National Library of Energy BETA

Sample records for junction greenfield grundy

  1. Greenfield Wind | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Greenfield Wind Facility Greenfield Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Greenfield Wind Power...

  2. Grundy Center Mun Light & Power | Open Energy Information

    Open Energy Info (EERE)

    www.gcmuni.nettextcontactus. Facebook: https:www.facebook.compagesCity-of-Grundy-Center169381736410558 Outage Hotline: (319)-825-5207 References: EIA Form EIA-861 Final...

  3. City of Greenfield, Iowa (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    of Greenfield Place: Iowa Phone Number: (641) 743-2741 or (641) 743-2914 Website: gmu-ia.com Facebook: https:www.facebook.comGreenfieldMunicipalUtilities Outage Hotline:...

  4. Greenfield Alternative Study LEU-Mo Fuel Fabrication Facility

    SciTech Connect (OSTI)

    Washington Division of URS

    2008-07-01

    This report provides the initial “first look” of the design of the Greenfield Alternative of the Fuel Fabrication Capability (FFC); a facility to be built at a Greenfield DOE National Laboratory site. The FFC is designed to fabricate LEU-Mo monolithic fuel for the 5 US High Performance Research Reactors (HPRRs). This report provides a pre-conceptual design of the site, facility, process and equipment systems of the FFC; along with a preliminary hazards evaluation, risk assessment as well as the ROM cost and schedule estimate.

  5. Best Practices Case Study: Rural Development, Inc., Wisdom Way Solar Village, Greenfield, MA

    SciTech Connect (OSTI)

    2010-12-01

    Wisdom Way Solar Village is an appropriate moniker for the 20-unit community of energy-efficient duplexes in Greenfield, MA. The homes meet the requirements of the U.S. Department of Energys Builders Challenge, achieving HERS scores of 8 to 18 by packing energy efficiency features into the compact, heavily insulated homes and adding solar water heating and photovoltaics on top, to net home owners energy cost savings of at least $2,500 per year per home.

  6. Nanotube junctions

    DOE Patents [OSTI]

    Crespi, Vincent Henry; Cohen, Marvin Lou; Louie, Steven Gwon; Zettl, Alexander Karlwalte

    2004-12-28

    The present invention comprises a new nanoscale metal-semiconductor, semiconductor-semiconductor, or metal-metal junction, designed by introducing topological or chemical defects in the atomic structure of the nanotube. Nanotubes comprising adjacent sections having differing electrical properties are described. These nanotubes can be constructed from combinations of carbon, boron, nitrogen and other elements. The nanotube can be designed having different indices on either side of a junction point in a continuous tube so that the electrical properties on either side of the junction vary in a useful fashion. For example, the inventive nanotube may be electrically conducting on one side of a junction and semiconducting on the other side. An example of a semiconductor-metal junction is a Schottky barrier. Alternatively, the nanotube may exhibit different semiconductor properties on either side of the junction. Nanotubes containing heterojunctions, Schottky barriers, and metal-metal junctions are useful for microcircuitry.

  7. Nanotube junctions

    DOE Patents [OSTI]

    Crespi, Vincent Henry (Darien, IL); Cohen, Marvin Lou (Berkeley, CA); Louie, Steven Gwon Sheng (Berkeley, CA); Zettl, Alexander Karlwalter (Kensington, CA)

    2003-01-01

    The present invention comprises a new nanoscale metal-semiconductor, semiconductor-semiconductor, or metal-metal junction, designed by introducing topological or chemical defects in the atomic structure of the nanotube. Nanotubes comprising adjacent sections having differing electrical properties are described. These nanotubes can be constructed from combinations of carbon, boron, nitrogen and other elements. The nanotube can be designed having different indices on either side of a junction point in a continuous tube so that the electrical properties on either side of the junction vary in a useful fashion. For example, the inventive nanotube may be electrically conducting on one side of a junction and semiconducting on the other side. An example of a semiconductor-metal junction is a Schottky barrier. Alternatively, the nanotube may exhibit different semiconductor properties on either side of the junction. Nanotubes containing heterojunctions, Schottky barriers, and metal-metal junctions are useful for microcircuitry.

  8. Building America Case Study: Conway Street Apartments, Greenfield, Massachusetts (Fact Sheet), Whole-House Solutions for Existing Homes, Energy Efficiency & Renewable Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conway Street Apartments Greenfield, Massachusetts PROJECT INFORMATION Project Name: Conway Street Apartments: A Multifamily Deep Energy Retrofit Location: Greenfield, MA Construction: Multifamily (gut rehabili- tation of a vacant school building) Type: Rental apartments Partners: Olive Street Development, zaccheoproperties.com Consortium for Advanced Residential Buildings, carb-swa.com Size: 12 apartments; 1-2 bedroom, 500-1,100 ft 2 Price Range: $900-$1,600/month Date completed: 2014 Climate

  9. Josephson junction

    DOE Patents [OSTI]

    Wendt, J.R.; Plut, T.A.; Martens, J.S.

    1995-05-02

    A novel method for fabricating nanometer geometry electronic devices is described. Such Josephson junctions can be accurately and reproducibly manufactured employing photolithographic and direct write electron beam lithography techniques in combination with aqueous etchants. In particular, a method is described for manufacturing planar Josephson junctions from high temperature superconducting material. 10 figs.

  10. Josephson junction

    DOE Patents [OSTI]

    Wendt, Joel R. (Albuquerque, NM); Plut, Thomas A. (Albuquerque, NM); Martens, Jon S. (Sunnyvale, CA)

    1995-01-01

    A novel method for fabricating nanometer geometry electronic devices is described. Such Josephson junctions can be accurately and reproducibly manufactured employing photolithographic and direct write electron beam lithography techniques in combination with aqueous etchants. In particular, a method is described for manufacturing planar Josephson junctions from high temperature superconducting material.

  11. Solar Junction | Open Energy Information

    Open Energy Info (EERE)

    Junction Jump to: navigation, search Name: Solar Junction Place: San Jose, California Zip: CA 95131 Sector: Efficiency, Solar Product: Solar Junction is developing high efficiency...

  12. Three-junction solar cell

    DOE Patents [OSTI]

    Ludowise, Michael J. (Cupertino, CA)

    1986-01-01

    A photovoltaic solar cell is formed in a monolithic semiconductor. The cell contains three junctions. In sequence from the light-entering face, the junctions have a high, a medium, and a low energy gap. The lower junctions are connected in series by one or more metallic members connecting the top of the lower junction through apertures to the bottom of the middle junction. The upper junction is connected in voltage opposition to the lower and middle junctions by second metallic electrodes deposited in holes 60 through the upper junction. The second electrodes are connected to an external terminal.

  13. High-Intensity Silicon Vertical Multi-Junction Solar Cells |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Versatility Can be used in ground-mounted and roof-mounted deployments. Contact Information Mico Perales (216) 535-9200 mico.perales@greenfieldsolar.com GreenField Solar ...

  14. DOE - Office of Legacy Management -- Grand Junction Sites

    Office of Legacy Management (LM)

    Grand Junction Sites Grand Junction Sites gj_map Grand Junction Disposal Site Grand Junction Processing Site Grand Junction Site Contact Us

  15. Junction Hilltop Wind | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name Junction Hilltop Wind Facility Junction Hilltop Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Community Owned...

  16. Greenfield Solar | Open Energy Information

    Open Energy Info (EERE)

    Place: Oberlin, Ohio Product: Developer of combined hot water and concentrator photovoltaic systems using in-house, proprietary cell architecture. Coordinates: 41.292925,...

  17. Grundy County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.3500531, -88.4016041 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  18. Grundy County Rural Elec Coop | Open Energy Information

    Open Energy Info (EERE)

    Elec Coop Place: Iowa Phone Number: 319-824-5251 Website: www.grundycountyrecia.com Outage Hotline: 1-800-390-7605 Outage Map: www.iowarec.orgoutages References: EIA Form...

  19. Grundy County, Tennessee: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.4013452, -85.684578 Show Map Loading map... "minzoom":false,"mappingservice":"googl...

  20. Josephson junction Q-spoiler

    DOE Patents [OSTI]

    Clarke, J.; Hilbert, C.; Hahn, E.L.; Sleator, T.

    1986-03-25

    An automatic Q-spoiler comprising at least one Josephson tunnel junction connected in an LC circuit for flow of resonant current therethrough. When in use in a system for detecting the magnetic resonance of a gyromagnetic particle system, a high energy pulse of high frequency energy irradiating the particle system will cause the critical current through the Josephson tunnel junctions to be exceeded, causing the tunnel junctions to act as resistors and thereby damp the ringing of the high-Q detection circuit after the pulse. When the current has damped to below the critical current, the Josephson tunnel junctions revert to their zero-resistance state, restoring the Q of the detection circuit and enabling the low energy magnetic resonance signals to be detected.

  1. Josephson junction Q-spoiler

    DOE Patents [OSTI]

    Clarke, John (Berkeley, CA); Hilbert, Claude (Austin, TX); Hahn, Erwin L. (Berkeley, CA); Sleator, Tycho (Berkeley, CA)

    1988-01-01

    An automatic Q-spoiler comprising at least one Josephson tunnel junction connected in an LC circuit for flow of resonant current therethrough. When in use in a system for detecting the magnetic resonance of a gyromagnetic particle system, a high energy pulse of high frequency energy irradiating the particle system will cause the critical current through the Josephson tunnel junctions to be exceeded, causing the tunnel junctions to act as resistors and thereby damp the ringing of the high-Q detection circuit after the pulse. When the current has damped to below the critical current, the Josephson tunnel junctions revert to their zero-resistance state, restoring the Q of the detection circuit and enabling the low energy magnetic resonance signals to be detected.

  2. Grand Junction, Colorado, Site Fact Sheet

    Office of Legacy Management (LM)

    D D&D Page 1 of 3 Fact Sheet Grand Junction, Colorado, Site This fact sheet provides information about the Grand Junction, Colorado, Site. This site is managed by the U.S. Department of Energy Office of Legacy Management under the Defense Decontamination and Decommissioning (D&D) Program. Location of the Grand Junction, Colorado, Site Site Description and History The Grand Junction site is located in the city of Grand Junction, in west-central Colorado about 26 miles from the Utah

  3. Grand Junction Office Founder Honored at the

    Office of Environmental Management (EM)

    4 Grand Junction Office Founder Honored at the Philip C. Leahy Memorial Park Dedication and Open House The U.S. Department of Energy (DOE) Offce of Legacy Management (LM) held an open house and park dedication at the Grand Junction, Colorado, Offce to commemorate its place in the Manhattan Project and Cold War histories. The park, located in the middle of the Grand Junction Offce campus, was dedicated to Army Major (retired) Philip C. Leahy. Leahy came to Grand Junction in 1943 under secret

  4. Method for shallow junction formation

    DOE Patents [OSTI]

    Weiner, K.H.

    1996-10-29

    A doping sequence is disclosed that reduces the cost and complexity of forming source/drain regions in complementary metal oxide silicon (CMOS) integrated circuit technologies. The process combines the use of patterned excimer laser annealing, dopant-saturated spin-on glass, silicide contact structures and interference effects creates by thin dielectric layers to produce source and drain junctions that are ultrashallow in depth but exhibit low sheet and contact resistance. The process utilizes no photolithography and can be achieved without the use of expensive vacuum equipment. The process margins are wide, and yield loss due to contact of the ultrashallow dopants is eliminated. 8 figs.

  5. Method for shallow junction formation

    DOE Patents [OSTI]

    Weiner, Kurt H. (San Jose, CA)

    1996-01-01

    A doping sequence that reduces the cost and complexity of forming source/drain regions in complementary metal oxide silicon (CMOS) integrated circuit technologies. The process combines the use of patterned excimer laser annealing, dopant-saturated spin-on glass, silicide contact structures and interference effects creates by thin dielectric layers to produce source and drain junctions that are ultrashallow in depth but exhibit low sheet and contact resistance. The process utilizes no photolithography and can be achieved without the use of expensive vacuum equipment. The process margins are wide, and yield loss due to contact of the ultrashallow dopants is eliminated.

  6. Grand Junction Office Founder Honored at the Philip C. Leahy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Junction, Colorado, Office to commemorate its place in the Manhattan Project and Cold War histories. The park, located in the middle of the Grand Junction Office campus, was...

  7. EERE Success Story-Solar Junction Develops World Record Setting...

    Energy Savers [EERE]

    Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell EERE Success Story-Solar Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell ...

  8. Solar Junction Develops World Record Setting Concentrated Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell Solar Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell April 18, 2013 - ...

  9. Phonon Bottleneck in Graphene-Based Josephson Junctions at Millikelvin...

    Office of Scientific and Technical Information (OSTI)

    Phonon Bottleneck in Graphene-Based Josephson Junctions at Millikelvin Temperatures Title: Phonon Bottleneck in Graphene-Based Josephson Junctions at Millikelvin Temperatures ...

  10. Silicon fiber with p-n junction

    SciTech Connect (OSTI)

    Homa, D.; Cito, A.; Pickrell, G.; Hill, C.; Scott, B.

    2014-09-22

    In this study, we fabricated a p-n junction in a fiber with a phosphorous doped silicon core and fused silica cladding. The fibers were fabricated via a hybrid process of the core-suction and melt-draw techniques and maintained overall diameters ranging from 200 to 900??m and core diameters of 20800??m. The p-n junction was formed by doping the fiber with boron and confirmed via the current-voltage characteristic. The demonstration of a p-n junction in a melt-drawn silicon core fiber paves the way for the seamless integration of optical and electronic devices in fibers.

  11. Tunnel junction multiple wavelength light-emitting diodes

    DOE Patents [OSTI]

    Olson, Jerry M. (Lakewood, CO); Kurtz, Sarah R. (Golden, CO)

    1992-01-01

    A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect.

  12. Tunnel junction multiple wavelength light-emitting diodes

    DOE Patents [OSTI]

    Olson, J.M.; Kurtz, S.R.

    1992-11-24

    A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect. 5 figs.

  13. DOE Grand Junction Projects Office Edgemont LTSP

    Office of Legacy Management (LM)

    DOE Grand Junction Projects Office Edgemont LTSP June 1996 Page ii Contents Page 1.0 Introduction ....................................................................................................................................... 1 1.1 Purpose ..................................................................................................................................... 1 1.2 Legal and Regulatory Requirements

  14. Semiconductor tunnel junction with enhancement layer

    DOE Patents [OSTI]

    Klem, J.F.; Zolper, J.C.

    1997-10-21

    The incorporation of a pseudomorphic GaAsSb layer in a runnel diode structure affords a new degree of freedom in designing runnel junctions for p-n junction device interconnects. Previously only doping levels could be varied to control the tunneling properties. This invention uses the valence band alignment band of the GaAsSb with respect to the surrounding materials to greatly relax the doping requirements for tunneling. 5 figs.

  15. Semiconductor tunnel junction with enhancement layer

    DOE Patents [OSTI]

    Klem, John F. (Sandia Park, NM); Zolper, John C. (Albuquerque, NM)

    1997-01-01

    The incorporation of a pseudomorphic GaAsSb layer in a runnel diode structure affords a new degree of freedom in designing runnel junctions for p-n junction device interconnects. Previously only doping levels could be varied to control the tunneling properties. This invention uses the valence band alignment band of the GaAsSb with respect to the surrounding materials to greatly relax the doping requirements for tunneling.

  16. Multi-junction solar cell device

    DOE Patents [OSTI]

    Friedman, Daniel J. (Lakewood, CO); Geisz, John F. (Wheat Ridge, CO)

    2007-12-18

    A multi-junction solar cell device (10) is provided. The multi-junction solar cell device (10) comprises either two or three active solar cells connected in series in a monolithic structure. The multi-junction device (10) comprises a bottom active cell (20) having a single-crystal silicon substrate base and an emitter layer (23). The multi-junction device (10) further comprises one or two subsequent active cells each having a base layer (32) and an emitter layer (23) with interconnecting tunnel junctions between each active cell. At least one layer that forms each of the top and middle active cells is composed of a single-crystal III-V semiconductor alloy that is substantially lattice-matched to the silicon substrate (22). The polarity of the active p-n junction cells is either p-on-n or n-on-p. The present invention further includes a method for substantially lattice matching single-crystal III-V semiconductor layers with the silicon substrate (22) by including boron and/or nitrogen in the chemical structure of these layers.

  17. QER- Comment of Solar Store of Greenfield

    Broader source: Energy.gov [DOE]

    I speak for many millions of Americans who are ready and able to more the USA towards that goal of 100% renewables by 2050. WE are ready to START TODAY. And in fact we have started already. Thank you for your time and consideration. Claire Chang

  18. Greenfield, Massachusetts: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Massachusetts: Energy Resources Jump to: navigation, search This article is a stub. You can help OpenEI by expanding it. Equivalent URI DBpedia Coordinates 42.5875857,...

  19. A single-gradient junction technique to replace multiple-junction shifts for craniospinal irradiation treatment

    SciTech Connect (OSTI)

    Hadley, Austin; Ding, George X.

    2014-01-01

    Craniospinal irradiation (CSI) requires abutting fields at the cervical spine. Junction shifts are conventionally used to prevent setup errorinduced overdosage/underdosage from occurring at the same location. This study compared the dosimetric differences at the cranial-spinal junction between a single-gradient junction technique and conventional multiple-junction shifts and evaluated the effect of setup errors on the dose distributions between both techniques for a treatment course and single fraction. Conventionally, 2 lateral brain fields and a posterior spine field(s) are used for CSI with weekly 1-cm junction shifts. We retrospectively replanned 4 CSI patients using a single-gradient junction between the lateral brain fields and the posterior spine field. The fields were extended to allow a minimum 3-cm field overlap. The dose gradient at the junction was achieved using dose painting and intensity-modulated radiation therapy planning. The effect of positioning setup errors on the dose distributions for both techniques was simulated by applying shifts of 3 and 5 mm. The resulting cervical spine doses across the field junction for both techniques were calculated and compared. Dose profiles were obtained for both a single fraction and entire treatment course to include the effects of the conventional weekly junction shifts. Compared with the conventional technique, the gradient-dose technique resulted in higher dose uniformity and conformity to the target volumes, lower organ at risk (OAR) mean and maximum doses, and diminished hot spots from systematic positioning errors over the course of treatment. Single-fraction hot and cold spots were improved for the gradient-dose technique. The single-gradient junction technique provides improved conformity, dose uniformity, diminished hot spots, lower OAR mean and maximum dose, and one plan for the entire treatment course, which reduces the potential human error associated with conventional 4-shifted plans.

  20. Methods for the fabrication of thermally stable magnetic tunnel junctions

    DOE Patents [OSTI]

    Chang, Y. Austin (Middleton, WI); Yang, Jianhua J. (Madison, WI); Ladwig, Peter F. (Hutchinson, MN)

    2009-08-25

    Magnetic tunnel junctions and method for making the magnetic tunnel junctions are provided. The magnetic tunnel junctions are characterized by a tunnel barrier oxide layer sandwiched between two ferromagnetic layers. The methods used to fabricate the magnetic tunnel junctions are capable of completely and selectively oxidizing a tunnel junction precursor material using an oxidizing gas containing a mixture of gases to provide a tunnel junction oxide without oxidizing the adjacent ferromagnetic materials. In some embodiments the gas mixture is a mixture of CO and CO.sub.2 or a mixture of H.sub.2 and H.sub.2O.

  1. Junction-side illuminated silicon detector arrays

    DOE Patents [OSTI]

    Iwanczyk, Jan S.; Patt, Bradley E.; Tull, Carolyn

    2004-03-30

    A junction-side illuminated detector array of pixelated detectors is constructed on a silicon wafer. A junction contact on the front-side may cover the whole detector array, and may be used as an entrance window for light, x-ray, gamma ray and/or other particles. The back-side has an array of individual ohmic contact pixels. Each of the ohmic contact pixels on the back-side may be surrounded by a grid or a ring of junction separation implants. Effective pixel size may be changed by separately biasing different sections of the grid. A scintillator may be coupled directly to the entrance window while readout electronics may be coupled directly to the ohmic contact pixels. The detector array may be used as a radiation hardened detector for high-energy physics research or as avalanche imaging arrays.

  2. Complementary junction heterostructure field-effect transistor

    DOE Patents [OSTI]

    Baca, A.G.; Drummond, T.J.; Robertson, P.J.; Zipperian, T.E.

    1995-12-26

    A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits. 10 figs.

  3. Complementary junction heterostructure field-effect transistor

    DOE Patents [OSTI]

    Baca, Albert G.; Drummond, Timothy J.; Robertson, Perry J.; Zipperian, Thomas E.

    1995-01-01

    A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits.

  4. High voltage series connected tandem junction solar battery

    DOE Patents [OSTI]

    Hanak, Joseph J. (Lawrenceville, NJ)

    1982-01-01

    A high voltage series connected tandem junction solar battery which comprises a plurality of strips of tandem junction solar cells of hydrogenated amorphous silicon having one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon, arranged in a tandem configuration, can have the same bandgap or differing bandgaps. The tandem junction strip solar cells are series connected to produce a solar battery of any desired voltage.

  5. Grand Junction, Colorado, Processing Site and Disposal Sites Fact Sheet

    Office of Legacy Management (LM)

    Grand Junction, Colorado, Disposal and Processing Sites This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I disposal and processing sites at Grand Junction, Colorado. These sites are managed by the U.S. Department of Energy Office of Legacy Management. Locations of the Grand Junction, Colorado, Sites Site Description and History The former Grand Junction processing site, historically known as the Climax uranium mill, sits at an elevation of

  6. Gallium nitride junction field-effect transistor

    DOE Patents [OSTI]

    Zolper, John C. (Albuquerque, NM); Shul, Randy J. (Albuquerque, NM)

    1999-01-01

    An all-ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorous co-implantation, in selected III-V semiconductor materials.

  7. Tandem junction amorphous silicon solar cells

    DOE Patents [OSTI]

    Hanak, Joseph J. (Lawrenceville, NJ)

    1981-01-01

    An amorphous silicon solar cell has an active body with two or a series of layers of hydrogenated amorphous silicon arranged in a tandem stacked configuration with one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon arranged in tandem configuration can have the same bandgap or differing bandgaps.

  8. Gallium nitride junction field-effect transistor

    DOE Patents [OSTI]

    Zolper, J.C.; Shul, R.J.

    1999-02-02

    An ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same are disclosed. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorus co-implantation, in selected III-V semiconductor materials. 19 figs.

  9. EA-0930: Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand Junction, Colorado

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to expand and upgrade the U.S. Department of Energy's Grand Junction Projects Office facilities and operations in Grand Junction, Colorado.

  10. Junction conditions in extended Teleparallel gravities

    SciTech Connect (OSTI)

    De la Cruz-Dombriz, lvaro; Dunsby, Peter K.S.; Sez-Gmez, Diego E-mail: peter.dunsby@uct.ac.za

    2014-12-01

    In the context of extended Teleparallel gravity theories, we address the issue of junction conditions required to guarantee the correct matching of different regions of spacetime. In the absence of shells/branes, these conditions turn out to be more restrictive than their counterparts in General Relativity as in other extended theories of gravity. In fact, the general junction conditions on the matching hypersurfaces depend on the underlying theory and a new condition on the induced tetrads in order to avoid delta-like distributions in the field equations. This result imposes strict consequences on the viability of standard solutions such as the Einstein-Straus-like construction. We find that the continuity of the scalar torsion is required in order to recover the usual General Relativity results.

  11. Semiconductor junction formation by directed heat

    DOE Patents [OSTI]

    Campbell, Robert B.

    1988-03-24

    The process of the invention includes applying precursors 6 with N- and P-type dopants therein to a silicon web 2, with the web 2 then being baked in an oven 10 to drive off excessive solvents, and the web 2 is then heated using a pulsed high intensity light in a mechanism 12 at 1100.degree.-1150.degree. C. for about 10 seconds to simultaneously form semiconductor junctions in both faces of the web.

  12. Highly Charged Ion (HCI) Modified Tunnel Junctions

    SciTech Connect (OSTI)

    Pomeroy, J. M.; Grube, H. [Atomic Physics Division, National Institute of Standards and Technology (NIST) 100 Bureau Dr., MS 8423, Gaithersburg, MD 20899-8423 (United States)

    2009-03-10

    The neutralization energy carried by highly charged ions (HCIs) provides an alternative method for localizing energy on a target's surface, producing features and modifying surfaces with fluences and kinetic energy damage that are negligible compared to singly ionized atoms. Since each HCI can deposit an enormous amount of energy into a small volume of the surface (e.g., Xe{sup 44+} delivers 51 keV of neutralization energy per HCI), each individual HCI's interaction with the target can produce a nanoscale feature. Many studies of HCI-surface features have characterized some basic principles of this unique ion-surface interaction, but the activity reported here has been focused on studying ensembles of HCI features in ultra-thin insulating films by fabricating multi-layer tunnel junction devices. The ultra-thin insulating barriers allow current to flow by tunneling, providing a very sensitive means of detecting changes in the barrier due to highly charged ion irradiation and, conversely, HCI modification provides a method of finely tuning the transparency of the tunnel junctions that spans several orders of magnitude for devices produced from a single process recipe. Systematic variation of junction bias, temperature, magnetic field and other parameters provides determination of the transport mechanism, defect densities, and magnetic properties of these nano-features and this novel approach to device fabrication.

  13. Single P-N junction tandem photovoltaic device

    DOE Patents [OSTI]

    Walukiewicz, Wladyslaw (Kensington, CA); Ager, III, Joel W. (Berkeley, CA); Yu, Kin Man (Lafayette, CA)

    2011-10-18

    A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.

  14. Single P-N junction tandem photovoltaic device

    DOE Patents [OSTI]

    Walukiewicz, Wladyslaw (Kensington, CA); Ager, III, Joel W. (Berkeley, CA); Yu, Kin Man (Lafayette, CA)

    2012-03-06

    A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.

  15. Solar Junction Develops World Record Setting Concentrated Photovoltaic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Cell | Department of Energy Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell Solar Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell April 18, 2013 - 12:00am Addthis Partnering with Solar Junction of San Jose, EERE supported the development of the company's concentrated photovoltaic technology that also set a world record for conversion efficiency. The company's cell technology relies on inexpensive lenses to magnify the amount of

  16. EERE Success Story-Solar Junction Develops World Record Setting

    Office of Environmental Management (EM)

    Concentrated Photovoltaic Solar Cell | Department of Energy Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell EERE Success Story-Solar Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell April 18, 2013 - 12:00am Addthis Partnering with Solar Junction of San Jose, EERE supported the development of the company's concentrated photovoltaic technology that also set a world record for conversion efficiency. The company's cell technology relies on

  17. Fabrication of magnetic tunnel junctions with epitaxial and textured ferromagnetic layers

    DOE Patents [OSTI]

    Chang, Y. Austin (Middleton, WI); Yang, Jianhua Joshua (Madison, WI)

    2008-11-11

    This invention relates to magnetic tunnel junctions and methods for making the magnetic tunnel junctions. The magnetic tunnel junctions include a tunnel barrier oxide layer sandwiched between two ferromagnetic layers both of which are epitaxial or textured with respect to the underlying substrate upon which the magnetic tunnel junctions are grown. The magnetic tunnel junctions provide improved magnetic properties, sharper interfaces and few defects.

  18. Hetero-junctions of Boron Nitride and Carbon Nanotubes: Synthesis...

    Office of Scientific and Technical Information (OSTI)

    3) quantum dots functionalized BNNTs (QDs-BNNTs), 4) BNNTgraphene junctions. We have started to understand their structural, compositional, more and electronic properties. ...

  19. City of Grand Junction, Iowa (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Iowa (Utility Company) Jump to: navigation, search Name: Grand Junction Municipal Utilities Place: Iowa Phone Number: (515) 738-2285 or (515) 738-2726 Facebook: https:...

  20. Phonon Bottleneck in Graphene-Based Josephson Junctions at Millikelvin

    Office of Scientific and Technical Information (OSTI)

    Phonon Bottleneck in Graphene-Based Josephson Junctions at Millikelvin Temperatures Borzenets, I. V.; Coskun, U. C.; Mebrahtu, H. T.; Bomze, Yu. V.; Smirnov, A. I.; Finkelstein, G....

  1. Apache Junction, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Junction, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.4150485, -111.5495777 Show Map Loading map... "minzoom":false,"mappingser...

  2. Grand Junction, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    district.12 Registered Energy Companies in Grand Junction, Colorado Ruby Canyon Engineering Inc References US Census Bureau Incorporated place and minor civil...

  3. Heterojunction for Multi-Junction Solar Cells - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Find More Like This Return to Search Heterojunction for Multi-Junction Solar Cells Sandia National Laboratories Contact SNL About This Technology...

  4. Phonon interference effects in molecular junctions

    SciTech Connect (OSTI)

    Markussen, Troels

    2013-12-28

    We study coherent phonon transport through organic, ?-conjugated molecules. Using first principles calculations and Green's function methods, we find that the phonon transmission function in cross-conjugated molecules, like meta-connected benzene, exhibits destructive quantum interference features very analogous to those observed theoretically and experimentally for electron transport in similar molecules. The destructive interference features observed in four different cross-conjugated molecules significantly reduce the thermal conductance with respect to linear conjugated analogues. Such control of the thermal conductance by chemical modifications could be important for thermoelectric applications of molecular junctions.

  5. Josephson junctions in high-T/sub c/ superconductors

    DOE Patents [OSTI]

    Falco, C.M.; Lee, T.W.

    1981-01-14

    The invention includes a high T/sub c/ Josephson sperconducting junction as well as the method and apparatus which provides the junction by application of a closely controlled and monitored electrical discharge to a microbridge region connecting two portions of a superconducting film.

  6. Subgap biasing of superconducting tunnel junctions without a magnetic field

    SciTech Connect (OSTI)

    Segall, K.; Moyer, J.; Mazo, Juan J.

    2008-08-15

    Superconducting tunnel junctions (STJs) have been successfully used as single-photon detectors but require the use of a magnetic field to operate. A recent paper has proposed the idea to use a circuit of three junctions in place of a single junction in order to achieve the necessary biasing without applying a magnetic field. The nonlinear interaction between the different junctions in the circuit causes the existence of a stable subgap state for one of the junctions, which acts as the detector junction. In this paper, we present the first measurements demonstrating the existence of such a biasing state feasible for STJ detectors. Single junction measurements with an applied magnetic field help determine the functional form of the subgap current versus voltage; then the operating point of a three-junction circuit is measured and fit to theory. The excellent match between theory and experiment demonstrates the existence of the subgap biasing state. The outlook for possible use in detector applications is discussed.

  7. Phase diagram of Josephson junction between s and s ± superconductors...

    Office of Scientific and Technical Information (OSTI)

    Phase diagram of Josephson junction between s and s superconductors in the dirty limit Title: Phase diagram of Josephson junction between s and s superconductors in the dirty ...

  8. Phase diagram of Josephson junction between s and s ± superconductors...

    Office of Scientific and Technical Information (OSTI)

    Publisher's Accepted Manuscript: Phase diagram of Josephson junction between s and s superconductors in the dirty limit Title: Phase diagram of Josephson junction between s and ...

  9. Field-effect P-N junction

    DOE Patents [OSTI]

    Regan, William; Zettl, Alexander

    2015-05-05

    This disclosure provides systems, methods, and apparatus related to field-effect p-n junctions. In one aspect, a device includes an ohmic contact, a semiconductor layer disposed on the ohmic contact, at least one rectifying contact disposed on the semiconductor layer, a gate including a layer disposed on the at least one rectifying contact and the semiconductor layer and a gate contact disposed on the layer. A lateral width of the rectifying contact is less than a semiconductor depletion width of the semiconductor layer. The gate contact is electrically connected to the ohmic contact to create a self-gating feedback loop that is configured to maintain a gate electric field of the gate.

  10. Mechanical deformations of boron nitride nanotubes in crossed junctions

    SciTech Connect (OSTI)

    Zhao, Yadong; Chen, Xiaoming; Ke, Changhong; Park, Cheol; Fay, Catharine C.; Stupkiewicz, Stanislaw

    2014-04-28

    We present a study of the mechanical deformations of boron nitride nanotubes (BNNTs) in crossed junctions. The structure and deformation of the crossed tubes in the junction are characterized by using atomic force microscopy. Our results show that the total tube heights are reduced by 20%33% at the crossed junctions formed by double-walled BNNTs with outer diameters in the range of 2.214.67?nm. The measured tube height reduction is found to be in a nearly linear relationship with the summation of the outer diameters of the two tubes forming the junction. The contact force between the two tubes in the junction is estimated based on contact mechanics theories and found to be within the range of 4.27.6 nN. The Young's modulus of BNNTs and their binding strengths with the substrate are quantified, based on the deformation profile of the upper tube in the junction, and are found to be 1.07??0.11 TPa and 0.180.29 nJ/m, respectively. Finally, we perform finite element simulations on the mechanical deformations of the crossed BNNT junctions. The numerical simulation results are consistent with both the experimental measurements and the analytical analysis. The results reported in this paper contribute to a better understanding of the structural and mechanical properties of BNNTs and to the pursuit of their applications.

  11. Effect of current injection into thin-film Josephson junctions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kogan, V. G.; Mints, R. G.

    2014-11-11

    New thin-film Josephson junctions have recently been tested in which the current injected into one of the junction banks governs Josephson phenomena. One thus can continuously manage the phase distribution at the junction by changing the injected current. Our method of calculating the distribution of injected currents is also proposed for a half-infinite thin-film strip with source-sink points at arbitrary positions at the film edges. The strip width W is assumed small relative to Λ=2λ2/d;λ is the bulk London penetration depth of the film material and d is the film thickness.

  12. White River Junction, Vermont: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. White River Junction is a census-designated place in Windsor County, Vermont. It falls under...

  13. EA-1037: Uranium Lease Management Program, Grand Junction, Colorado

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the U.S. Department of Energy's Grand Junction Projects Office's proposal to maintain and preserve the nation's immediately accessible supply of...

  14. Coso Junction, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    OpenEI by expanding it. Coso Junction is a city in Inyo County, California. It is in Rose Valley, south of Dunmovin and west of Sugarloaf Mountain.1 Energy Generation...

  15. Manipulating Josephson junctions in thin-films by nearby vortices

    SciTech Connect (OSTI)

    Kogan, V G; Mints, R G

    2014-07-01

    It is shown that a vortex trapped in one of the banks of a planar edge-type Josephson junction in a narrow thin-film superconducting strip can change drastically the dependence of the junction critical current on the applied field, I-c(H). When the vortex is placed at certain discrete positions in the strip middle, the pattern I-c(H) has zero at H = 0 instead of the traditional maximum of '0-type' junctions. The number of these positions is equal to the number of vortices trapped at the same location. When the junction-vortex separation exceeds similar to W, the strip width, I-c(H) is no longer sensitive to the vortex presence. The same is true for any separation if the vortex approaches the strip edges. (C) 2014 Elsevier B.V. All rights reserved.

  16. Single-charge detection by an atomic precision tunnel junction

    SciTech Connect (OSTI)

    House, M. G. Peretz, E.; Keizer, J. G.; Hile, S. J.; Simmons, M. Y.

    2014-03-17

    We demonstrate sensitive detection of single charges using a planar tunnel junction 8.5?nm wide and 17.2?nm long defined by an atomically precise phosphorus doping profile in silicon. The conductance of the junction responds to a nearby gate potential and also to changes in the charge state of a quantum dot patterned 52?nm away. The response of this detector is monotonic across the entire working voltage range of the device, which will make it particularly useful for studying systems of multiple quantum dots. The charge sensitivity is maximized when the junction is most conductive, suggesting that more sensitive detection can be achieved by shortening the length of the junction to increase its conductance.

  17. DNA Gridiron Nanostructures Based on Four-Arm Junctions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DNA Gridiron Nanostructures Based on Four-Arm Junctions Authors: Han, D., Pal, S., Yang, Y., Jiang, S., Nangreave, J., Liu, Y., and Yan, H. Title: DNA Gridiron Nanostructures Based...

  18. Phase diagram of Josephson junction between

    Office of Scientific and Technical Information (OSTI)

    diagram of Josephson junction betweensandssuperconductors in the dirty limit...

  19. High Efficiency Multiple-Junction Solar Cells - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search High Efficiency Multiple-Junction Solar Cells Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (937 KB) Technology Marketing SummarySingle junction solar cells have limited efficiency and fail to extract maximum energy from photons outside of a specific spectral region. Higher efficiency and optical to electrical energy conversion is achieved by stacking

  20. Phonon Bottleneck in Graphene-Based Josephson Junctions at Millikelvin

    Office of Scientific and Technical Information (OSTI)

    Temperatures (Journal Article) | DOE PAGES Phonon Bottleneck in Graphene-Based Josephson Junctions at Millikelvin Temperatures Title: Phonon Bottleneck in Graphene-Based Josephson Junctions at Millikelvin Temperatures Authors: Borzenets, I. V. ; Coskun, U. C. ; Mebrahtu, H. T. ; Bomze, Yu. V. ; Smirnov, A. I. ; Finkelstein, G. Publication Date: 2013-07-09 OSTI Identifier: 1103762 Type: Publisher's Accepted Manuscript Journal Name: Physical Review Letters Additional Journal Information:

    1. Design of Flexible-Duct Junction Boxes | Department of Energy

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Design of Flexible-Duct Junction Boxes Design of Flexible-Duct Junction Boxes This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado. PDF icon cq5_duct_splitter_box_beach.pdf More Documents & Publications Critical Question #5: What are Recent Innovations in Air Distribution Systems? Building America Technology Solutions for New and Existing Homes: New Insights for Improving the Designs of Flexible

    2. EA-1338: Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership, Grand Junction, Colorado

      Broader source: Energy.gov [DOE]

      This EA evaluates the environmental impacts for the proposed transfer of real and personal property at the U.S. Department of Energy's Grand Junction Office to non-DOE ownership.

    3. Measure Guideline: Optimizing the Configuration of Flexible Duct Junction Boxes

      SciTech Connect (OSTI)

      Beach, R.; Burdick, A.

      2014-03-01

      This measure guideline offers additional recommendations to heating, ventilation, and air conditioning (HVAC) system designers for optimizing flexible duct, constant-volume HVAC systems using junction boxes within Air Conditioning Contractors of America (ACCA) Manual D guidance (Rutkowski, H. Manual D -- Residential Duct Systems, 3rd edition, Version 1.00. Arlington, VA: Air Conditioning Contractors of America, 2009.). IBACOS used computational fluid dynamics software to explore and develop guidance to better control the airflow effects of factors that may impact pressure losses within junction boxes among various design configurations (Beach, R., Prahl, D., and Lange, R. CFD Analysis of Flexible Duct Junction Box Design. Golden, CO: National Renewable Energy Laboratory, submitted for publication 2013). These recommendations can help to ensure that a system aligns more closely with the design and the occupants' comfort expectations. Specifically, the recommendations described herein show how to configure a rectangular box with four outlets, a triangular box with three outlets, metal wyes with two outlets, and multiple configurations for more than four outlets. Designers of HVAC systems, contractors who are fabricating junction boxes on site, and anyone using the ACCA Manual D process for sizing duct runs will find this measure guideline invaluable for more accurately minimizing pressure losses when using junction boxes with flexible ducts.

    4. Advanced materials development for multi-junction monolithic photovoltaic devices

      SciTech Connect (OSTI)

      Dawson, L.R.; Reno, J.L.

      1996-07-01

      We report results in three areas of research relevant to the fabrication of monolithic multi-junction photovoltaic devices. (1) The use of compliant intervening layers grown between highly mismatched materials, GaAs and GaP (same lattice constant as Si), is shown to increase the structural quality of the GaAs overgrowth. (2) The use of digital alloys applied to the MBE growth of GaAs{sub x}Sb{sub l-x} (a candidate material for a two junction solar cell) provides increased control of the alloy composition without degrading the optical properties. (3) A nitrogen plasma discharge is shown to be an excellent p-type doping source for CdTe and ZnTe, both of which are candidate materials for a two junction solar cell.

    5. Superpoissonian shot noise in organic magnetic tunnel junctions

      SciTech Connect (OSTI)

      Cascales, Juan Pedro; Martinez, Isidoro; Aliev, Farkhad G.; Hong, Jhen-Yong; Lin, Minn-Tsong; Szczepański, Tomasz; Dugaev, Vitalii K.; Barnaś, Józef

      2014-12-08

      Organic molecules have recently revolutionized ways to create new spintronic devices. Despite intense studies, the statistics of tunneling electrons through organic barriers remains unclear. Here, we investigate conductance and shot noise in magnetic tunnel junctions with 3,4,9,10-perylene-teracarboxylic dianhydride (PTCDA) barriers a few nm thick. For junctions in the electron tunneling regime, with magnetoresistance ratios between 10% and 40%, we observe superpoissonian shot noise. The Fano factor exceeds in 1.5–2 times the maximum values reported for magnetic tunnel junctions with inorganic barriers, indicating spin dependent bunching in tunneling. We explain our main findings in terms of a model which includes tunneling through a two level (or multilevel) system, originated from interfacial bonds of the PTCDA molecules. Our results suggest that interfaces play an important role in the control of shot noise when electrons tunnel through organic barriers.

    6. Junction-based field emission structure for field emission display

      DOE Patents [OSTI]

      Dinh, Long N.; Balooch, Mehdi; McLean, II, William; Schildbach, Marcus A.

      2002-01-01

      A junction-based field emission display, wherein the junctions are formed by depositing a semiconducting or dielectric, low work function, negative electron affinity (NEA) silicon-based compound film (SBCF) onto a metal or n-type semiconductor substrate. The SBCF can be doped to become a p-type semiconductor. A small forward bias voltage is applied across the junction so that electron transport is from the substrate into the SBCF region. Upon entering into this NEA region, many electrons are released into the vacuum level above the SBCF surface and accelerated toward a positively biased phosphor screen anode, hence lighting up the phosphor screen for display. To turn off, simply switch off the applied potential across the SBCF/substrate. May be used for field emission flat panel displays.

    7. Environmental Audit of the Grand Junction Projects Office

      SciTech Connect (OSTI)

      Not Available

      1991-08-01

      The Grand Junction Projects Office (GJPO) is located in Mesa County, Colorado, immediately south and west of the Grand Junction city limits. The US Atomic Energy Commission (AEC) established the Colorado Raw Materials Office at the present-day Grand Junction Projects Office in 1947, to aid in the development of a viable domestic uranium industry. Activities at the site included sampling uranium concentrate; pilot-plant milling research, including testing and processing of uranium ores; and operation of a uranium mill pilot plant from 1954 to 1958. The last shipment of uranium concentrate was sent from GJPO in January, 1975. Since that time the site has been utilized to support various DOE programs, such as the former National Uranium Resource Evaluation (NURE) Program, the Uranium Mill Tailings Remedial Action Project (UMTRAP), the Surplus Facilities Management Program (SFMP), and the Technical Measurements Center (TMC). All known contamination at GJPO is believed to be the result of the past uranium milling, analyses, and storage activities. Hazards associated with the wastes impounded at GJPO include surface and ground-water contamination and potential radon and gamma-radiation exposure. This report documents the results of the Baseline Environmental Audit conducted at Grand Junction Projects Office (GJPO) located in Grand Junction, Colorado. The Grand Junction Baseline Environmental Audit was conducted from May 28 to June 12, 1991, by the Office of Environmental Audit (EH-24). This Audit evaluated environmental programs and activities at GJPO, as well as GJPO activities at the State-Owned Temporary Repository. 4 figs., 12 tabs.

    8. Computer-assisted data acquisition on Josephson junctions

      SciTech Connect (OSTI)

      Pagano, S. ); Costabile, G.; Fedullo, V.

      1989-09-01

      An automatic digital data-acquisition system for the test and characterization of superconducting Josephson tunnel junctions is presented. The key feature is represented by the high degree of interaction of the measurement system with the device under test. This is accomplished by an iterated sequence of data acquisitions, automatic analysis, and subsequent modifications of the control signals in the device. In this way, the basic calibration and the value of the relevant quantities involved with the Josephson junction are automatically determined. A connection with a host computer makes possible more complex data analysis, while the full control of the experiment by a dedicated computer allows the operator to perform nonroutine procedures.

    9. Arsen Sukiasyan > MBE Scientist - Solar Junction > Center Alumni > The

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Energy Materials Center at Cornell Arsen Sukiasyan MBE Scientist - Solar Junction Formerly a postdoc with the Schlom and Robinson Groups, Arsen joined Solar Junction in the Fall of 2012

    10. Interaction of Josephson Junction and Distant Vortex in Narrow Thin-Film Superconducting Strips

      SciTech Connect (OSTI)

      Kogan, V. G.; Mints, R. G.

      2014-01-31

      The phase difference between the banks of an edge-type planar Josephson junction crossing the narrow thin-film strip depends on wether or not vortices are present in the junction banks. For a vortex close to the junction this effect has been seen by Golod, Rydh, and Krasnov [Phys. Rev. Lett. 104, 227003 (2010)], who showed that the vortex may turn the junction into ? type. It is shown here that even if the vortex is far away from the junction, it still changes the 0 junction to a ? junction when situated close to the strip edges. Within the approximation used, the effect is independent of the vortex-junction separation, a manifestation of the topology of the vortex phase which extends to macroscopic distances of superconducting coherence.

    11. DOE - Office of Legacy Management -- Climax Uranium Co Grand Junction Mill

      Office of Legacy Management (LM)

      - CO 0-03 Climax Uranium Co Grand Junction Mill - CO 0-03 FUSRAP Considered Sites Site: Climax Uranium Co. (Grand Junction Mill) (CO.0-03) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Grand Junction, Colorado, Processing Site Documents Related to Climax Uranium Co. (Grand Junction Mill) Data Validation Package for the August

    12. Optimized Triple-Junction Solar Cells Using Inverted Metamorphic Approach (Presentation)

      SciTech Connect (OSTI)

      Geisz, J. F.

      2008-11-01

      Record efficiencies with triple-junction inverted metamorphic designs, modeling useful to optimize, and consider operating conditions before choosing design.

    13. Data Compendium for the Logging Test Pits at the ERDA Grand Junction

      Office of Environmental Management (EM)

      Compound (December 1975) | Department of Energy Data Compendium for the Logging Test Pits at the ERDA Grand Junction Compound (December 1975) Data Compendium for the Logging Test Pits at the ERDA Grand Junction Compound (December 1975) Data Compendium for the Logging Test Pits at the ERDA Grand Junction Compound (December 1975) PDF icon Data Compendium for the Logging Test Pits at the ERDA Grand Junction Compound (December 1975) More Documents & Publications Field Calibration Facilities

    14. ALTERNATIVE MATERIALS FOR RAMP-EDGE SNS JUNCTIONS

      SciTech Connect (OSTI)

      Jia, Q.; Fan, Y.

      1999-06-01

      We report on the processing optimization and fabrication of ramp-edge high-temperature superconducting junctions by using alternative materials for both superconductor electrodes and normal-metal barrier. By using Ag-doped YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} (Ag:YBCO) as electrodes and a cation-modified compound of (Pr{sub y}Gd{sub 0.6{minus}y})Ca{sub 0.4}Ba{sub 1.6}La{sub 0.4}Cu{sub 3}O{sub 7} (y = 0.4, 0.5, and 0.6) as a normal-metal barrier, high-temperature superconducting Josephson junctions have been fabricated in a ramp-edge superconductor/normal-metal/superconductor (SNS) configuration. By using Ag:YBCO as electrodes, we have found that the processing controllability /reproducibility and the stability of the SNS junctions are improved substantially. The junctions fabricated with these alternative materials show well-defined RSJ-like current vs voltage characteristics at liquid nitrogen temperature.

    15. Measure Guideline: Optimizing the Configuration of Flexible Duct Junction Boxes

      SciTech Connect (OSTI)

      Beach, R.; Burdick, A.

      2014-03-01

      This measure guideline offers additional recommendations to heating, ventilation, and air conditioning (HVAC) system designers for optimizing flexible duct, constant-volume HVAC systems using junction boxes within Air Conditioning Contractors of America (ACCA) Manual D guidance. IBACOS used computational fluid dynamics software to explore and develop guidance to better control the airflow effects of factors that may impact pressure losses within junction boxes among various design configurations. These recommendations can help to ensure that a system aligns more closely with the design and the occupants' comfort expectations. Specifically, the recommendations described herein show how to configure a rectangular box with four outlets, a triangular box with three outlets, metal wyes with two outlets, and multiple configurations for more than four outlets. Designers of HVAC systems, contractors who are fabricating junction boxes on site, and anyone using the ACCA Manual D process for sizing duct runs will find this measure guideline invaluable for more accurately minimizing pressure losses when using junction boxes with flexible ducts.

    16. Performance model assessment for multi-junction concentrating photovoltaic systems.

      SciTech Connect (OSTI)

      Riley, Daniel M.; McConnell, Robert.; Sahm, Aaron; Crawford, Clark; King, David L.; Cameron, Christopher P.; Foresi, James S.

      2010-03-01

      Four approaches to modeling multi-junction concentrating photovoltaic system performance are assessed by comparing modeled performance to measured performance. Measured weather, irradiance, and system performance data were collected on two systems over a one month period. Residual analysis is used to assess the models and to identify opportunities for model improvement.

    17. August 2015 Groundwater Sampling at the Grand Junction, Colorado, Disposal Site

      Office of Legacy Management (LM)

      Sampling at the Grand Junction, Colorado, Disposal Site October 2015 LMS/GRJ/S00815 This page intentionally left blank U.S. Department of Energy DVP-August 2015, Grand Junction, Colorado October 2015 RIN 15077245 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction, Colorado, Disposal Site, Sample Location Map ...................................................3 Data Assessment

    18. Greenfield, New Hampshire: Energy Resources | Open Energy Information

      Open Energy Info (EERE)

      County, New Hampshire.1 References US Census Bureau Incorporated place and minor civil division population dataset (All States, all geography) Retrieved from "http:...

    19. Antireflection Coating Design for Series Interconnected Multi-Junction Solar Cells

      SciTech Connect (OSTI)

      AIKEN,DANIEL J.

      1999-11-29

      AR coating design for multi-junction solar cells can be more challenging than in the single junction case. Reasons for this are discussed. Analytical expressions used to optimize AR coatings for single junction solar cells are extended for use in monolithic, series interconnected multi-junction solar cell AR coating design. The result is an analytical expression which relates the solar cell performance (through J{sub SC}) directly to the AR coating design through the device reflectance. It is also illustrated how AR coating design can be used to provide an additional degree of freedom for current matching multi-junction devices.

    20. AlGaAs/InGaAlP tunnel junctions for multijunction solar cells

      SciTech Connect (OSTI)

      SHARPS,P.R.; LI,N.Y.; HILLS,J.S.; HOU,H.; CHANG,PING-CHIH; BACA,ALBERT G.

      2000-05-16

      Optimization of GaInP{sub 2}/GaAs dual and GaInP{sub 2}/GaAs/Ge triple junction cells, and development of future generation monolithic multi-junction cells will involve the development of suitable high bandgap tunnel junctions. There are three criteria that a tunnel junction must meet. First, the resistance of the junction must be kept low enough so that the series resistance of the overall device is not increased. For AMO, 1 sun operation, the tunnel junction resistance should be below 5 x 10{sup {minus}2} {Omega}-cm. Secondly, the peak current density for the tunnel junction must also be larger than the J{sub sc} of the cell so that the tunnel junction I-V curve does not have a deleterious effect on the I-V curve of the multi-junction device. Finally, the tunnel junction must be optically transparent, i.e., there must be a minimum of optical absorption of photons that will be collected by the underlying subcells. The paper reports the investigation of four high bandgap tunnel junctions grown by metal-organic chemical vapor deposition.

    1. Towards understanding junction degradation in cadmium telluride solar cells

      SciTech Connect (OSTI)

      Nardone, Marco

      2014-06-21

      A degradation mechanism in cadmium telluride (CdTe/CdS) solar cells is investigated using time-dependent numerical modeling to simulate various temperature, bias, and illumination stress conditions. The physical mechanism is based on defect generation rates that are proportional to nonequilibrium charge carrier concentrations. It is found that a commonly observed degradation mode for CdTe/CdS solar cells can be reproduced only if defects are allowed to form in a narrow region of the absorber layer close to the CdTe/CdS junction. A key aspect of this junction degradation is that both mid-gap donor and shallow acceptor-type defects must be generated simultaneously in response to photo-excitation or applied bias. The numerical approach employed here can be extended to study other mechanisms for any photovoltaic technology.

    2. Grain boundary and triple junction diffusion in nanocrystalline copper

      SciTech Connect (OSTI)

      Wegner, M. Leuthold, J.; Peterlechner, M.; Divinski, S. V.; Song, X.; Wilde, G.

      2014-09-07

      Grain boundary and triple junction diffusion in nanocrystalline Cu samples with grain sizes, ?d?, of ?35 and ?44?nm produced by spark plasma sintering were investigated by the radiotracer method using the {sup 63}Ni isotope. The measured diffusivities, D{sub eff}, are comparable with those determined previously for Ni grain boundary diffusion in well-annealed, high purity, coarse grained, polycrystalline copper, substantiating the absence of a grain size effect on the kinetic properties of grain boundaries in a nanocrystalline material at grain sizes d???35?nm. Simultaneously, the analysis predicts that if triple junction diffusion of Ni in Cu is enhanced with respect to the corresponding grain boundary diffusion rate, it is still less than 500?D{sub gb} within the temperature interval from 420?K to 470?K.

    3. Junction Transport in Epitaxial Film Silicon Heterojunction Solar Cells

      SciTech Connect (OSTI)

      Young, D. L.; Li, J. V.; Teplin, C. W.; Stradins, P.; Branz, H. M.

      2011-01-01

      We report our progress toward low-temperature HWCVD epitaxial film silicon solar cells on inexpensive seed layers, with a focus on the junction transport physics exhibited by our devices. Heterojunctions of i/p hydrogenated amorphous Si (a-Si) on our n-type epitaxial crystal Si on n{sup ++} Si wafers show space-charge-region recombination, tunneling or diffusive transport depending on both epitaxial Si quality and the applied forward voltage.

    4. Junction Transport in Epitaxial Film Silicon Heterojunction Solar Cells: Preprint

      SciTech Connect (OSTI)

      Young, D. L.; Li, J. V.; Teplin, C. W.; Stradins, P.; Branz, H. M.

      2011-07-01

      We report our progress toward low-temperature HWCVD epitaxial film silicon solar cells on inexpensive seed layers, with a focus on the junction transport physics exhibited by our devices. Heterojunctions of i/p hydrogenated amorphous Si (a-Si) on our n-type epitaxial crystal Si on n++ Si wafers show space-charge-region recombination, tunneling or diffusive transport depending on both epitaxial Si quality and the applied forward voltage.

    5. Fractional quantum Hall junctions and two-channel Kondo models

      SciTech Connect (OSTI)

      Sandler, Nancy P.; Fradkin, Eduardo

      2001-06-15

      A mapping between fractional quantum Hall (FQH) junctions and the two-channel Kondo model is presented. We discuss this relation in detail for the particular case of a junction of a FQH state at {nu}=1/3 and a normal metal. We show that in the strong coupling regime this junction has a non-Fermi-liquid fixed point. At this fixed point the electron Green{close_quote}s function has a branch cut and the impurity entropy is equal to S=1/2ln2. We construct the space of perturbations at the strong coupling fixed point and find that the dimension of the tunneling operator is 1/2. These properties are strongly reminiscent of the non-Fermi-liquid fixed points of a number of quantum impurity models, particularly the two-channel Kondo model. However we have found that, in spite of these similarities, the Hilbert spaces of these two systems are quite different. In particular, although in a special limit the Hamiltonians of both systems are the same, their Hilbert spaces are not since they are determined by physically distinct boundary conditions. As a consequence the spectrum of operators in the two problems is different.

    6. Environmental assessment of facility operations at the U.S. Department of Energy Grand Junction Projects Office, Grand Junction, Colorado

      SciTech Connect (OSTI)

      1996-06-01

      The US Department of Energy (DOE) has prepared a sitewide environmental assessment (EA) of the proposed action to continue and expand present-day activities on the DOE Grand Junction Projects Office (GJPO) facility in Grand Junction, Colorado. Because DOE-GJPO regularly proposes and conducts many different on-site activities, DOE decided to evaluate these activities in one sitewide EA rather than in multiple, activity-specific documents. On the basis of the information and analyses presented in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment, as defined by the National Environmental Policy Act (NEPA) of 1969. Therefore, preparation of an environmental impact statement is not required for facility operations, and DOE is issuing this Finding of No Significant Impact (FONSI).

    7. Joint measurement of current-phase relations and transport properties of hybrid junctions using a three junctions superconducting quantum interference device

      SciTech Connect (OSTI)

      Basset, J.; Delagrange, R.; Weil, R.; Kasumov, A.; Bouchiat, H.; Deblock, R.

      2014-07-14

      We propose a scheme to measure both the current-phase relation and differential conductance dI/dV of a superconducting junction, in the normal and the superconducting states. This is done using a dc Superconducting Quantum Interference Device with two Josephson junctions in parallel with the device under investigation and three contacts. As a demonstration, we measure the current-phase relation and dI/dV of a small Josephson junction and a carbon nanotube junction. In this latter case, in a regime where the nanotube is well conducting, we show that the non-sinusoidal current phase relation we find is consistent with the theory for a weak link, using the transmission extracted from the differential conductance in the normal state. This method holds great promise for future investigations of the current-phase relation of more exotic junctions.

    8. Process For Direct Integration Of A Thin-Film Silicon P-N Junction Diode With A Magnetic Tunnel Junction

      DOE Patents [OSTI]

      Toet, Daniel (Mountain View, CA); Sigmon, Thomas W. (Albuquerque, NM)

      2005-08-23

      A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.

    9. Process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction

      DOE Patents [OSTI]

      Toet, Daniel; Sigmon, Thomas W.

      2004-12-07

      A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.

    10. Process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction

      DOE Patents [OSTI]

      Toet, Daniel (Mountain View, CA); Sigmon, Thomas W. (Albuquerque, NM)

      2003-01-01

      A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.

    11. Shunt-capacitor-assisted synchronization of oscillations in intrinsic Josephson junctions stack.

      SciTech Connect (OSTI)

      Martin, I.; Halasz, G. B.; Bulaevskii, L. N.; Koshelev, A. E.; Materials Science Division; LANL

      2010-08-06

      We show that a shunt capacitor, by coupling each Josephson junction to all the other junctions, stabilizes synchronized oscillations in an intrinsic Josephson junction stack biased by a dc current. This synchronization mechanism is similar to the previously discussed radiative coupling between junctions, however, it is not defined by the geometry of the stack. It is particularly important in crystals with smaller numbers of junctions (where the radiation coupling is weak), and is comparable with the effect of strong super-radiation in crystals with many junctions. The shunt also helps to enter the phase-locked regime in the beginning of the oscillations, after switching on the bias current. Furthermore, it may be used to tune radiation power, which drops as the shunt capacitance increases.

    12. Voltage dependence of the differential capacitance of a p{sup +}-n junction

      SciTech Connect (OSTI)

      Shekhovtsov, N. A.

      2013-04-15

      The dependences of the differential capacitance and current of a p{sup +}-n junction with a uniformly doped n region on the voltage in the junction region are calculated. The p{sup +}-n junction capacitance controls the charge change in the junction region taking into account a change in the electric field of the quasi-neutral n region and a change in its bipolar drift mobility with increasing excess charge-carrier concentration. It is shown that the change in the sign of the p{sup +}-n junction capacitance with increasing injection level is caused by a decrease in the bipolar drift mobility as the electron-hole pair concentration in the n region increases. It is shown that the p{sup +}-n junction capacitance decreases with increasing reverse voltage and tends to a constant positive value.

    13. Students from Grand Junction High School Triumph in Colorado Science Bowl

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Grand Junction High School Triumph in Colorado Science Bowl For more information contact: e:mail: Public Affairs Golden, Colo., Feb. 12, 2000 - Students from Grand Junction High School won top honors at the Colorado Science Bowl today at the Colorado School of Mines in Golden. In the final round of rapid-fire questions about physics, math, biology, astronomy, chemistry, computers and the earth sciences, students from Grand Junction were victorious over one of two teams from Douglas County High

    14. Hetero-junctions of Boron Nitride and Carbon Nanotubes: Synthesis and

      Office of Scientific and Technical Information (OSTI)

      Characterization (Technical Report) | SciTech Connect Hetero-junctions of Boron Nitride and Carbon Nanotubes: Synthesis and Characterization Citation Details In-Document Search Title: Hetero-junctions of Boron Nitride and Carbon Nanotubes: Synthesis and Characterization Hetero-junctions of boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs) are expected to have appealing new properties that are not available from pure BNNTs and CNTs. Theoretical studies indicate that BNNT/CNT

    15. GaInNAs Junctions for Next-Generation Concentrators: Progress and Prospects

      SciTech Connect (OSTI)

      Friedman, D. J.; Ptak, A. J.; Kurtz, S. R.; Geisz, J. F.; Kiehl, J.

      2005-08-01

      We discuss progress in the development of GaInNAs junctions for application in next-generation multijunction concentrator cells. A significant development is the demonstration of near-100% internal quantum efficiencies in junctions grown by molecular-beam epitaxy. Testing at high currents validates the compatibility of these devices with concentrator operation. The efficiencies of several next-generation multijunction structures incorporating these state-of-the-art GaInNAs junctions are projected.

    16. Grand Junction, Colorado, Disposal Site Long-Term Surveillance and Maintenance Program Fact Sheet, July 2001

      Office of Legacy Management (LM)

      Grand Junction Disposal Site Uranium ore was processed at the Climax millsite at Grand Junction, Colorado, between 1951 and 1970. The milling operations created process-related waste and tailings, a sandlike material containing radioactive materials and other contaminants. The tailings were an ideal and inexpensive construction material suitable for concrete, mortar, and fill. Accordingly, the tailings were widely used in the Grand Junction area for these purposes. The U.S. Department of Energy

    17. Monitoring of the Airport Calibration Pads at Walker Field, Grand Junction,

      Office of Environmental Management (EM)

      Colorado, for Long-Term Radiation Variations (August 1978) | Department of Energy of the Airport Calibration Pads at Walker Field, Grand Junction, Colorado, for Long-Term Radiation Variations (August 1978) Monitoring of the Airport Calibration Pads at Walker Field, Grand Junction, Colorado, for Long-Term Radiation Variations (August 1978) Monitoring of the Airport Calibration Pads at Walker Field, Grand Junction, Colorado, for Long-Term Radiation Variations (August 1978) PDF icon Monitoring

    18. NREL and CSEM Jointly Set New Efficiency Record with Dual-Junction...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      NREL and CSEM Jointly Set New Efficiency Record with Dual-Junction Solar Cell January 5, 2016 Scientists at the Energy Department's National Renewable Energy Laboratory (NREL) and...

    19. Enhancement of tunnel magnetoresistance in magnetic tunnel junction by a superlattice barrier

      SciTech Connect (OSTI)

      Chen, C. H.; Hsueh, W. J.

      2014-01-27

      Tunnel magnetoresistance of magnetic tunnel junction improved by a superlattice barrier composed of alternate layers of a nonmagnetic metal and an insulator is proposed. The forbidden band of the superlattice is used to predict the low transmission range in the superlattice barrier. By forbidding electron transport in the anti-parallel configuration, the tunnel magnetoresistance is enhanced in the superlattice junction. The results show that the tunnel magnetoresistance ratio for a superlattice magnetic tunnel junction is greater than that for traditional single or double barrier junctions.

    20. Engineering ferroelectric tunnel junctions through potential profile shaping

      SciTech Connect (OSTI)

      Boyn, S.; Garcia, V. Fusil, S.; Carrtro, C.; Garcia, K.; Collin, S.; Deranlot, C.; Bibes, M.; Barthlmy, A.

      2015-06-01

      We explore the influence of the top electrode materials (W, Co, Ni, Ir) on the electronic band profile in ferroelectric tunnel junctions based on super-tetragonal BiFeO{sub 3}. Large variations of the transport properties are observed at room temperature. In particular, the analysis of current vs. voltage curves by a direct tunneling model indicates that the metal/ferroelectric interfacial barrier height increases with the top-electrode work function. While larger metal work functions result in larger OFF/ON ratios, they also produce a large internal electric field which results in large and potentially destructive switching voltages.

    1. Inverted GaInP/(In)GaAs/InGaAs Triple-Junction Solar Cells with Low-Stress Metamorphic Bottom Junctions: Preprint

      SciTech Connect (OSTI)

      Geisz, J. F.; Kurtz, S. R.; Wanlass, M. W.; Ward, J. S.; Duda, A.; Friedman, D. J.; Olson, J. M.; McMahon, W. E.; Moriarty, T. E.; Kiehl, J. T.; Romero, M. J.; Norman, A. G.; Jones, K. M.

      2008-05-01

      We demonstrate high efficiency performance in two ultra-thin, Ge-free III-V semiconductor triple-junction solar cell device designs grown in an inverted configuration. Low-stress metamorphic junctions were engineered to achieve excellent photovoltaic performance with less than 3 x 106 cm-2 threading dislocations. The first design with band gaps of 1.83/1.40/1.00 eV, containing a single metamorphic junction, achieved 33.8% and 39.2% efficiencies under the standard one-sun global spectrum and concentrated direct spectrum at 131 suns, respectively. The second design with band gaps of 1.83/1.34/0.89 eV, containing two metamorphic junctions achieved 33.2% and 40.1% efficiencies under the standard one-sun global spectrum and concentrated direct spectrum at 143 suns, respectively.

    2. Low temperature junction growth using hot-wire chemical vapor deposition

      DOE Patents [OSTI]

      Wang, Qi; Page, Matthew; Iwaniczko, Eugene; Wang, Tihu; Yan, Yanfa

      2014-02-04

      A system and a process for forming a semi-conductor device, and solar cells (10) formed thereby. The process includes preparing a substrate (12) for deposition of a junction layer (14); forming the junction layer (14) on the substrate (12) using hot wire chemical vapor deposition; and, finishing the semi-conductor device.

    3. Imaging the p-n junction in a gallium nitride nanowire with a scanning microwave microscope

      SciTech Connect (OSTI)

      Imtiaz, Atif; Wallis, Thomas M.; Brubaker, Matt D.; Blanchard, Paul T.; Bertness, Kris A.; Sanford, Norman A.; Kabos, Pavel; Weber, Joel C.; Coakley, Kevin J.

      2014-06-30

      We used a broadband, atomic-force-microscope-based, scanning microwave microscope (SMM) to probe the axial dependence of the charge depletion in a p-n junction within a gallium nitride nanowire (NW). SMM enables the visualization of the p-n junction location without the need to make patterned electrical contacts to the NW. Spatially resolved measurements of S{sub 11}{sup ?}, which is the derivative of the RF reflection coefficient S{sub 11} with respect to voltage, varied strongly when probing axially along the NW and across the p-n junction. The axial variation in S{sub 11}{sup ?}? effectively mapped the asymmetric depletion arising from the doping concentrations on either side of the junction. Furthermore, variation of the probe tip voltage altered the apparent extent of features associated with the p-n junction in S{sub 11}{sup ?} images.

    4. Dislocation Dynamics Simulations of Junctions in Hexagonal Close-Packed Crystals

      SciTech Connect (OSTI)

      Wu, C; Aubry, S; Chung, P; Arsenlis, A

      2011-12-05

      The formation and strength of dislocations in the hexagonal closed packed material beryllium are studied through dislocation junctions and the critical stress required to break them. Dislocation dynamics calculations (using the code ParaDiS) of junction maps are compared to an analytical line tension approximation in order to validate our model. Results show that the two models agree very well. Also the critical shear stress necessary to break 30{sup o} - 30{sup o} and 30{sup o} - 90{sup o} dislocation junctions is computed numerically. Yield surfaces are mapped out for these junctions to describe their stability regions as function of resolved shear stresses on the glide planes. The example of two non-coplanar binary dislocation junctions with slip planes [2-1-10] (01-10) and [-12-10] (0001) corresponding to a prismatic and basal slip respectively is chosen to verify and validate our implementation.

    5. Dispersion mechanisms of a tidal river junction in the Sacramento–San Joaquin Delta, California

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Gleichauf, Karla T.; Wolfram, Philip J.; Monsen, Nancy E.; Fringer, Oliver B.; Monismith, Stephen G.

      2014-12-17

      In branching channel networks, such as in the Sacramento–San Joaquin River Delta, junction flow dynamics contribute to dispersion of ecologically important entities such as fish, pollutants, nutrients, salt, sediment, and phytoplankton. Flow transport through a junction largely arises from velocity phasing in the form of divergent flow between junction channels for a portion of the tidal cycle. Field observations in the Georgiana Slough junction, which is composed of the North and South Mokelumne rivers, Georgiana Slough, and the Mokelumne River, show that flow phasing differences between these rivers arise from operational, riverine, and tidal forcing. A combination of Acoustic Dopplermore » Current Profile (ADCP) boat transecting and moored ADCPs over a spring–neap tidal cycle (May to June 2012) monitored the variability of spatial and temporal velocity, respectively. Two complementary drifter studies enabled assessment of local transport through the junction to identify small-scale intrajunction dynamics. We supplemented field results with numerical simulations using the SUNTANS model to demonstrate the importance of phasing offsets for junction transport and dispersion. Different phasing of inflows to the junction resulted in scalar patchiness that is characteristic of MacVean and Stacey’s (2011) advective tidal trapping. Furthermore, we observed small-scale junction flow features including a recirculation zone and shear layer, which play an important role in intra-junction mixing over time scales shorter than the tidal cycle (i.e., super-tidal time scales). Thus, the study period spanned open- and closed-gate operations at the Delta Cross Channel. Synthesis of field observations and modeling efforts suggest that management operations related to the Delta Cross Channel can strongly affect transport in the Delta by modifying the relative contributions of tidal and riverine flows, thereby changing the junction flow phasing.« less

    6. Dispersion mechanisms of a tidal river junction in the SacramentoSan Joaquin Delta, California

      SciTech Connect (OSTI)

      Gleichauf, Karla T.; Wolfram, Philip J.; Monsen, Nancy E.; Fringer, Oliver B.; Monismith, Stephen G.

      2014-12-17

      In branching channel networks, such as in the SacramentoSan Joaquin River Delta, junction flow dynamics contribute to dispersion of ecologically important entities such as fish, pollutants, nutrients, salt, sediment, and phytoplankton. Flow transport through a junction largely arises from velocity phasing in the form of divergent flow between junction channels for a portion of the tidal cycle. Field observations in the Georgiana Slough junction, which is composed of the North and South Mokelumne rivers, Georgiana Slough, and the Mokelumne River, show that flow phasing differences between these rivers arise from operational, riverine, and tidal forcing. A combination of Acoustic Doppler Current Profile (ADCP) boat transecting and moored ADCPs over a springneap tidal cycle (May to June 2012) monitored the variability of spatial and temporal velocity, respectively. Two complementary drifter studies enabled assessment of local transport through the junction to identify small-scale intrajunction dynamics. We supplemented field results with numerical simulations using the SUNTANS model to demonstrate the importance of phasing offsets for junction transport and dispersion. Different phasing of inflows to the junction resulted in scalar patchiness that is characteristic of MacVean and Staceys (2011) advective tidal trapping. Furthermore, we observed small-scale junction flow features including a recirculation zone and shear layer, which play an important role in intra-junction mixing over time scales shorter than the tidal cycle (i.e., super-tidal time scales). Thus, the study period spanned open- and closed-gate operations at the Delta Cross Channel. Synthesis of field observations and modeling efforts suggest that management operations related to the Delta Cross Channel can strongly affect transport in the Delta by modifying the relative contributions of tidal and riverine flows, thereby changing the junction flow phasing.

    7. Laboratory instrumentation and techniques for characterizing multi-junction solar cells for space applications

      SciTech Connect (OSTI)

      Woodyard, J.R.

      1995-10-01

      Multi-junction solar cells are attractive for space applications because they can be designed to convert a larger fraction of AMO into electrical power at a lower cost than single-junction cells. The performance of multi-junction cells is much more sensitive to the spectral irradiance of the illuminating source than single-junction cells. The design of high efficiency multi-junction cells for space applications requires matching the optoelectronic properties of the junctions to AMO spectral irradiance. Unlike single-junction cells, it is not possible to carry out quantum efficiency measurements using only a monochromatic probe beam and determining the cell short-circuit current assuming linearity of the quantum efficiency. Additionally, current-voltage characteristics can not be calculated from measurements under non-AMO light sources using spectral-correction methods. There are reports in the literature on characterizing the performance of multi junction cells by measuring and convoluting the quantum efficiency of each junction with the spectral irradiance; the technique is of limited value for the characterization of cell performance under AMO power-generating conditions. The authors report the results of research to develop instrumentation and techniques for characterizing multi junction solar cells for space . An integrated system is described which consists of a standard lamp, spectral radiometer, dual-source solar simulator, and personal computer based current-voltage and quantum efficiency equipment. The spectral radiometer is calibrated regularly using the tungsten-halogen standard lamp which has a calibration based on NIST scales. The solar simulator produces the light bias beam for current-voltage and cell quantum efficiency measurements. The calibrated spectral radiometer is used to `fit` the spectral irradiance of the dual-source solar simulator to WRL AMO data.

    8. Cooperative Research between NREL and Solar Junction Corp: Cooperative Research and Development Final Report, CRADA Number CRD-08-306

      SciTech Connect (OSTI)

      Friedman, D.

      2015-03-01

      NREL and Solar Junction Corp. will perform cooperative research on materials and devices that are alternatives to standard approaches with the goal of improving solar cell efficiency while lowering cost. The general purpose of this work is to model the performance of a multi-junction concentrator cell of Solar Junction, Inc. design under normal concentrator operating conditions.

    9. Chemical Fabrication of Heterometallic Nanogaps for Molecular Transport Junctions

      SciTech Connect (OSTI)

      Chen, Xiaodong; Yeganeh, Sina; Qin, Lidong; Li, Shuzhou; Xue, Can; Braunschweig, Adam B.; Schatz, George C.; Ratner, Mark A.; Mirkin, Chad A.

      2009-01-01

      We report a simple and reproducible method for fabricating heterometallic nanogaps, which are made of two different metal nanorods separated by a nanometer-sized gap. The method is based upon on-wire lithography, which is a chemically enabled technique used to synthesize a wide variety of nanowire-based structures (e.g., nanogaps and disk arrays). This method can be used to fabricate pairs of metallic electrodes, which exhibit distinct work functions and are separated by gaps as small as 2 nm. Furthermore, we demonstrate that a symmetric thiol-terminated molecule can be assembled into such heterometallic nanogaps to form molecular transport junctions (MTJs) that exhibit molecular diode behavior. Theoretical calculations demonstrate that the coupling strength between gold and sulfur (Au-S) is 2.5 times stronger than that of Pt-S. In addition, the structures form Raman hot spots in the gap, allowing the spectroscopic characterization of the molecules that make up the MTJs.

    10. Performance model assessment for multi-junction concentrating photovoltaic systems.

      SciTech Connect (OSTI)

      Stein, Joshua S.; Riley, Daniel M.; McConnell, Robert.; Sahm, Aaron; Crawford, Clark; King, David L.; Cameron, Christopher P.; Foresi, James S.

      2010-03-01

      Four approaches to modeling multi-junction concentrating photovoltaic system performance are assessed by comparing modeled performance to measured performance. Measured weather, irradiance, and system performance data were collected on two systems over a one month period. Residual analysis is used to assess the models and to identify opportunities for model improvement. Large photovoltaic systems are typically developed as projects which supply electricity to a utility and are owned by independent power producers. Obtaining financing at favorable rates and attracting investors requires confidence in the projected energy yield from the plant. In this paper, various performance models for projecting annual energy yield from Concentrating Photovoltaic (CPV) systems are assessed by comparing measured system output to model predictions based on measured weather and irradiance data. The results are statistically analyzed to identify systematic error sources.

    11. Improved method of preparing p-i-n junctions in amorphous silicon semiconductors

      DOE Patents [OSTI]

      Madan, A.

      1984-12-10

      A method of preparing p/sup +/-i-n/sup +/ junctions for amorphous silicon semiconductors includes depositing amorphous silicon on a thin layer of trivalent material, such as aluminum, indium, or gallium at a temperature in the range of 200/sup 0/C to 250/sup 0/C. At this temperature, the layer of trivalent material diffuses into the amorphous silicon to form a graded p/sup +/-i junction. A layer of n-type doped material is then deposited onto the intrinsic amorphous silicon layer in a conventional manner to finish forming the p/sup +/-i-n/sup +/ junction.

    12. Realistic-contact-induced enhancement of rectifying in carbon-nanotube/graphene-nanoribbon junctions

      SciTech Connect (OSTI)

      Zhang, Xiang-Hua [School of Physics and Microelectronics Science, Hunan University, Changsha 410082 (China); Department of Electrical and Information Engineering, Hunan Institute of Engineering, Xiangtan 411101 (China); Li, Xiao-Fei, E-mail: xfli@theochem.kth.se [School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China); Wang, Ling-Ling, E-mail: llwang@hnu.edu.cn; Xu, Liang; Luo, Kai-Wu [School of Physics and Microelectronics Science, Hunan University, Changsha 410082 (China)

      2014-03-10

      Carbon-nanotube/graphene-nanoribbon junctions were recently fabricated by the controllable etching of single-walled carbon-nanotubes [Wei et al., Nat. Commun. 4, 1374 (2013)] and their electronic transport properties were studied here. First principles results reveal that the transmission function of the junctions show a heavy dependence on the shape of contacts, but rectifying is an inherent property which is insensitive to the details of contacts. Interestingly, the rectifying ratio is largely enhanced in the junction with a realistic contact and the enhancement is insensitive to the details of contact structures. The stability of rectifying suggests a significant feasibility to manufacture realistic all-carbon rectifiers in nanoelectronics.

    13. SU-E-T-426: Dose Delivery Accuracy in Breast Field Junction for Free Breath

      Office of Scientific and Technical Information (OSTI)

      and Deep Inspiration Breath Hold Techniques (Journal Article) | SciTech Connect SU-E-T-426: Dose Delivery Accuracy in Breast Field Junction for Free Breath and Deep Inspiration Breath Hold Techniques Citation Details In-Document Search Title: SU-E-T-426: Dose Delivery Accuracy in Breast Field Junction for Free Breath and Deep Inspiration Breath Hold Techniques Purpose: The purpose of this work was to verify the accuracy of the dose distribution along the field junction in a half beam

    14. Performance of single-junction and dual-junction InGaP/GaAs solar cells under low concentration ratios

      SciTech Connect (OSTI)

      Khan, Aurangzeb; Yamaguchi, Masafumi; Takamoto, Tatsuya

      2004-10-11

      A study of the performance of single-junction InGaP/GaAs and dual-junction InGaP/GaAs tandem cells under low concentration ratios (up to 15 suns), before and after 1 MeV electron irradiation is presented. Analysis of the tunnel junction parameters under different concentrated light illuminations reveals that the peak current (J{sub P}) and valley current (J{sub V}) densities should be greater than the short-circuit current density (J{sub sc}) for better performance. The tunnel junction behavior against light intensity improved after irradiation. This led to the suggestion that the peak current density (J{sub P}) and valley current density (J{sub V}) of the tunnel junction were enhanced after irradiation or the peak current was shifted to higher concentration. The recovery of the radiation damage under concentrated light illumination conditions suggests that the performance of the InGaP/GaAs tandem solar cell can be enhanced even under low concentration ratios.

    15. Device characterization for design optimization of 4 junction inverted metamorphic concentrator solar cells

      SciTech Connect (OSTI)

      Geisz, John F.; France, Ryan M.; Steiner, Myles A.; Friedman, Daniel J.; Garca, Ivn

      2014-09-26

      Quantitative electroluminescence (EL) and luminescent coupling (LC) analysis, along with more conventional characterization techniques, are combined to completely characterize the subcell JV curves within a fourjunction (4J) inverted metamorphic solar cell (IMM). The 4J performance under arbitrary spectral conditions can be predicted from these subcell JV curves. The internal radiative efficiency (IRE) of each junction has been determined as a function of current density from the external radiative efficiency using optical modeling, but this required the accurate determination of the individual junction current densities during the EL measurement as affected by LC. These measurement and analysis techniques can be applied to any multijunction solar cell. The 4J IMM solar cell used to illustrate these techniques showed excellent junction quality as exhibited by high IRE and a one-sun AM1.5D efficiency of 36.3%. This device operates up to 1000 suns without limitations due to any of the three tunnel junctions.

    16. Low-bias negative differential resistance effect in armchair graphene nanoribbon junctions

      SciTech Connect (OSTI)

      Li, Suchun; Gan, Chee Kwan; Son, Young-Woo; Feng, Yuan Ping; Quek, Su Ying

      2015-01-05

      Graphene nanoribbons with armchair edges (AGNRs) have bandgaps that can be flexibly tuned via the ribbon width. A junction made of a narrower AGNR sandwiched between two wider AGNR leads was recently reported to possess two perfect transmission channels close to the Fermi level. Here, we report that by using a bias voltage to drive these transmission channels into the gap of the wider AGNR lead, we can obtain a negative differential resistance (NDR) effect. Owing to the intrinsic properties of the AGNR junctions, the on-set bias reaches as low as ?0.2?V and the valley current almost vanishes. We further show that such NDR effect is robust against details of the atomic structure of the junction, substrate, and whether the junction is made by etching or by hydrogenation.

    17. Method And Apparatus For Reducing Sample Dispersion In Turns And Junctions Of Micro-Channel Systems

      DOE Patents [OSTI]

      Griffiths, Stewart K. , Nilson, Robert H.

      2004-05-11

      What is disclosed pertains to improvement in the performance of microchannel devices by providing turns, wyes, tees, and other junctions that produce little dispersion of a sample as it traverses the turn or junction. The reduced dispersion results from contraction and expansion regions that reduce the cross-sectional area over some portion of the turn or junction. By carefully designing the geometries of these regions, sample dispersion in turns and junctions is reduced to levels comparable to the effects of ordinary diffusion. The low dispersion features are particularly suited for microfluidic devices and systems using either electromotive force, pressure, or combinations thereof as the principle of fluid transport. Such microfluidic devices and systems are useful for separation of components, sample transport, reaction, mixing, dilution or synthesis, or combinations thereof.

    18. DOE/Grand Junction Office Bluewater LTSP July 1997 Doc. No. S00012AA, Page iii

      Office of Legacy Management (LM)

      DOE/Grand Junction Office Bluewater LTSP July 1997 Doc. No. S00012AA, Page iii Contents Page 1.0 Introduction .........................................................................................................................................1 1.1 Purpose ................................................................................................................................1 1.2 Legal and Regulatory Requirements

    19. Materials en Multi-junction Solar Cells to Push CPV Efficiencies...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      ceem.ucsb.edurss News and Events - Center for Energy Efficient Materials en Multi-junction Solar Cells to Push CPV Efficiencies Beyond 50% http:www.compoundsemiconductor.net...

    20. Highly efficient organic multi-junction solar cells with a thiophene based donor material

      SciTech Connect (OSTI)

      Meerheim, Rico Krner, Christian; Leo, Karl

      2014-08-11

      The efficiency of organic solar cells can be increased by serial stacked subcells even upon using the same absorber material. For the multi-junction devices presented here, we use the small molecule donor material DCV5T-Me. The subcell currents were matched by optical transfer matrix simulation, allowing an efficiency increase from 8.3% for a single junction up to 9.7% for a triple junction cell. The external quantum efficiency of the subcells, measured under appropriate light bias illumination, is spectrally shifted due to the microcavity of the complete stack, resulting in a broadband response and an increased cell current. The increase of the power conversion efficiency upon device stacking is even stronger for large area cells due to higher influence of the resistance of the indium tin oxide anode, emphasizing the advantage of multi-junction devices for large-area applications.

    1. Phase diagram of Josephson junction between s and s ± superconductors in

      Office of Scientific and Technical Information (OSTI)

      the dirty limit (Journal Article) | DOE PAGES Publisher's Accepted Manuscript: Phase diagram of Josephson junction between s and s ± superconductors in the dirty limit Title: Phase diagram of Josephson junction between s and s ± superconductors in the dirty limit Authors: Koshelev, A. E. Publication Date: 2012-12-05 OSTI Identifier: 1102475 Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional Journal Information: Journal Volume: 86; Journal Issue: 21; Journal

    2. Single-junction solar cells with the optimum band gap for terrestrial concentrator applications

      DOE Patents [OSTI]

      Wanlass, Mark W. (Golden, CO)

      1994-01-01

      A single-junction solar cell having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of "pinning" the optimum band gap for a wide range of operating conditions at a value of 1.14.+-.0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap.

    3. 0.7-eV GaInAs Junction for a GaInP/GaAs/GaInAs(1eV)/GaInAs(0.7eV) Four-Junction Solar Cell

      SciTech Connect (OSTI)

      Friedman, D. J.; Geisz, J. F.; Norman, A. G.; Wanlass, M. W.; Kurtz, S. R.

      2006-01-01

      We discuss recent developments in III-V multijunction solar cells, focusing on adding a fourth junction to the Ga{sub 0.5}In{sub 0.5} P/GaAs/Ga{sub 0.75}In{sub 0.25}As inverted three-junction cell. This cell, grown inverted on GaAs so that the lattice-mismatched Ga{sub 0.75}In{sub 0.25}As third junction is the last one grown, has demonstrated 38% efficiency, and 40% is likely in the near future. To achieve still further gains, a lower-bandgap Ga{sub x}In{sub 1-x}As fourth junction could be added to the three-junction structure for a four-junction cell whose efficiency could exceed 45% under concentration. Here, we present the initial development of the Ga{sub x}In{sub 1-x}As fourth junction. Junctions of various bandgaps ranging from 0.88 to 0.73 eV were grown, in order to study the effect of the different amounts of lattice mismatch. At a bandgap of 0.88 eV, junctions were obtained with very encouraging {approx}80% quantum efficiency, 57% fill factor, and 0.36 eV open-circuit voltage. The device performance degrades with decreasing bandgap (i.e., increasing lattice mismatch). We model the four-junction device efficiency vs. fourth junction bandgap to show that an 0.7-eV fourth-junction bandgap, while optimal if it could be achieved in practice, is not necessary; an 0.9-eV bandgap would still permit significant gains in multijunction cell efficiency while being easier to achieve than the lower-bandgap junction.

    4. Quantum interference in thermoelectric molecular junctions: A toy model perspective

      SciTech Connect (OSTI)

      Nozaki, Daijiro E-mail: research@nano.tu-dresden.de; Avdoshenko, Stas M.; Sevinçli, Hâldun; Cuniberti, Gianaurelio

      2014-08-21

      Quantum interference (QI) phenomena between electronic states in molecular circuits offer a new opportunity to design new types of molecular devices such as molecular sensors, interferometers, and thermoelectric devices. Controlling the QI effect is a key challenge for such applications. For the development of single molecular devices employing QI effects, a systematic study of the relationship between electronic structure and the quantum interference is needed. In order to uncover the essential topological requirements for the appearance of QI effects and the relationship between the QI-affected line shape of the transmission spectra and the electronic structures, we consider a homogeneous toy model where all on-site energies are identical and model four types of molecular junctions due to their topological connectivities. We systematically analyze their transmission spectra, density of states, and thermoelectric properties. Even without the degree of freedom for on-site energies an asymmetric Fano peak could be realized in the homogeneous systems with the cyclic configuration. We also calculate the thermoelectric properties of the model systems with and without fluctuation of on-site energies. Even under the fluctuation of the on-site energies, the finite thermoelectrics are preserved for the Fano resonance, thus cyclic configuration is promising for thermoelectric applications. This result also suggests the possibility to detect the cyclic configuration in the homogeneous systems and the presence of the QI features from thermoelectric measurements.

    5. Computational Fluid Dynamics Analysis of Flexible Duct Junction Box Design

      SciTech Connect (OSTI)

      Beach, Robert; Prahl, Duncan; Lange, Rich

      2013-12-01

      IBACOS explored the relationships between pressure and physical configurations of flexible duct junction boxes by using computational fluid dynamics (CFD) simulations to predict individual box parameters and total system pressure, thereby ensuring improved HVAC performance. Current Air Conditioning Contractors of America (ACCA) guidance (Group 11, Appendix 3, ACCA Manual D, Rutkowski 2009) allows for unconstrained variation in the number of takeoffs, box sizes, and takeoff locations. The only variables currently used in selecting an equivalent length (EL) are velocity of air in the duct and friction rate, given the first takeoff is located at least twice its diameter away from the inlet. This condition does not account for other factors impacting pressure loss across these types of fittings. For each simulation, the IBACOS team converted pressure loss within a box to an EL to compare variation in ACCA Manual D guidance to the simulated variation. IBACOS chose cases to represent flows reasonably correlating to flows typically encountered in the field and analyzed differences in total pressure due to increases in number and location of takeoffs, box dimensions, and velocity of air, and whether an entrance fitting is included. The team also calculated additional balancing losses for all cases due to discrepancies between intended outlet flows and natural flow splits created by the fitting. In certain asymmetrical cases, the balancing losses were significantly higher than symmetrical cases where the natural splits were close to the targets. Thus, IBACOS has shown additional design constraints that can ensure better system performance.

    6. Spin Josephson effect in topological superconductor-ferromagnet junction

      SciTech Connect (OSTI)

      Ren, C. D.; Wang, J.

      2014-03-21

      The composite topological superconductor (TS), made of one-dimensional spin-orbit coupled nanowire with proximity-induced s-wave superconductivity, is not a pure p-wave superconductor but still has a suppressed s-wave pairing. We propose to probe the spin texture of the p-wave pairing in this composite TS by examining possible spin supercurrents in an unbiased TS/ferromagnet junction. It is found that both the exchange-coupling induced and spin-flip reflection induced spin currents exist in the setup and survive even in the topological phase. We showed that besides the nontrivial p-wave pairing state accounting for Majorana Fermions, there shall be a trivial p-wave pairing state that contributes to spin supercurrent. The trivial p-wave pairing state is diagnosed from the mixing effect between the suppressed s-wave pairing and the topologically nontrivial p-wave pairing. The d vector of the TS is proved not to be rigorously perpendicular to the spin projection of p-wave pairings. Our findings are also confirmed by the Kitaev's p-wave model with a nonzero s-wave pairing.

    7. Electron transfer statistics and thermal fluctuations in molecular junctions

      SciTech Connect (OSTI)

      Goswami, Himangshu Prabal; Harbola, Upendra

      2015-02-28

      We derive analytical expressions for probability distribution function (PDF) for electron transport in a simple model of quantum junction in presence of thermal fluctuations. Our approach is based on the large deviation theory combined with the generating function method. For large number of electrons transferred, the PDF is found to decay exponentially in the tails with different rates due to applied bias. This asymmetry in the PDF is related to the fluctuation theorem. Statistics of fluctuations are analyzed in terms of the Fano factor. Thermal fluctuations play a quantitative role in determining the statistics of electron transfer; they tend to suppress the average current while enhancing the fluctuations in particle transfer. This gives rise to both bunching and antibunching phenomena as determined by the Fano factor. The thermal fluctuations and shot noise compete with each other and determine the net (effective) statistics of particle transfer. Exact analytical expression is obtained for delay time distribution. The optimal values of the delay time between successive electron transfers can be lowered below the corresponding shot noise values by tuning the thermal effects.

    8. High temperature superconductor step-edge Josephson junctions using Ti-Ca-Ba-Cu-O

      DOE Patents [OSTI]

      Ginley, D.S.; Hietala, V.M.; Hohenwarter, G.K.G.; Martens, J.S.; Plut, T.A.; Tigges, C.P.; Vawter, G.A.; Zipperian, T.E.

      1994-10-25

      A process is disclosed for formulating non-hysteretic and hysteretic Josephson junctions using HTS materials which results in junctions having the ability to operate at high temperatures while maintaining high uniformity and quality. The non-hysteretic Josephson junction is formed by step-etching a LaAlO[sub 3] crystal substrate and then depositing a thin film of TlCaBaCuO on the substrate, covering the step, and forming a grain boundary at the step and a subsequent Josephson junction. Once the non-hysteretic junction is formed the next step to form the hysteretic Josephson junction is to add capacitance to the system. In the current embodiment, this is accomplished by adding a thin dielectric layer, LaA1O[sub 3], followed by a cap layer of a normal metal where the cap layer is formed by first depositing a thin layer of titanium (Ti) followed by a layer of gold (Au). The dielectric layer and the normal metal cap are patterned to the desired geometry. 8 figs.

    9. High temperature superconductor step-edge Josephson junctions using Ti-Ca-Ba-Cu-O

      DOE Patents [OSTI]

      Ginley, David S. (Evergreen, CO); Hietala, Vincent M. (Placitas, NM); Hohenwarter, Gert K. G. (Madison, WI); Martens, Jon S. (Sunnyvale, CA); Plut, Thomas A. (Albuquerque, NM); Tigges, Chris P. (Albuquerque, NM); Vawter, Gregory A. (Albuquerque, NM); Zipperian, Thomas E. (Albuquerque, NM)

      1994-10-25

      A process for formulating non-hysteretic and hysteretic Josephson junctions using HTS materials which results in junctions having the ability to operate at high temperatures while maintaining high uniformity and quality. The non-hysteretic Josephson junction is formed by step-etching a LaAlO.sub.3 crystal substrate and then depositing a thin film of TlCaBaCuO on the substrate, covering the step, and forming a grain boundary at the step and a subsequent Josephson junction. Once the non-hysteretic junction is formed the next step to form the hysteretic Josephson junction is to add capacitance to the system. In the current embodiment, this is accomplished by adding a thin dielectric layer, LaA1O.sub.3, followed by a cap layer of a normal metal where the cap layer is formed by first depositing a thin layer of titanium (Ti) followed by a layer of gold (Au). The dielectric layer and the normal metal cap are patterned to the desired geometry.

    10. Method and apparatus for reducing sample dispersion in turns and junctions of microchannel systems

      DOE Patents [OSTI]

      Griffiths, Stewart K.; Nilson, Robert H.

      2001-01-01

      The performance of microchannel devices is improved by providing turns, wyes, tees, and other junctions that produce little dispersions of a sample as it traverses the turn or junction. The reduced dispersion results from contraction and expansion regions that reduce the cross-sectional area over some portion of the turn or junction. By carefully designing the geometries of these regions, sample dispersion in turns and junctions is reduced to levels comparable to the effects of ordinary diffusion. A numerical algorithm was employed to evolve low-dispersion geometries by computing the electric or pressure field within candidate configurations, sample transport through the turn or junction, and the overall effective dispersion. These devices should greatly increase flexibility in the design of microchannel devices by permitting the use of turns and junctions that do not induce large sample dispersion. In particular, the ability to fold electrophoretic and electrochrornatographic separation columns will allow dramatic improvements in the miniaturization of these devices. The low-lispersion devices are particularly suited to electrochromatographic and electrophoretic separations, as well as pressure-driven chromatographic separation. They are further applicable to microfluidic systems employing either electroosrnotic or pressure-driven flows for sample transport, reaction, mixing, dilution or synthesis.

    11. Junction Evolution During Fabrication of CdS/CdTe Thin-film PV Solar Cells (Presentation)

      SciTech Connect (OSTI)

      Gessert, T. A.

      2010-09-01

      Discussion of the formation of CdTe thin-film PV junctions and optimization of CdTe thin-film PV solar cells.

    12. Laser processing technique for fabricating series-connected and tandem junction series-connected solar cells into a solar battery

      DOE Patents [OSTI]

      Hanak, Joseph J. (Lawrenceville, NJ)

      1981-01-01

      A method of fabricating series-connected and tandem junction series-connected solar cells into a solar battery with laser scribing.

    13. Increased efficiency in multijunction solar cells through the incorporation of semimetallic ErAs nanoparticles into the tunnel junction

      SciTech Connect (OSTI)

      Zide, J.M.O.; Kleiman-Shwarsctein, A.; Strandwitz, N.C.; Zimmerman, J.D.; Steenblock-Smith, T.; Gossard, A.C.; Forman, A.; Ivanovskaya, A.; Stucky, G.D.

      2006-04-17

      We report the molecular beam epitaxy growth of Al{sub 0.3}Ga{sub 0.7}As/GaAs multijunction solar cells with epitaxial, semimetallic ErAs nanoparticles at the interface of the tunnel junction. The states provided by these nanoparticles reduce the bias required to pass current through the tunnel junction by three orders of magnitude, and therefore drastically reduce the voltage losses in the tunnel junction. We have measured open-circuit voltages which are 97% of the sum of the constituent cells, which result in nearly double the efficiency of our multijunction cell with a conventional tunnel junction.

    14. E-cadherin junction formation involves an active kinetic nucleation process

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Biswas, Kabir H.; Hartman, Kevin L.; Yu, Cheng -han; Harrison, Oliver J.; Song, Hang; Smith, Adam W.; Huang, William Y. C.; Lin, Wan -Chen; Guo, Zhenhuan; Padmanabhan, Anup; et al

      2015-08-19

      Epithelial (E)-cadherin-mediated cell–cell junctions play important roles in the development and maintenance of tissue structure in multicellular organisms. E-cadherin adhesion is thus a key element of the cellular microenvironment that provides both mechanical and biochemical signaling inputs. Here, we report in vitro reconstitution of junction-like structures between native E-cadherin in living cells and the extracellular domain of E-cadherin in a supported membrane. Junction formation in this hybrid live cell-supported membrane configuration requires both active processes within the living cell and a supported membrane with low E-cad-ECD mobility. The hybrid junctions recruit α-catenin and exhibit remodeled cortical actin. Observations suggest thatmore » the initial stages of junction formation in this hybrid system depend on the trans but not the cis interactions between E-cadherin molecules, and proceed via a nucleation process in which protrusion and retraction of filopodia play a key role.« less

    15. E-cadherin junction formation involves an active kinetic nucleation process

      SciTech Connect (OSTI)

      Biswas, Kabir H.; Hartman, Kevin L.; Yu, Cheng -han; Harrison, Oliver J.; Song, Hang; Smith, Adam W.; Huang, William Y. C.; Lin, Wan -Chen; Guo, Zhenhuan; Padmanabhan, Anup; Troyanovsky, Sergey M.; Dustin, Michael L.; Shapiro, Lawrence; Honig, Barry; Zaidel-Bar, Ronen; Groves, Jay T.

      2015-08-19

      Epithelial (E)-cadherin-mediated cell–cell junctions play important roles in the development and maintenance of tissue structure in multicellular organisms. E-cadherin adhesion is thus a key element of the cellular microenvironment that provides both mechanical and biochemical signaling inputs. Here, we report in vitro reconstitution of junction-like structures between native E-cadherin in living cells and the extracellular domain of E-cadherin in a supported membrane. Junction formation in this hybrid live cell-supported membrane configuration requires both active processes within the living cell and a supported membrane with low E-cad-ECD mobility. The hybrid junctions recruit α-catenin and exhibit remodeled cortical actin. Observations suggest that the initial stages of junction formation in this hybrid system depend on the trans but not the cis interactions between E-cadherin molecules, and proceed via a nucleation process in which protrusion and retraction of filopodia play a key role.

    16. Giant magnetoresistance modulated by magnetic field in graphene p-n junction

      SciTech Connect (OSTI)

      Li, Yuan; Jalil, Mansoor B. A.; Zhou, Guanghui

      2014-11-10

      We investigate the tunneling transport across a graphene p-n junction under the influence of a perpendicular magnetic field (B field). We observe a sideway deflection of the transmission profile, which can be quantitatively explained by invoking the classical Lorentz force. By considering the trajectory of the Dirac fermions along their cyclotron orbits, we analytically derive the incident angles for transmission across the graphene junction under a B field, as well as the critical magnetic field for full suppression of tunneling across the junction. These analytical predictions are consistent with the numerical results obtained via the non-equilibrium Green's function method. A stronger B-field conductance modulation is obtained for a p-n as opposed to an n-n or p-p type graphene junction. The magnetic field also induces a forbidden region of almost zero transmission for electron energy close to the Dirac point, which can be utilized to achieve a giant magnetoresistance effect. Based on our analysis, we devise an optimal magneto-electrical transport modulation, which can potentially realize a giant magnetoresistance effect in graphene p-n junction systems.

    17. Improved tunneling magnetoresistance at low temperature in manganite junctions grown by molecular beam epitaxy

      SciTech Connect (OSTI)

      Werner, R.; Kleiner, R.; Koelle, D.; Petrov, A. Yu.; Davidson, B. A.; Mino, L. Alvarez

      2011-04-18

      We report resistance versus magnetic field measurements for a La{sub 0.65}Sr{sub 0.35}MnO{sub 3}/SrTiO{sub 3}/La{sub 0.65}Sr{sub 0.35}MnO{sub 3} tunnel junction grown by molecular-beam epitaxy, that show a large field window of extremely high tunneling magnetoresistance (TMR) at low temperature. Scanning the in-plane applied field orientation through 360 deg., the TMR shows fourfold symmetry, i.e., biaxial anisotropy, aligned with the crystalline axis but not the junction geometrical long axis. The TMR reaches {approx}1900% at 4 K, corresponding to an interfacial spin polarization of >95% assuming identical interfaces. These results show that uniaxial anisotropy is not necessary for large TMR, and lay the groundwork for future improvements in TMR in manganite junctions.

    18. A versatile optical junction using photonic band-gap guidance and self collimation

      SciTech Connect (OSTI)

      Gupta, Man Mohan; Medhekar, Sarang

      2014-09-29

      We show that it is possible to design two photonic crystal (PC) structures such that an optical beam of desired wavelength gets guided within the line defect of the first structure (photonic band gap guidance) and the same beam gets guided in the second structure by self-collimation. Using two dimensional simulation of a design made of the combination of these two structures, we propose an optical junction that allows for crossing of two optical signals of same wavelength and same polarization with very low crosstalk. Moreover, the junction can be operated at number of frequencies in a wide range. Crossing of multiple beams with very low cross talk is also possible. The proposed junction should be important in future integrated photonic circuits.

    19. Two-band lasing in epitaxially stacked tunnel-junction semiconductor lasers

      SciTech Connect (OSTI)

      Vinokurov, D. A.; Ladugin, M. A.; Lyutetskii, A. V.; Marmalyuk, A. A.; Petrunov, A. N.; Pikhtin, N. A.; Slipchenko, S. O. Sokolova, Z. N.; Stankevich, A. L.; Fetisova, N. V.; Shashkin, I. S.; Averkiev, N. S.; Tarasov, I. S.

      2010-06-15

      Epitaxially stacked tunnel-junction laser hetero structures were grown by hydride metalorganic vapor-phase epitaxy in the system of AlGaAs/GaAs/In GaAs alloys. Based on such structures, mesa stripe lasers with an aperture of 150 s- 7 m were fabricated. The possibility of controlling the lasing wavelength by varying the active region thickness in each tunnel-junction laser structure was demonstrated. Independent two-band lasing at wavelengths of 914 and 925 nm (the difference frequency is 2.3 THz) was achieved at a maximum optical radiation power of 20 W in each band of the epitaxially stacked tunnel-junction semiconductor laser.

    20. A Monolithic Interconnected module with a tunnel Junction for Enhanced Electrical and Optical Performance

      SciTech Connect (OSTI)

      Murray, Christopher Sean; Wilt, David Morgan

      1999-06-30

      An improved thermophotovoltaic (TPV) n/p/n device is provided. Monolithic Interconnected Modules (MIMs), semiconductor devices converting infrared radiation to electricity, have been developed with improved electrical and optical performance. The structure is an n-type emitter on a p-type base with an n-type lateral conduction layer. The incorporation of a tunnel junction and the reduction in the amount of p-type material used results in negligible parasitic absorption, decreased series resistance, increased voltage and increased active area. The novel use of a tunnel junction results in the potential for a TPV device with efficiency greater than 24%.

    1. Semiconductor device PN junction fabrication using optical processing of amorphous semiconductor material

      DOE Patents [OSTI]

      Sopori, Bhushan; Rangappan, Anikara

      2014-11-25

      Systems and methods for semiconductor device PN junction fabrication are provided. In one embodiment, a method for fabricating an electrical device having a P-N junction comprises: depositing a layer of amorphous semiconductor material onto a crystalline semiconductor base, wherein the crystalline semiconductor base comprises a crystalline phase of a same semiconductor as the amorphous layer; and growing the layer of amorphous semiconductor material into a layer of crystalline semiconductor material that is epitaxially matched to the lattice structure of the crystalline semiconductor base by applying an optical energy that penetrates at least the amorphous semiconductor material.

    2. Monolithic interconnected module with a tunnel junction for enhanced electrical and optical performance

      DOE Patents [OSTI]

      Murray, Christopher S. (Bethel Park, PA); Wilt, David M. (Bay Village, OH)

      2000-01-01

      An improved thermophotovoltaic (TPV) n/p/n device is provided. Monolithic Interconnected Modules (MIMS), semiconductor devices converting infrared radiation to electricity, have been developed with improved electrical and optical performance. The structure is an n-type emitter on a p-type base with an n-type lateral conduction layer. The incorporation of a tunnel junction and the reduction in the amount of p-type material used results in negligible parasitic absorption, decreased series resistance, increased voltage and increased active area. The novel use of a tunnel junction results in the potential for a TPV device with efficiency greater than 24%.

    3. Grand Junction Office Founder Honored at the Philip C. Leahy Memorial Park

      Broader source: Energy.gov (indexed) [DOE]

      Dedication and Open House | Department of Energy 4. Optimize the use of land and assets. plaque.png The memorial plaque was unveiled at the event. The U.S. Department of Energy (DOE) Office of Legacy Management (LM) held an open house and park dedication at the Grand Junction, Colorado, Office to commemorate its place in the Manhattan Project and Cold War histories. The park, located in the middle of the Grand Junction Office campus, was dedicated to Army Major (retired) Philip C. Leahy.

    4. NREL and CSEM Jointly Set New Efficiency Record with Dual-Junction Solar

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Cell | Awards and Honors | NREL NREL and CSEM Jointly Set New Efficiency Record with Dual-Junction Solar Cell January 5, 2016 Scientists at the Energy Department's National Renewable Energy Laboratory (NREL) and at the Swiss Center for Electronics and Microtechnology (CSEM) have jointly set a new world record for converting non-concentrated (1-sun) sunlight into electricity using a dual-junction III-V/Si solar cell. The newly certified record conversion efficiency of 29.8 percent was set

    5. Single-junction solar cells with the optimum band gap for terrestrial concentrator applications

      DOE Patents [OSTI]

      Wanlass, M.W.

      1994-12-27

      A single-junction solar cell is described having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of ''pinning'' the optimum band gap for a wide range of operating conditions at a value of 1.14[+-]0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap. 7 figures.

    6. NREL, CSEM Jointly Set New Efficiency Record with Dual-Junction Solar Cell

      SciTech Connect (OSTI)

      2016-01-01

      Scientists set a new world record for converting non-concentrated sunlight into electricity using a dual-junction III-V/Si solar cell. National Renewable Energy Laboratory (NREL) and Swiss Center for Electronics and Microtechnology (CSEM) scientists have collaborated to create a novel tandem solar cell that operates at 29.8% conversion efficiency under non-concentrator (1-sun) conditions. In comparison, the 1-sun efficiency of a silicon (Si) single-junction solar cell is probably still a few years away from converging on its practical limit of about 26%.

    7. Light-splitting photovoltaic system utilizing two dual-junction solar cells

      SciTech Connect (OSTI)

      Xiong, Kanglin; Yang, Hui; Lu, Shulong; Dong, Jianrong; Zhou, Taofei; Wang, Rongxin; Jiang, Desheng

      2010-12-15

      There are many difficulties limiting the further development of monolithic multi-junction solar cells, such as the growth of lattice-mismatched material and the current matching constraint. As an alternative approach, the light-splitting photovoltaic system is investigated intensively in different aspects, including the energy loss mechanism and the choice of energy bandgaps of solar cells. Based on the investigation, a two-dual junction system has been implemented employing lattice-matched GaInP/GaAs and InGaAsP/InGaAs cells grown epitaxially on GaAs and InP substrates, respectively. (author)

    8. Effect of Front-Side Silver Metallization on Underlying n+-p Junction in Multicrystalline Silicon Solar Cells: Preprint

      SciTech Connect (OSTI)

      Jiang, C. S.; Li, Z. G.; Moutinho, H. R.; Liang, L.; Ionkin, A.; Al-Jassim, M. M.

      2012-06-01

      We report on the effect of front-side Ag metallization on the underlying n+-p junction of multicrystalline Si solar cells. The junction quality beneath the contacts was investigated by characterizing the uniformities of the electrostatic potential and doping concentration across the junction, using scanning Kelvin probe force microscopy and scanning capacitance microscopy. We investigated cells with a commercial Ag paste (DuPont PV159) and fired at furnace setting temperatures of 800 degrees, 840 degrees, and 930 degrees C, which results in actual cell temperatures ~100 degrees C lower than the setting temperature and the three cells being under-, optimal-, and over-fired. We found that the uniformity of the junction beneath the Ag contact was significantly degraded by the over-firing, whereas the junction retained good uniformity with the optimal- and under-fire temperatures. Further, Ag crystallites with widely distributed sizes from <100 nm to several ?m were found at the Ag/Si interface of the over-fired cell. Large crystallites were imaged as protrusions into Si deeper than the junction depth. However, the junction was not broken down; instead, it was reformed on the entire front of the crystallite/Si interface. We propose a mechanism of the junction-quality degradation, based on emitter Si melting at the temperature around the Ag-Si eutectic point during firing, and subsequent recrystallization with incorporation of impurities in the Ag paste and with formation of crystallographic defects during quenching.

    9. Tuning electron transport through a single molecular junction by bridge modification

      SciTech Connect (OSTI)

      Li, Xiao-Fei Qiu, Qi; Luo, Yi

      2014-07-07

      The possibility of controlling electron transport in a single molecular junction represents the ultimate goal of molecular electronics. Here, we report that the modification of bridging group makes it possible to improve the performance and obtain new functions in a single cross-conjugated molecular junction, designed from a recently synthesized bipolar molecule bithiophene naphthalene diimide. Our first principles results show that the bipolar characteristic remains after the molecule was modified and sandwiched between two metal electrodes. Rectifying is the intrinsic characteristic of the molecular junction and its performance can be enhanced by replacing the saturated bridging group with an unsaturated group. A further improvement of the rectifying and a robust negative differential resistance (NDR) behavior can be achieved by the modification of unsaturated bridge. It is revealed that the modification can induce a deviation angle about 4° between the donor and the acceptor π-conjugations, making it possible to enhance the communication between the two π systems. Meanwhile, the low energy frontier orbitals of the junction can move close to the Fermi level and encounter in energy at certain biases, thus a transport channel with a considerable transmission can be formed near the Fermi level only at a narrow bias regime, resulting in the improvement of rectifying and the robust NDR behavior. This finding could be useful for the design of single molecular devices.

    10. Silicon Solar Cells with Front Hetero-Contact and Aluminum Alloy Back Junction: Preprint

      SciTech Connect (OSTI)

      Yuan, H.-C.; Page, M. R.; Iwaniczko, E.; Xu, Y.; Roybal, L.; Wang, Q.; Branz, H. M.; Meier, D. L.

      2008-05-01

      We prototype an alternative n-type monocrystalline silicon (c-Si) solar cell structure that utilizes an n/i-type hydrogenated amorphous silicon (a-Si:H) front hetero-contact and a back p-n junction formed by alloying aluminum (Al) with the n-type Si wafer.

    11. In situ Formation of Highly Conducting Covalent Au-C Contacts for Single-Molecule Junctions

      SciTech Connect (OSTI)

      Cheng, Z.L.; Hybertsen, M.; Skouta, R.; Vazquez, H.; Widawsky, J.R.; Schneebeli, S.; Chen, W.; Breslow, R.; Venkataraman, L.

      2011-06-01

      Charge transport across metal-molecule interfaces has an important role in organic electronics. Typically, chemical link groups such as thiols or amines are used to bind organic molecules to metal electrodes in single-molecule circuits, with these groups controlling both the physical structure and the electronic coupling at the interface. Direct metal-carbon coupling has been shown through C60, benzene and {pi}-stacked benzene but ideally the carbon backbone of the molecule should be covalently bonded to the electrode without intervening link groups. Here, we demonstrate a method to create junctions with such contacts. Trimethyl tin (SnMe{sub 3})-terminated polymethylene chains are used to form single-molecule junctions with a break-junction technique. Gold atoms at the electrode displace the SnMe{sub 3} linkers, leading to the formation of direct Au-C bonded single-molecule junctions with a conductance that is {approx}100 times larger than analogous alkanes with most other terminations. The conductance of these Au-C bonded alkanes decreases exponentially with molecular length, with a decay constant of 0.97 per methylene, consistent with a non-resonant transport mechanism. Control experiments and ab initio calculations show that high conductances are achieved because a covalent Au-C sigma ({sigma}) bond is formed. This offers a new method for making reproducible and highly conducting metal-organic contacts.

    12. The importance of Fe surface states for spintronic devices based on magnetic tunnel junctions

      SciTech Connect (OSTI)

      Chantis, Athanasios N

      2008-01-01

      In this article we give a review of our recent theoretical studies of the influence of Fe(001) surface (interface) states on spin-polarized electron transport across magnetic tunnel junctions with Fe electrodes. We show that minority-spin surface (interface) states are responsible for at least two effects which are important for spin electronics. First, they can produce a sizable tunneling anisotropic magnetoresistance in magnetic tunnel junctions with a single Fe electrode. The effect is driven by a Rashba shift of the resonant surface band when the magnetization changes direction. This can introduce a new class of spintronic devices, namely, tunneling magnetoresistance junctions with a single ferromagnetic electrode. Second, in Fe/GaAs(001) magnetic tunnel junctions minority-spin interface states produce a strong dependence of the tunneling current spin polarization on applied electrical bias. A dramatic sign reversal within a voltage range of just a few tenths of an eV is predicted. This explains the observed sign reversal of spin polarization in recent experiments of electrical spin injection in Fe/GaAs(001) and related reversal of tunneling magnetoresistance through vertical Fe/GaAs/Fe trilayers.

    13. Imaging the Solar Cell P-N Junction and Depletion Region Using Secondary Electron Contrast

      SciTech Connect (OSTI)

      Heath, J. T.; Jiang, C. S.; Al-Jassim, M. M.

      2011-01-01

      We report on secondary electron (SE) images of cross-sectioned multicrystalline Si and GaAs/GaInP solar cell devices, focusing on quantifying the relationship between the apparent n{sup +}-p contrast and characteristic electronic features of the device. These samples allow us to compare the SE signal from devices which have very different physical characteristics: differing materials, diffused junction versus abrupt junction, heterojunction versus homojunction. Despite these differences, we find that the SE image contrast for both types of sample, and as a function of reverse bias across the diode, closely agrees with PC1D simulations of the bulk electrostatic potential in the device, accurately yielding the depletion edge and width. A spatial derivative of the SE data shows a local maximum at the metallurgical junction. Such data are valuable, for example, in studying the conformity of a diffused junction to the textured surface topography. These data also extend our understanding of the origin of the SE contrast.

    14. Rapid, Enhanced IV Characterization of Multi-Junction PV Devices under One Sun at NREL: Preprint

      SciTech Connect (OSTI)

      Moriarty, Tom; France, Ryan; Steiner, Myles

      2015-09-15

      Multi-junction technology is rapidly advancing, which puts increasing demands on IV characterization resources. We report on a tool and procedure for fast turn-around of IV data under the reference conditions, but also under controlled variations from the reference conditions. This enhanced data set can improve further iterations of device optimization.

    15. Electrical and photovoltaic characteristics of MoS{sub 2}/Si p-n junctions

      SciTech Connect (OSTI)

      Hao, Lanzhong Liu, Yunjie Gao, Wei; Han, Zhide; Xue, Qingzhong; Zeng, Huizhong; Wu, Zhipeng; Zhu, Jun; Zhang, Wanli

      2015-03-21

      Bulk-like molybdenum disulfide (MoS{sub 2}) thin films were deposited on the surface of p-type Si substrates using dc magnetron sputtering technique and MoS{sub 2}/Si p-n junctions were formed. The vibrating modes of E{sup 1}{sub 2g} and A{sub 1g} were observed from the Raman spectrum of the MoS{sub 2} films. The current density versus voltage (J-V) characteristics of the junction were investigated. A typical J-V rectifying effect with a turn-on voltage of 0.2?V was shown. In different voltage range, the electrical transporting of the junction was dominated by diffusion current and recombination current, respectively. Under the light illumination of 15?mW?cm{sup ?2}, the p-n junction exhibited obvious photovoltaic characteristics with a short-circuit current density of 3.2?mA?cm{sup ?2} and open-circuit voltage of 0.14?V. The fill factor and energy conversion efficiency were 42.4% and 1.3%, respectively. According to the determination of the Fermi-energy level (?4.65?eV) and energy-band gap (?1.45?eV) of the MoS{sub 2} films by capacitance-voltage curve and ultraviolet-visible transmission spectra, the mechanisms of the electrical and photovoltaic characteristics were discussed in terms of the energy-band structure of the MoS{sub 2}/Si p-n junctions. The results hold the promise for the integration of MoS{sub 2} thin films with commercially available Si-based electronics in high-efficient photovoltaic devices.

    16. TH-C-BRD-12: Robust Intensity Modulated Proton Therapy Plan Can Eliminate Junction Shifts for Craniospinal Irradiation

      SciTech Connect (OSTI)

      Liao, L; Jiang, S; Li, Y; Wang, X; Li, H; Zhu, X; Sahoo, N; Gillin, M; Mahajan, A; Grosshans, D; Zhang, X; Lim, G

      2014-06-15

      Purpose: The passive scattering proton therapy (PSPT) technique is the commonly used radiotherapy technique for craniospinal irradiation (CSI). However, PSPT involves many numbers of junction shifts applied over the course of treatment to reduce the cold and hot regions caused by field mismatching. In this work, we introduced a robust planning approach to develop an optimal and clinical efficient techniques for CSI using intensity modulated proton therapy (IMPT) so that junction shifts can essentially be eliminated. Methods: The intra-fractional uncertainty, in which two overlapping fields shift in the opposite directions along the craniospinal axis, are incorporated into the robust optimization algorithm. Treatment plans with junction sizes 3,5,10,15,20,25 cm were designed and compared with the plan designed using the non-robust optimization. Robustness of the plans were evaluated based on dose profiles along the craniospinal axis for the plans applying 3 mm intra-fractional shift. The dose intra-fraction variations (DIV) at the junction are used to evaluate the robustness of the plans. Results: The DIVs are 7.9%, 6.3%, 5.0%, 3.8%, 2.8% and 2.2%, for the robustly optimized plans with junction sizes 3,5,10,15,20,25 cm. The DIV are 10% for the non-robustly optimized plans with junction size 25 cm. The dose profiles along the craniospinal axis exhibit gradual and tapered dose distribution. Using DIVs less than 5% as maximum acceptable intrafractional variation, the overlapping region can be reduced to 10 cm, leading to potential reduced number of the fields. The DIVs are less than 5% for 5 mm intra-fractional shifts with junction size 25 cm, leading to potential no-junction-shift for CSI using IMPT. Conclusion: This work is the first report of the robust optimization on CSI based on IMPT. We demonstrate that robust optimization can lead to much efficient carniospinal irradiation by eliminating the junction shifts.

    17. Spin and charge transport in double-junction Fe/MgO/GaAs/MgO/Fe heterostructures

      SciTech Connect (OSTI)

      Wolski, S. Szczepa?ski, T.; Dugaev, V. K.; Barna?, J.; Landgraf, B.; Slobodskyy, T.; Hansen, W.

      2015-01-28

      We present theoretical and experimental results on tunneling current in single Fe/MgO/GaAs and double Fe/MgO/GaAs/MgO/Fe tunnel junctions. The charge and spin currents are calculated as a function of external voltage for different sets of parameters characterizing the semiconducting GaAs layer. Transport characteristics of a single Fe/MgO/GaAs junction reveal typical diode as well as spin diode features. The results of numerical calculations are compared with current-voltage characteristics measured experimentally for double tunnel junction structures, and a satisfactory agreement of the theoretical and experimental results has been achieved.

    18. Chemical beam epitaxy growth of AlGaAs/GaAs tunnel junctions using trimethyl aluminium for multijunction solar cells

      SciTech Connect (OSTI)

      Paquette, B.; DeVita, M.; Turala, A.; Kolhatkar, G.; Boucherif, A.; Jaouad, A.; Aimez, V.; Ars, R.; Wilkins, M.; Wheeldon, J. F.; Walker, A. W.; Hinzer, K.; Fafard, S.

      2013-09-27

      AlGaAs/GaAs tunnel junctions for use in high concentration multijunction solar cells were designed and grown by chemical beam epitaxy (CBE) using trimethyl aluminium (TMA) as the p-dopant source for the AlGaAs active layer. Controlled hole concentration up to 4?10{sup 20} cm{sup ?3} was achieved through variation in growth parameters. Fabricated tunnel junctions have a peak tunneling current up to 6140 A/cm{sup 2}. These are suitable for high concentration use and outperform GaAs/GaAs tunnel junctions.

    19. Perpendicular magnetic tunnel junctions with double barrier and single or synthetic antiferromagnetic storage layer

      SciTech Connect (OSTI)

      Cuchet, La; Rodmacq, Bernard; Auffret, Stphane; Sousa, Ricardo C.; Prejbeanu, Ioan L.; Dieny, Bernard

      2015-06-21

      The magnetic properties of double tunnel junctions with perpendicular anisotropy were investigated. Two synthetic antiferromagnetic references are used, while the middle storage magnetic layer can be either a single ferromagnetic or a synthetic antiferromagnetic FeCoB-based layer, with a critical thickness as large as 3.0?nm. Among the different achievable magnetic configurations in zero field, those with either antiparallel references, and single ferromagnetic storage layer, or parallel references, and synthetic antiferromagnetic storage layer, are of particular interest since they allow increasing the efficiency of spin transfer torque writing and the thermal stability of the stored information as compared to single tunnel junctions. The latter configuration can be preferred when stray fields would favour a parallel orientation of the reference layers. In this case, the synthetic antiferromagnetic storage layer is also less sensitive to residual stray fields.

    20. Vector spin modeling for magnetic tunnel junctions with voltage dependent effects

      SciTech Connect (OSTI)

      Manipatruni, Sasikanth Nikonov, Dmitri E.; Young, Ian A.

      2014-05-07

      Integration and co-design of CMOS and spin transfer devices requires accurate vector spin conduction modeling of magnetic tunnel junction (MTJ) devices. A physically realistic model of the MTJ should comprehend the spin torque dynamics of nanomagnet interacting with an injected vector spin current and the voltage dependent spin torque. Vector spin modeling allows for calculation of 3 component spin currents and potentials along with the charge currents/potentials in non-collinear magnetic systems. Here, we show 4-component vector spin conduction modeling of magnetic tunnel junction devices coupled with spin transfer torque in the nanomagnet. Nanomagnet dynamics, voltage dependent spin transport, and thermal noise are comprehended in a self-consistent fashion. We show comparison of the model with experimental magnetoresistance (MR) of MTJs and voltage degradation of MR with voltage. Proposed model enables MTJ circuit design that comprehends voltage dependent spin torque effects, switching error rates, spin degradation, and back hopping effects.

    1. Proximity induced vortices and long-range triplet supercurrents in ferromagnetic Josephson junctions and spin valves

      SciTech Connect (OSTI)

      Alidoust, Mohammad; Halterman, Klaus

      2015-03-28

      Using a spin-parameterized quasiclassical Keldysh-Usadel technique, we theoretically study supercurrent transport in several types of diffusive ferromagnetic (F)/superconducting (S) configurations with differing magnetization textures. We separate out the even- and odd-frequency components of the supercurrent within the low proximity limit and identify the relative contributions from the singlet and triplet channels. We first consider inhomogeneous one-dimensional Josephson structures consisting of a uniform bilayer magnetic S/F/F/S structure and a trilayer S/F/F/F/S configuration, in which case the outer F layers can have either a uniform or conical texture relative to the central uniform F layer. Our results demonstrate that for supercurrents flowing perpendicular to the F/F interfaces, incorporating a conical texture yields the most effective way to observe the signatures of long-ranged spin-triplet supercurrents. We also consider three different types of finite-sized two-dimensional magnetic structures subjected to an applied magnetic field normal to the junction plane: a S/F/S junction with uniform magnetization texture and two S/F/F/S configurations with differing F/F bilayer arrangements. In one case, the F/F interface is parallel with the S/F junction interfaces while in the other case, the F/F junction is oriented perpendicular to the S/F interfaces. We then discuss the proximity vortices and corresponding spatial maps of currents inside the junctions. For the uniform S/F/S junction, we analytically calculate the magnetic field induced supercurrent and pair potential in both the narrow and wide junction regimes, thus providing insight into the variations in the Fraunhofer diffraction patterns and proximity vortices when transitioning from a wide junction to a narrow one. Our extensive computations demonstrate that the induced long-range spin-triplet supercurrents can deeply penetrate uniform F/F bilayers when spin-singlet supercurrents flow parallel to the F/F interfaces. This is in stark contrast to configurations where a spin-singlet supercurrent flows perpendicular to the F/F interfaces. We pinpoint the origin of the induced triplet and singlet correlations through spatial profiles of the decomposed total supercurrents. We find that the penetration of the long-range spin-triplet supercurrents associated with supercurrents flowing parallel to the F/F interfaces is more pronounced when the thicknesses of the F strips are unequal. Finally, if one of the S terminals is replaced with a finite-sized normal metal, we demonstrate that the corresponding experimentally accessible S/F/F/N spin valve presents an effective platform in which the predicted long-range effects can be effectively generated and probed.

    2. Multiple junction cell characterization using the LBIC method : early results, issues, and pathways to improvement.

      SciTech Connect (OSTI)

      Finn, Jason R.; Granata, Jennifer E.; Hansen, Barry R.

      2010-03-01

      A light beam induced current (LBIC) measurement is a non-destructive technique that produces a spatial graphical representation of current response in photovoltaic cells with respect to position when stimulated by a light beam. Generally, a laser beam is used for these measurements because the spot size can be made very small, on the order of microns, and very precise measurements can be made. Sandia National Laboratories Photovoltaic System Evaluation Laboratory (PSEL) uses its LBIC measurement technique to characterize single junction mono-crystalline and multi-crystalline solar cells ranging from miniature to conventional sizes. Sandia has modified the already valuable LBIC technique to enable multi-junction PV cells to be characterized.

    3. Electronic transport in biphenyl single-molecule junctions with carbon nanotubes electrodes: The role of molecular conformation and chirality

      SciTech Connect (OSTI)

      Brito Silva, C. A. Jr.; Granhen, E. R. [Pos-Graduacao em Engenharia Eletrica, Universidade Federal do Para, 66075-900 Belem, PA (Brazil); Silva, S. J. S. da; Leal, J. F. P. [Pos-Graduacao em Fisica, Universidade Federal do Para, 66075-110 Belem, PA (Brazil); Del Nero, J. [Departamento de Fisica, Universidade Federal do Para, 66075-110 Belem, PA (Brazil); Divisao de Metrologia de Materiais, Instituto Nacional de Metrologia, Normalizacao e Qualidade Industrial, 25250-020 Duque de Caxias, RJ (Brazil); Instituto de Fisica, Universidade Federal do Rio de Janeiro, 21941-972 Rio de Janeiro, RJ (Brazil); Pinheiro, F. A. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, 21941-972 Rio de Janeiro, RJ (Brazil)

      2010-08-15

      We investigate, by means of ab initio calculations, electronic transport in molecular junctions composed of a biphenyl molecule attached to metallic carbon nanotubes. We find that the conductance is proportional to cos{sup 2} {theta}, with {theta} the angle between phenyl rings, when the Fermi level of the contacts lies within the frontier molecular orbitals energy gap. This result, which agrees with experiments in biphenyl junctions with nonorganic contacts, suggests that the cos{sup 2} {theta} law has a more general applicability, irrespective of the nature of the electrodes. We calculate the geometrical degree of chirality of the junction, which only depends on the atomic positions, and demonstrate that it is not only proportional to cos{sup 2} {theta} but also is strongly correlated with the current through the system. These results indicate that molecular conformation plays the preponderant role in determining transport properties of biphenyl-carbon nanotubes molecular junctions.

    4. EIS-0126: Remedial Actions at the Former Climax Uranium Company Uranium Mill Site, Grand Junction, Mesa County, Colorado

      Broader source: Energy.gov [DOE]

      The U.S. Department of Energy developed this EIS to assess the environmental impacts of remediating the residual radioactive materials left from the inactive uranium processing site and associated properties located in Grand Junction, Colorado.

    5. Superlinear generation of exciton and related paramagnetism induced by forward current in a diamond p-i-n junction

      SciTech Connect (OSTI)

      Natori, Kenji

      2015-02-07

      The concentration of excitons generated in a high-quality diamond p-i-n junction is investigated considering the forward current characteristics of the junction. As the forward current in the junction increases, the exciton concentration increases superlinearly, contrary to the linear increases of the electron and hole concentration. This tendency suggests a superlinear increase in emission intensity due to exciton recombination. The increase rate is more radical than quadratic, in accordance with the observed increase of the integrated intensity of free exciton emission. To estimate the concentration of triplet excitons generated in the p-i-n junction, observation of the paramagnetism due to the exciton spin moment is proposed. The magnetic susceptibility superlinearly increases with the increase in the forward current, unlike any other magnetic property of the device.

    6. In the OSTI Collections: Josephson Junctions | OSTI, US Dept of Energy,

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Office of Scientific and Technical Information Josephson Junctions Article Acknowledgement: Dr. William N. Watson, Physicist DOE Office of Scientific and Technical Information Terahertz Radiation Examining Subatomic Particles Measuring Material Properties Noise Spin and Supercurrents References Research Organizations Reports available through OSTI's SciTech Connect Additional References When a steady voltage gradient is applied along an ordinary conducting wire, electrons in the wire will

    7. NREL's Multi-Junction Solar Cells Teach Scientists How to Turn Plants into

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Powerhouses - News Releases | NREL NREL's Multi-Junction Solar Cells Teach Scientists How to Turn Plants into Powerhouses May 12, 2011 Plants can overcome their evolutionary legacies to become much better at using biological photosynthesis to produce energy, the kind of energy that can power vehicles in the near future, an all-star collection of biologists, physicists, photochemists, and solar scientists has found. A U.S. Department of Energy (DOE) workshop that drew a prestigious collection

    8. U.S. Department of Energy at Grand Junction 2003 Annual Inspection⎯Monticello, Utah

      Office of Legacy Management (LM)

      at Grand Junction 2003 Annual Inspection⎯Monticello, Utah November 2003 Page 1 2003 Annual Inspection of the Monticello Mill Tailings (USDOE) and Monticello Radioactively Contaminated Properties Sites Summary The Monticello site, which includes the U.S. Department of Energy (DOE) Monticello Mill Tailings Site (MMTS) and the Monticello Radioactively Contaminated Properties site, was inspected September 23-25, 2003. A follow-up inspection of the Soil and Sediment properties was conducted on

    9. The influence of electron irradiation on electron holography of focused ion beam milled GaAs p-n junctions

      SciTech Connect (OSTI)

      Cooper, David; Twitchett-Harrison, Alison C.; Midgley, Paul A.; Dunin-Borkowski, Rafal E.

      2007-05-01

      Electron beam irradiation is shown to significantly influence phase images recorded from focused ion beam milled GaAs p-n junction specimens examined using off-axis electron holography in the transmission electron microscope. Our results show that the use of improved electrical connections to the specimen overcomes this problem, and may allow the correct built in potential across the junction to be recovered.

    10. Competition between cotunneling, Kondo effect, and direct tunneling in discontinuous high-anisotropy magnetic tunnel junctions

      SciTech Connect (OSTI)

      Ciudad D.; Arena D.; We, Z.-C.; Hindmarch, A.T.; Negusse, E.; Han, X.-F.Han; Marrows, C.H.

      2012-06-07

      The transition between Kondo and Coulomb blockade effects in discontinuous double magnetic tunnel junctions is explored as a function of the size of the CoPt magnetic clusters embedded between AlO{sub x} tunnel barriers. A gradual competition between cotunneling enhancement of the tunneling magnetoresistance (TMR) and the TMR suppression due to the Kondo effect has been found in these junctions, with both effects having been found to coexist even in the same sample. It is possible to tune between these two states with temperature (at a temperature far below the cluster blocking temperature). In addition, when further decreasing the size of the CoPt clusters, another gradual transition between the Kondo effect and direct tunneling between the electrodes takes place. This second transition shows that the spin-flip processes found in junctions with impurities in the barrier are in fact due to the Kondo effect. A simple theoretical model able to account for these experimental results is proposed.

    11. Physical model of the contact resistivity of metal-graphene junctions

      SciTech Connect (OSTI)

      Chaves, Ferney A., E-mail: ferneyalveiro.chaves@uab.cat; Jimnez, David [Departament d'Enginyeria Electrnica, Escola d'Enginyeria, Universitat Autnoma de Barcelona, Campus UAB, 08193 Bellaterra, Barcelona (Spain); Cummings, Aron W. [ICN2Institut Catal de Nanocincia i Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona (Spain); Roche, Stephan [ICN2Institut Catal de Nanocincia i Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona (Spain); ICREA, Instituci Catalana de Recerca i Estudis Avanats, 08070 Barcelona (Spain)

      2014-04-28

      While graphene-based technology shows great promise for a variety of electronic applications, including radio-frequency devices, the resistance of the metal-graphene contact is a technological bottleneck for the realization of viable graphene electronics. One of the most important factors in determining the resistance of a metal-graphene junction is the contact resistivity. Despite the large number of experimental works that exist in the literature measuring the contact resistivity, a simple model of it is still lacking. In this paper, we present a comprehensive physical model for the contact resistivity of these junctions, based on the Bardeen Transfer Hamiltonian method. This model unveils the role played by different electrical and physical parameters in determining the specific contact resistivity, such as the chemical potential of interaction, the work metal-graphene function difference, and the insulator thickness between the metal and graphene. In addition, our model reveals that the contact resistivity is strongly dependent on the bias voltage across the metal-graphene junction. This model is applicable to a wide variety of graphene-based electronic devices and thus is useful for understanding how to optimize the contact resistance in these systems.

    12. Terahertz time domain interferometry of a SIS tunnel junction and a quantum point contact

      SciTech Connect (OSTI)

      Karadi, C

      1995-09-01

      The author has applied the Terahertz Time Domain Interferometric (THz-TDI) technique to probe the ultrafast dynamic response of a Superconducting-Insulating-Superconducting (SIS) tunnel junction and a Quantum Point Contact (QPC). The THz-TDI technique involves monitoring changes in the dc current induced by interfering two picosecond electrical pulses on the junction as a function of time delay between them. Measurements of the response of the Nb/AlO{sub x}/Nb SIS tunnel junction from 75--200 GHz are in full agreement with the linear theory for photon-assisted tunneling. Likewise, measurements of the induced current in a QPC as a function of source-drain voltage, gate voltage, frequency, and magnetic field also show strong evidence for photon-assisted transport. These experiments together demonstrate the general applicability of the THz-TDI technique to the characterization of the dynamic response of any micron or nanometer scale device that exhibits a non-linear I-V characteristic. 133 refs., 49 figs.

    13. National Uranium Resource Evaluation. Bibliographic index of Grand Junction office uranium reports

      SciTech Connect (OSTI)

      Johnson, J.B.

      1981-05-01

      In October 1978, Mesa College entered into subcontract with Bendix Field Engineering Corporation (BFEC) to prepare a bibliographic index of the uranium raw materials reports issued by the Grand Junction Office of the US Department of Energy (DOE). Bendix, prime contractor to the Grand Junction Office, operates the Technical Library at the DOE facility. Since the early 1950s, approximately 2700 reports have been issued by the Grand Junction Office. These reports were the results of uranium investigations conducted by federal agencies and their subcontractors. The majority of the reports cover geology, mineralogy, and metallurgy of uranium and/or thorium. No single, complete list of these reports existed. The purpose of this subcontract was to compile a comprehensive index to these reports. The Mesa College geology faculty worked with the BFEC and DOE staffs to develop the format for the index. Undergraduate geology students from Mesa compiled a master record sheet for each report. All reports issued up to January 1, 1979 were included in the bibliography. The bibliography is in preliminary, unedited form. It is being open-filed at this time, on microfiche, to make the information available to the public on a timely basis. The bibliography is divided into a master record list arranged in alpha-numeric order by report identification number, with separate indices arranged by title, author, state and county, 1/sup 0/ x 2/sup 0/ NTMS quadrangle, key words, and exploration area.

    14. New Insights for Improving the Designs of Flexible Duct Junction Boxes (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

      Energy Savers [EERE]

      New Insights for Improving the Designs of Flexible Duct Junction Boxes PROJECT INFORMATION IBACOS www.ibacos.com Construction: Fiberglass duct board or sheet metal junction boxes Type: Flexible duct constant-volume HVAC systems Builders: Those using ACCA Manual D process for sizing duct runs Size: N/A Price Range: N/A Date completed: N/A Climate Zone: All PERFORMANCE DATA Pressure losses are high for flexible duct junction boxes relative to other standard duct fittings; however, contractors

    15. New Whole-House Solutions Case Study: Rural Development, Greenfield, Massachusetts

      SciTech Connect (OSTI)

      none,

      2013-09-01

      This builder worked with Consortium for Advanced Residential Buildings to design affordable HERS-8 homes (60 w/o PV), with double-stud walls heavy insulation, low-load sealed-combustion gas space heaters, triple-pane windows, solar water heating, and PV

    16. Hawaii energy strategy project 2: Fossil energy review. Task 3 -- Greenfield options: Prospects for LNG use

      SciTech Connect (OSTI)

      Breazeale, K.; Fesharaki, F.; Fridley, D.; Pezeshki, S.; Wu, K.

      1993-12-01

      This paper begins with an overview of the Asia-Pacific LNG market, its major players, and the likely availability of LNG supplies in the region. The discussion then examines the possibilities for the economic supply of LNG to Hawaii, the potential Hawaiian market, and the viability of an LNG project on Oahu. This survey is far from a complete technical assessment or an actual engineering/feasibility study. The economics alone cannot justify LNG`s introduction. The debate may continue as to whether fuel diversification and environmental reasons can outweigh the higher costs. Several points are made. LNG is not a spot commodity. Switching to LNG in Hawaii would require a massive, long-term commitment and substantial investments. LNG supplies are growing very tight in the Asia-Pacific region. Some of the environmental benefits of LNG are not entirely relevant in Hawaii because Hawaii`s air quality is generally excellent. Any air quality benefits may be more than counterbalanced by the environmental hazards connected with large-scale coastal zone construction, and by the safety hazards of LNG carriers, pipelines, etc. Lastly, LNG is not suitable for all energy uses, and is likely to be entirely unsuitable for neighbor island energy needs.

    17. Existing Whole-House Solutions Case Study: Conway Street Apartments - Greenfield, Massachusetts

      SciTech Connect (OSTI)

      2014-12-01

      Through recent research efforts, CARB has been evaluating strategies and technologies that can make dramatic improvements in energy performance in multifamily buildings. In this project, the team helped to transform a 100-year-old empty school building into 12 high performance apartments with low energy costs. The advanced features included an excellent thermal envelope of closed-cell spray foam and triple-pane windows, ductless heat pumps, solar thermal hot water system, and photovoltaic system.

    18. Building America Case Study: Conway Street Apartments, Greenfield, Massachusetts (Fact Sheet)

      SciTech Connect (OSTI)

      Not Available

      2014-12-01

      While single-family, detached homes account for 63% of households (EIA 2009); multi-family homes account for a very large portion of that remaining housing stock, and this fraction is growing. Through recent research efforts, CARB has been evaluating strategies and technologies that can make dramatic improvements in energy performance in multi-family buildings

    19. New Whole-House Solutions Case Study: Rural Development Inc., Wisdom Way Solar Village, Greenfield, MA

      Energy Savers [EERE]

      design assistance and energy analysis from the U.S. Department of Energy's CARB Building America research team, led by Steven Winter Associates, the nonprofit builder Rural Development, Inc., built Wisdom Way Solar Village, a community of 20 energy-efficient solar duplexes in western Massachusetts in 2010. The homes achieve HERS scores of 8 to 18 with a highly insulated enclosure, energy-saving equipment, and solar water heating to give home owners heating savings of nearly $2,200 per year. The

    20. Two-Dimensional Measurement of n+-p Asymmetrical Junctions in Multicrystalline Silicon Solar Cells using AFM-Based Electrical Techniques with Nanometer Resolution

      SciTech Connect (OSTI)

      Jiang, C. S.; Heath, J. T.; Moutinho, H. R.; Li, J. V.; Al-Jassim, M. M.

      2011-01-01

      Lateral inhomogeneities of modern solar cells demand direct electrical imaging with nanometer resolution. We show that atomic force microscopy (AFM)-based electrical techniques provide unique junction characterizations, giving a two-dimensional determination of junction locations. Two AFM-based techniques, scanning capacitance microscopy/spectroscopy (SCM/SCS) and scanning Kelvin probe force microscopy (SKPFM), were significantly improved and applied to the junction characterizations of multicrystalline silicon (mc-Si) cells. The SCS spectra were taken pixel by pixel by precisely controlling the tip positions in the junction area. The spectra reveal distinctive features that depend closely on the position relative to the electrical junction, which allows us to indentify the electrical junction location. In addition, SKPFM directly probes the built-in potential over the junction area modified by the surface band bending, which allows us to deduce the metallurgical junction location by identifying a peak of the electric field. Our results demonstrate resolutions of 10-40 nm, depending on the techniques (SCS or SKPFM). These direct electrical measurements with nanometer resolution and intrinsic two-dimensional capability are well suited for investigating the junction distribution of solar cells with lateral inhomogeneities.

    1. Two-Dimensional Measurement of n+-p Asymmetrical Junctions in Multicrystalline Silicon Solar Cells Using AFM-Based Electrical Techniques with Nanometer Resolution: Preprint

      SciTech Connect (OSTI)

      Jiang, C. S.; Moutinho, H. R.; Li, J. V.; Al-Jassim, M. M.; Heath, J. T.

      2011-07-01

      Lateral inhomogeneities of modern solar cells demand direct electrical imaging with nanometer resolution. We show that atomic force microscopy (AFM)-based electrical techniques provide unique junction characterizations, giving a two-dimensional determination of junction locations. Two AFM-based techniques, scanning capacitance microscopy/spectroscopy (SCM/SCS) and scanning Kelvin probe force microscopy (SKPFM), were significantly improved and applied to the junction characterizations of multicrystalline silicon (mc-Si) cells. The SCS spectra were taken pixel by pixel by precisely controlling the tip positions in the junction area. The spectra reveal distinctive features that depend closely on the position relative to the electrical junction, which allows us to indentify the electrical junction location. In addition, SKPFM directly probes the built-in potential over the junction area modified by the surface band bending, which allows us to deduce the metallurgical junction location by identifying a peak of the electric field. Our results demonstrate resolutions of 10-40 nm, depending on the techniques (SCS or SKPFM). These direct electrical measurements with nanometer resolution and intrinsic two-dimensional capability are well suited for investigating the junction distribution of solar cells with lateral inhomogeneities.

    2. Carcinoembryonic antigen promotes colorectal cancer progression by targeting adherens junction complexes

      SciTech Connect (OSTI)

      Bajenova, Olga; Chaika, Nina; Tolkunova, Elena; Davydov-Sinitsyn, Alexander; Gapon, Svetlana; Thomas, Peter; OBrien, Stephen

      2014-06-10

      Oncomarkers play important roles in the detection and management of human malignancies. Carcinoembryonic antigen (CEA, CEACAM5) and epithelial cadherin (E-cadherin) are considered as independent tumor markers in monitoring metastatic colorectal cancer. They are both expressed by cancer cells and can be detected in the blood serum. We investigated the effect of CEA production by MIP101 colorectal carcinoma cell lines on E-cadherin adherens junction (AJ) protein complexes. No direct interaction between E-cadherin and CEA was detected; however, the functional relationships between E-cadherin and its AJ partners: ?-, ?- and p120 catenins were impaired. We discovered a novel interaction between CEA and beta-catenin protein in the CEA producing cells. It is shown in the current study that CEA overexpression alters the splicing of p120 catenin and triggers the release of soluble E-cadherin. The influence of CEA production by colorectal cancer cells on the function of E-cadherin junction complexes may explain the link between the elevated levels of CEA and the increase in soluble E-cadherin during the progression of colorectal cancer. - Highlights: Elevated level of CEA increases the release of soluble E-cadherin during the progression of colorectal cancer. CEA over-expression alters the binding preferences between E-cadherin and its partners: ?-, ?- and p120 catenins in adherens junction complexes. CEA produced by colorectal cancer cells interacts with beta-catenin protein. CEA over-expression triggers the increase in nuclear beta-catenin. CEA over-expression alters the splicing of p120 catenin protein.

    3. InGaN/GaN tunnel junctions for hole injection in GaN light emitting diodes

      SciTech Connect (OSTI)

      Krishnamoorthy, Sriram E-mail: rajan@ece.osu.edu; Akyol, Fatih; Rajan, Siddharth E-mail: rajan@ece.osu.edu

      2014-10-06

      InGaN/GaN tunnel junction contacts were grown using plasma assisted molecular beam epitaxy (MBE) on top of a metal-organic chemical vapor deposition (MOCVD)-grown InGaN/GaN blue (450?nm) light emitting diode. A voltage drop of 5.3?V at 100?mA, forward resistance of 2 10{sup ?2} ? cm{sup 2}, and a higher light output power compared to the reference light emitting diodes (LED) with semi-transparent p-contacts were measured in the tunnel junction LED (TJLED). A forward resistance of 5??10{sup ?4} ? cm{sup 2} was measured in a GaN PN junction with the identical tunnel junction contact as the TJLED, grown completely by MBE. The depletion region due to the impurities at the regrowth interface between the MBE tunnel junction and the MOCVD-grown LED was hence found to limit the forward resistance measured in the TJLED.

    4. Enhanced efficiency of graphene-silicon Schottky junction solar cells by doping with Au nanoparticles

      SciTech Connect (OSTI)

      Liu, X.; Zhang, X. W. Yin, Z. G.; Meng, J. H.; Gao, H. L.; Zhang, L. Q.; Zhao, Y. J.; Wang, H. L.

      2014-11-03

      We have reported a method to enhance the performance of graphene-Si (Gr/Si) Schottky junction solar cells by introducing Au nanoparticles (NPs) onto the monolayer graphene and few-layer graphene. The electron transfer between Au NPs and graphene leads to the increased work function and enhanced electrical conductivity of graphene, resulting in a remarkable improvement of device efficiency. By optimizing the initial thickness of Au layers, the power conversion efficiency of Gr/Si solar cells can be increased by more than three times, with a maximum value of 7.34%. These results show a route for fabricating efficient and stable Gr/Si solar cells.

    5. PCB usage at the Grand Junction Area Office Facility. Final report

      SciTech Connect (OSTI)

      Miller, M.E.; Donivan, S.

      1982-06-01

      The development, implementation, and results of the polychlorinated biphenyl (PCB) identification project at the Grand Junction Area Office (GJAO) are summarized. Methodology for the PCB analysis is described, and results are tabulated. Of the 51 transformers and disconnects in use at GJAO, 15 unites were determined to be PCB-contaminated or filled with PCBs. This number falls within EPA's estimate of 25 to 40 percent of all transformers in use being at least contaminated. Approximately 324 gallons of PCBs and 515 gallons of PCB-contaminated fluids are being used currently. No contaminated transformers or disconnects are in a position to contaminate food or feed products at the facility.

    6. Unpaired Majorana modes in Josephson-Junction Arrays with gapless bulk excitations

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Pino, M.; Tsvelik, A.; Ioffe, L. B.

      2015-11-06

      In this study, the search for Majorana bound states in solid-state physics has been limited to materials that display a gap in their bulk spectrum. We show that such unpaired states appear in certain quasi-one-dimensional Josephson-junction arrays with gapless bulk excitations. The bulk modes mediate a coupling between Majorana bound states via the Ruderman-Kittel-Yosida-Kasuya mechanism. As a consequence, the lowest energy doublet acquires a finite energy difference. For a realistic set of parameters this energy splitting remains much smaller than the energy of the bulk eigenstates even for short chains of length L~10.

    7. Multi-state magnetoresistance in ferromagnet/organic-ferromagnet/ferromagnet junctions

      SciTech Connect (OSTI)

      Hu, G. C. Zuo, M. Y.; Li, Y.; Ren, J. F.; Xie, S. J.

      2014-01-20

      Spin-dependent transport through a ferromagnetic metal/organic-ferromagnet/ferromagnet metal junction is investigated theoretically. It is demonstrated that the current through the device strongly depends on the alignment of the magnetization orientations of the electrodes and interlayer. The spin-related electron tunnelling between the ferromagnetic electrodes suffers a further spin selection induced by the spin-polarized states of the central organic ferromagnet. This work indicates an intriguing prospect of organic ferromagnets in spintronic devices, such as four-state magnetoresistance manipulated by a magnetic field.

    8. Dynamical properties of three terminal magnetic tunnel junctions: Spintronics meets spin-orbitronics

      SciTech Connect (OSTI)

      Tomasello, R.; Carpentieri, M.; Finocchio, G.

      2013-12-16

      This Letter introduces a micromagnetic model able to characterize the magnetization dynamics in three terminal magnetic tunnel junctions, where the effects of spin-transfer torque and spin-orbit torque are taken into account. Our results predict that the possibility to separate electrically those two torque sources is very promising from a technological point of view for both next generation of nanoscale spintronic oscillators and microwave detectors. A scalable synchronization scheme based on the parallel connection of those three terminal devices is also proposed.

    9. 0.7-eV GaInAs Junction for a GaInP/GaAs/GaInAs(1-eV)/GaInAs(0.7-eV) Four-Junction Solar Cell: Preprint

      SciTech Connect (OSTI)

      Friedman, D. J.; Geisz, J. F.; Norman, A. G.; Wanlass, M. W.; Kurtz, S. R.

      2006-05-01

      We discuss recent developments in III-V multijunction solar cells, focusing on adding a fourth junction to the Ga0.5In0.5P/GaAs/Ga0.75In0.25As inverted three-junction cell. This cell, grown inverted on GaAs so that the lattice-mismatched Ga0.75In0.25As third junction is the last one grown, has demonstrated 38% efficiency, and 40% is likely in the near future. To achieve still further gains, a lower-bandgap GaxIn1-xAs fourth junction could be added to the three-junction structure for a four-junction cell whose efficiency could exceed 45% under concentration. Here, we present the initial development of the GaxIn1-xAs fourth junction. Junctions of various bandgaps ranging from 0.88 to 0.73 eV were grown, in order to study the effect of the different amounts of lattice mismatch. At a bandgap of 0.88 eV, junctions were obtained with very encouraging {approx}80% quantum efficiency, 57% fill factor, and 0.36 eV open-circuit voltage. The device performance degrades with decreasing bandgap (i.e., increasing lattice mismatch). We model the four-junction device efficiency vs. fourth junction bandgap to show that an 0.7-eV fourth-junction bandgap, while optimal if it could be achieved in practice, is not necessary; an 0.9-eV bandgap would still permit significant gains in multijunction cell efficiency while being easier to achieve than the lower-bandgap junction.

    10. Hetero-junction photovoltaic device and method of fabricating the device

      DOE Patents [OSTI]

      Aytug, Tolga; Christen, David K; Paranthaman, Mariappan Parans; Polat, Ozgur

      2014-02-10

      A hetero-junction device and fabrication method in which phase-separated n-type and p-type semiconductor pillars define vertically-oriented p-n junctions extending above a substrate. Semiconductor materials are selected for the p-type and n-type pillars that are thermodynamically stable and substantially insoluble in one another. An epitaxial deposition process is employed to form the pillars on a nucleation layer and the mutual insolubility drives phase separation of the materials. During the epitaxial deposition process, the orientation is such that the nucleation layer initiates propagation of vertical columns resulting in a substantially ordered, three-dimensional structure throughout the deposited material. An oxidation state of at least a portion of one of the p-type or the n-type semiconductor materials is altered relative to the other, such that the band-gap energy of the semiconductor materials differ with respect to stoichiometric compositions and the device preferentially absorbs particular selected bands of radiation.

    11. Quantitative interpretation of the transition voltages in gold-poly(phenylene) thiol-gold molecular junctions

      SciTech Connect (OSTI)

      Wu, Kunlin; Bai, Meilin; Hou, Shimin; Sanvito, Stefano

      2013-11-21

      The transition voltage of three different asymmetric Au/poly(phenylene) thiol/Au molecular junctions in which the central molecule is either benzene thiol, biphenyl thiol, or terphenyl thiol is investigated by first-principles quantum transport simulations. For all the junctions, the calculated transition voltage at positive polarity is in quantitative agreement with the experimental values and shows weak dependence on alterations of the Au-phenyl contact. When compared to the strong coupling at the Au-S contact, which dominates the alignment of various molecular orbitals with respect to the electrode Fermi level, the coupling at the Au-phenyl contact produces only a weak perturbation. Therefore, variations of the Au-phenyl contact can only have a minor influence on the transition voltage. These findings not only provide an explanation to the uniformity in the transition voltages found for ?-conjugated molecules measured with different experimental methods, but also demonstrate the advantage of transition voltage spectroscopy as a tool for determining the positions of molecular levels in molecular devices.

    12. Electronic transport through Al/InN nanowire/Al junctions

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Lu, Tzu -Ming; Wang, George T.; Pan, Wei; Zhao, S.; Mi, Z.

      2016-02-10

      We report non-linear electronic transport measurement of Al/Si-doped n-type InN nanowire/Al junctions performed at T = 0.3 K, below the superconducting transition temperature of the Al electrodes. The proximity effect is observed in these devices through a strong dip in resistance at zero bias. In addition to the resistance dip at zero bias, several resistance peaks can be identified at bias voltages above the superconducting gap of the electrodes, while no resistance dip is observed at the superconducting gap. The resistance peaks disappear as the Al electrodes turn normal beyond the critical magnetic field except one which remains visible atmore » fields several times higher than critical magnetic field. An unexpected non-monotonic magnetic field dependence of the peak position is observed. As a result, we discuss the physical origin of these observations and propose that the resistance peaks could be the McMillan-Rowell oscillations arising from different closed paths localized near different regions of the junctions.« less

    13. Thermal influence on charge carrier transport in solar cells based on GaAs PN junctions

      SciTech Connect (OSTI)

      Osses-Mrquez, Juan; Caldern-Muoz, Williams R.

      2014-10-21

      The electron and hole one-dimensional transport in a solar cell based on a Gallium Arsenide (GaAs) PN junction and its dependency with electron and lattice temperatures are studied here. Electrons and heat transport are treated on an equal footing, and a cell operating at high temperatures using concentrators is considered. The equations of a two-temperature hydrodynamic model are written in terms of asymptotic expansions for the dependent variables with the electron Reynolds number as a perturbation parameter. The dependency of the electron and hole densities through the junction with the temperature is analyzed solving the steady-state model at low Reynolds numbers. Lattice temperature distribution throughout the device is obtained considering the change of kinetic energy of electrons due to interactions with the lattice and heat absorbed from sunlight. In terms of performance, higher values of power output are obtained with low lattice temperature and hot energy carriers. This modeling contributes to improve the design of heat exchange devices and thermal management strategies in photovoltaic technologies.

    14. Multi-terminal magnetotransport measurements over a tunable graphene p-n junction created by AFM-nanomachining

      SciTech Connect (OSTI)

      Schmidt, H.; Smirnov, D.; Rode, J.; Haug, R. J.

      2013-12-04

      An Atomic Force Microscope is used to alter one part of a single layer graphene sample locally. Transport experiments at low temperatures are then used to characterize the different parts independently with field effect and Hall measurements. It is shown, that the nanomachining leads to an effective doping in the altered area and therefore to a difference in the charge carrier density of ?n = 3.5 ? 10{sup 15}m{sup ?2} between the unchanged and changed part. These two parts can be tuned with a global backgate to form a junction of different polarity, i.e. a p-n junction.

    15. GaN-based vertical-cavity laser performance improvements using tunnel-junction-cascaded active regions

      SciTech Connect (OSTI)

      Piprek, Joachim

      2014-07-07

      This Letter investigates the output power enhancement achieved by tunnel junction insertion into the InGaN multi-quantum well (MQW) active region of a 410?nm vertical-cavity surface-emitting laser which enables the repeated use of carriers for light generation (carrier recycling). While the number of quantum wells remains unchanged, the tunnel junction eliminates absorption caused by the non-uniform MQW carrier distribution. The thermal resistance drops and the excess bias lead to a surprisingly small rise in self-heating.

    16. Observation of Energy Levels Quantization in Underdamped Josephson Junctions above the Classical-Quantum Regime Crossover Temperature

      SciTech Connect (OSTI)

      Silvestrini, P.; Ruggiero, B.; Russo, M.; Silvestrini, P.; Ruggiero, B.; Russo, M.; Palmieri, V.G.

      1997-10-01

      We present a clear observation of the presence of energy levels quantization in high quality Nb-AlO{sub x} -Nb underdamped Josephson junctions at temperatures above the quantum crossover temperature. This has been possible by extending the measurements of the escape rate out of the zero-voltage state at higher sweeping frequency (dI/dt up to 25A/sec) in order to induce nonstationary conditions in the energy potential describing the junction dynamics. {copyright} {ital 1997} {ital The American Physical Society}

    17. Four-Junction Solar Cell with 40% Target Efficiency Fabricated by Wafer Bonding and Layer Transfer: Final Technical Report, 1 January 2005 - 31 December 2007

      SciTech Connect (OSTI)

      Atwater, H. A.

      2008-11-01

      We realized high-quality InGaP/GaAs 2-junction top cells on Ge/Si, InGaAs/InP bottom cells, direct-bond series interconnection of tandem cells, and modeling of bonded 3- and 4-junction device performance.

    18. Real-Space Microscopic Electrical Imaging of n+-p Junction Beneath Front-Side Ag Contact of Multicrystalline Si Solar Cells

      SciTech Connect (OSTI)

      Jiang, C. S.; Li, Z. G.; Moutinho, H. R.; Liang, L.; Ionkin, A.; Al-Jassim, M. M.

      2012-04-15

      We investigated the quality of the n+-p diffused junction beneath the front-side Ag contact of multicrystalline Si solar cells by characterizing the uniformities of electrostatic potential and doping concentration across the junction using the atomic force microscopy-based electrical imaging techniques of scanning Kelvin probe force microscopy and scanning capacitance microscopy. We found that Ag screen-printing metallization fired at the over-fire temperature significantly degrades the junction uniformity beneath the Ag contact grid, whereas metallization at the optimal- and under-fire temperatures does not cause degradation. Ag crystallites with widely distributed sizes were found at the Ag-grid/emitter-Si interface of the over-fired cell, which is associated with the junction damage beneath the Ag grid. Large crystallites protrude into Si deeper than the junction depth. However, the junction was not broken down; instead, it was reformed on the entire front of the crystallite/Si interface. We propose a mechanism of junction-quality degradation, based on emitter Si melting at the temperature around the Ag-Si eutectic point during firing, and subsequent re-crystallization with incorporation of Ag and other impurities and with formation of crystallographic defects during quenching. The effect of this junction damage on solar cell performance is discussed.

    19. The benzene metabolite trans,trans-muconaldehyde blocks gap junction intercellular communication by cross-linking connexin43

      SciTech Connect (OSTI)

      Rivedal, Edgar Leithe, Edward

      2008-11-01

      Benzene is used at large volumes in many different human activities. Hematotoxicity and cancer-causation as a result of benzene exposure was recognized many years ago, but the mechanisms involved remain unclear. Aberrant regulation of gap junction intercellular communication (GJIC) has been linked to both cancer induction and interference with normal hematopoietic development. We have previously suggested that inhibition of GJIC may play a role in benzene toxicity since benzene metabolites were found to block GJIC, the ring-opened trans,trans-muconaldehyde (MUC) being the most potent metabolite. In the present work we have studied the molecular mechanisms underlying the MUC-induced inhibition of gap junctional communication. We show that MUC induces cross-linking of the gap junction protein connexin43 and that this is likely to be responsible for the induced inhibition of GJIC, as well as the loss of connexin43 observed in Western blots. We also show that glutaraldehyde possesses similar effects as MUC, and we compare the effects to that of formaldehyde. The fact that glutaraldehyde and formaldehyde have been associated with induction of leukemia as well as disturbance of hematopoiesis, strengthens the possible link between the effect of MUC on gap junctions, and the toxic effects of benzene.

    20. High Efficiency Amorphous and Microcrystalline Silicon Based Double-Junction Solar Cells made with Very-High-Frequency Glow Discharge

      SciTech Connect (OSTI)

      Banerjee, Arindam

      2004-10-20

      We have achieved a total-area initial efficiency of 11.47% (active-area efficiency of 12.33%) on a-Si:H/?c-Si:H double-junction structure, where the intrinsic layer bottom cell was made in 50 minutes. On another device in which the bottom cell was made in 30 min, we achieved initial total-area efficiency of 10.58% (active-efficiency of 11.35%). We have shown that the phenomenon of ambient degradation of both ?c-Si:H single-junction and a-Si:H/?c-Si:H double-junction cells can be attributed to impurity diffusion after deposition. Optimization of the plasma parameters led to alleviation of the ambient degradation. Appropriate current matching between the top and bottom component cells has resulted in a stable total-area efficiency of 9.7% (active-area efficiency of 10.42%) on an a-Si:H/?c-Si:H double-junction solar cell in which the deposition time for the ?c-Si:H intrinsic layer deposition was of 30 min.

    1. Designing π-stacked molecular structures to control heat transport through molecular junctions

      SciTech Connect (OSTI)

      Kiršanskas, Gediminas; Li, Qian; Solomon, Gemma C.; Flensberg, Karsten; Leijnse, Martin

      2014-12-08

      We propose and analyze a way of using π stacking to design molecular junctions that either enhance or suppress a phononic heat current, but at the same time remain conductors for an electric current. Such functionality is highly desirable in thermoelectric energy converters, as well as in other electronic components where heat dissipation should be minimized or maximized. We suggest a molecular design consisting of two masses coupled to each other with one mass coupled to each lead. By having a small coupling (spring constant) between the masses, it is possible to either reduce or perhaps more surprisingly enhance the phonon conductance. We investigate a simple model system to identify optimal parameter regimes and then use first principle calculations to extract model parameters for a number of specific molecular realizations, confirming that our proposal can indeed be realized using standard molecular building blocks.

    2. Origin of the smaller conductances of Rh, Pb, and Co atomic junctions in hydrogen environment

      SciTech Connect (OSTI)

      Li, Xue; Chen, Mingyan; Ye, Xiang; Xie, Yi-qun; Ke, San-huang

      2015-02-14

      We study theoretically the structural and electronic origins of the smaller conductances (one conductance quantum, G{sub 0}, and smaller) of Rh, Pb, and Co metal atomic junctions (MAJs) in a hydrogen environment, as were measured in recent experiments. For the Rh MAJs, the 1G{sub 0} conductance is attributed to a stable contact bridged by a single hydrogen molecule whose antibonding state provides a single transport channel. For the Pb and Co MAJs the 1G{sub 0} conductance is, however, ascribed to a linear atomic chain adsorbing two dissociated H atoms, which largely reduces the density of states at the Fermi energy with respect to the pure ones. On the other hand, the small conductances of 0.3G{sub 0} (Rh) and 0.2G{sub 0} (Co) are due to H-decorated atomic chains connected to electrodes by a H atom.

    3. A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Mailoa, Jonathan P.; Bailie, Colin D.; Johlin, Eric C.; Hoke, Eric T.; Akey, Austin J.; Nguyen, William H.; McGehee, Michael D.; Buonassisi, Tonio

      2015-03-24

      With the advent of efficient high-bandgap metal-halide perovskite photovoltaics, an opportunity exists to make perovskite/silicon tandem solar cells. We fabricate a monolithic tandem by developing a silicon-based interband tunnel junction that facilitates majority-carrier charge recombination between the perovskite and silicon sub-cells. We demonstrate a 1 cm2 2-terminal monolithic perovskite/silicon multijunction solar cell with a VOC as high as 1.65 V. As a result, we achieve a stable 13.7% power conversion efficiency with the perovskite as the current-limiting sub-cell, and identify key challenges for this device architecture to reach efficiencies over 25%.

    4. Mode-hopping mechanism generating colored noise in a magnetic tunnel junction based spin torque oscillator

      SciTech Connect (OSTI)

      Sharma, Raghav; Drrenfeld, P.; Iacocca, E.; Heinonen, O. G.; kerman, J.; Muduli, P. K.

      2014-09-29

      The frequency noise spectrum of a magnetic tunnel junction based spin torque oscillator is examined where multiple modes and mode-hopping events are observed. The frequency noise spectrum is found to consist of both white noise and 1/f frequency noise. We find a systematic and similar dependence of both white noise and 1/f frequency noise on bias current and the relative angle between the reference and free layers, which changes the effective damping and hence the mode-hopping behavior in this system. The frequency at which the 1/f frequency noise changes to white noise increases as the free layer is aligned away from the anti-parallel orientation w.r.t the reference layer. These results indicate that the origin of 1/f frequency noise is related to mode-hopping, which produces both white noise as well as 1/f frequency noise similar to the case of ring lasers.

    5. Macroscopic quantum tunneling in small Josephson junctions in a magnetic field.

      SciTech Connect (OSTI)

      Ovchinnikov, Yu. N.; Barone, A.; Varlamov, A. A.; Materials Science Division; Max-Planck Inst. for Physics of Complex Systems; Landau Inst. Theoretical Physics; Univ. di Napoli Federico II; Coherentia-INFM, CNR

      2007-01-01

      We study the phenomenon of macroscopic quantum tunneling (MQT) in small Josephson junctions (JJ) with an externally applied magnetic field. The latter results in the appearance of the Fraunhofer type modulation of the current density along the barrier. The problem of MQT for a pointlike JJ is reduced to the motion of the quantum particle in the washboard potential. In the case of a finite size JJ under consideration, this problem corresponds to a MQT in a potential which itself, besides the phase, depends on space variables. The general expression for the crossover temperature To between thermally activated and macroscopic quantum tunneling regimes and the escaping time {tau}{sub esc} have been calculated.

    6. Traveling wave parametric amplifier with Josephson junctions using minimal resonator phase matching

      SciTech Connect (OSTI)

      White, T. C.; Mutus, J. Y.; Hoi, I.-C.; Barends, R.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Kelly, J.; Neill, C.; O'Malley, P. J. J.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; Martinis, John M.; Megrant, A.; Chaudhuri, S.; and others

      2015-06-15

      Josephson parametric amplifiers have become a critical tool in superconducting device physics due to their high gain and quantum-limited noise. Traveling wave parametric amplifiers (TWPAs) promise similar noise performance, while allowing for significant increases in both bandwidth and dynamic range. We present a TWPA device based on an LC-ladder transmission line of Josephson junctions and parallel plate capacitors using low-loss amorphous silicon dielectric. Crucially, we have inserted ?/4 resonators at regular intervals along the transmission line in order to maintain the phase matching condition between pump, signal, and idler and increase gain. We achieve an average gain of 12?dB across a 4?GHz span, along with an average saturation power of ?92 dBm with noise approaching the quantum limit.

    7. A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction

      SciTech Connect (OSTI)

      Mailoa, Jonathan P.; Bailie, Colin D.; Johlin, Eric C.; Hoke, Eric T.; Akey, Austin J.; Nguyen, William H.; McGehee, Michael D.; Buonassisi, Tonio

      2015-03-24

      With the advent of efficient high-bandgap metal-halide perovskite photovoltaics, an opportunity exists to make perovskite/silicon tandem solar cells. We fabricate a monolithic tandem by developing a silicon-based interband tunnel junction that facilitates majority-carrier charge recombination between the perovskite and silicon sub-cells. We demonstrate a 1 cm2 2-terminal monolithic perovskite/silicon multijunction solar cell with a VOC as high as 1.65 V. As a result, we achieve a stable 13.7% power conversion efficiency with the perovskite as the current-limiting sub-cell, and identify key challenges for this device architecture to reach efficiencies over 25%.

    8. High performance anti-reflection coatings for broadband multi-junction solar cells

      SciTech Connect (OSTI)

      AIKEN,DANIEL J.

      2000-02-23

      The success of bandgap engineering has made high efficiency broadband multi-junction solar cells possible with photo-response out to the band edge of Ge. Modeling has been conducted which suggests that current double layer anti-reflection coating technology is not adequate for these devices in certain cases. Approaches for the development of higher performance anti-reflection coatings are examined. A new AR coating structure based on the use of Herpin equivalent layers is presented. Optical modeling suggests a decrease in the solar weighted reflectance of over 2.5{percent} absolute as a result. This structure requires no additional optical material development and characterization because no new optical materials are necessary. Experimental results and a sensitivity analysis are presented.

    9. Tuning the thickness of electrochemically grafted layers in large area molecular junctions

      SciTech Connect (OSTI)

      Fluteau, T.; Bessis, C.; Barraud, C. Della Rocca, M. L.; Lafarge, P.; Martin, P.; Lacroix, J.-C.

      2014-09-21

      We have investigated the thickness, the surface roughness, and the transport properties of oligo(1-(2-bisthienyl)benzene) (BTB) thin films grafted on evaporated Au electrodes, thanks to a diazonium-based electro-reduction process. The thickness of the organic film is tuned by varying the number of electrochemical cycles during the growth process. Atomic force microscopy measurements reveal the evolution of the thickness in the range of 227 nm. Its variation displays a linear dependence with the number of cycles followed by a saturation attributed to the insulating behavior of the organic films. Both ultrathin (2 nm) and thin (12 and 27 nm) large area BTB-based junctions have then been fabricated using standard CMOS processes and finally electrically characterized. The electronic responses are fully consistent with a tunneling barrier in case of ultrathin BTB film whereas a pronounced rectifying behavior is reported for thicker molecular films.

    10. Giant electrocaloric effect in asymmetric ferroelectric tunnel junctions at room temperature

      SciTech Connect (OSTI)

      Liu, Yang Infante, Ingrid C.; Dkhil, Brahim; Lou, Xiaojie

      2014-02-24

      Room-temperature electrocaloric properties of Pt/BaTiO{sub 3}/SrRuO{sub 3} ferroelectric tunnel junctions (FTJs) are studied by using a multiscale thermodynamic model. It is found that there is a divergence in the adiabatic temperature change ΔT for the two opposite polarization orientations. This difference under a typical writing voltage of 3 V can reach over 1 K as the barrier thickness decreases. Thanks to the ultrahigh external stimulus, a giant electrocaloric effect (1.53 K/V) with ΔT being over 4.5 K can be achieved at room temperature, which demonstrates the perspective of FTJs as a promising solid-state refrigeration.

    11. Influence of quasiparticle multi-tunneling on the energy flow through the superconducting tunnel junction

      SciTech Connect (OSTI)

      Samedov, V. V.; Tulinov, B. M.

      2011-07-01

      Superconducting tunnel junction (STJ) detector consists of two layers of superconducting material separated by thin insulating barrier. An incident particle produces in superconductor excess nonequilibrium quasiparticles. Each quasiparticle in superconductor should be considered as quantum superposition of electron-like and hole-like excitations. This duality nature of quasiparticle leads to the effect of multi-tunneling. Quasiparticle starts to tunnel back and forth through the insulating barrier. After tunneling from biased electrode quasiparticle loses its energy via phonon emission. Eventually, the energy that equals to the difference in quasiparticle energy between two electrodes is deposited in the signal electrode. Because of the process of multi-tunneling, one quasiparticle can deposit energy more than once. In this work, the theory of branching cascade processes was applied to the process of energy deposition caused by the quasiparticle multi-tunneling. The formulae for the mean value and variance of the energy transferred by one quasiparticle into heat were derived. (authors)

    12. Interfacial electronic transport phenomena in single crystalline Fe-MgO-Fe thin barrier junctions

      SciTech Connect (OSTI)

      Gangineni, R. B.; Negulescu, B.; Baraduc, C.; Gaudin, G.

      2014-05-05

      Spin filtering effects in nano-pillars of Fe-MgO-Fe single crystalline magnetic tunnel junctions are explored with two different sample architectures and thin MgO barriers (thickness: 3–8 monolayers). The two architectures, with different growth and annealing conditions of the bottom electrode, allow tuning the quality of the bottom Fe/MgO interface. As a result, an interfacial resonance states (IRS) is observed or not depending on this interface quality. The IRS contribution, observed by spin polarized tunnel spectroscopy, is analyzed as a function of the MgO barrier thickness. Our experimental findings agree with theoretical predictions concerning the symmetry of the low energy (0.2 eV) interfacial resonance states: a mixture of Δ{sub 1}-like and Δ{sub 5}-like symmetries.

    13. Three-terminal magnetic tunneling junction device with perpendicular anisotropy CoFeB sensing layer

      SciTech Connect (OSTI)

      Honjo, H. Nebashi, R.; Tokutome, K.; Miura, S.; Sakimura, N.; Sugibayashi, T.; Fukami, S.; Kinoshita, K.; Murahata, M.; Kasai, N.; Ishihara, K.; Ohno, H.

      2014-05-07

      We demonstrated read and write characteristics of a three terminal memory device with a perpendicular anisotropy-free layer of a strip of [Co/Ni] and a low-switching perpendicular-anisotropy CoFeB/MgO sensing layer. This new design of the cell results in a small cell area. The switching magnetic field of the sensing layer can be decreased by changing sputtering gas for the Ta-cap from Ar to Kr. An electron energy-loss spectroscopy analysis of the cross-section of the magnetic tunneling junction (MTJ) revealed that the boron content in CoFeB with a Kr-sputtered Ta-cap was smaller than that with an Ar-sputtered one. A change in resistance for the MTJ was observed that corresponded to the magnetic switching of the Co/Ni wire and its magnetoresistance ratio and critical current were 90% and 0.8 mA, respectively.

    14. Controllable 0 − π transition in iron pnictide superconductor junctions with a spacer of strong ferromagnet

      SciTech Connect (OSTI)

      Liu, S. Y.; Tao, Y. C. Ji, T. T.; Di, Y. S.; Hu, J. G.

      2014-03-17

      We investigate the control of 0−π transition in Josephson junctions consisting of a highly spin-polarized ferromagnet coupled to two iron pnictide superconductors (SCs). It is shown that, a 0−π transition as a function of interband coupling strength is always exhibited, which can be experimentally used to discriminate the s{sub ±}-wave pairing symmetry in the iron pnictide SCs from the s{sub ++}-wave one in MgB{sub 2}. By tuning the doping level in the s{sub ±}-wave SCs, one can vary the interband coupling strength so as to obtain the controllable 0−π transition. This device may be realized with current technologies and has practical use in Cooper pair spintronics and quantum information.

    15. A quasi-classical mapping approach to vibrationally coupled electron transport in molecular junctions

      SciTech Connect (OSTI)

      Li, Bin; Miller, William H.; Wilner, Eli Y.; Thoss, Michael

      2014-03-14

      We develop a classical mapping approach suitable to describe vibrationally coupled charge transport in molecular junctions based on the Cartesian mapping for many-electron systems [B. Li and W. H. Miller, J. Chem. Phys. 137, 154107 (2012)]. To properly describe vibrational quantum effects in the transport characteristics, we introduce a simple transformation rewriting the Hamiltonian in terms of occupation numbers and use a binning function to facilitate quantization. The approach provides accurate results for the nonequilibrium Holstein model for a range of bias voltages, vibrational frequencies, and temperatures. It also captures the hallmarks of vibrational quantum effects apparent in step-like structure in the current-voltage characteristics at low temperatures as well as the phenomenon of Franck-Condon blockade.

    16. Edge-channel interferometer at the graphene quantum Hall pn junction

      SciTech Connect (OSTI)

      Morikawa, Sei; Moriya, Rai; Masubuchi, Satoru Machida, Tomoki; Watanabe, Kenji; Taniguchi, Takashi

      2015-05-04

      We demonstrate a quantum Hall edge-channel interferometer in a high-quality graphene pn junction under a high magnetic field. The co-propagating p and n quantum Hall edge channels traveling along the pn interface functions as a built-in Aharonov-Bohm-type interferometer, the interferences in which are sensitive to both the external magnetic field and the carrier concentration. The trajectories of peak and dip in the observed resistance oscillation are well reproduced by our numerical calculation that assumes magnetic flux quantization in the area enclosed by the co-propagating edge channels. Coherent nature of the co-propagating edge channels is confirmed by the checkerboard-like pattern in the dc-bias and magnetic-field dependences of the resistance oscillations.

    17. Comparison of Theoretical Efficiencies of Multi-junction Concentrator Solar Cells

      SciTech Connect (OSTI)

      Kurtz, S.; Myers, D.; McMahon, W. E.; Geisz, J.; Steiner, M.

      2008-01-01

      Champion concentrator cell efficiencies have surpassed 40% and now many are asking whether the efficiencies will surpass 50%. Theoretical efficiencies of >60% are described for many approaches, but there is often confusion about the theoretical efficiency for a specific structure. The detailed balance approach to calculating theoretical efficiency gives an upper bound that can be independent of material parameters and device design. Other models predict efficiencies that are closer to those that have been achieved. Changing reference spectra and the choice of concentration further complicate comparison of theoretical efficiencies. This paper provides a side-by-side comparison of theoretical efficiencies of multi-junction solar cells calculated with the detailed balance approach and a common one-dimensional-transport model for different spectral and irradiance conditions. Also, historical experimental champion efficiencies are compared with the theoretical efficiencies.

    18. SU-E-T-426: Dose Delivery Accuracy in Breast Field Junction for Free Breath and Deep Inspiration Breath Hold Techniques

      SciTech Connect (OSTI)

      Epstein, D; Shekel, E; Levin, D

      2014-06-01

      Purpose: The purpose of this work was to verify the accuracy of the dose distribution along the field junction in a half beam irradiation technique for breast cancer patients receiving radiation to the breast or chest wall (CW) and the supraclavicular LN region for both free breathing and deep inspiration breath hold (DIBH) technique. Methods: We performed in vivo measurements for nine breast cancer patients receiving radiation to the breast/CW and to the supraclavicular LN region. Six patients were treated to the left breast/CW using DIBH technique and three patients were treated to the right breast/CW in free breath. We used five microMOSFET dosimeters: three located along the field junction, one located 1 cm above the junction and the fifth microMOSFET located 1 cm below the junction. We performed consecutive measurements over several days for each patient and compared the measurements to the TPS calculation (Eclipse, Varian). Results: The calculated and measured doses along the junction were 0.970.08 Gy and 1.020.14 Gy, respectively. Above the junction calculated and measured doses were 0.910.08 Gy and 0.980.09 Gy respectively, and below the junction calculated and measured doses were 1.700.15 Gy and 1.610.09 Gy, respectively. All differences were not statistically significant. When comparing calculated and measured doses for DIBH patients only, there was still no statistically significant difference between values for all dosimeter locations. Analysis was done using the Mann-Whitney Rank-Sum Test. Conclusion: We found excellent correlation between calculated doses from the TPS and measured skin doses at the junction of several half beam fields. Even for the DIBH technique, where there is more potential for variance due to depth of breath, there is no over or underdose along the field junction. This correlation validates the TPS, as well an accurate, reproducible patient setup.

    19. InGaP/GaAs Inverted Dual Junction Solar Cells For CPV Applications Using Metal-Backed Epitaxial Lift-Off

      SciTech Connect (OSTI)

      Bauhuis, Gerard J.; Mulder, Peter; Haverkamp, Erik J.; Schermer, John J.; Nash, Lee J.; Fulgoni, Dominic J. F.; Ballard, Ian M.; Duggan, Geoffrey

      2010-10-14

      The epitaxial lift-off (ELO) technique has been combined with inverted III-V PV cell epitaxial growth with the aim of employing thin film PV cells in HCPV systems. In a stepwise approach to the realization of an inverted triple junction on a MELO platform we have first grown a GaAs single junction PV cell to establish the basic layer release process and cell processing steps followed by the growth, fabrication and test of an inverted InGaP/GaAs dual junction structure.

    20. Tip-contact related low-bias negative differential resistance and rectifying effects in benzeneporphyrinbenzene molecular junctions

      SciTech Connect (OSTI)

      Cheng, Jue-Fei; Zhou, Liping E-mail: leigao@suda.edu.cn; Liu, Man; Yan, Qiang; Han, Qin; Gao, Lei E-mail: leigao@suda.edu.cn

      2014-11-07

      The electronic transport properties of benzeneporphyrinbenzene (BPB) molecules coupled to gold (Au) electrodes were investigated. By successively removing the front-end Au atoms, several BPB junctions with different molecule-electrode contact symmetries were constructed. The calculated currentvoltage (IV) curves depended strongly on the contact configurations between the BPB molecules and the Au electrodes. In particular, a significant low-voltage negative differential resistance effect appeared at ?0.3 V in the junctions with pyramidal electrodes on both sides. Along with the breaking of this tip-contact symmetry, the low-bias negative differential resistance effect gradually disappeared. This tip-contact may be ideal for use in the design of future molecular devices because of its similarity with experimental processes.

    1. High efficiency single Ag nanowire/p-GaN substrate Schottky junction-based ultraviolet light emitting diodes

      SciTech Connect (OSTI)

      Wu, Y.; Li, X.; Xu, P.; Wang, Y.; Shen, X.; Liu, X.; Yang, Q.; Hasan, T.

      2015-02-02

      We report a high efficiency single Ag nanowire (NW)/p-GaN substrate Schottky junction-based ultraviolet light emitting diode (UV-LED). The device demonstrates deep UV free exciton electroluminescence at 362.5?nm. The dominant emission, detectable at ultralow (<1??A) forward current, does not exhibit any shifts when the forward current is increased. External quantum efficiency (EQE) as high as 0.9% is achieved at 25??A current at room temperature. Experiments and simulation analysis show that devices fabricated with thinner Ag NWs have higher EQE. However, for very thin Ag NWs (diameter?junction-based UV-LEDs.

    2. Building America Technology Solutions for New and Existing Homes: New Insights for Improving the Designs of Flexible Duct Junction Boxes (Fact Sheet)

      Broader source: Energy.gov [DOE]

      IBACOS explored the relationships between pressure and physical configurations of flexible duct junction boxes by using computational fluid dynamics simulations to predict individual box parameters and total system pressure, thereby ensuring improved HVAC performance.

    3. Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope

      SciTech Connect (OSTI)

      Qiu, Weicheng; Hu, Weida Lin, Tie; Yin, Fei; Zhang, Bo; Chen, Xiaoshuang; Lu, Wei; Cheng, Xiang'ai Wang, Rui

      2014-11-10

      In this paper, we report on the disappearance of the photosensitive area extension effect and the unusual temperature dependence of junction transformation for mid-wavelength, n-on-p HgCdTe photovoltaic infrared detector arrays. The n-type region is formed by B{sup +} ion implantation on Hg-vacancy-doped p-type HgCdTe. Junction transformations under different temperatures are visually captured by a laser beam induced current microscope. A physical model of temperature dependence on junction transformation is proposed and demonstrated by using numerical simulations. It is shown that Hg-interstitial diffusion and temperature activated defects jointly lead to the p-n junction transformation dependence on temperature, and the weaker mixed conduction compared with long-wavelength HgCdTe photodiode contributes to the disappearance of the photosensitive area extension effect in mid-wavelength HgCdTe infrared detector arrays.

    4. Movement of the boundary of a p-n junction in GaAs:Si under gyrotronic irradiation

      SciTech Connect (OSTI)

      Sukach, G. A.; Kidalov, V. V.

      2011-12-15

      It is shown that, by using a gyratron, it is possible to control the position of a p-n junction in an already fabricated light-emitting structure. A shift of the compensated region in the emitting structure based on GaAs:Si is caused by the motion of impurities in the field of thermoelastic stresses appearing in the course of sample cooling after gyrotronic irradiation.

    5. Integrating atomic layer deposition and ultra-high vacuum physical vapor deposition for in situ fabrication of tunnel junctions

      SciTech Connect (OSTI)

      Elliot, Alan J. E-mail: jwu@ku.edu; Malek, Gary A.; Lu, Rongtao; Han, Siyuan; Wu, Judy Z. E-mail: jwu@ku.edu; Yu, Haifeng; Zhao, Shiping

      2014-07-15

      Atomic Layer Deposition (ALD) is a promising technique for growing ultrathin, pristine dielectrics on metal substrates, which is essential to many electronic devices. Tunnel junctions are an excellent example which require a leak-free, ultrathin dielectric tunnel barrier of typical thickness around 1 nm between two metal electrodes. A challenge in the development of ultrathin dielectric tunnel barriers using ALD is controlling the nucleation of dielectrics on metals with minimal formation of native oxides at the metal surface for high-quality interfaces between the tunnel barrier and metal electrodes. This poses a critical need for integrating ALD with ultra-high vacuum (UHV) physical vapor deposition. In order to address these challenges, a viscous-flow ALD chamber was designed and interfaced to an UHV magnetron sputtering chamber via a load lock. A sample transportation system was implemented for in situ sample transfer between the ALD, load lock, and sputtering chambers. Using this integrated ALD-UHV sputtering system, superconductor-insulator-superconductor (SIS) Nb-Al/Al{sub 2}O{sub 2}/Nb Josephson tunnel junctions were fabricated with tunnel barriers of thickness varied from sub-nm to ?1 nm. The suitability of using an Al wetting layer for initiation of the ALD Al{sub 2}O{sub 3} tunnel barrier was investigated with ellipsometry, atomic force microscopy, and electrical transport measurements. With optimized processing conditions, leak-free SIS tunnel junctions were obtained, demonstrating the viability of this integrated ALD-UHV sputtering system for the fabrication of tunnel junctions and devices comprised of metal-dielectric-metal multilayers.

    6. Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge

      DOE Patents [OSTI]

      Olson, Jerry M. (Lakewood, CO); Kurtz, Sarah R. (Golden, CO); Friedman, Daniel J. (Lakewood, CO)

      2001-01-01

      A multi-junction, monolithic, photovoltaic solar cell device is provided for converting solar radiation to photocurrent and photovoltage with improved efficiency. The solar cell device comprises a plurality of semiconductor cells, i.e., active p/n junctions, connected in tandem and deposited on a substrate fabricated from GaAs or Ge. To increase efficiency, each semiconductor cell is fabricated from a crystalline material with a lattice constant substantially equivalent to the lattice constant of the substrate material. Additionally, the semiconductor cells are selected with appropriate band gaps to efficiently create photovoltage from a larger portion of the solar spectrum. In this regard, one semiconductor cell in each embodiment of the solar cell device has a band gap between that of Ge and GaAs. To achieve desired band gaps and lattice constants, the semiconductor cells may be fabricated from a number of materials including Ge, GaInP, GaAs, GaInAsP, GaInAsN, GaAsGe, BGaInAs, (GaAs)Ge, CuInSSe, CuAsSSe, and GaInAsNP. To further increase efficiency, the thickness of each semiconductor cell is controlled to match the photocurrent generated in each cell. To facilitate photocurrent flow, a plurality of tunnel junctions of low-resistivity material are included between each adjacent semiconductor cell. The conductivity or direction of photocurrent in the solar cell device may be selected by controlling the specific p-type or n-type characteristics for each active junction.

    7. Effect of Dual-Function Nano-Structured Silicon Oxide Thin Film on Multi-Junction Solar Cells

      SciTech Connect (OSTI)

      Yan, B.; Sivec, L.; Yue, G.; Jiang, C. S.; Yang, J.; Guha, S.

      2011-01-01

      We present our recent study of using nano-structured hydrogenated silicon oxide films (nc-SiO{sub x}:H) as a dual-function layer in multi-junction solar cells. The nc-SiO{sub x}:H films were deposited using very high frequency glow discharge of a SiH{sub 4} (or Si{sub 2}H{sub 6}), CO{sub 2}, PH{sub 3}, and H{sub 2} gas mixture. By optimizing deposition parameters, we obtained 'dual function' nc-SiO{sub x}:H material characterized by a conductivity suitable for use as an n layer and optical properties suitable for use as an inter-reflection layer. We tested the nc-SiO{sub x}:H by replacing the normal n-type material in the tunnel junction of a multi-junction structure. The advantage of the dual-function nc-SiO{sub x}:H layer is twofold; one is to simplify the cell structure, and the other is to reduce any optical loss associated with the inter-reflection layer. Quantum efficiency measurements show the gain in top cell current is equal to or greater than the loss in bottom cell current for a-Si:H/nc-Si:H structures. In addition, a thinner a-Si:H top cell with the nc-SiO{sub x}:H n layer improves the top-cell stability, thereby providing higher stabilized solar cell efficiency. We also used the dual-function layer between the middle and the bottom cells in a-Si:H/a-SiGe:H/nc-Si:H triple-junction structures. The gain in the middle cell current is {approx}1.0 mA/cm{sup 2}, leading to an initial active-area efficiency of 14.8%.

    8. Magnetization switching in a CoFeB/MgO magnetic tunnel junction by combining spin-transfer torque and electric field-effect

      SciTech Connect (OSTI)

      Kanai, S.; Nakatani, Y.; Yamanouchi, M.; Ikeda, S.; Sato, H.; Matsukura, F.; Ohno, H.

      2014-05-26

      We propose and demonstrate a scheme for magnetization switching in magnetic tunnel junctions, in which two successive voltage pulses are applied to utilize both spin-transfer torque and electric field effect. Under this switching scheme, a CoFeB/MgO magnetic tunnel junction with perpendicular magnetic easy axis is shown to switch faster than by spin-transfer torque alone and more reliably than that by electric fields alone.

    9. Plasma Separation Process: Betacell (BCELL) code: User's manual. [Bipolar barrier junction

      SciTech Connect (OSTI)

      Taherzadeh, M.

      1987-11-13

      The emergence of clearly defined applications for (small or large) amounts of long-life and reliable power sources has given the design and production of betavoltaic systems a new life. Moreover, because of the availability of the plasma separation program, (PSP) at TRW, it is now possible to separate the most desirable radioisotopes for betacell power generating devices. A computer code, named BCELL, has been developed to model the betavoltaic concept by utilizing the available up-to-date source/cell parameters. In this program, attempts have been made to determine the betacell energy device maximum efficiency, degradation due to the emitting source radiation and source/cell lifetime power reduction processes. Additionally, comparison is made between the Schottky and PN junction devices for betacell battery design purposes. Certain computer code runs have been made to determine the JV distribution function and the upper limit of the betacell generated power for specified energy sources. A Ni beta emitting radioisotope was used for the energy source and certain semiconductors were used for the converter subsystem of the betacell system. Some results for a Promethium source are also given here for comparison. 16 refs.

    10. Nonlinear vs. bolometric radiation response and phonon thermal conductance in graphene-superconductor junctions

      SciTech Connect (OSTI)

      Vora, Heli; Nielsen, Bent; Du, Xu [Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York (United States)

      2014-02-21

      Graphene is a promising candidate for building fast and ultra-sensitive bolometric detectors due to its weak electron-phonon coupling and low heat capacity. In order to realize a practical graphene-based bolometer, several important issues, including the nature of radiation response, coupling efficiency to the radiation and the thermal conductance need to be carefully studied. Addressing these issues, we present graphene-superconductor junctions as a viable option to achieve efficient and sensitive bolometers, with the superconductor contacts serving as hot electron barriers. For a graphene-superconductor device with highly transparent interfaces, the resistance readout in the presence of radio frequency radiation is dominated by non-linear response. On the other hand, a graphene-superconductor tunnel device shows dominantly bolometric response to radiation. For graphene devices fabricated on SiO{sub 2} substrates, we confirm recent theoretical predictions of T{sup 2} temperature dependence of phonon thermal conductance in the presence of disorder in the graphene channel at low temperatures.

    11. InGaAsN/GaAs heterojunction for multi-junction solar cells

      DOE Patents [OSTI]

      Kurtz, Steven R. (Albuquerque, NM); Allerman, Andrew A. (Albuquerque, NM); Klem, John F. (Albuquerque, NM); Jones, Eric D. (Edgewood, NM)

      2001-01-01

      An InGaAsN/GaAs semiconductor p-n heterojunction is disclosed for use in forming a 0.95-1.2 eV bandgap photodetector with application for use in high-efficiency multi-junction solar cells. The InGaAsN/GaAs p-n heterojunction is formed by epitaxially growing on a gallium arsenide (GaAs) or germanium (Ge) substrate an n-type indium gallium arsenide nitride (InGaAsN) layer having a semiconductor alloy composition In.sub.x Ga.sub.1-x As.sub.1-y N.sub.y with 070%.

    12. Trial Run of a Junction-Box Attachment Test for Use in Photovoltaic Module Qualification (Presentation)

      SciTech Connect (OSTI)

      Miller, D.; Deibert, S.; Wohlgemuth, J.

      2014-06-01

      Engineering robust adhesion of the junction-box (j-box) is a hurdle typically encountered by photovoltaic (PV) module manufacturers during product development and manufacturing process control. There are historical incidences of adverse effects (e.g., fires), caused when the j-box/adhesive/module system has failed in the field. The addition of a weight to the j-box during the 'damp-heat', 'thermal-cycle', or 'creep' tests within the IEC qualification protocol is proposed to verify the basic robustness of the adhesion system. The details of the proposed test are described, in addition to a trial run of the test procedure. The described experiments examine 4 moisture-cured silicones, 4 foam tapes, and a hot-melt adhesive used in conjunction with glass, KPE, THV, and TPE substrates. For the purpose of validating the experiment, j-boxes were adhered to a substrate, loaded with a prescribed weight, and then subjected to aging. The replicate mock-modules were aged in an environmental chamber (at 85 deg C/85% relative humidity for 1000 hours; then 100 degrees C/<10% relative humidity for 200 hours) or fielded in Golden, Miami, and Phoenix for 1 year. Attachment strength tests, including pluck and shear test geometries, were also performed on smaller component specimens.

    13. Examination of a Junction-Box Adhesion Test for Use in Photovoltaic Module Qualification (Presentation)

      SciTech Connect (OSTI)

      Miller, D. C.; Wohlgemuth, J. H.

      2012-08-01

      Engineering robust adhesion of the junction-box (j-box) is a hurdle typically encountered by photovoltaic (PV) module manufacturers during product development. There are historical incidences of adverse effects (e.g., fires) caused when the j-box/adhesive/module system has failed in the field. The addition of a weight to the j-box during the 'damp heat' IEC qualification test is proposed to verify the basic robustness of its adhesion system. The details of the proposed test will be described, in addition to the preliminary results obtained using representative materials and components. The described discovery experiments examine moisture-cured silicone, foam tape, and hot-melt adhesives used in conjunction with PET or glass module 'substrates.' To be able to interpret the results, a set of material-level characterizations was performed, including thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. PV j-boxes were adhered to a substrate, loaded with a prescribed weight, and then placed inside an environmental chamber (at 85C, 85% relative humidity). Some systems did not remain attached through the discovery experiments. Observed failure modes include delamination (at the j-box/adhesive or adhesive/substrate interface) and phase change/creep. The results are discussed in the context of the application requirements, in addition to the plan for the formal experiment supporting the proposed modification to the qualification test.

    14. Examination of a Junction-Box Adhesion Test for Use in Photovoltaic Module Qualification: Preprint

      SciTech Connect (OSTI)

      Miller, D. C.; Wohlgemuth, J. H.

      2012-08-01

      Engineering robust adhesion of the junction-box (j-box) is a hurdle typically encountered by photovoltaic (PV) module manufacturers during product development. There are historical incidences of adverse effects (e.g., fires) caused when the j-box/adhesive/module system has failed in the field. The addition of a weight to the j-box during the 'damp heat' IEC qualification test is proposed to verify the basic robustness of its adhesion system. The details of the proposed test will be described, in addition to the preliminary results obtained using representative materials and components. The described discovery experiments examine moisture-cured silicone, foam tape, and hot-melt adhesives used in conjunction with PET or glass module 'substrates.' To be able to interpret the results, a set of material-level characterizations was performed, including thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. PV j-boxes were adhered to a substrate, loaded with a prescribed weight, and then placed inside an environmental chamber (at 85C, 85% relative humidity). Some systems did not remain attached through the discovery experiments. Observed failure modes include delamination (at the j-box/adhesive or adhesive/substrate interface) and phase change/creep. The results are discussed in the context of the application requirements, in addition to the plan for the formal experiment supporting the proposed modification to the qualification test.

    15. Laser annealing of ion implanted CZ silicon for solar cell junction formation. Quarterly report No. 1

      SciTech Connect (OSTI)

      Katzeff, J. S.

      1980-07-01

      A project to evaluate the merits of large spot size pulsed laser annealing of ion implanted silicon wafers for junction formation on solar cells is described. A Q-switched Nd:Glass laser system is used operating in the 1064 (regular) and 532 (with frequency doubler) nm wavelengths. The laser output is in excess of 30 joules with a 20 to 50 ns pulse duration. Material used in this investigation is 3-inch diameter CZ silicon, P-type 0.014 inches thick, 10..cap omega..-cm resistivity, <100> orientation. Three wafer surface conditions are being evaluated in this pulse annealing investigation: chem-polished, texture etched, and flash etched. Annealing was performed with and without beam homogenization. Both modes showed excellent lattice recovery from the implant-induced damage as analyzed using Rutherford backscattering techniques. Homogenization of the beam was performed using a fused silica rod configured with a 90/sup 0/ bend. The unhomogenized annealing was performed using a plano-concave lens. Fabrication of laser annealed cells using both modes is forthcoming.

    16. Interplay between interband coupling and ferromagnetism in iron pnictide superconductor/ferromagnet/iron pnictide superconductor junctions

      SciTech Connect (OSTI)

      Liu, S. Y.; Tao, Y. C.; Hu, J. G.

      2014-08-28

      An extended eight-component Bogoliubov-de Gennes equation is applied to study the Josephson effect between iron-based superconductors (SCs) with s{sub }-wave pairing symmetry, separated by an ferromagnet (FM). The feature of damped oscillations of critical Josephson current as a function of FM thickness, the split of the peaks induced by the interband coupling is much different from that for the junction with the s{sub }-wave SCs replaced by s{sub ++}-wave ones. In particular, a 0?? transition as a function of interband coupling strength ? is found to always exhibit with the corresponding dip shifting toward the larger ? due to enhancing the spin polarization in the FM, while there exits no 0?? transition for the SC with s{sub ++}-wave pairing symmetry. The two features can be used to identify the pairing symmetry in the iron pnictide SC different from the s{sub ++}-wave one in MgB{sub 2}. Experimentally, by adjusting the doping level in the s{sub }-wave SCs, one can vary ?.

    17. Influence of hydrogen patterning gas on electric and magnetic properties of perpendicular magnetic tunnel junctions

      SciTech Connect (OSTI)

      Jeong, J. H.; Endoh, T.; Kim, Y.; Kim, W. K.; Park, S. O.

      2014-05-07

      To identify the degradation mechanism in magnetic tunnel junctions (MTJs) using hydrogen, the properties of the MTJs were measured by applying an additional hydrogen etch process and a hydrogen plasma process to the patterned MTJs. In these studies, an additional 50?s hydrogen etch process caused the magnetoresistance (MR) to decrease from 103% to 14.7% and the resistance (R) to increase from 6.5?k? to 39?k?. Moreover, an additional 500?s hydrogen plasma process decreased the MR from 103% to 74% and increased R from 6.5?k? to 13.9?k?. These results show that MTJs can be damaged by the hydrogen plasma process as well as by the hydrogen etch process, as the atomic bonds in MgO may break and react with the exposed hydrogen gas. Compounds such as MgO hydrate very easily. We also calculated the damaged layer width (DLW) of the patterned MTJs after the hydrogen etching and plasma processes, to evaluate the downscaling limitations of spin-transfer-torque magnetic random-access memory (STT-MRAM) devices. With these calculations, the maximum DLWs at each side of the MTJ, generated by the etching and plasma processes, were 23.8?nm and 12.8?nm, respectively. This result validates that the hydrogen-based MTJ patterning processes cannot be used exclusively in STT-MRAMs beyond 20?nm.

    18. Magnetotransport in MgO-based magnetic tunnel junctions grown by molecular beam epitaxy (invited)

      SciTech Connect (OSTI)

      Andrieu, S. Bonell, F.; Hauet, T.; Montaigne, F.; Lefevre, P.; Bertran, F.

      2014-05-07

      The strong impact of molecular beam epitaxy growth and Synchrotron Radiation characterization tools in the understanding of fundamental issues in nanomagnetism and spintronics is illustrated through the example of fully epitaxial MgO-based Magnetic Tunnel Junctions (MTJs). If ab initio calculations predict very high tunnel magnetoresistance (TMR) in such devices, some discrepancy between theory and experiments still exists. The influence of imperfections in real systems has thus to be considered like surface contaminations, structural defects, unexpected electronic states, etc. The influence of possible oxygen contamination at the Fe/MgO(001) interface is thus studied, and is shown to be not so detrimental to TMR as predicted by ab initio calculations. On the contrary, the decrease of dislocations density in the MgO barrier of MTJs using Fe{sub 1−x}V{sub x} electrodes is shown to significantly increase TMR. Finally, unexpected transport properties in Fe{sub 1−X}Co{sub x}/MgO/Fe{sub 1−X}Co{sub x} (001) are presented. With the help of spin and symmetry resolved photoemission and ab initio calculation, the TMR decrease for Co content higher than 25% is shown to come from the existence of an interface state and the shift of the empty Δ1 minority spin state towards the Fermi level.

    19. Bottom head to shell junction assembly for a boiling water nuclear reactor

      DOE Patents [OSTI]

      Fife, Alex Blair (San Jose, CA); Ballas, Gary J. (San Jose, CA)

      1998-01-01

      A bottom head to shell junction assembly which, in one embodiment, includes an annular forging having an integrally formed pump deck and shroud support is described. In the one embodiment, the annular forging also includes a top, cylindrical shaped end configured to be welded to one end of the pressure vessel cylindrical shell and a bottom, conical shaped end configured to be welded to the disk shaped bottom head. Reactor internal pump nozzles also are integrally formed in the annular forging. The nozzles do not include any internal or external projections. Stubs are formed in each nozzle opening to facilitate welding a pump housing to the forging. Also, an upper portion of each nozzle opening is configured to receive a portion of a diffuser coupled to a pump shaft which extends through the nozzle opening. Diffuser openings are formed in the integral pump deck to provide additional support for the pump impellers. The diffuser opening is sized so that a pump impeller can extend at least partially therethrough. The pump impeller is connected to the pump shaft which extends through the nozzle opening.

    20. Bottom head to shell junction assembly for a boiling water nuclear reactor

      DOE Patents [OSTI]

      Fife, A.B.; Ballas, G.J.

      1998-02-24

      A bottom head to shell junction assembly which, in one embodiment, includes an annular forging having an integrally formed pump deck and shroud support is described. In the one embodiment, the annular forging also includes a top, cylindrical shaped end configured to be welded to one end of the pressure vessel cylindrical shell and a bottom, conical shaped end configured to be welded to the disk shaped bottom head. Reactor internal pump nozzles also are integrally formed in the annular forging. The nozzles do not include any internal or external projections. Stubs are formed in each nozzle opening to facilitate welding a pump housing to the forging. Also, an upper portion of each nozzle opening is configured to receive a portion of a diffuser coupled to a pump shaft which extends through the nozzle opening. Diffuser openings are formed in the integral pump deck to provide additional support for the pump impellers. The diffuser opening is sized so that a pump impeller can extend at least partially therethrough. The pump impeller is connected to the pump shaft which extends through the nozzle opening. 5 figs.

    1. Development of Ta-based Superconducting Tunnel Junction X-ray Detectors for Fluorescence XAS

      SciTech Connect (OSTI)

      Friedrich, S; Drury, O; Hall, J; Cantor, R

      2009-09-23

      We are developing superconducting tunnel junction (STJ) soft X-ray detectors for chemical analysis of dilute samples by fluorescence-detected X-ray absorption spectroscopy (XAS). Our 36-pixel Nb-based STJ spectrometer covers a solid angle {Omega}/4{pi} {approx} 10{sup -3}, offers an energy resolution of {approx}10-20 eV FWHM for energies up to {approx}1 keV, and can be operated at total count rates of {approx}10{sup 6} counts/s. For increased quantum efficiency and cleaner response function, we have now started the development of Ta-based STJ detector arrays. Initial devices modeled after our Nb-based STJs have an energy resolution below 10 eV FWHM for X-ray energies below 1 keV, and pulse rise time discrimination can be used to improve their response function for energies up to several keV. We discuss the performance of the Ta-STJs and outline steps towards the next-generation of large STJ detector arrays with higher sensitivity.

    2. Lattice-Mismatched GaAs/InGaAs Two-Junction Solar Cells by Direct Wafer Bonding

      SciTech Connect (OSTI)

      Tanabe, K.; Aiken, D. J.; Wanlass, M. W.; Morral, A. F.; Atwater, H. A.

      2006-01-01

      Direct bonded interconnect between subcells of a lattice-mismatched III-V compound multijunction cell would enable dislocation-free active regions by confining the defect network needed for lattice mismatch accommodation to tunnel junction interfaces, while metamorphic growth inevitably results in less design flexibility and lower material quality than is desirable. The first direct-bond interconnected multijunction solar cell, a two-terminal monolithic GaAs/InGaAs two-junction solar cell, is reported and demonstrates viability of direct wafer bonding for solar cell applications. The tandem cell open-circuit voltage was approximately the sum of the subcell open-circuit voltages. This achievement shows direct bonding enables us to construct lattice-mismatched III-V multijunction solar cells and is extensible to an ultrahigh efficiency InGaP/GaAs/InGaAsP/InGaAs four-junction cell by bonding a GaAs-based lattice-matched InGaP/GaAs subcell and an InP-based lattice-matched InGaAsP/InGaAs subcell. The interfacial resistance experimentally obtained for bonded GaAs/InP smaller than 0.10 Ohm-cm{sup 2} would result in a negligible decrease in overall cell efficiency of {approx}0.02%, under 1-sun illumination.

    3. Reconfigurable p-n junction diodes and the photovoltaic effect in exfoliated MoS{sub 2} films

      SciTech Connect (OSTI)

      Sutar, Surajit; Agnihotri, Pratik; Comfort, Everett; Ung Lee, Ji; Taniguchi, T.; Watanabe, K.

      2014-03-24

      Realizing basic semiconductor devices such as p-n junctions are necessary for developing thin-film and optoelectronic technologies in emerging planar materials such as MoS{sub 2}. In this work, electrostatic doping by buried gates is used to study the electronic and optoelectronic properties of p-n junctions in exfoliated MoS{sub 2} flakes. Creating a controllable doping gradient across the device leads to the observation of the photovoltaic effect in monolayer and bilayer MoS{sub 2} flakes. For thicker flakes, strong ambipolar conduction enables realization of fully reconfigurable p-n junction diodes with rectifying current-voltage characteristics, and diode ideality factors as low as 1.6. The spectral response of the photovoltaic effect shows signatures of the predicted band gap transitions. For the first excitonic transition, a shift of >4{sub kB}T is observed between monolayer and bulk devices, indicating a thickness-dependence of the excitonic coulomb interaction.

    4. Interface characterization of epitaxial Fe/MgO/Fe magnetic tunnel junctions

      SciTech Connect (OSTI)

      Wang, Shouguo; Ward, R. C. C.; Zhang, Xiaoguang; Kohn, A.; Ma, Q. L.; Zhang, J.; Liu, H. F.; Han, Prof. X. F.

      2012-01-01

      Following predictions by first-principles theory of huge tunnel magnetoresistance (TMR) effect in epitaxial Fe/MgO/Fe magnetic tunnel junctions (MTJs), measured magnetoresistance (MR) ratio about 200% at room temperature (RT) have been reported in MgO-based epitaxial MTJs. Recently, MR ratio of about 600% has been reported at RT in MgO-based amorphous MTJs with core structure of CoFeB/MgO/CoFeB grown by magnetron sputtering with amorphous CoFeB layers. The sputtered CoFeB/MgO/CoFeB MTJs shows a great potential application in spintronic devices. Although epitaxial structure will probably not be used in devices, it remains an excellent model system to compare theoretical calculations with experimental results and to enhance our understanding of the spin dependent tunneling. Both theoretical calculations and experimental results clearly indicate that the interfacial structure plays a crucial role on coherent tunneling across single crystalMgO barrier, especially in epitaxial MgO-based MTJs grown by molecular beam epitaxy (MBE). Surface X-ray diffraction, Auger electron spectroscopy, X-ray absorption spectra, and X-ray magnetic circular dichroism have been used for interface characterization. However, no consistent viewpoint has been reached, and this is still an open issue. In this article, recent studies on the interface characterization in MgO-based epitaxial MTJs will be introduced, with a focus on research by X-ray photoelectron spectroscopy, high resolution transmission electron microscopy, and spin dependent tunneling spectroscopy.

    5. Electromagnetic model for near-field microwave microscope with atomic resolution: Determination of tunnel junction impedance

      SciTech Connect (OSTI)

      Reznik, Alexander N.

      2014-08-25

      An electrodynamic model is proposed for the tunneling microwave microscope with subnanometer space resolution as developed by Lee et al. [Appl. Phys. Lett. 97, 183111 (2010)]. Tip-sample impedance Z{sub a} was introduced and studied in the tunneling and non-tunneling regimes. At tunneling breakdown, the microwave current between probe and sample flows along two parallel channels characterized by impedances Z{sub p} and Z{sub t} that add up to form overall impedance Z{sub a}. Quantity Z{sub p} is the capacitive impedance determined by the near field of the probe and Z{sub t} is the impedance of the tunnel junction. By taking into account the distance dependences of effective tip radius r{sub 0}(z) and tunnel resistance R{sub t}(z)?=?Re[Z{sub t}(z)], we were able to explain the experimentally observed dependences of resonance frequency f{sub r}(z) and quality factor Q{sub L}(z) of the microscope. The obtained microwave resistance R{sub t}(z) and direct current tunnel resistance R{sub t}{sup dc}(z) exhibit qualitatively similar behavior, although being largely different in both magnitude and the characteristic scale of height dependence. Interpretation of the microwave images of the atomic structure of test samples proved possible by taking into account the inductive component of tunnel impedance ImZ{sub t}?=??L{sub t}. Relation ?L{sub t}/R{sub t}???0.235 was obtained.

    6. Multiferroic tunnel junctions and ferroelectric control of magnetic state at interface (invited)

      SciTech Connect (OSTI)

      Yin, Y. W.; Raju, M.; Li, Qi; Hu, W. J.; Burton, J. D.; Gruverman, A.; Tsymbal, E. Y.; Kim, Y.-M.; Borisevich, A. Y.; Pennycook, S. J.; Yang, S. M.; Noh, T. W.; Li, X. G.; Zhang, Z. D.

      2015-05-07

      As semiconductor devices reach ever smaller dimensions, the challenge of power dissipation and quantum effect place a serious limit on the future device scaling. Recently, a multiferroic tunnel junction (MFTJ) with a ferroelectric barrier sandwiched between two ferromagnetic electrodes has drawn enormous interest due to its potential applications not only in multi-level data storage but also in electric field controlled spintronics and nanoferronics. Here, we present our investigations on four-level resistance states, giant tunneling electroresistance (TER) due to interfacial magnetoelectric coupling, and ferroelectric control of spin polarized tunneling in MFTJs. Coexistence of large tunneling magnetoresistance and TER has been observed in manganite/(Ba, Sr)TiO{sub 3}/manganite MFTJs at low temperatures and room temperature four-resistance state devices were also obtained. To enhance the TER for potential logic operation with a magnetic memory, La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/BaTiO{sub 3}/La{sub 0.5}Ca{sub 0.5}MnO{sub 3} /La{sub 0.7}Sr{sub 0.3}MnO{sub 3} MFTJs were designed by utilizing a bilayer tunneling barrier in which BaTiO{sub 3} is ferroelectric and La{sub 0.5}Ca{sub 0.5}MnO{sub 3} is close to ferromagnetic metal to antiferromagnetic insulator phase transition. The phase transition occurs when the ferroelectric polarization is reversed, resulting in an increase of TER by two orders of magnitude. Tunneling magnetoresistance can also be controlled by the ferroelectric polarization reversal, indicating strong magnetoelectric coupling at the interface.

    7. SU-E-T-226: Junction Free Craniospinal Irradiation in Linear Accelerator Using Volumetric Modulated Arc Therapy : A Novel Technique Using Dose Tapering

      SciTech Connect (OSTI)

      Sarkar, B; Roy, S; Paul, S; Munshi, A; Roy, Shilpi; Jassal, K; Ganesh, T; Mohanti, BK

      2014-06-01

      Purpose: Spatially separated fields are required for craniospinal irradiation due to field size limitation in linear accelerator. Field junction shits are conventionally done to avoid hot or cold spots. Our study was aimed to demonstrate the feasibility of junction free irradiation plan of craniospinal irradiation (CSI) for Meduloblastoma cases treated in linear accelerator using Volumetric modulated arc therapy (VMAT) technique. Methods: VMAT was planned using multiple isocenters in Monaco V 3.3.0 and delivered in Elekta Synergy linear accelerator. A full arc brain and 40 posterior arc spine fields were planned using two isocentre for short (<1.3 meter height ) and 3 isocentres for taller patients. Unrestricted jaw movement was used in superior-inferior direction. Prescribed dose to PTV was achieved by partial contribution from adjacent beams. A very low dose gradient was generated to taper the isodoses over a long length (>10 cm) at the conventional field junction. Results: In this primary study five patients were planned and three patients were delivered using this novel technique. As the dose contribution from the adjacent beams were varied (gradient) to create a complete dose distribution, therefore there is no specific junction exists in the plan. The junction were extended from 1014 cm depending on treatment plan. Dose gradient were 9.62.3% per cm for brain and 7.91.7 % per cm for spine field respectively. Dose delivery error due to positional inaccuracy was calculated for brain and spine field for 1mm, 2mm, 3mm and 5 mm were 1%0.8%, 2%1.6%, 2.8%2.4% and 4.3%4% respectively. Conclusion: Dose tapering in junction free CSI do not require a junction shift. Therefore daily imaging for all the field is also not essential. Due to inverse planning dose to organ at risk like thyroid kidney, heart and testis can be reduced significantly. VMAT gives a quicker delivery than Step and shoot or dynamic IMRT.

    8. Effect of CoFe insertion in Co{sub 2}MnSi/CoFe/n-GaAs junctions on spin injection properties

      SciTech Connect (OSTI)

      Ebina, Yuya; Akiho, Takafumi; Liu, Hong-xi; Yamamoto, Masafumi; Uemura, Tetsuya

      2014-04-28

      The CoFe thickness (t{sub CoFe}) dependence of spin injection efficiency was investigated for Co{sub 2}MnSi/CoFe/n-GaAs junctions. The ?V{sub NL}/I value, which is a measure of spin injection efficiency, strongly depended on t{sub CoFe}, where ?V{sub NL} is the amplitude of a nonlocal spin-valve signal, and I is an injection current. Importantly, the maximum value of ?V{sub NL}/I for a Co{sub 2}MnSi/CoFe/n-GaAs junction was one order of magnitude higher than that for a CoFe/n-GaAs junction, indicating that a Co{sub 2}MnSi electrode works as a highly polarized spin source. No clear spin signal, on the other hand, was observed for a Co{sub 2}MnSi/n-GaAs junction due to diffusion of Mn atoms into the GaAs channel. Secondary ion mass spectrometry analysis indicated that the CoFe insertion effectively suppressed the diffusion of Mn into GaAs, resulting in improved spin injection properties compared with those for a Co{sub 2}MnSi/n-GaAs junction.

    9. Proposed Junction-Box Stress Test (Using an Added Weight) for Use During the Module Qualification (Presentation)

      SciTech Connect (OSTI)

      Miller, D. C.; Wohlgemuth, J. H.; Kurtz, S. R.

      2012-02-01

      Engineering robust adhesion of the junction-box (j-box) is a hurdle typically encountered by photovoltaic (PV) module manufacturers during product development. Furthermore, there are historical incidences of adverse effects (e.g., fires) caused when the j-box/adhesive/module system has failed in the field. The addition of a weight to the j-box during the 'damp heat' IEC qualification test is proposed to verify the basic robustness of the j-box adhesion system. The details of the proposed test are described, in addition to the preliminary results conducted using representative materials and components.

    10. Efficient Schottky-like junction GaAs nanowire photodetector with 9?GHz modulation bandwidth with large active area

      SciTech Connect (OSTI)

      Seyedi, M. A. Yao, M.; O'Brien, J.; Wang, S. Y.; Dapkus, P. D.

      2014-07-28

      Efficient, low capacitance density GaAs/Indium-Tin-Oxide Schottky-like junction photodetectors with a 50??m square active are fabricated for operation in the gigahertz range. Modulation bandwidth is experimentally measured up to 10?GHz at various applied reverse biases and optical intensities to explore the effects of photo-generated carrier screening on modulation bandwidth. Last, the bandwidth dependence on applied reverse bias and optical intensity is simulated as a means to quantify average carrier velocities in nanowire material systems.

    11. RESULTS OF RADIOLOGICAL MEASUREMENTS TAKEN NEAR JUNCTION OF HIGHWAY 3I AND MILITARY ROAD IN NIAGARA FALLSI NEI{ YOR

      Office of Legacy Management (LM)

      7At a z'/a tlYr'/ ORNL/RASA-85/ 42 RESULTS OF RADIOLOGICAL MEASUREMENTS TAKEN NEAR JUNCTION OF HIGHWAY 3I AND MILITARY ROAD IN NIAGARA FALLSI NEI{ YOR Accesr to thc inlormalion in thlt rcport is limitcd to tho!. indacatod on the di3tribution lilt and to oopartmont ot Encrgy lnd Oeplrtmcnt of Enorgy Contracton vd' This report was prepared as an account of work sponsored by an agency of the U nited States Government. N€ither the U nited States Government nor any agency thereof, nor any of their

    12. Analysis of different tunneling mechanisms of In{sub x}Ga{sub 1?x}As/AlGaAs tunnel junction light-emitting transistors

      SciTech Connect (OSTI)

      Wu, Cheng-Han; Wu, Chao-Hsin

      2014-10-27

      The electrical and optical characteristics of tunnel junction light-emitting transistors (TJLETs) with different indium mole fractions (x?=?5% and 2.5%) of the In{sub x}Ga{sub 1?x}As base-collector tunnel junctions have been investigated. Two electron tunneling mechanisms (photon-assisted or direct tunneling) provide additional currents to electrical output and resupply holes back to the base region, resulting in the upward slope of I-V curves and enhanced optical output under forward-active operation. The larger direct tunneling probability and stronger Franz-Keldysh absorption for 5% TJLET lead to higher collector current slope and less optical intensity enhancement when base-collector junction is under reverse-biased.

    13. Efficient enhancement of hydrogen production by Ag/Cu{sub 2}O/ZnO tandem triple-junction photoelectrochemical cell

      SciTech Connect (OSTI)

      Liu, Ying; Ren, Feng Chen, Chao; Liu, Chang; Xing, Zhuo; Liu, Dan; Xiao, Xiangheng; Wu, Wei; Zheng, Xudong; Liu, Yichao; Jiang, Changzhong; Shen, Shaohua; Fu, Yanming

      2015-03-23

      Highly efficient semiconductor photoelectrodes for solar hydrogen production through photocatalytic water splitting are a promising and challenge solution to solve the energy problems. In this work, Ag/Cu{sub 2}O/ZnO tandem triple-junction photoelectrode was designed and prepared. An increase of 11 times of photocurrent is achieved in the Ag/Cu{sub 2}O/ZnO photoelectrode comparing to that of the Cu{sub 2}O film. The high performance of the Ag/Cu{sub 2}O/ZnO film is due to the optimized design of the tandem triple-junction structure, where the localized surface Plasmon resonance of Ag and the hetero-junctions efficiently absorb solar energy, produce, and separate electron-hole pairs in the photocathode.

    14. Development of 1.25 eV InGaAsN for triple junction solar cells

      SciTech Connect (OSTI)

      LI,N.Y.; SHARPS,P.R.; HILLS,J.S.; HOU,H.; CHANG,PING-CHIH; BACA,ALBERT G.

      2000-05-16

      Development of next generation high efficiency space monolithic multifunction solar cells will involve the development of new materials lattice matched to GaAs. One promising material is 1.05 eV InGaAsN, to be used in a four junction GaInP{sub 2}/GaAs/InGaAsN/Ge device. The AMO theoretical efficiency of such a device is 38--42%. Development of the 1.05 eV InGaAsN material for photovoltaic applications, however, has been difficult. Low electron mobilities and short minority carrier lifetimes have resulted in short minority carrier diffusion lengths. Increasing the nitrogen incorporation decreases the minority carrier lifetime. The authors are looking at a more modest proposal, developing 1.25 eV InGaAsN for a triple junction GaInP{sub 2}/InGaAsN/Ge device. The AMO theoretical efficiency of this device is 30--34%. Less nitrogen and indium are required to lower the bandgap to 1.25 eV and maintain the lattice matching to GaAs. Hence, development and optimization of the 1.25 eV material for photovoltaic devices should be easier than that for the 1.05 eV material.

    15. Optical and carrier transport properties of graphene oxide based crystalline-Si/organic Schottky junction solar cells

      SciTech Connect (OSTI)

      Khatri, I.; Tang, Z.; Hiate, T.; Liu, Q.; Ishikawa, R.; Ueno, K.; Shirai, H.

      2013-12-21

      We investigated the graphene oxide (GO) based n-type crystalline silicon (c-Si)/conductive poly(ethylene dioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) Schottky junction devices with optical characterization and carrier transport measurement techniques. The optical transmittance in the UV region decreased markedly for the films with increasing the concentration of GO whereas it increased markedly in the visible-infrared regions. Spectroscopic ellipsometry revealed that the ordinary and extraordinary index of refraction increased with increasing the concentration of GO. The hole mobility also increased from 1.14 for pristine film to 1.85 cm{sup 2}/V s for the 1215?wt. % GO modified film with no significant increases of carrier concentration. The highest conductivity was found for a 15?wt. % GO modified PEDOT:PSS film: the c-Si/PEDOT:PSS:GO device using this sample exhibited a relatively high power conversion efficiency of 11.04%. In addition, the insertion of a 23?nm-thick GO thin layer at the c-Si/PEDOT:PSS interface suppressed the carrier recombination efficiency of dark electron and photo-generated hole at the anode, resulting in the increased photovoltaic performance. This study indicates that the GO can be good candidates for hole transporting layer of c-Si/PEDOT:PSS Schottky junction solar cell.

    16. High 400?C operation temperature blue spectrum concentration solar junction in GaInN/GaN

      SciTech Connect (OSTI)

      Zhao, Liang; Detchprohm, Theeradetch; Wetzel, Christian

      2014-12-15

      Transparent wide gap junctions suitable as high temperature, high flux topping cells have been achieved in GaInN/GaN by metal-organic vapor phase epitaxy. In structures of 25 quantum wells (QWs) under AM1.5G illumination, an open circuit voltage of 2.1?V is achieved. Of the photons absorbed in the limited spectral range of <450?nm, 64.2% are converted to electrons collected at the contacts under zero bias. At a fill factor of 45%, they account for a power conversion efficiency of38.6%. Under concentration, the maximum output power density per sun increases from 0.49?mW/cm{sup 2} to 0.51?mW/cm{sup 2} at 40?suns and then falls 0.42?mW/cm{sup 2} at 150?suns. Under external heating, a maximum of 0.59?mW/cm{sup 2} is reached at 250?C. Even at 400?C, the device is fully operational and exceeds room temperature performance. A defect analysis suggests that significantly higher fill factors and extension into longer wavelength ranges are possible with further development. The results prove GaInN/GaN QW solar junctions a viable and rugged topping cell for concentrator photovoltaics with minimal cooling requirements. By capturing the short range spectrum, they reduce the thermal load to any conventional cells stacked behind.

    17. Modified laser-annealing process for improving the quality of electrical P-N junctions and devices

      DOE Patents [OSTI]

      Wood, Richard F. (Oak Ridge, TN); Young, Rosa T. (Farragut, TN)

      1984-01-01

      The invention is a process for producing improved electrical-junction devices. The invention is applicable, for example, to a process in which a light-sensitive electrical-junction device is produced by (1) providing a body of crystalline semiconductor material having a doped surface layer, (2) irradiating the layer with at least one laser pulse to effect melting of the layer, (3) permitting recrystallization of the melted layer, and (4) providing the resulting body with electrical contacts. In accordance with the invention, the fill-factor and open-circuit-voltage parameters of the device are increased by conducting the irradiation with the substrate as a whole at a selected elevated temperature, the temperature being selected to effect a reduction in the rate of the recrystallization but insufficient to effect substantial migration of impurities within the body. In the case of doped silicon substrates, the substrate may be heated to a temperature in the range of from about 200.degree. C. to 500.degree. C.

    18. Magnetotransport properties of a few-layer graphene-ferromagnetic metal junctions in vertical spin valve devices

      SciTech Connect (OSTI)

      Entani, Shiro Naramoto, Hiroshi; Sakai, Seiji

      2015-05-07

      Magnetotransport properties were studied for the vertical spin valve devices with two junctions of permalloy electrodes and a few-layer graphene interlayer. The graphene layer was directly grown on the bottom electrode by chemical vapor deposition. X-ray photoelectron spectroscopy showed that the permalloy surface fully covered with a few-layer graphene is kept free from oxidation and contamination even after dispensing and removing photoresist. This enabled fabrication of the current perpendicular to plane spin valve devices with a well-defined interface between graphene and permalloy. Spin-dependent electron transport measurements revealed a distinct spin valve effect in the devices. The magnetotransport ratio was 0.8% at room temperature and increased to 1.75% at 50?K. Linear current-voltage characteristics and resistance increase with temperature indicated that ohmic contacts are realized at the relevant interfaces.

    19. A high intensity solar cell invention: The edge-illuminated vertical multi-junction (VNJ) solar cell

      SciTech Connect (OSTI)

      Sater, B.L.

      1992-08-07

      This report contains a summary of a High Intensity Solar Cell (HI Cell) development carried out under the NIST/DOE Energy-Related Invention Program. The HI Cell, or Edge-Illuminated vertical Multi-junction Solar Cell, eliminates most major problems encountered with other concentrator solar cell designs. Its high voltage and low series resistance features make it ideally suited for efficient operation at high intensities. Computer modeling shows efficiencies near 30% at 500 suns intensity are possible with state-of-art processing. Development of a working model was largely successful before encountering an unexpected problem during the last fabrication step with the anti-reflection coating. Unfortunately, funding was exhausted before its resolution. Recommendations are made to resolve the AR coating problem and to integrate all the knowledge gained during this development into a viable prototype model. The invention will provide the technical and economic performance needed to make photovoltaic systems cost-effective for wide use.

    20. A high intensity solar cell invention: The edge-illuminated vertical multi-junction (VNJ) solar cell. Final report

      SciTech Connect (OSTI)

      Sater, B.L.

      1992-08-07

      This report contains a summary of a High Intensity Solar Cell (HI Cell) development carried out under the NIST/DOE Energy-Related Invention Program. The HI Cell, or Edge-Illuminated vertical Multi-junction Solar Cell, eliminates most major problems encountered with other concentrator solar cell designs. Its high voltage and low series resistance features make it ideally suited for efficient operation at high intensities. Computer modeling shows efficiencies near 30% at 500 suns intensity are possible with state-of-art processing. Development of a working model was largely successful before encountering an unexpected problem during the last fabrication step with the anti-reflection coating. Unfortunately, funding was exhausted before its resolution. Recommendations are made to resolve the AR coating problem and to integrate all the knowledge gained during this development into a viable prototype model. The invention will provide the technical and economic performance needed to make photovoltaic systems cost-effective for wide use.

    1. Analysis of single-event upset of magnetic tunnel junction used in spintronic circuits caused by radiation-induced current

      SciTech Connect (OSTI)

      Sakimura, N.; Nebashi, R.; Sugibayashi, T.; Natsui, M.; Hanyu, T.; Ohno, H.

      2014-05-07

      This paper describes the possibility of a switching upset of a magnetic tunnel junction (MTJ) caused by a terrestrial radiation-induced single-event-upset (SEU) current in spintronic integrated circuits. The current waveforms were simulated by using a 3-D device simulator in a basic circuit including MTJs designed using 90-nm CMOS parameters and design rules. The waveforms have a 400 -μA peak and a 200-ps elapsed time when neutron particles with a linear energy transfer value of 14 MeV cm{sup 2}/mg enter the silicon surface. The authors also found that the SEU current may cause soft errors with a probability of more than 10{sup −12} per event, which was obtained by approximate solution of the ordinary differential equation of switching probability when the intrinsic critical current (I{sub C0}) became less than 30 μA.

    2. Interfacial spin-filter assisted spin transfer torque effect in Co/BeO/Co magnetic tunnel junction

      SciTech Connect (OSTI)

      Tang, Y.-H. Chu, F.-C.

      2015-03-07

      The first-principles calculation is employed to demonstrate the spin-selective transport properties and the non-collinear spin-transfer torque (STT) effect in the newly proposed Co/BeO/Co magnetic tunnel junction. The subtle spin-polarized charge transfer solely at O/Co interface gives rise to the interfacial spin-filter (ISF) effect, which can be simulated within the tight binding model to verify the general expression of STT. This allows us to predict the asymmetric bias behavior of non-collinear STT directly via the interplay between the first-principles calculated spin current densities in collinear magnetic configurations. We believe that the ISF effect, introduced by the combination between wurtzite-BeO barrier and the fcc-Co electrode, may open a new and promising route in semiconductor-based spintronics applications.

    3. Symmetry-dependent electron-electron interaction in coherent tunnel junctions resolved by measurements of zero-bias anomaly

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Liu, Liang; Niu, Jiasen; Xiang, Li; Wei, Jian; Li, D. -L.; Feng, J. F.; Han, Prof. X. F.; Zhang, Xiaoguang; Coey, J. M. D

      2014-01-01

      We provide experimental evidence that zero bias anomaly in the di erential resistance of magnetic tunnel junctions (MTJs) is due to electron-electron interaction (EEI). Magnon e ect is excluded by measuring at low temperatures down to 0.2 K and with reduced AC measurement voltages down to 0.06 mV. The normalized change of conductance is proportional to ln (eV /kB T ), consistent with the Altshuler-Aronov theory of tunneling with EEI but inconsistent with magnetic impurity scattering. The slope of the ln (eV /kB T ) dependence is symmetry dependent, i.e., MTJs with symmetry filtering show di erent slopes for Pmore » and AP states, while those without symmetry filtering (amorphous barriers) have nearly the same slopes for P and AP.« less

    4. Ultra-thin GaAs single-junction solar cells integrated with a reflective back scattering layer

      SciTech Connect (OSTI)

      Yang, Weiquan; Becker, Jacob; Liu, Shi; Kuo, Ying-Shen; Li, Jing-Jing; Zhang, Yong-Hang; Landini, Barbara; Campman, Ken

      2014-05-28

      This paper reports the proposal, design, and demonstration of ultra-thin GaAs single-junction solar cells integrated with a reflective back scattering layer to optimize light management and minimize non-radiative recombination. According to our recently developed semi-analytical model, this design offers one of the highest potential achievable efficiencies for GaAs solar cells possessing typical non-radiative recombination rates found among commercially available III-V arsenide and phosphide materials. The structure of the demonstrated solar cells consists of an In{sub 0.49}Ga{sub 0.51}P/GaAs/In{sub 0.49}Ga{sub 0.51}P double-heterostructure PN junction with an ultra-thin 300?nm thick GaAs absorber, combined with a 5??m thick Al{sub 0.52}In{sub 0.48}P layer with a textured as-grown surface coated with Au used as a reflective back scattering layer. The final devices were fabricated using a substrate-removal and flip-chip bonding process. Solar cells with a top metal contact coverage of 9.7%, and a MgF{sub 2}/ZnS anti-reflective coating demonstrated open-circuit voltages (V{sub oc}) up to 1.00?V, short-circuit current densities (J{sub sc}) up to 24.5?mA/cm{sup 2}, and power conversion efficiencies up to 19.1%; demonstrating the feasibility of this design approach. If a commonly used 2% metal grid coverage is assumed, the anticipated J{sub sc} and conversion efficiency of these devices are expected to reach 26.6?mA/cm{sup 2} and 20.7%, respectively.

    5. Current flow and potential efficiency of solar cells based on GaAs and GaSb p-n junctions

      SciTech Connect (OSTI)

      Andreev, V. M.; Evstropov, V. V.; Kalinovsky, V. S. Lantratov, V. M.; Khvostikov, V. P.

      2009-05-15

      Dependence of the efficiency of single-junction and multijunction solar cells on the mechanisms of current flow in photoactive p-n junctions, specifically on the form of the dark current-voltage characteristic J-V, has been studied. The resistanceless J-V{sub j} characteristic (with the series resistance disregarded) of a multijunction solar cell has the same shape as the characteristic of a single-junction cell: both feature a set of exponential portions. This made it possible to develop a unified analytical method for calculating the efficiency of singlejunction and multijunction solar cells. The equation relating the efficiency to the photogenerated current at each portion of the J-V{sub j} characteristic is derived. For p-n junctions in GaAs and GaSb, the following characteristics were measured: the dark J-V characteristic, the dependence of the open-circuit voltage on the illumination intensity P-V{sub OC}, and the dependence of the luminescence intensity on the forward current L-J. Calculated dependences of potential efficiency (under idealized condition for equality to unity of external quantum yield) on the photogenerated current for single-junction GaAs and GaSb solar cells and a GaAs/GaSb tandem are plotted. The form of these dependences corresponds to the shape of J-V{sub j} characteristics: there are the diffusion- and recombination-related portions; in some cases, the tunneling-trapping portion is also observed. At low degrees of concentration of solar radiation (C < 10), an appreciable contribution to photogenerated current is made by recombination component. It is an increase in this component in the case of irradiation with 6.78-MeV protons or 1-MeV electrons that brings about a decrease in the efficiency of conversion of unconcentrated solar radiation.

    6. Semiconductor systems utilizing materials that form rectifying junctions in both N and P-type doping regions, whether metallurgically or field induced, and methods of use

      DOE Patents [OSTI]

      Welch, James D. (10328 Pinehurst Ave., Omaha, NE 68124)

      2000-01-01

      Disclosed are semiconductor systems, such as integrated circuits utilizing Schotky barrier and/or diffused junction technology, which semiconductor systems incorporate material(s) that form rectifying junctions in both metallurgically and/or field induced N and P-type doping regions, and methods of their use. Disclosed are Schottky barrier based inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems and which can be operated as modulators, N and P-channel MOSFETS and CMOS formed therefrom, and (MOS) gate voltage controlled rectification direction and gate voltage controlled switching devices, and use of such material(s) to block parasitic current flow pathways. Simple demonstrative five mask fabrication procedures for inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems are also presented.

    7. Novel signal inversion of laser beam induced current for femtosecond-laser-drilling-induced junction on vacancy-doped p-type HgCdTe

      SciTech Connect (OSTI)

      Qiu, W. C.; Wang, R.; Xu, Z. J.; Jiang, T.; Cheng, X. A.

      2014-05-28

      In this paper, experimental results of temperature-dependent signal inversion of laser beam induced current (LBIC) for femtosecond-laser-drilling-induced junction on vacancy-doped p-type HgCdTe are reported. LBIC characterization shows that the traps induced by femtosecond laser drilling are sensitive to temperature. Theoretical models for trap-related p-n junction transformation are proposed and demonstrated using numerical simulations. The simulations are in good agreement with the experimental results. The effects of traps and mixed conduction are possibly the main reasons that result in the novel signal inversion of LBIC microscope at room temperature. The research results provide a theoretical guide for practical applications of large-scale array HgCdTe infrared photovoltaic detectors formed by femtosecond laser drilling, which may act as a potential new method for fabricating HgCdTe photodiodes.

    8. High detection efficiency micro-structured solid-state neutron detector with extremely low leakage current fabricated with continuous p-n junction

      SciTech Connect (OSTI)

      Huang, Kuan-Chih; Lu, James J.-Q.; Bhat, Ishwara B.; Dahal, Rajendra; Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180-3522 ; Danon, Yaron

      2013-04-15

      We report the continuous p-n junction formation in honeycomb structured Si diode by in situ boron deposition and diffusion process using low pressure chemical vapor deposition for solid-state thermal neutron detection applications. Optimized diffusion temperature of 800 Degree-Sign C was obtained by current density-voltage characteristics for fabricated p{sup +}-n diodes. A very low leakage current density of {approx}2 Multiplication-Sign 10{sup -8} A/cm{sup 2} at -1 V was measured for enriched boron filled honeycomb structured neutron detector with a continuous p{sup +}-n junction. The neutron detection efficiency for a Maxwellian spectrum incident on the face of the detector was measured under zero bias voltage to be {approx}26%. These results are very encouraging for fabrication of large area solid-state neutron detector that could be a viable alternative to {sup 3}He tube based technology.

    9. Multi-step ion beam etching of sub-30 nm magnetic tunnel junctions for reducing leakage and MgO barrier damage

      SciTech Connect (OSTI)

      Chun, Sung-woo; Kim, Daehong; Kwon, Jihun; Kim, Bongho; Choi, Seonjun; Lee, Seung-Beck

      2012-04-01

      We have demonstrated the fabrication of sub 30 nm magnetic tunnel junctions (MTJs) with perpendicular magnetic anisotropy. The multi-step ion beam etching (IBE) process performed for 18 min between 45 deg. and 30 deg. , at 500 V combined ion supply voltage, resulted in a 55 nm tall MTJ with 28 nm diameter. We used a negative tone electron beam resist as the hard mask, which maintained its lateral dimension during the IBE, allowing almost vertical pillar side profiles. The measurement results showed a tunnel magneto-resistance ratio of 13% at 1 k{Omega} junction resistance. With further optimization in IBE energy and multi-step etching process, it will be possible to fabricate perpendicularly oriented MTJs for future sub 30 nm non-volatile magnetic memory applications.

    10. Electric field and temperature dependence of dielectric permittivity in strontium titanate investigated by a photoemission study on Pt/SrTiO{sub 3}:Nb junctions

      SciTech Connect (OSTI)

      Hirose, Sakyo; Okushi, Hideyo; Yoshikawa, Hideki; Adachi, Yutaka; Ohsawa, Takeo; Haneda, Hajime; Ueda, Shigenori; Ando, Akira; Ohashi, Naoki

      2015-05-11

      Schottky junctions made from platinum and niobium-doped strontium titanate (SrTiO{sub 3}:Nb) were investigated by hard X-ray photoemission (HXPES) and through a band bending behavior simulation using a phenomenological model, which assumes a decrease in dielectric constant due to an electric field. Thus, we confirmed that the observed HXPES spectra at relatively high temperatures, e.g., >250?K, were well simulated using this phenomenological model. In contrast, it was inferred that the model was not appropriate for junction behavior at lower temperatures, e.g., <150?K. Therefore, a reconstruction of the phenomenological model is necessary to adequately explain the dielectric properties of SrTiO{sub 3}.

    11. Positive field-cooled dc susceptibility in granular superconductors interpreted through numerical simulations on a simple Josephson-junction-array model

      SciTech Connect (OSTI)

      Auletta, C.; Raiconi, G.; De Luca, R.; Pace, S.

      1995-05-01

      We have performed numerical simulations of a field-cooled dc susceptibility experiment carried out for granular superconductors by modeling these systems with a simple Josephson-junction array proposed by the authors. By this analysis the temperature dependence of the positive field-cooled susceptibility at very low values of the applied magnetic field, observed by Braunisch {ital et} {ital al}. [Phys. Rev. Lett. 68, 1908 (1992)] for some ceramic superonductors, has been reproduced and interpreted.

    12. Final Scientific/Technical Report: Electronics for Large Superconducting Tunnel Junction Detector Arrays for Synchrotron Soft X-ray Research

      SciTech Connect (OSTI)

      Warburton, William K

      2009-03-06

      Superconducting tunnel junction (STJ) detectors offer a an approach to detecting soft x-rays with energy resolutions 4-5 times better and at rates 10 faster than traditions semiconductor detectors. To make such detectors feasible, however, then need to be deployed in large arrays of order 1000 detectors, which in turn implies that their processing electronics must be compact, fully computer controlled, and low cost per channel while still delivering ultra-low noise performance so as to not degrade the STJ's performance. We report on our progress in designing a compact, low cost preamplifier intended for this application. In particular, we were able to produce a prototype preamplifier of 2 sq-cm area and a parts cost of less than $30 that matched the energy resolution of the best conventional system to date and demonstrated its ability to acquire an STJ I-V curve under computer control, the critical step for determining and setting the detectors' operating points under software control.

    13. Work plan for phase 1A paleochannel studies at the Cheney disposal cell, Grand Junction, Colorado: Draft

      SciTech Connect (OSTI)

      1996-11-01

      This document will serve as a Work Plan for continuing paleochannel characterization activities at the Cheney disposal site near Grand Junction, Colorado. Elevated levels of nitrate were encountered in ground water from two monitor wells installed in alluvial paleochannels near the Cheney disposal cell in 1994. This triggered a series of investigations (Phase 1) designed to determine the source of nitrate and other chemical constituents in ground water at the site. A comprehensive summary of the Phase 1 field investigations (limited to passive monitoring and modeling studies) conducted by the Remedial Action Contractor (RAC) and Technical Assistance Contractor (TAC) to date is provided in Section 2.0 of this document. Results of Phase 1 were inconclusive regarding the potential interaction between the disposal cell and the paleochannels, so additional Phase 1A investigations are planned. Recommendations for Phase 1A tasks and possible future activities are discussed in Section 3.0. Detailed information on the implementation of the proposed Phase 1A tasks appears in Section 4.0 and will provide the basis for Statements of Work (SOW) for each of these tasks. A detailed sampling plan is provided to ensure quality and a consistency with previous data collection efforts.

    14. Cadmium-free junction fabrication process for CuInSe.sub.2 thin film solar cells

      DOE Patents [OSTI]

      Ramanathan, Kannan V.; Contreras, Miguel A.; Bhattacharya, Raghu N.; Keane, James; Noufi, Rommel

      1999-01-01

      The present invention provides an economical, simple, dry and controllable semiconductor layer junction forming process to make cadmium free high efficiency photovoltaic cells having a first layer comprised primarily of copper indium diselenide having a thin doped copper indium diselenide n-type region, generated by thermal diffusion with a group II(b) element such as zinc, and a halide, such as chlorine, and a second layer comprised of a conventional zinc oxide bilayer. A photovoltaic device according the present invention includes a first thin film layer of semiconductor material formed primarily from copper indium diselenide. Doping of the copper indium diselenide with zinc chloride is accomplished using either a zinc chloride solution or a solid zinc chloride material. Thermal diffusion of zinc chloride into the copper indium diselenide upper region creates the thin n-type copper indium diselenide surface. A second thin film layer of semiconductor material comprising zinc oxide is then applied in two layers. The first layer comprises a thin layer of high resistivity zinc oxide. The second relatively thick layer of zinc oxide is doped to exhibit low resistivity.

    15. Trial-Run of a Junction-Box Attachment Test for Use in Photovoltaic Module Qualification: Preprint

      SciTech Connect (OSTI)

      Miller, D. C.; Deibert, S. L.; Wohlgemuth, J. H.

      2014-06-01

      Engineering robust adhesion of the junction box (j-box) is a hurdle typically encountered by photovoltaic module manufacturers during product development and manufacturing process control. There are historical incidences of adverse effects (e.g., fires) caused when the j-box/adhesive/module system has failed in the field. The addition of a weight to the j-box during the 'damp-heat,' 'thermal-cycle,' or 'creep' tests within the IEC qualification protocol is proposed to verify the basic robustness of the adhesion system. The details of the proposed test are described, in addition to a trial-run of the test procedure. The described experiments examine four moisture-cured silicones, four foam tapes, and a hot-melt adhesive used in conjunction with glass, KPE, THV, and TPE substrates. For the purpose of validating the experiment, j-boxes were adhered to a substrate, loaded with a prescribed weight, and then subjected to aging. The replicate mock-modules were aged in an environmental chamber (at 85 degrees C/85% relative humidity for 1000 hours; then 100 degrees C/<10% relative humidity for 200 hours) or fielded in Golden (CO), Miami (FL), and Phoenix (AZ) for one year. Attachment strength tests, including pluck and shear test geometries, were also performed on smaller component specimens.

    16. Edge electroluminescence of the effective silicon point-junction light-emitting diode in the temperature range 80-300 K

      SciTech Connect (OSTI)

      Emel'yanov, A. M. [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)], E-mail: Emelyanov@mail.ioffe.ru

      2008-11-15

      The edge electroluminescence spectra of silicon point-junction light-emitting diodes with a p-n junction area of 0.008 mm{sup 2} are studied at temperatures ranging from 80 to 300 K. Unprecedentedly high stability of the position of the spectral peak is observed at temperatures in the range between 130 and 300 K. The spectral characteristics of the light emitting diodes are studied at 80 K at different current densities up to 25 kA/cm{sup 2}. In contrast to the earlier reported data obtained at 300 K, the data obtained at 80 K do not show any noticeable Augerrecombination-related decrease in the quantum efficiency. From an analysis of the electroluminescence spectra at 80 K in a wide range of currents, it follows that radiative annihilation of free excitons is not a governing mechanism of electroluminescence in the entire emitting region in the base of the point-junction light-emitting diode at all currents used in the experiment.

    17. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Grand Junction, Colorado

      SciTech Connect (OSTI)

      Not Available

      1994-06-01

      This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site Near Grand Junction, Colorado evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site. This risk assessment follows an approach outlined by the EPA. the first step is to evaluate ground water data collected from monitor wells at the site. Evaluation of these data showed that the contaminants of potential concern in the ground water are arsenic, cadmium, cobalt, fluoride, iron, manganese, molybdenum, nickel, sulfate, uranium, vanadium, zinc, and radium-226. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if they drank from a well installed in the contaminated ground water at the former processing site.

    18. High Efficiency Triple-Junction Amorphous Silicon Alloy Photovoltaic Technology, Final Technical Report, 6 March 1998 - 15 October 2001

      SciTech Connect (OSTI)

      Guha, S.

      2001-11-08

      This report describes the research program intended to expand, enhance, and accelerate knowledge and capabilities for developing high-performance, two-terminal multijunction amorphous silicon (a-Si) alloy cells, and modules with low manufacturing cost and high reliability. United Solar uses a spectrum-splitting, triple-junction cell structure. The top cell uses an amorphous silicon alloy of {approx}1.8-eV bandgap to absorb blue photons. The middle cell uses an amorphous silicon germanium alloy ({approx}20% germanium) of {approx}1.6-eV bandgap to capture green photons. The bottom cell has {approx}40% germanium to reduce the bandgap to {approx}1.4-eV to capture red photons. The cells are deposited on a stainless-steel substrate with a predeposited silver/zinc oxide back reflector to facilitate light-trapping. A thin layer of antireflection coating is applied to the top of the cell to reduce reflection loss. The major research activities conducted under this program were: (1) Fundamental studies to improve our understanding of materials and devices; the work included developing and analyzing a-Si alloy and a-SiGe alloy materials prepared near the threshold of amorphous-to-microcrystalline transition and studying solar cells fabricated using these materials. (2) Deposition of small-area cells using a radio-frequency technique to obtain higher deposition rates. (3) Deposition of small-area cells using a modified very high frequency technique to obtain higher deposition rates. (4) Large-area cell research to obtain the highest module efficiency. (5) Optimization of solar cells and modules fabricated using production parameters in a large-area reactor.

    19. Comparative life-cycle energy payback analysis of multi-junction a-SiGe and nanocrystalline/a-Si modules

      SciTech Connect (OSTI)

      Fthenakis, V.; Kim, H.

      2010-07-15

      Despite the publicity of nanotechnologies in high tech industries including the photovoltaic sector, their life-cycle energy use and related environmental impacts are understood only to a limited degree as their production is mostly immature. We investigated the life-cycle energy implications of amorphous silicon (a-Si) PV designs using a nanocrystalline silicon (nc-Si) bottom layer in the context of a comparative, prospective life-cycle analysis framework. Three R and D options using nc-Si bottom layer were evaluated and compared to the current triple-junction a-Si design, i.e., a-Si/a-SiGe/a-SiGe. The life-cycle energy demand to deposit nc-Si was estimated from parametric analyses of film thickness, deposition rate, precursor gas usage, and power for generating gas plasma. We found that extended deposition time and increased gas usages associated to the relatively high thickness of nc-Si lead to a larger primary energy demand for the nc-Si bottom layer designs, than the current triple-junction a-Si. Assuming an 8% conversion efficiency, the energy payback time of those R and D designs will be 0.7-0.9 years, close to that of currently commercial triple-junction a-Si design, 0.8 years. Future scenario analyses show that if nc-Si film is deposited at a higher rate (i.e., 2-3 nm/s), and at the same time the conversion efficiency reaches 10%, the energy-payback time could drop by 30%.

    20. Three-junction solar cells comprised of a thin-film GaInP/GaAs tandem cell mechanically stacked on a Si cell

      SciTech Connect (OSTI)

      Yazawa, Y.; Tamura, K.; Watahiki, S.; Kitatani, T.; Ohtsuka, H.; Warabisako, T.

      1997-12-31

      Three-junction tandem solar cells were fabricated by mechanical stacking of a thin-film GaInP/GaAs monolithic tandem cell and a Si cell. The epitaxial lift-off (ELO) technique was used for the thinning of GaInP/GaAs tandem cells. Both spectral responses of the GaInP top cell and the GaAs middle cell in the thin-film GaInP/GaAs monolithic tandem cell were conserved. The Si cell performance has been improved by reducing the absorption loss in the GaAs substrate.

    1. NREL, CSEM Jointly Set New Efficiency Record with Dual-Junction Solar Cell (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Scientists set a new world record for converting non-concentrated sunlight into electricity using a dual-junction III-V/Si solar cell. A joint effort between the National Renewable Energy Laboratory (NREL) and the Swiss Center for Electronics and Microtechnology (CSEM) has resulted in a novel tandem solar cell that operates at 29.8% conversion efficiency under 1-sun conditions. The new solar cell technology combines NREL's 1.8-eV gallium indium phosphide (GaInP) technology as a top cell and

    2. Large-area, triple-junction a-Si alloy production scale-up. Semiannual subcontract report, 17 March 1994--18 September 1994

      SciTech Connect (OSTI)

      Oswald, R.; Morris, J. [Solarex Corp., Newtown, PA (United States). Thin Film Div.

      1995-09-01

      This report describes work performed under a 3-y subcontract to advance Solarex`s photovoltaic manufacturing technologies, reduce its a-Si:H module production costs, increase module performance, and expand the Solarex commercial production capacity. During this period, Solarex focused on improving deposition of the front contact, investigating alternate feedstocks for the front contact, maximizing throughput and area utilization for all laser scribes, optimizing a-Si:H deposition equipment to achieve uniform deposition over large areas, optimizing the triple-junction module fabrication process, evaluating the materials to deposit the rear contact, and optimizing the combination of isolation scribe and encapsulant to pass the wet high potential test.

    3. Large voltage modulation in magnetic field sensors from two-dimensional arrays of Y-Ba-Cu-O nano Josephson junctions

      SciTech Connect (OSTI)

      Cybart, Shane A. Dynes, R. C.; Cho, E. Y.; Wong, T. J.; Glyantsev, V. N.; Huh, J. U.; Yung, C. S.; Moeckly, B. H.; Beeman, J. W.; Ulin-Avila, E.; Wu, S. M.

      2014-02-10

      We have fabricated and tested two-dimensional arrays of YBa{sub 2}Cu{sub 3}O{sub 7??} superconducting quantum interference devices. The arrays contain over 36?000 nano Josephson junctions fabricated from ion irradiation of YBa{sub 2}Cu{sub 3}O{sub 7??} through narrow slits in a resist-mask that was patterned with electron beam lithography and reactive ion etching. Measurements of current-biased arrays in magnetic field exhibit large voltage modulations as high as 30?mV.

    4. Origin of InGaN/GaN light-emitting diode efficiency improvements using tunnel-junction-cascaded active regions

      SciTech Connect (OSTI)

      Piprek, Joachim

      2014-02-03

      This Letter investigates the efficiency enhancement achieved by tunnel junction insertion into the InGaN/GaN multi-quantum well (MQW) active region of blue light emitting diodes (LEDs). The peak quantum efficiency of such LED exceeds 100%, but the maximum wall-plug efficiency (WPE) hardly changes. However, due to the increased bias, the WPE peaks at much higher input power, i.e., the WPE droop is significantly delayed, and the output power is strongly enhanced. The main physical reason for this improvement lies in the non-uniform vertical carrier distribution typically observed within InGaN MQWs.

    5. Computed tomography image using sub-terahertz waves generated from a high-T{sub c} superconducting intrinsic Josephson junction oscillator

      SciTech Connect (OSTI)

      Kashiwagi, T., E-mail: kashiwagi@ims.tsukuba.ac.jp; Minami, H.; Kadowaki, K. [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Nakade, K.; Saiwai, Y.; Kitamura, T.; Watanabe, C.; Ishida, K.; Sekimoto, S.; Asanuma, K.; Yasui, T.; Shibano, Y. [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Tsujimoto, M. [Department of Electronic Science and Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Yamamoto, T. [Wide Bandgap Materials Group, Optical and Electronic Materials Unit, Environment and Energy Materials Division, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Markovi?, B. [Faculty of Sciences, University of Montenegro, George Washington Str., 81000 Podgorica (Montenegro); Mirkovi?, J. [Faculty of Science, University of Montenegro, and CETI, Put Radomira Ivanovica, 81000 Podgorica (Montenegro); Klemm, R. A. [Department of Physics, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816-2385 (United States)

      2014-02-24

      A computed tomography (CT) imaging system using monochromatic sub-terahertz coherent electromagnetic waves generated from a device constructed from the intrinsic Josephson junctions in a single crystalline mesa structure of the high-T{sub c} superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+?} was developed and tested on three samples: Standing metallic rods supported by styrofoam, a dried plant (heart pea) containing seeds, and a plastic doll inside an egg shell. The images obtained strongly suggest that this CT imaging system may be useful for a variety of practical applications.

    6. Bulldog | Open Energy Information

      Open Energy Info (EERE)

      Bulldog LLC Energy Purchaser Farmers' Cooperative of Greenfield Location Greenfield IA Coordinates 41.22708706, -94.43487167 Show Map Loading map... "minzoom":false,"mapp...

    7. Wolverine | Open Energy Information

      Open Energy Info (EERE)

      Wolverine LLC Energy Purchaser Farmers' Cooperative of Greenfield Location Greenfield IA Coordinates 41.39310112, -94.44487095 Show Map Loading map... "minzoom":false,"mapp...

    8. Grand Junction Projects Office Remedial Action Project: Feasibility test of real-time radiation monitoring during removal of surface contamination from concrete floors

      SciTech Connect (OSTI)

      Leino, R.; Corle, S.

      1995-10-01

      This feasibility test was conducted to determine if real-time radiation-monitoring instruments could be mounted on decontamination machines during remediation activities to provide useful and immediate feedback to equipment operators. The U.S. Department of Energy (DOE) sponsored this field test under the Grand Junction Projects Office Remedial Action Project (GJPORAP) to identify a more efficient method to remove radiological contamination from concrete floor surfaces. This test demonstrated that project durations and costs may be reduced by combining radiation-monitoring equipment with decontamination machines. The test also demonstrated that a microprocessor-based instrument such as a radiation monitor can withstand the type of vibration that is characteristic of floor scabblers with no apparent damage. Combining radiation-monitoring equipment with a decontamination machine reduces the time and costs required to decontaminate concrete surfaces. These time and cost savings result from the reduction in the number of interim radiological surveys that must be conducted to complete remediation. Real-time radiation monitoring allows equipment operators to accurately monitor contamination during the decontamination process without support from radiological technicians, which also reduces the project duration and costs. The DOE Grand Junction Projects Office recommends more extensive and rigorous testing of this real-time radiation monitoring to include a variety of surfaces and decontamination machines. As opportunities arise, additional testing will be conducted under GJPORAP.

    9. Large-area, triple-junction a-Si alloy production scale-up. Semiannual subcontract report, 17 March 1994--18 September 1994

      SciTech Connect (OSTI)

      Oswald, R.; Morris, J. [Solarex Corp., Newtown, PA (United States). Thin Film Div.

      1995-03-01

      This report describes work performed under a 3-year subcontract to advance Solarex`s photovoltaic (PV) manufacturing technologies, reduce its hydrogenated amorphous silicon (a-Si:H) module production costs, increase module performance, and expand the Solarex commercial production capacity. During the period covered by this report, Solarex focused on (1) improving deposition of the front contact, (2) investigating alternate feed stocks for the front contact, (3) maximizing throughput and area utilization for all laser scribes, (4) optimizing a-Si:H deposition equipment to achieve uniform deposition over large areas, (5) optimizing the triple-junction module fabrication process, (6) evaluating the materials to deposit the rear contact, and (7) optimizing the combination of isolation scribe and encapsulant to pass the wet high-potential test.

    10. Magnetic tunnel junctions for magnetic field sensor by using CoFeB sensing layer capped with MgO film

      SciTech Connect (OSTI)

      Takenaga, Takashi Tsuzaki, Yosuke; Yoshida, Chikako; Yamazaki, Yuichi; Hatada, Akiyoshi; Nakabayashi, Masaaki; Iba, Yoshihisa; Takahashi, Atsushi; Noshiro, Hideyuki; Tsunoda, Koji; Aoki, Masaki; Furukawa, Taisuke; Fukumoto, Hiroshi; Sugii, Toshihiro

      2014-05-07

      We evaluated MgO-based magnetic tunnel junctions (MTJs) for magnetic field sensors with spin-valve-type structures in the CoFeB sensing layer capped by an MgO film in order to obtain both top and bottom interfaces of MgO/CoFeB exhibiting interfacial perpendicular magnetic anisotropy (PMA). Hysteresis of the CoFeB sensing layer in these MTJs annealed at 275?C was suppressed at a thickness of the sensing layer below 1.2?nm by interfacial PMA. We confirmed that the CoFeB sensing layers capped with MgO suppress the thickness dependences of both the magnetoresistance ratio and the magnetic behaviors of the CoFeB sensing layer more than that of the MTJ with a Ta capping layer. MgO-based MTJs with MgO capping layers can improve the controllability of the characteristics for magnetic field sensors.

    11. Environmental Assessment and Finding of No Significant Impact: Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership

      SciTech Connect (OSTI)

      N /A

      2000-04-25

      The scope of this environmental assessment (EA) is to analyze the potential consequences of the Proposed Action on human health and the environment. Accordingly, this EA contains an introduction to the site and the history of the Grand Junction Office (Chapter One), a description of the Purpose and Need for Agency Action (Chapter Two), a description of the Proposed Action and Alternatives (Chapter Three), and the description of the Affected Environment and the Environmental Consequences (Chapter Four). Resource categories addressed in this EA include geology, soils and topography, groundwater and surface water, floodplains and wetlands, land use and infrastructure, human health, ecological resources, cultural resources, air quality, noise, visual resources, solid and hazardous waste management, transportation, and socioeconomic and environmental justice.

    12. Band structure of the epitaxial Fe/MgO/GaAs(001) tunnel junction studied by x-ray and ultraviolet photoelectron spectroscopies

      SciTech Connect (OSTI)

      Lu, Y.; Le Breton, J. C.; Turban, P.; Lepine, B.; Schieffer, P.; Jezequel, G.

      2006-10-09

      The electronic band structure in the epitaxial Fe/MgO/GaAs(001) tunnel junction has been studied by x-ray and ultraviolet photoelectron spectroscopy measurements. The Schottky barrier height (SBH) of Fe on MgO/GaAs heterostructure is determined to be 3.3{+-}0.1 eV, which sets the Fe Fermi level at about 0.3 eV above the GaAs valence band maximum. This SBH is also exactly the same as that measured from Fe on MgO monocrystal. After Fe deposition, no band bending change is observed in MgO and GaAs underlayers. On the contrary, Au and Al depositions led to clear variation of the band bending in both MgO and GaAs layers. This effect is analyzed as a fingerprint of defect states at the MgO/GaAs interface.

    13. Effects of boron composition on tunneling magnetoresistance ratio and microstructure of CoFeB/MgO/CoFeB pseudo-spin-valve magnetic tunnel junctions

      SciTech Connect (OSTI)

      Kodzuka, M.; Ohkubo, T.; Hono, K.; Ikeda, S.; Ohno, H.; Gan, H. D.

      2012-02-15

      The effect of B concentration on the tunneling magnetoresistance (TMR) of (Co{sub 25}Fe{sub 75}){sub 100-x}B{sub x}/MgO/(Co{sub 25}Fe{sub 75}){sub 100-x}B{sub x} (x = 22 and 33) pseudo-spin-valve (P-SV) magnetic tunnel junctions (MTJs) was investigated. The TMR ratios for optimally annealed MTJs with x = 22 and 33 were 340% and 170%, respectively, at room temperature. High resolution transmission electron microscopy (HRTEM) observation showed a weaker (001) texture in the MgO barrier in the MTJ with x = 33. The bottom electrode was not fully crystallized even with a considerable amount of B in the (Co{sub 25}Fe{sub 75}){sub 67}B{sub 33}, while good epitaxy was observed between (001) textured MgO and (Co{sub 25}Fe{sub 75}){sub 78}B{sub 22} electrodes.

    14. Commercialization of New Lattice-Matched Multi-Junction Solar Cells Based on Dilute Nitrides: July 8, 2010 - March 7, 2012

      SciTech Connect (OSTI)

      Herb, J.

      2012-04-01

      Final Technical Progress Report for PV Incubator subcontract NAT-0-99013-03. The overall objective of this Incubator subcontract was to complete the work necessary to make commercial ready solar cells using the dilute nitride technology. The specific objectives of this program were aimed at completing the development of a triple-junction solar cell that incorporates a GaInNAs {approx}1eV subcell to the point of commercial readiness, and determining the cell reliability and, if necessary, identifying and eliminating process or material related issues that lead to early-life cell failures. There were three major objectives for Phase 1, each of which focuses on a key element of the solar cell that determines its performance in a commercial CPV system. One objective was to optimize the quality and performance of the key individual components making up the solar cell structure and then to optimize the integration of these components into a complete triple-junction cell. A second objective was to design and test anti-reflective coating that maximizes the light coupled into a 3J cell with a {approx}1 eV bottom cell bandgap. The third objective was to develop Highly Accelerated Life Tests (HALT) protocols and tools for identifying and correcting potential reliability problems. The Phase 2 objectives were a continuation of the work begun in Phase 1 but aimed at optimizing cell performance for commercial requirements. Phase 2 had four primary objectives: (1) develop a glass-matched anti-reflective coating (ARC) and optimize the cell/ARC to give good performance at 60C operating temperature, (2) optimize the cell for good operation at 60C and high concentration, and (3) complete the light biased HALT system and use it to determine what, if any, failures are observed, and (4) determine the reliability limits of the optimized cell.

    15. Remedial actions at the former Climax Uranium Company, Uranium Mill site, Grand Junction, Mesa County, Colorado. Volume 1, Text: Final environmental impact statement

      SciTech Connect (OSTI)

      1986-12-01

      This statement evaluates and compares the environmental impacts associated with the remedial actions of the residual radioactive materials remaining at the inactive uranium processing site and associated vicinity properties at Grand Junction, Mesa County, Colorado. This statement is also intended to aid the BLM in amending their management framework plans and final resource management plan, as well as assisting in compliance with the withdrawal application as appropriate. The site is a 114-acre tract of private and state owned land which contains approximately 3.1 million cubic yards of tailings and associated contaminated soils. The vicinity properties are homes, businesses, public buildings, and vacant lots which may have been contaminated during construction by the use of tailings as building material. An estimated 3465 vicinity properties would be cleaned up during remedial action of the tailings pile. The tailings were produced by the former Climax Uranium Company which processed uranium ore, which it sold to the US Atomic Energy Commission from 1951 to 1966 and to private sources from 1966 to 1970. This statement evaluates six alternatives for stabilization and disposal of the tailings and other contaminated materials: (1) No action. (2) Stabilization at the Grand Junction site. (3) Disposal at the Cheney Reservoir site with truck transport. (4) Disposal at the Cheney Reservoir site with train and truck transport. (5) Disposal at the Two Road site with truck transport. (6) Disposal at the Two Road site with train and truck transport. All of the alternatives except no action include remedial action at an estimated 3465 vicinity properties. Alternative 3 is DOE`s preferred alternative.

    16. SU-E-T-12: A Feasibility Study of Patient Specific QA Using Gafchromic Film of Dynamic Feathering in Junctions of Craniospinal Irradiation

      SciTech Connect (OSTI)

      Stanford, J; Duggar, W; Yang, C

      2014-06-01

      Purpose: Cranio-spinal irradiation is the most complicated format of the conventional external beam radiation therapy because it involves matches of non-coplanar beams which are susceptible to daily setup errors. This study explores the efficacy of Gafchromic film dosimetry to quantitatively verify the junctions for cranio-spinal radiation feathered with field in field technique. Methods: 15cm in thickness of solid water phantom was scanned vertically and exported to the Pinnacle TPS as primary phantom data set. A patient cranio-spinal plan, consisted of two bilateral whole brain beams dynamically matched with a posterior spinal beam using field in field technique, was transferred to the phantom and recalculated for one fraction with set monitor units identical to the original plan. Next, planar dose distribution on the phantom was exported to the FilmQA Pro 2013 software (Ashland, Inc.) in binary format for comparison with the measured dose distribution. An EBT2 film was sandwiched in the middle of the phantom and the phantom was set up according to the QA plan based on the room laser system. The shifts instructions associated with the patient original plan were made and the beams from the patient original plan delivered to the solid water phantom via the record and verify system in QA mode. The dose distribution from the measured film was compared with the planned reference distribution using gamma analysis and profile comparison. Results: Gamma passing rate of 91 % with DTA 3mm and 5% dose difference was obtained within the junction region, significantly greater passing rate above 95 % was obtained in the homogeneous region of the brain field. Conclusion: This study confirms that Gafchromic film dosimetry can be used to validate the efficacy of FIF feathering technique for cranio-spinal treatment. FIF technique with Gafchromic dosimetry may now be the new standard for delivering efficient and accurate cranio-spinal radiation with confidence.

    17. EA-1710: Finding of No Significant Impact

      Broader source: Energy.gov [DOE]

      EnerDel, Inc., Expansion of Battery Manufacturing Capabilities at Indianapolis, Noblesville and Greenfield, Indiana

    18. Comparison of single junction AlGaInP and GaInP solar cells grown by molecular beam epitaxy

      SciTech Connect (OSTI)

      Masuda, T; Tomasulo, S; Lang, JR; Lee, ML

      2015-03-07

      We have investigated similar to 2.0 eV (AlxGa1-x)(0.51)In0.49P and similar to 1.9 eV Ga0.51In0.49P single junction solar cells grown on both on-axis and misoriented GaAs substrates by molecular beam epitaxy (MBE). Although lattice-matched (AlxGa1-x)(0.51)In0.49P solar cells are highly attractive for space and concentrator photovoltaics, there have been few reports on the MBE growth of such cells. In this work, we demonstrate open circuit voltages (V-oc) ranging from 1.29 to 1.30 V for Ga0.51In0.49P cells, and 1.35-1.37 V for (AlxGa1-x)(0.51)In0.49P cells. Growth on misoriented substrates enabled the bandgap-voltage offset (W-oc = E-g/q - V-oc) of Ga0.51In0.49P cells to decrease from similar to 575 mV to similar to 565 mV, while that of (AlxGa1-x)(0.51)In0.49P cells remained nearly constant at 620 mV. The constant Woc as a function of substrate offcut for (AlxGa1-x)(0.51)In0.49P implies greater losses from non-radiative recombination compared with the Ga0.51In0.49P devices. In addition to larger Woc values, the (AlxGa1-x)(0.51)In0.49P cells exhibited significantly lower internal quantum efficiency (IQE) values than Ga0.51In0.49P cells due to recombination at the emitter/window layer interface. A thin emitter design is experimentally shown to be highly effective in improving IQE, particularly at short wavelengths. Our work shows that with further optimization of both cell structure and growth conditions, MBE-grown (AlxGa1-x)(0.51)In0.49P will be a promising wide-bandgap candidate material for high-efficiency, lattice-matched multi-junction solar cells. (C) 2015 AIP Publishing LLC.

    19. sup 1 H and sup 31 P-NMR assignments of the non-exchangeable protons of the consensus acceptor exon:intron junction d(CpTpApCpApGpGpT)

      SciTech Connect (OSTI)

      Lown, J.W.; Chang, D.K.; Debart, F.; Rayner, B.; Imbach, J.L. )

      1986-06-01

      The consensus acceptor exon:intron junction d(CpTpApCpApGpGpT) has been synthesized by a modified phosphotriester method. The non-self complementary octamer exists in the single strand form in aqueous buffer at 20 degrees C as evidenced by temperature variable {sup 1}H-NMR and NOE measurements. The non-exchangeable proton assignments were secured using a combination of techniques including two-dimensional COSY, NOESY and the double quantum technique {sup 1}H-{sup 1}H-INADEQUATE as well as inversion recovery T1 experiments. The new technique of {sup 31}P-1H shift correlation is particularly valuable in removing certain ambiguities in the sugar proton assignments. Characteristic chemical shifts for the base protons which are determined by their immediate molecular environments are also useful in assignments. The consensus acceptor exon:intron junction adopts a random coil conformation in solution under the experimental conditions employed.

    20. Linewidth of the harmonics in a microwave frequency comb generated by focusing a mode-locked ultrafast laser on a tunneling junction

      SciTech Connect (OSTI)

      Hagmann, Mark J.; Stenger, Frank S.; Yarotski, Dmitry A.

      2013-12-14

      Previous analyses suggest that microwave frequency combs (MFCs) with harmonics having extremely narrow linewidths could be produced by photodetection with a mode-locked ultrafast laser. In the MFC generated by focusing a passively mode-locked ultrafast laser on a tunneling junction, 200 harmonics from 74.254 MHz to 14.85 GHz have reproducible measured linewidths approximating the 1 Hz resolution bandwidth (RBW) of the spectrum analyzer. However, in new measurements at a RBW of 0.1 Hz, the linewidths are distributed from 0.12 to 1.17 Hz. Measurements and analysis suggest that, because the laser is not stabilized, the stochastic drift in the pulse repetition rate is the cause for the distribution in measured linewidths. It appears that there are three cases in which the RBW is (1) greater than, (2) less than, or (3) comparable with the intrinsic linewidth. The measured spectra in the third class are stochastic and may show two or more peaks at a single harmonic.

    1. Large-area triple-junction a-Si alloy production scaleup. Annual subcontract report, 17 March 1993--18 March 1994

      SciTech Connect (OSTI)

      Oswald, R.; Morris, J.

      1994-11-01

      The objective of this subcontract over its three-year duration is to advance Solarex`s photovoltaic manufacturing technologies, reduce its a-Si:H module production costs, increase module performance and expand the Solarex commercial production capacity. Solarex shall meet these objectives by improving the deposition and quality of the transparent front contact, by optimizing the laser patterning process, scaling-up the semiconductor deposition process, improving the back contact deposition, scaling-up and improving the encapsulation and testing of its a-Si:H modules. In the Phase 2 portion of this subcontract, Solarex focused on improving deposition of the front contact, investigating alternate feed stocks for the front contact, maximizing throughput and area utilization for all laser scribes, optimizing a-Si:H deposition equipment to achieve uniform deposition over large-areas, optimizing the triple-junction module fabrication process, evaluating the materials to deposit the rear contact, and optimizing the combination of isolation scribe and encapsulant to pass the wet high potential test. Progress is reported on the following: Front contact development; Laser scribe process development; Amorphous silicon based semiconductor deposition; Rear contact deposition process; Frit/bus/wire/frame; Materials handling; and Environmental test, yield and performance analysis.

    2. Progress on First-Principles Calculations and Experimental Results of Single-crystalline Magnetic Tunnel Junctions with MgO barriers

      SciTech Connect (OSTI)

      Wang, Y.; Zhang, J.; Zhang, Xiaoguang; Wang, Shouguo; Han, Xiufeng

      2009-01-01

      Since the theoretical prediction and experimental observation of giant tunneling magnetoresistance (TMR) effect at room temperature in magnetic tunnel junctions (MTJs) with single-crystalline MgO(001) barrier, MgO-based MTJs have been extensively studied due to their broad potential applications in spintronic devices. In this paper, progress on theoretical calculations and experimental results in MgO-based MTJs is reported. Spin-dependent electronic structure and transport properties of MgO-based MTJs, including structures of Fe(001)/MgO/Fe, Fe(001)/FeO/MgO/Fe, Fe(001)/Mg/MgO/Fe, Fe(001)/Co/MgO/Co/Fe, and Fe(001)/MgO/Fe/MgO/Fe, have been studied using the Layer-KKR first-principles method. The quantitative result not only provide a better way to understand the electronic structures and spin-dependent transport properties of MgO-based MTJs, but also shows a direction to exploit new kinds of spintronic materials with high room-temperature TMR ratio.

    3. Back-junction back-contact n-type silicon solar cell with diffused boron emitter locally blocked by implanted phosphorus

      SciTech Connect (OSTI)

      Mller, Ralph Schrof, Julian; Reichel, Christian; Benick, Jan; Hermle, Martin

      2014-09-08

      The highest energy conversion efficiencies in the field of silicon-based photovoltaics have been achieved with back-junction back-contact (BJBC) silicon solar cells by several companies and research groups. One of the most complex parts of this cell structure is the fabrication of the locally doped p- and n-type regions, both on the back side of the solar cell. In this work, we introduce a process sequence based on a synergistic use of ion implantation and furnace diffusion. This sequence enables the formation of all doped regions for a BJBC silicon solar cell in only three processing steps. We observed that implanted phosphorus can block the diffusion of boron atoms into the silicon substrate by nearly three orders of magnitude. Thus, locally implanted phosphorus can be used as an in-situ mask for a subsequent boron diffusion which simultaneously anneals the implanted phosphorus and forms the boron emitter. BJBC silicon solar cells produced with such an easy-to-fabricate process achieved conversion efficiencies of up to 21.7%. An open-circuit voltage of 674?mV and a fill factor of 80.6% prove that there is no significant recombination at the sharp transition between the highly doped emitter and the highly doped back surface field at the device level.

    4. Trend of tunnel magnetoresistance and variation in threshold voltage for keeping data load robustness of metal–oxide–semiconductor/magnetic tunnel junction hybrid latches

      SciTech Connect (OSTI)

      Ohsawa, T.; Ikeda, S.; Hanyu, T.; Ohno, H.; Endoh, T.

      2014-05-07

      The robustness of data load of metal–oxide–semiconductor/magnetic tunnel junction (MOS/MTJ) hybrid latches at power-on is examined by using Monte Carlo simulation with the variations in magnetoresistances for MTJs and in threshold voltages for MOSFETs involved in 90 nm technology node. Three differential pair type spin-transfer-torque-magnetic random access memory cells (4T2MTJ, 6T2MTJ, and 8T2MTJ) are compared for their successful data load at power-on. It is found that the 4T2MTJ cell has the largest pass area in the shmoo plot in TMR ratio (tunnel magnetoresistance ratio) and V{sub dd} in which a whole 256 kb cell array can be powered-on successfully. The minimum TMR ratio for the 4T2MTJ in 0.9 V < V{sub dd} < 1.9 V is 140%, while the 6T2MTJ and the 8T2MTJ cells require TMR ratio larger than 170%.

    5. Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Ying, Tianlei; Prabakaran, Ponraj; Du, Lanying; Shi, Wei; Feng, Yang; Wang, Yanping; Wang, Lingshu; Li, Wei; Jiang, Shibo; Dimitrov, Dimiter S.; et al

      2015-09-15

      The MERS-CoV is an emerging virus, which already infected more than 1,300 humans with high (~36%) mortality. Here, we show that m336, an exceptionally potent human anti-MERS-CoV antibody, is almost germline with only one somatic mutation in the heavy chain. The structure of Fab m336 in complex with the MERS-CoV receptor-binding domain reveals that its IGHV1-69-derived heavy chain provides more than 85% binding surface and that its epitope almost completely overlaps with the receptor-binding site. Analysis of antibodies from 69 healthy humans suggests an important role of the V(D)J recombination-generated junctional and allele-specific residues for achieving high affinity of bindingmore » at such low levels of somatic hypermutation. Our results also have important implications for development of vaccine immunogens based on the newly identified m336 epitope as well as for elucidation of mechanisms of neutralization by m336-like antibodies and their elicitation in vivo.« less

    6. Comparison of single junction AlGaInP and GaInP solar cells grown by molecular beam epitaxy

      SciTech Connect (OSTI)

      Masuda, Taizo Tomasulo, Stephanie; Lang, Jordan R.; Lee, Minjoo Larry

      2015-03-07

      We have investigated ?2.0?eV (Al{sub x}Ga{sub 1?x}){sub 0.51}In{sub 0.49}P and ?1.9?eV Ga{sub 0.51}In{sub 0.49}P single junction solar cells grown on both on-axis and misoriented GaAs substrates by molecular beam epitaxy (MBE). Although lattice-matched (Al{sub x}Ga{sub 1?x}){sub 0.51}In{sub 0.49}P solar cells are highly attractive for space and concentrator photovoltaics, there have been few reports on the MBE growth of such cells. In this work, we demonstrate open circuit voltages (V{sub oc}) ranging from 1.29 to 1.30?V for Ga{sub 0.51}In{sub 0.49}P cells, and 1.351.37?V for (Al{sub x}Ga{sub 1?x}){sub 0.51}In{sub 0.49}P cells. Growth on misoriented substrates enabled the bandgap-voltage offset (W{sub oc}?=?E{sub g}/q???V{sub oc}) of Ga{sub 0.51}In{sub 0.49}P cells to decrease from ?575?mV to ?565?mV, while that of (Al{sub x}Ga{sub 1?x}){sub 0.51}In{sub 0.49}P cells remained nearly constant at 620?mV. The constant W{sub oc} as a function of substrate offcut for (Al{sub x}Ga{sub 1?x}){sub 0.51}In{sub 0.49}P implies greater losses from non-radiative recombination compared with the Ga{sub 0.51}In{sub 0.49}P devices. In addition to larger W{sub oc} values, the (Al{sub x}Ga{sub 1?x}){sub 0.51}In{sub 0.49}P cells exhibited significantly lower internal quantum efficiency (IQE) values than Ga{sub 0.51}In{sub 0.49}P cells due to recombination at the emitter/window layer interface. A thin emitter design is experimentally shown to be highly effective in improving IQE, particularly at short wavelengths. Our work shows that with further optimization of both cell structure and growth conditions, MBE-grown (Al{sub x}Ga{sub 1?x}){sub 0.51}In{sub 0.49}P will be a promising wide-bandgap candidate material for high-efficiency, lattice-matched multi-junction solar cells.

    7. Octonary resistance states in La0.7Sr0.3MnO3/BaTiO3/La0.7Sr0.3MnO3 multiferroic tunnel junctions

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Yue -Wei Yin; Tao, Jing; Huang, Wei -Chuan; Liu, Yu -Kuai; Yang, Sheng -Wei; Dong, Si -Ning; Zhu, Yi -Mei; Li, Qi; Li, Xiao -Guang

      2015-10-06

      General drawbacks of current electronic/spintronic devices are high power consumption and low density storage. A multiferroic tunnel junction (MFTJ), employing a ferroelectric barrier layer sandwiched between two ferromagnetic layers, presents four resistance states in a single device and therefore provides an alternative way to achieve high density memories. Here, an MFTJ device with eight nonvolatile resistance states by further integrating the design of noncollinear magnetization alignments between the ferromagnetic layers is demonstrated. Through the angle-resolved tunneling magnetoresistance investigations on La0.7Sr0.3MnO3/BaTiO3/La0.7Sr0.3MnO3 junctions, it is found that, besides collinear parallel/antiparallel magnetic configurations, the MFTJ shows at least two other stable noncollinear (45°more » and 90°) magnetic configurations. As a result, combining the tunneling electroresistance effect caused by the ferroelectricity reversal of the BaTiO3 barrier, an octonary memory device is obtained, representing potential applications in high density nonvolatile storage in the future.« less

    8. A novel investigation on carbon nanotube/ZnO, Ag/ZnO and Ag/carbon nanotube/ZnO nanowires junctions for harvesting piezoelectric potential on textile

      SciTech Connect (OSTI)

      Khan, Azam Edberg, Jesper; Nur, Omer; Willander, Magnus

      2014-07-21

      In the present work, three junctions were fabricated on textile fabric as an alternative substrate for harvesting piezoelectric potential. First junction was formed on ordinary textile as (textile/multi-walled carbon nanotube film/zinc oxide nanowires (S1: T/CNTs/ZnO NWs)) and the other two were formed on conductive textile with the following layer sequence: conductive textile/zinc oxide nanowires (S2: CT/ZnO NWs) and conductive textile/multi-walled carbon nanotubes film/zinc oxide nanowires (S3: CT/CNTs/ZnO NWs). Piezoelectric potential was harvested by using atomic force microscopy in contact mode for the comparative analysis of the generated piezoelectric potential. ZnO NWs were synthesized by using the aqueous chemical growth method. Surface analysis of the grown nanostructures was performed by using scanning electron microscopy and transmission electron microscopy. The growth orientation and crystalline size were studied by using X-ray diffraction technique. This study reveals that textile as an alternative substrate have many features like cost effective, highly flexible, nontoxic, light weight, soft, recyclable, reproducible, portable, wearable, and washable for nanogenerators fabrication with acceptable performance and with a wide choice of modification for obtaining large amount of piezoelectric potential.

    9. Continuously-tuned tunneling behaviors of ferroelectric tunnel junctions based on BaTiO{sub 3}/La{sub 0.67}Sr{sub 0.33}MnO{sub 3} heterostructure

      SciTech Connect (OSTI)

      Ou, Xin; Xu, Bo Yin, Qiaonan; Xia, Yidong; Yin, Jiang; Liu, Zhiguo; Gong, Changjie; Lan, Xuexin

      2014-05-15

      In this work, we fabricate BaTiO{sub 3}/La{sub 0.67}Sr{sub 0.33}MnO{sub 3} (BTO/LSMO) ferroelectric tunnel junction on (001) SrTiO{sub 3} substrate by pulsed laser deposition method. Combining piezoresponse force and conductive-tip atomic force microscopy, we demonstrate robust and reproducible polarization-controlled tunneling behaviors with the resulting tunneling electroresistance value reaching about 10{sup 2} in ultrathin BTO films (?1.2 nm) at room temperature. Moreover, local poling areas with different conductivity are finally achieved by controlling the relative proportion of upward and downward domains, and different poling areas exhibit stable transport properties.

    10. Blaine County, Oklahoma: Energy Resources | Open Energy Information

      Open Energy Info (EERE)

      in Blaine County, Oklahoma Canton, Oklahoma Geary, Oklahoma Greenfield, Oklahoma Hitchcock, Oklahoma Hydro, Oklahoma Longdale, Oklahoma Okeene, Oklahoma Watonga, Oklahoma...

    11. EA-1710: Final Environmental Assessment

      Broader source: Energy.gov [DOE]

      Financial Assistance to Enerdel, Inc. for its Expansion of Battery Manufacturing Capabilities at Indianapolis, Noblesville and Greenfield, Indiana

    12. Dependency of tunneling magneto-resistance on Fe insertion-layer thickness in Co{sub 2}Fe{sub 6}B{sub 2}/MgO-based magnetic tunneling junctions

      SciTech Connect (OSTI)

      Chae, Kyo-Suk; Park, Jea-Gun

      2015-04-21

      For Co{sub 2}Fe{sub 6}B{sub 2}/MgO-based perpendicular magnetic tunneling junctions spin valves with [Co/Pd]{sub n}-synthetic-antiferromagnetic (SyAF) layers, the tunneling-magneto-resistance (TMR) ratio strongly depends on the nanoscale Fe insertion-layer thickness (t{sub Fe}) between the Co{sub 2}Fe{sub 6}B{sub 2} pinned layer and MgO tunneling barrier. The TMR ratio rapidly increased as t{sub Fe} increased up to 0.4?nm by improving the crystalline linearity of a MgO tunneling barrier and by suppressing the diffusion of Pd atoms from a [Co/Pd]{sub n}-SyAF. However, it abruptly decreased by further increasing t{sub Fe} in transferring interfacial-perpendicular magnetic anisotropy into the IMA characteristic of the Co{sub 2}Fe{sub 6}B{sub 2} pinned layer. Thus, the TMR ratio peaked at t{sub Fe}?=?0.4?nm: i.e., 120% at 29???m{sup 2}.

    13. Analysis of bias voltage dependent spectral response in Ga{sub 0.51}In{sub 0.49}P/Ga{sub 0.99}In{sub 0.01}As/Ge triple junction solar cell

      SciTech Connect (OSTI)

      Sogabe, Tomah Ogura, Akio; Okada, Yoshitaka

      2014-02-21

      Spectral response measurement plays great role in characterizing solar cell device because it directly reflects the efficiency by which the device converts the sunlight into an electrical current. Based on the spectral response results, the short circuit current of each subcell can be quantitatively determined. Although spectral response dependence on wavelength, i.e., the well-known external quantum efficiency (EQE), has been widely used in characterizing multijunction solar cell and has been well interpreted, detailed analysis of spectral response dependence on bias voltage (SR ?V{sub bias}) has not been reported so far. In this work, we have performed experimental and numerical studies on the SR??V{sub bias} for Ga{sub 0.51}In{sub 0.49}P/Ga{sub 0.99}In{sub 0.01}As/Ge triple junction solar cell. Phenomenological description was given to clarify the mechanism of operation matching point variation in SR??V{sub bias} measurements. The profile of SR?V{sub bias} curve was explained in detail by solving the coupled two-diode current-voltage characteristic transcend formula for each subcell.

    14. Top Crop Wind Farm | Open Energy Information

      Open Energy Info (EERE)

      In Service Owner Horizon-EDPR Developer Horizon-EDPR Location GrundyLivingstonLa Salle Counties IL Coordinates 41.159826, -88.637381 Show Map Loading map......

    15. Liquid junction schottky barrier solar cell

      DOE Patents [OSTI]

      Williams, Richard (Princeton, NJ)

      1980-01-01

      A mixture of ceric ions (Ce.sup.+4) and cerous ions (Ce.sup.+3) in an aqueous electrolyte solution forms a Schottky barrier at the interface between an active region of silicon and the electrolyte solution. The barrier height obtained for hydrogenated amorphous silicon using the Ce.sup.+4 /Ce.sup.+3 redox couple is about 1.7 eV.

    16. Tandem junction amorphous semiconductor photovoltaic cell

      DOE Patents [OSTI]

      Dalal, V.L.

      1983-06-07

      A photovoltaic stack comprising at least two p[sup +]i n[sup +] cells in optical series, said cells separated by a transparent ohmic contact layer(s), provides a long optical path for the absorption of photons while preserving the advantageous field-enhanced minority carrier collection arrangement characteristic of p[sup +]i n[sup +] cells. 3 figs.

    17. Tandem junction amorphous semiconductor photovoltaic cell

      DOE Patents [OSTI]

      Dalal, Vikram L. (Newark, DE)

      1983-01-01

      A photovoltaic stack comprising at least two p.sup.+ i n.sup.+ cells in optical series, said cells separated by a transparent ohmic contact layer(s), provides a long optical path for the absorption of photons while preserving the advantageous field-enhanced minority carrier collection arrangement characteristic of p.sup.+ i n.sup.+ cells.

    18. Octonary resistance states in La0.7Sr0.3MnO3/BaTiO3/La0.7Sr0.3MnO3 multiferroic tunnel junctions

      SciTech Connect (OSTI)

      Yue -Wei Yin; Tao, Jing; Huang, Wei -Chuan; Liu, Yu -Kuai; Yang, Sheng -Wei; Dong, Si -Ning; Zhu, Yi -Mei; Li, Qi; Li, Xiao -Guang

      2015-10-06

      General drawbacks of current electronic/spintronic devices are high power consumption and low density storage. A multiferroic tunnel junction (MFTJ), employing a ferroelectric barrier layer sandwiched between two ferromagnetic layers, presents four resistance states in a single device and therefore provides an alternative way to achieve high density memories. Here, an MFTJ device with eight nonvolatile resistance states by further integrating the design of noncollinear magnetization alignments between the ferromagnetic layers is demonstrated. Through the angle-resolved tunneling magnetoresistance investigations on La0.7Sr0.3MnO3/BaTiO3/La0.7Sr0.3MnO3 junctions, it is found that, besides collinear parallel/antiparallel magnetic configurations, the MFTJ shows at least two other stable noncollinear (45° and 90°) magnetic configurations. As a result, combining the tunneling electroresistance effect caused by the ferroelectricity reversal of the BaTiO3 barrier, an octonary memory device is obtained, representing potential applications in high density nonvolatile storage in the future.

    19. Aerial photographic interpretation of lineaments and faults in late cenozoic deposits in the Eastern part of the Benton Range 1:100,000 quadrangle and the Goldfield, Last Chance Range, Beatty, and Death Valley Junction 1:100,000 quadrangles, Nevada and California

      SciTech Connect (OSTI)

      Reheis, M.C.; Noller, J.S.

      1991-09-01

      Lineaments and faults in Quaternary and late Tertiary deposits in the southern part of the Walker Lane are potentially active and form patterns that are anomalous with respect to the typical fault patterns in most of the Great Basin. Little work has been done to identify and characterize these faults, with the exception of those in the Death Valley-Furnace Creek (DVFCFZ) fault system and those in and near the Nevada Test Site. Four maps at a scale of 1:100,000 summarize the existing knowledge about these lineaments and faults based on extensive aerial-photo interpretation, limited field investigations, and published geologic maps. The lineaments and faults in all four maps can be divided geographically into two groups. The first group includes west- to north-trending lineaments and faults associated with the DVFCFZ and with the Pahrump fault zone in the Death Valley Junction quadrangle. The second group consists of north- to east-northeast-trending lineaments and faults in a broad area that lies east of the DVFCFZ and north of the Pahrump fault zone. Preliminary observations of the orientations and sense of slip of the lineaments and faults suggest that the least principle stress direction is west-east in the area of the first group and northwest-southeast in the area of the second group. The DVFCFZ appears to be part of a regional right-lateral strike-slip system. The DVFCFZ steps right, accompanied by normal faulting in an extensional zone, to the northern part of the Walker Lane a the northern end of Fish Lake Valley (Goldfield quadrangle), and appears to step left, accompanied by faulting and folding in a compressional zone, to the Pahrump fault zone in the area of Ash Meadows (Death Valley Junction quadrangle). 25 refs.

    20. Building America Whole-House Solutions for New Homes: Rural Development,

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Inc., Greenfield, Massachusetts | Department of Energy Rural Development, Inc., Greenfield, Massachusetts Building America Whole-House Solutions for New Homes: Rural Development, Inc., Greenfield, Massachusetts Case study of Rural Development Inc. who worked with Building America research partner CARB to design affordable HERS-8 homes (60 w/o PV), with double-stud walls heavy insulation, low-load sealed-combustion gas space heaters, triple-pane windows, solar water heating, and PV. PDF icon

    1. Building America Whole-House Solutions for Existing Homes: Conway Street

      Energy Savers [EERE]

      Apartments - Greenfield, Massachusetts | Department of Energy Conway Street Apartments - Greenfield, Massachusetts Building America Whole-House Solutions for Existing Homes: Conway Street Apartments - Greenfield, Massachusetts Through recent research efforts, CARB has been evaluating strategies and technologies that can make dramatic improvements in energy performance in multifamily buildings. In this project, the team helped to transform a 100-year-old empty school building into 12 high

    2. Building America Whole-House Solutions for New Homes: Rural Development,

      Energy Savers [EERE]

      Inc., Greenfield, Massachusetts | Department of Energy Rural Development, Inc., Greenfield, Massachusetts Building America Whole-House Solutions for New Homes: Rural Development, Inc., Greenfield, Massachusetts Case study of Rural Development Inc. who worked with Building America research partner CARB to design affordable HERS-8 homes (60 w/o PV), with double-stud walls heavy insulation, low-load sealed-combustion gas space heaters, triple-pane windows, solar water heating, and PV. PDF icon

    3. Sinosol Mazzanti JV | Open Energy Information

      Open Energy Info (EERE)

      Castelfranco, Italy Sector: Solar Product: Italy-based developer, builder and operator of rooftop and greenfield solar projects. References: Sinosol & Mazzanti JV1 This article...

    4. Beemer Energy | Open Energy Information

      Open Energy Info (EERE)

      Name: Beemer Energy Place: Delaware Product: Engaged in the development of green-field ethanol sites, the conversion of existing industrial facilities to ethanol production and the...

    5. Photon Energy AS | Open Energy Information

      Open Energy Info (EERE)

      Zip: 120 00 Sector: Solar Product: Czech-based developer of greenfield and rooftop photovoltaic solar power installations. Coordinates: 50.079083, 14.43323 Show Map Loading...

    6. Meadow Ridge | Open Energy Information

      Open Energy Info (EERE)

      (community owned) Energy Purchaser Central Iowa Power Cooperative Location Greenfield IA Coordinates 41.39004255, -94.44637299 Show Map Loading map... "minzoom":false,"mapp...

    7. Adair County, Iowa: Energy Resources | Open Energy Information

      Open Energy Info (EERE)

      Zone Number 5 Climate Zone Subtype A. Places in Adair County, Iowa Adair, Iowa Bridgewater, Iowa Casey, Iowa Fontanelle, Iowa Greenfield, Iowa Orient, Iowa Stuart, Iowa...

    8. Northeast Sustainable Energy Association | Open Energy Information

      Open Energy Info (EERE)

      Association Jump to: navigation, search Logo: Northeast Sustainable Energy Association Name: Northeast Sustainable Energy Association Address: 50 Miles Street Place: Greenfield,...

    9. Northeast Sustainable Energy Association (Massachusetts) | Open...

      Open Energy Info (EERE)

      (Massachusetts) Jump to: navigation, search Name: Northeast Sustainable Energy Association Address: 50 Miles Street Place: Greenfield, Massachusetts Zip: 01301 Region: Greater...

    10. KL Energy Corp Formerly KL Process Design Group | Open Energy...

      Open Energy Info (EERE)

      provider of engineering, procurement, and contracting. Operates both greenfield and brownfield projects. References: KL Energy Corp. (Formerly KL Process Design Group)1 This...

    11. Reference Designs for Hydrogen Fueling Stations

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      ... greenfield and gasoline station co-location. 35 Summary * The Reference Station Design Task has produced results that include: - Vehicle roll-out scenarios - Detailed ...

    12. Pioneering Gasification Plants | Department of Energy

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      ... The Polk Power Station near Mulberry, Florida, is the Nation's first "greenfield" (built as a brand new plant) commercial IGCC power plant. Capable of generating 313 megawatts of ...

    13. Molecular beam epitaxial growth of Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} topological insulators on GaAs (111) substrates: a potential route to fabricate topological insulator p-n junction

      SciTech Connect (OSTI)

      Zeng, Zhaoquan; Morgan, Timothy A.; Li, Chen; Hirono, Yusuke; Hu, Xian; Hawkridge, Michael E.; Benamara, Mourad; Salamo, Gregory J.; Fan, Dongsheng; Yu, Shuiqing; Department of Electrical Engineering, University of Arkansas, Fayetteville, AR 72701 ; Zhao, Yanfei; Lee, Joon Sue; Wang, Jian; The Center for Nanoscale Science and Department of Physics, The Pennsylvania State University, University Park, PA 16802 ; Wang, Zhiming M.; State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054; Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Science, Beijing 100083

      2013-07-15

      High quality Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} topological insulators films were epitaxially grown on GaAs (111) substrate using solid source molecular beam epitaxy. Their growth and behavior on both vicinal and non-vicinal GaAs (111) substrates were investigated by reflection high-energy electron diffraction, atomic force microscopy, X-ray diffraction, and high resolution transmission electron microscopy. It is found that non-vicinal GaAs (111) substrate is better than a vicinal substrate to provide high quality Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} films. Hall and magnetoresistance measurements indicate that p type Sb{sub 2}Te{sub 3} and n type Bi{sub 2}Te{sub 3} topological insulator films can be directly grown on a GaAs (111) substrate, which may pave a way to fabricate topological insulator p-n junction on the same substrate, compatible with the fabrication process of present semiconductor optoelectronic devices.

    14. Nano-superconducting quantum interference devices with suspended junctions

      SciTech Connect (OSTI)

      Hazra, D.; Hasselbach, K.; Kirtley, J. R.

      2014-04-14

      Nano-Superconducting Quantum Interference Devices (nano-SQUIDs) are usually fabricated from a single layer of either Nb or Al. We describe here a simple method for fabricating suspended nano-bridges in Nb/Al thin-film bilayers. We use these suspended bridges, which act as Josephson weak links, to fabricate nano-SQUIDs which show critical current oscillations at temperatures up to 1.5?K and magnetic flux densities up to over 20?mT. These nano-SQUIDs exhibit flux modulation depths intermediate between all-Al and all-Nb devices, with some of the desirable characteristics of both. The suspended geometry is attractive for magnetic single nanoparticle measurements.

    15. Experimental measurement of stress at a four-domain junction...

      Office of Scientific and Technical Information (OSTI)

      domains in a lead zirconate titanate ceramic is analyzed using Kikuchi diffraction ... Such stress concentrations could act as nuclei for cracking of the ceramic under ...

    16. Origin of the Magnetoresistance in Oxide Tunnel Junctions Determined...

      Office of Scientific and Technical Information (OSTI)

      Save Share this Record Citation Formats MLA APA Chicago Bibtex Export Metadata Endnote Excel CSV XML Send to Email Send to Email Email address: Content: Close Send ...

    17. Phase diagram of Josephson junction betweensandssuperconductors...

      Office of Scientific and Technical Information (OSTI)

      Society Sponsoring Org: USDOE Country of Publication: United States Language: English Word Cloud More Like This Free Publicly Accessible Full Text Publisher's Accepted Manuscript...

    18. Amorphous silicon passivated contacts for diffused junction silicon solar cells

      SciTech Connect (OSTI)

      Bullock, J. Yan, D.; Wan, Y.; Cuevas, A.; Demaurex, B.; Hessler-Wyser, A.; De Wolf, S.

      2014-04-28

      Carrier recombination at the metal contacts is a major obstacle in the development of high-performance crystalline silicon homojunction solar cells. To address this issue, we insert thin intrinsic hydrogenated amorphous silicon [a-Si:H(i)] passivating films between the dopant-diffused silicon surface and aluminum contacts. We find that with increasing a-Si:H(i) interlayer thickness (from 0 to 16?nm) the recombination loss at metal-contacted phosphorus (n{sup +}) and boron (p{sup +}) diffused surfaces decreases by factors of ?25 and ?10, respectively. Conversely, the contact resistivity increases in both cases before saturating to still acceptable values of ? 50 m? cm{sup 2} for n{sup +} and ?100 m? cm{sup 2} for p{sup +} surfaces. Carrier transport towards the contacts likely occurs by a combination of carrier tunneling and aluminum spiking through the a-Si:H(i) layer, as supported by scanning transmission electron microscopyenergy dispersive x-ray maps. We explain the superior contact selectivity obtained on n{sup +} surfaces by more favorable band offsets and capture cross section ratios of recombination centers at the c-Si/a-Si:H(i) interface.

    19. Method of junction formation for CIGS photovoltaic devices

      DOE Patents [OSTI]

      Delahoy, Alan E.

      2006-03-28

      Sulfur is used to improve the performance of CIGS devices prepared by the evaporation of a single source ZIS type compound to form a buffer layer on the CIGS. The sulfur may be evaporated, or contained in the ZIS type material, or both. Vacuum evaporation apparatus of many types useful in the practice of the invention are known in the art. Other methods of delivery, such as sputtering, or application of a thiourea solution, may be substituted for evaporation.

    20. Method of junction formation for CIGS photovoltaic devices

      DOE Patents [OSTI]

      Delahoy, Alan E.

      2010-01-26

      Sulfur is used to improve the performance of CIGS devices prepared by the evaporation of a single source ZIS type compound to form a buffer layer on the CIGS. The sulfur may be evaporated, or contained in the ZIS type material, or both. Vacuum evaporation apparatus of many types useful in the practice of the invention are known in the art. Other methods of delivery, such as sputtering, or application of a thiourea solution, may be substituted for evaporation.

    1. Quantification of Shallow-junction Dopant Loss during CMOS Process

      SciTech Connect (OSTI)

      Buh, G.H.; Park, T.; Jee, Y.; Hong, S.J.; Ryoo, C.; Yoo, J.; Lee, J.W.; Yon, G.H.; Jun, C.S.; Shin, Y.G.; Chung, U.-In; Moon, J.T.

      2005-09-09

      We analyzed dopant concentration and profiles in source drain extension (SDE) by using in-line low energy electron induced x-ray emission spectrometry (LEXES), four point probe (FPP), and secondary ion mass spectroscopy (SIMS). By monitoring the dopant dose with LEXES, dopant loss in implantation and annealing process was successfully quantified. To measure the actual SDE sheet resistance in CMOS device structure without probe penetration in FPP, we fabricated a simple SDE sheet-resistance test structure (SSTS) by modifying a conventional CMOS process. It was found that the sheet resistances determined with SSTS are larger than those measured with FPP. There are three mechanisms of dopants loss in CMOS process: 1) wet-etching removal during photo resist cleaning, 2) out-diffusion, and 3) deactivation by post-thermal process. We quantified the loss of the dopant in SDE during the CMOS process, and found that the wet-etching removal and out-diffusion are the most significant causes for dopant loss in n-SDE and p-SDE, respectively.

    2. Solar Junction Develops World Record Setting Concentrated Photovoltaic...

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      the company's concentrated photovoltaic technology that also set a world record for conversion efficiency. The company's cell technology relies on inexpensive lenses to magnify...

    3. LM Completes the Grand Junction, Colorado, Site Historical Wall Display

      Broader source: Energy.gov [DOE]

      On Wednesday, October 8, a new display was unveiled at DOE Headquarters in Washington, DC, by DOE Deputy Under Secretary David Klaus. The display celebrates more than 70 years of operations at the...

    4. NREL: Awards and Honors - Triple-Junction Terrestrial Concentrator...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      of power and produce as much as 86.3 kWh of electricity during a typical year under a Phoenix, AZ sun. This means that 100 to 150 of these cells could produce enough electricity...

    5. Phonon Bottleneck in Graphene-Based Josephson Junctions at Millikelvin...

      Office of Scientific and Technical Information (OSTI)

      Publisher: American Physical Society Sponsoring Org: USDOE Country of Publication: United States Language: English Word Cloud More Like This Free Publicly Accessible Full Text ...

    6. Gordian Bioenergy | Open Energy Information

      Open Energy Info (EERE)

      The Gordian Bioenergy is a private equity formed by undisclosed investors who want invest in Greenfield projects. They plan to developed 6 to 8 projects in the states of Bahia,...

    7. NineStar Connect- Residential Energy Efficient Equipment Rebate Program

      Broader source: Energy.gov [DOE]

      Nine Star Connect (Greenfield and Maxwell, IN) offers residential customers an incentive to buy energy efficient air-source heat pumps, geothermal heat pumps, heat p[ump water heaters and lighting....

    8. VEE-0035- In the Matter of Rice Oil Company, Inc.

      Broader source: Energy.gov [DOE]

      On October 22, 1996, Rice Oil Company, Inc. (Rice) of Greenfield, Massachusetts filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE)....

    9. Prothea Solar | Open Energy Information

      Open Energy Info (EERE)

      Italy Zip: 20100 Sector: Solar Product: Milan-based greenfield developer and turn key provider of solar energy power plants. Coordinates: 45.468945, 9.18103 Show Map...

    10. Building America Update: August 2015

      Broader source: Energy.gov [DOE]

      A historic school building in Greenfield, Massachusetts, is carrying on the tradition of education—this time as an apartment building that instills in residents the benefits of high-performance...

    11. Farmers Electric Coop, Inc | Open Energy Information

      Open Energy Info (EERE)

      search Name: Farmers Electric Coop, Inc Place: Iowa Website: www.farmersrec.com Facebook: https:www.facebook.comFarmersElectricGreenfield Outage Hotline: 1-800-397-4821...

    12. 2015 Forum on Hydropower

      Broader source: Energy.gov [DOE]

      Discover how Canadian hydropower is learning lessons and building the future. Get updated on greenfield, rehabilitation, refurbishment and expansion projects going on across the country. Learn how...

    13. Search for: All records | SciTech Connect

      Office of Scientific and Technical Information (OSTI)

      Grundy, Will" Name Name ORCID Search Authors Type: All Book/Monograph Conference/Event Journal Article Miscellaneous Patent Program Document Software Manual Technical Report Thesis/Dissertation Subject: Identifier Numbers: Site: All Alaska Power Administration, Juneau, Alaska (United States) Albany Research Center (ARC), Albany, OR (United States) Albuquerque Complex - NNSA Albuquerque Operations Office, Albuquerque, NM (United States) Amarillo National Resource Center for Plutonium,

    14. GaAs, AlGaAs and InGaP Tunnel Junctions for Multi-Junction Solar Cells Under Concentration: Resistance Study

      SciTech Connect (OSTI)

      Wheeldon, Jeffrey F.; Valdivia, Christopher E.; Walker, Alex; Kolhatkar, Gitanja; Hall, Trevor J.; Hinzer, Karin; Masson, Denis; Riel, Bruno; Fafard, Simon; Jaouad, Abdelatif; Turala, Artur; Ares, Richard; Aimez, Vincent

      2010-10-14

      The following four TJ designs, AlGaAs/AlGaAs, GaAs/GaAs, AlGaAs/InGaP and AlGaAs/GaAs are studied to determine minimum doping concentration to achieve a resistance of <10{sup -4} {omega}{center_dot}cm{sup 2} and a peak tunneling current suitable for MJ solar cells up to 1500-suns concentration (operating current of 21 A/cm{sup 2}). Experimentally calibrated numerical models are used to determine how the resistance changes as a function of doping concentration. The AlGaAs/GaAs TJ design is determined to require the least doping concentration to achieve the specified resistance and peak tunneling current, followed by the GaAs/GaAs, and AlGaAs/AlGaAs TJ designs. The AlGaAs/InGaP TJ design can only achieve resistances >5x10{sup -4} {omega}cm{sup 2}.

    15. Phonon-assisted tunneling and two-channel Kondo physics in molecular junctions

      SciTech Connect (OSTI)

      Dias Da Silva, Luis G; Dagotto, Elbio R

      2009-01-01

      The interplay between vibrational modes and Kondo physics is a fundamental aspect of transport properties of correlated molecular conductors. We present theoretical results for a single molecule in the Kondo regime connected to left and right metallic leads, creating the usual coupling to a conduction channel with left-right parity even. A center-of-mass vibrational mode introduces an additional phonon-assisted tunneling through the antisymmetric odd channel. A non-Fermi-liquid fixed point, reminiscent of the two-channel Kondo effect, appears at a critical value of the phonon-mediated coupling strength. Our numerical renormalization-group calculations for this system reveal non-Fermi-liquid behavior at low temperatures over lines of critical points. Signatures of this strongly correlated state are prominent in the thermodynamic properties and in the linear conductance.

    16. Silicon Solar Cells with Front Hetero-contact and Aluminum Alloy Back Junction (Poster)

      SciTech Connect (OSTI)

      Yuan, H.-C.; Page, M. R.; Iwaniczko, E.; Xu, Y.; Roybal, L.; Wang, Q.; Branz, H. M.; Meier, D. L.

      2008-05-01

      The objectives of this report are: (1) to apply industrial back Al process in efficient n-wafer cells with a-Si:H front surface passivation; and (2) to evaluate the surface recombination velocity (SRV) of the a-Si:H passivated front surface with different surface preparation procedures.

    17. Photophysics and Charge Separation Dynamics in Two-Dimensional Semiconductor Nanoparticle Junctions and Heterojunctions

      SciTech Connect (OSTI)

      Kelley, David F.

      2011-02-14

      The work on this grant can be divided into two categories: spectroscopy and dynamics of GaSe nanoparticles, and synthesis and exciton dynamics of II-VI nanoparticles and nanostructures.

    18. Magnetization switching in a CoFeB/MgO magnetic tunnel junction...

      Office of Scientific and Technical Information (OSTI)

      English Subject: 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; BORON COMPOUNDS; COBALT COMPOUNDS; ELECTRIC FIELDS; IRON COMPOUNDS; MAGNESIUM OXIDES;...

    19. Tunneling characteristics in chemical vapor deposited graphenehexagonal boron nitridegraphene junctions

      SciTech Connect (OSTI)

      Roy, T.; Hesabi, Z. R.; Joiner, C. A.; Vogel, E. M. [School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332 (United States); Liu, L.; Gu, G. [Department of Electrical Engineering and Computer Science, University of Tennessee, 1520 Middle Drive, Knoxville, Tennessee 37996 (United States); Barrera, S. de la; Feenstra, R. M. [Department of Physics, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213 (United States); Chakrabarti, B. [School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332 (United States); Department of Materials Science and Engineering, University of Texas at Dallas, 800 West Campbell Rd., Richardson, Texas 75080 (United States)

      2014-03-24

      Large area chemical vapor deposited graphene and hexagonal boron nitride was used to fabricate graphenehexagonal boron nitridegraphene symmetric field effect transistors. Gate control of the tunneling characteristics is observed similar to previously reported results for exfoliated graphenehexagonal boron nitridegraphene devices. Density-of-states features are observed in the tunneling characteristics of the devices, although without large resonant peaks that would arise from lateral momentum conservation. The lack of distinct resonant behavior is attributed to disorder in the devices, and a possible source of the disorder is discussed.

    20. Electronic transport through Al/InN nanowire/Al junctions (Journal...

      Office of Scientific and Technical Information (OSTI)

      T 0.3 K, below the superconducting transition temperature of the Al electrodes. The proximity effect is observed in these devices through a strong dip in resistance at zero bias. ...

    1. Silicon-Based Thermoelectrics: Harvesting Low Quality Heat Using Economically Printed Flexible Nanostructured Stacked Thermoelectric Junctions

      SciTech Connect (OSTI)

      2010-03-01

      Broad Funding Opportunity Announcement Project: UIUC is experimenting with silicon-based materials to develop flexible thermoelectric deviceswhich convert heat into energythat can be mass-produced at low cost. A thermoelectric device, which resembles a computer chip, creates electricity when a different temperature is applied to each of its sides. Existing commercial thermoelectric devices contain the element tellurium, which limits production levels because tellurium has become increasingly rare. UIUC is replacing this material with microscopic silicon wires that are considerably cheaper and could be equally effective. Improvements in thermoelectric device production could return enough wasted heat to add up to 23% to our current annual electricity production.

    2. junctions Wang, Yixing; Pratt, W. P.; Birge, Norman O. Not Available

      Office of Scientific and Technical Information (OSTI)

      None USDOE United States 2012-06-01 English Journal Article Journal Name: Physical Review B; Journal Volume: 85; Journal Issue: 21 Medium: X OSTI ID: 1103623, Legacy ID: OSTI...

    3. Lessons Learned: The Grand Junction Office Site Transfer to Private Ownership

      Broader source: Energy.gov [DOE]

      Proceedings of the Waste Management 2001 Symposium.2001, University of Arizona, Tucson, Arizona.Donna Bergman-Tabbert, Tracy Plessinger

    4. Large area, low capacitance, GaAs nanowire photodetector with a transparent Schottky collecting junction

      SciTech Connect (OSTI)

      Seyedi, M. A. Yao, M.; O'Brien, J.; Dapkus, P. D.; Wang, S. Y.; Nanostructured Energy Conversion Technology and Research , Advanced Studies Laboratories, University of California, Santa Cruz, California 95064, USA and NASA Ames Research Center, Moffett Field, California 94035

      2013-12-16

      We present experimental results on a GaAs/Indium-Tin-Oxide Schottky-like heterojunction photodetector based on a nanowire device geometry. By distributing the active detecting area over an array of nanowires, it is possible to achieve large area detection with low capacitance. Devices with bare GaAs and passivated AlGaAs/GaAs nanowires are fabricated to compare the responsivity with and without surface passivation. We are able to achieve responsivity of >0.5A/W and Signal-Noise-Ratio in excess of 7?dB for 2?V applied reverse bias with passivated nanowire devices. Capacitance-voltage measurement yields <5?nF/cm{sup 2}, which shows a strong possibility for high-speed applications with a broad area device.

    5. Epitaxial lift-off of quantum dot enhanced GaAs single junction solar cells

      SciTech Connect (OSTI)

      Bennett, Mitchell F.; Bittner, Zachary S.; Forbes, David V.; Hubbard, Seth M.; Rao Tatavarti, Sudersena; Wibowo, Andree; Pan, Noren; Chern, Kevin; Phillip Ahrenkiel, S.

      2013-11-18

      InAs/GaAs strain-balanced quantum dot (QD) n-i-p solar cells were fabricated by epitaxial lift-off (ELO), creating thin and flexible devices that exhibit an enhanced sub-GaAs bandgap current collection extending into the near infrared. Materials and optical analysis indicates that QD quality after ELO processing is preserved, which is supported by transmission electron microscopy images of the QD superlattice post-ELO. Spectral responsivity measurements depict a broadband resonant cavity enhancement past the GaAs bandedge, which is due to the thinning of the device. Integrated external quantum efficiency shows a QD contribution to the short circuit current density of 0.23?mA/cm{sup 2}.

    6. Large magnetoresistance from long-range interface coupling in armchair graphene nanoribbon junctions

      SciTech Connect (OSTI)

      Li, Suchun; Son, Young-Woo; Quek, Su Ying

      2014-12-15

      In recent years, bottom-up synthesis procedures have achieved significant advancements in atomically controlled growth of several-nanometer-long graphene nanoribbons with armchair-shaped edges (AGNRs). This greatly encourages us to explore the potential of such well-defined AGNRs in electronics and spintronics. Here, we propose an AGNR based spin valve architecture that induces a large magnetoresistance up to 900%. We find that, when an AGNR is connected perpendicularly to zigzag-shaped edges, the AGNR allows for long-range extension of the otherwise localized edge state. The huge magnetoresistance is a direct consequence of the coupling of two such extended states from both ends of the AGNR, which forms a perfect transmission channel. By tuning the coupling between these two spin-polarized states with a magnetic field, the channel can be destroyed, leading to an abrupt drop in electron transmission.

    7. SU-E-T-426: Dose Delivery Accuracy in Breast Field Junction for...

      Office of Scientific and Technical Information (OSTI)

      beam irradiation technique for breast cancer patients receiving radiation to the ... Methods: We performed in vivo measurements for nine breast cancer patients receiving ...

    8. LGRJ Interim Long-Term Surveillance Plan for the Cheney Disposal Site Near Grand Junction, Colorado

      Office of Legacy Management (LM)

    9. Voltage-controlled inversion of tunnel magnetoresistance in epitaxial nickel/graphene/MgO/cobalt junctions

      SciTech Connect (OSTI)

      Godel, F.; Doudin, B.; Henry, Y.; Halley, D. E-mail: dayen@ipcms.unistra.fr; Dayen, J.-F. E-mail: dayen@ipcms.unistra.fr; Venkata Kamalakar, M.

      2014-10-13

      We report on the fabrication and characterization of vertical spin-valve structures using a thick epitaxial MgO barrier as spacer layer and a graphene-passivated Ni film as bottom ferromagnetic electrode. The devices show robust and scalable tunnel magnetoresistance, with several changes of sign upon varying the applied bias voltage. These findings are explained by a model of phonon-assisted transport mechanisms that relies on the peculiarity of the band structure and spin density of states at the hybrid graphene|Ni interface.

    10. Highways of hope

      SciTech Connect (OSTI)

      2007-08-15

      It is hoped that through public-private partnerships between Alpha Natural Resources and Pioneer Group and Virginia Department of Transportation, and between one of these coal companies and Buchanan County, Virginia, Industrial Development Authority a four-lane 'highway of hope' between Lovers Gap and Poplar Gap will be paved and a ridge top connector route will eventually be completed to Bull Gap where it will intersect with the Coalfields Expressway and US 460. The town of Grundy is also looking into strip mining coal from beneath the small mountaintop airport at Lovers Gap and turning it into a regional airport. The article discusses these plans. 4 photos.

    11. MEIC Proton Beam Formation with a Low Energy Linac

      SciTech Connect (OSTI)

      Zhang, Yuhong

      2015-09-01

      The MIEC proton and ion beams are generated, accumulated, accelerated and cooled in a new green-field ion injector complex designed specifically to support its high luminosity goal. This injector consists of sources, a linac and a small booster ring. In this paper we explore feasibility of a short ion linac that injects low energy protons and ions into the booster ring.

    12. Geothermal EGS Demonstration Photo Library

      Broader source: Energy.gov [DOE]

      EGS Demonstrations make up the most advanced research and science investments in the geothermal sector. Five active demonstration sites nationwide are proving the spectrum of EGS potential, in and near existing hydrothermal operations, with infrastructure, and in the longer-term greenfield settings, where no previous geothermal development is operating.

    13. An inverted AlGaAs/GaAs patterned-Ge tunnel junction cascade concentrator solar cell

      SciTech Connect (OSTI)

      Venkatasubramanian, R. )

      1993-01-01

      This report describes work to develop inverted-grown Al[sub 0.34]Ga[sub 0.66]As/GaAs cascades. Several significant developments are reported on as follows: (1) The AM1.5 1-sun total-area efficiency of the top Al[sub 0.34]Ga[sub 0.66]As cell for the cascade was improved from 11.3% to 13.2% (NREL measurement [total-area]). (2) The cycled'' organometallic vapor phase epitaxy growth (OMVPE) was studied in detail utilizing a combination of characterization techniques including Hall-data, photoluminescence, and secondary ion mass spectroscopy. (3) A technique called eutectic-metal-bonding (EMB) was developed by strain-free mounting of thin GaAs-AlGaAs films (based on lattice-matched growth on Ge substrates and selective plasma etching of Ge substrates) onto Si carrier substrates. Minority-carrier lifetime in an EMB GaAs double-heterostructure was measured as high as 103 nsec, the highest lifetime report for a freestanding GaAs thin film. (4) A thin-film, inverted-grown GaAs cell with a 1-sun AM1.5 active-area efficiency of 20.3% was obtained. This cell was eutectic-metal-bonded onto Si. (5) A thin-film inverted-grown, Al[sub 0.34]Ga[sub 0.66]As/GaAs cascade with AM1.5 efficiency of 19.9% and 21% at 1-sun and 7-suns, respectively, was obtained. This represents an important milestone in the development of an AlGaAs/GaAs cascade by OMVPE utilizing a tunnel interconnect and demonstrates a proof-of-concept for the inverted-growth approach.

    14. The W40 region in the gould belt: An embedded cluster and H II region at the junction of filaments

      SciTech Connect (OSTI)

      Mallick, K. K.; Ojha, D. K.; Kumar, M. S. N.; Samal, M. R.; Pirogov, L.

      2013-12-20

      We present a multiwavelength study of the W40 star-forming region using infrared (IR) observations in the UKIRT JHK bands, Spitzer Infrared Array Camera bands, and Herschel PACS bands, 2.12 ?m H{sub 2} narrowband imaging, and radio continuum observations from GMRT (610 and 1280 MHz), in a field of view (FoV) of ?34' 40'. Archival Spitzer observations in conjunction with near-IR observations are used to identify 1162 Class II/III and 40 Class I sources in the FoV. The nearest-neighbor stellar surface density analysis shows that the majority of these young stellar objects (YSOs) constitute the embedded cluster centered on the high-mass source IRS 1A South. Some YSOs, predominantly the younger population, are distributed along and trace the filamentary structures at lower stellar surface density. The cluster radius is measured to be 0.44 pcmatching well with the extent of radio emissionwith a peak density of 650 pc{sup 2}. The JHK data are used to map the extinction in the region, which is subsequently used to compute the cloud mass126 M {sub ?} and 71 M {sub ?} for the central cluster and the northern IRS 5 region, respectively. H{sub 2} narrowband imaging shows significant emission, which prominently resembles fluorescent emission arising at the borders of dense regions. Radio continuum analysis shows that this region has a blister morphology, with the radio peak coinciding with a protostellar source. Free-free emission spectral energy distribution analysis is used to obtain physical parameters of the overall photoionized region and the IRS 5 sub-region. This multiwavelength scenario is suggestive of star formation having resulted from the merging of multiple filaments to form a hub. Star formation seems to have taken place in two successive epochs, with the first epoch traced by the central cluster and the high-mass star(s)followed by a second epoch that is spreading into the filaments as uncovered by the Class I sources and even younger protostellar sources along the filaments. The IRS 5 H II region displays indications of swept-up material that has possibly led to the formation of protostars.

    15. Energy level alignment in polymer organic solar cells at donor-acceptor planar junction formed by electrospray vacuum deposition

      SciTech Connect (OSTI)

      Kim, Ji-Hoon; Hong, Jong-Am; Kwon, Dae-Gyeon; Seo, Jaewon; Park, Yongsup

      2014-04-21

      Using ultraviolet photoelectron spectroscopy (UPS), we have measured the energy level offset at the planar interface between poly(3-hexylthiophene) (P3HT) and C{sub 61}-butyric acid methylester (PCBM). Gradual deposition of PCBM onto spin-coated P3HT in high vacuum was made possible by using electrospray vacuum deposition (EVD). The UPS measurement of EVD-prepared planar interface resulted in the energy level offset of 0.91?eV between P3HT HOMO and PCBM LUMO, which is considered as the upper limit of V{sub oc} of the organic photovoltaic cells.

    16. Passive Active Multi-Junction 3, 7 GHZ launcher for Tore-Supra Long Pulse Experiments. Manufacturing Process and Tests

      SciTech Connect (OSTI)

      Guilhem, D.; Achard, J.; Bertrand, B.; Bej, Z.; Bibet, Ph.; Brun, C.; Chantant, M.; Delmas, E.; Delpech, L.; Doceul, Y.; Ekedahl, A.; Goletto, C.; Goniche, M.; Hatchressian, J. C.; Hillairet, J.; Houry, M.; Joubert, P.; Lipa, M.; Madeleine, S.; Martinez, A.

      2009-11-26

      The design and the fabrication of a new Lower Hybrid (LH) actively cooled antenna based on the passive active concept is a part of the CIMES project (Components for the Injection of Mater and Energy in Steady-state). The major objectives of Tore-Supra program is to achieve 1000 s pulses with this LH launcher, by coupling routinely >3 MW of LH wave at 3.7 GHz to the plasma with a parallel index n{sub ||} = 1.7 {sup {+-}}{sup 0.2}. The launcher is on its way to achieve its validation tests--low power Radio Frequency (RF) measurements, vacuum and hydraulic leak tests--and will be installed and commissioned on plasma during the fall of 2009.

    17. InP single-junction concentrator cell. Semi-annual report, October 1, 1980-March 31, 1981

      SciTech Connect (OSTI)

      Gregory, P.E.

      1981-01-01

      The purpose of this work is to develop a glass-sealed back-contacted InP or InGaAsP solar cell for use in concentrator systems. Work to be performed in developing this cell includes growing the InP epitaxial layers needed for cells and test structures, developing a model to be used in optimizing the cell structure, measurement of InP parameters necessary for use in the model, and developing the glass-bonding and back-contacting scheme. Accomplishments in these areas are discussed.

    18. Design, fabrication, and performance analysis of GaN vertical electron transistors with a buried p/n junction

      SciTech Connect (OSTI)

      Yeluri, Ramya Lu, Jing; Keller, Stacia; Mishra, Umesh K.; Hurni, Christophe A.; Browne, David A.; Speck, James S.; Chowdhury, Srabanti

      2015-05-04

      The Current Aperture Vertical Electron Transistor (CAVET) combines the high conductivity of the two dimensional electron gas channel at the AlGaN/GaN heterojunction with better field distribution offered by a vertical design. In this work, CAVETs with buried, conductive p-GaN layers as the current blocking layer are reported. The p-GaN layer was regrown by metalorganic chemical vapor deposition and the subsequent channel regrowth was done by ammonia molecular beam epitaxy to maintain the p-GaN conductivity. Transistors with high ON current (10.9?kA/cm{sup 2}) and low ON-resistance (0.4 m? cm{sup 2}) are demonstrated. Non-planar selective area regrowth is identified as the limiting factor to transistor breakdown, using planar and non-planar n/p/n structures. Planar n/p/n structures recorded an estimated electric field of 3.1 MV/cm, while non-planar structures showed a much lower breakdown voltage. Lowering the p-GaN regrowth temperature improved breakdown in the non-planar n/p/n structure. Combining high breakdown voltage with high current will enable GaN vertical transistors with high power densities.

    19. Highly Efficient 32.3% Monolithic GaInP/GaAs/Ge Triple Junction Concentrator Solar Cells

      SciTech Connect (OSTI)

      Cotal, H. L.; Lillington, D. R.; Ermer, J. H.; King, R. R.; Karam, N. H.; Kurtz, S. R.; Friedman, D. J.; Olson, J. M.; Ward, S.; Duda, A.; Emery, K. A.; Moriarty, T.

      2000-01-01

      Based on recent cell improvements for space applications, multijunction cells apear to be ideal candidates for high efficiency, cost effective, PV concentrator systems.

    20. Performance of CPV System Using Three Types of III-V Multi-Junction Solar Cells: Preprint

      SciTech Connect (OSTI)

      Hashimoto, J.; Kurtz, S.; Sakurai, K.; Muller, M.; Otani, K.

      2012-04-01

      The performance of sister CPV systems is compared in Japan and the U.S. The conclusion is that the alignment of the systems can affect the design of the solar cells.

    1. Towards sustainable settlement growth: A new multi-criteria assessment for implementing environmental targets into strategic urban planning

      SciTech Connect (OSTI)

      Schetke, Sophie; Haase, Dagmar; Koetter, Theo

      2012-01-15

      For nearly one decade, the German political and research-agenda has been to a large extent determined by the ongoing question of how to limit the expansion of settlement areas around cities in order to preserve natural resources, make settlement growth more sustainable and to strengthen the re-use of existing inner-urban areas (see a.o. Koetter et al. 2009a, 2010; Schetke et al. 2009, 2010b). What is already under discussion within the international literature are the recommendations of the German Council for Sustainability to quantitatively reduce the daily greenfield consumption from the current rate of over 100 ha per day to a rate of 30 ha per day in 2020 and to bring urban infill development up to a ratio of 3:1 with greenfield development (German Council for Sustainability, 2004).). This paper addresses the added value beyond those abstract political targets and presents an innovative, multi-criteria assessment (MCA) of greenfield and infill sites to evaluate their sustainability and resource efficiency. MCA development and its incorporation into a Decision Support System (DSS) were accomplished by utilising a stakeholder-driven approach. The resulting tool can be applied in preparing and revising land-use plans. The paper presents the concept and the development process of the MCA-DSS. Test runs with planners prove that the evaluation of potential housing sites using individually weighted environmental indicators helps to identify those strategies of housing development that accord most closely with sustainability goals. The tests further show that the development of greenfield sites generally exhibits less sustainability than that of infill sites. - Highlights: Black-Right-Pointing-Pointer This paper presents an innovative, multi-criteria assessment (MCA) of greenfield and infill sites. Black-Right-Pointing-Pointer The MCA evaluates sustainability and resource efficiency of potential housing sites in a stakeholder-driven approach. Black-Right-Pointing-Pointer Test runs with planners identified prominent environmental indicators and assigned individual weights. Black-Right-Pointing-Pointer The resulting tool can be applied in preparing and revising land-use plans according to sustainable housing development. Black-Right-Pointing-Pointer Test runs also show that greenfield development generally exhibits less sustainability than infill development.

    2. EA-1458: Environmental Assessment

      Broader source: Energy.gov [DOE]

      Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Sites, DOE Grand Junction Office, Grand Junction, Colorado

    3. Portage County, Wisconsin: Energy Resources | Open Energy Information

      Open Energy Info (EERE)

      Almond, Wisconsin Amherst Junction, Wisconsin Amherst, Wisconsin Carson, Wisconsin Eau Pleine, Wisconsin Hull, Wisconsin Junction City, Wisconsin Lanark, Wisconsin Linwood,...

    4. 2013 Peer Review Opening Plenary Presentation

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      GTO 2013 Peer Review Glass Buttes, OR (DOE) Geothermal Technologies Office 2 Energy Efficiency & Renewable Energy eere.energy.gov Program Name or Ancillary Text eere.energy.gov  Geothermal Technologies Office: * Where are we now, and where are we going?  Exploration Roadmap  EGS Roadmap Overview 3 Energy Efficiency & Renewable Energy eere.energy.gov Low Temp Co-Production Blind Hydrothermal In-Field EGS Greenfield EGS Timeline Near Term Near Term Near to Intermediate Near to

    5. Wisdom Way Solar Village: Design, Construction, and Analysis of a Low Energy Community

      SciTech Connect (OSTI)

      Aldrich, Robb

      2012-08-01

      This report describes work conducted at the Wisdom Way Solar Village (WWSV), a community of 10 high performance duplexes (20 homes) in Greenfield, MA, constructed by Rural Development, Inc. (RDI). Building America's CARB team monitored temperatures and comfort in several homes during the winter of 2009-2010, and tracked utility bill information from 13 occupied homes. Because of efficient lights, appliances, and conscientious home occupants, the energy generated by the solar electric systems exceeded the electric energy used in most homes.

    6. Oregon: DOE Advances Game-Changing EGS Geothermal Technology at the

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Newberry Volcano | Department of Energy DOE Advances Game-Changing EGS Geothermal Technology at the Newberry Volcano Oregon: DOE Advances Game-Changing EGS Geothermal Technology at the Newberry Volcano April 9, 2013 - 12:00am Addthis The AltaRock Enhanced Geothermal Systems (EGS) demonstration project, at Newberry Volcano near Bend, Oregon, represents a key step in geothermal energy development, demonstrating that an engineered geothermal reservoir can be developed at a greenfield site.

    7. An inverted AlGaAs/GaAs patterned-Ge tunnel junction cascade concentrator solar cell. Final subcontract report, 1 January 1991--31 August 1992

      SciTech Connect (OSTI)

      Venkatasubramanian, R.

      1993-01-01

      This report describes work to develop inverted-grown Al{sub 0.34}Ga{sub 0.66}As/GaAs cascades. Several significant developments are reported on as follows: (1) The AM1.5 1-sun total-area efficiency of the top Al{sub 0.34}Ga{sub 0.66}As cell for the cascade was improved from 11.3% to 13.2% (NREL measurement [total-area]). (2) The ``cycled`` organometallic vapor phase epitaxy growth (OMVPE) was studied in detail utilizing a combination of characterization techniques including Hall-data, photoluminescence, and secondary ion mass spectroscopy. (3) A technique called eutectic-metal-bonding (EMB) was developed by strain-free mounting of thin GaAs-AlGaAs films (based on lattice-matched growth on Ge substrates and selective plasma etching of Ge substrates) onto Si carrier substrates. Minority-carrier lifetime in an EMB GaAs double-heterostructure was measured as high as 103 nsec, the highest lifetime report for a freestanding GaAs thin film. (4) A thin-film, inverted-grown GaAs cell with a 1-sun AM1.5 active-area efficiency of 20.3% was obtained. This cell was eutectic-metal-bonded onto Si. (5) A thin-film inverted-grown, Al{sub 0.34}Ga{sub 0.66}As/GaAs cascade with AM1.5 efficiency of 19.9% and 21% at 1-sun and 7-suns, respectively, was obtained. This represents an important milestone in the development of an AlGaAs/GaAs cascade by OMVPE utilizing a tunnel interconnect and demonstrates a proof-of-concept for the inverted-growth approach.

    8. Manufacturing Cost Analysis Relevant to Single-and Dual-Junction Photovoltaic Cells Fabricated with III-Vs and III-Vs Grown on Czochralski Silicon (Presentation)

      SciTech Connect (OSTI)

      Woodhouse, M.; Goodrich, A.

      2014-05-01

      In this analysis we examine the current, mid-term, and long-term manufacturing costs for III-Vs deposited by traditional Metal Organic Vapor Phase Epitaxy (MOVPE).

    9. Grand Junction/New Brunswick Laboratory interlaboratory measurement program. Part I. Evaluation. Part II. Methods manual. [National Uranium Resources Evaluation (NURE)

      SciTech Connect (OSTI)

      Trahey, N.M.; Voeks, A.M.; Soriano, M.D.

      1982-09-01

      This interlaboratory measurement program was conducted to provide a reference data base for comparison of measurements performed using various measurement methods under the National Uranium Resources Evaluation (NURE) Program. The design of the program also included an evaluation of the accuracies of the measurement methods used by the participating laboratories in measuring New Brunswick Laboratory Reference Materials (RMs) 101-A through 110-A, the low level uranium and thorium samples distributed in the program. Finally, consensus values for these RMs, based on participants measurement data, were calculated.

    10. On the conditions for enhanced transport through molecular junctions based on metal centres ligated by pairs of pyridazino-derived ligands

      SciTech Connect (OSTI)

      Ding, Bei; Washington, Victoria; Dunietz, Barry D

      2010-10-10

      Transport properties of a Ni bis-?{sup 2} complex ligated by a pair of bi-pyridazino derivative are considered. This complex provides the opportunity to avoid perpendicular alignment of the ligand ? planes. We study the effects of ?-bonding and of intramolecular hydrogen bonding between the ligands as mediated by the metal centre on electron transport. The complicated effect of the electronic structure equilibration with the electrodes on the transport is discussed. The analysis at the electronic structure level provides guidelines to design a molecular bridge that is based on metal complexation with effective electronic transport.

    11. Remedial actions at the former Climax Uranium Company, Uranium Mill site, Grand Junction, Mesa County, Colorado. Volume 2, Appendices: Final environmental impact statement

      SciTech Connect (OSTI)

      1986-12-01

      This volume contains Appendix F--hydrology report, and Appendix G--flood plain and wetland assessment. Contents of the hydrology report include: surface water; ground water; potentially affected hydrogeologic environment-processing site; potentially affected hydrogeologic environment-Cheney reservoir site; potentially affected hydrogeologic environment-Two Road site; and conclusions-ground water.

    12. Control of normal and abnormal bipolar resistive switching by interface junction on In/Nb:SrTiO{sub 3} interface

      SciTech Connect (OSTI)

      Sun, J.; Jia, C. H.; Li, G. Q.; Zhang, W. F.

      2012-09-24

      The resistive switching behaviors of indium (In)/Nb:SrTiO{sub 3} (NSTO) with different metal/semiconductor contacts are investigated. The In electrodes with the Schottky contacts are fabricated on NSTO surface using direct current reactive magnetron sputtering, and the fresh In is directly pressed to form the Ohmic contact. The device with one Schottky barrier displays a normal bipolar resistive switching (BRS) behavior, while the device with two Schottky barriers shows an abnormal BRS behavior. The results demonstrate that the injection and trapping or detrapping of carriers near the interface between the metal electrode and semiconductor are closely related to the resistive switching performance.

    13. Grain boundary junctions of FeSe0.5Te0.5 thin films on SrTiO3...

      Office of Scientific and Technical Information (OSTI)

      Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA National High Magnetic Field Laboratory, Florida State University,...

    14. Optimization of Phase-Engineered a-Si:H-Based Multi-Junction Solar Cells: Final Technical Report, October 2001-July 2005

      SciTech Connect (OSTI)

      Wronski, C. R.; Collins, R. W.; Podraza, N. J.; Vlahos, V.; Pearce, J. M.; Deng, J.; Albert, M.; Ferreira, G. M.; Chen, C.

      2006-08-01

      The scope of the work under this subcontract has involved investigating engineered improvements in the performance and stability of solar cells in a systematic way, which included the following four tasks: (1) Materials research and device development; (2) Process improvement directed by real time diagnostics; (3) Device loss mechanisms; and (4) Characterization strategies for advanced materials Our work has resulted in new and important insights into the deposition of a-Si:H-based materials, as well as into the nature of the Staebler-Wronski Effect (SWE). Presumably, many of these insights will be used by industrial partners to develop more systematic approaches in optimizing solar cells for higher performance and stability. This effort also cleared up several serious misconceptions about the nature of the p-layer in cells and the SWE in materials and cells. Finally, the subcontract identified future directions that should be pursued for greater understanding and improvement.

    15. GaP/Silicon Tandem Solar Cell with Extended Temperature Range...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      crystalline silicon (Si) substrate, offering lower weight and lower cost. GRC's multi-junction solar cell has bottom solar cell junctions of silicon and a top solar cell junction...

    16. Search for: All records | SciTech Connect

      Office of Scientific and Technical Information (OSTI)

      ... States) Grand Forks Energy Technology Center (United States) Grand Junction Project Office, Grand Junction, CO (United States) HSS Office of Classification Hanford Site (HNF), ...

    17. Building America Technology Solutions for New and Existing Homes...

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      the Designs of Flexible Duct Junction Boxes (Fact Sheet) IBACOS explored the relationships between pressure and physical configurations of flexible duct junction boxes by ...

    18. Jones County, Iowa: Energy Resources | Open Energy Information

      Open Energy Info (EERE)

      Junction, Iowa Martelle, Iowa Monticello, Iowa Morley, Iowa Olin, Iowa Onslow, Iowa Oxford Junction, Iowa Wyoming, Iowa Retrieved from "http:en.openei.orgw...

    19. Optimization of Spin-Triplet Supercurrent in Ferromagnetic Josephson...

      Office of Scientific and Technical Information (OSTI)

      Optimization of Spin-Triplet Supercurrent in Ferromagnetic Josephson Junctions Prev Next Title: Optimization of Spin-Triplet Supercurrent in Ferromagnetic Josephson Junctions ...

    20. Area-dependence of spin-triplet supercurrent in ferromagnetic...

      Office of Scientific and Technical Information (OSTI)

      Area-dependence of spin-triplet supercurrent in ferromagnetic Josephson junctions Title: Area-dependence of spin-triplet supercurrent in ferromagnetic Josephson junctions Authors: ...

    1. Success Stories | Department of Energy

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      April 18, 2013 Solar Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell EERE supported the development of Solar Junction's concentrated photovoltaic...

    2. MANUSCRIPT PREPARATION TEMPLATE FOR THE 35TH IEEE PHOTOVOLTAIC...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      few micrometers. GaAs is used extensively as one of the primary junctions for multi- junction photovoltaic (PV) cells for space applications and concentrator modules. Despite the...

    3. Vice President Biden Announces Plan to Put One Million Advanced Technology

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Vehicles on the Road by 2015 | Department of Energy Plan to Put One Million Advanced Technology Vehicles on the Road by 2015 Vice President Biden Announces Plan to Put One Million Advanced Technology Vehicles on the Road by 2015 January 26, 2011 - 12:00am Addthis Washington, D.C. - Today, Vice President Biden, Chair of the Middle Class Task Force, took the "White House to Main Street Tour" to Greenfield, Indiana, where he visited leading manufacturer Ener1, Inc., which produces

    4. MACDoNALD HOACUE BAYLESS

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      MACDoNALD HOACUE & BAYLESS 81m ATTORNEYS AND COUNSELORS AT LAW 705 Second Avenue Suite 1500 Seattle. Washington 98104-1745 Alec Bayless (1921-1991) Francis Hoague (1909-1993) March 26,2012 Miguel A. Bocanegra Andrea Brenneke Katherine C. Chamberlain Andrew T. Chan Mel Crawford Timothy K. Ford Katrin E. Frank Felicia l. Gittleman Ester Greenfield Kenneth A. MacDonald Elizabeth Poh Amy M. Royalty Joseph R. Shaeffer Tenzin C. Tsorpon David J. Whedbee Jesse Wing Tel 206.622.1604 Fax 206.343.3961

    5. MACDoNALD HOAGUE B,

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      ~ * MACDoNALD HOAGUE & B, ..~ESS * ATTORNEYS AND COUNSELORS AT LAW 705 Second Avenue Suite 1500 Seattle, Washington 98104*1745 Alec Bayless (1921*1991) Francis Hoague (1909-1993) February 22,2012 Miguel A. Bocanegra Andrea Brenneke Katherine C. Chamberlain Andrew T Chan Mel Crawford Timothy K. Ford Katrin E. Frank Felicia L Gittleman Ester Greenfield Kenneth A. MacDonald Elizabeth Poh Amy M. Royalty Joseph R. Shaeffer Tenzin C. Tsorpon David J. Whedbee Jesse Wing Tel 206.622.1604 Fax

    6. I

      Office of Legacy Management (LM)

      of.!Energy ~' ' . The Honorable Joyce Radtke 7525 W . Greenfield Avenue M ilwaukee, W isconsin 53214 Dear Mayor Radtke: , Secretary of Energy Hazel O'Leary has announced a.new approach to openness in then Department.of Energy (DOE) and its communications with the public. In support of this initiative, we are,pleased to.forward the enclosed information related to the Allis-Chalmers Co. site in your jurisdiction'that performed. work for DOE or 'its predecessor agencies. This information is

    7. Producing Solar Cells By Surface Preparation For Accelerated Nucleation Of Microcrystalline Silicon On Heterogeneous Substrates.

      DOE Patents [OSTI]

      Yang, Liyou; Chen, Liangfan

      1998-03-24

      Attractive multi-junction solar cells and single junction solar cells with excellent conversion efficiency can be produced with a microcrystalline tunnel junction, microcrystalline recombination junction or one or more microcrystalline doped layers by special plasma deposition processes which includes plasma etching with only hydrogen or other specified etchants to enhance microcrystalline growth followed by microcrystalline. nucleation with a doped hydrogen-diluted feedstock.

    8. E-print Network : Main View : Search Results for Title: "Reversible...

      Office of Scientific and Technical Information (OSTI)

      Reversible control of spin-polarized supercurrents in ferromagnetic Josephson junctions" Author: Banerjee AND Robinson...

    9. Amorphous semiconductor solar cell

      DOE Patents [OSTI]

      Dalal, Vikram L. (Newark, DE)

      1981-01-01

      A solar cell comprising a back electrical contact, amorphous silicon semiconductor base and junction layers and a top electrical contact includes in its manufacture the step of heat treating the physical junction between the base layer and junction layer to diffuse the dopant species at the physical junction into the base layer.

    10. 2011 Annual Planning Summary for Office of Legacy Management (LM), Grand

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Junction (See LM APS) | Department of Energy Legacy Management (LM), Grand Junction (See LM APS) 2011 Annual Planning Summary for Office of Legacy Management (LM), Grand Junction (See LM APS) The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Office of Legacy Management (LM), Grand Junction (See LM APS). PDF icon 2011 Annual Planning Summary for Office of Legacy Management (LM), Grand Junction (See LM APS) More Documents &

    11. u0052100_Beav.PDF

      Office of Legacy Management (LM)

      312 Rev. 0 Environmental Assessment of Ground Water Compliance at the Grand Junction UMTRA Project Site (Climax Uranium Millsite) Final September 1999 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-96GJ87335 for the U.S. Department of Energy EA of Ground Water Compliance at the Grand Junction UMTRA Project Site DOE Grand Junction Office Page ii Final September 1999 Contents Executive

    12. Demonstration of a fuel-saving system for paint-curing ovens

      SciTech Connect (OSTI)

      Jensen, W P

      1980-12-01

      Two curing ovens at Roll Coater, Inc. (the Greenfield, Indiana plant) were retrofitted to save fuel and cost. Included in the fuel conserving retrofit was the design, fabrication, and installation of an afterburner for each of the two ovens, piping their combustion products to each of two commonly housed waste heat boilers before discharge from those units to the atmosphere at about 450 F. Depending on the product being run and the coating applied, natural gas requirements have been reduced by 45 to 65% with operation of the zone incinerators only and by as much as 65 to 85% including the effects of both the zone incineration and heat recovery by means of the afterburners and waste heat boilers. A demonstration program on conversion work at the No. 3 line at Greenfield and results are described in Section 2. Section 3 describes the retrofit design and the system construction. System performance (tests and measurements, qualitative performance, maintenance factors, and economic performance) is described in Section 4. Conclusions and recommendations are summarized.

    13. Monolithic multi-color light emission/detection device

      DOE Patents [OSTI]

      Wanlass, M.W.

      1995-02-21

      A single-crystal, monolithic, tandem, multi-color optical transceiver device is described, including (a) an InP substrate having upper and lower surfaces, (b) a first junction on the upper surface of the InP substrate, (c) a second junction on the first junction. The first junction is preferably GaInAsP of defined composition, and the second junction is preferably InP. The two junctions are lattice matched. The second junction has a larger energy band gap than the first junction. Additional junctions having successively larger energy band gaps may be included. The device is capable of simultaneous and distinct multi-color emission and detection over a single optical fiber. 5 figs.

    14. Monolithic multi-color light emission/detection device

      DOE Patents [OSTI]

      Wanlass, Mark W. (Golden, CO)

      1995-01-01

      A single-crystal, monolithic, tandem, multi-color optical transceiver device is described, including (a) an InP substrate having upper and lower surfaces, (b) a first junction on the upper surface of the InP substrate, (c) a second junction on the first junction. The first junction is preferably GaInAsP of defined composition, and the second junction is preferably InP. The two junctions are lattice matched. The second junction has a larger energy band gap than the first junction. Additional junctions having successively larger energy band gaps may be included. The device is capable of simultaneous and distinct multi-color emission and detection over a single optical fiber.

    15. DOE Extends Public Comment Period for the Draft Uranium Leasing...

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      on the Draft ULP PEIS. Grand Junction: April 22, 2013, from 6:30 to 9 p.m. at the Colorado Mesa University, University Center Ballroom, 1455 N. 12th St., Grand Junction,...

    16. DOE Extends Public Comment Period for Uranium Program Environmental...

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      on the Draft ULP PEIS. Grand Junction: April 22, 2013, from 6:30 to 9 p.m. at the Colorado Mesa University, University Center Ballroom, 1455 N. 12th St., Grand Junction,...

    17. SEP Success Story: City in Colorado Fueling Vehicles with Gas...

      Energy Savers [EERE]

      April 29, 2015 - 8:00pm Addthis Grand Junction's CNG station fuels the city's fleets and ... Pictured above, a Grand Valley Transit bus is preparing to refuel. Grand Junction's CNG ...

    18. untitled

      Energy Savers [EERE]

      Site J. Waugh S.M. Stoller Corporation 2597 B Road, Grand Junction, CO 81503, USA G. Smith GeoSmith Engineering, LLC 2591 B Road, Grand Junction, CO 81503, USA B. Danforth...

    19. DOE and Colorado Mesa University Education Agreement Expands LM's Site Reuse Portfolio

      Broader source: Energy.gov [DOE]

      A partnership with Colorado Mesa University (CMU) in Grand Junction, Colorado, and the U.S. Department of Energy (DOE) recently provided a chance for CMU students and their instructor to visit the Grand Junction, Colorado, Disposal Site.

    20. News | Center for Energy Efficient Materials

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      News May 15, 2014 Multi-junction Solar Cells to Push CPV Efficiencies Beyond 50% GaN-based solar cells for integration to multi-junction photovoltaics could raise concentrated...

    1. Submission Format for IMS2004 (Title in 18-point Times font)

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      with time. The 36 cell module was warmer in the center and on the left edge where the junction box is located, indicating that the junction box may contribute to unequal cell...

    2. CX-002195: Categorical Exclusion Determination

      Broader source: Energy.gov [DOE]

      Install a Test Cover at Grand Junction, Colorado, Disposal SiteCX(s) Applied: B3.1Date: 05/03/2010Location(s): Grand Junction, ColoradoOffice(s): Legacy Management

    3. Search for: All records | DOE PAGES

      Office of Scientific and Technical Information (OSTI)

      ... The junctions and conversionmore process are characterized by atomically resolved scanning transmission electron microscopy, photoluminescence, and Raman spectroscopy. This ...

    4. Nodaway County, Missouri: Energy Resources | Open Energy Information

      Open Energy Info (EERE)

      Clyde, Missouri Conception Junction, Missouri Elmo, Missouri Graham, Missouri Guilford, Missouri Hopkins, Missouri Maryville, Missouri Parnell, Missouri Pickering, Missouri...

    5. Union Parish, Louisiana: Energy Resources | Open Energy Information

      Open Energy Info (EERE)

      Louisiana Farmerville, Louisiana Junction City, Louisiana Lillie, Louisiana Marion, Louisiana Spearsville, Louisiana Retrieved from "http:en.openei.orgw...

    6. Finding

      Office of Legacy Management (LM)

      Finding of No Significant Impact Ground Water Compliance at the Grand Junction UMTRA Project Site (Climax Uranium Millsite) September 1999 U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Finding of No Significant Impact Environmental Assessment The U.S. Department of Energy (DOE) proposes a strategy to achieve ground water compliance at the Grand Junction, Colorado, LJMTRA project site, formerly known as the Climax Uranium Millsite. The proposed compliance strategy is no

    7. gjpip.PDF

      Office of Legacy Management (LM)

      GWGRJ 7.1 Public Involvement Plan for the Environmental Assessment of Ground Water Compliance at the Grand Junction Uranium Mill Tailings Remedial Action (UMTRA) Project Site (Climax Uranium Millsite) July 1999 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work performed under DOE Contract No. DE-AC13-96GJ8733 Public Involvement Plan July 1999 Page 1 Public Involvement Plan for the Environmental Assessment of Ground Water Compliance at the Grand Junction,

    8. Hardeman County, Tennessee: Energy Resources | Open Energy Information

      Open Energy Info (EERE)

      Tennessee Grand Junction, Tennessee Hickory Valley, Tennessee Hornsby, Tennessee Middleton, Tennessee Saulsbury, Tennessee Silerton, Tennessee Toone, Tennessee Whiteville,...

    9. Microsoft Word - lessonsgjsite

      Office of Environmental Management (EM)

      Learned: The Grand Junction Office Site Transfer to Private Ownership Authors: Donna Bergman-Tabbert and Tracy B. Plessinger U.S. Department of Energy Grand Junction Office (USA) ABSTRACT The U.S. Department of Energy Grand Junction Office (DOEGJO) in Grand Junction, Colorado, has played an integral role within the DOE complex for many years. GJO has a reputation for outstanding quality in the performance of complex environmental restoration projects, utilizing state-of-the-art technology.

    10. Microsoft Word - 09012033_DVP.doc

      Office of Legacy Management (LM)

      Grand Junction, Colorado, Office Site April 2009 LMS/GJO/S00209 This page intentionally left blank U.S. Department of Energy DVP-February 2009, Grand Junction, Colorado, Office Site April 2009 RIN 09012033 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction Site, Sample Location Map ....................................................................................4 Data Assessment

    11. Microsoft Word - 09072485 DVP.doc

      Office of Legacy Management (LM)

      Groundwater Sampling at the Grand Junction, Colorado, Disposal Site October 2009 LMS/GRJ/S0809 This page intentionally left blank U.S. Department of Energy DVP-August 2009, Grand Junction, Colorado October 2009 RIN 09072485 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction, Colorado, Disposal Site Sample Location Map ....................................................3 Data

    12. Microsoft Word - 10073245 DVP.doc

      Office of Legacy Management (LM)

      0 Groundwater Sampling at the Grand Junction, Colorado, Disposal Site October 2010 LMS/GRJ/S00810 This page intentionally left blank U.S. Department of Energy DVP-August 2010, Grand Junction, Colorado October 2010 RIN 10073245 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction, Colorado, Disposal Site Sample Location Map ....................................................3 Data

    13. Microsoft Word - 10123525 DVP

      Office of Legacy Management (LM)

      and Surface Water Sampling at the Grand Junction, Colorado, Processing Site March 2011 LMS/GJT/S00111 This page intentionally left blank U.S. Department of Energy DVP-January 2011, Grand Junction, Colorado March 2011 RIN 10123525 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction, Colorado, Processing Site, Sample Location Map ................................................3 Data

    14. Microsoft Word - 11013578 DVP

      Office of Legacy Management (LM)

      1 Groundwater and Surface Water Sampling at the Grand Junction, Colorado, Office Site April 2011 LMS/GJO/S00211 This page intentionally left blank U.S. Department of Energy DVP-February 2011, Grand Junction, Colorado April 2011 RIN 11013578 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction Site, Sample Location Map

    15. Microsoft Word - 11084030 DVP

      Office of Legacy Management (LM)

      1 Groundwater Sampling at the Grand Junction, Colorado, Disposal Site November 2011 LMS/GRJ/S00811 This page intentionally left blank U.S. Department of Energy DVP-August 2011, Grand Junction, Colorado November 2011 RIN 11084030 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction, Colorado, Disposal Site Sample Location Map ....................................................3 Data

    16. Microsoft Word - 13025100 DVP.docx

      Office of Legacy Management (LM)

      Grand Junction, Colorado, Site April 2013 LMS/GJO/S00213 This page intentionally left blank U.S. Department of Energy DVP-February 2013, Grand Junction, Colorado April 2013 RIN 13025100 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction Site, Sample Location Map ....................................................................................3 Data Assessment Summary

    17. Microsoft Word - RIN 08071743 DocProd.doc

      Office of Legacy Management (LM)

      Grand Junction, Colorado Disposal Site January 2009 LMS/GRJ/S00808 This page intentionally left blank U.S. Department of Energy DVP-August 2008, Grand Junction, Colorado, Disposal Site January 2009 RIN 08071743 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction, Colorado, Disposal Site Sample Location Map ....................................................3 Data Assessment

    18. Microsoft Word - RIN 10022849 DVP.doc

      Office of Legacy Management (LM)

      0 Water Sampling at the Grand Junction, Colorado, Office Site May 2010 LMS/GJO/S00210 This page intentionally left blank U.S. Department of Energy DVP-February 2010, Grand Junction, Colorado May 2010 RIN 10022849 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction Site, Sample Location Map ....................................................................................4 Data

    19. Microsoft Word - RIN 12014285 DVP

      Office of Legacy Management (LM)

      2 Water Sampling at the Grand Junction, Colorado, Office Site March 2012 LMS/GJO/S00112 This page intentionally left blank U.S. Department of Energy DVP-January 2012, Grand Junction, Colorado March 2012 RIN 12014285 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction Site, Sample Location Map ....................................................................................3 Data

    20. Microsoft Word - RIN 12084759 DVP

      Office of Legacy Management (LM)

      Sampling at the Grand Junction, Colorado, Disposal Site October 2012 LMS/GRJ/S00812 This page intentionally left blank U.S. Department of Energy DVP-August 2012, Grand Junction, Colorado October 2012 RIN 12084759 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction, Colorado, Disposal Site Sample Location Map ....................................................3 Data Assessment

    1. September 2004 Water Sampling

      Office of Legacy Management (LM)

      Grand Junction, Colorado, Site April 2014 LMS/GJO/S00214 This page intentionally left blank U.S. Department of Energy DVP-February 2014, Grand Junction, Colorado April 2014 RIN 14025928 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction, Colorado, Site Sample Location Map ...................................................................3 Data Assessment Summary

    2. September 2004 Water Sampling

      Office of Legacy Management (LM)

      February 2015 Groundwater and Surface Water Sampling at the Grand Junction, Colorado, Site April 2015 LMS/GJO/S00215 This page intentionally left blank U.S. Department of Energy DVP-February 2015, Grand Junction, Colorado, Site April 2015 RIN 15026795 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction, Colorado, Site Sample Location Map

    3. September 2004 Water Sampling

      Office of Legacy Management (LM)

      Groundwater Sampling at the Grand Junction, Colorado, Disposal Site November 2014 LMS/GRJ/S00814 This page intentionally left blank U.S. Department of Energy DVP-August 2014, Grand Junction, Colorado November 2014 RIN 14076376 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction, Colorado, Disposal Site Sample Location Map ....................................................3 Data

    4. September 2004 Water Sampling

      Office of Legacy Management (LM)

      Sampling at the Grand Junction, Colorado, Disposal Site November 2013 LMS/GRJ/S00813 This page intentionally left blank U.S. Department of Energy DVP-August 2013, Grand Junction, Colorado November 2013 RIN 13075515 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction, Colorado, Disposal Site Sample Location Map ....................................................3 Data Assessment

    5. HIsmelt{reg_sign} technology: the future of ironmaking

      SciTech Connect (OSTI)

      Leczo, T.

      2009-03-15

      The unique liquid ironmaking process of HIsmelt{reg_sign} technology produces LD-quality hot metal or pig iron using lower-quality iron ore and non-coking coal, and a variety of iron and carbon-bearing mill wastes, without blending or agglomeration. A HIsmelt facility can replace an obsolete blast furnace in a brownfield application or can be the iron-producing component of a greenfield state-of-the-art steelmaking plant. Two companies in China have signed license agreements to build HIsmelt facilities, but are waiting until the plant in Kwinana, Australia operates for 3 months without any shutdowns or delays before they start construction on their plants.

    6. Reduction in Fabrication Costs of Gas Diffusion Layers

      SciTech Connect (OSTI)

      Jason Morgan; Donald Connors; Michael Hickner

      2012-07-10

      Ballard Material Products (BMP) performed a pre-design technical and cost analysis of state of the art production technologies feasible for high volume GDL manufacturing. Based upon criteria that also included environmental health and safety, customer quality requirements, and future needs, BMP selected technologies that can be integrated into its current manufacturing process. These selections included Many-At-A-Time (MAAT) coating and continuous mixing technologies, as well as various on-line process control tools. These processes have allowed BMP to produce high performance GDLs at lower cost for near-term markets, as well as to define the inputs needed to develop a conceptual Greenfield facility to meet the cost targets for automotive volumes of 500,000 vehicles per year.

    7. Yahoo! Compute Coop (YCC): A Next-Generation Passive Cooling Design for Data Centers

      SciTech Connect (OSTI)

      Robison, AD; Page, Christina; Lytle, Bob

      2011-09-13

      The purpose of the Yahoo! Compute Coop (YCC) project is to research, design, build and implement a greenfield "efficient data factory" and to specifically demonstrate that the YCC concept is feasible for large facilities housing tens of thousands of heat-producing computing servers. The project scope for the Yahoo! Compute Coop technology includes: - Analyzing and implementing ways in which to drastically decrease energy consumption and waste output. - Analyzing the laws of thermodynamics and implementing naturally occurring environmental effects in order to maximize the "free-cooling" for large data center facilities. "Free cooling" is the direct usage of outside air to cool the servers vs. traditional "mechanical cooling" which is supplied by chillers or other Dx units. - Redesigning and simplifying building materials and methods. - Shortening and simplifying build-to-operate schedules while at the same time reducing initial build and operating costs. Selected for its favorable climate, the greenfield project site is located in Lockport, NY. Construction on the 9.0 MW critical load data center facility began in May 2009, with the fully operational facility deployed in September 2010. The relatively low initial build cost, compatibility with current server and network models, and the efficient use of power and water are all key features that make it a highly compatible and globally implementable design innovation for the data center industry. Yahoo! Compute Coop technology is designed to achieve 99.98% uptime availability. This integrated building design allows for free cooling 99% of the year via the building’s unique shape and orientation, as well as server physical configuration.

    8. High-efficiency solar cell and method for fabrication

      DOE Patents [OSTI]

      Hou, H.Q.; Reinhardt, K.C.

      1999-08-31

      A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD). 4 figs.

    9. High-efficiency solar cell and method for fabrication

      DOE Patents [OSTI]

      Hou, Hong Q.; Reinhardt, Kitt C.

      1999-01-01

      A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD).

    10. Dilute group III-V nitride intermediate band solar cells with contact blocking layers

      DOE Patents [OSTI]

      Walukiewicz, Wladyslaw; Yu, Kin Man

      2015-02-24

      An intermediate band solar cell (IBSC) is provided including a p-n junction based on dilute III-V nitride materials and a pair of contact blocking layers positioned on opposite surfaces of the p-n junction for electrically isolating the intermediate band of the p-n junction by blocking the charge transport in the intermediate band without affecting the electron and hole collection efficiency of the p-n junction, thereby increasing open circuit voltage (V.sub.OC) of the IBSC and increasing the photocurrent by utilizing the intermediate band to absorb photons with energy below the band gap of the absorber layers of the IBSC. Hence, the overall power conversion efficiency of a IBSC will be much higher than an conventional single junction solar cell. The p-n junction absorber layers of the IBSC may further have compositionally graded nitrogen concentrations to provide an electric field for more efficient charge collection.

    11. Dilute Group III-V nitride intermediate band solar cells with contact blocking layers

      DOE Patents [OSTI]

      Walukiewicz, Wladyslaw; Yu, Kin Man

      2012-07-31

      An intermediate band solar cell (IBSC) is provided including a p-n junction based on dilute III-V nitride materials and a pair of contact blocking layers positioned on opposite surfaces of the p-n junction for electrically isolating the intermediate band of the p-n junction by blocking the charge transport in the intermediate band without affecting the electron and hole collection efficiency of the p-n junction, thereby increasing open circuit voltage (V.sub.OC) of the IBSC and increasing the photocurrent by utilizing the intermediate band to absorb photons with energy below the band gap of the absorber layers of the IBSC. Hence, the overall power conversion efficiency of a IBSC will be much higher than an conventional single junction solar cell. The p-n junction absorber layers of the IBSC may further have compositionally graded nitrogen concentrations to provide an electric field for more efficient charge collection.

    12. Toward a Monolithic Lattice-Matched III-V on Silicon Tandem Solar Cell

      SciTech Connect (OSTI)

      Geisz, J. F.; Olson, J. M.; Friedman, D. J.

      2004-09-01

      A two-junction device consisting of a 1.7-eV GaNPAs junction on a 1.1-eV silicon junction has the theoretical potential to achieve nearly optimal efficiency for a two-junction tandem cell. We have demonstrated some of the key components toward realizing such a cell, including GaNPAs top cells grown on silicon substrates, GaP-based tunnel junctions grown on silicon substrates, and diffused silicon junctions formed during the epitaxial growth of GaNP on silicon. These components have required the development of techniques for the growth of high crystalline quality GaNPAs on silicon by metal-organic vapor-phase epitaxy.

    13. Josephson oscillations in a series array Josephson voltage standard

      SciTech Connect (OSTI)

      Meyer, H.G.; Krech, W.; Mikolajczak, B.

      1989-06-01

      Josephson oscillations in a large series array of Josephson junctions designed as a superconducting microwave transmission line are studied. For descriptions of the Josephson junctions both the Stewart--McCumber model and the Werthamer model are used. The attenuation of the Josephson oscillations in the considered array is composed of two terms rising from the stripline and from the Josephson junctions. The latter one is of increasing significance for lower than usually applied drive frequencies.

    14. Area-dependence of spin-triplet supercurrent in ferromagnetic Josephson

      Office of Scientific and Technical Information (OSTI)

      junctions (Journal Article) | DOE PAGES Publisher's Accepted Manuscript: Area-dependence of spin-triplet supercurrent in ferromagnetic Josephson junctions Title: Area-dependence of spin-triplet supercurrent in ferromagnetic Josephson junctions Authors: Wang, Yixing ; Pratt, W. P. ; Birge, Norman O. Publication Date: 2012-06-21 OSTI Identifier: 1103623 Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional Journal Information: Journal Volume: 85; Journal Issue: 21;

    15. Optimization of Spin-Triplet Supercurrent in Ferromagnetic Josephson

      Office of Scientific and Technical Information (OSTI)

      Junctions (Journal Article) | DOE PAGES Optimization of Spin-Triplet Supercurrent in Ferromagnetic Josephson Junctions « Prev Next » Title: Optimization of Spin-Triplet Supercurrent in Ferromagnetic Josephson Junctions Authors: Klose, Carolin ; Khaire, Trupti S. ; Wang, Yixing ; Pratt, W. P. ; Birge, Norman O. ; McMorran, B. J. ; Ginley, T. P. ; Borchers, J. A. ; Kirby, B. J. ; Maranville, B. B. ; Unguris, J. Publication Date: 2012-03-20 OSTI Identifier: 1104246 Type: Publisher's Accepted

    16. Development FD-SOI MOSFET Amplifiers for Integrated Read-Out Circuit of

      Office of Scientific and Technical Information (OSTI)

      Superconducting-Tunnel-Junction Single-Photon-Detectors (Conference) | SciTech Connect Development FD-SOI MOSFET Amplifiers for Integrated Read-Out Circuit of Superconducting-Tunnel-Junction Single-Photon-Detectors Citation Details In-Document Search Title: Development FD-SOI MOSFET Amplifiers for Integrated Read-Out Circuit of Superconducting-Tunnel-Junction Single-Photon-Detectors Authors: Kiuchi, Kenji ; et al. Publication Date: 2015-07-27 OSTI Identifier: 1221323 Report Number(s):

    17. 15.05.29 RH Operando X-ray - JCAP

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Direct Observation of a Semiconductor/Liquid Junction by Operando X-Ray Photoelectron Spectroscopy (XPS) Lichterman , M. F. et al. Direct Observation of the Energetics at a Semiconductor/Liquid Junction by Operando X-Ray Photoelectron Spectroscopy. Energy Environ. Sci ., 2015, DOI: 10.1039/C5EE01014D (2015). Scientific Achievement We demonstrated that the operando XPS technique, applied to a semiconductor/liquid junction, can directly measure the positions of the electronic states of the

    18. High-Efficiency Multijunction Photovoltaics | Center for Energy Efficient

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Materials Efficiency Multijunction Photovoltaics This Task Group focuses on novel approaches to InGaN and multijunction photovoltaics for unprecedented high photovoltaic energy conversion efficiencies. This goal requires development of new techniques for the efficient simultaneous coupling of electrons and photons through the various junctions. Figure 1 shows a device architecture that is one of the goals of the project: a five-junction (5J) solar cell using a high-bandgap InGaN top junction

    19. Strain-assisted current-induced magnetization reversal in magnetic tunnel

      Office of Scientific and Technical Information (OSTI)

      junctions: A micromagnetic study with phase-field microelasticity (Journal Article) | SciTech Connect Strain-assisted current-induced magnetization reversal in magnetic tunnel junctions: A micromagnetic study with phase-field microelasticity Citation Details In-Document Search Title: Strain-assisted current-induced magnetization reversal in magnetic tunnel junctions: A micromagnetic study with phase-field microelasticity Effect of substrate misfit strain on current-induced in-plane

    20. shprkEA.doc

      Office of Legacy Management (LM)

      EA-1388 Environmental Assessment of Ground Water Compliance at the Shiprock Uranium Mill Tailings Site Final September 2001 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-96GJ87335 This Page Intentionally Blank DOE Grand Junction Office EA of Ground Water Compliance at the Shiprock Site September 2001 Final Page iii Contents Page Acronyms and Abbreviations

    1. Guneafinal-for laser printer.doc

      Office of Legacy Management (LM)

      11900 DOE/EA-1399 Environmental Assessment of Ground Water Compliance at the Gunnison, Colorado, UMTRA Project Site Final July 2002 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work performed Under DOE Contract No. DE-AC13-96GJ87355 DOE Grand Junction Office EA of Ground Water Compliance at the Gunnison Site July 2002 Final Page iii Contents Page Acronyms and Abbreviations

    2. Microsoft Word - IR-03-02-11.doc

      Office of Legacy Management (LM)

      Grand Junction, Colorado, Site March 2011 Page 1 2011 Annual Inspection Report for the Grand Junction, Colorado, Site Summary The Grand Junction, Colorado, Site, inspected on February 15, 2011, was in excellent condition. Physical and institutional controls enacted at the site continue to be effective in preventing exposure to contamination remaining on the property. No cause for a follow-up inspection was identified. 1.0 Introduction This report presents the results of the annual U.S.

    3. Microsoft Word - S07776_MonProg

      Office of Legacy Management (LM)

      Groundwater Monitoring Program at the Grand Junction, Colorado, Site June 2011 LMS/GJO/S07776 This page intentionally left blank LMS/GJO/S07776 Evaluation of the Groundwater Monitoring Program at the Grand Junction, Colorado, Site June 2011 This page intentionally left blank U.S. Department of Energy Evaluation of the Groundwater Monitoring Program-Grand Junction Site June 2011 Doc. No. S07776 Page i Contents Abbreviations

    4. Microsoft Word - TR05-09.doc

      Office of Legacy Management (LM)

      5-Year Inspection - Grand Junction, Colorado, Processing Site May 2011 Page 1 2011 5-Year Inspection and Site Status Report for the Grand Junction, Colorado, UMTRCA Title I Processing Site Summary The Grand Junction, Colorado, Processing Site was inspected on March 30, 2011. The site was in excellent condition. Construction of the Riverside Parkway through the site was completed since the last inspection in 2006. There was no evidence of unapproved groundwater extraction or exposure.

    5. Microsoft Word - U0163300.doc

      Office of Legacy Management (LM)

      EA-1458 Environmental Assessment of Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Sites Final February 2003 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-02GJ79491 This page intentionally left blank DOE Grand Junction Office EA of Ground Water Compliance at the Slick Rock Sites February 2003 Final Page iii Contents Page Acronyms and Abbreviations

    6. Microsoft Word - U0179700.doc

      Office of Legacy Management (LM)

      700 DOE/EA-1466 Environmental Assessment of Ground Water Compliance at the Naturita, Colorado, UMTRA Project Site April 2003 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-02GJ79491 This page intentionally left blank DOE Grand Junction Office EA of Ground Water Compliance at the Naturita Site April 2003 Page iii Contents Page Acronyms and Abbreviations

    7. Microsoft Word - U01866.doc

      Office of Legacy Management (LM)

      186600 GJO-2003-489-TAC GJO-GWDUR 2.0 UMTRA Ground Water Project Verification Monitoring Report for the Durango, Colorado, UMTRA Project Site September 2003 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-02GJ79491 Document Number U0186600 Contents DOE/Grand Junction Office Verification Monitoring Report-Durango, Colorado September 2003 Page iii Contents 1.0

    8. U.S. Department of Energy 2014 UMTRCA Title I Annual Report

      Office of Legacy Management (LM)

      Grand Junction, Colorado Page 6-1 6.0 Grand Junction, Colorado, Disposal Site 6.1 Compliance Summary The Grand Junction, Colorado, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I Disposal Site was inspected on December 9, 2014. A portion of the disposal cell remains open to receive low-level radioactive materials from various sources, and the open cell and its supporting structures and facilities are not included in the annual inspection. Ongoing cell cover study areas, which

    9. Long-Term Surveillance Plan for the Site A/Plot M Sites, Palos Forest Preserve, Cook COunty, Illinois

      Office of Legacy Management (LM)

      Long-Term Surveillance Plan for the Site A/Plot M Sites Palos Forest Preserve, Cook County, Illinois September 1999 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract Number DE-AC13-96GJ87335 Task Order Number MAC 99-06 Document Number S00218 DOE/Grand Junction Office Site A/Plot M LTSP September 1999 Page iii Contents 1.0

    10. Long-Term Surveillance and Maintenance Program

      Office of Legacy Management (LM)

      Sampling and Analysis Plan for Radon and Direct Gamma Radiation at the Shiprock, NM Disposal Site Prepared by MACTEC-ERS Grand Junction, Colorado Prepared for U.S. Department of Energy Albuquerque Operations Office Grand Junction Office 2597 B 314 Road Grand Junction, Colorado 81503 Under DOE Contract No. DE-AC13-96GJ87335 Contents 1.0Introduction ............................................................... 1 1.1 Location ............................................................... 1

    11. Building America Technology Solutions for New and Existing Homes: New

      Energy Savers [EERE]

      Insights for Improving the Designs of Flexible Duct Junction Boxes (Fact Sheet) | Department of Energy Building America Technology Solutions for New and Existing Homes: New Insights for Improving the Designs of Flexible Duct Junction Boxes (Fact Sheet) Building America Technology Solutions for New and Existing Homes: New Insights for Improving the Designs of Flexible Duct Junction Boxes (Fact Sheet) IBACOS explored the relationships between pressure and physical configurations of flexible

    12. Final Environmental Assessment of Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Site

      Office of Environmental Management (EM)

      458 Environmental Assessment of Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Sites Final February 2003 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-02GJ79491 DOE Grand Junction Office EA of Ground Water Compliance at the Slick Rock Sites February 2003 Final Page iii Contents Page Acronyms and

    13. Long-Term Surveillance Plan for the Sherwood Project (UMTRCA Title II) Reclamation Cell, Wellpinit, Washington, February 2001

      Office of Legacy Management (LM)

      Program Long-Term Surveillance Plan for the DOE Sherwood Project (UMTRCA Title II) Reclamation Cell Wellpinit, Washington February 2001 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract Number DE-AC13-96GJ87335 Task Order Number MAC 01-06 Document Number S00204 DOE/Grand Junction Office Sherwood LTSP February 2001 Page iii Contents 1.0

    14. DOE/EA-1261 Rev.

      Office of Legacy Management (LM)

      1 Rev. 0 Environmental Assessment of Ground Water Compliance at the Riverton, Wyoming, Uranium Mill Tailings Site Final September 1998 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13 -96GJ87335 for the U.S. Department of Energy This page intentionally left blank DOE Grand Junction Office Page iii EA of Ground Water Compliance at Riverton Final September 1998 Contents Page Acronyms and Abbreviations . . . . . . . .

    15. F:\SHARE\SE\Web_Origs\Wrk_Jan\00-075\U0027603.WP6

      Office of Legacy Management (LM)

      8 Rev. 0 Environmental Assessment of Ground Water Compliance at the Tuba City Uranium Mill Tailings Site December 1998 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-96GJ87335 for the U.S. Department of Energy Document Number U0027603 DOE Grand Junction Office Page iii EA of Ground Water Compliance at Tuba City December 1998 Contents Page Acronyms and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . .

    16. Microsoft Word - TR04-04.doc

      Office of Legacy Management (LM)

      Annual Inspection - Grand Junction, Colorado, Processing Site April 2005 Page 1 2005 Annual Inspection and Site Status Report for the Grand Junction, Colorado, UMTRCA Title I Processing Site Summary The Grand Junction, Colorado, Processing Site was inspected on February 24, 2005. The site is in excellent condition. There was no evidence of unapproved ground water extraction or construction activities that would encounter contaminated ground water. Institutional controls were checked and found to

    17. AntiReflection Coating D

      SciTech Connect (OSTI)

      AIKEN,DANIEL J.

      1999-09-23

      Analytical expressions used to optimize AR coatings for single junction solar cells are extended for use in monolithic, series interconnected multi-junction solar cell AR coating design. The result is an analytical expression which relates the solar cell performance (through J{sub sc}) directly to the AR coating design through the device reflectance. It is also illustrated how AR coating design be used to provide an additional degree of freedom for current matching multi-junction devices.

    18. Fabbrica Trentina Conduttori Srl FCT | Open Energy Information

      Open Energy Info (EERE)

      Place: Rovereto, Italy Zip: 68068 Sector: Solar Product: Italy-based producer of security cables for alarm systems. The firm also provides solar cables and PV junction boxes....

    19. Geary County, Kansas: Energy Resources | Open Energy Information

      Open Energy Info (EERE)

      County, Kansas Fort Riley North, Kansas Fort Riley-Camp Whiteside, Kansas Grandview Plaza, Kansas Junction City, Kansas Milford, Kansas Retrieved from "http:en.openei.orgw...

    20. Multiband semiconductor compositions for photovoltaic devices...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      perfectly satisfying the conditions for single-junction photovoltaics with the potential for power conversion efficiencies surpassing 50%. Inventors: Walukiewicz; Wladyslaw...