.legan@ch.doe.gov Phone: 630-252-2041 Fax: 630-252-2183 Idaho Operations Office Clayton Ogilvie Clayton Ogilvie U.S. Department of Energy 1955 Fremont Ave. MS 1203 Idaho Falls, Idaho 83401 Phone: (208) 526-5190 Fax: 208-526-8789 U.S. Department of Energy 1955 Fremont Ave. MS 1203 Idaho Falls, Idaho 83401 Phone: (208) 526-5190 Fax: 208-526-8789 Oak Ridge Office Amy Rothrock Amy Rothrock

173

Office of Information Resources  

Broader source: Energy.gov (indexed) [DOE]

Freedom of Information and Privacy Act Database Freedom of Information and Privacy Act Database Bureau: DOE-ID Project Unique ID: Date: May 8,2008 A. CONTACT INFORMATION 1. Who is the person completing this document? Nicole Brooks Title: FOIA/PA Officer Organization: DOE-ID Public Affairs Office Address: 1955 N. Fremont Ave, MS 1203 Idaho Falls, Idaho 83415 2. Who is the system owner? Nicole Brooks, FOIA/PA Officer U.S. DOE, Idaho Operations Office DOE-ID Public Affairs Office Address: 1955 N. Fremont Ave, MS 1203 Idaho Falls, Idaho 834 15 3. Who is the system manager for this system o r application? Nicole Brooks, FOIA/PA Officer U.S. DOE, Idaho Operations Office DOE-ID Public Affairs Office Address: 1955 N. Fremont Ave, MS 1203 Idaho Falls, Idaho 83415 4. Who is the IT Security Manager who reviewed this document?

174

Golden Field Office  

Office of Energy Efficiency and Renewable Energy (EERE)

The Golden Field Office was designated a Department of Energy field office in December 1992 to provide EERE with enhanced capability to develop and commercialize renewable energy and energy...

175

Office of Strategic Programs  

Office of Energy Efficiency and Renewable Energy (EERE)

The mission of the Office of Strategic Programs is to increase the overall effectiveness and impact of all of the Office of Energy Efficiency and Renewable Energy's (EERE's) activities. We do this...

176

Office of Information Resources  

Broader source: Energy.gov (indexed) [DOE]

Office of Personnel Management (OPM) Billing System Office of Personnel Management (OPM) Billing System Bureau: Department of Energy Project Unique ID: 01 9-1 0-01 -22-02-3048-00 Date: 02/08/2008 A. CONTACT INFORMATION 1) Who is the person completing this document? Joanne Csordas (HS-1.21), Office of Business Operations, Office of Resource Management, Office of Health, Safety and Security, U.S. Department of Energy, HS-1.21, 1000 Independence Avenue, SW, Washington D.C. 20585, (301) 903-3573 2) Who is the system owner? Joanne Csordas (HS-1.2 l), Office of Business Operations, Office of Resource Management, Office of Health, Safety and Security, U.S. Department of Energy, HS- 1.2 1, 1000 Independence Avenue, SW, Washington D.C. 20585, (301) 903-3573 3) Who is the system manager for this system or application?

177

Office of the Chief Financial Officer Annual Report 2013  

E-Print Network [OSTI]

by the Director, Office of Science of the U.S. Department oftration (NNSA) - Office of Science collaboration for the$13M Decrease Office of Science Office of Science (SC) O&M

Williams, Kim

2014-01-01T23:59:59.000Z

178

Office of the Chief Information Officer DOERM@hq.doe.gov Office...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Office of the Chief Information Officer DOERM@hq.doe.gov Office of IT Planning, Architecture and E-government Records Management Division (IM-23) Employee Separation:...

179

Savannah River Operations Office  

Broader source: Energy.gov (indexed) [DOE]

Concurrence: 'WcVlUi. Date: - - - - - - - - - - - - - -- - - - - - - Charles C. Harris, Director, Performance Assurance Division J rey M. Allison, Director, Office of...

180

UC Sustainability Office Report  

E-Print Network [OSTI]

1 UC Sustainability Office Report Introduction Welcome to the second annual UC Sustainability Office Report. 2012 saw the Sustainability Office focus its attentions on enhancing the student experience and building on UC's statement of strategic intent of `people prepared to make a difference'. We

Hickman, Mark

Note: This page contains sample records for the topic "junction office statistical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Single P-N junction tandem photovoltaic device  

DOE Patents [OSTI]

A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.

Walukiewicz, Wladyslaw (Kensington, CA); Ager, III, Joel W. (Berkeley, CA); Yu, Kin Man (Lafayette, CA)

2012-03-06T23:59:59.000Z

182

Single P-N junction tandem photovoltaic device  

DOE Patents [OSTI]

A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.

Walukiewicz, Wladyslaw (Kensington, CA); Ager, III, Joel W. (Berkeley, CA); Yu, Kin Man (Lafayette, CA)

2011-10-18T23:59:59.000Z

183

Pseudospherical Junctions or Josephson Effect, Backlund Transformations, and Fine Structure Coupling  

E-Print Network [OSTI]

, that the geometric phase evolution within M circularly and toroidally arranged virtual Josephson junctions (coupled by a special arrangement of Josephson junctions. In this con- text "virtual junction" means simply a scalar impedance will represent in this paper a "virtual Josephson junction". The Josephson junctions

Binder, Bernd

184

Fabrication of magnetic tunnel junctions with epitaxial and textured ferromagnetic layers  

DOE Patents [OSTI]

This invention relates to magnetic tunnel junctions and methods for making the magnetic tunnel junctions. The magnetic tunnel junctions include a tunnel barrier oxide layer sandwiched between two ferromagnetic layers both of which are epitaxial or textured with respect to the underlying substrate upon which the magnetic tunnel junctions are grown. The magnetic tunnel junctions provide improved magnetic properties, sharper interfaces and few defects.

Chang, Y. Austin (Middleton, WI); Yang, Jianhua Joshua (Madison, WI)

2008-11-11T23:59:59.000Z

185

Classical phase diffusion in small hysteretic Josephson junctions  

SciTech Connect (OSTI)

The existence of classical phase diffusion in hysteretic junctions is demonstrated by quantitative agreement between experimental and simulated {ital I}-{ital V} curves. The simulations are based on a circuit that accurately models both the junction and its external shunting impedance at microwave frequencies. We show that the bias current at which the junction switches from the phase diffusion state to the voltage state is sensitive to dissipation at microwave frequencies.

Martinis, J.M.; Kautz, R.L. (National Institute of Standards and Technology, Boulder, Colorado 80303 (US))

1989-10-02T23:59:59.000Z

186

WHAT'S NEW FOR CONTRACTING OFFICERS  

Office of Environmental Management (EM)

CHAPTER 42.101 WHAT'S NEW FOR CONTRACTING OFFICERS The Contracting Officer must obtain a waiver from the Procurement Director...

187

Two-Point Phase Correlations of a One-Dimensional Bosonic Josephson Junction  

SciTech Connect (OSTI)

We realize a one-dimensional Josephson junction using quantum degenerate Bose gases in a tunable double well potential on an atom chip. Matter wave interferometry gives direct access to the relative phase field, which reflects the interplay of thermally driven fluctuations and phase locking due to tunneling. The thermal equilibrium state is characterized by probing the full statistical distribution function of the two-point phase correlation. Comparison to a stochastic model allows us to measure the coupling strength and temperature and hence a full characterization of the system.

Betz, T.; Manz, S.; Buecker, R.; Berrada, T.; Koller, Ch.; Schmiedmayer, J. [Vienna Center for Quantum Science and Technology, Atominstitut, TU-Wien, 1020 Vienna (Austria); Kazakov, G. [Wolfgang Pauli Institute, University of Vienna, 1090 Vienna (Austria); St. Petersburg State Polytechnic University, 195251 St. Petersburg (Russian Federation); Mazets, I. E. [Vienna Center for Quantum Science and Technology, Atominstitut, TU-Wien, 1020 Vienna (Austria); Wolfgang Pauli Institute, University of Vienna, 1090 Vienna (Austria); Ioffe Physico-Technical Institute, 194021 St. Petersburg (Russian Federation); Stimming, H.-P. [Wolfgang Pauli Institute, University of Vienna, 1090 Vienna (Austria); Perrin, A.; Schumm, T. [Vienna Center for Quantum Science and Technology, Atominstitut, TU-Wien, 1020 Vienna (Austria); Wolfgang Pauli Institute, University of Vienna, 1090 Vienna (Austria)

2011-01-14T23:59:59.000Z

188

DOE - Office of Legacy Management -- Cheney Disposal Cell - 008  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cheney Disposal Cell - 008 Cheney Disposal Cell - 008 FUSRAP Considered Sites Site: Cheney Disposal Cell (008) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: All of the uranium mill tailings and other residual radioactive materials from the former Grand Junction uranium mill site were disposed of in this dedicated disposal cell. The cell is authorized to remain open until 2003 to accept any additional byproduct materials from Title I UMTRA sites and the Monticello, Utah site; e.g. materials from additional vicinity properties that may be identified. The Department of Energy¿s Grand Junction Office is responsible for Long Term Surveillance and Maintenance

189

Building Technologies Office Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Roland Risser Roland Risser Director, Building Technologies Office Building Technologies Office Energy Efficiency Starts Here. 2 Building Technologies Office Integrated Approach: Improving Building Performance Research & Development Developing High Impact Technologies Standards & Codes Locking in the Savings Market Stimulation Accelerating Tech-to- Market 3 Building Technologies Office Goal: Reduce building energy use by 50% (compared to a 2010 baseline) 4 Building Technologies Office Working to Overcome Challenges Information Access * Develop building performance tools, techniques, and success stories, such as case studies * Form market partnerships and programs to share best practices * Solution Centers * Certify the workforce to ensure quality work

190

A Josephson Junction Microscope for Low-frequency Fluctuators  

E-Print Network [OSTI]

The high-Q harmonic oscillator mode of a Josephson junction can be used as a novel probe of spurious two-level systems (TLSs) inside the amorphous oxide tunnel barriers of the junction. In particular, we show that spectroscopic transmission measurements of the junction resonator mode can reveal how the coupling magnitude between the junction and the TLSs varies with an external magnetic field applied in the plane of the tunnel barrier. The proposed experiments offer the possibility of clearly resolving the underlying coupling mechanism for these spurious TLSs, an important decoherence source limiting the quality of superconducting quantum devices.

L. Tian; R. W. Simmonds

2007-05-10T23:59:59.000Z

191

Quantum manipulation and simulation using Josephson junction arrays  

E-Print Network [OSTI]

We discuss the prospect of using quantum properties of large scale Josephson junction arrays for quantum manipulation and simulation. We study the collective vibrational quantum modes of a Josephson junction array and show that they provide a natural and practical method for realizing a high quality cavity for superconducting qubit based QED. We further demonstrate that by using Josephson junction arrays we can simulate a family of problems concerning spinless electron-phonon and electron-electron interactions. These protocols require no or few controls over the Josephson junction array and are thus relatively easy to realize given currently available technology.

Xingxiang Zhou; Ari Mizel

2006-05-01T23:59:59.000Z

192

High-frequency rolloff in the response of junction detectors  

Science Journals Connector (OSTI)

A model is developed for junction detectors based on the antisymmetric electromagnetic-structure mode for two high-free-carrier-density regions separated by a slightly conductive...

Haas, David R; Yu, Theodore; Wurl, Jon G; Gustafson, T K

1985-01-01T23:59:59.000Z

193

Organic-Inorganic Hetero Junction White Light Emitting Diode.  

E-Print Network [OSTI]

?? The purpose of this thesis work is to design and fabricates organic-inorganic hetero junction White Light Emitting Diode (WLED). In this WLED, inorganic material (more)

Lubuna Beegum, Shafeek

2008-01-01T23:59:59.000Z

194

UWM CIO Office Feedback on  

E-Print Network [OSTI]

Accounts Receivable General Accounting Svcs. Cashier's Office Purchasing Office Travel Office Total Receivable 0 0 2 7 3 4 General Accounting Svcs. 0 1 2 8 5 0 Cashiers Office 0 0 3 3 2 8 Purchasing Office 2 6UWM CIO Office Feedback on The Department of Business & Financial Services Presentation of Results

Saldin, Dilano

195

Building Technologies Office: News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News to someone by News to someone by E-mail Share Building Technologies Office: News on Facebook Tweet about Building Technologies Office: News on Twitter Bookmark Building Technologies Office: News on Google Bookmark Building Technologies Office: News on Delicious Rank Building Technologies Office: News on Digg Find More places to share Building Technologies Office: News on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program Building Energy Software Tools Directory High Performance Buildings Database Financial Opportunities Office of Energy Efficiency and Renewable Energy Funding Opportunities Tax Incentives for Residential Buildings

196

Office of Nuclear Safety  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Office of Nuclear Safety (HS-30) Office of Nuclear Safety (HS-30) Office of Nuclear Safety Home » Directives » Nuclear and Facility Safety Policy Rules » Nuclear Safety Workshops Technical Standards Program » Search » Approved Standards » Recently Approved » RevCom for TSP » Monthly Status Reports » Archive » Feedback DOE Nuclear Safety Research & Development Program Office of Nuclear Safety Basis & Facility Design (HS-31) Office of Nuclear Safety Basis & Facility Design - About Us » Nuclear Policy Technical Positions/Interpretations » Risk Assessment Working Group » Criticality Safety » DOE O 420.1C Facility Safety » Beyond Design Basis Events Office of Nuclear Facility Safety Programs (HS-32) Office of Nuclear Facility Safety Programs - About Us

197

Vehicle Technologies Office: News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News News Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: News to someone by E-mail Share Vehicle Technologies Office: News on Facebook Tweet about Vehicle Technologies Office: News on Twitter Bookmark Vehicle Technologies Office: News on Google Bookmark Vehicle Technologies Office: News on Delicious Rank Vehicle Technologies Office: News on Digg Find More places to share Vehicle Technologies Office: News on AddThis.com... Vehicle Technologies News Blog Newsletters Information for Media Subscribe to News Updates News December 18, 2013 USDA Offers $118 Million for Renewable Energy, Smart Grid Projects The U.S. Department of Agriculture (USDA) announced $73 million in funding for renewable energy projects and $45 million for smart grid technology as

198

DOE NEPA Compliance Officers  

Broader source: Energy.gov (indexed) [DOE]

NEPA Compliance Officers NEPA Compliance Officers NEPA Compliance Officers are listed first for Program Offices, then Power Marketing Administrations, then Field Offices. Please send updates to yardena.mansoor@hq.doe.gov Oct 04, 2013 Forrestal (FORS) Addresses: Germantown (GTN) Addresses: 1000 Independence Ave SW 1000 Independence Ave SW Washington, DC 20585 Washington, DC 20585-1290 . Use for U.S. Postal Service mail. 19901 Germantown Road Germantown, MD 20874-1290 Use for EXPRESS DELIVERY (e.g. Federal Express, UPS). NAME, OFFICE, E-MAIL FAX ADDRESS PHONE william.bierbower@hq.doe.gov Advanced Research Projects Agency-Energy 202-287-6585 FORS AR-1 20585 ARPA-E William Bierbower lori.gray@go.doe.gov Energy Efficiency and Renewable Energy, Golden Field Office 720-356-1568 720-356-1350 Department of Energy

199

Vehicle Technologies Office: Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deployment Deployment Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: Deployment to someone by E-mail Share Vehicle Technologies Office: Deployment on Facebook Tweet about Vehicle Technologies Office: Deployment on Twitter Bookmark Vehicle Technologies Office: Deployment on Google Bookmark Vehicle Technologies Office: Deployment on Delicious Rank Vehicle Technologies Office: Deployment on Digg Find More places to share Vehicle Technologies Office: Deployment on AddThis.com... Energy Policy Act (EPAct) Clean Cities Educational Activities Deployment Our nation's energy security depends on the efficiency of our transportation system and on which fuels we use. Transportation in the United States already consumes much more oil than we produce here at home

200

Office 2007 User Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Office 2007 User Workshop Office 2007 User Workshop M. Westbrook, APS-IT June 30, 2010 Goal: Quick Start for New Office 2007 Users Introduce and highlight new Office 2007 program feature (Word, Excel and PowerPoint) Identify sources of help with Office 2007 Provide opportunity for users to share experiences Office 2007: Introduction  Format for today's presentation is that of a workshop rather than training course  Many of the new features presented here apply to multiple Office applications  Sources for more information are identified throughout the presentation  Presenter is no expert, but plans to share what has been learned thus far  Attendees are encouraged to share what you have learned for the benefit of all

Note: This page contains sample records for the topic "junction office statistical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Non-relativistic Josephson Junction from Holography  

E-Print Network [OSTI]

We construct a Josephson junction in non-relativistic case with a Lifshitz geometry as the dual gravity. We investigate the effect of the Lifshitz scaling in comparison with its relativistic counterpart. The standard sinusoidal relation between the current and the phase difference is found for various Lifshitz scalings characterised by the dynamical critical exponent. We also find the exponential decreasing relation between the condensate of the scalar operator within the barrier at zero current and the width of the weak link, as well as the relation between the critical current and the width. Nevertheless, the coherence lengths obtained from two exponential decreasing relations generically have discrepancies for non-relativistic dual.

Huai-Fan Li; Li Li; Yong-Qiang Wang; Hai-Qing Zhang

2014-12-09T23:59:59.000Z

202

Non-relativistic Josephson Junction from Holography  

E-Print Network [OSTI]

We construct a Josephson junction in non-relativistic case with a Lifshitz geometry as the dual gravity. We investigate the effect of the Lifshitz scaling in comparison with its relativistic counterpart. The standard sinusoidal relation between the current and the phase difference is found for various Lifshitz scalings characterised by the dynamical critical exponent. We also find the exponential decreasing relation between the condensate of the scalar operator within the barrier at zero current and the width of the weak link, as well as the relation between the critical current and the width. Nevertheless, the coherence lengths obtained from two exponential decreasing relations generically have discrepancies for non-relativistic dual.

Li, Huai-Fan; Wang, Yong-Qiang; Zhang, Hai-Qing

2014-01-01T23:59:59.000Z

203

Synchronized Andreev transmission in SNS junction arrays.  

SciTech Connect (OSTI)

We construct a nonequilibrium theory for the charge transfer through a diffusive array of alternating normal (N) and superconducting (S) islands comprising an SNSNS junction, with the size of the central S island being smaller than the energy relaxation length. We demonstrate that in the nonequilibrium regime the central island acts as Andreev retransmitter with the Andreev conversions at both NS interfaces of the central island correlated via above-the-gap transmission and Andreev reflection. This results in a synchronized transmission at certain resonant voltages which in experiments is seen as a sequence of spikes in the differential conductivity.

Chtchelkatchev, N. M.; Baturina, T. I.; Glatz, A.; Vinokur, V. M.; Materials Science Division; Russian Academy of Sciences; Moscow Inst. of Physics and Technology; Inst. Semiconductor Physics

2010-07-29T23:59:59.000Z

204

Quantum breathers in capacitively coupled Josephson junctions: Correlations, number conservation, and entanglement  

E-Print Network [OSTI]

Quantum breathers in capacitively coupled Josephson junctions: Correlations, number conservation coupled Josephson junctions. In the classical case the equations of motion admit discrete breather by employing the already developed tech- niques for quantum information processing using Josephson junctions

Flach, Sergej

205

29 National Statistics Population Trends 106 Winter 2001  

E-Print Network [OSTI]

provided by the Office for National Statistics on migra- tion of the employed by citizenship.They indicate29 National Statistics Population Trends 106 Winter 2001 International migration to and from the United Kingdom since 1975, with a particular focus on those in employment,and drew on many sources

Jones, Peter JS

206

Dynamics of domain wall networks with junctions  

SciTech Connect (OSTI)

We use a combination of analytic tools and an extensive set of the largest and most accurate three-dimensional field theory numerical simulations to study the dynamics of domain wall networks with junctions. We build upon our previous work and consider a class of models which, in the limit of large number N of coupled scalar fields, approaches the so-called ''ideal'' model (in terms of its potential to lead to network frustration). We consider values of N between N=2 and N=20, and a range of cosmological epochs, and we also compare this class of models with other toy models used in the past. In all cases we find compelling evidence for a gradual approach to scaling, strongly supporting our no-frustration conjecture. We also discuss the various possible types of junctions (including cases where there is a hierarchy of them) and their roles in the dynamics of the network. Finally, we provide a cosmological Zel'dovich-type bound on the energy scale of this kind of defect network: it must be lower than 10 keV.

Avelino, P. P.; Oliveira, J. C. R. E. [Centro de Fisica do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Departamento de Fisica da Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Martins, C. J. A. P. [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas s/n, 4150-762 Porto (Portugal); DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Menezes, J. [Centro de Fisica do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Centro de Astrofisica da Universidade do Porto, Rua das Estrelas s/n, 4150-762 Porto (Portugal); Departamento de Fisica, Universidade Federal da Paraiba, Caixa Postal 5008, 58051-970 Joao Pessoa, Paraiba (Brazil); Menezes, R. [Departamento de Fisica, Universidade Federal da Paraiba, Caixa Postal 5008, 58051-970 Joao Pessoa, Paraiba (Brazil)

2008-11-15T23:59:59.000Z

207

A fourier spectrometer for studying the radiation from Josephson Junctions  

SciTech Connect (OSTI)

The paper describes a Fourier spectrometer designed to study the radiation generated by a Josephson junction in the millimeter and FIR bands with a resolution of {approx}2 GHz in the two-pass mode and {approx}1 GHz in the multipass mode. A feature is that one Josephson junctions operates as both generator and detector at the same time.

Verevkin, A.A.; Il`in, V.A.; Lipatov, A.P. [V.I. Lenin Moscow Pedagogical State Univ., Moscow (Russian Federation)

1995-06-01T23:59:59.000Z

208

Conditions for synchronization in Josephson-junction arrays  

SciTech Connect (OSTI)

An effective perturbation theoretical method has been developed to study the dynamics of Josephson Junction series arrays. It is shown that the inclusion of Junction capacitances, often ignored, has a significant impact on synchronization. Comparison of analytic with computational results over a wide range of parameters shows excellent agreement.

Chernikov, A.A.; Schmidt, G. [Stevens Institute of Technology, Hoboken, NJ (United States)

1995-12-31T23:59:59.000Z

209

Josephson junctions in high-T/sub c/ superconductors  

DOE Patents [OSTI]

The invention includes a high T/sub c/ Josephson sperconducting junction as well as the method and apparatus which provides the junction by application of a closely controlled and monitored electrical discharge to a microbridge region connecting two portions of a superconducting film.

Falco, C.M.; Lee, T.W.

1981-01-14T23:59:59.000Z

210

Intermittency and low frequency noise in a Josephson junction  

SciTech Connect (OSTI)

The bifurcation, chaos, and intermittency in the {ital f}-biased Josephson junction are investigated by numerically integrating the equation of the Stewart-McCumber model with an interference {epsilon} cos {phi}'' term. In addition, the relationship between the low frequency noise and the routes to chaos in a Josephson junction is discussed.

Xiao Wanru (Physics Division, Nanjing Architectural Institute (CN)); Yao Xixian (Department of Physics, Nanjing University (CN))

1990-01-01T23:59:59.000Z

211

Conditions for synchronization in Josephson-junction arrays  

SciTech Connect (OSTI)

An effective perturbation theoretical method has been developed to study the dynamics of Josephson-junction series arrays. It is shown that the inclusion of junction capacitances, which is often ignored, has a significant impact on synchronization. Comparison of analytic with computational results over a wide range of parameters shows excellent agreement.

Chernikov, A.A.; Schmidt, G. [Stevens Institute of Technology, Hoboken, New Jersey 07030 (United States)] [Stevens Institute of Technology, Hoboken, New Jersey 07030 (United States)

1995-10-01T23:59:59.000Z

212

E-Print Network 3.0 - adhering junctions connecting Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

S... . P. Benz, and J. E. Bonevich Abstract--The authors have made tall, uniform stacked Josephson junction... bar- rier of our niobium Josephson junctions and obtain working...

213

Data Compendium for the Logging Test Pits at the ERDA Grand Junction...  

Broader source: Energy.gov (indexed) [DOE]

Data Compendium for the Logging Test Pits at the ERDA Grand Junction Compound (December 1975) Data Compendium for the Logging Test Pits at the ERDA Grand Junction Compound...

214

Building Technologies Office: News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News to someone by News to someone by E-mail Share Building Technologies Office: News on Facebook Tweet about Building Technologies Office: News on Twitter Bookmark Building Technologies Office: News on Google Bookmark Building Technologies Office: News on Delicious Rank Building Technologies Office: News on Digg Find More places to share Building Technologies Office: News on AddThis.com... About Standards & Test Procedures Implementation, Certification & Enforcement Rulemakings & Notices Further Guidance ENERGY STAR® Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Learn More. Warming Up to Pump Heat. Learn More. Cut Refrigerator Energy Use to Save Money. Learn More. News DOE Publishes Petition of CSA Group for Classification as a Nationally

215

Vehicle Technologies Office: Favorites  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Favorites to someone by Favorites to someone by E-mail Share Vehicle Technologies Office: Favorites on Facebook Tweet about Vehicle Technologies Office: Favorites on Twitter Bookmark Vehicle Technologies Office: Favorites on Google Bookmark Vehicle Technologies Office: Favorites on Delicious Rank Vehicle Technologies Office: Favorites on Digg Find More places to share Vehicle Technologies Office: Favorites on AddThis.com... Favorites #248 Top Ten Net Petroleum Importing Countries, 2000 December 23, 2002 #246 U.S. Oil Imports - Top 10 Countries of Origin December 9, 2002 #244 Sport Utility Vehicle Spotlight November 25, 2002 #243 Fuel Economy Leaders for 2003 Model Year Light Trucks November 18, 2002 #242 Fuel Economy Leaders for 2003 Model Year Cars November 11, 2002 #238 Automobile and Truck Population by Vehicle Age, 2001 October 14, 2002

216

Vehicle Technologies Office: Partners  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partners to someone by Partners to someone by E-mail Share Vehicle Technologies Office: Partners on Facebook Tweet about Vehicle Technologies Office: Partners on Twitter Bookmark Vehicle Technologies Office: Partners on Google Bookmark Vehicle Technologies Office: Partners on Delicious Rank Vehicle Technologies Office: Partners on Digg Find More places to share Vehicle Technologies Office: Partners on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Partners The interactive map below highlights Workplace Charging Challenge Partners across the country who are installing plug-in electric vehicle charging infrastructure for their employees. Select a worksite to learn more about

217

Vehicle Technologies Office: Lubricants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lubricants to someone by Lubricants to someone by E-mail Share Vehicle Technologies Office: Lubricants on Facebook Tweet about Vehicle Technologies Office: Lubricants on Twitter Bookmark Vehicle Technologies Office: Lubricants on Google Bookmark Vehicle Technologies Office: Lubricants on Delicious Rank Vehicle Technologies Office: Lubricants on Digg Find More places to share Vehicle Technologies Office: Lubricants on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Fuel Effects on Combustion Lubricants Natural Gas Research Biofuels End-Use Research Materials Technologies Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is

218

Office of Information Resources  

Broader source: Energy.gov (indexed) [DOE]

Federal Bureau of Investigations Billing System Federal Bureau of Investigations Billing System Bureau: Department of Energy Project Unique ID: 01 9-10-01 -22-02-3028-00 Date: 02/08/2008 A. CONTACT INFORMATION 1) Who is the person completing this document? Joanne Csordas (HS-1.21), Office of Business Operations, Office of Resource Management, Office of Health, Safety and Security, U.S. Department of Energy, HS-1.21, 1000 Independence Avenue, SW, Washington D.C. 20585, (301) 903-3573 2) Who is the system owner? Joanne Csordas (HS-1.21), Office of Business Operations, Office of Resource Management, Office of Health, Safety and Security, U.S. Department of Energy, HS-1.21, 1000 Independence Avenue, SW, Washington D.C. 20585, (301) 903-3573 3) Who is the system manager for this system or application?

219

Office Buildings - Energy Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Office buildings consumed more than 17 percent of the total energy used by the commercial buildings sector (Table 4). At least half of total energy, electricity, and natural gas consumed by office buildings was consumed by administrative or professional office buildings (Figure 2). Table 4. Energy Consumed by Office Buildings for Major Fuels, 2003 All Buildings Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Total Floorspace (million sq. ft.) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat All Buildings 4,859 71,658 6,523 3,559 2,100 228 636 All Non-Mall Buildings 4,645 64,783 5,820 3,037 1,928 222 634 All Office Buildings 824 12,208 1,134 719 269 18 128 Type of Office Building

220

DEPARTMENT OF I Office  

Broader source: Energy.gov (indexed) [DOE]

I I Office of ENERGY Science SLAC Site Office SLAC National Accelerator Laboratory 2575 Sand Hill Road, MS-8A Menlo Park, CA 94025 DATE: January 11, 2012 MEMORANDUM FOR: Joseph A. McBrearty Deputy Director of Field Operations Office of Science FROM: Paul Gola Site a r SLAC Site Office SUBJECT: Annual National Environmental Policy Act (NEPA) Planning Summary for 2012, SLAC National Accelerator Laboratory The purpose of this memorandum is to transmit the Annual National Environmental Policy Act (NEPA) Planning Summary for 2012 for the SLAC National Accelerator Laboratory (SLAC), in accordance with the June 1994 Secretarial Policy Statement on NEPA and Department of Energy Order 451.1B. The SLAC Site Office (SSO) has reviewed ongoing and planned activities at the site and determined, in consultation with the DOE NEPA Compliance Officer, that there is one NEPA Environmental Assessment

Note: This page contains sample records for the topic "junction office statistical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Vehicle Technologies Office: Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Batteries to someone by Batteries to someone by E-mail Share Vehicle Technologies Office: Batteries on Facebook Tweet about Vehicle Technologies Office: Batteries on Twitter Bookmark Vehicle Technologies Office: Batteries on Google Bookmark Vehicle Technologies Office: Batteries on Delicious Rank Vehicle Technologies Office: Batteries on Digg Find More places to share Vehicle Technologies Office: Batteries on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Batteries Battery Systems Applied Battery Research Long-Term Exploratory Research Ultracapacitors Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various

222

Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FY 2008 DOE Vehicle FY 2008 DOE Vehicle Technologies Office Annual Merit Review to someone by E-mail Share Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Facebook Tweet about Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Twitter Bookmark Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Google Bookmark Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Delicious Rank Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Digg Find More places to share Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on AddThis.com... Publications

223

DOE - Office of Legacy Management -- Monticello Mill Site - UT 03  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mill Site - UT 03 Mill Site - UT 03 FUSRAP Considered Sites Site: Monticello Mill Site (UT.03) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Monticello, Utah, Disposal and Processing Sites Documents Related to Monticello Mill Site Monticello Mill Tailings Site Operable Unit III Interim Remedial Action Progress Report July 1999-July 2000. GJO-2000-163-TAR. September 2000 U.S. Department of Energy at Grand Junction 2003 Annual Inspection Monticello, Utah November 2003 2005 Annual Inspection of the Monticello Mill Tailings (USDOE) and Monticello Radioactively Contaminated Properties Sites December 2005 Office

224

Media & Communications Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Media & Communications Office Media & Communications Office Newsroom Photos Image Library Historic Images Photo Permissions Videos Fact Sheets Lab History News Categories Contacts Media & Communications Office news Part of the Community, Education, Government & Public Affairs Directorate, the Media & Communications Office provides information about Brookhaven National Laboratory to internal and external audiences through numerous communications vehicles. Our staff promotes Brookhaven's international reputation as a center for scientific excellence and innovation. We also publicize information about Laboratory events, policies and procedures. News Releases Media and Communications prepares all of the news releases on the Laboratory's science discoveries, announcements, events, and awards.

225

Argonne Site Office Jobs  

Office of Science (SC) Website

asoaboutjobs Below is a list of currently open federal employment opportunities in the Office of Science. Prospective applicants should follow the links to the formal position...

226

SLAC Site Office Jobs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ssoaboutjobs Below is a list of currently open federal employment opportunities in the Office of Science. Prospective applicants should follow the links to the formal position...

227

Golden Field Office Contacts  

Broader source: Energy.gov [DOE]

Field contacts at the U.S. Department of Energy's Golden Field Office who support the Federal Energy Management Program (FEMP)

228

Oak Ridge Office  

Broader source: Energy.gov (indexed) [DOE]

, 2010 Mr. Ron Murphree, Chair Oak Ridge Site Specific Advisory Board Post Office Box 200 1 Oak Ridge, Tennessee 37830 Dear Mr. Murphree: IN RESPONSE TO RECOMMENDATION 189:...

229

Oak Ridge Office  

Broader source: Energy.gov (indexed) [DOE]

6, 2010 Mr. Ron Murphree, Chair Oak Ridge Site Specific Advisory Board Post Office Box 2001 Oak Ridge, Tennessee 37830 Dear Mr. Murphree: RECOMMENDATION 191: RECOMMENDATION...

230

Oak Ridge Office  

Broader source: Energy.gov (indexed) [DOE]

, 2010 Mr. Ron Murphree, Chair Oak Ridge Site Specific Advisory Board Post Office Box 200 1 Oak Ridge, Tennessee 37830 Dear Mr. Murphree: IN RESPONSE TO RECOMMENDATION 187:...

231

Oak Ridge Office  

Broader source: Energy.gov (indexed) [DOE]

- June 10, 2009 Mr. Steve Dixon, Chairman Oak Ridge Site Specific Advisory Board Post Office Box 2001 Oak Ridge, Tennessee 37830 Dear Mr. Dixon: RESPONSE TO RECOMMENDATIONS...

232

Vehicle Technologies Office: News  

Broader source: Energy.gov [DOE]

EERE intends to issue, on behalf of its Fuel Cell Technologies Office, a Funding Opportunity Announcement (FOA) entitled "Fuel Cell Technologies Incubator: Innovations in Fuel Cell and Hydrogen...

233

Office of the Director  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dr. Bochenek, G. Deputy: Klara, S. Chief Operating Officer: Zeh, C. Senior Operations Advisor: Monahan, M. SMTA: Duda, J. EEO Manager: Vargas, N. Supervisory Administrative...

234

Office of Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

icon-science.jpg Office of Science Enabling remarkable discoveries and tools that transform our understanding of energy and matter and advance national, economic, and energy...

235

The Geothermal Technologies Office  

Energy Savers [EERE]

Geothermal Technologies Office (GTO) funded and launched the NGDS and the DOE Geothermal Data Repository node to facilitate a seamless delivery of geotherm- al data for a variety...

236

THE SECRETARY'S OFFICE  

Science Journals Connector (OSTI)

THE SECRETARY'S OFFICE ... Chemists, chemical engineers, their science, their industry, and their society deserve this recognition because of their contributions to national welfare. ...

1951-04-23T23:59:59.000Z

237

Advanced Manufacturing Office Overview  

Broader source: Energy.gov [DOE]

Overview presentation by the Advanced Manufacturing Office for the Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing

238

Solar Energy Technologies Office  

Broader source: Energy.gov [DOE]

In 2011, the Energy Department's Solar Energy Technologies Office (SETO) became the SunShot Initiative, a collaborative national effort that aggressively drives innovation to make solar energy...

239

Office of Electricity Delivery  

Energy Savers [EERE]

Office of Electricity Delivery and Energy Reliability Use of the NIST Cybersecurity Framework & DOE C2M2 CategorySubcategory CategorySubcategory CategorySubcategory Category...

240

Office of Physical Protection  

Broader source: Energy.gov [DOE]

The Office of Physical Protection is comprised of a team of security specialists engaged in providing Headquarters-wide physical protection.

Note: This page contains sample records for the topic "junction office statistical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Economic Development Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contacts Gary Spanner Economic Development Office Manager 509372-4296 ROB1210 Robin Conger Program Manager 509372-4328 ROB1221 Bernard Hansen Entrepreneurial Programs Manager...

242

Arctic Energy Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

S Strategic Center for Natural Gas & Oil CONTACTS Joel Lindstrom Arctic Energy Office National Energy Technology Laboratory 420 L Street, Suite 305 Anchorage, Alaska 99501...

243

Workforce Statistics - NA-30 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

NA-30 | National Nuclear Security Administration NA-30 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Workforce Statistics - NA-30 Home > About Us > Our Operations > Management and Budget > Office of Civil Rights > Workforce Statistics > Workforce Statistics - NA-30 Workforce Statistics - NA-30 Workforce Statistics - Naval Reactors

244

Accountable Officers' Accounts Records | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Accountable Officers' Accounts Records Accountable Officers' Accounts Records ADM 60.pdf More Documents & Publications ADMINISTRATIVE RECORDS SCHEDULE 6: ACCOUNTABLE OFFICERS'...

245

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 to someone by E-mail 2 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives Subscribe Program Presentations

246

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

August 2013 to someone by E-mail August 2013 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter

247

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

October 2012 to someone by E-mail October 2012 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications

248

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

April 2012 to someone by E-mail April 2012 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives

249

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 to someone by E-mail 3 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives Subscribe Program Presentations

250

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 to someone by E-mail 2 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives Subscribe

251

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

September/October 2013 to someone by E-mail September/October 2013 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on AddThis.com... Publications

252

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

August 2012 to someone by E-mail August 2012 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter

253

Independent Oversight Inspection, Richland Operations Office, Office of  

Broader source: Energy.gov (indexed) [DOE]

Richland Operations Office, Richland Operations Office, Office of River Protection, and Project Hanford Management Contract - November 2006 Independent Oversight Inspection, Richland Operations Office, Office of River Protection, and Project Hanford Management Contract - November 2006 November 2006 Inspection of Classification and Information Control Programs at the Richland Operations Office, Office of River Protection, and Project Hanford Management Contract This report presents the results of inspection activities by the U.S. Department of Energy (DOE) Office of Independent Oversight, Office of Security Evaluations in the area of classification and information control (CIC) at the two DOE offices at the Hanford Site-the Richland Operations Office (RL) and the Office of River Protection (ORP)-each of which

254

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 to someone by E-mail 2 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives Subscribe

255

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 to someone by E-mail 3 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter

256

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

September 2012 to someone by E-mail September 2012 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications

257

Vehicle Technologies Office: About the Vehicle Technologies Office: Moving  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About the Vehicle About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles to someone by E-mail Share Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Facebook Tweet about Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Twitter Bookmark Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Google Bookmark Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Delicious Rank Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Digg Find More places to share Vehicle Technologies Office: About the

258

Office of the Chief Financial Officer Annual Report 2009  

SciTech Connect (OSTI)

Presented is the 2009 Chief Financial Officer's Annual Report. The data included in this report has been compiled from the Budget Office, the Controller, Procurement and Property Management and the Sponsored Projects Office.

Fernandez, Jeffrey

2009-12-15T23:59:59.000Z

259

Office of the Chief Financial Officer Annual Report 2010  

E-Print Network [OSTI]

by the Director, Office of Science of the U.S. Department ofin ARRA funding drove the net decrease. Office of ScienceOffice of Science (SC) O&M funding dropped $156.1M in FY2010

Fernandez, Jeffrey

2011-01-01T23:59:59.000Z

260

Office of the Chief Financial Officer Annual Report 2009  

E-Print Network [OSTI]

by the Director, Office of Science of the U.S. Department ofto be a top DOE Office of Science (SC) national laboratoryincreased $0.5M. The Office of Sciences High Energy

Fernandez, Jeffrey

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "junction office statistical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Office of the Chief Financial Officer 2012 Annual Report  

E-Print Network [OSTI]

by the Director, Office of Science of the U.S. Department oframp down of DOE Office of Science construc- tion projects.Slight decreases in Offices of Science and Energy Efficiency

Williams, Kim

2014-01-01T23:59:59.000Z

262

FISHERY STATISTICS UNITED STATES  

E-Print Network [OSTI]

FISHERY STATISTICS OF THE UNITED STATES 1973 STATISTICAL DIGEST NO. 67 Prepared by STATISTICS a review of the fishery statistics for the year 1973 . These statistics include data on the volume and value of landings of fishery products, employment 1n the fish- eries, quantity of gear operated, number

263

FISHERY STATISTICS UNITED STATES  

E-Print Network [OSTI]

FISHERY STATISTICS OF THE UNITED STATES 1971 STATISTICAL DIGEST NO. 65 Prepared by STATISTICS ry statistics for the year 1971 . These statistics include data on the volume and value of landings of fishery products, employment in the fishe ries, quantity of gear operated, number of fishing craft e

264

DOE NEPA Compliance Officers | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Officers NEPA Compliance Officers are listed first for Program Offices, then Power Marketing Administrations, then Field Offices. NCODirectory100214.pdf More Documents &...

265

Equal Opportunities Office Activities and Statistics Report 2008  

E-Print Network [OSTI]

mark and % pass rate and comment on student performance. Mean mark 46.89% (before summer referral exams) 70.27% pass rate (75.68% after summer referral examinations) The module, along with other L3 modules): Optional for BSC Geology, Physical Geography, Geography 1. Please comment on the student feedback results

Auckland, University of

266

Office of Oil, Gas, and Coal Supply Statistics  

Gasoline and Diesel Fuel Update (EIA)

countries that were previously imported, offloaded into above-ground LNG storage tanks, and then subsequently reloaded onto tankers for delivery to other countries. Prices...

267

Office of Oil, Gas, and Coal Supply Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

feet per day 2,100 1,050 210 <100 Shale plays This page intentionally blank. 2013 U.S. Energy Information Administration | Natural Gas Annual 197 Appendix B Metric and Thermal...

268

Functional Area Dean's Office  

E-Print Network [OSTI]

Functional Area Dean's Office 1101 Ag & Resource Economics 1172 Animal Sciences 1171 Bio Ag Science and Pest Mgmt 1177 Hort & Landscape Architecture 1173 Soil & Crop Science 1170 Ag Colo Res Ctr 3046 Fiscal Officers Jessi Fuentes 1 1931 Val Parker 1 6953 Linda Moller 1 1441 Paula

269

UC Sustainability Office Report  

E-Print Network [OSTI]

UC Sustainability Office Report Introduction Welcome to the third annual UC Sustainability Office infrastructure, UC is now trending in a positive direction against some sustainability indicators. Electricity products and membership of the UC Sustainability Community is growing. There are concerns around the amount

Hickman, Mark

270

Office of Sustainability Support  

Broader source: Energy.gov [DOE]

The Office of Sustainability Support serves as AUs organizational lead in partnering with the Departments Sustainability Performance Office to support the understanding and implementation of sustainability programs and requirements within the Department, including through supporting development and implementation of DOEs annual Strategic Sustainability Program Plan.

271

Quantum computing with atomic Josephson junction arrays  

SciTech Connect (OSTI)

We present a quantum computing scheme with atomic Josephson junction arrays. The system consists of a small number of atoms with three internal states and trapped in a far-off-resonant optical lattice. Raman lasers provide the 'Josephson' tunneling, and the collision interaction between atoms represent the 'capacitive' couplings between the modes. The qubit states are collective states of the atoms with opposite persistent currents. This system is closely analogous to the superconducting flux qubit. Single-qubit quantum logic gates are performed by modulating the Raman couplings, while two-qubit gates result from a tunnel coupling between neighboring wells. Readout is achieved by tuning the Raman coupling adiabatically between the Josephson regime to the Rabi regime, followed by a detection of atoms in internal electronic states. Decoherence mechanisms are studied in detail promising a high ratio between the decoherence time and the gate operation time.

Tian Lin; Zoller, P. [Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck (Austria)

2003-10-01T23:59:59.000Z

272

Advanced Concepts in Josephson Junction Reflection Amplifiers  

E-Print Network [OSTI]

Low-noise amplification atmicrowave frequencies has become increasingly important for the research related to superconducting qubits and nanoelectromechanical systems. The fundamental limit of added noise by a phase-preserving amplifier is the standard quantum limit, often expressed as noise temperature $T_{q} = \\hbar {\\omega}/2k_{B}$. Towards the goal of the quantum limit, we have developed an amplifier based on intrinsic negative resistance of a selectively damped Josephson junction. Here we present measurement results on previously proposed wide-band microwave amplification and discuss the challenges for improvements on the existing designs. We have also studied flux-pumped metamaterial-based parametric amplifiers, whose operating frequency can be widely tuned by external DC-flux, and demonstrate operation at $2\\omega$ pumping, in contrast to the typical metamaterial amplifiers pumped via signal lines at $\\omega$.

Pasi Lhteenmki; Visa Vesterinen; Juha Hassel; G. S. Paraoanu; Heikki Sepp; Pertti Hakonen

2014-05-20T23:59:59.000Z

273

Quantum Fluctuations in Josephson Junction Comparators  

E-Print Network [OSTI]

We have developed a method for calculation of quantum fluctuation effects, in particular of the uncertainty zone developing at the potential curvature sign inversion, for a damped harmonic oscillator with arbitrary time dependence of frequency and for arbitrary temperature, within the Caldeira-Leggett model. The method has been applied to the calculation of the gray zone width Delta Ix of Josephson-junction balanced comparators driven by a specially designed low-impedance RSFQ circuit. The calculated temperature dependence of Delta Ix in the range 1.5 to 4.2K is in a virtually perfect agreement with experimental data for Nb-trilayer comparators with critical current densities of 1.0 and 5.5 kA/cm^2, without any fitting parameters.

Thomas J. Walls; Timur V. Filippov; Konstantin K. Likharev

2002-07-15T23:59:59.000Z

274

Quantum Computing with Atomic Josephson Junction Arrays  

E-Print Network [OSTI]

We present a quantum computing scheme with atomic Josephson junction arrays. The system consists of a small number of atoms with three internal states and trapped in a far-off resonant optical lattice. Raman lasers provide the "Josephson" tunneling, and the collision interaction between atoms represent the "capacitive" couplings between the modes. The qubit states are collective states of the atoms with opposite persistent currents. This system is closely analogous to the superconducting flux qubit. Single qubit quantum logic gates are performed by modulating the Raman couplings, while two-qubit gates result from a tunnel coupling between neighboring wells. Readout is achieved by tuning the Raman coupling adiabatically between the Josephson regime to the Rabi regime, followed by a detection of atoms in internal electronic states. Decoherence mechanisms are studied in detail promising a high ratio between the decoherence time and the gate operation time.

Lin Tian; P. Zoller

2003-06-12T23:59:59.000Z

275

The World as a Dual Josephson Junction  

E-Print Network [OSTI]

We examine some of the implications of the field-theoretical mechanism for the localization of gauge fields on hypersurfaces in higher-dimensional bulk space-time. This mechanism exploits the analogy between confinement and dual superconductivity. In the simplest case of a photon localized on a (2+1)-dimensional surface in a (3+1)-dimensional bulk, we argue that the system behaves like a dual Josephson junction. This implies that the effective gauge theory on the surface is not free, but displays weak confinement with a linear potential. We comment on the relevance of our results for the realistic case of a (3+1)-dimensional surface in a space-time with one or more extra dimensions.

N. Tetradis

2000-02-24T23:59:59.000Z

276

Gauge Theories of Josephson Junction Arrays  

E-Print Network [OSTI]

We show that the zero-temperature physics of planar Josephson junction arrays in the self-dual approximation is governed by an Abelian gauge theory with periodic mixed Chern-Simons term describing the charge-vortex coupling. The periodicity requires the existence of (Euclidean) topological excitations which determine the quantum phase structure of the model. The electric-magnetic duality leads to a quantum phase transition between a superconductor and a superinsulator at the self-dual point. We also discuss in this framework the recently proposed quantum Hall phases for charges and vortices in presence of external offset charges and magnetic fluxes: we show how the periodicity of the charge-vortex coupling can lead to transitions to anyon superconductivity phases. We finally generalize our results to three dimensions, where the relevant gauge theory is the so-called BF system, with an antisymmetric Kalb-Ramond gauge field.

M. C. Diamantini; P. Sodano; C. A. Trugenberger

1995-11-23T23:59:59.000Z

277

Structural organization of gap junction channels  

Science Journals Connector (OSTI)

Gap junctions were initially described morphologically, and identified as semi-crystalline arrays of channels linking two cells. This suggested that they may represent an amenable target for electron and X-ray crystallographic studies in much the same way that bacteriorhodopsin has. Over 30 years later, however, an atomic resolution structural solution of these unique intercellular pores is still lacking due to many challenges faced in obtaining high expression levels and purification of these structures. A variety of microscopic techniques, as well as NMR structure determination of fragments of the protein, have now provided clearer and correlated views of how these structures are assembled and function as intercellular conduits. As a complement to these structural approaches, a variety of mutagenic studies linking structure and function have now allowed molecular details to be superimposed on these lower resolution structures, so that a clearer image of pore architecture and its modes of regulation are beginning to emerge.

Gina E. Sosinsky; Bruce J. Nicholson

2005-01-01T23:59:59.000Z

278

U.S. Department of Energy Office of Legacy Management National Environmental Policy Act Environmental Checldist  

Broader source: Energy.gov (indexed) [DOE]

3-10 3-10 U.S. Department of Energy Office of Legacy Management National Environmental Policy Act Environmental Checldist Project/Activity: Install a test cover at Grand Junction, CO, Disposal Site . A. Brief Project/Activity Description The U.S. Department of Energy (DOE) Office of Legacy Management eLM) proposes to install a 70 foot (ft) x 140 ft test cover that duplicates the top 42 inches of the existing cover at the Grand Junction, CO, Disposal Site. The purpose of the test cover is to evaluate methods for renovating low-permeability disposal cell covers and to measure the effects of renovation on soil hydraulic properties and seedbed ecology. The test cover would be constructed on the surface of an existing stockpile of clay soil and would be located approximately 100 ft from an existing access

279

Office of Inspector General  

Broader source: Energy.gov (indexed) [DOE]

Inspector General Inspector General Office of Audits and Inspections Work Plan for FY 2013 Audits Central Audits Division  Ecotality  Funding Overlap  Follow-up on Smart Grid Investment Grant  DOE's Loan Program Office's Portfolio Management  Office of Fossil Energy's Regional Carbon Sequestration Partnerships  Advanced Manufacturing Office's Combined Heat and Power Systems  DOE's Management of Contaminated Non-EM Facilities  Unneeded Real Estate  Review of For-Profit Grantees for selected DOE programs  Commercialization Efforts at National Laboratories  Research Misconduct at Office of Science  Public Dissemination of Research Results  BPA's Management of Borrowing Authority Construction  Controls Over PMA's Use of Hedging Instruments

280

Office of Resource Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resource Management Resource Management Home Sub Offices › Business Operations › Information Management › Human Resources and Administration Mission and Functions HSS Standard Operating Practices (For Internal Users Only) HSS Subject Matter Experts and Functional Points of Contacts Contact Us HSS Logo Office of Resource Management Direct Report to the Chief Health, Safety and Security Officer Mission and Functions Mission The Office of Resource Management supports the infrastructure of the Office of Health, Safety and Security (HSS) by providing balanced, unbiased, technically competent, and customer focused services in the areas of: (1) Financial Management, including budget formulation and execution; (2) Procurement Management, including contract and credit card programs; (3) Information Management, including technology-based solutions and programs; (4) Quality Assurance; (5) Human Resources, including recruitment and retention programs; (6) Administrative Services, including property management, travel, and work space management; and; (7) Strategic and Program Planning including performance and efficiency measures.

Note: This page contains sample records for the topic "junction office statistical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

PRIVACY IMPACT ASSESSMENT: Office  

Broader source: Energy.gov (indexed) [DOE]

Office Office of Workforce Development for Teachers and Scientists Department of Energy Privacy Impact Assessment (PIA) Guidance is provided in the template. See DOE Order 206.1, Department of Energy Privacy Program, Appendix A, Privacy Impact Assessments, for requirements and additional guidance for conducting a PIA: http://www.directives.doe.gov/pdfs/doe/doetextineword/206/o2061.pdf Please complete electronically: no hand-written submissions will be accepted. This template may not be modified. MODULE 1- PRIVACY NEEDS ASSESSMENT Date Departmental Element & Site August 1, 2009 U.S. Department of Energy; Office of Science; Office of Workforce Development for Teachers and Scientists (WDTS) System location - Pacific Northwest National Laboratory, Richland, WA Name of Information iPASS System for DOE Office of Science laboratory fellowship programs, including

282

Office of Security Policy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Office of Security Policy Office of Security Policy Mission and Functions The Office of Security Policy develops and promulgates safeguards and security policy governing the protection of National Security and other critical assets entrusted to the Department. Director's Perspective Welcome to the Office of Security Policy Jack Cowden, Director The Office of Security Policy analyzes, develops and interprets safeguards and security policy governing national security functions and the protection of related critical assets entrusted to the Department. This includes the protection of DOE nuclear facilities, nuclear weapons components, special nuclear materials and classified information. Our broad topical areas are organized as: Program Planning and Management, Protection Program Operations (which includes both physical security and protective forces), Information Security and Material Control and Accountability.

283

Major Program Offices  

Broader source: Energy.gov (indexed) [DOE]

101 101 Major Program Offices Doing Business with... Energy Efficiency and Renewable Energy Office of Environmental Management National Nuclear Security Administration Office of Science Gary G. Lyttek, Business Source Manager FY2010 DOE Procurement Base: $22.9B $1,556 $5,701 $9,523 $3,793 $2,304 $'s - Millions EE EM NNSA SC Other 2 Presentation for the DOE Small Business Conference EERE Funding Opportunity Announcements (FOA) May 2011 3 Office of Energy Efficiency and Renewable Energy 4 * The mission and vision of the Office of Energy Efficiency and Renewable Energy (EERE) is to strengthen America's energy security, environmental quality and economic vitality in public-private partnerships that: * Enhance energy efficiency and productivity

284

Josephson-junction arrays with long-range interactions  

SciTech Connect (OSTI)

We calculate the current-voltage (IV) characteristics of a Josephson-junction array with long-range interactions. The array consists of two sets of equally spaced parallel superconducting wires placed at right angles. A Josephson junction is formed at every point wherever the wires cross. We treat each such junction as an overdamped resistively shunted junction, and each wire segment between two junctions as a similar resistively shunted junction with a much higher critical current. The IV characteristics are obtained by solving the coupled Josephson equations numerically. We find that, for a sufficiently large number of wires, the critical current saturates at a finite value because of the wire inductance, in excellent agreement with experiment. The calculated IV characteristics also show a striking hysteresis, even though each of the individual junctions is {ital nonhysteretic}. The hysteresis results from a global redistribution of current flow on the upper and lower voltage branches, and is also in excellent agreement with experiment. {copyright} {ital 1997} {ital The American Physical Society}

Harbaugh, J.K.; Stroud, D. [Department of Physics, Ohio State University, Columbus, Ohio 43210 (United States)] [Department of Physics, Ohio State University, Columbus, Ohio 43210 (United States)

1997-10-01T23:59:59.000Z

285

The Hanford Site Richland Operations Office Office of River Protection Office of Science  

E-Print Network [OSTI]

The Hanford Site Richland Operations Office Office of River Protection Office of Science Plateau;HANFORDSMALLBUSINESSCOUNCIL Richland Operations Office Sally A. Sieracki Small Business Program Manager E-mail: sally.sieracki@rl.doe.gov Web Site: www.hanford.gov/rl Office of River Protection Susan C. Johnson Small Business Program

286

0100000000,"OFFICE OF THE SECRETARY OF ENERGY" 0101000000,"OFFICE...  

Broader source: Energy.gov (indexed) [DOE]

3230000000,"ASSISTANT ADMINISTRATOR FOR ENERGY ANALYSIS" 3231000000,"OFFICE OF ENERGY MARKETS AND FINANCIAL ANALYSIS" 3232000000,"OFFICE OF ENERGY CONSUMPTION AND EFFICIENCY...

287

Appointment of Contracting Officers and Contracting Officer Representatives  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order established procedures governing the selection, appointment and termination of Department of Energy contracting officers and contracting officer representatives. Cancels DOE O 541.1A.

2004-04-21T23:59:59.000Z

288

For office use only: Advisor: ___  

E-Print Network [OSTI]

For office use only: Advisor: ___ Mailbox: ___ Reservations: ___ Senate: ___ University_Club Sports Club Sports Advisor Signature _________________________ Date: ________________________ (Needed obtain a signature from an advisor from the responsible office: Club Sport: Office of Athletics

Mahon, Bradford Z.

289

Usage Statistics By Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Usage Statistics Usage Statistics Genepool Cluster Statistics Period: daily weekly monthly quarter yearly 2year Utilization By Group Jobs Pending Last edited: 2013-09-26 18:21:13...

290

Dissipative dynamics of a Josephson junction in the Bose gases  

SciTech Connect (OSTI)

The dissipative dynamics of a Josephson junction in Bose gases is considered within the framework of the model of a tunneling Hamiltonian. The effective action that describes the dynamics of the phase difference across the junction is derived using the functional integration method. The dynamic equation obtained for the phase difference across the junction is analyzed for the finite temperatures in the low-frequency limit involving the radiation terms. The asymmetric case of the Bose gases with the different order parameters is calculated as well.

Barankov, R.A. [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Burmistrov, S.N. [RRC 'Kurchatov Institute', Kurchatov Sq.1, 123182 Moscow (Russian Federation)

2003-01-01T23:59:59.000Z

291

Junction Temperature Measurement of IGBTs Using Short Circuit Current  

SciTech Connect (OSTI)

In this paper, a method is proposed to measure the junction temperatures of IGBT discrete devices and modules using short circuit current. Experimental results show that the short circuit current has good sensitivity, linearity and selectivity, which is suitable to be used as temperature sensitive electrical parameters (TSEP). Test circuit and hardware design are proposed for junction temperature measurement in single phase and three phase convertes. By connecting a temperature measurement unit to the converter and giving a short circuit pulse, the IGBT junction temperature can be measured.

Wang, Fei [ORNL; Xu, Zhuxian [ORNL; Ning, Puqi [ORNL

2012-01-01T23:59:59.000Z

292

BPS domain wall junctions in infinitely large extra dimensions  

Science Journals Connector (OSTI)

We consider models of scalar fields coupled to gravity which are higher-dimensional generalizations of four dimensional supergravity. We use these models to describe domain wall junctions in an antide Sitter background. We derive Bogomolnyi equations for the scalar fields from which the walls are constructed and for the metric. From these equations a BPS-like formula for the junction energy can be derived. We demonstrate that such junctions localize gravity in the presence of more than one uncompactified extra dimension.

Sean M. Carroll; Simeon Hellerman; Mark Trodden

2000-07-27T23:59:59.000Z

293

Microwave Photon Counter Based on Josephson Junctions Y.-F. Chen,1,* D. Hover,1  

E-Print Network [OSTI]

Microwave Photon Counter Based on Josephson Junctions Y.-F. Chen,1,* D. Hover,1 S. Sendelbach,1 L on the current-biased Josephson junction. The junction is tuned to absorb single microwave photons from optical photon counters, it is natural to consider the Josephson junction--a nonlinear, nondissipative

Saffman, Mark

294

Supercurrent-Induced Temperature Gradient across a Nonequilibrium SNS Josephson Junction M. S. Crosser,1  

E-Print Network [OSTI]

Supercurrent-Induced Temperature Gradient across a Nonequilibrium SNS Josephson Junction M. S direction. The feature represents an effective temperature gradient across the SNS Josephson junction Josephson junction (SNS JJ) into a `` junction'' by driving the electron energy distribution far from

Birge, Norman

295

Asymmetric noise probed with a Josephson junction Q. Le Masne,1  

E-Print Network [OSTI]

Asymmetric noise probed with a Josephson junction Q. Le Masne,1 H. Pothier,1, Norman O. Birge,2 C are measured using a Josephson junction. The current noise adds to the bias current of the Josephson junction], consists in using a Josephson junction (JJ) as a large bandwidth on-chip noise detector [7, 8, 9]. It has

Boyer, Edmond

296

Cooper pair transport and Coulomb blockade in one dimensional Josephson junction arrays  

E-Print Network [OSTI]

Cooper pair transport and Coulomb blockade in one dimensional Josephson junction arrays Peter š?ogskoletryckeriet, Stockholm, 2000 #12; Abstract One dimensional Josephson junction arrays have been fabricated, measured small capacitance Josephson junction is described using a Serial Resistive and Inductive Junction (SRLJ

Haviland, David

297

Asymmetric Noise Probed with a Josephson Junction Q. Le Masne,1  

E-Print Network [OSTI]

Asymmetric Noise Probed with a Josephson Junction Q. Le Masne,1 H. Pothier,1,* Norman O. Birge,2 C of the current through a tunnel junction are measured using a Josephson junction. The current noise adds to the bias current of the Josephson junction and affects its switching out of the supercurrent branch

Birge, Norman

298

US Department of Energy Office of the Chief Information Officer  

Broader source: Energy.gov (indexed) [DOE]

Office Office 2007 Quick Overview Welcome to the Microsoft Office 2007 Overview Course! Office 2007 Overview Course  About Office 2007  New Office 2007 features available across all applications  New features specific to Word, Excel, PowerPoint, and Outlook About Office 2007  Microsoft Office 2007 is the latest version of the integrated application suite - made up of Word, Excel, Access, PowerPoint, Publisher, and Outlook.  Past versions of the suite were built upon previous versions, which resulted in a growingly complex interface of more toolbars and menus.  With Office 2007, Microsoft redesigned the interface to be more task versus command focused making navigation simpler. What's New in Office 2007?  The Ribbon  Office Button Menu

299

Field Offices | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Field Offices Field Offices About Organization Budget Field Offices Federal Advisory Committees History Scientific and Technical Information Honors & Awards Jobs Brochures, Logos, & Information Resources Contact Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Field Offices Print Text Size: A A A RSS Feeds FeedbackShare Page The Office of Science is accountable for the effective stewardship and management of ten world class laboratories, and employs a performance based management and operating contract model to achieve these objectives. Each Office of Science Site Office oversees the operation of their respective laboratory: Ames Site Office (AMSO) Argonne Site Office (ASO) Berkeley Site Office (BSO)

300

Technology Transfer Office November 2009  

E-Print Network [OSTI]

Technology Transfer Office November 2009 INVENTION AGREEMENT In consideration of my employment in writing to Dartmouth through the Technology Transfer Office any such discovery or invention and identify

Myers, Lawrence C.

Note: This page contains sample records for the topic "junction office statistical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Geothermal Technologies Office: Geothermal Projects  

Energy Savers [EERE]

Skip to Content U.S. Department of Energy Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search...

302

DOE Fuel Cell Technologies Office  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Fuel Cell Technologies Office Fuel Cell Seminar & Energy Exposition Columbus, Ohio Dr. Sunita Satyapal Director Fuel Cell Technologies Office Energy Efficiency and Renewable...

303

DOE Awards Task Order Modification for Support Services to Office of  

Broader source: Energy.gov (indexed) [DOE]

Modification for Support Services to Office Modification for Support Services to Office of Environmental Management DOE Awards Task Order Modification for Support Services to Office of Environmental Management March 11, 2013 - 12:00pm Addthis Media Contact Lynette Chafin, 513-246-0461 Lynette.Chafin@emcbc.doe.gov Cincinnati - The Department of Energy (DOE) today awarded a modification to Task Order DE-DT0005235 to J.G. Management Systems, Inc. of Grand Junction, CO for administrative and program analytical support for the Office of Environmental Management. The task order was awarded under Indefinite Delivery/Indefinite Quantity (ID/IQ) Master Contract. The modification is valued at approximately $3.1M over three years including a one-year base period and two one-year option periods. J.G. Management Systems, Inc. is a small-disadvantaged business

304

Site Office Contracting Officer E-mail address Ames Site Office...  

National Nuclear Security Administration (NNSA)

Robert.Poole@nnsa.doe.gov Nevada Site Office Darby Dieterich Dieterich@nv.doe.gov Oak Ridge Site Office Lisa Carter Carterlb@oro.doe.gov Pacific Northwest Site Office Lance...

305

NEPA Compliance Officer  

Broader source: Energy.gov (indexed) [DOE]

Compliance Officer Compliance Officer Award #: EE 000 0784 Recipient: County of Escambia ENERGY EFFICIENCY AND CONSERVATION BLOCK GRANTS NEPA COMPLIANCE FORM Activities Determination/ Categorical Exclusion Reviewer's Specific Instructions and Rationale (Restrictions and Allowable Activity) MC Blanchard Judicial Center B5.1 Historic Preservation Clause and Old Courthouse Block Waste Stream Clause Office Complex EEIP Road Prison Geothermal Earth Coupled HVAC Upgrade A9, All Allowable Activities: Information gathering, data collection, reporting, and preliminary design. Prohibited Activities: Implementation of final design, construction, and operation tasks for this project should be conditioned pending further NEPA review. Landfill Gas Extraction and Control System A9, All Allowable Activities: Information gathering,

306

Fuel Cell Technologies Office: About  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About the Fuel Cell Technologies Office About the Fuel Cell Technologies Office The Fuel Cell Technologies Office conducts comprehensive efforts to overcome the technological, economic, and institutional barriers to the widespread commercialization of hydrogen and fuel cells. The office is aligned with the strategic vision and goals of the U.S. Department of Energy (DOE). The office's efforts will help secure U.S. leadership in clean energy technologies and advance U.S. economic competitiveness and scientific innovation. What We Do DOE is the lead federal agency for directing and integrating activities in hydrogen and fuel cell R&D as authorized in the Energy Policy Act of 2005. The Fuel Cell Technologies Office is responsible for coordinating the R&D activities for DOE's Hydrogen and Fuel Cells Program, which includes activities within four DOE offices (Office of Energy Efficiency and Renewable Energy [EERE], Office of Fossil Energy, Office of Nuclear Energy, and Office of Science).

307

Manipulating Josephson junctions in thin-films by nearby vortices  

SciTech Connect (OSTI)

It is shown that a vortex trapped in one of the banks of a planar edge-type Josephson junction in a narrow thin-film superconducting strip can change drastically the dependence of the junction critical current on the applied field, I-c(H). When the vortex is placed at certain discrete positions in the strip middle, the pattern I-c(H) has zero at H = 0 instead of the traditional maximum of '0-type' junctions. The number of these positions is equal to the number of vortices trapped at the same location. When the junction-vortex separation exceeds similar to W, the strip width, I-c(H) is no longer sensitive to the vortex presence. The same is true for any separation if the vortex approaches the strip edges. (C) 2014 Elsevier B.V. All rights reserved.

Kogan, V.G.; Mints, R.G.

2014-07-01T23:59:59.000Z

308

Power dissipation in a single molecule junction: Tracking energy levels  

E-Print Network [OSTI]

Motivated by recent work [Lee et al. Nature {\\bf 489}, 209 (2013)], on asymmetry features of heat dissipation in the electrodes of molecular junctions, we put forward an idea as a result of heat dissipation in the electrodes. Based on tight-binding model and a generalized Green's function formalism, we describe the conditions under which heat dissipation shows symmetry characteristic and does not depend on the bias polarity. We also show the power dissipated in the junction can be used to detect which energy levels of molecule junction play more or less role in the transmission process. We present this idea by studying a simple toy model and Au-$C_{60}$-Au junction.

Yaghoob Naimi; Javad Vahedi

2014-12-05T23:59:59.000Z

309

Heterojunction for Multi-Junction Solar Cells - Energy Innovation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for use in forming a photodetector that has applications for use in a multi-junction solar cell and detecting light at an energy greater than 0.95-1.2 eV. DescriptionThis...

310

From Josephson junction metamaterials to tunable pseudo-cavities  

E-Print Network [OSTI]

The scattering through a Josephson junction interrupting a superconducting line is revisited including power leakage. We discuss also how to make tunable and broadband resonant mirrors by concatenating junctions. As an application, we show how to construct cavities using these mirrors, thus connecting two research fields: JJ quantum metamaterials and coupled cavity arrays. We finish by discussing the first non-linear corrections to the scattering and their measurable effects.

D. Zueco; C. Fernndez-Juez; J. Yago; U. Naether; B. Peropadre; J. J. Garca-Ripoll; J. J. Mazo

2013-05-21T23:59:59.000Z

311

Office of Security Operations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Office of Physical Protection Office of Physical Protection Bill Dwyer Director, 202-586-7887 Mission The mission of the Office of Physical Protection is to implement and oversee dedicated human resources, processes, and equipment designed to protect personnel and assets entrusted to our care at Department of Energy (DOE) Headquarters facilities. The Office is comprised of dedicated DOE Federal security professionals, Headquarters Protective Force personnel, and Alarms and Access Control Technicians. These security subject matter experts work together to ensure compliance with DOE Safeguards and Security regulations, Interagency Security Committee guidance, and federal laws. The result of this collaboration is a security program designed to ensure a safe and secure working environment for all Headquarters employees.

312

Princeton Site Office  

Broader source: Energy.gov (indexed) [DOE]

Princeton Site Office Princeton Site Office P.O. Box 102 Princeton, New Jersey 08542-0102 JAN 18 2012 To: Timothy G. Lynch , Acting General Counsel Subject: Princeton Site Office (PSO) 2012 Annual National Environmental Policy Act (NEPA) Planning Summary Section 5(a)(7) of DOE Order 451 .1 B Change 2, NEPA Compliance Program , requires each Secretarial Officer and Head of Field Organization to submit an annual NEPA Planning Summary to the General Counsel. We have reviewed your associated December 5, 2011 , memorandum and in consultation with Princeton Plasma Physics Laboratory (PPPL) staff determined that we have no Environmental Impacts Statements or Environmental Assessments either ongoing or forecast for the next 12 to 24 months. If you have any questions or need additional information

313

HEADQUARTERS SECURITY OFFICERS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HEADQUARTERS SECURITY OFFICERS Revision Date: December 16, 2013 ELEMENT Office of Security Operations AR AR-1 AR-1 AR-1 CF CF-40 CF-40 CI CI-3 ED ED-2 EE EE-3A EE-3A NAME LOCATION PHONE FAX NUMBER WAYNE E. BERKEBILE E-325/GTN 301-903-1163 301-903-8108 Advanced Research Projects Agency - Energy MATTHEW TARDUOGNO L'N !NT 950/Rm. 8014 202-586-2892 202-287-5450 NICHOLE CLAGETT (ALT) L'N !NT 950/Rm. 8025 202-287-6409 202-287-5450 SARA DWYER (REP) L'N !NT 950/Rm. B-2 202-287-6411 202-287-5450 Office of the Chief Financial Officer PHILIP A. KNOPP Rm. 1310 CLV. 301-903-0364 301-903-1863 KIMBERLY J. LUCAS (ALT) Rm. 1310 CLV. 301-903-2485 301-903-6877 Assistant Secretary for Congressional and Intergovernmental Affairs

314

Corel Office Document  

Broader source: Energy.gov (indexed) [DOE]

p p DEPARTMENT OF ENERGY Final Report Implementing Office of Management and Budget Information Dissemination Quality Guidelines AGENCY: Office of the Chief Information Officer, Department of Energy (DOE). ACTION: Notice. SUMMARY: DOE gives notice of the final report to the Office of Management and Budget (OMB) that contains final DOE guidelines setting forth policy and procedures to ensure and maximize the quality, utility, objectivity, and integrity of the information that DOE disseminates to members of the public. DOE has prepared this final report pursuant to OMB government- wide guidelines under section 515 of the Treasury and General Government Appropriations Act for Fiscal Year 2001 (Act) (Pub.L. 106-554, 114 Stat. 2763). DATES: The guidelines in the final report to OMB are effective October 1, 2002.

315

Program or Field Office  

Broader source: Energy.gov (indexed) [DOE]

Office Office : Project Title and 1.0. No.: Location: U.S. Department of Energy Office of Legacy Management Categorical Exclusion Determination Form Office of Legacy Management Surface Water and Groundwater Sampling Near the Naturita, Colorado Title I Uranium Mill Tailings Radiation Control Act (UMTRCA) Processing Site. LM # 09-12 . Naturita, Colorado Proposed Action or Project Description : DOE proposes to sample water from nine different locations in an area near the former Naturita processing site to assess the extent of groundwater contamination and the effectiveness of existing institutional controls . The area under evaluation is located on private property about 3 miles northwest of the town of Naturita . Water samples would be taken from three surface water locations and six groundwater locations. For five of the groundwater sampling locations a Geoprobe rig

316

Awards, Diversity Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Our Award-Winning Office Office Awards Our Award-Winning Office Office Awards DOE 2001 EEO/Diversity Award United States Department of Energy 2001 EEO/Diversity Award Presented to Brookhaven National Laboratory for demonstrated excellence in implementing a sound, systematic, and effective approach to Equal Employment Opportunity and Diversity. Innovative Solutions for Independent Living (SILO) Award (March 2000) SILO'S Barrier Busters Award presented to Brookhaven National Laboratory for developing innovative solutions which reduce or eliminate employment or workplace barriers for people with disabilities. Employer of the Year Silver Honoree 1999 Presented to Brookhaven National Laboratory by the National Business and Disability Council. Awarded for recognition by staff and associates, as a leader n expanding employment opportunities for people with disabilities. Brookhaven National Laboratory has made recruitment, employment procedures, accessibility and accommodation policies a priority, setting high standards for other employers to follow.

317

Office of Security Policy  

Broader source: Energy.gov [DOE]

The Office of Security Policy is the central source within the Department of Energy for the development and analysis of safeguards and security policies and standards affecting facilities, nuclear materials, personnel, and classified information.

318

Oak Ridge Office  

Broader source: Energy.gov (indexed) [DOE]

P.O. Box 2001 Oak Ridge , Tennessee 37831 June 6, 2011 Mr. Ron Murphree, Chair Oak Ridge Site Specific Advisory Board Post Office Box 2001 Oak Ridge, Tennessee 37830 Dear Mr....

319

Oak Ridge Office  

Office of Environmental Management (EM)

Martin , Chair Oak Ridge Site Specific Advisory Board Post Office Box 200 I Oak Ridge, Tennessee 37831 Dear Mr. Martin : May 22, 2013 RESPONSE TO YOUR LETTER DATED MAY 9, 2013,...

320

Oak Ridge Office  

Office of Environmental Management (EM)

Hemelright, Acting Chair Oak Ridge Site Specific Advisory Board Post Office Box 2001 Oak Ridge, Tennessee 37831 Dear Mr. Hemel right: July 19, 2013 RESPONSE TO YOUR LETTER DATED...

Note: This page contains sample records for the topic "junction office statistical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Oak Ridge Office  

Broader source: Energy.gov (indexed) [DOE]

1, 2010 Mr. Ron Murphree, Chair Oak Ridge Site Specific Advisory Board Post Office Box 200 1 Oak Ridge, Tennessee 3783 1 Dear Mr. Murphree: RESPONSE TO BOARD RECOMMENDATION 188 ON...

322

EERE Office Activities  

Broader source: Energy.gov [DOE]

Individual areas within the Office of Energy Efficiency and Renewable Energy (EERE) offer workforce and education activities tailored to the needs of a specific technology or sector. Below is a...

323

Scott Koenig Development Officer  

E-Print Network [OSTI]

Scott Koenig Development Officer Teri Lucie Thompson Senior Vice President & CMO UA FOUNDAT I/TV Station Mgr Frank Fregoso Chief Engineer Cheech Calenti IT Manager Ed Kesterson Radio Program Dir. AHSC

Utzinger, Urs

324

Carlsbad Field Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the ORNLCCP Dear Mr. Kieling: This letter transmits the Final Audit Report for Carlsbad Field Office (CBFO) Audit A-14-03 of the Oak Ridge National Laboratory (ORNL) Central...

325

Office of Information Security  

Broader source: Energy.gov [DOE]

The Office of Information Security is responsible for implementation of the Classified Matter Protection and Control Program (CMPC), the Operations Security Program (OPSEC) and the Facility Clearance Program and the Survey Program for Headquarters

326

Office for Information  

Science Journals Connector (OSTI)

... information services in science is growing steadily. The Office for Scientific and Technical Information (OSTI) emerged as an independent unit under the Department of Education and Science from the ... of information services already being developed in the United States.

1967-02-11T23:59:59.000Z

327

NORTH AMERICAN WATER OFFICE  

Broader source: Energy.gov (indexed) [DOE]

NORTH AMERICAN WATER OFFICE NORTH AMERICAN WATER OFFICE P.O. Box 174 Lake Elmo, MN 55042 Phone: (612) 770-3861 Fax: (612) 770-3976 January 30, 1998 US Department of Energy Office of General Council GC-52 1000 Independence Ave. SW Washington DC 20585 RE: Preparation of Report to Congress on Price-Anderson Act Dear Office of General Council: The Price Anderson Act should be eliminated. The Price Anderson Act assumes that the encouragement and growth of the commercial nuclear industry is in the public interest. It is not. Rational evaluation of the commercial nuclear industry forces the conclusion that the Price Anderson Act simply shields the commercial nuclear industry from costs that it would otherwise, in a fair market setting, be forced to internalize and pay. Price Anderson amounts to

328

PRIVACY IMPACT ASSESSMENT: Office  

Broader source: Energy.gov (indexed) [DOE]

Office Office of Information Resources - FOIAXpress Department of Energy Privacy Impact Assessment (PIA) Guidance is provided in the template. See DOE Order 206.1, Department of Energy Privacy Program, Appendix A, Privacy Impact Assessments, for requirements and additional guidance for conducting a PIA: http://www.directives.doe.gov/pdfs/doe/doetext/neword/206/02061.pdf Please complete electronically: no hand-written submissions will be accepted. This template may not be modified. MODULE 1- PRIVACY NEEDS ASSESSMENT Date Depamnf!l1tal Elel1l~nt&$ite july 23, 2009 Office of Information Resources Office of Management DOE Headquarters, Germantown, Germantown Computer Center Server Room Nameonl1fol'l11i1tion Sysleijlprl'f 'Project FOIAXpress ExhibitProj~tUID TBD NeWPIA ~ Update D Please indicate whether this is a new

329

Office of Quality Assurance  

Broader source: Energy.gov [DOE]

The Office of Quality Assurance establishes and maintains the quality assurance (QA) policies, requirements and guidance for the Department and serves as DOE's corporate resource to ensure that products and services meet or exceed the Departments quality objectives.

330

Subscribe to Geothermal Technologies Office Updates | Department...  

Energy Savers [EERE]

Subscribe to Geothermal Technologies Office Updates Subscribe to Geothermal Technologies Office Updates...

331

High-frequency wave sources using Josephson-junction arrays  

SciTech Connect (OSTI)

Results from Josephson-junction arrays used as high-frequency wave sources are presented. Phase-locked Josephson-junction arrays having a large number of junctions were developed to meet the need for compact submillimeter-wave sources for use in such applications as satellite communications are receivers for radioastronomical observations. The design, fabrication processes, and measurement are discussed. Distributed arrays of 40 junctions in which all Josephson junctions are placed at wavelength intervals were fabricated and tested. Such arrays can deliver about 1 [mu]W of power into a 20-60 [Omega] load resistor in the frequency ranger from 100 to 500 GHz, the upper limit being set by the large loss of the superconducting microstrip. Compact arrays were designed and fabricated to eliminate the loss of the superconducting microstrip. Those arrays have also demonstrated an output power level about 1 [mu]W into a 15 [Omega] load from 100 GHz up to 620 GHz. Characteristics of the Josephson junction source, including the power level, impedance matching, the tunability, the radiation linewidth, and tuning rate (or frequency-modulation) are discussed.

Wan, Kelin.

1991-01-01T23:59:59.000Z

332

BS in STATISTICS: Statistical Science Emphasis (695220) MAP Sheet Department of Statistics  

E-Print Network [OSTI]

Statistics for Engineers & Scientists Stat 301 Statistics & Probability for Sec Ed Note: Students who have 240 Discrete Probability Stat 290 Communication of Statistical Results Stat 330 IntroductionBS in STATISTICS: Statistical Science Emphasis (695220) MAP Sheet Department of Statistics

Olsen Jr., Dan R.

333

Workforce Statistics - NA 1 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

| National Nuclear Security Administration | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Workforce Statistics - NA 1 Home > About Us > Our Operations > Management and Budget > Office of Civil Rights > Workforce Statistics > Workforce Statistics - NA 1 Workforce Statistics - NA 1 NA 1 FY12 NA 1 Semi Annual Report

334

Topology for statistical modeling of petascale data.  

SciTech Connect (OSTI)

This document presents current technical progress and dissemination of results for the Mathematics for Analysis of Petascale Data (MAPD) project titled 'Topology for Statistical Modeling of Petascale Data', funded by the Office of Science Advanced Scientific Computing Research (ASCR) Applied Math program. Many commonly used algorithms for mathematical analysis do not scale well enough to accommodate the size or complexity of petascale data produced by computational simulations. The primary goal of this project is thus to develop new mathematical tools that address both the petascale size and uncertain nature of current data. At a high level, our approach is based on the complementary techniques of combinatorial topology and statistical modeling. In particular, we use combinatorial topology to filter out spurious data that would otherwise skew statistical modeling techniques, and we employ advanced algorithms from algebraic statistics to efficiently find globally optimal fits to statistical models. This document summarizes the technical advances we have made to date that were made possible in whole or in part by MAPD funding. These technical contributions can be divided loosely into three categories: (1) advances in the field of combinatorial topology, (2) advances in statistical modeling, and (3) new integrated topological and statistical methods.

Pascucci, Valerio (University of Utah, Salt Lake City, UT); Mascarenhas, Ajith Arthur; Rusek, Korben (Texas A& M University, College Station, TX); Bennett, Janine Camille; Levine, Joshua (University of Utah, Salt Lake City, UT); Pebay, Philippe Pierre; Gyulassy, Attila (University of Utah, Salt Lake City, UT); Thompson, David C.; Rojas, Joseph Maurice (Texas A& M University, College Station, TX)

2011-07-01T23:59:59.000Z

335

Green Office Program: Innovation Credits  

E-Print Network [OSTI]

Green Office Program: Innovation Credits There are plenty of sustainable practices that aren't on our Green Office Program checklist. In an effort to encourage such practices, and reward offices Green: 5 Think outside the box, but make sure your innovation credits are approved by your Green Office

Massachusetts at Amherst, University of

336

Building Technologies Office: Emerging Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Emerging Technologies Emerging Technologies Printable Version Share this resource Send a link to Building Technologies Office: Emerging Technologies to someone by E-mail Share Building Technologies Office: Emerging Technologies on Facebook Tweet about Building Technologies Office: Emerging Technologies on Twitter Bookmark Building Technologies Office: Emerging Technologies on Google Bookmark Building Technologies Office: Emerging Technologies on Delicious Rank Building Technologies Office: Emerging Technologies on Digg Find More places to share Building Technologies Office: Emerging Technologies on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Technology Research, Standards, & Codes Popular Links Success Stories Previous Next Lighten Energy Loads with System Design.

337

Microstructure of Josephson junctions: Effect on supercurrent transport in YBCO grain boundary and barrier layer junctions  

SciTech Connect (OSTI)

The electric transport of high-temperature superconductors, such as YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} (YBCO), can be strongly restricted by the presence of high-angle grain boundaries (GB). This weak-link behavior is governed by the macroscopic GB geometry and the microscopic grain boundary structure and composition at the atomic level. Whereas grain boundaries present a considerable impediment to high current applications of high T{sub c} materials, there is considerable commercial interest in exploiting the weak-link-nature of grain boundaries for the design of microelectronic devices, such as superconducting quantum interference devices (SQUIDs). The Josephson junctions which form the basis of this technology can also be formed by introducing artificial barriers into the superconductor. The authors have examined both types of Josephson junctions by EM techniques in an effort to understand the connection between microstructure/chemistry and electrical transport properties. This knowledge is a valuable resource for the design and production of improved devices.

Merkle, K.L.; Huang, Y.

1998-01-01T23:59:59.000Z

338

DOE Office of Science - Chicago Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DEPARTMENT OF ENERGY (DOE) DEPARTMENT OF ENERGY (DOE) In 1977 the Administration and Congress acted to further consolidate federal energy policy, R&D, and nuclear energy defense functions. ERDA was integrated with the Federal Energy Administration and other federal energy functions to create a Cabinet-level U.S. Department of Energy. The governmental elements brought together to form DOE included the Federal Energy Regulatory Commission; the Economic Regulatory Administration; the automotive research and development sections of the Environmental Protection Agency; Solar Research and Development from the National Science Foundation; and Fossil Energy and Development from the Department of the Interior's Office of Coal Research, as well as several Power Administrations.

339

Office of Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Security Security Home Sub Offices › Security Policy › Security Assistance › Departmental Personnel Security Mission & Functions › Security Policy › Security Assistance › Departmental Personnel Security Human Reliability Program (HRP) Guidance Documents Security Technology Information Archive (STIA) Related Links › DOE › DOE CIO › NNSA › DOE CFO › NTC › S&S PIR Contact Us HSS Logo Welcome to the Office of Security Mission and Functions The Office of Security (HS-50) developes security policy, provides security expertise to assist field elements in planning site protection strategies and coordinates with domestic authorities to provide safeguards and security technical assistance, technical systems support, and technology development and deployment opportunities. The Office of Security, through the Office of Departmental Personnel Security, also ensures that Departmental personnel security programs (included the National Nuclear Security Administration) are consistent and effectively implemented.

340

Elongated nanostructures for radial junction solar cells  

Science Journals Connector (OSTI)

In solar cell technology, the current trend is to thin down the active absorber layer. The main advantage of a thinner absorber is primarily the reduced consumption of material and energy during production. For thin film silicon (Si) technology, thinning down the absorber layer is of particular interest since both the device throughput of vacuum deposition systems and the stability of the devices are significantly enhanced. These features lead to lower cost per installed watt peak for solar cells, provided that the (stabilized) efficiency is the same as for thicker devices. However, merely thinning down inevitably leads to a reduced light absorption. Therefore, advanced light trapping schemes are crucial to increase the light path length. The use of elongated nanostructures is a promising method for advanced light trapping. The enhanced optical performance originates from orthogonalization of the light's travel path with respect to the direction of carrier collection due to the radial junction, an improved anti-reflection effect thanks to the three-dimensional geometric configuration and the multiple scattering between individual nanostructures. These advantages potentially allow for high efficiency at a significantly reduced quantity and even at a reduced material quality, of the semiconductor material. In this article, several types of elongated nanostructures with the high potential to improve the device performance are reviewed. First, we briefly introduce the conventional solar cells with emphasis on thin film technology, following the most commonly used fabrication techniques for creating nanostructures with a high aspect ratio. Subsequently, several representative applications of elongated nanostructures, such as Si nanowires in realistic photovoltaic (PV) devices, are reviewed. Finally, the scientific challenges and an outlook for nanostructured PV devices are presented.

Yinghuan Kuang; Marcel Di Vece; Jatindra K Rath; Lourens van Dijk; Ruud E I Schropp

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "junction office statistical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

OFFICE OF INSPECTOR GENERAL  

Broader source: Energy.gov (indexed) [DOE]

APP-005 APP-005 Planning for and Measuring Office of Inspector General Results FY 2002 Annual Performance Report and FY 2003 Annual Performance Plan Office of Inspector General U.S. Department of Energy Inspector General's Message We are pleased to present the Office of Inspector General's (OIG) consolidated Fiscal Year 2002 Annual Performance Report and Fiscal Year 2003 Annual Performance Plan. This document evaluates our actual Fiscal Year (FY) 2002 performance and establishes the performance goals and strategies we will pursue in FY 2003 to fulfill our mission. As mandated by the Inspector General Act, the OIG promotes the effective, efficient, and economical operation of the Department of Energy's programs and operations, including the National Nuclear Security Administration (NNSA).

342

San Francisco Operations Office  

Office of Legacy Management (LM)

San Francisco Operations Office San Francisco Operations Office 1333 Broadway Oakland, California 94612 Dr. Joseph 0. Ward, Chief Radiological Health Section Department of Health Services 744 P Street Sacramento, California, 95814 SUBJECT: Certification Docket of Gilman Hall Dear Dr. Ward: The Department of Energy (DOE) has completed and reviewed the remedial ac- tions of Gilman Hall located at the University of California, Berkeley, California. Based on this review, DOE certifies that the condition of Gilman Hall is radiologically acceptable for restricted use under the con- trols of the University of California's State General License 1333-62 pro- vided that the University's Office of Environmental Health and Safety con- tinues to survey Gilman Hall and monitor whenever remodeling or renovation

343

Program or Field Office:  

Broader source: Energy.gov (indexed) [DOE]

Office of Legacy Management Office of Legacy Management U.S. Department of Energy Categorical Exclusion Determination Form Office of Legacy Management Routine maintenance actions at the calibration pads and borehole pits near Grants, New Mexico. LM # 39-11. Location: Grants, New Mexico Proposed Action or Project Description : DOE proposes to conduct routine maintenance actions as needed, on a facility containing surface calibration pads and borehole pits. The facility is located on 1 acre northwest of Grants, New Mexico. The site is adjacent to New Mexico State Highway 605 and is surrounded by land administered by the U. S. Bureau of Land Management. Examples of typical maintenance actions that may occur include painting signs or identification numbers, fixing or repairing locks and the perimeter fence, hand-trimming vegetation that may encroach on the pad

344

Nevada Operations Office  

Office of Legacy Management (LM)

Nevada Operations Office Nevada Operations Office t' . 0. Box 14100, Las Vegas, NV 89114-4100 Lt. Col. Kent J. Rohlof; USAF Commander 554th Civil Engineering Support Squadron (TAC) Nellis Air Force Base, NV 89191 DISPOSAL OF LIQUID RADIOACTIVE WASTE--NELLIS AIR FORCE BASE Layton O'Neill and Thomas Graham of my office recently visited two sites at Nellis AFB, Area II, identified as locations for burial of radioactive waste. The purpose of this visit was to visually inspect the physical status of the sites, one identified as the location of the subject liquid wastes. Numerous readings were made with a hand-held Ludlum Model 125 Micro-R meter, for the purpose of personnel radiation protection walking into the controlled, posted radioactive waste compounds. No readings were above background.

345

Office of Security Assistance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Security Security Home Sub Offices › Security Policy › Security Assistance › Departmental Personnel Security Mission & Functions › Security Policy › Security Assistance › Departmental Personnel Security Human Reliability Program (HRP) Guidance Documents Security Technology Information Archive (STIA) Related Links › DOE › DOE CIO › NNSA › DOE CFO › NTC › S&S PIR Contact Us HSS Logo Director's Perspective Welcome to the Office of Security Assistance Samuel N. Callahan, Director Mission and Functions The Office of Health, Safety, and Security (HSS) created the Office of Security Assistance Program to provide timely technical assistance and system support to field and Headquarters elements to enhance site security programs, upon request. The program is comprised of technologists and subject matter experts from all security disciplines including Program Management, Protection Program Operations, Information Security, Materials Control and Accountability, and Personnel Security. HSS is committed to building a security assistance program to serve the interests of the Department based upon the needs of our customers - with emphasis on customer-focus and meeting multi-disciplinary security needs. In Fiscal Year 2007, HSS performed extensive assistance activities at the request of DOE/NNSA program offices and field sites. The activities ranged from special and routine site survey assistance, physical and technical security inspections in support of the Office of Intelligence, Vulnerability Assessment and Design Basis Threat (DBT) implementation assistance, third-party, adversary support, and DBT implementation and planning validation activities associated with the Site Assistance Visits and Technology Assistance Visits. The security assistance provided to our customers included technical expertise tailored to augment site capabilities in critical fields.

346

Measure Guideline: Optimizing the Configuration of Flexible Duct Junction Boxes  

SciTech Connect (OSTI)

This measure guideline offers additional recommendations to heating, ventilation, and air conditioning (HVAC) system designers for optimizing flexible duct, constant-volume HVAC systems using junction boxes within Air Conditioning Contractors of America (ACCA) Manual D guidance (Rutkowski, H. Manual D -- Residential Duct Systems, 3rd edition, Version 1.00. Arlington, VA: Air Conditioning Contractors of America, 2009.). IBACOS used computational fluid dynamics software to explore and develop guidance to better control the airflow effects of factors that may impact pressure losses within junction boxes among various design configurations (Beach, R., Prahl, D., and Lange, R. CFD Analysis of Flexible Duct Junction Box Design. Golden, CO: National Renewable Energy Laboratory, submitted for publication 2013). These recommendations can help to ensure that a system aligns more closely with the design and the occupants' comfort expectations. Specifically, the recommendations described herein show how to configure a rectangular box with four outlets, a triangular box with three outlets, metal wyes with two outlets, and multiple configurations for more than four outlets. Designers of HVAC systems, contractors who are fabricating junction boxes on site, and anyone using the ACCA Manual D process for sizing duct runs will find this measure guideline invaluable for more accurately minimizing pressure losses when using junction boxes with flexible ducts.

Beach, R.; Burdick, A.

2014-03-01T23:59:59.000Z

347

Microwave coupling of frequency-locked Josephson junction arrays  

SciTech Connect (OSTI)

A high temperature superconducting YBa{sub 2}Cu{sub 3}O{sub y} array of five Josephson junctions designed with additional coupling lines has been developed to demonstrate the effects of frequency locking and impedance matching for applications such as oscillators, mixers, and detectors. The Josephson self-radiation power was directly detected by a superheterodyne receiver, and Shapiro steps were also measured. The Josephson self-radiation properties reveal good quality of phase locking and microwave coupling with external circuits. The maximum self-radiation power of our array is about 50 pW which is several ten times higher than that of a single Josephson junction, and its peak point exactly satisfies the Josephson current-voltage relation. The Shapiro-step measurements show that the behavior of current-voltage curve depends on the effective inductance of coupling lines which affects the total impedance of Josephson junction array and microwave coupling. The Josephson oscillation frequency was obtained up to about 880 GHz which is 73{percent} of the maximum available frequency calculated from the characteristic voltage of the Josephson junctions. Experimental results show that this type of Josephson junction array can improve the Josephson self-radiation power and increase the maximum detectable frequency. {copyright} {ital 1997 American Institute of Physics.}

Song, I.; Eom, Y.; Park, G. [Department of Physics, Sogang University, Seoul 100-611 (Korea)] [Department of Physics, Sogang University, Seoul 100-611 (Korea); Lee, E.; Park, S. [Electronic Materials Laboratory, Samsung Advanced Institute of Technology, Suwon (Korea)] [Electronic Materials Laboratory, Samsung Advanced Institute of Technology, Suwon (Korea)

1997-06-01T23:59:59.000Z

348

Theoretical exploration of Josephson Plasma Emission in Intrinsic Josephson Junctions  

SciTech Connect (OSTI)

In this paper, the authors theoretically predict the best efficient way for electromagnetic wave emission by Josephson plasma excitation in intrinsic Josephson junctions. First, they briefly derive basic equations describing dynamics of phase differences inside junction sites in intrinsic Josephson junctions, and review the nature of Josephson plasma excitation modes based on the equations. Especially, they make an attention to that Josephson plasma modes have much different dispersion relations depending on the propagating directions and their different modes can be recognized as N standing waves propagating along ah-plane in cases of finite stacked systems composed of N junctions. Second, they consider how to excite their modes and point out that excitations of in-phase mode with the highest propagation velocity among their N modes are the most efficient way for electromagnetic wave emissions. Finally, they clarify that in-phase excitations over all junctions are possible by using Josephson vortex flow states. They show simulation results of Josephson vortex flow states resonating with some Josephson plasma modes and predict that superradiance of electromagnetic field may occur in rectangular vortex flow state in which spatiotemporal oscillations of electromagnetic fields are perfectly in-phase.

Tachiki, M.; Machida, M.

2000-07-18T23:59:59.000Z

349

Interference effects in isolated Josephson junction arrays with geometric symmetries  

E-Print Network [OSTI]

As the size of a Josephson junction is reduced, charging effects become important and the superconducting phase across the link turns into a periodic quantum variable. Isolated Josephson junction arrays are described in terms of such periodic quantum variables and thus exhibit pronounced quantum interference effects arising from paths with different winding numbers (Aharonov-Casher effects). These interference effects have strong implications for the excitation spectrum of the array which are relevant in applications of superconducting junction arrays for quantum computing. The interference effects are most pronounced in arrays composed of identical junctions and possessing geometric symmetries; they may be controlled by either external gate potentials or by adding/removing charge to/from the array. Here we consider a loop of N identical junctions encircling one half superconducting quantum of magnetic flux. In this system, the ground state is found to be non-degenerate if the total number of Cooper pairs on the array is divisible by N, and doubly degenerate otherwise (after the stray charges are compensated by the gate voltages).

D. A. Ivanov; L. B. Ioffe; V. B. Geshkenbein; G. Blatter

2001-02-13T23:59:59.000Z

350

Golden Field Office  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Department of Energy Golden Field Office 1617 Cole Boulevard Golden, Colorado 80401-3393 FINDING OF NO SIGNIFICANT IMPACT UNIVERSITY OF MAINE'S DEEPWATER OFFSHORE FLOATING WIND TURBINE TESTING AND DEMONSTRATION PROJECT - CASTINE DOE/EA-1792-S1 AGENCY: U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy ACTION: Finding of No Significant Impact (FONSI) SUMMARY: The U.S. Department of Energy (DOE) has completed a Supplemental Environmental Assessment (Supplemental EA) DOE/EA-1792-S1 for the University of Maine's (UMaine) Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project - Castine. DOE prepared the Supplemental EA to evaluate the potential environmental impacts of

351

Program or Field Office:  

Broader source: Energy.gov (indexed) [DOE]

, Energy , Energy Office of Legacy Management Categorical Exclusion Determination Form Office of Legacy Management Routine Activities at the Casper, Wyoming, Calibration Model Facility Location : Casper, Wyoming Proposed Action or Project Description: * DOE proposes to conduct routine activities as needed at a facility containing five dry borehole calibration pits and seven concrete calibration pads. These calibration models are located at the Casper, Wyoming Calibration Facility on property leased from the Natrona County International Airport Authority. Renewal of the lease generally occurs every five years with the next anticipated renewal in 2015. Routine maintenance action s may include fence repair, painting of facility components, potential replacement of

352

UESC Contracting Officer Issues  

Broader source: Energy.gov (indexed) [DOE]

MAY 23, 2013 MAY 23, 2013 Presented by: Alice Oberhausen Former DoD Contracting Officer UESC PROCESSES - CONTRACTING OFFICER LINGERING QUESTIONS * With so much legislation surrounding the requirement for the reduction of energy in Federal facilities, and the authorization for entering into contracts with servicing Utility companies, why is there still confusion about the details in the acquisition processes? A Sampling of Questions THE FOLLOWING SLIDES ILLUSTRATE SOME OF THE QUESTIONS THAT CONTINUE TO ARISE FROM THE ACQUISITION COMMUNITY AS NEWCOMERS EXPLORE MEETING ENERGY GOALS THROUGH UESC METHODS * Should the Service Contract Act apply to the post-award requirement to provide Performance Assurance analysis and reports?

353

Building Technologies Office: Regulatory Processes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regulatory Processes to Regulatory Processes to someone by E-mail Share Building Technologies Office: Regulatory Processes on Facebook Tweet about Building Technologies Office: Regulatory Processes on Twitter Bookmark Building Technologies Office: Regulatory Processes on Google Bookmark Building Technologies Office: Regulatory Processes on Delicious Rank Building Technologies Office: Regulatory Processes on Digg Find More places to share Building Technologies Office: Regulatory Processes on AddThis.com... About History & Impacts Statutory Authorities & Rules Regulatory Processes Plans & Schedules Reports & Publications Standards & Test Procedures Implementation, Certification & Enforcement Rulemakings & Notices Further Guidance ENERGY STAR® Popular Links Success Stories

354

Vehicle Technologies Office: Active Solicitations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Active Solicitations to Active Solicitations to someone by E-mail Share Vehicle Technologies Office: Active Solicitations on Facebook Tweet about Vehicle Technologies Office: Active Solicitations on Twitter Bookmark Vehicle Technologies Office: Active Solicitations on Google Bookmark Vehicle Technologies Office: Active Solicitations on Delicious Rank Vehicle Technologies Office: Active Solicitations on Digg Find More places to share Vehicle Technologies Office: Active Solicitations on AddThis.com... Active Solicitations To explore current financial opportunity solicitations, click on the opportunity titles in the table below. To sort the list, click on the arrows in the column headings. Technology Solicitation Title Open Date Close Date Hydrogen and Fuel Cells Research and Development for Hydrogen Storage

355

Fuel Cell Technologies Office: Glossary  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Glossary to someone by Glossary to someone by E-mail Share Fuel Cell Technologies Office: Glossary on Facebook Tweet about Fuel Cell Technologies Office: Glossary on Twitter Bookmark Fuel Cell Technologies Office: Glossary on Google Bookmark Fuel Cell Technologies Office: Glossary on Delicious Rank Fuel Cell Technologies Office: Glossary on Digg Find More places to share Fuel Cell Technologies Office: Glossary on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Webinars Data Records Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Glossary

356

Vehicle Technologies Office: Power Electronics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Electronics to Power Electronics to someone by E-mail Share Vehicle Technologies Office: Power Electronics on Facebook Tweet about Vehicle Technologies Office: Power Electronics on Twitter Bookmark Vehicle Technologies Office: Power Electronics on Google Bookmark Vehicle Technologies Office: Power Electronics on Delicious Rank Vehicle Technologies Office: Power Electronics on Digg Find More places to share Vehicle Technologies Office: Power Electronics on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Power Electronics Electrical Machines Thermal Control & System Integration Advanced Combustion Engines Fuels & Lubricants Materials Technologies Power Electronics The power electronics activity focuses on research and development (R&D)

357

Building Technologies Office: Appliances Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Appliances Research to Appliances Research to someone by E-mail Share Building Technologies Office: Appliances Research on Facebook Tweet about Building Technologies Office: Appliances Research on Twitter Bookmark Building Technologies Office: Appliances Research on Google Bookmark Building Technologies Office: Appliances Research on Delicious Rank Building Technologies Office: Appliances Research on Digg Find More places to share Building Technologies Office: Appliances Research on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research Sensors & Controls Research Energy Efficient Buildings Hub Building Energy Modeling

358

Building Technologies Office: Webinar Archives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Webinar Archives to Webinar Archives to someone by E-mail Share Building Technologies Office: Webinar Archives on Facebook Tweet about Building Technologies Office: Webinar Archives on Twitter Bookmark Building Technologies Office: Webinar Archives on Google Bookmark Building Technologies Office: Webinar Archives on Delicious Rank Building Technologies Office: Webinar Archives on Digg Find More places to share Building Technologies Office: Webinar Archives on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program

359

Vehicle Technologies Office: Electrical Machines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrical Machines to Electrical Machines to someone by E-mail Share Vehicle Technologies Office: Electrical Machines on Facebook Tweet about Vehicle Technologies Office: Electrical Machines on Twitter Bookmark Vehicle Technologies Office: Electrical Machines on Google Bookmark Vehicle Technologies Office: Electrical Machines on Delicious Rank Vehicle Technologies Office: Electrical Machines on Digg Find More places to share Vehicle Technologies Office: Electrical Machines on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Power Electronics Electrical Machines Thermal Control & System Integration Advanced Combustion Engines Fuels & Lubricants Materials Technologies Electrical Machines Emphasis in the electrical machines activity is on advanced motor

360

Building Technologies Office: Strategic Plans  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Strategic Plans to Strategic Plans to someone by E-mail Share Building Technologies Office: Strategic Plans on Facebook Tweet about Building Technologies Office: Strategic Plans on Twitter Bookmark Building Technologies Office: Strategic Plans on Google Bookmark Building Technologies Office: Strategic Plans on Delicious Rank Building Technologies Office: Strategic Plans on Digg Find More places to share Building Technologies Office: Strategic Plans on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home

Note: This page contains sample records for the topic "junction office statistical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Building Technologies Office: Residential Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Residential Buildings Residential Buildings to someone by E-mail Share Building Technologies Office: Residential Buildings on Facebook Tweet about Building Technologies Office: Residential Buildings on Twitter Bookmark Building Technologies Office: Residential Buildings on Google Bookmark Building Technologies Office: Residential Buildings on Delicious Rank Building Technologies Office: Residential Buildings on Digg Find More places to share Building Technologies Office: Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat. Lighten Energy Loads with System Design. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program

362

Fuel Cell Technologies Office: Presentations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Presentations to Presentations to someone by E-mail Share Fuel Cell Technologies Office: Presentations on Facebook Tweet about Fuel Cell Technologies Office: Presentations on Twitter Bookmark Fuel Cell Technologies Office: Presentations on Google Bookmark Fuel Cell Technologies Office: Presentations on Delicious Rank Fuel Cell Technologies Office: Presentations on Digg Find More places to share Fuel Cell Technologies Office: Presentations on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings Webinars Data Records Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells

363

POSITION OPENING APPLIED STATISTICS  

E-Print Network [OSTI]

: Assistant or Associate Professor of Applied Statistics. Employment Beginning: September 16, 2012 DescriptionPOSITION OPENING APPLIED STATISTICS Department of Decision Sciences Charles H. Lundquist College at the University of Oregon is seeking to fill one tenure-track faculty position in Applied Statistics. Rank

Shepp, Larry

364

Statistical Parametric Speech Synthesis  

E-Print Network [OSTI]

Statistical Parametric Speech Synthesis Heiga Zen Google June 9th, 2014 #12;Outline Background HMM-based statistical parametric speech synthesis (SPSS) Flexibility Improvements Statistical parametric speech synthesis with neural networks Deep neural network (DNN)-based SPSS Deep mixture density network (DMDN

Cortes, Corinna

365

Breathers in Josephson junction ladders: Resonances and electromagnetic wave spectroscopy A. E. Miroshnichenko, S. Flach, and M. V. Fistul  

E-Print Network [OSTI]

Breathers in Josephson junction ladders: Resonances and electromagnetic wave spectroscopy A. E localized states discrete breathers and linear electromagnetic excitations EE's in Josephson junction lattices 6 , and localized resistive states in Josephson junction arrays 7­10 . The latter systems

Flach, Sergej

366

Appointment of Contracting Officers and Contracting Officer Representatives  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish procedures governing the selection, appointment, and termination of contracting officers and for the appointment of contracting officer representatives. Cancels DOE Order 4200.4A. Canceled by DOE O 541.1A.

1996-04-30T23:59:59.000Z

367

Office of Heath, Safety and Security Now Two New Offices  

Broader source: Energy.gov [DOE]

To serve you better, DOE has structured the former HSS into to new organizations: the Office Independent Enterprise Assessment (IEA); and Office of Environment, Health, Safety and Security (EHSS).

368

OFFICE ERGONOMICS A Self-Assessment  

E-Print Network [OSTI]

OFFICE ERGONOMICS A Self-Assessment Guide Environmental Health and Safety Office safety, along with additional information on ergonomics, is also available through the Dalhousie Safety Office

Brownstone, Rob

369

Independent Oversight Evaluation, Office of Secure Transportation...  

Office of Environmental Management (EM)

Evaluation, Office of Secure Transportation - February 2004 Independent Oversight Evaluation, Office of Secure Transportation - February 2004 February 2004 Evaluation of the Office...

370

Office of Information Resources | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Office of Information Resources Office of Information Resources FOIAPA POC List as of February 02, 2009 Office of Information Resources More Documents & Publications Privacy Act...

371

DOE RL Contracting Officers - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home Prime Contracts Current Solicitations Small Business Other Sources DOE RL Contracting Officers DOE RL Contracting Officer Representatives DOE RL Contracting Officers...

372

Vehicle Technologies Office: Regulated Fleets | Department of...  

Energy Savers [EERE]

Alternative Fuels Vehicle Technologies Office: Regulated Fleets Vehicle Technologies Office: Regulated Fleets The Office of Energy Efficiency and Renewable Energy (EERE) manages...

373

City of Grand Junction, Iowa (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Grand Junction City of Grand Junction City of Place Iowa Utility Id 7486 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Commercial Demand Service Commercial Residential Eletric Residential Average Rates Residential: $0.1340/kWh Commercial: $0.1300/kWh Industrial: $0.0899/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Grand_Junction,_Iowa_(Utility_Company)&oldid=409673

374

NREL: Awards and Honors - Triple-Junction Terrestrial Concentrator Solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Triple-Junction Terrestrial Concentrator Solar Cell Triple-Junction Terrestrial Concentrator Solar Cell Developers: Dr. Jerry Olson, Dr. Sarah Kurtz, Dr. Daniel Friedman, Alan Kibbler, and Charlene Karmer, National Renewable Energy Laboratory; Dr. Richard King, Jim Ermer, Dmitri D. Krut, Hector Cotal, Peter Colter, Hojun Yoon, Nassar Karam, and Gregory S. Glenn, Spectrolab, Inc. The triple-junction solar cell - or TJ solar cell - generates a lot of energy from just a very little amount of material. How much energy? A 1-cm2 cell can generate as much as 35 W of power and produce as much as 86.3 kWh of electricity during a typical year under a Phoenix, AZ sun. This means that 100 to 150 of these cells could produce enough electricity to power the typical American household. This cell can do this, first, because it

375

Bloch Inductance in Small-Capacitance Josephson Junctions  

SciTech Connect (OSTI)

We show that the electrical impedance of a small-capacitance Josephson junction also includes, in addition to the capacitive term -i/{omega}C{sub B}, an inductive term i{omega}L{sub B}. Similar to the known Bloch capacitance C{sub B}(q), the Bloch inductance L{sub B}(q) also depends periodically on the quasicharge, q, and its maximum value achieved at q=e(mod 2e) always exceeds the value of the Josephson inductance of this junction L{sub J}({phi}) at fixed {phi}=0. The effect of the Bloch inductance on the dynamics of a single junction and a one-dimensional array is described.

Zorin, A.B. [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany)

2006-04-28T23:59:59.000Z

376

Physical understanding of cryogenic implant benefits for electrical junction stability  

SciTech Connect (OSTI)

We investigate the effect of cryogenic temperature implants on electrical junction stability for ultra shallow junction applications for sub-32 nm technology nodes and beyond. A comprehensive study was conducted to gain physical understanding of the impact of cryogenic temperature implants on dopant-defect interactions. Carborane (C{sub 2}B{sub 10}H{sub 12}) molecule, a potential alternative to monomer boron was implanted in carbon preamorphized silicon substrates at cryogenic implant temperatures. Results indicate implants at cryogenic temperatures increase dopant activation with reduced diffusion, resulting in lower sheet resistance for a lower junction depth. Further, this study emphasizes the benefits of co-implants performed at cryogenic temperatures as alternative to traditional preamorphizing implants.

Adeni Khaja, Fareen; Colombeau, Benjamin; Thanigaivelan, Thirumal; Ramappa, Deepak; Henry, Todd [Applied Materials-Varian Semiconductor Equipment, 35 Dory Road, Gloucester, Massachusetts 01930 (United States)

2012-03-12T23:59:59.000Z

377

Escape Time of Josephson Junctions for Signal Detection  

E-Print Network [OSTI]

In this Chapter we investigate with the methods of signal detection the response of a Josephson junction to a perturbation to decide if the perturbation contains a coherent oscillation embedded in the background noise. When a Josephson Junction is irradiated by an external noisy source, it eventually leaves the static state and reaches a steady voltage state. The appearance of a voltage step allows to measure the time spent in the metastable state before the transition to the running state, thus defining an escape time. The distribution of the escape times depends upon the characteristics of the noise and the Josephson junction. Moreover, the properties of the distribution depends on the features of the signal (amplitude, frequency and phase), which can be therefore inferred through the appropriate signal processing methods. Signal detection with JJ is interesting for practical purposes, inasmuch as the superconductive elements can be (in principle) cooled to the absolute zero and therefore can add (in practi...

Addesso, P; Pierro, V

2014-01-01T23:59:59.000Z

378

Comparison of measurements and simulations of series-parallel incommensurate area SQUID arrays fabricated from Y Ba Cu O ion damage Josephson junctions  

E-Print Network [OSTI]

3 O 7?? ion damage Josephson junctions Shane A. Cybart, 1,2 Cu 3 O 7?? thin ?lm ion damage Josephson junctions. Theconsisted of a grid of Josephson junctions with 28 junctions

Cybart, Shane A.

2014-01-01T23:59:59.000Z

379

Office of Nuclear Energy  

Broader source: Energy.gov (indexed) [DOE]

NE Human Capital Plan Revised August 2006 U. S. Department of Energy NE Human Capital Plan i August 2006 Office of Nuclear Energy Table of Contents Executive Summary...................................................................................................................................1 Background .................................................................................................................................................2 NE Human Capital Strategy.....................................................................................................................2 NE Human Capital Plan: At-A-Glance ..................................................................................................3

380

Office Ergonomics An Overview  

E-Print Network [OSTI]

Office Ergonomics An Overview Presented for the Physics Department 4/12/07 Room 2-160 Presented by N. Bernholc, CIH Safety and Health Services Division #12;Ergonomics... Definition What is Ergonomics relationships between workers and their work environments. #12;Ergonomics... Or More Simply said: Ergonomics

Homes, Christopher C.

Note: This page contains sample records for the topic "junction office statistical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Chief Financial Officer Responsibilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order sets forth requirements for operating the Department of Energy in full compliance with the Chief Financial Officers Act of 1990 and sets standards for sound financial management policies and practices, effective internal controls, accurate and timely financial information, and well-qualified financial managers. Cancels DOE O 520.1.

2006-11-21T23:59:59.000Z

382

Office of Document Reviews  

Broader source: Energy.gov [DOE]

The Office of Document Reviews ensures that all documents prepared at DOE Headquarters are properly marked to identify the level and category of protected information they contain (if any) and to ensure that all documents the Department prepares or is required to review under applicable statutes for public release contain no information requiring protection under law, regulations and Executive orders.

383

Office of Quality Management  

Broader source: Energy.gov [DOE]

The Office of Quality Management develops and interprets Government-wide policies and procedures and conducts training to ensure the accurate identification of information and documents that must be classified or controlled under statute or Executive order to protect the national security and controlled unclassified Official Use Only information for the effective operation of the Government.

384

POLICY SECTIONS POLICY OFFICE  

E-Print Network [OSTI]

POLICY SECTIONS POLICY OFFICE POLICIES FORMS PROCEDURES UNIVERSITY POLICY #12;guide to WRITING POLICIES Administrative policies align opera- tions, set behavior expectations across the University system and communicate policy roles and responsibilities. You, as the policy owner or writer, have the important task

Minnesota, University of

385

Office of Security Assistance  

Broader source: Energy.gov [DOE]

The Office of Security Assistance manages the Technology Deployment Program to improve the security posture of the Department of Energy and the protection of its assets and facilities through the deployment of new safeguards and security technologies and development of advanced technologies that reduce operating costs, save protective force lives, and improve security effectiveness.

386

PARKING MAP Sales Office  

E-Print Network [OSTI]

PARKING MAP BayDr. Main Entrance Parking Sales Office Main Entrance Kiosk East Remote Lot, B, C111, MC, N, NC, , Medical M 2hr 112 Core West Structure A, B, EV, MC, N, NC, , Medical P 2hr 113

Wilmers, Chris

387

FRASER POLLUTION ABATEMENT OFFICE  

E-Print Network [OSTI]

are to build partnerships, clean up pollution, and renew the productivity of the natural environment Environmental Protection Act and the pollution prevention provisions of the Fisheries Act. The pollution clean#12;FRASER POLLUTION ABATEMENT OFFICE PROGRESS REPORT 1994-95 Prepared By Maggie M. Paquet MAIA

388

Office of the Vice President, Research Office of Research Ethics  

E-Print Network [OSTI]

Office of the Vice President, Research Office of Research Ethics Annual Report July 1, 2008 ­ June 30, 2009 December 1, 2009 #12;Office of Research Ethics: July 2008- June 2009 Table of Contents Page .................................................................................... 4 Developing research ethics guidelines and best practices

Sun, Yu

389

Appointment of Contracting Officers and Contracting Officer's Representatives  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish procedures governing the selection, appointment, and termination of contracting officers and for the appointment of contracting officer's representatives. To ensure that only trained and qualified procurement and financial assistance professionals, within the scope of this Order, serve as contracting officers. Cancels DOE O 541.1. Canceled by DOE O 541.1B.

2000-10-27T23:59:59.000Z

390

Categorical Exclusion (CX) Determinations | U.S. DOE Office of...  

Office of Science (SC) Website

(ASO) Berkeley Site Office (BSO) Brookhaven Site Office (BHSO) Fermi Site Office (FSO) Oak Ridge National Laboratory Site Office (OSO) Pacific Northwest Site Office (PNSO)...

391

Exact Quantum Dynamics of a Bosonic Josephson Junction  

SciTech Connect (OSTI)

The quantum dynamics of a one-dimensional bosonic Josephson junction is studied by solving the time-dependent many-boson Schroedinger equation numerically exactly. Already for weak interparticle interactions and on short time scales, the commonly employed mean-field and many-body methods are found to deviate substantially from the exact dynamics. The system exhibits rich many-body dynamics such as enhanced tunneling and a novel equilibration phenomenon of the junction depending on the interaction, which is attributed to a quick loss of coherence.

Sakmann, Kaspar; Streltsov, Alexej I.; Alon, Ofir E.; Cederbaum, Lorenz S. [Theoretische Chemie, Physikalisch-Chemisches Institut, Universitaet Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany)

2009-11-27T23:59:59.000Z

392

Exact quantum dynamics of a bosonic Josephson junction  

E-Print Network [OSTI]

The quantum dynamics of a one-dimensional bosonic Josephson junction is studied by solving the time-dependent many-boson Schr\\"odinger equation numerically exactly. Already for weak interparticle interactions and on short time scales, the commonly-employed mean-field and many-body methods are found to deviate substantially from the exact dynamics. The system exhibits rich many-body dynamics like enhanced tunneling and a novel equilibration phenomenon of the junction depending on the interaction, attributed to a quick loss of coherence.

Kaspar Sakmann; Alexej I. Streltsov; Ofir E. Alon; Lorenz S. Cederbaum

2009-05-06T23:59:59.000Z

393

Observation of negative absolute resistance in a Josephson junction  

E-Print Network [OSTI]

We experimentally demonstrate the occurrence of negative absolute resistance (NAR) up to about $-1\\Omega$ in response to an externally applied dc current for a shunted Nb-Al/AlO$_x$-Nb Josephson junction, exposed to a microwave current at frequencies in the GHz range. The realization (or not) of NAR depends crucially on the amplitude of the applied microwave current. Theoretically, the system is described by means of the resistively and capacitively shunted junction model in terms of a moderately damped, classical Brownian particle dynamics in a one-dimensional potential. We find excellent agreement of the experimental results with numerical simulations of the model.

J. Nagel; D. Speer; T. Gaber; A. Sterck; R. Eichhorn; P. Reimann; K. Ilin; M. Siegel; D. Koelle; R. Kleiner

2008-01-28T23:59:59.000Z

394

Testing axion physics in a Josephson junction environment  

E-Print Network [OSTI]

We suggest that experiments based on Josephson junctions, SQUIDS, and coupled Josephson qubits can be used to construct a resonant environment for dark matter axions. We propose experimental setups in which axionic interaction strengths in a Josephson junction environment can be tested, similar in nature to recent experiments that test for quantum entanglement of two coupled Josephson qubits. We point out that the parameter values relevant for early-universe axion cosmology are accessible with present day's achievements in nanotechnology. We work out how typical dark matter and dark energy signals would look like in a novel detector that exploits this effect.

Beck, Christian

2011-01-01T23:59:59.000Z

395

Averaged equations for Josephson junction series arrays with LRC load  

E-Print Network [OSTI]

We derive the averaged equations describing a series array of Josephson junctions shunted by a parallel inductor-resistor-capacitor load. We assume that the junctions have negligable capacitance ($\\beta = 0$), and derive averaged equations which turn out to be completely tractable: in particular the stability of both in-phase and splay states depends on a single parameter, $\\del$. We find an explicit expression for $\\delta$ in terms of the load parameters and the bias current. We recover (and refine) a common claim found in the technical literature, that the in-phase state is stable for inductive loads and unstable for capacitive loads.

Kurt Wiesenfeld; James W. Swift

1994-08-26T23:59:59.000Z

396

Testing axion physics in a Josephson junction environment  

E-Print Network [OSTI]

We suggest that experiments based on Josephson junctions, SQUIDS, and coupled Josephson qubits can be used to construct a resonant environment for dark matter axions. We propose experimental setups in which axionic interaction strengths in a Josephson junction environment can be tested, similar in nature to recent experiments that test for quantum entanglement of two coupled Josephson qubits. We point out that the parameter values relevant for early-universe axion cosmology are accessible with present day's achievements in nanotechnology. We work out how typical dark matter and dark energy signals would look like in a novel detector that exploits this effect.

Christian Beck

2011-11-17T23:59:59.000Z

397

Three-dimensional Josephson-junction arrays: Static magnetic response  

SciTech Connect (OSTI)

In this work we present a simple three-dimensional Josephson-junction array model: a cube with twelve junctions, one on each edge. The low-field magnetic response of the system is studied numerically for arbitrary directions of the applied field. In this model the magnetic energy of the circulating currents is taken into account by introducing an effective mutual inductance matrix. The lower threshold field for flux penetration is determined in a closed analytic form for field directions perpendicular to one cube side. {copyright} {ital 1998} {ital The American Physical Society}

De Luca, R.; Di Matteo, T. [INFM-Dipartimento di Fisica, Universita degli Studi di Salerno, I-84081 Baronissi (Salerno) (Italy)] [INFM-Dipartimento di Fisica, Universita degli Studi di Salerno, I-84081 Baronissi (Salerno) (Italy); Tuohimaa, A.; Paasi, J. [Laboratory of Electricity and Magnetism, Tampere University of Technology, FIN-33101 Tampere (Finland)] [Laboratory of Electricity and Magnetism, Tampere University of Technology, FIN-33101 Tampere (Finland)

1998-01-01T23:59:59.000Z

398

Peltier cooling stage utilizing a superconductor-semiconductor junction  

SciTech Connect (OSTI)

This paper describes a Peltier cooling stack. It comprises: a first electrode; a superconducting layer electrically coupled to the first electrode; a semiconducting layer electrically coupled to the superconducting layer; and a second superconducting layer electrically coupled to the semiconductor layer; and a second electrode electrically coupled to the second superconducting layer, electrons flowing under an applied voltage from the first electrode through the first superconducting layer, semiconductor layer, second superconducting layer and second electrode, the electrical junction between the first superconducting layer and semiconductor providing Peltier cooling while the electrical junction between the semiconductor layer and the second superconducting layer providing Peltier heating, whereby a cryogenic Peltier cooling stack is provided.

Skertic, M.M.

1991-04-09T23:59:59.000Z

399

OFFICE OF SUSTAINABILITY Community Forum  

E-Print Network [OSTI]

Driven Outputs while Minimizing Negative Impacts. #12;OFFICE OF SUSTAINABILITY CURRENT GHG FOOTPRINT #12;OFFICE OF SUSTAINABILITY Current GHG FootprintCurrent GHG Footprint TOTAL CAMPUS GHG EMISSIONS CY2007 339,226 MTCO2e Air

van den Berg, Jur

400

Golden Field Office Reading Room  

Office of Energy Efficiency and Renewable Energy (EERE)

The Golden Field Office was designated a Department of Energy (DOE) field office in December 1992 to support the development and commercialization of renewable energy and energy-efficient...

Note: This page contains sample records for the topic "junction office statistical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Carlsbad Field Office - Fact Sheet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the nation's nuclear waste disposal problem Carlsbad Field Office The U.S. Department of Energy (DOE) created the Carlsbad Area Office in late 1993 to lead the nation's transuranic...

402

Annexin A2 is Required for Endothelial Cell Junctional Response to S1P  

E-Print Network [OSTI]

Endothelial cell (EC) junctions are critical for angiogenesis, the sprouting and growth of new blood vessels from existing vessels. Sphingosine 1-phosphate (S1P) is a proangiogenic factor that potently stimulates sprouting, fortifies EC junctions...

Smith, Rebecca

2014-01-14T23:59:59.000Z

403

Interaction of Josephson Junction and Distant Vortex in Narrow Thin-Film Superconducting Strips  

SciTech Connect (OSTI)

The phase difference between the banks of an edge-type planar Josephson junction crossing the narrow thin-film strip depends on wether or not vortices are present in the junction banks. For a vortex close to the junction this effect has been seen by Golod, Rydh, and Krasnov [Phys. Rev. Lett. 104, 227003 (2010)], who showed that the vortex may turn the junction into ? type. It is shown here that even if the vortex is far away from the junction, it still changes the 0 junction to a ? junction when situated close to the strip edges. Within the approximation used, the effect is independent of the vortex-junction separation, a manifestation of the topology of the vortex phase which extends to macroscopic distances of superconducting coherence.

Kogan, V. G. [Ames Laboratory; Mints, R. G. [Tel Aviv University

2014-01-31T23:59:59.000Z

404

E-Print Network 3.0 - alter tight junction Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

if the read-out junction is in the underdamped phase... cheerful atmosphere in the Josephson junctions ii tel-00586075,version1-14Apr2011 12;iii group and thank......

405

E-Print Network 3.0 - altered tight junction Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

if the read-out junction is in the underdamped phase... cheerful atmosphere in the Josephson junctions ii tel-00586075,version1-14Apr2011 12;iii group and thank......

406

United States Science Offices Abroad  

Science Journals Connector (OSTI)

... PLANS for United States Science ...Offices at A home and abroad are proposed in the extensive report entitled " ...

C. E. SUNDERLIN

1950-07-15T23:59:59.000Z

407

Low-Resolution Reconstruction of a Synthetic DNA Holliday Junction Marcelo Nollmann,*y  

E-Print Network [OSTI]

Low-Resolution Reconstruction of a Synthetic DNA Holliday Junction Marcelo No¨llmann,*y W. Marshall

Nollmann, Marcelo

408

Optimized Triple-Junction Solar Cells Using Inverted Metamorphic Approach (Presentation)  

SciTech Connect (OSTI)

Record efficiencies with triple-junction inverted metamorphic designs, modeling useful to optimize, and consider operating conditions before choosing design.

Geisz, J. F.

2008-11-01T23:59:59.000Z

409

UNIVERSITY OF YORK COMMUNICATIONS OFFICE  

E-Print Network [OSTI]

UNIVERSITY OF YORK COMMUNICATIONS OFFICE WEB OFFICE Web Strategy Date 4 February, 2003 Version 4, Press and PR Officer William Mackintosh, Web Manager #12;Web Strategy 4.4 ©University of York Page 2............................................................................................... 6 3.2 Objectives of the Web Strategy

Wirosoetisno, Djoko

410

Novel InGaAsN pn Junction for High-Efficiency Multiple-Junction Solar Cells  

SciTech Connect (OSTI)

We report the application of a novel material, InGaAsN, with bandgap energy of 1.05 eV as a junction in an InGaP/GaAs/InGaAsN/Ge 4-junction design. Results of the growth and structural, optical, and electrical properties were demonstrated, showing the promising perspective of this material for ultra high efficiency solar cells. Photovoltaic properties of an as-grown pn diode structure and improvement through post growth annealing were also discussed.

Allerman, A.A.; Chang, P.C.; Gee, J.M.; Hammons, B.E.; Hou, H.Q.; Jones, E.D.; Kurtz, S.R.; Reinhardt, K.C.

1999-03-26T23:59:59.000Z

411

Quantum Monte Carlo study of a disordered 2D Josephson junction array  

E-Print Network [OSTI]

Quantum Monte Carlo study of a disordered 2D Josephson junction array W.A. Al-Saidi *, D. Stroud reserved. PACS: 74.25.Dw; 05.30.Jp; 85.25.Cp Keywords: Josephson junctions; Quantum Monte Carlo; Disorder 1. Introduction A Josephson junction array (JJA) consists of a collection of superconducting islands connected

Stroud, David

412

The chaotic oscillations of a Josephson junction with external magnetic field  

SciTech Connect (OSTI)

Using the Melnikov Method the oscillation of a single Josephson junction with external magnetic field and DC bias is analyzed. Under the external magnetic field the junction can operate in chaos even if there is no bias. The numerical results show that in dependence on some parameters the Josephson junction with external magnetic field will go from stable periodic states to chaotic states.

Ma, J.G.; Wolff, I. [Duisburg Univ. (Germany). Dept. of Electrical Engineering

1996-05-01T23:59:59.000Z

413

Washing out of the 0-transition in Josephson junctions R. Avriller1  

E-Print Network [OSTI]

Washing out of the 0- transition in Josephson junctions R. Avriller1 and F. Pistolesi1 1 Univ: July 21, 2014) We consider a Josephson junction formed by a quantum dot connected to two bulk numbers: 73.23.-b, 74.25.F-, 74.50.+r, 74.45.+c Introduction.-- The Josephson junction is a fun- damental

Boyer, Edmond

414

Fluxon Dynamics and Radiation Emission in Twofold Long Josephson Junction Stacks  

E-Print Network [OSTI]

Fluxon Dynamics and Radiation Emission in Twofold Long Josephson Junction Stacks Andreas Wallraff¨ulich (KFA) January 27, 1997 #12;#12; Contents Introduction 1 1 Basic properties of Josephson junctions 5 2 Electrodynamics in long Josephson junctions 11 3 Radiation emission by stacked flux­flow oscillators 29 1

Leonardo, Degiorgi

415

Collapse of superconductivity in a hybrid tin-graphene Josephson junction array  

E-Print Network [OSTI]

1 Collapse of superconductivity in a hybrid tin-graphene Josephson junction array Zheng Han1 of the Josephson junction array into a zero-temperature metallic state. The suppression of proximity, models involving specific types of Josephson junction arrays in which superconducting disks are coupled

Boyer, Edmond

416

Resonant plasmon scattering by discrete breathers in Josephson junction ladders A. E. Miroshnichenko,1  

E-Print Network [OSTI]

Resonant plasmon scattering by discrete breathers in Josephson junction ladders A. E scattering by discrete breathers in Josephson junction ladders. DOI: 10.1103/PhysRevB.71.174306 PACS number Josephson junction systems,2 coupled nonlinear optical waveguides,3 lattice vi- brations in crystals,4

Flach, Sergej

417

Andreev-level spectroscopy and Josephson-current switching in a three-terminal Josephson junction  

E-Print Network [OSTI]

Andreev-level spectroscopy and Josephson-current switching in a three-terminal Josephson junction H held in thermodynamic equilibrium with the two superconducting contacts of a Josephson junction. When levels. The additional normal-metal probe coupled to the Josephson junction, shown in Fig. 1, models

Demir, Hilmi Volkan

418

Resonant plasmon scattering by discrete breathers in Josephson junction ladders A. E. Miroshnichenko,1  

E-Print Network [OSTI]

Resonant plasmon scattering by discrete breathers in Josephson junction ladders A. E in Josephson junction ladders. We predict the existence of Fano resonances, and find them by computing in the plasmon scattering by discrete breathers in Josephson junction ladders. DOI: 10.1103/PhysRevB.71

419

Pinned fluxons in a Josephson junction with a finite-length inhomogeneity  

E-Print Network [OSTI]

Pinned fluxons in a Josephson junction with a finite-length inhomogeneity Gianne Derks , Arjen Doelman Christopher J.K. Knight§ , Hadi Susanto¶ July 5, 2011 Abstract We consider a Josephson junction as limits of our results on microresonators. Keywords: Josephson junction, inhomogeneous sine

Wirosoetisno, Djoko

420

Magnetic field penetration in a long Josephson junction imbedded in a wide stripline  

E-Print Network [OSTI]

Magnetic field penetration in a long Josephson junction imbedded in a wide stripline Andreas Franz The dependence of the first critical field of long linear and annular Josephson junctions on the width A Josephson junction is formed by two superconductors separated by a thin oxide layer allowing the tunneling

Wallraff, Andreas

Note: This page contains sample records for the topic "junction office statistical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Quantum Coherence in a Superfluid Josephson Junction Supradeep Narayana and Yuki Sato  

E-Print Network [OSTI]

Quantum Coherence in a Superfluid Josephson Junction Supradeep Narayana and Yuki Sato The Rowland in which we take an array of nanoscale apertures that form a superfluid 4He Josephson junction and apply Josephson junctions as well as phase coherence among the superfluid aperture array are discussed. DOI: 10

Sato, Yuki

422

Pinned fluxons in a Josephson junction with a finite-length inhomogeneity  

E-Print Network [OSTI]

Pinned fluxons in a Josephson junction with a finite-length inhomogeneity Gianne Derks , Arjen as limits of our results on microresonators. Keywords: Josephson junction, inhomogeneous sine Josephson junction tt = xx - D sin() + - t, (1) where x and t are the spatial and temporal variable

Doelman, Arjen

423

Three-dimensional Josephson junction networks with coupling inhomogeneities in magnetic fields  

E-Print Network [OSTI]

Three-dimensional Josephson junction networks with coupling inhomogeneities in magnetic fields A on the static magnetic response of a three-dimensional 8 · 8 · 8 network of Josephson junctions is studied of one-dimensional and two-dimensional Josephson junction networks (1D, 2D-JJNs) has been extensively

Di Matteo, Tiziana

424

Direct Observation of Dynamical Bifurcation in a Superfluid Josephson Junction Supradeep Narayana and Yuki Sato  

E-Print Network [OSTI]

Direct Observation of Dynamical Bifurcation in a Superfluid Josephson Junction Supradeep Narayana Josephson junction. We excite the superfluid plasma resonance into a nonlinear regime by driving below.205302 PACS numbers: 67.25.dg, 07.60.Ly, 47.20.Ky, 85.25.Cp A superfluid Josephson junction is formed

Sato, Yuki

425

Nanomechanical-resonator-induced synchronization in Josephson junction arrays B. R. Trees* and S. Natu  

E-Print Network [OSTI]

, and an interaction energy due to the piezo- electric effect between the NEM and the junctions. Phase lockingNanomechanical-resonator-induced synchronization in Josephson junction arrays B. R. Trees* and S that includes the following effects: the charging and Josephson energies of the junctions, dissipation

Stroud, David

426

Josephson-junction arrays with long-range interactions J. Kent Harbaugh and D. Stroud  

E-Print Network [OSTI]

Josephson-junction arrays with long-range interactions J. Kent Harbaugh and D. Stroud Department-voltage (IV) characteristics of a Josephson-junction array with long-range inter- actions. The array consists of two sets of equally spaced parallel superconducting wires placed at right angles. A Josephson junction

Stroud, David

427

Quantum phase transitions and persistent currents in Josephson-junction ladders Minchul Lee  

E-Print Network [OSTI]

Quantum phase transitions and persistent currents in Josephson-junction ladders Minchul Lee- dimensional Josephson-junction arrays. We will focus particularly on the roles of excitonlike pairs.40.Db, 73.23.Hk I. INTRODUCTION Systems of Josephson junctions between small supercon- ducting grains

Choi, Mahn-Soo

428

Depinning of kinks in a Josephson-junction ratchet array E. Trias,1  

E-Print Network [OSTI]

Depinning of kinks in a Josephson-junction ratchet array E. Tri´as,1 J. J. Mazo,1,2 F. Falo,2 and T kinks in a ratchet potential using a fabricated circular array of Josephson junctions. Our ratchet . Josephson junctions are solid state realizations of a simple pendulum. By coupling them, it is possible

Orlando, Terry P.

429

Switching current measurements of large area Josephson tunnel junctions A. Wallraff,a)  

E-Print Network [OSTI]

the potential. This corresponds to a transition of the Josephson junction from a superconducting zero the system is coupled. Thermal activation TA in a current-biased Josephson junction has been studied both damping.11,12 At low temperatures the quantum mechanical properties of Josephson junctions have been

Wallraff, Andreas

430

Welcome to The Office of Science  

SciTech Connect (OSTI)

The Director of the Department of Energy's Office of Science, Dr. William Brinkman, introduces the new Office of Science website.

Brinkman, William

2011-01-01T23:59:59.000Z

431

Welcome to The Office of Science  

ScienceCinema (OSTI)

The Director of the Department of Energy's Office of Science, Dr. William Brinkman, introduces the new Office of Science website.

Brinkman, William

2013-05-29T23:59:59.000Z

432

Stanford Geothermal Workshop - Geothermal Technologies Office...  

Energy Savers [EERE]

- Geothermal Technologies Office Stanford Geothermal Workshop - Geothermal Technologies Office Presentation by Geothermal Technologies Director Doug Hollett at the Stanford...

433

ADMINISTRATIVE RECORDS SCHEDULE 6: ACCOUNTABLE OFFICERS' ACCOUNTS...  

Office of Environmental Management (EM)

ADMINISTRATIVE RECORDS SCHEDULE 6: ACCOUNTABLE OFFICERS' ACCOUNTS RECORDS ADMINISTRATIVE RECORDS SCHEDULE 6: ACCOUNTABLE OFFICERS' ACCOUNTS RECORDS This schedule covers accountable...

434

Program or Field Office:  

Broader source: Energy.gov (indexed) [DOE]

Location: Location: u.s. Department of Energy Office of Legacy Management Categorical Exclusion Determination Form Office of Legacy Management Routine site activities at the Shirley Basin South, Wyoming, Disposal Site. LM # 40 - 11. South of Casper, Wyoming Proposed Action or Project Description: Routine site activities include collection of water samples from groundwater monitoring wells, use of herbicides to spray invasive weeds, and mapping weeds on the site in alternate years to evaluate effectiveness of weed control efforts. In addition, a grazing licensee who runs 100 head of cattle on the site (approximately one month per year) proposes to install a gravity-fed water supply source. Potable water would be obtained, in accordance with license stipulations, from

435

Program or Field Office:  

Broader source: Energy.gov (indexed) [DOE]

Project Title and 1.0. No.: Project Title and 1.0. No.: u.s. Department of Energy Office of Legacy Management Categorical Exclusion Determination Form Office of Legacy Management Routine Maintenance Activities at the George West, Texas, Calibration Model Facility. LM # 45 - 11. Location: George West, Texas Proposed Action or Project Description: DOE proposes to conduct routine maintenance actions as needed at a facility containing five dry borehole calibration pits and seven concrete calibration pads. These calibration models are located at the George West, Calibration Facility on property leased from a private landowner. The lease is generally renewed every five years with the next anticipated renewal in 2014. Routine maintenance actions may include site inspection, fence repair, painting of facility components, potential

436

Office of Fossil Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Office of Fossil Energy Office of Fossil Energy Detection and Production of Methane Hydrate Semi-annual Progress Report Reporting Period: November, 2008-April, 2009 Submitted by: Rice University and University of Houston George J. Hirasaki and Walter Chapman, Chemical and Biomolecular Engineering Gerald R. Dickens, Colin A. Zelt, and Brandon E. Dugan, Earth Science Kishore K. Mohanty, University of Houston May, 2009 DOE Award No.: DE-FC26-06NT42960 Rice University - MS 362 6100 Main St. Houston, TX 77251-1892 Phone: 713-348-5416; FAX: 713-348-5478; Email: gjh@rice.edu University of Houston Department of Chemical Engineering 4800 Calhoun Street Houston, TX 77204-4004 Prepared for: United States Department of Energy National Energy Technology Laboratory Oil & Natural Gas Technology

437

Vision Office Products  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1.1 1.1 The History of the University of Wisconsin Atmospheric Emitted Radiance Interferometer (AERI) Prototype During the Period April 1994 Through July 1995 June 1999 (Manuscript received November 1995, in final form December 1995) R. Knuteson B. Whitney H. Revercomb F. Best Prepared by the Space Science and Engineering Center, University of Wisconsin - Madison Work supported by the U.S. Department of Energy, Office of Energy Research, Office of Health and Environmental Research Knuteson et al., June 1999, ARM TR-001.1 iii Abstract This document describes reprocessing of data collected with the University of Wisconsin (UW) Atmospheric Emitted Radiance Interferometer (AERI) prototype at the U.S. Department of Energy

438

DOE's Offices of Environmental  

Broader source: Energy.gov (indexed) [DOE]

Statement of Intent (SOI) Statement of Intent (SOI) between the US Dept of Energy (DOE) and the UK Nuclear Decommissioning Authority (NDA) on decommissioning and waste management was renewed for a further five years during the Waste Management conference in Phoenix, AZ in March. The signatories to the SOI were the DOE's Offices of Environmental Management (EM) and Nuclear Energy (NE) and the NDA, with NE being a new addition to the arrangement. The Office of Environment Management is responsible for the clean-up of the former nuclear weapons' sites and the relationship between them and the NDA has already resulted in collaboration in a number of areas such as thermal treatments for stabilization of wastes, plutonium management, aging facilities management, non-standard fuels

439

SSRL Safety Office Memo  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety Office SSO 01/24/06 Safety Office SSO 01/24/06 Memo to SSRL staff concerning operation of Circuit Breakers and Disconnect Switches Recently SLAC has adopted new regulations (NFPA70E) which outline the "Standard for Electrical Safety in the Workplace". Specifically it requires that the Arc Flash Hazard be categorized and PPE stated for all circuit breakers and disconnect switches. This memo identifies requirement for operating circuit breakers or disconnect switches at SSRL. SSRL staff members shall be authorized to operate CB's and disconnect switches only if they meet the following requirement The staff member: 1. Has the task identified and authorized in their routine JHAM, which includes: a. Reading and understand the SSRL Breaker and Disconnect Switch Operation

440

Program or Field Office:  

Broader source: Energy.gov (indexed) [DOE]

u.s. Department of Energy u.s. Department of Energy Office of Legacy Management Categorical Exclusion Determination Form Office of Legacy Management * Project Title and 1. 0 . No.: Reclamation Projects in Energy Fuels Resources Lease Tracts C-AM -19 and C-AM-20, Uranium Leasing Program Location : Western Montrose County, CO Proposed Action or Project Description : Employees or contractors of Energy Fuels Resources under the supervision of U.S. Department of Energy contractor staff would backfill subsided areas associated with the former Cliff Dweller Mine (portal), Worcester Mine (shaft), and King Solomon Mine (vent) on uranium lease tract C-AM -19. All three areas had been previously reclaimed and subsidence has resulted in a safety hazard . There are several small areas that have subsided to a depth of ten feet over the Cliff Dweller Mine portal. Adjacent mine-

Note: This page contains sample records for the topic "junction office statistical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Office of Information Resources  

Broader source: Energy.gov (indexed) [DOE]

I I m ~ a c t Assessment (PIA) Name of Project: SEC-2 Bureau: US Department of Energy (DOE) Project Unique ID: DOE-ID Security clearance work tracking and budget system. Date: April 4,2008 A. CONTACT INFORMATION 1. Who is the person completing this document? Name: Jeffrey R. Lascheid Title: Program Manager Organization: Westech International, Inc. Address: 1955 N. Fremont Ave, MS 1170 Idaho Falls, ID 8341 5 2. Who is the system owner? Name: M. Christine Ott, Chief Information Officer US DOE, Idaho Operations Office DOE-ID Security and Emergency Management Division Address: 1955 N Fremont Ave, MS 1 170 Idaho Falls ID 83415 3. Who is the system manager for this system or application? Name: Robert L. Green, Director Security and Emergency Management Division

442

Determination of the current density distribution in Josephson junctions.  

SciTech Connect (OSTI)

A technique is described for recovering the missing phase information for a set of critical current measurements as a function of an applied magnetic field I{sub c}(B). In many cases the current density j(x) across the boundary for a Josephson junction can be determined.

Carmody, M; Landree, E.; Marks, L. D.; Merkle, K. L.; Northwestern Univ.

1999-01-01T23:59:59.000Z

443

Tunneling Qubit Operation on a Protected Josephson Junction Array  

E-Print Network [OSTI]

We discuss a protected quantum computation process based on a hexagon Josephson junction array. Qubits are encoded in the punctured array, which is topologically protected. The degeneracy is related to the number of holes. The topological degeneracy is lightly shifted by tuning the flux through specific hexagons. We also show how to perform single qubit operation and basic quantum gate operations in this system.

Zhi Yin; Sheng-Wen Li; Yi-Xin Chen

2010-01-29T23:59:59.000Z

444

Topological order in Josephson junction ladders with Mobius boundary conditions  

E-Print Network [OSTI]

We propose a CFT description for a closed one-dimensional fully frustrated ladder of quantum Josephson junctions with Mobius boundary conditions, in particular we show how such a system can develop topological order. Such a property is crucial for its implementation as a "protected" solid state qubit.

G. Cristofano; V. Marotta; A. Naddeo

2005-03-22T23:59:59.000Z

445

Critical current of a lateral Josephson junction for layered superconductors  

Science Journals Connector (OSTI)

We have studied the effect of an applied magnetic field Hext on the critical current Ic of a lateral superconducting-insulating-superconducting (S-I-S) Josephson junction between two layered superconductors. In this configuration the layering direction of the superconducting electrodes is parallel to the plane of the junction. We find that the behavior of Ic(Hext) is determined by the parameter ?=jcd0/??j?, where ?? and j? are, respectively, the penetration depth and the interlayer critical current characterizing the bulk superconductors. Also jc is the critical current density between layers on opposite sides of the junction, while d0 is the layer thickness. For ??1 the length scale for field penetration along the direction of the junction is given by ??, leading to the usual Fraunhofer dependence for Ic(Hext). The scenario is vastly different for ??1. In this case the intraelectrode layer couplings are relatively weak and Josephson vortex penetration is found to occur between the layers. The physics of this situation is determined by the standard map. We find that in the absence of an external field Josephson vortices penetrate the structure and form an ordered array. This leads to a value of Ic(0) proportional to the number of layers N. This situation is however upset by a small external field. In this case the vortex distribution acquires an interesting chaotic character which leads to a sizable decrease of the critical current to a value Ic(Hext)? ?N .

Mikhail V. Fistul and Gabriele F. Giuliani

1994-09-01T23:59:59.000Z

446

Particle pulses from superconducting aluminum tunnel junction detectors  

SciTech Connect (OSTI)

Superconducting aluminum tunnel junctions have been developed for use as particle detectors. This paper presents results on static characteristics of these devices. We also present results from tests of these detectors with 6-keV X-rays. An extrapolation of the properties of these detectors to one suitable for dark-matter detectors is discussed.

Stricker, D.A.; Bing, D.D.; Bland, R.W.; Dickson, S.C.; Dignan, T.; Johnson, R.T.; Lockhart, J.M.; Laws, K.; Simon, M.W.; Watson, R. (San Francisco State Univ., Physics and Astronomy Dept. San Francisco, CA (US))

1991-03-01T23:59:59.000Z

447

Nonequilibrium electron tunneling in metal-insulator-metal junctions  

Science Journals Connector (OSTI)

The small structure in the conductance curve near zero bias of metal-insulator-metal tunnel junctions has been studied extensively. These experiments are analyzed in detail in a nonequilibrium model. It is shown that this type of zero-bias anomaly can be accounted for entirely by an electron bottleneck arising from the blocking of tunneling states due to nonzero electron relaxation times.

J. G. Adler; H. J. Kreuzer; J. Straus

1975-04-15T23:59:59.000Z

448

Practical Statistical Thinking Probability: The Language of Statistics  

E-Print Network [OSTI]

Practical Statistical Thinking Probability: The Language of Statistics Essentials of Statistics and Probability Dhruv Sharma May 22, 2007 Department of Statistics, NC State University dbsharma@ncsu.edu SAMSI Undergrad Workshop Dhruv Sharma Essentials of Statistics and Probability #12;Practical Statistical Thinking

449

Arctic Energy Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

O O G R A M FAC T S Strategic Center for Natural Gas & Oil CONTACTS Joel Lindstrom Arctic Energy Office National Energy Technology Laboratory 420 L Street, Suite 305 Anchorage, Alaska 99501 907-271-3618 joel.lindstrom@contr.netl.doe.gov Albert B. Yost II Sr. Management Technical Advisor Strategic Center for Natural Gas & Oil National Energy Technology Laboratory 3610 Collins Ferry Road Morgantown, WV 26507-0880 304-285-4479 albert.yost@netl.doe.gov

450

Ca rlsbad Field Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

En ergy En ergy Ca rlsbad Field Office P. O . Box 3090 Carlsbad , New Mexico 88221 AUG 2 9 2013 Mr. John E. Kieling , Chief Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Notification of Class 1 Permit Modification to the Waste Isolation Pilot Plant Hazardous Waste Facility Permit Number: NM4890139088-TSDF

451

Vehicle Technologies Office: Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deployment Deployment Our nation's energy security depends on the efficiency of our transportation system and on which fuels we use. Transportation in the United States already consumes much more oil than we produce here at home and the situation is getting worse. Domestic oil production has been dropping steadily for over 20 years, and experts predict that by 2025, about 70% of our oil will be imported. The U.S. Department of Energy's (DOE's) Vehicle Technologies Office supports research and development (R&D) that will lead to new technologies that reduce our nation's dependence on imported oil, further decrease vehicle emissions, and serve as a bridge from today's conventional powertrains and fuels to tomorrow's hydrogen-powered hybrid fuel cell vehicles. The Vehicle Technologies Office also supports implementation programs that help to transition alternative fuels and vehicles into the marketplace, as well as collegiate educational activities to help encourage engineering and science students to pursue careers in the transportation sector. Following are some of the activities that complement the Vehicle Technologies Office's mission.

452

Vehicle Technologies Office: Educational Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deployment Deployment Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: Educational Activities to someone by E-mail Share Vehicle Technologies Office: Educational Activities on Facebook Tweet about Vehicle Technologies Office: Educational Activities on Twitter Bookmark Vehicle Technologies Office: Educational Activities on Google Bookmark Vehicle Technologies Office: Educational Activities on Delicious Rank Vehicle Technologies Office: Educational Activities on Digg Find More places to share Vehicle Technologies Office: Educational Activities on AddThis.com... Energy Policy Act (EPAct) Clean Cities Educational Activities Graduate Automotive Technology Education (GATE) Educational Activities EcoCAR 2: Plugging In to the Future EcoCAR 2: Plugging In to the Future is the successor to EcoCAR: The NeXt

453

DOE - Office of Legacy Management -- WNI Sherwood Site - 039  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sherwood Site - 039 Sherwood Site - 039 FUSRAP Considered Sites Site: WNI Sherwood Site (039) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: This site is a Uranium Mill Tailings Remedial Action (UMTRA) Title II site located in the State of Washington. UMTRA Title II sites are privately owned and operated sites that were active when the Uranium Mill Tailings Radiation Control Act was passed in 1978. The majority milling conducted at this site was for private sale. After the owner completes NRC license termination the Department of Energy¿s Grand Junction Office will be responsible for providing stewardship for the groundwater and disposal

454

DOE - Office of Legacy Management -- Chevron Panna Maria Site - 030  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chevron Panna Maria Site - 030 Chevron Panna Maria Site - 030 FUSRAP Considered Sites Site: Chevron Panna Maria Site (030) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: This site is a Uranium Mill Tailings Remedial Action (UMTRA) Title II site located in Texas. UMTRA Title II sites are privately owned and operated sites that were active when the Uranium Mill Tailings Radiation Control Act was passed in 1978. The milling conducted at this site was for private sale. After the owner completes U. S. Nuclear Regulatory Commission license termination the Department of Energy¿s Grand Junction Office will be responsible for providing stewardship for the groundwater and disposal

455

DOE - Office of Legacy Management -- Hecla Durita Site - 012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hecla Durita Site - 012 Hecla Durita Site - 012 FUSRAP Considered Sites Site: Hecla Durita Site (012 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Hecla site is a Uranium Mill Tailings Radiation Control Act (UMTRCA) Title II site located in Durita, Colorado. UMTRCA Title II sites are privately owned and operated sites that were active when the Uranium Mill Tailings Radiation Control Act was passed in 1978. The majority of milling conducted at this site was for private sale. After the owner completes U.S. Nuclear Regulatory Commission license termination, the Department of Energy's Grand Junction Office will be responsible for providing

456

Aluminum tunnel junction detector operation in an adiabatic demagnetization refrigerator  

SciTech Connect (OSTI)

Superconducting tunnel junction detectors are being developed as both particle and X-ray detectors. Aluminum junctions are desirable for detectors because of their strong native oxide barriers, and because the small energy gap of aluminum is a good match to ballistic phonons generated by particle interactions in single crystals of silicon or other low acoustic-loss insulating crystals. Aluminum tunnel junction detectors must be operated near 0.1 T{sub C} which is 110 mK for aluminum. To operate detectors at these temperatures, we have developed adiabatic demagnetization refrigerators (ADRs) for the laboratory and prototype ADRs for space based operation. These cryogenic systems are simpler, more convenient and more portable than most dilution refrigerators. We have demonstrated that the magnetic field of the ADR need not compromise the performance of aluminum tunnel junctions. We have recently initiated a program to develop superconducting tunnel junctions (STJs) as high resolution X-ray detectors and low energy threshold particle detectors. This complements our existing program in which we are developing high resolution X-ray microcalorimeter detectors. One of our goals for both of these cryogenic detector development efforts is to observe X-ray emission from cosmic sources. This requires a refrigeration system that can operate under zero gravity space flight conditions. For the microcalorimeter project, temperatures of 100 mK and below are required to sufficiently reduce the heat capacity of the device. We have therefore developed an adiabatic demagnetization refrigerator (ADR) system which can be configured for space flight.

Labov, S.; Silver, E.; Le Gros, M. (Lawrence Livermore National Lab., CA (United States)); Bland, R.W.; Dickson, S.C.; Dignan, T.G.; Laws, K.; Johnson, R.T.; Simon, M.W.; Stricker, D.A.; Watson, R.M. (San Francisco State Univ., CA (United States)); Madden, N.; Landis, D. (Lawrence Berkeley Lab., CA (United States))

1992-01-30T23:59:59.000Z

457

Quantum efficiency of a microwave photon detector based on a current-biased Josephson junction  

E-Print Network [OSTI]

We analyze the quantum efficiency of a microwave photon detector based on a current-biased Josephson junction. We consider the Jaynes-Cummings Hamiltonian to describe coupling between the photon field and the junction. We then take into account coupling of the junction and the resonator to the environment. We solve the equation of motion of the density matrix of the resonator-junction system to compute the quantum efficiency of the detector as a function of detection time, bias current, and energy relaxation time. Our results indicate that junctions with modest coherence properties can provide efficient detection of single microwave photons, with quantum efficiency in excess of 80%.

Poudel, Amrit; Vavilov, Maxim G

2012-01-01T23:59:59.000Z

458

FY 2005 Statistical Table  

Broader source: Energy.gov (indexed) [DOE]

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) Table of Contents Summary...................................................................................................... 1 Mandatory Funding....................................................................................... 3 Energy Supply.............................................................................................. 4 Non-Defense site acceleration completion................................................... 6 Uranium enrichment D&D fund.................................................................... 6 Non-Defense environmental services.......................................................... 6 Science.........................................................................................................

459

Practical Experiments in Statistics  

Science Journals Connector (OSTI)

An simple and inexpensive experiment in radioactive decay that can be applied to any field that requires a knowledge of statistics; the primary goal is to familiarize students with probability distributions. ... A Didactic Experience of Statistical Analysis for the Determination of Glycine in a Nonaqueous Medium Using ANOVA and a Computer Program ...

Craig A. Stone; Lorin D. Mumaw

1995-01-01T23:59:59.000Z

460

Solar Junction Develops World Record Setting Concentrated Photovoltaic...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

startup companies cross technological barriers to commercialization while encouraging private investment. The Solar Energy Technologies Office focuses on achieving the goals of...

Note: This page contains sample records for the topic "junction office statistical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

News From the D.C. Office: Efficient Office Equipment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Aerial view of Washington D.C. 3 Aerial view of Washington D.C. News From the D.C. Office Efficient Office Equipment: Update and a Look Ahead An extended version of this article is available here. We are now well aware of the large amount of energy consumed by "plug-in loads" such as personal computers (PCs) and other office electronics. Office equipment is often cited as the fastest-growing end-use of electricity in the fastest-growing sector of demand (commercial buildings). According to Dataquest figures, world growth of PCs will average 14 to 15 percent per year through 1999. Only ten years ago, office equipment was not even part of the "map" of non-residential energy end-uses. There were virtually no data on office equipment energy use, nor an awareness of the

462

Office of the Chief Human Capital Officer | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Office of the Chief Human Capital Officer Office of the Chief Human Capital Officer Office of the Chief Human Capital Officer Most Requested Career Development Programs CHRIS (DOE Only) DOE & Headquarters Awards DOE Info (DOE Only) DOE Jobs Grade & Pay Retention Online Learning Center Employee Viewpoint Survey Entry-Level/Student Jobs ESS HC Strategic Plan Mentoring Program Military and Reservist Retirement SEET Telework Voluntary Leave Transfer Worklife Center Working With Us The Energy Department's mission speaks to all sectors of the economy. Whether your expertise is in science, technology, engineering, national security, international affairs or business, the Energy Department offers challenging and innovative work environments. Careers HC Points of Contact HR Contacts by Sub Agency Servicing Area

463

Office of the Chief Human Capital Officer | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Office of the Chief Human Capital Officer Office of the Chief Human Capital Officer Office of the Chief Human Capital Officer Most Requested Career Development Programs CHRIS (DOE Only) DOE & Headquarters Awards DOE Info (DOE Only) DOE Jobs Grade & Pay Retention Online Learning Center Employee Viewpoint Survey Entry-Level/Student Jobs ESS HC Strategic Plan Mentoring Program Military and Reservist Retirement SEET Telework Voluntary Leave Transfer Worklife Center Working With Us The Energy Department's mission speaks to all sectors of the economy. Whether your expertise is in science, technology, engineering, national security, international affairs or business, the Energy Department offers challenging and innovative work environments. Careers HC Points of Contact HR Contacts by Sub Agency Servicing Area

464

Office of Legacy Management | Department of Energy  

Energy Savers [EERE]

South Dakota, Disposal Site Edgemont, South Dakota, Disposal Site Read more DOE LM Completes the Grand Junction, Colorado, Site Historical Wall Display DOE LM Completes...

465

Mutual synchronization of two stacks of intrinsic Josephson junctions in cuprate superconductors  

SciTech Connect (OSTI)

Certain high-T{sub c} cuprate superconductors, which naturally realize a stack of Josephson junctions, thus can be used to generate electromagnetic waves in the terahertz region. A plate-like single crystal with 10{sup 4} junctions without cavity resonance was proposed to achieve strong radiation. For this purpose, it is required to synchronize the Josephson plasma oscillation in all junctions. In this work, we propose to use two stacks of junctions shunted in parallel to achieve synchronization. The two stacks are mutually synchronized in the whole IV curve, and there is a phase shift between the plasma oscillation in the two stacks. The phase shift is nonzero when the number of junctions in different stacks is the same, while it can be arbitrary when the number of junctions is different. This phase shift can be tuned continuously by applying a magnetic field when all the junctions are connected by superconducting wires.

Lin, Shi-Zeng [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2014-05-07T23:59:59.000Z

466

Quantum Dissociation of a Vortex-Antivortex Pair in a Long Josephson Junction M.V. Fistul,1  

E-Print Network [OSTI]

Quantum Dissociation of a Vortex-Antivortex Pair in a Long Josephson Junction M.V. Fistul,1 A VAV pair manifests itself in a switching of the Josephson junction from the superconducting biased single Josephson junctions (JJs), various SQUIDs, and small Josephson junction arrays, contain

Wallraff, Andreas

467

PHYSICAL REVIEW B 87, 214511 (2013) Linewidth of the electromagnetic radiation from Josephson junctions near cavity resonances  

E-Print Network [OSTI]

emission from intrinsic Josephson junctions in high-Tc cuprate superconductors has been detected recently for a single Josephson junction nor for a stack of the intrinsic Josephson junctions realized in cuprateRevB.87.214511 PACS number(s): 74.50.+r, 74.25.Gz, 85.25.Cp In a Josephson junction (JJ) biased by a dc

Alexei, Koshelev

468

Category:SmallOffice | Open Energy Information  

Open Energy Info (EERE)

SmallOffice SmallOffice Jump to: navigation, search Go Back to PV Economics By Building Type Media in category "SmallOffice" The following 77 files are in this category, out of 77 total. SVSmallOffice Bismarck ND Montana-Dakota Utilities Co (North Dakota).png SVSmallOffice Bismarck... 74 KB SVSmallOffice Cedar City UT Moon Lake Electric Assn Inc (Utah).png SVSmallOffice Cedar Ci... 55 KB SVSmallOffice International Falls MN Northern States Power Co (Minnesota) Excel Energy.png SVSmallOffice Internat... 95 KB SVSmallOffice LA CA City of Los Angeles California (Utility Company).png SVSmallOffice LA CA Ci... 83 KB SVSmallOffice Memphis TN City of Memphis Tennessee (Utility Company).png SVSmallOffice Memphis ... 62 KB SVSmallOffice Minneapolis MN Northern States Power Co (Minnesota) Excel Energy.png

469

Category:LargeOffice | Open Energy Information  

Open Energy Info (EERE)

LargeOffice LargeOffice Jump to: navigation, search Go Back to PV Economics By Building Type Media in category "LargeOffice" The following 77 files are in this category, out of 77 total. SVLargeOffice Bismarck ND Montana-Dakota Utilities Co (North Dakota).png SVLargeOffice Bismarck... 69 KB SVLargeOffice Cedar City UT Moon Lake Electric Assn Inc (Utah).png SVLargeOffice Cedar Ci... 57 KB SVLargeOffice International Falls MN Northern States Power Co (Minnesota) Excel Energy.png SVLargeOffice Internat... 83 KB SVLargeOffice LA CA City of Los Angeles California (Utility Company).png SVLargeOffice LA CA Ci... 92 KB SVLargeOffice Memphis TN City of Memphis Tennessee (Utility Company).png SVLargeOffice Memphis ... 70 KB SVLargeOffice Minneapolis MN Northern States Power Co (Minnesota) Excel Energy.png

470

Category:MediumOffice | Open Energy Information  

Open Energy Info (EERE)

MediumOffice MediumOffice Jump to: navigation, search Go Back to PV Economics By Building Type Media in category "MediumOffice" The following 77 files are in this category, out of 77 total. SVMediumOffice Bismarck ND Montana-Dakota Utilities Co (North Dakota).png SVMediumOffice Bismarc... 72 KB SVMediumOffice Cedar City UT Moon Lake Electric Assn Inc (Utah).png SVMediumOffice Cedar C... 62 KB SVMediumOffice International Falls MN Northern States Power Co (Minnesota) Excel Energy.png SVMediumOffice Interna... 83 KB SVMediumOffice LA CA City of Los Angeles California (Utility Company).png SVMediumOffice LA CA C... 87 KB SVMediumOffice Memphis TN City of Memphis Tennessee (Utility Company).png SVMediumOffice Memphis... 65 KB SVMediumOffice Minneapolis MN Northern States Power Co (Minnesota) Excel Energy.png

471

Vehicle Technologies Office: Ambassadors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ambassadors Ambassadors Workplace Charging Challenge Clean Cities Coalitions Clean Cities logo. Clean Cities National: A network of nearly 100 Clean Cities coalitions, supported by the Vehicle Technologies Office, brings together public and private stakeholders to deploy plug-in electric vehicles, alternative and renewable fuels, idle-reduction measures, fuel economy improvements, and other petroleum reduction strategies. Clean Cities coordinators are knowledgeable about local incentives and policies for workplace charging as well as other aspects of plug-in electric vehicle community readiness. Workplace Charging Challenge Ambassadors The Workplace Charging Challenge enlists stakeholder organizations as Ambassadors to promote and support workplace charging. The directory below highlights Workplace Charging Challenge Ambassadors across the country.

472

History of SQAS Officers  

Broader source: Energy.gov (indexed) [DOE]

Quality Report SQAS96-003 Quality Report SQAS96-003 Software Quality: A Guide to Responsibilities and Resources December 1996 Software Quality Assurance Subcommittee of the Nuclear Weapons Complex Quality Managers United States Department of Energy Albuquerque Operations Office Abstract This Guide provides guidance to the software managers, software developers, and software quality engineers at each DOE site. It is designed to assist them in their efforts to advance the exchange and widespread usage of good software management concepts and techniques throughout the DOE and its associated contractors and Laboratories. In addition, this document serves to support the work being done by the Software Quality Assurance Subcommittee (SQAS). 1 Acknowledgments

473

Building Technologies Office: Climate Zones  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Climate Zones to Climate Zones to someone by E-mail Share Building Technologies Office: Climate Zones on Facebook Tweet about Building Technologies Office: Climate Zones on Twitter Bookmark Building Technologies Office: Climate Zones on Google Bookmark Building Technologies Office: Climate Zones on Delicious Rank Building Technologies Office: Climate Zones on Digg Find More places to share Building Technologies Office: Climate Zones on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals

474

Vehicle Technologies Office: 2010 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 Archive to someone 0 Archive to someone by E-mail Share Vehicle Technologies Office: 2010 Archive on Facebook Tweet about Vehicle Technologies Office: 2010 Archive on Twitter Bookmark Vehicle Technologies Office: 2010 Archive on Google Bookmark Vehicle Technologies Office: 2010 Archive on Delicious Rank Vehicle Technologies Office: 2010 Archive on Digg Find More places to share Vehicle Technologies Office: 2010 Archive on AddThis.com... 2010 Archive #655 New Freight Analysis Tool December 27, 2010 #654 New Light Vehicle Leasing is Big in 2010 December 20, 2010 #653 Import Cars and Trucks Gaining Ground December 13, 2010 #652 U.S. Crude Oil Production Rises December 6, 2010 #651 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 November 29, 2010 #650 Diesel Fuel Prices hit a Two-Year High November 22, 2010

475

Vehicle Technologies Office: 2006 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 Archive to someone 6 Archive to someone by E-mail Share Vehicle Technologies Office: 2006 Archive on Facebook Tweet about Vehicle Technologies Office: 2006 Archive on Twitter Bookmark Vehicle Technologies Office: 2006 Archive on Google Bookmark Vehicle Technologies Office: 2006 Archive on Delicious Rank Vehicle Technologies Office: 2006 Archive on Digg Find More places to share Vehicle Technologies Office: 2006 Archive on AddThis.com... 2006 Archive #449 Biodiesel to Conventional Diesel: An Emissions Comparison December 25, 2006 #448 Fuel Purchasing Habits December 18, 2006 #447 World Ethanol Production December 11, 2006 #446 More Likely to Buy a Hybrid or Other More Fuel Efficient Vehicle? December 4, 2006 #445 U.S. Population Growth and Light Vehicle Sales November 27, 2006

476

Vehicle Technologies Office: 2013 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Archive to someone 3 Archive to someone by E-mail Share Vehicle Technologies Office: 2013 Archive on Facebook Tweet about Vehicle Technologies Office: 2013 Archive on Twitter Bookmark Vehicle Technologies Office: 2013 Archive on Google Bookmark Vehicle Technologies Office: 2013 Archive on Delicious Rank Vehicle Technologies Office: 2013 Archive on Digg Find More places to share Vehicle Technologies Office: 2013 Archive on AddThis.com... 2013 Archive #810 Leasing on the Rise December 30, 2013 #809 What Do We Pay for in a Gallon of Gasoline? December 23, 2013 #808 Declining Use of Six- and Eight-Cylinder Engines December 16, 2013 #807 Light Vehicle Weights Leveling Off December 9, 2013 #806 Light Vehicle Market Shares, Model Years 1975-2012 December 2, 2013 #805 Vehicle Technology Penetration November 25, 2013

477

Vehicle Technologies Office: 2011 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Archive to someone 1 Archive to someone by E-mail Share Vehicle Technologies Office: 2011 Archive on Facebook Tweet about Vehicle Technologies Office: 2011 Archive on Twitter Bookmark Vehicle Technologies Office: 2011 Archive on Google Bookmark Vehicle Technologies Office: 2011 Archive on Delicious Rank Vehicle Technologies Office: 2011 Archive on Digg Find More places to share Vehicle Technologies Office: 2011 Archive on AddThis.com... 2011 Archive #707 Illustration of Truck Classes December 26, 2011 #706 Vocational Vehicle Fuel Consumption Standards December 19, 2011 #705 Fuel Consumption Standards for Combination Tractors December 12, 2011 #704 Fuel Consumption Standards for New Heavy Pickups and Vans December 5, 2011 #703 Hybrid Vehicles Lose Market Share in 2010 November 28, 2011

478

Vehicle Technologies Office: 2004 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Archive to someone 4 Archive to someone by E-mail Share Vehicle Technologies Office: 2004 Archive on Facebook Tweet about Vehicle Technologies Office: 2004 Archive on Twitter Bookmark Vehicle Technologies Office: 2004 Archive on Google Bookmark Vehicle Technologies Office: 2004 Archive on Delicious Rank Vehicle Technologies Office: 2004 Archive on Digg Find More places to share Vehicle Technologies Office: 2004 Archive on AddThis.com... 2004 Archive #352 Automotive Industry Material Usage December 27, 2004 #351 Gasohol Use Is Up December 20, 2004 #350 U.S. Oil Imports: Top Ten Countries of Origin December 13, 2004 #349 Crude Oil Production: OPEC, the Persian Gulf, and the United States December 6, 2004 #348 U.S. Trade Deficit, 2001-2003 November 29, 2004 #347 The Relationship of VMT and GDP November 22, 2004

479

Vehicle Technologies Office: 2007 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 Archive to someone 7 Archive to someone by E-mail Share Vehicle Technologies Office: 2007 Archive on Facebook Tweet about Vehicle Technologies Office: 2007 Archive on Twitter Bookmark Vehicle Technologies Office: 2007 Archive on Google Bookmark Vehicle Technologies Office: 2007 Archive on Delicious Rank Vehicle Technologies Office: 2007 Archive on Digg Find More places to share Vehicle Technologies Office: 2007 Archive on AddThis.com... 2007 Archive #499 Alternative Fuel Models: Gains and Losses December 10, 2007 #498 New Light Vehicle Fuel Economy December 3, 2007 #497 Fuel Drops to Third Place in the Trucking Industry Top Ten Concerns November 26, 2007 #496 Diesel Prices in the U.S. and Selected Countries: Cost and Taxes November 19, 2007 #495 Oil Price and Economic Growth, 1971-2006 November 12, 2007

480

Advanced Manufacturing Office: Motor Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Motor Systems to Motor Systems to someone by E-mail Share Advanced Manufacturing Office: Motor Systems on Facebook Tweet about Advanced Manufacturing Office: Motor Systems on Twitter Bookmark Advanced Manufacturing Office: Motor Systems on Google Bookmark Advanced Manufacturing Office: Motor Systems on Delicious Rank Advanced Manufacturing Office: Motor Systems on Digg Find More places to share Advanced Manufacturing Office: Motor Systems on AddThis.com... Quick Links Energy Resource Center Technical Publications by Energy System Energy-Efficient Technologies Incentives & Resources by Zip Code Better Plants Superior Energy Performance Contacts Motor Systems Photo of Man Checking Motor Performance Motor-driven equipment accounts for 54% of manufacturing electricity use. Dramatic energy and cost savings can be achieved in motor systems by

Note: This page contains sample records for the topic "junction office statistical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Vehicle Technologies Office: 2012 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Archive to someone 2 Archive to someone by E-mail Share Vehicle Technologies Office: 2012 Archive on Facebook Tweet about Vehicle Technologies Office: 2012 Archive on Twitter Bookmark Vehicle Technologies Office: 2012 Archive on Google Bookmark Vehicle Technologies Office: 2012 Archive on Delicious Rank Vehicle Technologies Office: 2012 Archive on Digg Find More places to share Vehicle Technologies Office: 2012 Archive on AddThis.com... 2012 Archive #760 Commuting to Work, 1960-2010 December 31, 2012 #759 Rural vs. Urban Driving Differences December 24, 2012 #758 U.S. Production of Crude Oil by State, 2011 December 17, 2012 #757 The U.S. Manufactures More Light Trucks than Cars December 10, 2012 #756 Midwest Produces Two-Thirds of All Light Vehicles December 3, 2012

482

Vehicle Technologies Office: 2008 Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 Archive to someone 8 Archive to someone by E-mail Share Vehicle Technologies Office: 2008 Archive on Facebook Tweet about Vehicle Technologies Office: 2008 Archive on Twitter Bookmark Vehicle Technologies Office: 2008 Archive on Google Bookmark Vehicle Technologies Office: 2008 Archive on Delicious Rank Vehicle Technologies Office: 2008 Archive on Digg Find More places to share Vehicle Technologies Office: 2008 Archive on AddThis.com... 2008 Archive #551 Truck Stop Electrification Sites December 29, 2008 #550 Clean Cities Coalitions December 22, 2008 #549 Biofuels Corridor extends from the Great Lakes to the Gulf of Mexico December 15, 2008 #548 Number of Gasoline Stations Continues to Decline in 2007 December 8, 2008 #547 Research and Development (R&D) Spending in the Automotive Industry December 1, 2008

483

Building Technologies Office: Bookmark Notice  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bookmark Notice to Bookmark Notice to someone by E-mail Share Building Technologies Office: Bookmark Notice on Facebook Tweet about Building Technologies Office: Bookmark Notice on Twitter Bookmark Building Technologies Office: Bookmark Notice on Google Bookmark Building Technologies Office: Bookmark Notice on Delicious Rank Building Technologies Office: Bookmark Notice on Digg Find More places to share Building Technologies Office: Bookmark Notice on AddThis.com... About Take Action to Save Energy Activities Partner with DOE Commercial Buildings Resource Database Research & Development Codes & Standards Popular Commercial Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Energy Simulation

484

Building Technologies Office: Bookmark Notice  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bookmark Notice to Bookmark Notice to someone by E-mail Share Building Technologies Office: Bookmark Notice on Facebook Tweet about Building Technologies Office: Bookmark Notice on Twitter Bookmark Building Technologies Office: Bookmark Notice on Google Bookmark Building Technologies Office: Bookmark Notice on Delicious Rank Building Technologies Office: Bookmark Notice on Digg Find More places to share Building Technologies Office: Bookmark Notice on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat. Lighten Energy Loads with System Design. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program

485

AMERICAN STATISTICAL ASSOCIATION (ASA)  

U.S. Energy Information Administration (EIA) Indexed Site

AMERICAN STATISTICAL ASSOCIATION (ASA) AMERICAN STATISTICAL ASSOCIATION (ASA) MEETING OF THE COMMITTEE ON ENERGY STATISTICS WITH THE ENERGY INFORMATION ADMINISTRATION (EIA) Washington, D.C. Friday, April 29, 2005 COMMITTEE MEMBERS: NICOLAS HENGARTNER, Chair Los Alamos National Laboratory MARK BERNSTEIN RAND Corporation CUTLER CLEVELAND Center for Energy and Environmental Studies JAE EDMONDS Pacific Northwest National Laboratory MOSHE FEDER Research Triangle Institute BARBARA FORSYTH Westat WALTER HILL St. Mary's College of Maryland NEHA KHANNA Binghamton University NAGARAJ K. NEERCHAL University of Maryland Baltimore County SUSAN M. SEREIKA University of Pittsburgh DARIUS SINGPURWALLA LECG RANDY R. SITTER Simon Fraser University ALSO PRESENT: MARGOT ANDERSON Energy Information Administration ALSO PRESENT (CONT'D):

486

International Energy Statistics  

Gasoline and Diesel Fuel Update (EIA)

> Countries > International Energy Statistics > Countries > International Energy Statistics International Energy Statistics Petroleum Production| Annual Monthly/Quarterly Consumption | Annual Monthly/Quarterly Capacity | Bunker Fuels | Stocks | Annual Monthly/Quarterly Reserves | Imports | Annual Monthly/Quarterly Exports | CO2 Emissions | Heat Content Natural Gas All Flows | Production | Consumption | Reserves | Imports | Exports | Carbon Dioxide Emissions | Heat Content Coal All Flows | Production | Consumption | Reserves | Imports | Exports | Carbon Dioxide Emissions | Heat Content Electricity Generation | Consumption | Capacity | Imports | Net Imports | Exports | Distribution Losses | Heat Content Renewables Electricity Generation| Electricity Consumption | Biofuels Production | Biofuels Consumption | Heat Content Total Energy

487

AMERICAN STATISTICAL ASSOCIATION  

U.S. Energy Information Administration (EIA) Indexed Site

AMERICAN STATISTICAL ASSOCIATION AMERICAN STATISTICAL ASSOCIATION + + + + + COMMITTEE ON ENERGY STATISTICS + + + + + FALL MEETING + + + + + FRIDAY OCTOBER 17, 2003 + + + + + The Committee met in Room 8E089 in the Forrestal Building, 1000 Independence Avenue, S.W., Washington, D.C., at 8:30 a.m., Jay Breidt, Chair, presiding. PRESENT F. JAY BREIDT Chair NICOLAS HENGARTNER Vice Chair JOHNNY BLAIR Committee Member MARK BURTON Committee Member JAE EDMONDS Committee Member MOSHE FEDER Committee Member JAMES K. HAMMITT Committee Member NEHA KHANA Committee Member NAGARAJ K. NEERCHAL Committee Member

488

Fermilab | Directorate | Program Planning Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Planning Office Program Planning Office Steve Geer, Head The Program Planning Office within the Fermilab Directorate coordinates the experimental physics program carried out at the Laboratory. The office provides a link between ongoing and planned experiments and the Directorate, by: Acting as liaison between experimenters and laboratory staff regarding beam conditions during accelerator operation. Establishing priorities between accelerator studies and experiments and among experiments, in consultation with the Director, and resolving conflicting requests from experiments. Coordinating Division and Section reviews of draft Memoranda of Understanding for approved experiments. Coordinating updates to the "Procedures for Researchers" which provides a guide for researchers using Fermilab facilities.

489

Research and Institutional Integrity Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Research and Institutional Integrity Office (RIIO) serves as a focal point for ethics and compliance assurance at the Berkeley Lab in three main areas of responsibility:...

490

Vehicle Technologies Office: Propulsion Systems  

Broader source: Energy.gov [DOE]

Vehicle Technologies Office research focuses much of its effort on improving vehicle fuel economy while meeting increasingly stringent emissions standards. Achieving these goals requires a...

491

PATENTS OFFICE REGISTER DATABASE SEARCH  

E-Print Network [OSTI]

PATENTS OFFICE REGISTER & DATABASE SEARCH . Database Home PATENT REGISTER Status: Lapsed Grant No VERMEER MANUFACTURING COMPANY 2411 Highway 102 Pella, IA 50219 UNITED STATES OF AMERICA Address

Kansas, University of

492

MEMORANDUM FOR CHIEF ACQUISITION OFFICERS  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

is critical for agency program managers as they define requirements and for contracting officers as they develop acquisition strategies, seek opportunities for small...

493

LOCATION: Johnson County Sheriff's Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LOCATION: Johnson County Sheriff's Office Criminalistics Laboratory 11890 Sunset Drive Olathe, Kansas 66061 DATE: JULY 15TH - JULY 18TH, 2013 TUITION: MAFS MEMBERS: 550 Non-MAFS...

494

Fuel Cell Technologies Office: Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cell Technologies Office HOME ABOUT PROGRAM AREAS INFORMATION RESOURCES FINANCIAL OPPORTUNITIES TECHNOLOGIES MARKET TRANSFORMATION NEWS EVENTS EERE Fuel Cell Technologies...

495

Facility Security Officer Contractor Toolcart  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SNL SECURITY CONTACTS SNLNM Contacts SNLCA Contacts Function Contact Email Telephone Badge Office 505-284-3626 - Escorting security@sandia.gov 505-845-1321 Classification...

496

Building Technologies Office: Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Newsletter Newsletter Sign up for the BTO Newsletter Sign up for the BTO Newsletter Around the Building Technologies Office - May Connect with the Building Technologies Office (BTO) information that interests you-program events and news, financial opportunities, and industry events. Upcoming BTO Webinars: Whole-Building Energy Modeling: Reducing Modeling Time with the OpenStudio 0.8 User Interface and the Building Component Library When: Thursday, June 28, 2012, 12:00-1:30 p.m. ET View the webinar materials. Description: The webinar will outline recent improvements to NREL and DOE's free open-platform energy modeling software, OpenStudio. This webinar will preview OpenStudio version 0.8, which features integration with the Building Component Library, an on-line repository of reusable components for rapid and consistent energy modeling. The presenters will demonstrate a complete and easy-to-use modeling workflow using the OpenStudio SketchUp Plug-in and the stand-alone OpenStudio application.

497

Diversity Links; Diversity Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Source Disclaimer: Links and/or hyperlinks on this page may contain information gathered from public sources outside Brookhaven National Laboratory. This information is for reference purposes only and, as such, there is no endorsement of products or services therein, nor is BNL responsible for any content inaccuracies. By clicking any of the aforementioned links and/or hyperlinks, you acknowledge your understanding and agreement with this statement. Source Disclaimer: Links and/or hyperlinks on this page may contain information gathered from public sources outside Brookhaven National Laboratory. This information is for reference purposes only and, as such, there is no endorsement of products or services therein, nor is BNL responsible for any content inaccuracies. By clicking any of the aforementioned links and/or hyperlinks, you acknowledge your understanding and agreement with this statement. Diversity Links BNL & DOE Diversity Links Minority Recruitment Links BNL & DOE Diversity Links Brookhaven National Laboratory (BNL) Brookhaven Advocacy Council (BAC) Brookhaven Employees Recreation Association (BERA) | BERA Clubs U.S. DOE Office of Civil Rights and Diversity U.S. DOE Office of Civil Rights and Diversity - Homepage

498

Princeton Junction, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Junction, New Jersey: Energy Resources Junction, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.3173301°, -74.6198791° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.3173301,"lon":-74.6198791,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

499

Iron Junction, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Junction, Minnesota: Energy Resources Junction, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.416427°, -92.60665° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.416427,"lon":-92.60665,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

500

Monmouth Junction, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Junction, New Jersey: Energy Resources Junction, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.3789957°, -74.5465436° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.3789957,"lon":-74.5465436,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}