Powered by Deep Web Technologies
Note: This page contains sample records for the topic "junction colorado site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Grand Junction, Colorado, Site Fact Sheet  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledo SiteTonawanda North - ConsequencesD D&D Page

2

Site observational work plan for the UMTRA Project Site at Grand Junction, Colorado  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has prepared this initial site observational work plan (SOWP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project site in Grand Junction, Colorado. This SOWP is one of the first UMTRA Ground Water Project documents developed to select a compliance strategy that meets the UMTRA ground water standards (40 CFR Part 192, as amended by 60 FR 2854) for the Grand Junction site. This SOWP applies information about the Grand Junction site to the compliance strategy selection framework developed in the UMTRA Ground Water Project draft programmatic environmental impact statement (PEIS). This risk-based, decision-making framework identifies the decision logic for selecting compliance strategies that could be used to meet the ground water standards. The DOE goal is to use the observational method to implement a cost-effective site strategy that complies with the ground water standards and protects human health and the environment. Based on an evaluation of the site characterization and risk assessment data available for the preparation of this SOWP, DOE proposes that the most likely compliance strategy for the Grand Junction site is no remediation based on the application of supplemental standards. This proposed strategy is based on a conceptual site model that indicates site-related contamination is confined to a limited-use aquifer as defined in the ground water standards.

NONE

1996-03-01T23:59:59.000Z

3

EIS-0126: Remedial Actions at the Former Climax Uranium Company Uranium Mill Site, Grand Junction, Mesa County, Colorado  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy developed this EIS to assess the environmental impacts of remediating the residual radioactive materials left from the inactive uranium processing site and associated properties located in Grand Junction, Colorado.

4

Long-term surveillance plan for the Cheney disposal site near Grand Junction, Colorado  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney disposal site. The site is in Mesa County near Grand Junction, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects public health and safety and the environment. Before each disposal site may be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Cheney disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete and the NRC formally accepts this plan. This document describes the long-term surveillance program the DOE will implement to ensure that the Cheney disposal site performs as designed. The program is based on site inspections to identify potential threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

NONE

1997-04-01T23:59:59.000Z

5

Site observational work plan for the UMTRA project site at Grand Junction, Colorado  

SciTech Connect (OSTI)

This site observational work plan (SOWP) is one of the first Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project documents developed to select a compliance strategy that meets the UMTRA ground water standards for the Grand Junction site. This SOWP applies information about the Grand Junction site to the compliance strategy selection framework developed in the UMTRA Ground Water Project draft programmatic environmental impact statement. This risk-based, decision-making framework identifies the decision logic for selecting compliance strategies that could be used to meet the ground water standards. The US Department of Energy (DOE) goal is to implement a cost-effective site strategy that complies with the ground water standards and protects human health and the environment. Based on an evaluation of the site characterization and risk assessment data available for the preparation of this SOWP, DOE proposes that the most likely compliance strategy for the Grand Junction site is no remediation with the application of supplemental standards. This proposed strategy is based on a conceptual site model that indicates site-related contamination is confined to a limited-use aquifer as defined in the ground water standards. The conceptual model demonstrates that the uranium processing-related contamination at the site has affected the unconfined alluvial aquifer, but not the deeper confined aquifer.

NONE

1996-01-01T23:59:59.000Z

6

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Grand Junction, Colorado  

SciTech Connect (OSTI)

This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site Near Grand Junction, Colorado evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site. This risk assessment follows an approach outlined by the EPA. the first step is to evaluate ground water data collected from monitor wells at the site. Evaluation of these data showed that the contaminants of potential concern in the ground water are arsenic, cadmium, cobalt, fluoride, iron, manganese, molybdenum, nickel, sulfate, uranium, vanadium, zinc, and radium-226. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if they drank from a well installed in the contaminated ground water at the former processing site.

Not Available

1994-06-01T23:59:59.000Z

7

LGRJ Interim Long-Term Surveillance Plan for the Cheney Disposal Site Near Grand Junction, Colorado  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledo SiteTonawanda North - t ' v I tfi --35U:- '- .- 1

8

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site at Grand Junction, Colorado. Revision 1  

SciTech Connect (OSTI)

This risk assessment evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site.

Not Available

1994-09-01T23:59:59.000Z

9

Remedial actions at the former Climax Uranium Company, Uranium Mill site, Grand Junction, Mesa County, Colorado. Volume 1, Text: Final environmental impact statement  

SciTech Connect (OSTI)

This statement evaluates and compares the environmental impacts associated with the remedial actions of the residual radioactive materials remaining at the inactive uranium processing site and associated vicinity properties at Grand Junction, Mesa County, Colorado. This statement is also intended to aid the BLM in amending their management framework plans and final resource management plan, as well as assisting in compliance with the withdrawal application as appropriate. The site is a 114-acre tract of private and state owned land which contains approximately 3.1 million cubic yards of tailings and associated contaminated soils. The vicinity properties are homes, businesses, public buildings, and vacant lots which may have been contaminated during construction by the use of tailings as building material. An estimated 3465 vicinity properties would be cleaned up during remedial action of the tailings pile. The tailings were produced by the former Climax Uranium Company which processed uranium ore, which it sold to the US Atomic Energy Commission from 1951 to 1966 and to private sources from 1966 to 1970. This statement evaluates six alternatives for stabilization and disposal of the tailings and other contaminated materials: (1) No action. (2) Stabilization at the Grand Junction site. (3) Disposal at the Cheney Reservoir site with truck transport. (4) Disposal at the Cheney Reservoir site with train and truck transport. (5) Disposal at the Two Road site with truck transport. (6) Disposal at the Two Road site with train and truck transport. All of the alternatives except no action include remedial action at an estimated 3465 vicinity properties. Alternative 3 is DOE`s preferred alternative.

None

1986-12-01T23:59:59.000Z

10

Colorado, Processing Sites  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledo SiteTonawanda North SiteD&D

11

EA-0930: Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand Junction, Colorado  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of the proposal to expand and upgrade the U.S. Department of Energy's Grand Junction Projects Office facilities and operations in Grand Junction, Colorado.

12

Preliminary Site Characterization Report, Rulsion Site, Colorado  

SciTech Connect (OSTI)

This report is a summary of environmental information gathered during a review of the documents pertaining to Project Rulison and interviews with personnel who worked on the project. Project Rulison was part of Operation Plowshare (a program designed to explore peaceful uses for nuclear devices). The project consisted of detonating a 43-kiloton nuclear device on September 10, 1969, in western Colorado to stimulate natural gas production. Following the detonation, a reentry well was drilled and several gas production tests were conducted. The reentry well was shut-in after the last gas production test and was held in standby condition until the general cleanup was undertaken in 1972. A final cleanup was conducted after the emplacement and testing wells were plugged in 1976. However, some surface radiologic contamination resulted from decontamination of the drilling equipment and fallout from the gas flaring during drilling operations. With the exception of the drilling effluent pond, all surface contamination at the Rulison Site was removed during the cleanup operations. All mudpits and other excavations were backfilled, and both upper and lower drilling pads were leveled and dressed. This report provides information regarding known or suspected areas of contamination, previous cleanup activities, analytical results, a review of the regulatory status, the site`s physical environment, and future recommendations for Project Ruhson. Based on this research, several potential areas of contamination have been identified. These include the drilling effluent pond and mudpits used during drilling operations. In addition, contamination could migrate in the gas horizon.

NONE

1996-08-01T23:59:59.000Z

13

Remedial actions at the former Climax Uranium Company, Uranium Mill site, Grand Junction, Mesa County, Colorado. Volume 2, Appendices: Final environmental impact statement  

SciTech Connect (OSTI)

This volume contains Appendix F--hydrology report, and Appendix G--flood plain and wetland assessment. Contents of the hydrology report include: surface water; ground water; potentially affected hydrogeologic environment-processing site; potentially affected hydrogeologic environment-Cheney reservoir site; potentially affected hydrogeologic environment-Two Road site; and conclusions-ground water.

none,

1986-12-01T23:59:59.000Z

14

Solar variability of four sites across the state of Colorado  

E-Print Network [OSTI]

Four Sites Across the State of Colorado Matthew Lave and Jansites across the state of Colorado were analyzed. GHI at thesites across the state of Colorado. This choice is motivated

Lave, Matthew; Kleissl, Jan

2010-01-01T23:59:59.000Z

15

COLORADO SCHOOL OF MINES RESEARCH INSTITUTE SITE REMEDIATION PROJECT SUMMARY  

E-Print Network [OSTI]

COLORADO SCHOOL OF MINES RESEARCH INSTITUTE SITE REMEDIATION PROJECT SUMMARY May 15, 2007 · The Colorado School of Mines Research Institute Site (the "Site) has been undergoing additional investigation 400 cubic yards of the dredged material had been buried in the "Clay Pits" area south of the Colorado

16

EA-1037: Uranium Lease Management Program, Grand Junction, Colorado  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of the U.S. Department of Energy's Grand Junction Projects Office's proposal to maintain and preserve the nation's immediately accessible supply of...

17

Grand Junction, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: Energy ResourcesGordon, Alabama:5 ClimateCounty isColorado: Energy

18

Slick Rock, Colorado, Processing Sites and Disposal Sites Fact Sheet  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledoSampling at the Grand Junction,GroundwaterSlick

19

Lessons Learned: The Grand Junction Office Site Transfer to Private Ownership  

SciTech Connect (OSTI)

The U.S. Department of Energy Grand Junction Office (DOE?GJO) in Grand Junction, Colorado, has played an integral role within the DOE complex for many years. GJO has a reputation for outstanding quality in the performance of complex environmental restoration projects, utilizing state-of-the-art technology. Many of the GJO missions have been completed in recent years. In 1998, DOE Headquarters directed GJO to reduce its mortgage costs by transferring ownership of the site and to lease space at a reasonable rate for its ongoing work. A local community group and GJO have entered into a sales contract; signing of the Quitclaim Deed is planned for February 16, 2001. Site transfer tasks were organized as a project with a critical-path schedule to track activities and a Site Transition Decision Plan was prepared that included a decision process flow chart, key tasks, and responsibilities. Specifically, GJO identified the end state with affected parties early on, successfully dealt with site contamination issues, and negotiated a lease-back arrangement, resulting in an estimated savings of more than 60 percent of facility maintenance costs annually. Lessons learned regarding these transition activities could be beneficial to many other sites.

none,

2001-02-01T23:59:59.000Z

20

Grand Junction Projects Office site environmental report for calendar year 1992  

SciTech Connect (OSTI)

This report presents information pertaining to environmental activities conducted during calendar year 1992 at the US Department of Energy Grand Junction Projects Office (DOE-GJPO) facility in Colorado. Environmental activities conducted at the GJPO facility during 1992 included those associated with environmental compliance, site remediation, off-site dose modeling, and radiological and nonradiological monitoring. Four phases of the on-site Grand Junction Projects Office Remedial Action Project were completed in 1992. Remediation activities, which included the removal of 161,589 tons of uranium-mill-tailings-contaminated material from the facility, were conducted in compliance with all applicable permits. Off-site dose modeling for the GJPO was conducted to determine compliance with current National Emission Standards for Hazardous Air Pollutants, Subpart H, and applicable DOE Orders (5400.1 and 5400.5). The total off-site EDE to the public from all sources of radiation emanating from the facility (radon, air particulates, gamma) was calculated as 9 mrem/yr, which is well below the DOE dose limit of 100 mrem/yr above background. The radiological and nonradiological monitoring program at the GJPO facility included monitoring of activities that generate potentially hazardous or toxic wastes and monitoring of ambient air, surface water, and ground water.

Not Available

1993-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "junction colorado site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

LM Completes the Grand Junction, Colorado, Site Historical Wall Display |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange Visitors HistoryHybridInspectorInvestingJobsLED

22

Annual report on the U.S. Department of Energy`s cultural resource activities at Colorado UMTRA Project sites for October 1995--September 1996  

SciTech Connect (OSTI)

This report summarizes the results of cultural resource activities conducted by the U.S. Department of Energy (DOE) at Uranium Mill Tailings Remedial Action (UMTRA) Project sites in Colorado for the period of October 1, 1995 through September 30, 1996. The inactive uranium mill tailings sites in Colorado are at Durango, Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock. On December 6, 1984, the DOE, the Advisory Council on Historic Preservation, and the Colorado State Historic Preservation Officer (SHPO) entered into a programmatic memorandum of understanding (PMOU). This PMOU requires the DOE to fulfillment of its obligations under various state and federal regulations for the protection and preservation of cultural resources. This report provides the state of Colorado with an annual report on the cultural resource activities performed for all UMTRA Project sites in Colorado. Due to the completion of surface activities at the UMTRA Project sites, this will be the last annual report to the state of Colorado. Cultural resources activities subsequent to this report will be reported to the state through site-specific correspondence.

NONE

1996-09-01T23:59:59.000Z

23

Annual report to the Advisory Council on Historic Preservation and the Colorado State Historic Preservation Officer on the US Department of Energy`s cultural resource activities at Colorado UMTRA Project sites, January--December 1991  

SciTech Connect (OSTI)

This report is a summary of the US Department of Energy`s (DOE) cultural resource investigations for the Uranium Mill Tailings Remedial Action (UMTRA) Project sites in Colorado. This report is intended to fulfill the DOE`s obligation for an annual report as stated in the Programmatic Memorandum of Agreement executed between the DOE, the Advisory Council on Historic Preservation, and the Colorado State Historic Preservation Officer in December 1984. Summaries of the cultural resource surveys and identified resources are provided for the UMTRA Project sites in the vicinities of Durango, Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock. This report covers all UMTRA Project cultural resource activities in Colorado from January through December 1991.

Not Available

1992-04-01T23:59:59.000Z

24

Annual report on the U.S. Department of Energy`s Cultural Resource Activities at Colorado UMTRA Project Sites for October 1993 through September 1994  

SciTech Connect (OSTI)

This report summarizes the results of cultural resource activities conducted by the U.S. Department of Energy (DOE) at Uranium Mill Tailings Remedial Action (UMTRA) Project sites in Colorado for the period of October 1, 1993, through September 30, 1994. The UMTRA Project is a cooperative (state and federal) program mandated by the Uranium Mill Tailings Radiation Control Act, Public Law 95-604 (42 USC {section}7901 et seq.). This law requires the timely cleanup of 24 inactive uranium mill tailings sites throughout the United States. Nine of these inactive uranium mill tailings sites are in Colorado at Durango, Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock. On December 6, 1984, the DOE, Advisory Council on Historic Preservation, and Colorado State Historic Preservation Officer (SHPO) entered into a programmatic memorandum of agreement (PMOA) (DOE, 1984). This PMOA specifies requirements for the DOE`s fulfillment of its obligations under various state and federal regulations for the protection and preservation of cultural resources. This report fulfills the requirement for the DOE to provide the state of Colorado with an annual report on the cultural resource activities performed for all of the UMTRA Project sites in Colorado. This report is organized by UMTRA Project site. For each site, the general remedial action activities and cultural resource activities performed during the period of record are summarized. When known, the DOE`s plans for future cultural resource activities at the site are summarized.

Not Available

1994-11-01T23:59:59.000Z

25

U.S. Department of Energy Grand Junction Projects Office site environmental report for calendar year 1995  

SciTech Connect (OSTI)

This report presents information pertaining to environmental activities conducted during calendar year 1995 at the US Department of Energy (DOE) Grand Junction Projects Office (GJPO) facility in Grand Junction, Colorado. Environmental activities conducted at the GJPO facility during 1995 were associated with mixed-waste treatment, site remediation, off-site dose modeling, and radiological and nonradiological monitoring. As part of the GJPO Mixed-Waste Treatment Program, on-site treatability studies were conducted in 1995 that made use of pilot-scale evaporative-oxidation and thermal-desorption units and bench-scale stabilization. DOE-GJPO used some of its own mixed-waste as well as samples received from other DOE sites for these treatability studies. These studies are expected to conclude in 1996. Removal of radiologically contaminated materials from GJPO facility buildings was conducted under the provisions of the Grand Junction Projects Office Remedial Action Project. Remediation activities included the removal of 394 metric tons of contaminated material from Buildings 18 and 28 and revegetation activities on the GJPO site; remediation was conducted in compliance with applicable permits.

NONE

1996-05-01T23:59:59.000Z

26

Rocky Flats, Colorado, Site Quarterly Report of Site Surveillance  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledo SiteTonawandaUniversity21PreparedRffi Prepared

27

EA-1338: Transfer of the Department of Energy Grand Junction Office to Non-DOE Ownership, Grand Junction, Colorado  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposed transfer of real and personal property at the U.S. Department of Energy's Grand Junction Office to non-DOE ownership.

28

DOE - Office of Legacy Management -- Grand Junction Sites  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here Home »HillNYEraGeneralGrand Junction Sites

29

Wildlife mitigation and monitoring report Gunnison, Colorado, site  

SciTech Connect (OSTI)

The Uranium Mill Tailings Remedial Action (UMTRA) Project is administered by the U.S. Department of Energy (DOE); its purpose is to cleanup uranium mill tailings and other contaminated material at 24 UMTRA Project sites in 10 states. This report summarizes the wildlife mitigation and monitoring program under way at the Gunnison UMTRA Project, Gunnison, Colorado. Remedial action at the Gunnison site was completed in December 1995 and is described in detail in the Gunnison completion report. The impacts of this activity were analyzed in the Gunnison environmental assessment (EA). These impacts included two important game species: the pronghorn antelope (Antilocapra americans) and sage grouse (Wentrocerus urophasianus). Haul truck traffic was predicted to limit antelope access to water sources north of the Tenderfoot Mountain haul road and that truck traffic along this and other haul roads could result in antelope road kills. Clearing land at the disposal cell, haul road and borrow site activities, and the associated human activities also were predicted to negatively impact (directly and indirectly) sage grouse breeding, nesting, loafing, and wintering habitat. As a result, an extensive mitigation and monitoring plan began in 1992. Most of the monitoring studies are complete and the results of these studies, written by different authors, appear in numerous reports. This report will: (1) Analyze existing impacts and compare them to predicted impacts. (2) Summarize mitigation measures. (3) Summarize all existing monitoring data in one report. (4) Analyze the effectiveness of the mitigation measures.

NONE

1997-04-01T23:59:59.000Z

30

Remedial action selection report Maybell, Colorado, site. Final report  

SciTech Connect (OSTI)

The Maybell uranium mill tailings site is 25 miles (mi) (40 kilometers [km]) west of the town of Craig, Colorado, in Moffat County, in the northwestern part of the state. The unincorporated town of Maybell is 5 road mi (8 km) southwest of the site. The site is 2.5 mi (4 km) northeast of the Yampa River on relatively flat terrain broken by low, flat-topped mesas. U.S. Highway 40 runs east-west 2 mi (3.2 km) south of the site. The designated site covers approximately 110 acres (ac) (45 hectares [ha]) and consists of a concave-shaped tailings pile and rubble from the demolition of the mill buildings buried in the former mill area. The site is situated between Johnson Wash to the east and Rob Pit Mine to the west. Numerous reclaimed and unreclaimed mines are in the immediate vicinity. Aerial photographs (included at the end of this executive summary) show evidence of mining activity around the Maybell site. Contaminated materials at the Maybell processing site include the tailings pile, which has an average depth of 20 feet (ft) (6 meters [ml]) and contains 2.8 million cubic yards (yd{sup 3}) (2.1 million cubic meters [m{sup 3}]) of tailings. The former mill processing area is on the north side of the site and contains 20,000 yd 3 (15,000 m{sup 3}) of contaminated demolition debris. Off-pile contamination is present and includes areas adjacent to the tailings pile, as well as contamination dispersed by wind and surface water flow. The volume of off-pile contamination to be placed in the disposal cell is 550,000 yd{sup 3}(420,000 m{sup 3}). The total volume of contaminated materials to be disposed of as part of the remedial action is estimated to be 3.37 million yd{sup 3} (2.58 million m{sup 3}).

NONE

1996-12-01T23:59:59.000Z

31

Annual report on the US Department of Energy`s cultural resource activities at Colorado UMTRA Project sites for October 1991--September 1992  

SciTech Connect (OSTI)

This report summarizes the US Department of Energy`s (DOE) cultural resource studies that were undertaken in support of the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project in the state of Colorado for the period of October 1, 1991, through September 30, 1992. This report fulfills the DOE`s obligation to provide an annual report to the state of Colorado on the status and results of cultural resource studies conducted during the above period of record. This requirement is stated in a programmatic memorandum of agreement executed between the DOE, the Advisory Council on Historic Preservation, and the Colorado State Historic Preservation Officer in December 1984. Previous reports were based on a calendar year reporting period. However, in order to be more consistent with the programmatic memorandum of agreement, the period of record for this and subsequent annual reports has been changed to the Federal fiscal year. The current status and summaries of 1992 cultural resource surveys are provided for all UMTRA Project sites in Colorado. The sites are Durango, Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock.

Not Available

1993-10-06T23:59:59.000Z

32

Site-specific analysis of radiological and physical parameters for cobbly soils at the Gunnison, Colorado, processing site  

SciTech Connect (OSTI)

The remedial action at the Gunnison, Colorado, processing site is being performed under the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 [Public Law (PL) 95-6041]. Under UMTRCA, the US Environmental Protection Agency (EPA) is charged with the responsibility of developing appropriate and applicable standards for the cleanup of radiologically contaminated land and buildings at 24 designated sites, including the Gunnison, Colorado, inactive processing site. The remedial action at the processing site will be conducted to remove the tailings and contaminated materials to meet the EPA bulk soil cleanup standards for surface and subsurface soils. The site areas disturbed by remedial action excavation will be either contoured or backfilled with radiologically uncontaminated soil and contoured to restore the site. The final contours will produce a final surface grade that will create positive drainage from the site.

Not Available

1993-10-01T23:59:59.000Z

33

Annual report to the Advisory Council on Historic Preservation and the Colorado State Historic Preservation Officer on the US Department of Energy's cultural resource activities at Colorado UMTRA Project sites, January--December 1991. [Uranium Mill Tailings Remedial Action (UMTRA) Project  

SciTech Connect (OSTI)

This report is a summary of the US Department of Energy's (DOE) cultural resource investigations for the Uranium Mill Tailings Remedial Action (UMTRA) Project sites in Colorado. This report is intended to fulfill the DOE's obligation for an annual report as stated in the Programmatic Memorandum of Agreement executed between the DOE, the Advisory Council on Historic Preservation, and the Colorado State Historic Preservation Officer in December 1984. Summaries of the cultural resource surveys and identified resources are provided for the UMTRA Project sites in the vicinities of Durango, Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock. This report covers all UMTRA Project cultural resource activities in Colorado from January through December 1991.

Not Available

1992-04-01T23:59:59.000Z

34

Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado  

SciTech Connect (OSTI)

This appendix assesses the present conditions and data gathered about the two inactive uranium mill tailings sites near Rifle, Colorado, and the designated disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions.

Not Available

1992-02-01T23:59:59.000Z

35

Economic impact study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado state fiscal year 1993  

SciTech Connect (OSTI)

The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1993 (July 1, 1992, through June 30, 1993). To capture employment benefits, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Rifle, and Gunnison, Colorado. An estimated 52 percent of the employees working on the UMTRA Project responded to this information request. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. The most significant benefits associated with the UMTRA Project in Colorado are summarized.

Not Available

1993-12-01T23:59:59.000Z

36

Final audit report of remedial action construction at the UMTRA project site Rifle, Colorado. Rev. 1  

SciTech Connect (OSTI)

This final audit report summarizes the assessments performed by the U.S. Department of Energy (DOE) Environmental Restoration Division (ERD) and its Technical Assistance Contractor (TAC) of remedial action compliance with approved plans, specifications, standards, and 40 CFR Part 192 at the Rifle, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. Remedial action construction was directed by the Remedial Action Contractor (RAC).

NONE

1997-01-01T23:59:59.000Z

37

Environmental Assessment of Ground Water Compliance at the Durango, Colorado, UMTRA Project Site  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) is proposing a ground water compliance strategy for the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Durango, Colorado. DOE has prepared this environmental assessment to provide the public with information concerning the potential effects of this proposed strategy.

N /A

2002-11-29T23:59:59.000Z

38

Remedial action plan and site design for stabilization of the Inactive Uranium Mill Tailings Site, Maybell, Colorado. Final report, Appendixes to attachment 3  

SciTech Connect (OSTI)

This document contains supporting appendices to attachment 3 for the remedial action and site stabilization plan for Maybell, Colorado UMTRA site. Appendix A includes the Hydrological Services Calculations and Appendix B contains Ground Water Quality by Location data.

Not Available

1994-06-01T23:59:59.000Z

39

DOE responses to CDH October 1993 comments on the Remedical Action Plan for the Naturita, Colorado, Umtra Site  

SciTech Connect (OSTI)

This document includes the October 1993 comments provided by the Colorado Department of Health (CDH) on the Department of Energy (DOE) Preliminary Final Remedial Action Plan for the Naturita, Colorado, UMTRA Site. DOE`s responses are included after each CDH comment.

NONE

1996-10-01T23:59:59.000Z

40

Economic impact study of the Uranium Mill Tailings Remedial Action project in Colorado: Colorado state fiscal year 1995  

SciTech Connect (OSTI)

This Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year (FY) 1995 (1 July 1994 through 30 June 1995). To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock, Colorado. Economic data were requested from the Remedial Action Contractor (RAC), the Technical Assistance Contractor (TAC) and the US Department of Energy (DOE). The most significant benefits associated with the UMTRA Project in Colorado are summarized.

NONE

1995-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "junction colorado site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Environmental assessment of remedial action at the Naturita Uranium Processing Site near Naturita, Colorado. Revision 4  

SciTech Connect (OSTI)

The Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95-604, authorized the US Department of Energy (DOE) to perform remedial action at the Naturita, Colorado, uranium processing site to reduce the potential health effects from the radioactive materials at the site and at vicinity properties associated with the site. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contain measures to control the contaminated materials and to protect groundwater quality. Remedial action at the Naturita site must be performed in accordance with these standards and with the concurrence of the US Nuclear Regulatory Commission (NRC) and the state of Colorado. The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to either the Dry Flats disposal site, 6 road miles (mi) [10 kilometers (km)] to the southeast, or a licensed non-DOE disposal facility capable of handling RRM. At either disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed Dry Flats disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. This report discusses environmental impacts associated with the proposed remedial action.

Not Available

1994-05-01T23:59:59.000Z

42

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado  

SciTech Connect (OSTI)

The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase I), and the Ground Water Project (phase II). For the UMTRA Project site located near Naturita, Colorado (the Naturita site), phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado, about 13 road miles (mi) (21 kilometers [km]) to the northwest. No uranium mill tailings are involved because the tailings were removed from the Naturita site and placed at Coke Oven, Colorado, during 1977 to 1979. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health or the environment; and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has received contaminated ground water. Therefore, a risk assessment is conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

NONE

1995-08-01T23:59:59.000Z

43

Solar variability of four sites across the state of Colorado  

E-Print Network [OSTI]

a month of 1 minute radiation data from 11 sites over 75 xwealth of solar radiation data is available throughSolar Radiation Database (NSRDB), these data are only

Lave, Matthew; Kleissl, Jan

2010-01-01T23:59:59.000Z

44

EIS-0132: Remedial Actions at the Former Union Carbide Corp. Uranium Mill Sites, Rifle, Garfield County, Colorado  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy developed this statement to evaluate and compare the environmental impacts of remediating the residual radioactive materials left at the inactive uranium tailing sites in Rifle, Colorado.

45

EIS-0111: Remedial Actions at the Former Vanadium Corporation of America Uranium Mill Site, Durango, La Plata County, Colorado  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy developed this statement to evaluate the environmental impacts of several scenarios for management and control of the residual radioactive wastes at the inactive Durango, Colorado, uranium processing site, including a no action alternative, an alternative to manage wastes on-site and three alternatives involving off-site management and decontamination of the Durango site.

46

Colorado economic impact study on the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado state fiscal year 1993  

SciTech Connect (OSTI)

The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year (FY) 1993. To capture employment benefits, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Rifle, and Gunnison, Colorado. An estimated 52 percent of the employees working on the UMTRA Project responded to this information request. Economic data were requested from each prime subcontractor, as well as from the Remedial Action Contractor. The most significant benefits associated with the UMTRA Project in Colorado are: Direct employment was estimated at 894 workers; An estimated 89 percent of all direct employment was local; Secondary employment resulting from remedial action at the active Colorado UMTRA Project sites and the Grand Junction vicinity property program is estimated at 546 workers. Total employment (direct and secondary) is estimated at 1440 workers for the period of study (July 1, 1992, to June 30, 1993). An estimated $24.1 million was paid in wages to UMTRA workers in Colorado during FY1993; Direct and secondary wage earnings were estimated at $39.9 million; Income tax payments to the state of Colorado were estimated at $843,400 during FY1993; The gross economic impact of UMTRA Project activities in the state of Colorado is estimated at $70 million during the 1-year study period; and the net economic benefit to the state of Colorado was estimated at $57.5 million, or $5.90 per dollar of funding provided by Colorado. This figure includes both direct and secondary benefits but does not include the impact of alternative uses of the state funding.

Not Available

1993-11-12T23:59:59.000Z

47

Gunnison, Colorado, Processing and Disposal Sites Fact Sheet  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledo SiteTonawanda North - ConsequencesD

48

Naturita, Colorado, Processing and Disposal Sites Fact Sheet  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledo SiteTonawandaUniversity21 theB DocumentGKNY

49

Baseline risk assessment of ground water contamination at the uranium mill tailings site near Durango, Colorado  

SciTech Connect (OSTI)

This risk assessment evaluates the possibility of health and environmental risks from contaminated ground water at the uranium mill tailings site near Durango, Colorado. The former uranium processing site`s contaminated soil and material were removed and placed at a disposal site located in Body Canyon, Colorado, during 1986--1991 by the US Departments of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating the nature and extent of ground water contamination at the site. This risk assessment follows an approach similar to that used by the US Environmental Protection Agency. The first step is to determine what site-related contaminants are found in ground water samples. The next step in the risk assessment is to determine how much of these contaminants people might ingest if they got their drinking water from a well on the site. In accordance with standard practice for this type of risk assessment, the highest contaminant concentrations from the most contaminated wells are used. The risk assessment then explains the possible health problems that could result from this amount of contamination.

Not Available

1995-02-01T23:59:59.000Z

50

Environmental assessment of remedial action at the Naturita uranium processing site near Naturita, Colorado: Revision 5  

SciTech Connect (OSTI)

Title 1 of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95-604, authorized the US Department of Energy (DOE) to perform remedial action at the inactive Naturita, Colorado, uranium processing site to reduce the potential health effects from the radioactive materials at the site and at vicinity properties associated with the site. Title 2 of the UMTRCA authorized the US Nuclear Regulatory Commission (NRC) or agreement state to regulate the operation and eventual reclamation of active uranium processing sites. The uranium mill tailings at the site were removed and reprocessed from 1977 to 1979. The contaminated areas include the former tailings area, the mill yard, the former ore storage area, and adjacent areas that were contaminated by uranium processing activities and wind and water erosion. The Naturita remedial action would result in the loss of 133 acres (ac) of contaminated soils at the processing site. If supplemental standards are approved by the NRC and the state of Colorado, approximately 112 ac of steeply sloped contaminated soils adjacent to the processing site would not be cleaned up. Cleanup of this contamination would have adverse environmental consequences and would be potentially hazardous to remedial action workers.

Not Available

1994-10-01T23:59:59.000Z

51

May 2013 Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site (Data Validation Package)  

SciTech Connect (OSTI)

Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 14-16, 2013, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location CER #1 Black Sulphur. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry and for tritium using the conventional and enrichment methods.

None

2013-10-01T23:59:59.000Z

52

Biological assessment of remedial action at the abandoned uranium mill tailings site near Naturita, Colorado  

SciTech Connect (OSTI)

Pursuant to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, the U.S. Department of Energy (DOE) is proposing to conduct remedial action to clean up the residual radioactive materials (RRM) at the Naturita uranium processing site in Colorado. The Naturita site is in Montrose County, Colorado, and is approximately 2 miles (mi) (3 kilometer [km]) from the unincorporated town of Naturita. The proposed remedial action is to remove the RRM from the Naturita site to the Upper Burbank Quarry at the Uravan disposal site. To address the potential impacts of the remedial action on threatened and endangered species, the DOE prepared this biological assessment. Informal consultations with the U.S. Department of the Interior, Fish and Wildlife Service (FWS) were initiated in 1986, and the FWS provided a list of the threatened and endangered species that may occur in the Naturita study area. This list was updated by two FWS letters in 1988 and by verbal communication in 1990. A biological assessment was included in the environmental assessment (EA) of the proposed remedial action that was prepared in 1990. This EA addressed the impacts of moving the Naturita RRM to the Dry Flats disposal site. In 1993, the design for the Dry Flats disposal alternative was changed. The FWS was again consulted in 1993 and provided a new list of threatened and endangered species that may occur in the Naturita study area. The Naturita EA and the biological assessment were revised in response to these changes. In 1994, remedial action was delayed because an alternate disposal site was being considered. The DOE decided to move the FIRM at the Naturita site to the Upper Burbank Quarry at the Uravan site. Due to this delay, the FWS was consulted in 1995 and a list of threatened and endangered species was provided. This biological assessment is a revision of the assessment attached to the Naturita EA and addresses moving the Naturita RRM to the Upper Burbank Quarry disposal site.

NONE

1996-03-01T23:59:59.000Z

53

May 2012 Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site (Data Validation Package)  

SciTech Connect (OSTI)

Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 9-10, 2012, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location Johnson Artesian WL. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry and for tritium using the conventional and enrichment methods. Results of this monitoring at the Rio Blanco site demonstrate that groundwater and surface water outside the site boundaries have not been affected by project-related contaminants.

None

2012-12-01T23:59:59.000Z

54

Comment and response document for the final remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Revision 2  

SciTech Connect (OSTI)

This document for the final remedial action plan and site design has been prepared for US Department of Energy Environmental Restoration Division as part of the Uranium Mill Tailings Remedial Action plan. Comments and responses are included for the site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado.

NONE

1996-05-01T23:59:59.000Z

55

Environmental assessment of remedial action at the Maybell uranium mill tailings site near Maybell, Colorado  

SciTech Connect (OSTI)

The purpose of this environmental assessment (EA) is to evaluate the environmental impacts resulting from remedial action at the Maybell uranium mill tailings site near Maybell, Colorado. A biological assessment (Attachment 1) and a floodplain/wetlands assessment (Assessment 2) are included as part of this EA. The following sections and attachments describe the proposed action, affected environment, and environmental impacts associated with the proposed remedial action, including impacts to threatened and endangered species listed or proposed for listing by the US Fish and Wildlife Service.

Not Available

1993-09-01T23:59:59.000Z

56

Long-term surveillance plan for the Gunnison, Colorado, disposal site  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

NONE

1996-02-01T23:59:59.000Z

57

Long-term surveillance plan for the Maybell, Colorado Disposal Site  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Maybell disposal site in Moffat County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Maybell disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete for the Maybell site and the NRC formally accepts this LTSP. This document describes the long-term surveillance program the DOE will implement to ensure the Maybell disposal site performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance document and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

NONE

1997-12-01T23:59:59.000Z

58

Long-term surveillance plan for the Gunnison, Colorado, disposal site  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

NONE

1996-05-01T23:59:59.000Z

59

Long-term surveillance plan for the Gunnison, Colorado disposal site  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

NONE

1996-04-01T23:59:59.000Z

60

Long-term surveillance plan for the Maybell, Colorado Disposal Site  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Maybell disposal site in Moffat County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Maybell disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete for the Maybell site and the NRC formally accepts this LTSP. This document describes the long-term surveillance program the DOE will implement to ensure the Maybell disposal site performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance document and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

NONE

1997-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "junction colorado site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Long-term surveillance plan for the Gunnison, Colorado, disposal site  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

NONE

1997-04-01T23:59:59.000Z

62

Environmental assessment of remedial action at the Naturita uranium processing site near Naturita, Colorado. Revision 3  

SciTech Connect (OSTI)

The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to the Dry Flats disposal site, 6 road miles (mi) [10 kilometers (km)] to the southeast. At the disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action activities would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The proposed remedial action would result in the loss of approximately 162 ac (66 ha) of soils at the processing and disposal sites; however, 133 ac (55 ha) of these soils at and adjacent to the processing site are contaminated and cannot be used for other purposes. If supplemental standards are approved by the NRC and state of Colorado, approximately 112 ac (45 ha) of contaminated soils adjacent to the processing site would not be cleaned up. This area is steeply sloped. The cleanup of this contamination would have adverse environmental consequences and would be potentially hazardous to remedial action workers. Another 220 ac (89 ha) of soils would be temporarily disturbed during the remedial action. The final disposal site would result in approximately 57 ac (23 ha) being removed from livestock grazing and wildlife use.

Not Available

1994-02-01T23:59:59.000Z

63

May 2011 Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site (Data Validation Package)  

SciTech Connect (OSTI)

Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 16-17, 2011, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location Johnson Artesian WL. Samples were analyzed by the U.S. Environmental Protection Agency (EPA) Radiation&Indoor Environments National Laboratory in Las Vegas, Nevada. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry, and for tritium using the conventional method. Tritium was not measured using the enrichment method because the EPA laboratory no longer offers that service. Results of this monitoring at the Rio Blanco site demonstrate that groundwater and surface water outside the boundaries have not been affected by project-related contaminants.

None

2011-12-01T23:59:59.000Z

64

Environmental Assessment of Ground Water Compliance at the Gunnison, Colorado, UMTRA Project Site  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) is in the process of selecting a ground water compliance strategy for the Gunnison, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. This Environmental Assessment (EA) discusses two alternatives and the effects associated with each. The two alternatives are (1) natural flushing coupled with institutional controls and continued monitoring and (2) no action. The compliance strategy must meet U.S. Environmental Protection Agency (EPA) ground water standards defined in Title 40 ''Code of Federal Regulations'' Part 192, Subpart B, in areas where ground water beneath and around the site is contaminated as a result of past milling operations. It has been determined that contamination in the ground water at the Gunnison site consists of soluble residual radioactive material (RRM) as defined in the Uranium Mill Tailings Radiation Control Act (UMTRCA).

N /A

2002-08-13T23:59:59.000Z

65

Environmental assessment of remedial action at the slick rock Uranium Mill Tailings sites Slick Rock, Colorado  

SciTech Connect (OSTI)

The Uranium Mill Tailings Radiation Control Act of 1978 (42 USC {section} 7901 et seq.), hereafter referred to as the UMTRCA, authorized the U.S. Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the sites and on vicinity properties (VPs) associated with the sites. Contaminated materials cover an estimated 55 acres of the Union Carbide (UC) processing site and 12 ac of the North Continent (NC) processing site. The total estimated volume of contaminated materials is approximately 61 8,300 cubic yards. In addition to the contamination in the two processing site areas, four VPs were found to contain contamination. As a result of the tailings being exposed to the environment, contamination associated with the UC and NC sites has leached into shallow ground water. Surface water has not been affected. The closest residence is approximately 0.3 air mi from either site. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the sites on land administered by the Bureau of Land Management (BLM). Remediation would be performed by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. All solid contaminated materials would be buried under 5 feet (ft) of rock and soil materials. The proposed disposal site area is currently used by ranchers for cattle grazing over a 7-month period. The closest residence to the proposed disposal site is 2 air mi. An estimated 44 ac of land would be permanently transferred from the BLM to the DOE and restricted from future use.

Not Available

1994-09-01T23:59:59.000Z

66

Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites, Slick Rock, Colorado  

SciTech Connect (OSTI)

The Uranium Mill Tailings Radiation Control Act of 1978, hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the processing sites and on vicinity properties (VPs) associated with the sites. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contained measures to control the contaminated materials and to protect the ground water from further degradation. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown and waterborne radioactive tailings materials. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the processing sites on land administered by the US Bureau of Land Management (BLM). Remediation would be performed by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project.

NONE

1995-01-01T23:59:59.000Z

67

Baseline risk assessment of groundwater contamination at the Uranium Mill Tailings Site near Gunnison, Colorado  

SciTech Connect (OSTI)

This Baseline Risk Assessment of Groundwater Contamination at the Uranium Mill Tailings Site Near Gunnison, Colorado evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells. This risk assessment evaluates the most contaminated monitor wells at the processing site. It will be used to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium.

Not Available

1993-12-01T23:59:59.000Z

68

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Slick Rock, Colorado. Revision 1  

SciTech Connect (OSTI)

Two UMTRA (Uranium Mill Tailings Remedial Action) Project sites are near Slick Rock, Colorado: the North Continent site and the Union Carbide site. Currently, no one uses the contaminated ground water at either site for domestic or agricultural purposes. However, there may be future land development. This risk assessment evaluates possible future health problems associated with exposure to contaminated ground water. Since some health problems could occur, it is recommended that the contaminated ground water not be used as drinking water.

NONE

1995-09-01T23:59:59.000Z

69

Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Slick Rock, Colorado  

SciTech Connect (OSTI)

This baseline risk assessment of ground water contamination at the uranium mill tailings sites near Slick Rock, Colorado, evaluates potential public health and environmental impacts resulting from ground water contamination at the former North Continent (NC) and Union Carbide (UC) uranium mill processing sites. The tailings at these sites will be placed in a disposal cell at the proposed Burro Canyon, Colorado, site. The US Department of Energy (DOE) anticipates the start of the first phase remedial action by the spring of 1995 under the direction of the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project will evaluate ground water contamination. This baseline risk assessment is the first site-specific document for these sites under the Ground Water Project. It will help determine the compliance strategy for contaminated ground water at the site. In addition, surface water and sediment are qualitatively evaluated in this report.

Not Available

1994-11-01T23:59:59.000Z

70

Long-term surveillance plan for the Rifle, Colorado, Disposal site  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Estes Gulch disposal site in Garfield County, Colorado. The U.S. Environmental Protection Agency (EPA) has developed regulations for the issuance of a general license by the U.S. Nuclear Regulatory Commission (NRC) for the custody and long-term care of UMTRA Project disposal Sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites, will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Estes Gulch disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Estes Gulch site and the NRC formally accepts this LTSP.

NONE

1996-09-01T23:59:59.000Z

71

Long-term surveillance plan for the Gunnison, Colorado disposal site. Revision 2  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) describes the US Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The US Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance.

NONE

1997-02-01T23:59:59.000Z

72

Long-term surveillance plan for the Gunnison, Colorado, disposal site  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) describes the US Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The US Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment.For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP.

NONE

1996-05-01T23:59:59.000Z

73

Finding of No Significant Impact, proposed remediation of the Maybell Uranium Mill Processing Site, Maybell, Colorado  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-0347) on the proposed surface remediation of the Maybell uranium mill processing site in Moffat County, Colorado. The mill site contains radioactively contaminated materials from processing uranium ore that would be stabilized in place at the existing tailings pile location. Based on the analysis in the EA, DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, Public Law 91-190 (42 U.S.C. {section}4321 et seq.), as amended. Therefore, preparation of an environmental impact statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI).

Not Available

1995-12-31T23:59:59.000Z

74

Environmental Assessment of Ground Water Compliance at the Naturita, Colorado, UMTRA Project Site  

SciTech Connect (OSTI)

This Environmental Assessment addresses the environmental effects of a proposed action and the no action alternative to comply with U.S. Environmental Protection Agency (EPA) ground water standards at the Naturita, Colorado, Uranium Mill Tailings Remedial Action Project site. In 1998, the U.S. Department of Energy (DOE) completed surface cleanup at the site and encapsulated the tailings in a disposal cell 15 miles northwest near the former town of Uravan, Colorado. Ground water contaminants of potential concern at the Naturita site are uranium and vanadium. Uranium concentrations exceed the maximum concentration limit (MCL) of 0.044 milligram per liter (mg/L). Vanadium has no MCL; however, vanadium concentrations exceed the EPA Region III residential risk-based concentration of 0.33 mg/L (EPA 2002). The proposed compliance strategy for uranium and vanadium at the Naturita site is no further remediation in conjunction with the application of alternate concentration limits. Institutional controls with ground water and surface water monitoring will be implemented for these constituents as part of the compliance strategy. This compliance strategy will be protective of human health and the environment. The proposed monitoring program will begin upon regulatory concurrence with the Ground Water Compliance Action Plan (DOE 2002a). Monitoring will consist of verifying that institutional controls remain in place, collecting ground water samples to verify that concentrations of uranium and vanadium are decreasing, and collecting surface water samples to verify that contaminant concentrations do not exceed a regulatory limit or risk-based concentration. If these criteria are not met, DOE would reevaluate the proposed action and determine the need for further National Environmental Policy Act documentation. No comments were received from the public during the public comment period. Two public meetings were held during this period. Minutes of these meetings are included as Attachment 1.

None

2003-04-23T23:59:59.000Z

75

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Maybell, Colorado  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, contaminated soil, building foundations, and materials associated with the former processing of uranium ore at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further contamination of ground water. One UMTRA Project site is near Maybell, Colorado. Surface cleanup at this site began in 1995 and is scheduled for completion in 1996. The tailings are being stabilized in place at this site. The disposal area has been withdrawn from public use by the DOE and is referred to as the permanent withdrawal area. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from past uranium ore processing activities. The Ground Water Project at this site is in its beginning stages. This report is a site-specific document that will be used to evaluate current and future potential impacts to the public and the environment from exposure to contaminated ground water. The results presented in this document and other evaluations will determine whether any action is needed to protect human health or the environment.

NONE

1996-03-01T23:59:59.000Z

76

Environmental assessment of remedial action at the Gunnison Uranium Mill Tailings Site, Gunnison, Colorado. [UMTRA Project  

SciTech Connect (OSTI)

This document assesses and compares the environmental impacts of various alternatives for remedial action at the Gunnison uranium of mill tailings site located 0.5 miles south of Gunnison, Colorado. The site covers 56 acres and contains 35 acres of tailings, 2 of the original mill buildings and a water tower. The Uranium Mill Tailings Radiation Control of Act of 1978 (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated (vicinity) properties off the site. The US Environmental Protection Agency promulgated standards for the remedial actions (40 CFR 192). Remedial actions must be performed in accordance with these standards and with the occurrence of the Nuclear Regulatory Commission. Four alternatives have been addressed in this document. The first alternative is to consolidate the tailings and associated contaminated soils into a recontoured pile on the southern portion of the existing site. A radon barrier of silty clay would be constructed over the pile and various erosion control measures would be taken to assure the long-term integrity of the pile. Two other alternatives which involve moving the tailings to new locations are assessed in this document. These alternatives generally involve greater short-term impacts and are more costly but would result in the tailings being stabilized in a location farther from the city of Gunnison. The no action alternative is also assessed.

Bachrach, A.; Hoopes, J.; Morycz, D. (Jacobs Engineering Group, Inc., Pasadena, CA (USA)); Bone, M.; Cox, S.; Jones, D.; Lechel, D.; Meyer, C.; Nelson, M.; Peel, R.; Portillo, R.; Rogers, L.; Taber, B.; Zelle, P. (Weston (Roy F.), Inc., Washington, DC (USA)); Rice, G. (Sergent, Hauskins and Beckwith (USA))

1984-12-01T23:59:59.000Z

77

Refuel Colorado  

Broader source: Energy.gov (indexed) [DOE]

Colorado Propane Gas Association, the West Slope CNG Collaborative, and the Colorado Hydrogen Coalition Colorado Energy Office | www.colorado.govenergy Refuel Colorado - Alt...

78

Grand Junction, Colorado, Disposal Site Long-Term Surveillance and Maintenance Program Fact Sheet, July 2001  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$ EGcG ENERGYELIkNATION REPORTFairfield,? . ----_

79

Surface and subsurface cleanup protocol for radionuclides, Gunnison, Colorado, UMTRA project processing site. Final [report  

SciTech Connect (OSTI)

Surface and subsurface soil cleanup protocols for the Gunnison, Colorado, processing sits are summarized as follows: In accordance with EPA-promulgated land cleanup standards (40 CFR 192), in situ Ra-226 is to be cleaned up based on bulk concentrations not exceeding 5 and 15 pCi/g in 15-cm surface and subsurface depth increments, averaged over 100-m{sup 2} grid blocks, where the parent Ra-226 concentrations are greater than, or in secular equilibrium with, the Th-230 parent. A bulk interpretation of these EPA standards has been accepted by the Nuclear Regulatory Commission (NRC), and while the concentration of the finer-sized soil fraction less than a No. 4 mesh sieve contains the higher concentration of radioactivity, the bulk approach in effect integrates the total sample radioactivity over the entire sample mass. In locations where Th-230 has differentially migrated in subsoil relative to Ra-226, a Th-230 cleanup protocol has been developed in accordance with Supplemental Standard provisions of 40 CFR 192 for NRC/Colorado Department of Health (CDH) approval for timely implementation. Detailed elements of the protocol are contained in Appendix A, Generic Protocol from Thorium-230 Cleanup/Verification at UMTRA Project Processing Sites. The cleanup of other radionuclides or nonradiological hazards that pose a significant threat to the public and the environment will be determined and implemented in accordance with pathway analysis to assess impacts and the implications of ALARA specified in 40 CFR 192 relative to supplemental standards.

Not Available

1993-09-01T23:59:59.000Z

80

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Maybell, Colorado  

SciTech Connect (OSTI)

The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, building foundations, and materials associated with the former processing of uranium ore at UMTRA sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further contamination of ground water. One UMTRA Project site is near Maybell, Colorado. Surface cleanup at this site is under way and is scheduled for completion in 1996. The tailings are being stabilized in-place at this site. The disposal area has been withdrawn from public use by the DOE and is referred to as the permanent withdrawal area. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from past uranium ore processing activities. The Ground Water Project at this site is in its beginning stages. This report is a site-specific document that will be used to evaluate current and future potential impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the environment. Currently, no points of exposure (e.g. a drinking water well); and no receptors of contaminated ground water have been identified at the Maybell site. Therefore, there are no current human health and ecological risks associated with exposure to contaminated ground water. Furthermore, if current site conditions and land- and water-use patterns do not change, it is unlikely that contaminated ground water would reach people or the ecological communities in the future.

NONE

1995-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "junction colorado site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Mitigation and monitoring plan for impacted wetlands at the Gunnison UMTRA Project site, Gunnison, Colorado  

SciTech Connect (OSTI)

The U.S Department of Energy (DOE) administers the Uranium Mill Tailings Remedial Action (UMTRA) Project. The UMTRA Project is the result of the Uranium Mill Tailings Radiation Control Act(UMTRA) which was passed in response to the public`s concern over the potential public health hazards related to uranium mill tailings and associated contaminated material at abandoned or otherwise uncontrolled inactive processing sites throughout the United States. The Gunnison, Colorado abandoned uranium mill site is one of the sites slated for cleanup by the DOE under authority of UMTRA. The contaminated material at this site will be transported to a disposal site on US Bureau of Land Management (BLM) land east of Gunnison. Remedial action activities will temporarily disturb 0.8 acre and permanently eliminate 5.1 acres of wetlands. This report describes the proposed mitigation plan for the 5.9 acres of impacted wetlands. In conjunction with the mitigation of the permanently impacted wetlands through the enhancement of wetland and adjacent riparian areas, impacts to wildlife as a result of this project will also be mitigated. However, wildlife mitigation is not the focus of this document and is covered in relevant BLM permits for this project. This plan proposes the enhancement of a 3:1 ratio of impacted wetlands in accordance with US Environmental Protection Agency guidelines, plus the enhancement of riparian areas for wildlife mitigation. Included in this mitigation plan is a monitoring plan to ensure that the proposed measures are working and being maintained.

Not Available

1992-06-01T23:59:59.000Z

82

Remedial Action Plan and Site Design for stabilization of the inactive Uranium Mill Tailings sites at Slick Rock, Colorado: Appendix C to Attachment 3, Calculations. Final  

SciTech Connect (OSTI)

This volume contains calculations for: Slick Rock processing sites background ground water quality; Slick Rock processing sites lysimeter water quality; Slick Rock processing sites on-site and downgradient ground water quality; Slick Rock disposal site background water quality; Burro Canyon disposal site, Slick Rock, Colorado, average hydraulic gradients and average liner ground water velocities in the upper, middle, and lower sandstone units of the Burro Canyon formation; Slick Rock--Burro Canyon disposal site, Burro Canyon pumping and slug tests--analyses; water balance and surface contours--Burro Canyon disposal cell; and analytical calculation of drawdown in a hypothetical well completed in the upper sandstone unit of the Burro Canyon formation.

NONE

1995-09-01T23:59:59.000Z

83

Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado. Volume 2, Appendices D and E: Final report  

SciTech Connect (OSTI)

This appendix assesses the present conditions and data gathered about the two inactive uranium mill tailings sites near Rifle, Colorado, and the designated disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions.

Not Available

1992-02-01T23:59:59.000Z

84

Surface and subsurface cleanup protocol for radionuclides, Gunnison, Colorado, UMTRA project processing site: Final. Revision 2  

SciTech Connect (OSTI)

Thorium 230 (Th-230) at the Gunnison, Colorado processing site will require remediation, however, a seasonally fluctuating groundwater table at the site significantly complicates conventional remedial action with respect to cleanup. Therefore, to effectively remediate the site with respect to Radium 226 (Ra-226) and Th-230, the following supplemental standard is proposed: In situ Ra-26 will be remediated to the EPA soil cleanup standards independent of groundwater considerations. In situ Th-230 concentrations will be remediated in the region above the encountered water table so the 1000-year projected Ra-226 concentration complies with the EPA soil cleanup concentration limits. If elevated Th-230 persists to the water table, an additional foot of excavation will be performed and the grid will be backfilled. Excavated grids will be backfilled to the final remedial action grade with clean cobbly soil. Final grid verification that is required below the water table will be performed by extracting and analyzing a single bulk soil sample with the bucket of a backhoe. Modeled surface radon flux values will be estimated and documented. A recommendation will be made that land records should be annotated to identify the presence of residual Th-230.

Not Available

1994-01-01T23:59:59.000Z

85

Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Durango, Colorado: Remedial action selection report. Revised final report  

SciTech Connect (OSTI)

The uranium mill tailings site near Durango, Colorado, was one of 24 inactive uranium mill sites designated to be remediated by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s Remedial Action Plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which has been developed to serve a two-fold purpose. First, it describes the activities that have been conducted by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium mill processing site near Durango, Colorado. Secondly, this document and the rest of the RAP, upon concurrence and execution by the DOE, the State of Colorado, and the NRC, become Appendix B of the Cooperative Agreement between the DOE and the State of Colorado.

Not Available

1991-12-01T23:59:59.000Z

86

Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Durango, Colorado: Remedial action selection report  

SciTech Connect (OSTI)

The uranium mill tailings site near Durango, Colorado, was one of 24 inactive uranium mill sites designated to be remediated by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE's Remedial Action Plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which has been developed to serve a two-fold purpose. First, it describes the activities that have been conducted by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium mill processing site near Durango, Colorado. Secondly, this document and the rest of the RAP, upon concurrence and execution by the DOE, the State of Colorado, and the NRC, become Appendix B of the Cooperative Agreement between the DOE and the State of Colorado.

Not Available

1991-12-01T23:59:59.000Z

87

Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado. Remedial action selection report, Attachment 2, Geology report: Preliminary final  

SciTech Connect (OSTI)

The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), Public Law 95-604. Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which serves two purposes. First, it describes the activities that are proposed by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium processing site near Naturita, Colorado. Second, this document and the rest of the RAP, upon concurrence and execution by the DOE, the state of Colorado, and the NRC, become Appendix B of the cooperative agreement between the DOE and the State of Colorado.

Not Available

1993-08-01T23:59:59.000Z

88

Engineering assessment of inactive uranium mill tailings: Slick Rock sites, Slick Rock, Colorado  

SciTech Connect (OSTI)

Ford, Bacon and Davis Utah, Inc., has reevaluated the Slick Rock sites in order to revise the October 1977 engineering radioactive uranium mill tailings at Slick Rock, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 387,000 tons of tailings at the Slick Rock sites constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The five alternative actions presented in this engineering assessment include millsite decontamination with the addition of 3 m of stabilization cover material, consolidation of the piles, and removal of the tailings to remote disposal sites and decontamination of the tailings sites. Cost estimates for the five options range from about $6,800,000 for stabilization in-place, to about $11,000,000 for disposal at a distance of about 6.5 mi. Three principal alternatives for the reprocessing of the Slick Rock tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be over $800/lb of U/sub 3/O/sub 8/ whether by conventional or heap leach plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive at present, nor for the foreseeable future.

none,

1981-09-01T23:59:59.000Z

89

Economic impact study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado State fiscal year 1994. Revision 1  

SciTech Connect (OSTI)

The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1994 (1 July 1993 through 30 June 1994). To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Naturita, Gunnison, and Rifle, Colorado. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. Information on wages, taxes, and subcontract expenditures in combination with estimates and economic multipliers is used to estimate the dollar economic benefits to Colorado during the state fiscal year. Finally, the fiscal year 1994 estimates are compared to fiscal year 1993 employment and economic information.

Not Available

1994-12-01T23:59:59.000Z

90

Engineering assessment of inactive uranium mill tailings: Maybell Site, Maybell, Colorado  

SciTech Connect (OSTI)

Ford, Bacon and Davis Utah Inc. has reevaluated the Maybell site in order to revise the October 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Maybell, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 2.6 million dry tons of tailings at the Maybell site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The two alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to disposal of the tailings in a nearby open pit mine and decontamination of the tailings site (Option II). Cost estimates for the two options are about $11,700,000 for stabilization in-place and about $22,700,000 for disposal within a distance of 2 mi. Three principal alternatives for the reprocessing of the Maybell tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $125 and $165/lb of U/sub 3/O/sub 8/ by heap leach and conventional plant processes, respectively. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive at present.

none,

1981-09-01T23:59:59.000Z

91

Economic impact study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado state fiscal year 1994  

SciTech Connect (OSTI)

The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1994. To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Naturita, Gunnison, and Rifle, Colorado. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. The most significant benefits associated with the UMTRA Project in Colorado are summarized. This study assesses benefits associated with the Grand Junction, Gunnison, Naturita, and Rifle UMTRA Projects sites for the 1-year period under study. Work at the Naturita site was initiated in April 1994 and involved demolition of buildings at the processing site. Actual start-up of remediation of Naturita is planned to begin in the spring of 1995. Work at the Slick Rock and Maybell sites is expected to begin in 1995. The only current economic benefits associated with these sites are related to UMTRA Project support work.

Not Available

1994-11-01T23:59:59.000Z

92

Solar-Powered Air Stripping at the Rocky Flats Site, Colorado - 12361  

SciTech Connect (OSTI)

The U.S. Department of Energy's Rocky Flats Site (the Site), near Denver, Colorado, is a former nuclear weapons facility that was constructed beginning in 1951. With the end of the Cold War, the Site was cleaned up and closed in 2005. Four gravity-driven groundwater treatment systems were installed during cleanup, and their continued operation was incorporated into the final remedy for the Site. All utilities, including electrical power, were removed as part of this closure, so all Site electrical power needs are now met with small solar-powered systems. The Mound Site Plume Treatment System (MSPTS) was installed in 1998 as an innovative system based on zero-valent iron (ZVI). Groundwater flow from the Mound source area containing elevated concentrations of volatile organic compounds (VOCs), primarily in the tetrachloroethene (PCE)-trichloroethene (TCE) family of chlorinated solvents, is intercepted by a collection trench and routed to twin ZVI treatment cells. Later, in 2005, remediation of VOC-contaminated soils at a second up-gradient source area included adding an electron donor to the backfill to help stimulate biodegradation. This reduced concentrations of primary constituents but caused down-gradient groundwater to contain elevated levels of recalcitrant degradation byproducts, particularly cis-1,2-dichloroethene and vinyl chloride. A gravel drain installed as part of the 2005 remediation directs contaminated groundwater from this second source area to the MSPTS for treatment. This additional contaminant load, coupled with correspondingly reduced residence time within the ZVI media due to the increased flow rate, resulted in reduced treatment effectiveness. Elevated concentrations of VOCs were then detected in MSPTS effluent, as well as in surface water at the downstream performance monitoring location for the MSPTS. Subsequent consultations with the Site regulators led to the decision to add a polishing component to reduce residual VOCs in MSPTS effluent. Initially, several alternatives such as commercial air strippers and cascade aerators were evaluated; resulting cost estimates exceeded $100,000. After several simpler alternatives were considered and prototype testing was conducted, the existing effluent metering manhole was converted to house a spray-nozzle based, solar-powered air stripper, at a cost of approximately $20,000. About two-thirds of this cost was for the solar power system, which was initially designed to only provide power for 12 hours per day. Performance data are being collected and adjustments made to optimize the design, determine maintenance requirements, and establish power needs for continuous operation. Analytical data confirm the air stripper is sharply reducing concentrations of residual contaminants. (authors)

Boylan, John A. [S.M. Stoller Corporation, Rocky Flats Site, 11025 Dover Street, Suite 1000, Westminster, Colorado 80021 (United States)

2012-07-01T23:59:59.000Z

93

Remedial action plan for the inactive Uranium Processing Site at Naturita, Colorado. Remedial action plan: Attachment 2, Geology report, Attachment 3, Ground water hydrology report: Working draft  

SciTech Connect (OSTI)

The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), 42 USC {section}7901 et seq. Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). This RAP serves two purposes. First, it describes the activities that are proposed by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium processing site near Naturita, Colorado. Second, this RAP, upon concurrence and execution by the DOE, the state of Colorado, and the NRC, become Appendix B of the cooperative agreement between the DOE and the state of Colorado.

Not Available

1994-09-01T23:59:59.000Z

94

Environmental assessment of remedial action at the Maybell Uranium Mill Tailings Site near Maybell, Colorado. Revision 1  

SciTech Connect (OSTI)

The purpose of this environmental assessment (EA) is to evaluate the environmental impacts resulting from remedial action at the Maybell uranium mill tailings site near Maybell, Colorado. A biological assessment (Attachment 1) and a floodplain/wetlands attachments describe the proposed action, affected environment, and environmental impacts associated with the proposed remedial action, including impacts to threatened and endangered species listed or proposed for listing by the US Fish and Wildlife Service (FWS).

Not Available

1994-04-01T23:59:59.000Z

95

Environmental assessment of remedial action at the Maybell uranium mill tailings site near Maybell, Colorado: Revision 2  

SciTech Connect (OSTI)

The purpose of this environmental assessment (EA) is to evaluate the environmental impacts resulting from remedial action at the Maybell uranium mill tailings site near Maybell, Colorado. A biological assessment and a floodplain/wetlands assessment are included as part of this EA. This report and attachments describe the proposed action, affected environment, and environmental impacts associated with the proposed remedial action, including impacts to threatened and endangered species listed or proposed for listing by the US Fish and Wildlife Service (FWS).

Not Available

1994-11-01T23:59:59.000Z

96

Baseline risk assessment of ground water contamination at the uranium mill tailings site near Durango, Colorado. Revision 1  

SciTech Connect (OSTI)

For the UMTRA Project site located near Durango, Colorado (the Durango site), the Surface Project cleanup occurred from 1986 to 1991. An evaluation was made to determine whether exposure to ground water contaminated by uranium processing could affect people`s health. Exposure could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. In addition, environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has mixed with contaminated ground water. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Durango site. The results of this report and further site characterization of the Durango site will be used to determine what is necessary to protect public health and the environment, and to comply with the EPA standards.

NONE

1995-09-01T23:59:59.000Z

97

Mitigation and Monitoring Plan for impacted wetlands at the Gunnison UMTRA Project site, Gunnison, Colorado. Revision 1  

SciTech Connect (OSTI)

The Gunnison, Colorado, abandoned uranium mill site is one site being cleaned up by the DOE under UMTRCA authority. This site`s contaminated material is being transported to a disposal site on US Bureau of Land Management (BLM) land east of Gunnison. Remedial action activities have temporarily disturbed 0.8 acre (ac) (0.3 hectares [ha]) of wetlands and permanently eliminated 4.3 ac (1.7 ha). As required by the Clean Water Act, the US Army Corps of Engineers (USACE) prepared a Section 404 Permit that addresses the loss of wetlands as a result of remedial action at the Gunnison UMTRA Project site. The 404 permit includes this report as an attachment and it describes the wetland mitigation and monitoring plan. The DOE formulated this plan in consultation with the BLM and the USACE. This report represents a revised version of the mitigation and monitoring plan (DOE, 1992b).

Not Available

1994-12-01T23:59:59.000Z

98

Remedial action plan and site conceptual design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado. Appendix D, Final report  

SciTech Connect (OSTI)

This appendix assesses the present conditions and data gathered about the two designated inactive uranium mill tailings sites near Rifle, Colorado, and the proposed disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions.

NONE

1992-02-01T23:59:59.000Z

99

Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Final report  

SciTech Connect (OSTI)

This document contains the page changes for Attachment 3, Ground Water Hydrology Report dated August, 1996 for the Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings at Slick Rock, Colorado. This portion of Attachment 3 contains the Table of Contents pages i and ii, and pages numbered 3-3 through 3-56 of the Ground Water Hydrology Report. Also included are the cover sheets for Appendix A, B, and C to Attachment 3.

NONE

1996-08-01T23:59:59.000Z

100

Remedial action and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Attachment 2, Geology report: Appendix B, Preliminary final  

SciTech Connect (OSTI)

Detailed investigations of geologic, geomorphic, and seismic conditions at the Burro Canyon site were conducted by the US Department of Energy (DOE) as a disposal site for the tailings at two processing sites near the Slick Rock, Colorado, post office. The purposes of these studies are basic site characterization and identification of potential geologic hazards that could affect long-term site stability. Subsequent engineering studies (e.g., analyses of hydrologic and liquefaction hazards) used the data developed in these studies. The geomorphic analysis was employed in the design of effective erosion protection. Studies of the regional and local seismotectonic setting, which included a detailed search for possible capable faults within a 65-km radius of the site, provided the basis for seismic design parameters.

Not Available

1994-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "junction colorado site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites, Slick Rock, Colorado. Revision 1  

SciTech Connect (OSTI)

The Uranium Mill Tailings Radiation Control Act of 1978 (42 USC {section}7901 et seq.), hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miquel County. Contaminated materials cover an estimated 63 acres of the Union Carbide (UC) processing site and 15 ac of the North Continent (NC) processing site. The sites are within 1 mile of each other and are adjacent to the Dolores River. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown and waterborne radioactive tailings materials. The total estimated volume of contaminated materials is approximately 621,300 cubic yards (yd{sup 3}). In addition to the contamination in the two processing site areas, four VPs were found to contain contamination. As a result of the tailings being exposed to the environment, contamination associated with the UC and NC sites has leached into shallow ground water. Surface water has not been affected. The closest residence is approximately 0.3 air mi from either site. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designing site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi northeast of the sites on land administered by the Bureau of Land Management (BLM).

Not Available

1994-09-01T23:59:59.000Z

102

Acceleration of Microbially Mediated U(VI) Reduction at a Uranium Mill Tailings Site, Colorado Plateau  

SciTech Connect (OSTI)

A second field-scale electron donor amendment experiment was conducted in 2003 at the Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) site in Rifle, Colorado. The objective of the 2003 experiment (done in collaboration with the U.S. Department of Energy's UMTRA Groundwater Project) was to test the hypothesis that amendment of increased concentration of electron donor would result in an increased export of electron donor down gradient which in turn would create a larger zone of down-gradient U(VI) bioreduction sustained over a longer time period relative to the 2002 experiment (Anderson et al. 2003). During the first experiment (2002), {approx}3 mM acetate was amended to subsurface over a period of 3 months in a 15m by 18m by 2.5m volume comprised of 3 upgradient monitoring wells, 20 injection wells, and 15 down-gradient monitoring wells. After an initial one-month phase of metal reduction, bioavailable oxidized Fe was consumed near the injection gallery and the dominant terminal electron accepting process became sulfate reduction, rapidly consuming the injected acetate. For the 2003 experiment, we amended sufficient acetate ({approx}10 mM) to consume available sulfate and export acetate down-gradient where bioavailable oxidized Fe was still present. Data from the experiment indicate that acetate was exported further down gradient, resulting in a larger zone of microbial U(VI) reduction than for the 2002 experiment. Geohydrologic, geochemical, and microbiological data collected during the course of both experiments enable assessment of relative importance of a number of factors controlling the experimental outcomes. Companion posters by Anderson et al. and White et al. provide additional results.

Phil Long; Todd Anderson; Aaron Peacock; Steve Heald; Yun-Juan Chang; Dick Dayvault; Derek R. Lovley; C.T. Resch; Helen Vrionis; Irene Ortiz-Bernad; D.C. White

2004-03-17T23:59:59.000Z

103

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado. Revision 1  

SciTech Connect (OSTI)

The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project, and the Ground Water Project. For the UMTRA Project site located near Naturita, Colorado, phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado. The surface cleanup will reduce radon and other radiation emissions from the former uranium processing site and prevent further site-related contamination of ground water. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health and the environment, and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water or surface water that has mixed with contaminated ground water. Therefore, a risk assessment was conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

NONE

1995-11-01T23:59:59.000Z

104

Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Gunnison, Colorado. Attachment 4, Water resources protection strategy: Final report  

SciTech Connect (OSTI)

To achieve compliance with the proposed US Environmental Protection Agency (EPA) groundwater protection standards the US Department of Energy (DOE) proposes to meet background concentrations or the EPA maximum concentration limits (MCLS) for hazardous constituents in groundwater in the uppermost aquifer at the point of compliance (POC) at the Gunnison Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site near Gunnison, Colorado. The proposed remedial action will ensure protection of human health and the environment. A summary of the principal features of the water resources protection strategy for the Gunnison disposal site is included in this report.

Not Available

1992-10-01T23:59:59.000Z

105

Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites Slick Rock, Colorado. Draft  

SciTech Connect (OSTI)

The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA) authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the sites and on vicinity properties (VP) associated with the sites. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contained measures to control the contaminated materials and to protect the groundwater from further degradation. Remedial actions at the Slick Rock sites must be performed in accordance with these standards and with the concurrence of the US Nuclear Regulatory Commission (NRC).

NONE

1993-06-01T23:59:59.000Z

106

Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Remedial action selection report, Appendix B  

SciTech Connect (OSTI)

The Slick Rock uranium mill tailings sites are located near the small town of Slick Rock, in San Miguel County, Colorado. There are two designated UMTRA sites at Slick Rock, the Union Carbide (UC) site and the North Continent (NC) site. Both sites are adjacent to the Dolores River. The UC site is approximately 1 mile (mi) [2 kilometers (km)] downstream of the NC site. Contaminated materials cover an estimated 55 acres (ac) [22 hectares (ha)] at the UC site and 12 ac (4.9 ha) at the NC site. The sites contain former mill building concrete foundations, tailings piles, demolition debris, and areas contaminated by windblown and waterborne radioactive materials. The total estimated volume of contaminated materials is approximately 620, 000 cubic yards (yd{sup 3}) [470,000 cubic meters (m{sup 3})]. In addition to the contamination at the two processing site areas, four vicinity properties were contaminated. Contamination associated with the UC and NC sites has leached into groundwater.

Not Available

1993-07-01T23:59:59.000Z

107

Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado: Final report  

SciTech Connect (OSTI)

This volume contains Appendix F, bid schedule and specifications for remedial action on three sites: Old Rifle processing site; New Rifle processing site and Estes Gulch disposal site.

Not Available

1992-02-01T23:59:59.000Z

108

Final Environmental Assessment and Finding of No Significant Impact: Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Site  

SciTech Connect (OSTI)

This environmental assessment addresses the environmental effects of a proposed action and the no action alternative to comply with U.S. Environmental Protection Agency (EPA) ground water standards at the Slick Rock, Colorado, Uranium Mill Tailings Remedial Action Project sites. The sites consist of two areas designated as the North Continent (NC) site and the Union Carbide (UC) site. In 1996, the U.S. Department of Energy (DOE) completed surface cleanup at both sites and encapsulated the tailings in a disposal cell 5 miles east of the original sites. Maximum concentration limits (MCLs) referred to in this environmental assessment are the standards established in Title 40 ''Code of Federal Regulations'' Part 192 (40 CFR 192) unless noted otherwise. Ground water contaminants of potential concern at the NC site are uranium and selenium. Uranium is more prevalent, and concentrations in the majority of alluvial wells at the NC site exceed the MCL of 0.044 milligram per liter (mg/L). Selenium contamination is less prevalent; samples from only one well had concentrations exceeding the MCL of 0.01 mg/L. To achieve compliance with Subpart B of 40 CFR 192 at the NC site, DOE is proposing the strategy of natural flushing in conjunction with institutional controls and continued monitoring. Ground water flow and transport modeling has predicted that concentrations of uranium and selenium in the alluvial aquifer will decrease to levels below their respective MCLs within 50 years.

N /A

2003-03-13T23:59:59.000Z

109

Colorado Forestry Best Management Practices  

E-Print Network [OSTI]

Colorado Forestry Best Management Practices Forest Stewardship Guidelines for Water Quality Management Practices (BMPs) for forestry activities. BMPs are a set of water-quality protection measures-harvest sites in southwest Colorado to assess Colorado forestry BMP application and effectiveness. Sites were

Stephens, Graeme L.

110

Environmental Audit of the Grand Junction Projects Office  

SciTech Connect (OSTI)

The Grand Junction Projects Office (GJPO) is located in Mesa County, Colorado, immediately south and west of the Grand Junction city limits. The US Atomic Energy Commission (AEC) established the Colorado Raw Materials Office at the present-day Grand Junction Projects Office in 1947, to aid in the development of a viable domestic uranium industry. Activities at the site included sampling uranium concentrate; pilot-plant milling research, including testing and processing of uranium ores; and operation of a uranium mill pilot plant from 1954 to 1958. The last shipment of uranium concentrate was sent from GJPO in January, 1975. Since that time the site has been utilized to support various DOE programs, such as the former National Uranium Resource Evaluation (NURE) Program, the Uranium Mill Tailings Remedial Action Project (UMTRAP), the Surplus Facilities Management Program (SFMP), and the Technical Measurements Center (TMC). All known contamination at GJPO is believed to be the result of the past uranium milling, analyses, and storage activities. Hazards associated with the wastes impounded at GJPO include surface and ground-water contamination and potential radon and gamma-radiation exposure. This report documents the results of the Baseline Environmental Audit conducted at Grand Junction Projects Office (GJPO) located in Grand Junction, Colorado. The Grand Junction Baseline Environmental Audit was conducted from May 28 to June 12, 1991, by the Office of Environmental Audit (EH-24). This Audit evaluated environmental programs and activities at GJPO, as well as GJPO activities at the State-Owned Temporary Repository. 4 figs., 12 tabs.

Not Available

1991-08-01T23:59:59.000Z

111

Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings Site, Maybell, Colorado. Remedial action selection report: Attachment 2, Geology report, Final  

SciTech Connect (OSTI)

The Maybell uranium mill tailings site is 25 miles (mi) (40 kilometers [km]) west of the town of Craig, Colorado, in Moffat County, in the northwestern part of the state. The unincorporated town of Maybell is 5 road mi (8 km) southwest of the site. The designated site covers approximately 110 acres (ac) (45 hectares [ha]) and consists of a concave-shaped tailings pile and rubble from the demolition of the mill buildings buried in the former mill area. Contaminated materials at the Maybell processing site include the tailings pile, which has an average depth of 20 feet (ft) (6 meters [m]) and contains 2.8 million cubic yards (yd{sup 3}) (2.1 million cubic meters [m{sup 3}]) of tailings. The former mill processing area is on the north side of the site and contains 20,000 yd{sup 3} (15,000 m{sup 3}) of contaminated demolition debris. Off-pile contamination is present and includes areas adjacent to the tailings pile, as well as contamination dispersed by wind and surface water flow. The volume of off-pile contamination to be placed in the disposal cell is 550,000 yd{sup 3} (420,000 m{sup 3}). The total volume of contaminated materials to be disposed of as part of the remedial action is estimated to be 3.37 million yd{sup 3} (2.58 million m{sup 3}). Information presented in this Final Remedial Action Plan (RAP) and referenced in supporting documents represents the current disposal cell design features and ground water compliance strategy proposed by the US Department of Energy (DOE) for the Maybell, Colorado, tailings site. Both the disposal cell design and the ground water compliance strategy have changed from those proposed prior to the preliminary final RAP document as a result of prudent site-specific technical evaluations.

Not Available

1994-06-01T23:59:59.000Z

112

Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Rifle, Colorado. Revision 1  

SciTech Connect (OSTI)

The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase 1) and the Ground Water Project (Phase 2). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment.

NONE

1995-08-01T23:59:59.000Z

113

Mineral transformation and biomass accumulation associated with uranium bioremediation at Rifle, Colorado  

E-Print Network [OSTI]

bioremediation at Rifle, Colorado. J. Contam. Hydrol. 2009 (Bioremediation at Rifle, Colorado Li Li a* , Carl I. Steefelcontaminated site near Rifle, Colorado. We use the reactive

Li, L.

2009-01-01T23:59:59.000Z

114

An assessment of potential hydrologic and ecologic impacts of constructing mitigation wetlands, Rifle, Colorado, UMTRA project sites  

SciTech Connect (OSTI)

This-assessment examines the consequences and risks that could result from the proposed construction of mitigation wetlands at the New and Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) Project sites near Rifle, Colorado. Remediation of surface contamination at those sites is now under way. Preexisting wetlands at or near the Old and New Rifle sites have been cleaned up, resulting in the loss of 0.7 and 10.5 wetland acres (ac) (0.28 and 4.2 hectares [ha]) respectively. Another 9.9 ac (4.0 ha) of wetlands are in the area of windblown contamination west of the New Rifle site. The US Army Corps of Engineers (USACE) has jurisdiction over the remediated wetlands. Before remedial action began, and before any wetlands were eliminated, the USACE issued a Section 404 Permit that included a mitigation plan for the wetlands to be lost. The mitigation plan calls for 34.2 ac (1 3.8 ha) of wetlands to be constructed at the south end and to the west of the New Rifle site. The mitigation wetlands would be constructed over and in the contaminated alluvial aquifer at the New Rifle site. As a result of the hydrologic characteristics of this aquifer, contaminated ground water would be expected to enter the environment through the proposed wetlands. A preliminary assessment was therefore required to assess any potential ecological risks associated with constructing the mitigation wetlands at the proposed location.

NONE

1995-04-01T23:59:59.000Z

115

Site-specific analysis of the cobbly soils at the Grand Junction processing site. [Uranium Mill Tailings Remedial Action (UMTRA) Project  

SciTech Connect (OSTI)

This report describes a recent site-specific analysis to evaluate the necessity of a recommendation to install a slurry trench around the Grand Junction processing site. The following analysis addresses the cobbly nature of the site's radiologically contaminated foundation soil, reassesses the excavation depths based on bulk radionuclide concentrations, and presents data-based arguments that support the elimination of the initially proposed slurry trench. The slurry trench around the processing site was proposed by the Remedial Action Contractor (RAC) to minimize the amount of water encountered during excavation. The initial depths of excavation developed during conceptual design, which indicated the need for a slurry wall, were reexamined as part of this analysis. This reanalysis, based on bulk concentrations of a cobbly subsoil, supports decreasing the original excavation depth, limiting the dewatering quantities to those which can be dissipated by normal construction activities. This eliminates the need for a slurry trench andseparate water treatment prior to permitted discharge.

Not Available

1992-06-01T23:59:59.000Z

116

Surface and subsurface cleanup protocol for radionuclides, Gunnison, Colorado, UMTRA project processing site. Final report: Revision 1  

SciTech Connect (OSTI)

Surface and subsurface soil cleanup protocols for the Gunnison, Colorado, processing site are summarized as follows: In accordance with EPA-promulgated land cleanup standards, in situ Ra-226 is to be cleaned up based on bulk concentrations not exceeding 5 and 15 pCi/g in 15-cm surface and subsurface depth increments, averaged over 100m{sup 2} grid blocks, where the parent Ra-226 concentrations are greater than, or in secular equilibrium with, the Th-230 parent. In locations where Th-230 has differentially migrated in subsoil relative to Ra-226, a Th-230 clean up protocol has been developed. The cleanup of other radionuclides or nonradiological hazards that pose a significant threat to the public and the environment will be determined and implemented in accordance with pathway analysis to assess impacts and the implications of ALARA specified in 40 CFR Part 192 relative to supplemental standards.

Gonzales, D.

1993-12-01T23:59:59.000Z

117

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado. Revision 2  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment. Human health risk may result from exposure to ground water contaminated from uranium ore processing. Exposure could occur from drinking water obtained from a well placed in the areas of contamination. Furthermore, environmental risk may result from plant or animal exposure to surface water and sediment that have received contaminated ground water.

NONE

1996-02-01T23:59:59.000Z

118

Influence of site-specific geology on oil shale fragmentation experiments at the Colony Mine, Garfield County, Colorado  

SciTech Connect (OSTI)

The Los Alamos National Laboratory executed 19 intermediate scale cratering experiments in oil shale at the Colony Mine in Garfield County, Colorado. These experiments have led to a better understanding of fracture characteristics and fragmentation of in situ oil shale by use of a conventional high explosive. Geologic site characterization included detailed mapping, coring, and sample analyses. Site-specific geology was observed to be a major influence on the resulting crater geometry. The joint patterns at the experimental site frequently defined the final crater symmetry. Secondary influences included vugs, lithology changes, and grade fluctuations in the local stratigraphy. Most experiments, in both the rib and floor, were conducted to obtain data to investigate the fragmentation results within the craters. The rubble was screened for fragment-size distributions. Geologic features in proximity to the explosive charge had minimal effect on the rubble due to the overpowering effect of the detonation. However, these same features became more influential on the fracture and rubble characteristics with greater distances from the shothole. Postshot cores revealed a direct relationship between the grade of the oil shale and its susceptibility to fracturing. The Colony Mine experiments have demonstrated the significant role of geology in high explosive/oil shale interaction. It is probable that this role will have to be considered for larger applications to blast patterns and potential problems in retort stability in the future of oil shale development.

Ray, J.M.; Harper, M.D.; Craig, J.L.; Edwards, C.L.

1982-01-01T23:59:59.000Z

119

Field Projects: Durango, Colorado  

Broader source: Energy.gov [DOE]

Personnel from Sandia National Laboratories in New Mexico installed four permeable reactive barriersPRBs at the Durango, Colorado, Uranium Mill Tailings Radiation Control Act Title I site in...

120

Surface and subsurface cleanup protocol for radionuclides Gunnison, Colorado, UMTRA Project Processing Site. Revision 3, Final report  

SciTech Connect (OSTI)

The supplemental standards provisions of Title 40, Code of Federal Regulations, Part 192 (40 CFR Part 192) require the cleanup of radionuclides other than radium-226 (Ra-226) to levels ``as low as reasonably achievable`` (ALARA), taking into account site-specific conditions, if sufficient quantities and concentrations are present to constitute a significant radiation hazard. In this context, thorium-230 (Th-230) at the Gunnison, Colorado, processing site will require remediation. However, a seasonally fluctuating groundwater table at the site significantly complicates conventional remedial action with respect to cleanup. Characterization data indicate that in the offpile areas, the removal of residual in situ bulk Ra-226 and Th-230 such that the 1000-year projected Ra-226 concentration (Ra-226 concentration in 1000 years due to the decay of in situ Ra-226 and the in-growth of Ra-226 from in situ Th-230) complies with the US Environmental Protection Agency (EPA) cleanup standard for in situ Ra-226 and the cleanup protocol for in situ Th-230 can be readily achieved using conventional excavation techniques for bulk contamination without encountering significant impacts due to groundwater. The EPA cleanup standard and criterion for Ra-226 and the 1000-year projected Ra-226 are 5 and 15 picocuries per gram (pCi/g) above background, respectively, averaged over 15-centimeter (cm) deep surface and subsurface intervals and 100-square-meter (m{sup 2}) grid areas. Significant differential migration of Th-230 relative to Ra-226 has occurred over 40 percent of the subpile area. To effectively remediate the site with respect to Ra-226 and Th-230, supplemental standard is proposed and discussed in this report.

Not Available

1994-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "junction colorado site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

EA-1146: Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of the proposal to convert buildings at the U.S. Department of Energy Rocky Flats Environmental Technology Site from their former uses to interim waste...

122

EA-1292: On-site Treatment of Low Level Mixed Waste, Golden, Colorado  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposal to evaluate the proposed treatment of low level mixed waste at the U.S. Department of Energy's Rocky Flats Environmental Technology Site.

123

EA-1968: Site-Wide Environmental Assessment of the U.S. Department of Energy National Renewable Energy Laboratory (NREL) South Table Mountain (STM) Campus, Golden, Colorado  

Broader source: Energy.gov [DOE]

DOE is preparing a Site-Wide Environmental Assessment to analyze the potential environmental impacts of possible site operations and improvements over the next five to ten years at DOEs STM campus of NREL and nearby leased support facilities in Golden, Colorado. This proposed action would support DOEs mission to research, develop, and deploy energy efficiency and renewable energy technologies and would consist of: Research, routine laboratory, and site operation enhancements New building construction and modifications of existing buildings Infrastructure and utilities upgrades and enhancements

124

Rocky Flats, Colorado, Site Quarterly Report of Site Surveillance and Maintenance Activities Third Quarter Calendar Year 2013  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledo SiteTonawandaUniversity21PreparedRffi Prepared3

125

Rocky Flats, Colorado, Site Quarterly Report of Site Surveillance and Maintenance Activities Third Quarter Calendar Year 2013  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledo SiteTonawandaUniversity21PreparedRffi

126

Ground Water Compliance Action Plan for the Old Rifle, Colorado, UMTRA Project Site  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledo SiteTonawanda North - ConsequencesD D&D

127

Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Rifle, Colorado  

SciTech Connect (OSTI)

This document has been structured to provide a comprehensive understanding of the remedial action proposed for the Rifle sites. That remedial action consists of removing approximately 4,185,000 cubic yards (cy) of tailings and contaminated materials from their current locations, transporting, and stabilizing the tailings material at the Estes Gulch disposal site, approximately six miles north of Rifle. The tailings and contaminated materials are comprised of approximately 597,000 cy from Old Rifle, 3,232,000 cy from New Rifle, and 322,000 cy from vicinity properties and about 34,000 cy from demolition. The remedial action plan includes specific design requirements for the detailed design and construction of the remedial action. An extensive amount of data and supporting information have been generated for this remedial action and cannot all be incorporated into this document. Pertinent information and data are included with reference given to the supporting documents.

Not Available

1990-02-01T23:59:59.000Z

128

EIS-0064: Rocky Flats Plant Site, Jefferson County, Golden, Colorado (see also ERDA-1545-D)  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy developed this statement to evaluate the site specific environmental impacts of continuing to conduct nuclear weapons production activities at the Rocky Flats Plant; alternatives for the conduct of such activities; and environmental impacts of the U.S. policy to produce nuclear weapons.

129

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado  

SciTech Connect (OSTI)

The ground water project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. This report is a site specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. Currently, no one is using the ground water and therefore, no one is at risk. However, the land will probably be developed in the future and so the possibility of people using the ground water does exist. This report examines the future possibility of health hazards resulting from the ingestion of contaminated drinking water, skin contact, fish ingestion, or contact with surface waters and sediments.

NONE

1995-05-01T23:59:59.000Z

130

Similarity of nutrient uptake and root dimensions of Engelmann spruce and subalpine fir at two contrasting sites in Colorado  

SciTech Connect (OSTI)

Nutrient uptake capacity is an important parameter in modeling nutrient uptake by plants. Researchers commonly assume that uptake capacity measured for a species can be used across sites. We tested this assumption by measuring the nutrient uptake capacity of intact roots of Engelmann spruce (Picea engelmanni Parry) and subalpine fir (Abies lasiocarpa (Hook.) Nutt.) at Loch Vale Watershed and Fraser Experimental Forest in the Rocky Mountains of central Colorado. Roots still attached to the tree were exposed to one of three concentrations of nutrient solutions for time periods ranging from 1 to 96 hours, and solutions were analyzed for ammonium, nitrate, calcium, magnesium, and potassium. Surprisingly, the two species were indistinguishable in nutrient uptake within site for all nutrients (P > 0.25), but uptake rates differed by site. In general, nutrient uptake was higher at Fraser (P = 0.01, 0.15, 0.03, 0.18 for NH{sub 4}{sup +}, NO{sub 3}{sup -}, Ca{sup 2+}, and K{sup +}, respectively), which is west of the Continental Divide and has lower atmospheric deposition of N than Loch Vale. Mean uptake rates by site for ambient solution concentrations were 0.12 {micro}mol NH{sub 4}{sup +} g{sub fwt}{sup -1} h{sup -1}, 0.02 {micro}mol NO{sub 3}{sup -} g{sub fwt}{sup -1}, 0.21 {micro}mol Ca{sup 2+} g{sub fwt}{sup -1} h{sup -1}, and 0.01 {micro}mol Mg{sup 2+} g{sub fwt}{sup -1} h{sup -1} at Loch Vale, and 0.21 {micro}mol NH{sub 4}{sup +} f{sub fwt}{sup -1}h{sup -1}, 0.04 {micro}mol NO{sub 3}{sup -} g{sub fwt}{sup -1} h{sup -1}, 0.51 {micro}mol Ca{sup 2+}g{sub fwt}{sup -1}h{sup -1}, and 0.07 {micro}mol Mg{sup 2+} f{sub fwt}{sup -1}h{sup -1} at Fraser. The importance of site conditions in determining uptake capacity should not be overlooked when parameterizing nutrient uptake models. We also characterized the root morphology of these two species and compared them to other tree species we have measured at various sites in the northeastern USA. Engelman spruce and subalpine fir were indistinguishable in specific root length and diameter distribution, while most of the other ten species had statistically distinct diameter distributions across five diameter classes < 2 mm. Based on specific root length, subalpine fir and Engelmann spruce had significantly coarser roots than red pine (Pinus resinosa Soland), yellow birch (Betula allegheniensis Britt.), sugar maple (Acer saccharum Marsh.), chestnut oak (Quercus prinus L.), black cherry (Prunus serotina Ehrh.), and red spruce (Picea rubens Sarg.). White oak (Quercus alba L.), balsam fir (Abies balsamea (L.) Mill.), American beech (Fagus grandifolia Ehrh.) and loblolly pine (Pinus taeda L.) were intermediate in SRL (indistinguishable from Engelmann spruce and subalpine fir by ANOVA). Species that differ more in physiology and morphology than the two species we compared would likely show dissimilar uptake characteristics even at the same site.

Yanai, R; McFarlane, K; Lucash, M; Kulpa, S; Wood, D

2009-10-09T23:59:59.000Z

131

Comment and response document for the final remedial action plan site design for stabilization of the Inactive Uranium Mill Tailings Sites at Slick Rock, Colorado  

SciTech Connect (OSTI)

This document consists of comments and responses; the reviewers are the U.S. Nuclear Regulatory Commission (NRC), Colorado Dept. of Public Health and Environment, and the remedial action contractor (RAC).

NONE

1995-09-01T23:59:59.000Z

132

COLORADO NATURAL HERITAGE PROGRAM Position Announcement  

E-Print Network [OSTI]

COLORADO NATURAL HERITAGE PROGRAM Position Announcement: Title: Zoology Field Technicians ­ Research Associate I Number of Positions: 1-12 (temporary) Work Location: Field sites throughout Colorado Pay Rate: $1800 - $2500/month plus per diem Duration: 3-6 months Summary of Positions The Colorado

133

Microbiological, Geochemical and Hydrologic Processes Controlling Uranium Mobility: An Integrated Field-Scale Subsurface Research Challenge Site at Rifle, Colorado, Quality Assurance Project Plan  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) is cleaning up and/or monitoring large, dilute plumes contaminated by metals, such as uranium and chromium, whose mobility and solubility change with redox status. Field-scale experiments with acetate as the electron donor have stimulated metal-reducing bacteria to effectively remove uranium [U(VI)] from groundwater at the Uranium Mill Tailings Site in Rifle, Colorado. The Pacific Northwest National Laboratory and a multidisciplinary team of national laboratory and academic collaborators has embarked on a research proposed for the Rifle site, the object of which is to gain a comprehensive and mechanistic understanding of the microbial factors and associated geochemistry controlling uranium mobility so that DOE can confidently remediate uranium plumes as well as support stewardship of uranium-contaminated sites. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Rifle Integrated Field-Scale Subsurface Research Challenge Project.

Fix, N. J.

2008-01-07T23:59:59.000Z

134

EA-1458: Environmental Assessment  

Broader source: Energy.gov [DOE]

Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Sites, DOE Grand Junction Office, Grand Junction, Colorado

135

A Biodiversity Scorecard for Colorado Colorado Natural Heritage Program  

E-Print Network [OSTI]

A Biodiversity Scorecard for Colorado Colorado Natural Heritage Program and The Nature Conservancy Conservancy. 2008. A Biodiversity Scorecard for Colorado. Colorado Natural Heritage Program, Colorado State

136

University of Colorado University of Colorado Boulder  

E-Print Network [OSTI]

University of Colorado Boulder University of Colorado Boulder University of Colorado Boulder University of Colorado Boulder University of Colorado Boulder Catalog 2012­13 Redefining Teaching & Learning­13 UNIVERSITY OF COLORADO BOULDER CATALOG contains a summary of campus offerings, policies, and requirements

Mojzsis, Stephen J.

137

A high-elevation, multi-proxy biotic and environmental record of MIS 64 from the Ziegler Reservoir fossil site, Snowmass Village, Colorado, USA  

SciTech Connect (OSTI)

In North America, terrestrial records of biodiversity and climate change that span Marine Oxygen Isotope Stage (MIS) 5 are rare. Where found, they provide insight into how the coupling of the oceanatmosphere system is manifested in biotic and environmental records and how the biosphere responds to climate change. In 20102011, construction at Ziegler Reservoir near Snowmass Village, Colorado (USA) revealed a nearly continuous, lacustrine/wetland sedimentary sequence that preserved evidence of past plant communities between ~140 and 55 ka, including all of MIS 5. At an elevation of 2705 m, the Ziegler Reservoir fossil site also contained thousands of well-preserved bones of late Pleistocene megafauna, including mastodons, mammoths, ground sloths, horses, camels, deer, bison, black bear, coyotes, and bighorn sheep. In addition, the site contained more than 26,000 bones from at least 30 species of small animals including salamanders, otters, muskrats, minks, rabbits, beavers, frogs, lizards, snakes, fish, and birds. The combination of macro- and micro-vertebrates, invertebrates, terrestrial and aquatic plant macrofossils, a detailed pollen record, and a robust, directly dated stratigraphic framework shows that high-elevation ecosystems in the Rocky Mountains of Colorado are climatically sensitive and varied dramatically throughout MIS 5

Ian M. Miller; Mitchell A. Plummer; Various Others

2014-10-01T23:59:59.000Z

138

Colorado Air Pollution Control Division - Construction Permits...  

Open Energy Info (EERE)

Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Colorado Air Pollution Control Division - Construction Permits Forms and Air Pollutant Emission...

139

Nanotube junctions  

DOE Patents [OSTI]

The present invention comprises a new nanoscale metal-semiconductor, semiconductor-semiconductor, or metal-metal junction, designed by introducing topological or chemical defects in the atomic structure of the nanotube. Nanotubes comprising adjacent sections having differing electrical properties are described. These nanotubes can be constructed from combinations of carbon, boron, nitrogen and other elements. The nanotube can be designed having different indices on either side of a junction point in a continuous tube so that the electrical properties on either side of the junction vary in a useful fashion. For example, the inventive nanotube may be electrically conducting on one side of a junction and semiconducting on the other side. An example of a semiconductor-metal junction is a Schottky barrier. Alternatively, the nanotube may exhibit different semiconductor properties on either side of the junction. Nanotubes containing heterojunctions, Schottky barriers, and metal-metal junctions are useful for microcircuitry.

Crespi, Vincent Henry (Darien, IL); Cohen, Marvin Lou (Berkeley, CA); Louie, Steven Gwon Sheng (Berkeley, CA); Zettl, Alexander Karlwalter (Kensington, CA)

2003-01-01T23:59:59.000Z

140

Mitigation and monitoring plan for impacted wetlands at the Gunnison UMTRA Project site, Gunnison, Colorado. [Uranium Mill Tailings Remedial Action (UMTRA) Project  

SciTech Connect (OSTI)

The U.S Department of Energy (DOE) administers the Uranium Mill Tailings Remedial Action (UMTRA) Project. The UMTRA Project is the result of the Uranium Mill Tailings Radiation Control Act(UMTRA) which was passed in response to the public's concern over the potential public health hazards related to uranium mill tailings and associated contaminated material at abandoned or otherwise uncontrolled inactive processing sites throughout the United States. The Gunnison, Colorado abandoned uranium mill site is one of the sites slated for cleanup by the DOE under authority of UMTRA. The contaminated material at this site will be transported to a disposal site on US Bureau of Land Management (BLM) land east of Gunnison. Remedial action activities will temporarily disturb 0.8 acre and permanently eliminate 5.1 acres of wetlands. This report describes the proposed mitigation plan for the 5.9 acres of impacted wetlands. In conjunction with the mitigation of the permanently impacted wetlands through the enhancement of wetland and adjacent riparian areas, impacts to wildlife as a result of this project will also be mitigated. However, wildlife mitigation is not the focus of this document and is covered in relevant BLM permits for this project. This plan proposes the enhancement of a 3:1 ratio of impacted wetlands in accordance with US Environmental Protection Agency guidelines, plus the enhancement of riparian areas for wildlife mitigation. Included in this mitigation plan is a monitoring plan to ensure that the proposed measures are working and being maintained.

Not Available

1992-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "junction colorado site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Colorado State University Colorado State University  

E-Print Network [OSTI]

Colorado State University _______________ 1.1 Page 1 Colorado State University In 1870, the Territorial Council and House of Representatives of the Territory of Colorado created the Colorado that same year as Colorado's land-grant college under the Morrill Act of 1862. The Morrill Act provided

Stephens, Graeme L.

142

Colorado State University Colorado State University  

E-Print Network [OSTI]

Colorado State University Colorado State University In 1870, the Territorial Council and House of Representatives of the Territory of Colorado created the Colorado Agricultural College. When the Territory became. The College admitted its first students in 1879 and received designation that same year as Colorado's land

Collett Jr., Jeffrey L.

143

Remedial action plan for the inactive uranium processing site at Naturita, Colorado. Remedial action selection report: Attachment 2, geology report; Attachment 3, ground water hydrology report; Attachment 4, supplemental information  

SciTech Connect (OSTI)

The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the U.S. Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), 42 USC {section} 7901 et seq. Part of the UMTRCA requires that the U.S. Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the U.S. Environmental Protection Agency (EPA). This RAP serves two purposes. First, it describes the activities that are proposed by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium processing site near Naturita, Colorado. Second, this RAP, upon concurrence and execution by the DOE, the state of Colorado, and the NRC, becomes Appendix B of the cooperative agreement between the DOE and the state of Colorado.

NONE

1998-03-01T23:59:59.000Z

144

Feasibility Study of Economics and Performance of Solar Photovoltaics at the Tower Road Site in Aurora, Colorado. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites  

SciTech Connect (OSTI)

The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Tower Road site in Aurora, Colorado, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site. This study did not assess environmental conditions at the site.

Van Geet, O.; Mosey, G.

2013-03-01T23:59:59.000Z

145

Colorado Census Snapshot: 2010  

E-Print Network [OSTI]

Colorado Census Snapshot: 2010 Same-sex couples Same-sexThornton Longmont Northglenn Colorado Springs Fort Collins

Gates, Gary J.; Cooke, Abigail M.

2011-01-01T23:59:59.000Z

146

Colorado Bark Beetle Cooperative  

E-Print Network [OSTI]

Colorado Bark Beetle Cooperative Colorado Bark Beetle Cooperative A Place Based Collaborative of Land Management, National Park Service, Colorado State Forest Service, & Northwest Colorado Council altitude Lodgepole Pine forests on the western and northern slopes of ColoradoColorado ­ Initial counties

147

Josephson junction  

SciTech Connect (OSTI)

A novel method for fabricating nanometer geometry electronic devices is described. Such Josephson junctions can be accurately and reproducibly manufactured employing photolithographic and direct write electron beam lithography techniques in combination with aqueous etchants. In particular, a method is described for manufacturing planar Josephson junctions from high temperature superconducting material.

Wendt, Joel R. (Albuquerque, NM); Plut, Thomas A. (Albuquerque, NM); Martens, Jon S. (Sunnyvale, CA)

1995-01-01T23:59:59.000Z

148

Josephson junction  

SciTech Connect (OSTI)

A novel method for fabricating nanometer geometry electronic devices is described. Such Josephson junctions can be accurately and reproducibly manufactured employing photolithographic and direct write electron beam lithography techniques in combination with aqueous etchants. In particular, a method is described for manufacturing planar Josephson junctions from high temperature superconducting material. 10 figs.

Wendt, J.R.; Plut, T.A.; Martens, J.S.

1995-05-02T23:59:59.000Z

149

Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado. Remedial Action Selection Report, Appendix B of Attachment 2: Geology report, Final  

SciTech Connect (OSTI)

The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), 42 USC {section} 7901 et seq. Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which describes the proposed remedial action for the Naturita site. An extensive amount of data and supporting information has been generated and evaluated for this remedial action. These data and supporting information are not incorporated into this single document but are included or referenced in the supporting documents. The RAP consists of this RAS and four supporting documents or attachments. This Attachment 2, Geology Report describes the details of geologic, geomorphic, and seismic conditions at the Dry Flats disposal site.

Not Available

1994-03-01T23:59:59.000Z

150

University of Colorado Boulder Colorado Springs Denver  

E-Print Network [OSTI]

University of Colorado Boulder · Colorado Springs · Denver Office of the Vice President for Academic Affairs and Research 1800 Grant Street, Suite 800 35 UCA Denver, Colorado 80203-1185 (303) 860 Diversity Report Prepared by the University of Colorado System Office of Institutional Research April 2009

Stowell, Michael

151

Baseline risk assessment of groundwater contamination at the Uranium Mill Tailings Site near Gunnison, Colorado. Revision 1  

SciTech Connect (OSTI)

This report evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells to determine the potential for immediate human health and environmental impacts. This risk assessment evaluates the most contaminated groundwater that flows beneath the processing site towards the Gunnison River. The monitor wells that have consistently shown the highest concentration of most contaminants are used in this risk assessment. This risk assessment will be used in conjunction with additional activities and documents to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium.

Not Available

1994-04-01T23:59:59.000Z

152

EA-1914: National Renewable Energy Laboratory (NREL) National Wind Technology Center (NWTC) Site-Wide Environmental Assessment, Golden, Colorado  

Broader source: Energy.gov [DOE]

This Site-Wide EA evaluates the environmental impacts of reasonably foreseeable activities at NWTC. Currently, natural resource surveys are in progress including wildlife, vegetation, avian, and bat surveys to establish baseline conditions of the NWTC. The proposed EA would address any changes in the regional environment that may have occurred since the previous EA and would evaluate new site development proposals and operations. A site-wide review provides an overall NEPA baseline that is useful for tiering or as a reference when preparing project-specific NEPA reviews.

153

Baseline risk assessment of groundwater contamination at the uranium mill tailings site, near Gunnison, Colorado. Revision 2  

SciTech Connect (OSTI)

This report is the second site-specific risk assessment document prepared for the Ground Water Project at the Gunnison site. A preliminary risk assessment was conducted in 1990 to determine whether long-term use of ground water from private wells near the Gunnison site had the potential for adverse health effects. Due to the results of that preliminary risk assessment, the residents were provided bottled water on an interim basis. In July 1994, the residents and the nearby Valco cement/concrete plant were given the option to connect to anew alternate water supply system, eliminating the bottled water option. This document evaluates current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether more action is needed to protect human health and the environment and to comply with the EPA standards.

NONE

1996-06-01T23:59:59.000Z

154

EA-1120: Solid Residues Treatment, Repackaging and Storage at the Rocky Flats Environmental Technology Site, Golden, Colorado  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of the proposal to stabilize, if necessary, and/or repackage the residues for safe interim storage at the Site while awaiting the completion and opening...

155

Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Appendix A to Attachment 3, Tables  

SciTech Connect (OSTI)

This report is a compilation of chemical and radionuclide measurements made in the environment as part of the Remedial Action Plan and Site Design for Stabilization program.

Not Available

1993-07-01T23:59:59.000Z

156

Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado. Appendix A of Attachment 3, Calculations: Preliminary final  

SciTech Connect (OSTI)

This report consists primarily of calculations for ground water flow and hydraulic conductivity as part of the Remedial Action Plan and Site Design for Stabilization program.

Not Available

1993-08-01T23:59:59.000Z

157

Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Attachment 3, Ground water hydrology report: Preliminary final  

SciTech Connect (OSTI)

The US Environmental Protection Agency (EPA) has established health and environmental protection regulations to correct and prevent ground water contamination resulting from processing activities at inactive uranium milling sites (52 FR 36000 (1987)). According to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, 42 USC {section}7901 et seq., the US Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has determined that for Slick Rock, this assessment shall include hydrogeologic site characterization for two separate uranium processing sites, the Union Carbide (UC) site and the North Continent (NC) site, and for the proposed Burro Canyon disposal site. The water resources protection strategy that describes how the proposed action will comply with the EPA ground water protection standards is presented in Attachment 4. The following site characterization activities are discussed in this attachment: Characterization of the hydrogeologic environment, including hydrostratigraphy, ground water occurrence, aquifer parameters, and areas of recharge and discharge. Characterization of existing ground water quality by comparison with background water quality and the maximum concentration limits (MCL) of the proposed EPA ground water protection standards. Definition of physical and chemical characteristics of the potential contaminant source, including concentration and leachability of the source in relation to migration in ground water and hydraulically connected surface water. Description of local water resources, including current and future use, availability, and alternative supplies.

Not Available

1994-03-04T23:59:59.000Z

158

Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Gunnison, Colorado. Attachment 2, Geology report: Final report  

SciTech Connect (OSTI)

Detailed investigations of geologic, geomorphic, and seismic conditions at the Landfill disposal site were conducted. The purpose of these studies was basic site characterization and identification of potential geologic hazards that could affect long-term site stability. Subsequent engineering studies, such as analyses of hydrologic and liquefaction hazards, used the data developed in these studies. The geomorphic analysis was employed in the design of effective erosion protection. Studies of the regional and local seismotectonic setting, which included a detailed search for possible capable faults within a 65-kilometer (km) (40-mile) radius of the site, provided the basis for seismic design parameters. The scope of work performed included the following: Compilation and analysis of previous published and unpublished geologic literature and maps. Review of historical and instrumental earthquake data. Review of site-specific subsurface geologic data, including lithologic and geophysical logs of exploratory boreholes advanced in the site area. Photogeologic interpretations of existing conventional aerial photographs. Ground reconnaissance and mapping of the site region.

Not Available

1992-10-01T23:59:59.000Z

159

Census Snapshot: Colorado  

E-Print Network [OSTI]

COLORADO Adam P. Romero, Public Policy Fellow Clifford J.couples raising children in Colorado. We compare same-sex sex married couples in Colorado. 1 APRIL 2008 In many ways,

Romero, Adam P; Rosky, Clifford J; Badgett, M.V. Lee; Gates, Gary J

2008-01-01T23:59:59.000Z

160

Remedial action and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Attachment 2, Geology report  

SciTech Connect (OSTI)

This report presents geologic considerations that are pertinent to the Remedial Action Plan for Slick Rock mill tailings. Topics covered include regional geology, site geology, geologic stability, and geologic suitability.

Not Available

1993-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "junction colorado site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Colorado - Report of the Task Force on Statewide Transmission...  

Open Energy Info (EERE)

Permitting Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Colorado - Report of the Task Force on Statewide Transmission Siting and Permitting Abstract...

162

Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Gunnison, Colorado. Attachment 3, Groundwater hydrology report: Final report  

SciTech Connect (OSTI)

The US Environmental Protection Agency (EPA) has established health and environmental protection regulations to correct and prevent groundwater contamination resulting from processing activities at inactive uranium milling sites (40 CFR Part 192). According to the Uranium Mill Tailings Radiation Control Act of 1978, (UMTRCA) (48 CFR 590), the US Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has determined that this assessment shall include information on hydrogeologic site characterization. The water resources protection strategy that describes how the proposed action will comply with the EPA groundwater protection standards is presented in Attachment 4. Site characterization activities discussed in this attachment include the following: Characterization of the hydrogeologic environment, including hydro-stratigraphy, groundwater occurrence, aquifer parameters, and areas of recharge and discharge. Characterization of existing groundwater quality by comparison with background water quality and the maximum concentration limits (MCLs) of the proposed EPA groundwater protection standards. Definition of physical and chemical characteristics of the potential contaminant source, including concentration and leachability of the source in relation to migration in groundwater and hydraulically connected surface water. Description of local water resources, including current and future use and value, availability, and alternative supplies.

Not Available

1992-10-01T23:59:59.000Z

163

Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Rifle, Colorado. Volume 1, Text: Appendices A, B, and C: Final report  

SciTech Connect (OSTI)

This document has been structured to provide a comprehensive understanding of the remedial action proposed for the Rifle sites. That remedial action consists of removing approximately 4,185,000 cubic yards (cy) of tailings and contaminated materials from their current locations, transporting, and stabilizing the tailings material at the Estes Gulch disposal site, approximately six miles north of Rifle. The tailings and contaminated materials are comprised of approximately 597,000 cy from Old Rifle, 3,232,000 cy from New Rifle, and 322,000 cy from vicinity properties and about 34,000 cy from demolition. The remedial action plan includes specific design requirements for the detailed design and construction of the remedial action. An extensive amount of data and supporting information have been generated for this remedial action and cannot all be incorporated into this document. Pertinent information and data are included with reference given to the supporting documents.

Not Available

1990-02-01T23:59:59.000Z

164

Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado: Remedial Action Selection Report. Preliminary final  

SciTech Connect (OSTI)

This proposed remedial action plan incorporates the results of detailed investigation of geologic, geomorphic, and seismic conditions at the proposed disposal site. The proposed remedial action will consist of relocating the uranium mill tailings, contaminated vicinity property materials, demolition debris, and windblown/waterborne materials to a permanent repository at the proposed Burro Canyon disposal cell. The proposed disposal site will be geomorphically stable. Seismic design parameters were developed for the geotechnical analyses of the proposed cell. Cell stability was analyzed to ensure long-term performance of the disposal cell in meeting design standards, including slope stability, settlement, and liquefaction potential. The proposed cell cover and erosion protection features were also analyzed and designed to protect the RRM (residual radioactive materials) against surface water and wind erosion. The location of the proposed cell precludes the need for permanent drainage or interceptor ditches. Rock to be used on the cell top-, side-, and toeslopes was sized to withstand probable maximum precipitation events.

Not Available

1994-03-01T23:59:59.000Z

165

COLORADO CLIMATE PREPAREDNESS PROJECT  

E-Print Network [OSTI]

COLORADO CLIMATE PREPAREDNESS PROJECT FINAL REPORT Prepared by the Western Water Assessment for the State of Colorado #12;#12;Authors Kristen Averyt University of Colorado Boulder, CU-NOAA Western Water Assessment Kelsey Cody University of Colorado Boulder, Environmental Studies Program Eric Gordon University

Neff, Jason

166

of Colorado's Special Issue  

E-Print Network [OSTI]

Report on the Health of Colorado's Forests Special Issue 2005 Aspen Forests #12;2005 Report on the Health of Colorado's Forests February 2006 The 2005 Report on the Health of Colorado's Forests highlights Colorado's central mountains. Both sections of the Report underscore the need to address forest management

167

Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado: Attachment 4, water resources protection strategy; Preliminary final  

SciTech Connect (OSTI)

This attachment contains a summary of the proposed water resources protection strategy developed to achieve compliance with US EPA ground water protection standards for the remedial action plan at the Slick Rock, CO uranium mill tailings sites. Included are the conceptual design considerations such as climate and infiltration, surface and subsurface drainage, and features for water resources protection such as disposal cell cover components, transient drainage and control of construction water, subsidence and disposal cell longevity. The disposal and control of radioactive materials and nonradioactive contaminants as it relates to ground water protection standards is discussed, and the plan for cleanup and control of existing contamination is outlined.

NONE

1994-03-01T23:59:59.000Z

168

Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado. Appendix A of Attachment 3: Calculations, Final  

SciTech Connect (OSTI)

This report contains calculations for: hydraulic gradients for Alluvial Aquifer and Salt Wash Aquifer; slug test analysis to determine hydraulic conductivity for Alluvial Aquifer and Salt Wash Aquifer; average linear groundwater velocity for Alluvial Aquifer and Salt Wash Aquifer; statistical analysis of the extent of existing groundwater contamination; hydraulic gradients for Dakota/Burro Canyon Formation and Salt Wash Aquifer; slug test analysis to determine hydraulic conductivity for Dakota/Burro Canyon Formation and Perched Salt Wash Aquifer; determination of hydraulic conductivity of the Dakota/Burro Canyon Formation from Packer Tests; average linear groundwater velocity for Dakota/Burro Canyon and Salt Wash Aquifer; chemical and mineralogical characterization of core samples from the Dry Flats Disposal Site; and demonstration of low groundwater yield from Uppermost Aquifer.

Not Available

1994-03-01T23:59:59.000Z

169

Final report of the radiological release survey of Building 11 at the Grand Junction Office Facility  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 11 and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building.

Johnson, R.K.; Corle, S.G.

1997-09-01T23:59:59.000Z

170

Final report of the radiological release survey of Building 19 at the Grand Junction Office Facility  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 19 and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building.

Johnson, R.K.; Corle, S.G.

1997-09-01T23:59:59.000Z

171

Final report of the radiological release survey of Building 54 at the Grand Junction Office Facility  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 54 and the underlying soil were found not to be radiologically contaminated, and can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual release report for each GJO building.

Johnson, R.K.; Corle, S.G.

1997-09-01T23:59:59.000Z

172

Final report of the radiological release survey of Building 29 at the Grand Junction Office Facility  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailing during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 29 and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building.

Johnson, R.K.; Corle, S.G.

1997-09-01T23:59:59.000Z

173

Final report of the decontamination and decommissioning of the exterior land areas at the Grand Junction Projects Office facility  

SciTech Connect (OSTI)

The US Department of Energy (DOE) Grand Junction Projects Office (GJPO) facility occupies approximately 56.4 acres (22.8 hectares) along the Gunnison River near Grand Junction, Colorado. The site was contaminated with uranium ore and mill tailings during uranium-refining activities conducted by the Manhattan Engineer District and during pilot-milling experiments conducted for the US Atomic Energy Commission`s (AEC`s) domestic uranium procurement program. The GJPO facility was the collection and assay point for AEC uranium and vanadium oxide purchases until the early 1970s. The DOE Decontamination and Decommissioning Program sponsored the Grand Junction Projects Office Remedial Action Project (GJPORAP) to remediate the facility lands, site improvements, and the underlying aquifer. The site contractor, Rust Geotech, was the Remedial Action Contractor for GJPORAP. The exterior land areas of the facility assessed as contaminated have been remediated in accordance with identified standards and can be released for unrestricted use. Restoration of the aquifer will be accomplished through the natural flushing action of the aquifer during the next 50 to 80 years. The remediation of the DOE-GJPO facility buildings is ongoing and will be described in a separate report.

Widdop, M.R.

1995-09-01T23:59:59.000Z

174

Baseline Rd. Colorado Ave.  

E-Print Network [OSTI]

Baseline Rd. Broadway Broadway Colorado Ave. Arapahoe Ave. Canyon Blvd. 28thSt. 9thSt. 6thSt. 13th Pearl St. Euclid FolsomSt. N Baseline Rd. Broadway Broadway Colorado Ave. Arapahoe Ave. Canyon Blvd. 28://www.banjobilly.com JUNE 12-13, 2009 JILA/CHEMISTRY & BIOCHEMISTRY, UNIVERSITY OF COLORADO, BOULDER A CELEBRATION OF 40

Lineberger, W. Carl

175

Microbiological, Geochemical and Hydrologic Processes Controlling Uranium Mobility: An Integrated Field Scale Subsurface Research Challenge Site at Rifle, Colorado, February 2011 to January 2012  

E-Print Network [OSTI]

with Sediments from an UMTRA Site. American Society forREDUCTION AT THE OLD RIFLE UMTRA SITE. Geological Society of

Long, P.E.

2013-01-01T23:59:59.000Z

176

Colorado PhysTEC http//phystec.colorado.edu  

E-Print Network [OSTI]

Colorado PhysTEC http//phystec.colorado.edu Goals The Goals of the Colorado PhysTEC grant are to in order to both measure impact and understand why activities do and do not succeed. Successes · Colorado access into teaching for physics majors. · The Colorado program has increased the number of physics

Finkelstein, Noah

177

University of Colorado Boulder journalism.colorado.edu Journalists  

E-Print Network [OSTI]

PAGE 1 Colorado University of Colorado Boulder journalism.colorado.edu Journalists of the Future of Colorado photographer Glenn Asakawa ('86), who explains how he came up with the idea: The cover CU Journalism & Mass Communication Cover photo by Glenn Asakawa ('86) University of Colorado

Mulligan, Jane

178

UNIVERSITY OF COLORADO SYSTEM Boulder Colorado Springs Denver  

E-Print Network [OSTI]

UNIVERSITY OF COLORADO SYSTEM Boulder · Colorado Springs · Denver Office of the Vice President for Academic Affairs and Research University of Colorado 2008 Diversity Report Boulder Campus Prepared by the University of Colorado System Office of Information & Analysis February 2008 http://www.colorado

Stowell, Michael

179

UNIVERSITY OF COLORADO SYSTEM Boulder Colorado Springs Denver  

E-Print Network [OSTI]

UNIVERSITY OF COLORADO SYSTEM Boulder · Colorado Springs · Denver Office of the Vice President for Academic Affairs and Research University of Colorado 2007 Diversity Report Update Boulder Campus Prepared by the University of Colorado System Office of Information & Analysis November 2007 http://www.colorado

Stowell, Michael

180

Colorado School of Mines 1 Colorado School of  

E-Print Network [OSTI]

Colorado School of Mines 1 Colorado School of Mines Bulletin 2013-2014 Mission and Goals Colorado the highest admission standards of any university in Colorado and among the highest of any public university education. The school's role and mission has remained constant and is written in the Colorado statutes as

Note: This page contains sample records for the topic "junction colorado site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado: Final report. Volume 3, Appendix F, Final design, specifications, and drawings  

SciTech Connect (OSTI)

This volume contains Appendix F, bid schedule and specifications for remedial action on three sites: Old Rifle processing site; New Rifle processing site and Estes Gulch disposal site.

Not Available

1992-02-01T23:59:59.000Z

182

Rulison Site Surface Closure Report  

SciTech Connect (OSTI)

This Closure Report provides documentation for closure of the Rulison Site surface and summarizes the data from groundwater monitoring conducted quarterly in 1996 and 1997. The quarterly groundwater monitoring was conducted to demonstrate that no contaminants are migrating from the pond after completion of the pond remediation activities. The Rulison Site is located in the North 1/2 of the Southwest 1/4 of Section 25, Township 7 South, Range 95 West of the 6` Principal Meridian, Garfield County, Colorado, approximately 19 kilometers (km) (12 miles [mi]) southwest of Rifle, Colorado, and approximately 65 km (40 mi) northeast of Grand Junction, Colorado (Figure I - 1). The site is situated on the north slope of Battlement Mesa on the upper reaches of Battlement Creek at an elevation of approximately 2,500 meters (m) (8,200 feet [ft]). The valley is open to the north-northwest and is bounded on the other three sides by steep mountain slopes that rise to elevations above 2,927 m (9,600 ft). Project Rulison was a joint U.S. Atomic Energy Commission (AEC) and Austral Oil Company (Austral) experiment. It was conducted under the AEC`s Plowshare Program to evaluate the feasibility of using a nuclear device to stimulate natural gas production in low- permeability, gas-producing geologic formations. The experiment consisted of detonating a 40-kiloton nuclear device at a depth of 2, 568 m (8,426 ft) below ground surface on September 10, 1969, followed by natural gas production testing in 1970 and 1971 (AEC, 1973).

NONE

1998-07-01T23:59:59.000Z

183

Final report of the radiological release survey of Building 30B at the Grand Junction Office Facility  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 30B and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building.

Krauland, P.A.; Corle, S.G.

1997-09-01T23:59:59.000Z

184

Colorado Natural Heritage Program Wetland Program Plan  

E-Print Network [OSTI]

), Great Outdoors Colorado (GOCO), Colorado Division of Wildlife (CDOW), U.S. Forest Service (USFS), Bureau

185

Colorado Statewide Forest Resource Assessment  

E-Print Network [OSTI]

Colorado Statewide Forest Resource Assessment A Foundation for Strategic Discussion and Private Forestry Redesign Initiative 2 National Guidance for Statewide Forest Resource Assessments 4 The Colorado Statewide Resource Assessment and all appendices are available online on the Colorado State Forest

186

,"Colorado Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Prices",8,"Monthly","112014","1151989" ,"Release Date:","1302015"...

187

Southeast Colorado Power Association- Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Southeast Colorado Power Association (SECPA) offers a variety of rebates to customers who purchase and install energy efficient [http://secpa.com/Sites/Appliances.html appliances], [http://secpa...

188

Holographic Josephson Junctions  

SciTech Connect (OSTI)

We construct a gravitational dual of a Josephson junction. Calculations on the gravity side reproduce the standard relation between the current across the junction and the phase difference of the condensate. We also study the dependence of the maximum current on the temperature and size of the junction and reproduce familiar results.

Horowitz, Gary T.; Santos, Jorge E.; Way, Benson [Department of Physics, University of California, Santa Barbara, California 93106-4030 (United States)

2011-06-03T23:59:59.000Z

189

A Holographic Josephson Junction  

E-Print Network [OSTI]

We construct a gravitational dual of a Josephson junction. Calculations on the gravity side reproduce the standard relation between the current across the junction and the phase difference of the condensate. We also study the dependence of the maximum current on the temperature and size of the junction and reproduce familiar results.

Gary T. Horowitz; Jorge E. Santos; Benson Way

2012-02-23T23:59:59.000Z

190

University of Colorado Boulder Colorado Springs Denver Anschutz Medical Campus  

E-Print Network [OSTI]

University of Colorado Boulder · Colorado Springs · Denver · Anschutz Medical Campus Michael Carrigan, Regent 555 Seventeenth Street, Suite 3200 Denver, Colorado 80202 Phone (303) 295-8314 TO: Steve SUBJECT: Restatement of the University of Colorado's Nondiscrimination Statement Regarding Sexual

Stowell, Michael

191

Colorado Heat Flow Data from IHFC  

SciTech Connect (OSTI)

Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: The International Heat Flow Commission (IHFC) Publication Date: 2012 Title: Colorado IHFC Data Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: Abstract: This layer contains the heat flow sites and data of the State of Colorado compiled from the International Heat Flow Commission (IHFC) of the International Association of Seismology and Physics of the Earth's Interior (IASPEI) global heat flow database (www.heatflow.und.edu/index2.html). The data include different items: Item number, descriptive code, name of site, latitude and longitude, elevation, depth interval, number of temperature data, temperature gradient, number of conductivity measurement, average conductivity, number of heat generation measurements, average heat production, heat flow, number of individual sites, references, and date of publication. Spatial Domain: Extent: Top: 4522121.800672 m Left: 165356.134075 m Right: 621836.776246 m Bottom: 4097833.419676 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude Of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

Zehner, Richard E.

2012-02-01T23:59:59.000Z

192

State of Colorado Wildfire Hazard  

E-Print Network [OSTI]

State of Colorado Wildfire Hazard Mitigation Plan Colorado Multi-Hazards Mitigation Plan July 2002 the May 2001 Report to the Governor, Colorado Wildland Urban Interface; Section 2 includes the Hazard the status of the Wildland Urban Interface in Colorado; the hazards that exist; mitigation measures

193

Remedial Action Plan and Site design for stabilization of the inactive Uranium Mill Tailings sites at Slick Rock, Colorado: Revision 1. Remedial action selection report, Attachment 2, geology report, Attachment 3, ground water hydrology report, Attachment 4, water resources protection strategy. Final  

SciTech Connect (OSTI)

The Slick Rock uranium mill tailings sites are located near the small community of Slick Rock, in San Miguel County, Colorado. There are two designated Uranium Mill Tailings Remedial Action (UMTRA) Project sites at Slick Rock: the Union Carbide site and the North Continent site. Both sites are adjacent to the Dolores River. The sites contain former mill building concrete foundations, tailings piles, demolition debris, and areas contaminated by windblown and waterborne radioactive materials. The total estimated volume of contaminated materials is approximately 621,000 cubic yards (475,000 cubic meters). In addition to the contamination at the two processing site areas, 13 vicinity properties were contaminated. Contamination associated with the UC and NC sites has leached into ground water. Pursuant to the requirements of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC {section}7901 et seq.), the proposed remedial action plan (RAP) will satisfy the final US Environmental Protection Agency (EPA) standards in 40 CFR Part 192 (60 FR 2854) for cleanup, stabilization, and control of the residual radioactive material (RRM) (tailings and other contaminated materials) at the disposal site at Burro Canyon. The requirements for control of the RRM (Subpart A) will be satisfied by the construction of an engineered disposal cell. The proposed remedial action will consist of relocating the uranium mill tailings, contaminated vicinity property materials, demolition debris, and windblown/weaterborne materials to a permanent repository at the Burro Canyon disposal site. The site is approximately 5 road mi (8 km) northeast of the mill sites on land recently transferred to the DOE by the Bureau of Land Management.

NONE

1995-09-01T23:59:59.000Z

194

Colorado Industrial Challenge and Recognition Program | Department...  

Broader source: Energy.gov (indexed) [DOE]

Colorado Industrial Challenge and Recognition Program Colorado Industrial Challenge and Recognition Program This fact sheet offers details of the Colorado Industrial program state...

195

A Colorado Perspective: The New Energy Economy  

E-Print Network [OSTI]

transmission, have languished. Colorado looks forward withA Colorado Perspective: The New Energy Economy Jim Martin*REPORTING .. VIII. COLORADO'S STATE

Martin, Jim; Brannon, Ginny

2009-01-01T23:59:59.000Z

196

Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings Sites at Slick Rock, Colorado: Appendix B to Attachment 3, Lithologic logs and monitor well construction information. Final report  

SciTech Connect (OSTI)

This volume contains lithology logs and monitor well construction information for: NC processing site; UC processing site; and Burro Canyon disposal site. This information pertains to the ground water hydrology investigations which is attachment 3 of this series of reports.

NONE

1995-09-01T23:59:59.000Z

197

Colorado Master Gardenersm Colorado Gardener Certificate Training  

E-Print Network [OSTI]

and shrubs are well suited to Colorado landscapes. Several CSU publications list trees and shrubs for the High Plains, LTB93-1, $14.00 In addition, many communities and nurseries have tree lists for the local utility lines as the utility has the right-of-way. Since large trees give a higher return in environmental

198

Holographic SIS Josephson Junction  

E-Print Network [OSTI]

We construct a holographic model for the superconductor-insulator-superconductor (SIS) Josephson junction at zero temperature by considering a complex scalar field coupled with a U(1) gauge field in the four dimensional Anti de Sitter soliton background. As a result, we successfully reproduce many characteristic features of the Josephson junction in condensed matter physics, such as the sine relation between the DC current and the phase difference across the junction.

Wang, Yong-Qiang; Cai, Rong-Gen; Takeuchi, Shingo; Zhang, Hai-Qing

2012-01-01T23:59:59.000Z

199

ii Colorado Climate Table of Contents  

E-Print Network [OSTI]

#12;ii Colorado Climate Table of Contents Web: http://climate.atmos.colostate.edu Colorado Climate Spring 2002 Vol. 3, No. 2 Lightning in Colorado . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Colorado Climate in Review

200

Colorado Regional Faults  

SciTech Connect (OSTI)

Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: Colorado Geological Survey (CGS) Publication Date: 2012 Title: Regional Faults Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the regional faults of Colorado Spatial Domain: Extent: Top: 4543192.100000 m Left: 144385.020000 m Right: 754585.020000 m Bottom: 4094592.100000 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

Hussein, Khalid

2012-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "junction colorado site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Colorado Electrical Transmission Grid  

SciTech Connect (OSTI)

Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: Xcel Energy Publication Date: 2012 Title: Colorado XcelEnergy NonXcel Transmission Network Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains transmission network of Colorado Spatial Domain: Extent: Top: 4540689.017558 m Left: 160606.141934 m Right: 758715.946645 m Bottom: 4098910.893397m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shapefile

Zehner, Richard E.

2012-02-01T23:59:59.000Z

202

Long-Term Surveillance Plan for the Gunnison, Colorado, Disposal Site, DOE/AL/62350-222, Revision 2, April 1997  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledo SiteTonawanda North - t ' v I tfi --35U:- '- .-

203

Colorado Water Resources Research Institute Special Report No. 16  

E-Print Network [OSTI]

Colorado Water Resources Research Institute Special Report No. 16 Colorado Department of Agriculture Colorado State University Extension Colorado Department of Public Health and Environment #12;Colorado Water Resources Research Institute Special Report No. 16 Colorado State University is an equal

204

The Colorado Rare Plant Technical Committee presents: Colorado Rare Plant Symposium  

E-Print Network [OSTI]

The Colorado Rare Plant Technical Committee presents: 5th Annual Colorado Rare Plant Symposium September 5, 2008 Montrose, Colorado Sponsored by: Colorado Rare Plant Technical CommitteeColorado Rare Plant Technical Committee Colorado Native Plant Society University of Colorado Herbarium US Fish

205

Colorado: Colorado's Clean Energy Resources and Economy (Brochure)  

SciTech Connect (OSTI)

This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Colorado.

Not Available

2013-03-01T23:59:59.000Z

206

Josephson junction element  

SciTech Connect (OSTI)

A sandwich-type josephson junction element wherein a counter electrode is made of a mo-re alloy which contains 10-90 atomic-% of re. The josephson junction element has a high operating temperature, and any deterioration thereof attributed to a thermal cycle is not noted.

Kawabe, U.; Tarutani, Y.; Yamada, H.

1982-03-09T23:59:59.000Z

207

ELIPGRID-PC and INRADS{copyright}: Tools for reducing costs and optimizing data collection on sites contaminated with NORM  

SciTech Connect (OSTI)

Oak Ridge National Laboratory (ORNL), Environmental Technology Section (ETS), located in Grand Junction, Colorado has more than ten years experience in radiological surveying and more than twenty years as part of the ongoing Formerly Utilized Sites Remedial Action Project surveys conducted by ORNL Health Sciences Research Division. As part of our mission, ETS researchers develops and applies innovative technologies to share with private industry. The ELIPGRID-PC software and INRADS multidetector radiologic survey instrument are works in progress are discussed. ELIPGRID-PC is a tool that aids in survey design, and the INRADS system automates and increases the amount of data collected.

Egidi, P.V.

1996-12-31T23:59:59.000Z

208

Three-junction solar cell  

DOE Patents [OSTI]

A photovoltaic solar cell is formed in a monolithic semiconductor. The cell contains three junctions. In sequence from the light-entering face, the junctions have a high, a medium, and a low energy gap. The lower junctions are connected in series by one or more metallic members connecting the top of the lower junction through apertures to the bottom of the middle junction. The upper junction is connected in voltage opposition to the lower and middle junctions by second metallic electrodes deposited in holes 60 through the upper junction. The second electrodes are connected to an external terminal.

Ludowise, Michael J. (Cupertino, CA)

1986-01-01T23:59:59.000Z

209

Colorado Potential Geothermal Pathways  

SciTech Connect (OSTI)

Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Colorado PRS Cool Fairways Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the weakened basement rocks. Isostatic gravity was utilized to identify structural basin areas, characterized by gravity low values reflecting weakened basement rocks. Together interpreted regional fault zones and basin outlines define geothermal "exploration fairways", where the potential exists for deep, superheated fluid flow in the absence of Pliocene or younger volcanic units Spatial Domain: Extent: Top: 4544698.569273 m Left: 144918.141004 m Right: 763728.391299 m Bottom: 4094070.397932 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

Zehner, Richard E.

2012-02-01T23:59:59.000Z

210

Summer 2001 Vol. 2, No. 3 ii Colorado Climate  

E-Print Network [OSTI]

Colorado Climate Summer 2001 Vol. 2, No. 3 #12;ii Colorado Climate Table of Contents Nocturnal Tornado Hits Eastern Colorado . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Colorado Tornado Facts

211

Colorado: A New Chapter in its Perpetual Recovery  

E-Print Network [OSTI]

Withdraw from Guv Race, Colorado Statesman, September 3. Wyatt, K. (2011) Colorado House Gives Final Approval to $well. For the moment, Colorados fiscal puzzles are wrapped

Moore, Scott T.

2012-01-01T23:59:59.000Z

212

Drought Update Colorado Climate Center  

E-Print Network [OSTI]

Drought Update Colorado Climate Center Roger Pielke, Sr., Director Prepared by Tara Green and Odie Bliss http://climate.atmos.colostate.edu #12;© 2003 by The Colorado Climate Center. 2 http://www.ncdc.noaa.gov/oa/climate/research/2003/mar/st005dv00pcp200303.html #12;© 2003 by The Colorado Climate Center. 3 #12;© 2003

213

Gunnison, Colorado subpile study report. Revision 1  

SciTech Connect (OSTI)

To protect human health and the environment, the Uranium Mill Tailings Remedial Action (UMTRA) Project will remediate the uranium mill tailings site at Gunnison Colorado. There are explicit requirements (i.e., 40 CFR Part 192) for the surface remediation of radiologically contaminated soils on UMTRA sites. The removal of subpile sediment to the depth required by 40 CFR Part 192 will leave in place deeper foundation sediment that is contaminated with hazardous constituents other than radium-226 and thorium-230. The Department of Energy and the Colorado Department of Health have questioned whether this contaminated soil could potentially act as a continuing source of ground water contamination even after surface remediation based on 40 CFR Part 192 is complete. To evaluate the subpile sediments as a potential source of ground water contamination, the Gunnison Subpile study was initiated. This report summarizes the results and findings of this study.

Not Available

1994-08-01T23:59:59.000Z

214

Holographic SIS Josephson Junction  

E-Print Network [OSTI]

We construct a holographic model for the superconductor-insulator-superconductor (SIS) Josephson junction at zero temperature by considering a complex scalar field coupled with a Maxwell field in the four-dimensional anti-de Sitter soliton background. From the gravity side we reproduce the sine relation between the Josephson current and the phase difference across the junction. We also study the dependence of the maximal current on the dimension of the condensate operator and on the width of the junction, and obtain expected results.

Yong-Qiang Wang; Yu-Xiao Liu; Rong-Gen Cai; Shingo Takeuchi; Hai-Qing Zhang

2012-09-23T23:59:59.000Z

215

COLORADO DEPARTMENT OF TRANSPORTATION Sustainability of Concrete Pavement  

E-Print Network [OSTI]

COLORADO DEPARTMENT OF TRANSPORTATION Sustainability of Concrete Pavement I-225 - Mississippi to 6 · 2 Mile Reconstruction Existing: · 4 Lane Divided Highway · 8" Concrete Pavement (Recycled on-site) · 4" Asphalt Overlay (Recycled off-site) Project Design: · 6 Lane Divided Highway · 13" Concrete

216

Effects of land disposal of municipal sewage sludge on soil, streambed sediment, and ground- and surface-water quality at a site near Denver, Colorado  

SciTech Connect (OSTI)

The report describes the effects of burial and land application of municipal sewage sludge on soil and streambed sediment and water quality in the underlying aquifers and surface water within and around the Lowry sewage-sludge-disposal area. The existing ground-water observation-well network at the disposal area was expanded for the study. Surface-water-sampling sites were selected so that runoff could be sampled from intense rainstorms or snowmelt. The sampling frequency for ground-water and surface-water runoff was changed from yearly to quarterly, and soil samples were collected. Four years of data were collected from 1984 to 1987 during the expanded monitoring program at the Lowry sewage-sludge-disposal area. These data, in addition to the data collected by the U.S. Geological Survey from 1981 to 1983, were used to determine effects of sewage-sludge-disposal on soil and streambed sediment and surface- and ground-water quality at the disposal area.

Gaggiani, N.G.

1991-01-01T23:59:59.000Z

217

Environmental Health and Safety COLORADO SCHOOL OF MINES Colorado School of Mines GOLDEN, COLORADO 80401-1887  

E-Print Network [OSTI]

Environmental Health and Safety COLORADO SCHOOL OF MINES Colorado School of Mines GOLDEN, COLORADO AND REMEDIATION PROJECT - SOUTH SIDE OF CLEAR CREEK Dear Mr. Glueck: The Colorado School of Mines Research to the environmental project, the Colorado School of Mines has constructed road base improvements between Maple

218

MixedConifer Forests in Southwest Colorado  

E-Print Network [OSTI]

April 2010 Mixed­Conifer Forests in Southwest Colorado A Summary of Existing Knowledge and Considerations for Restoration and Management #12;Mixed Conifer Forests in Southwest Colorado 1Mixed-Conifer Forests in Southwest Colorado 1 ABOUT THE COLORADO FOREST RESTORATION INSTITUTE The Colorado Forest

219

Colorado's AMAZING Climate Nolan Doesken, State Climatologist  

E-Print Network [OSTI]

Colorado's AMAZING Climate Nolan Doesken, State Climatologist Colorado Climate Center Atmospheric Science Department Colorado State University Fort Collins, CO Graphics assistance provided by Wendy Ryan Colorado without · Later that same year, Colorado re-established the State Climate program with support

220

COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD  

E-Print Network [OSTI]

COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD Anne F. Sheehan University of Colorado at Boulder, 2200 Colorado Avenue, Boulder, CO 80309 John D. Godchaux Trinity University, San Antonio, TX Noah Hughes University of Colorado at Boulder, 2200 Colorado Avenue, Boulder, CO 80309 Key Terms: earthquake

Sheehan, Anne F.

Note: This page contains sample records for the topic "junction colorado site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Southeastern Colorado Survey of Critical Biological Resources  

E-Print Network [OSTI]

Southeastern Colorado Survey of Critical Biological Resources 2007 #12;ii #12;Southeastern Colorado Survey of Critical Biological Resources Prepared for: Colorado Cattleman's Agricultural Land Trust 8833 Ralston Road Arvada, CO 80002 Great Outdoors Colorado 1600 Broadway, Suite 1650 Denver, CO 80202 Colorado

222

The Colorado Rare Plant Technical Committee presents  

E-Print Network [OSTI]

The Colorado Rare Plant Technical Committee presents: 3rd Annual Rare Plant Symposium Sponsored by: Colorado Native Plant Society University of Colorado Herbarium US Fish and Wildlife Service Colorado and Eastern Colorado (Las Animas, Weld, Kit Carson, Huerfano, Pueblo, Otero, Prowers, Fremont, and El Paso

223

Remedial action plan and site design for stabilization of the inactive Uranium Mill Tailing site Maybell, Colorado. Attachment 3, ground water hydrology report, Attachment 4, water resources protection strategy. Final report  

SciTech Connect (OSTI)

The U.S. Environmental Protection Agency (EPA) has established health and environmental regulations to correct and prevent ground water contamination resulting from former uranium processing activities at inactive uranium processing sites (40 CFR Part 192 (1993)) (52 FR 36000 (1978)). According to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 (42 USC {section} 7901 et seq.), the U.S. Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has decided that each assessment will include information on hydrogeologic site characterization. The water resources protection strategy that describes the proposed action compliance with the EPA ground water protection standards is presented in Attachment 4, Water Resources Protection Strategy. Site characterization activities discussed in this section include the following: (1) Definition of the hydrogeologic characteristics of the environment, including hydrostratigraphy, aquifer parameters, areas of aquifer recharge and discharge, potentiometric surfaces, and ground water velocities. (2) Definition of background ground water quality and comparison with proposed EPA ground water protection standards. (3) Evaluation of the physical and chemical characteristics of the contaminant source and/or residual radioactive materials. (4) Definition of existing ground water contamination by comparison with the EPA ground water protection standards. (5) Description of the geochemical processes that affect the migration of the source contaminants at the processing site. (6) Description of water resource use, including availability, current and future use and value, and alternate water supplies.

Not Available

1994-06-01T23:59:59.000Z

224

The Colorado Rare Plant Technical Committee presents: Colorado Rare Plant Symposium  

E-Print Network [OSTI]

The Colorado Rare Plant Technical Committee presents: 6th Annual Colorado Rare Plant Symposium September 11, 2009 Loveland, Colorado Sponsored by:Sponsored by: Colorado Native Plant Society University of Colorado Herbarium US Fish and Wildlife Service Colorado Natural Heritage Program USDA Forest Service #12

225

The Colorado Rare Plant Technical Committee presents: Colorado Rare Plant Symposium  

E-Print Network [OSTI]

The Colorado Rare Plant Technical Committee presents: 7th Annual Colorado Rare Plant Symposium September 10, 2010 Denver, Colorado Sponsored by: Colorado Native Plant Society University of Colorado Herbarium US Fish and Wildlife Service Colorado Natural Heritage Program USDA Forest Service #12;#12;Aletes

226

Colorado Statewide Forest Resource Assessment and Strategy  

E-Print Network [OSTI]

Heritage Program Colorado Timber Industry Association Forest Energy Governor's Forest Health AdvisoryColorado Statewide Forest Resource Assessment and Strategy www.csfs.colostate.edu Colorado Forest Forestry? Forest Health, Forest Stewardship, Community Forestry, Rural ForestryForest Health, Forest

227

Colorado State University Extension Contact: Joanne Littlefield  

E-Print Network [OSTI]

Colorado State University Extension Contact: Joanne Littlefield Director, Outreach and Engagement weather situation in Colorado is requiring often quick property and safety decisions; recovery efforts and rapidly shifting conditions along Colorado's Front Range. From food safety issues related to crops

Stephens, Graeme L.

228

Colorado Climate Winter 1999/2000 Vol. 1, No. 1  

E-Print Network [OSTI]

Colorado Climate Winter 1999/2000 Vol. 1, No. 1 Inside: What Is Climate? 1999 Water Year Review Climate on the Web Drought in Colorado #12;Colorado Climate Center Atmospheric Science Department Colorado ................................................................................................................................... 12 Drought in Colorado

229

University of Colorado, Boulder Computer Science Technical Reports Computer Science  

E-Print Network [OSTI]

University of Colorado, Boulder CU Scholar Computer Science Technical Reports Computer Science-1008-06 Michael Buettner University of Colorado Boulder Gary Yee University of Colorado Boulder Eric Anderson University of Colorado Boulder Richard Han University of Colorado Boulder Follow

Han, Richard Y.

230

Use Remote Sensing Data (selected visible and infrared spectrums) to locate high temperature ground anomalies in Colorado. Confirm heat flow potential with on-site surveys to drill deep resource wells  

Broader source: Energy.gov [DOE]

DOE Geothermal Technologies Peer Review 2010 - Presentation. Project Objectives: A cost effective three (3) Phased Program to locate and confirm up to Five (5) commercial geothermal resources in Colorado. The heat resources to be prioritized will be those able to support a minimum electrical generation capacity of 10 MW by location.

231

Colorado: Energy Modeling Products Support Energy Efficiency...  

Office of Environmental Management (EM)

Colorado: Energy Modeling Products Support Energy Efficiency Projects Colorado: Energy Modeling Products Support Energy Efficiency Projects May 1, 2014 - 11:04am Addthis Xcel...

232

Colorado Natural Gas- Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Colorado Natural Gas offers the Excess is Out Program for residential and commercial customers in Colorado. Incentives are available for purchasing and installing energy efficient furnaces, boilers...

233

REVEGETATION OF THE ROCKY FLATS SITE, COLORADO  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket37963American |Purpose ThisRESORT

234

Maybell, Colorado, Disposal Site Fact Sheet  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545*. . : '*I_ - A research projectI UMTRCA

235

2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites  

SciTech Connect (OSTI)

This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) in 2013 at 19 uranium mill tailings disposal sites established under Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978.1 These activities verified that the UMTRCA Title I disposal sites remain in compliance with license requirements. DOE operates 18 UMTRCA Title I sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) in accordance with Title 10 Code of Federal Regulations Part 40.27 (10 CFR 40.27). As required under the general license, a long-term surveillance plan (LTSP) for each site was prepared by DOE and accepted by NRC. The Grand Junction, Colorado, Disposal Site, one of the 19 Title I sites, will not be included under the general license until the open, operating portion of the cell is closed. The open portion will be closed either when it is filled or in 2023. This site is inspected in accordance with an interim LTSP. Long-term surveillance and maintenance services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective actions; and performing administrative, records, stakeholder relations, and other regulatory stewardship functions. Annual site inspections and monitoring are conducted in accordance with site-specific LTSPs and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up or contingency inspections, or corrective action in accordance with the LTSP. LTSPs and site compliance reports are available on the Internet at http://www.lm.doe.gov/.

none,

2014-03-01T23:59:59.000Z

236

Remotely Sensed Thermal Anomalies in western Colorado  

SciTech Connect (OSTI)

Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Landsat Thermal Anomalies Western Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the areas identified as areas of anomalous surface temperature from Landsat satellite imagery in Western Colorado. Data was obtained for two different dates. The digital numbers of each Landsat scene were converted to radiance and the temperature was calculated in degrees Kelvin and then converted to degrees Celsius for each land cover type using the emissivity of that cover type. And this process was repeated for each of the land cover types (open water, barren, deciduous forest and evergreen forest, mixed forest, shrub/scrub, grassland/herbaceous, pasture hay, and cultivated crops). The temperature of each pixel within each scene was calculated using the thermal band. In order to calculate the temperature an average emissivity value was used for each land cover type within each scene. The NLCD 2001 land cover classification raster data of the zones that cover Colorado were downloaded from USGS site and used to identify the land cover types within each scene. Areas that had temperature residual greater than 2?, and areas with temperature equal to 1? to 2?, were considered Landsat modeled very warm and warm surface exposures (thermal anomalies), respectively Spatial Domain: Extent: Top: 4546381.234113 m Left: 140556.857021 m Right: 573390.000000 m Bottom: 4094583.641581 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

Hussein, Khalid

2012-02-01T23:59:59.000Z

237

Modeling Schottky barrier SINIS junctions  

E-Print Network [OSTI]

: cond-mat/0001269 J. K. Freericks, Georgetown University, Josephson Junction talk, 2001 #12;Josephson). J. K. Freericks, Georgetown University, Josephson Junction talk, 2001 S I S I I V V Ic #12 University, Josephson Junction talk, 2001 S N S I I V V Ic #12;Digital Electronics and RSFQ logic · Rapid

Freericks, Jim

238

Colorado Climate Update Nolan Doesken  

E-Print Network [OSTI]

to the Colorado Farm Show Wednesday, January 30, 2013 Prepared by Wendy Ryan and Zach Schwalbe #12;Topics we;Monitoring our Climate Elements: temperature, precipitation, snow, wind, solar, evaporation, soil Average Solar Radiation National Renewal Energy Laboratory: www.nrel.gov Colorado is a part

239

University of Colorado at Boulder Institutional Biosafety Committee  

E-Print Network [OSTI]

(s)). The cell culture work will be done in (list Building and Room(s)). The biological safety cabinet(s) (list virus, rabies, etc. Please visit the EH&S Campus Biological Safety Program web site: http biological safety can be obtained from the University of Colorado Department of Environmental Health

240

Superconductive tunnel junction integrated circuit  

SciTech Connect (OSTI)

Josephson Junction integrated circuits of the current injection type and magnetically controlled type utilize a superconductive layer that forms both Josephson Junction electrode for the Josephson Junction devices on the integrated circuit as well as a ground plane for the integrated circuit. Large area Josephson Junctions are utilized for effecting contact to lower superconductive layers and islands are formed in superconductive layers to provide isolation between the groundplane function and the Josephson Junction electrode function as well as to effect crossovers. A superconductor-barrier-superconductor trilayer patterned by local anodization is also utilized with additional layers formed thereover. Methods of manufacturing the embodiments of the invention are disclosed.

Jillie, D.W. Jr.; Smith, L.N.

1984-02-07T23:59:59.000Z

Note: This page contains sample records for the topic "junction colorado site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

This article was downloaded by:[University of Colorado Libraries] [University of Colorado Libraries  

E-Print Network [OSTI]

This article was downloaded by:[University of Colorado Libraries] [University of Colorado Libraries. © Taylor and Francis 2007 #12;DownloadedBy:[UniversityofColoradoLibraries]At:23:094June2007 A UNIFIED, University of Colorado at Boulder, Boulder, Colorado, USA This article presents a unified model

Mohseni, Kamran

242

Colorado ClassicsColorado Classics --Our Legendary StormsOur Legendary Storms  

E-Print Network [OSTI]

Colorado ClassicsColorado Classics -- Our Legendary StormsOur Legendary Storms Nolan J.Nolan J. DoeskenDoesken Colorado Climate Center Colorado State University Presented at 7NEWS Winter Weather Seminar, Omni Interlocken Hotel, Broomfield, Colo, November 9, 2005 #12;1888 Colorado Historical Society, Call

243

Colorado Supreme Court Opinions || April 8, 2002 Colorado Supreme Court --April 8, 2002  

E-Print Network [OSTI]

Colorado Supreme Court Opinions || April 8, 2002 Colorado Supreme Court -- April 8, 2002 No. 01SA. Kornfeld Denver, Colorado Attorneys for Plaintiff-Appellant Nathan, Bremer, Dumm & Myers, P.C. J. Andrew Nathan Paige K. Hogan SUPREME COURT, STATE OF COLORADO Two East 14th Avenue Denver, Colorado 80203

Shamos, Michael I.

244

Colorado STEP Training  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities ofCellulosic(SNfactory) | DOEatColonel21 3.96Colorado

245

Southeastern Colorado Survey of Critical Biological Resources  

E-Print Network [OSTI]

, local landowners, CCALT, and Great Outdoors Colorado (GOCO) requested that CNHP conduct a second field

246

ProGreen 2014 Colorado Climate Update  

E-Print Network [OSTI]

· Complex Mountain topography · Solar energy and seasonal cycles drive our climate #12;Colorado has" and we LOVE IT! #12;Monitoring our Climate · Elements: temperature, precipitation, snow, wind, solarProGreen 2014 Colorado Climate Update Nolan Doesken Colorado State Climatologist Colorado Climate

247

The Value Chain of Colorado Agriculture  

E-Print Network [OSTI]

The Value Chain of Colorado Agriculture Gregory Graff, Ryan Mortenson, Rebecca Goldbach, Dawn of Agricultural and Resource Economics, College of Agricultural Sciences, and the Office of Engagement Colorado by support from the Colorado Department of Agriculture and the Colorado State University Office of Engagement

248

The Value Chain of Colorado Agriculture  

E-Print Network [OSTI]

The Value Chain of Colorado Agriculture Gregory Graff, Ryan Mortenson, Rebecca Goldbach, Dawn of Agricultural and Resource Economics, College of Agricultural Sciences, and the Office of Engagement Colorado the Colorado Department of Agriculture and the Colorado State University Office of Engagement. The authors

Stephens, Graeme L.

249

University of Colorado at Boulder Catalog  

E-Print Network [OSTI]

University of Colorado at Boulder Catalog 2007­08 #12;The Catalog The 2007­08 University of Colorado at Boulder Catalog contains a summary of campus facilities, programs, and services; descriptions (plus.colorado.edu/ planner) and the catalog website (www.colorado.edu/catalog), and reviewing

Mojzsis, Stephen J.

250

Colorado Water Institute Annual Technical Report  

E-Print Network [OSTI]

Colorado Water Institute Annual Technical Report FY 2011 Colorado Water Institute Annual Technical Report FY 2011 1 #12;Introduction Water research is more pertinent than ever in Colorado. Whether, the quality and quantity of water becomes essential to every discussion of any human activity. The Colorado

251

ii Colorado Climate Table of Contents  

E-Print Network [OSTI]

#12;ii Colorado Climate Table of Contents Web: http://climate.atmos.colostate.edu Colorado Climate Winter 2001-2002 Vol. 3, No. 1 Why Is the Park Range Colorado's Snowfall Capital? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 The Cold-Land Processes Field Experiment: North-Central Colorado

252

Colorado Water Institute Annual Technical Report  

E-Print Network [OSTI]

Colorado Water Institute Annual Technical Report FY 2009 Colorado Water Institute Annual Technical Report FY 2009 1 #12;Introduction Water research is more pertinent than ever in Colorado. Whether of Colorado is engaged in long term water supply planning that requires information from the research

253

Colorado Water Institute Annual Technical Report  

E-Print Network [OSTI]

Colorado Water Institute Annual Technical Report FY 2012 Colorado Water Institute Annual Technical Report FY 2012 1 #12;Introduction Colorado Water Institute Annual Report for the period: March 1, 2012 ­ February 28, 2013 Water research is more pertinent than ever in Colorado. Whether the project explores

254

Colorado Water Institute Annual Technical Report  

E-Print Network [OSTI]

Colorado Water Institute Annual Technical Report FY 2013 Colorado Water Institute Annual Technical Report FY 2013 1 #12;Introduction Water research is more important than ever in Colorado. Whether, the quality and quantity of water becomes essential to every discussion of any human activity. The Colorado

255

A History of DROUGHT IN COLORADO  

E-Print Network [OSTI]

A History of DROUGHT IN COLORADO LESSONS LEARNED AND WHAT LIES AHEAD by Thomas B. McKee, Nolan J. Doesken, John Kleist Colorado Climate Center Atmospheric Science Department Colorado State University and Catherine J. Shrier Colorado Water Resources Research Institute in collaboration with William P. Stanton

256

University of Colorado 2001 Activity Report 1  

E-Print Network [OSTI]

University of Colorado 2001 Activity Report 1 Laboratory for Atmospheric and Space Physics Activity Report 2001 University of Colorado at Boulder #12;University of Colorado 2 2001 Activity Report Cover-campus in the Research Park at 1234 Innovation Drive, Boulder, Colorado. Laboratory for Atmospheric and Space Physics

Mojzsis, Stephen J.

257

Colorado Water Institute Annual Technical Report  

E-Print Network [OSTI]

Colorado Water Institute Annual Technical Report FY 2010 Colorado Water Institute Annual Technical Report FY 2010 1 #12;Introduction Water research is more pertinent than ever in Colorado. Whether, an affiliate of Colorado State University (CSU), exists for the express purpose of focusing the water expertise

258

ii Colorado Climate Table of Contents  

E-Print Network [OSTI]

#12;ii Colorado Climate Table of Contents An Unusually Heavy Snowfall in North Central Colorado . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 A Brief History of Colorado's Most Notable Snowstorms" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Colorado Climate Water Year 2003 Vol. 4, No. 1-4 If you have a photo or slide that your would like

259

UMTRA project water sampling and analysis plan, Durango, Colorado  

SciTech Connect (OSTI)

Surface remedial action has been completed at the Uranium Mill Tailings Remedial Action Project in Durango, Colorado. Contaminated soil and debris have been removed from the former processing site and placed in the Bodo Canyon disposal cell. Ground water at the former uranium mill/tailings site and raffinate pond area has been contaminated by the former milling operations. The ground water at the disposal site was not impacted by the former milling operations at the time of the cell`s construction. Activities for fiscal 1994 involve ground water sampling and site characterization of the disposal site.

Not Available

1994-01-01T23:59:59.000Z

260

Colorado Success Story-A Performance Contracting Program | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Colorado Success Story-A Performance Contracting Program Colorado Success Story-A Performance Contracting Program Provides an overview case study of Colorado's Performance...

Note: This page contains sample records for the topic "junction colorado site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Table of Contents Central Colorado's Severe Downslope Windstorms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  

E-Print Network [OSTI]

#12;Table of Contents Central Colorado's Severe Downslope Windstorms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Colorado Climate in Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 National Weather Service Length of Service Awards for Western Colorado

262

Vehicle Technologies Office Merit Review 2014: Refuel Colorado...  

Broader source: Energy.gov (indexed) [DOE]

Refuel Colorado Vehicle Technologies Office Merit Review 2014: Refuel Colorado Presentation given by Colorado Energy Office at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle...

263

Spin Torques in Magnetic and Superconducting Tunnel Junctions  

E-Print Network [OSTI]

Josephson Junctions . . . . . . . . . . . . . . . . . . . . .Nonlinear Dynamics in a Magnetic Josephson Junction . . . .in a magnetic Josephson junction. Phys. Rev. B, 86:

Hoffman, Silas Eli

2012-01-01T23:59:59.000Z

264

The Impact of the Colorado Domestic Partnership Act on Colorado's State Budget  

E-Print Network [OSTI]

October 2006 The Impact of the Colorado Domestic PartnershipAct on Colorado's State Budget http://www.law.ucla.edu/2006 The Impact of the Colorado Domestic Partnership Act on

Badgett, M.V. Lee; Sears, Brad; Lee, Roger; MacCartney, Danielle

2006-01-01T23:59:59.000Z

265

JILA & the Department of Chemistry & Biochemistry University of Colorado, Boulder, Colorado  

E-Print Network [OSTI]

JILA & the Department of Chemistry & Biochemistry University of Colorado, Boulder, Colorado:50 40 Years of Ion Chemistry ­ Boulder, Colorado ­ Or, how we came to know Carl Lineberger, his giant

Lineberger, W. Carl

266

Field Projects: Caon City, Colorado  

Broader source: Energy.gov [DOE]

In June 2000, Cotter Corporation installed a PRB at its uranium ore processing millsite in Caon City, Colorado. The PRB contains zero-valent iron (ZVI) that treated molybdenum and uranium...

267

Fall 2000 Vol. 1, No. 4 22 Colorado Climate  

E-Print Network [OSTI]

Colorado Climate Fall 2000 Vol. 1, No. 4 #12;22 Colorado Climate Table of Contents Climate Memories ................................................................................. 2 A Time for Time Series ­ Trends in Observed Solar Energy in Colorado? ....................................................................................................... 6 Colorado Climate in Review

268

Fall 2001 Vol. 2, No. 4 ii Colorado Climate  

E-Print Network [OSTI]

Colorado Climate Fall 2001 Vol. 2, No. 4 #12;ii Colorado Climate Table of Contents On Being a Small . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Colorado Climate in Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 A Review of the 2001 WaterYear in Colorado

269

2011 8 2012 5 / University of Colorado, Boulder  

E-Print Network [OSTI]

/ 9955547 2011 8 2012 5 / University of Colorado, Boulder 2011 University of Colorado, Boulder 2011 8 Boulder (Embedded System Design) (Advanced Operating Systems) CU Boulder reading lab) Thanksgiving CU Boulder - Thanksgiving Party Colorado Boulder - Colorado

Shieh, Shiuhpyng Winston

270

Spring 2001 Vol. 2, No. 2 ii Colorado Climate  

E-Print Network [OSTI]

Colorado Climate Spring 2001 Vol. 2, No. 2 #12;ii Colorado Climate Table of Contents Frost: Nature ....................................................................................................................... 7 Colorado Climate in Review .............................................................................................. 19 What Is the Wettest Month in Colorado

271

Preliminary Site Characterization Report, Rulison Site, Colorado, August 1996  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545*.MSE Cores" _August..Land Use

272

United States Department of Energy, Grand Junction Office  

SciTech Connect (OSTI)

The Grand Junction Office (GJO), US Department of Energy (DOE), develops and administers programs for evaluating domestic uranium resources and the production capability of industry; for developing resource planning information for DOE; and for advancing geologic and geophysical exploration concepts and techniques. In addition, GJO administers the leasing of mineral lands under DOE control, and carries out activities relating to the environmental aspects of uranium mining and milling, including remedial programs. The Office is staffed by administrative and technical program-management personnel. Bendix Field Engineering Corporation (Bendix) is the DOE operating contractor at the Grand Junction, Colorado, Government-owned/contractor-operated (GOCO) facility. The technical staffs of both GJO and Bendix are primarily geoscience-oriented. Specifically during 1980, uranium resource assessment on 135 National Topographic Map Series (NTMS) quadrangles was completed, along with other specific studies, to yield October 1980 national resource estimates. In addition, updated uranium supply analysis and production capability projections were completed. Another key aspect of this successful program was the development of improved geophysical and geochemical equipment and techniques in support of uranium resource assessment. Much of the hardware and know-how developed was turned over to the public and to the uranium industry at large for application to uranium exploration and the assessment of uranium company resources. The Grand Junction Office also participated actively during 1980 in international cooperative research on uranium exploration techniques and on the geology of uranium deposits.

Not Available

1980-01-01T23:59:59.000Z

273

A Microscopic Examination of the Josephson Junction  

E-Print Network [OSTI]

A Microscopic Examination of the Josephson Junction J. K. Freericks, P. Miller, and M. Jarrell Review, 1999 #12;Introduction · The Josephson-Junction Computer · Maximize · Resistively Shunted Junction

Freericks, Jim

274

Macroscopic quantum tunneling in Josephson junctions -  

E-Print Network [OSTI]

Macroscopic quantum tunneling in Josephson junctions - a method to characterise a well-shielded low Theory 5 1. The classical theory of Josephson junctions . . . . . . . . . . . . . . . . . 9 1-Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2. Josephson junction dynamics . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1 The basics

Gross, Rudolf

275

A Survey of Colorado's Caves for Bats Jeremy L. Siemers  

E-Print Network [OSTI]

A Survey of Colorado's Caves for Bats Jeremy L. Siemers Colorado Natural Heritage Program 254 General Services Building Colorado State University Fort Collins, Colorado Prepared for: Colorado Division.................................................................................17 #12;1 Introduction Although caves represent a critical habitat component for most bats in Colorado

276

University of Colorado, Boulder Computer Science Technical Reports Computer Science  

E-Print Network [OSTI]

University of Colorado, Boulder CU Scholar Computer Science Technical Reports Computer Science Fall of Colorado Boulder John Black University of Colorado Boulder Richard Han University of Colorado Boulder Shivakant Mishra University of Colorado Boulder Follow this and additional works at: http://scholar.colorado

Han, Richard Y.

277

COLORADO RIVER COMPACT The states of Arizona, California, Colorado, Nevada, New Mexico, Utah and Wyoming,  

E-Print Network [OSTI]

COLORADO RIVER COMPACT The states of Arizona, California, Colorado, Nevada, New Mexico, Utah of Colorado, J. G. Scrugham for the state of Nevada, Stephen B. Davis, Jr., for the state of New Mexico, R. E of the Colorado river system; to establish the relative importance of different beneficial uses of water

Johnson, Eric E.

278

2011 Colorado Preparedness Plan Page 1 of 4 2011 Colorado Wildfire Preparedness Plan  

E-Print Network [OSTI]

2011 Colorado Preparedness Plan Page 1 of 4 2011 Colorado Wildfire Preparedness Plan Recommendation to the Governor AUTHORIZATION: COLORADO REVISED STATUTE 23-31-309 The Wildfire Preparedness Fund in Colorado was authorized by the 2006 Legislature through Senate Bill 06-096, which also appropriated funding

279

to Protect Water Quality in Colorado  

E-Print Network [OSTI]

..................................................... 5 road Construction ...................................................... 6 drainage from road (BMPS) for Colorado, with additional recommendations from a 2008 BMP audit. The Colorado Timber Industry, operations and maintenance pro- cedures. BMPs can be applied before, during and after pollution

Rutledge, Steven

280

Colorado State University Public Forums concerning the  

E-Print Network [OSTI]

· Colorado Health Care Reform · NIF "Energy Problem" forums · Improving higher education · Childhood obesity · Child care quality and affordability Ongoing Projects · Embrace Colorado · Poverty in Larimer County

Stephens, Graeme L.

Note: This page contains sample records for the topic "junction colorado site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Biological Inventory Colorado Canyons National Conservation Area  

E-Print Network [OSTI]

Biological Inventory of the Colorado Canyons National Conservation Area Prepared by: Joe Stevens .............................. 12 Identify Targeted Inventory Areas

282

Colorado Natural Heritage Program 2003 Project Abstracts  

E-Print Network [OSTI]

Colorado Natural Heritage Program 2003 Project Abstracts #12;Cover photo: A CNHP researcher collects freshwater specimens (Pisidium spp.) at Long Slough Reservoir on the Grand Mesa of Colorado's West of Colorado's biodiversity, what efforts are underway to maintain it, and why more biological information

283

Trough to trough The Colorado River  

E-Print Network [OSTI]

Trough to trough The Colorado River and the Salton Sea Robert E. Reynolds, editor Trough to trough....................................................................................5 Robert E. Reynolds The vegetation of the Mojave and Colorado deserts geological excursions and observations of the Colorado Desert region by William Phipps Blake, 1853 and 1906

de Lijser, Peter

284

University of Colorado at Boulder Catalog  

E-Print Network [OSTI]

University of Colorado at Boulder Catalog 2006­07 Engage your mind / Elevate your world #12;The Catalog The 2006­07 University of Colorado at Boulder Catalog contains a summary of campus facilities bulletin boards, visiting the online Schedule Planner (www.colorado.edu/ plus/planner) and the catalog web

Mojzsis, Stephen J.

285

COLORADO SCHOOL OF MINES COUNSELING CENTER  

E-Print Network [OSTI]

NOTICE OF PRIVACY PRACTICES COLORADO SCHOOL OF MINES COUNSELING CENTER THIS NOTICE DESCRIBES HOW be revoked at any time in writing delivered to the Director, Counseling Center, except to the extent Colorado restrictions on the use and disclosure of medical information about you; however, Colorado School of Mines CC

286

Office of Legacy Management | Department of Energy  

Energy Savers [EERE]

South Dakota, Disposal Site Edgemont, South Dakota, Disposal Site Read more DOE LM Completes the Grand Junction, Colorado, Site Historical Wall Display DOE LM Completes...

287

ColoradoColorado Weather UpdateWeather Update  

E-Print Network [OSTI]

Bliss Thomas B. McKee (Professor Emeritus)Thomas B. McKee (Professor Emeritus) Colorado Climate Center. 2001 Oct 1. 2002 Oct 1. 2003 Oct 1. 2004 PercentofAverage Provisional data from the NRCS #12;Fort Collins 2004 Water Year Precipitation Fort Collins 2004 Water Year (through Oct '03 - Sep '04) 0 5 10 15

288

1992 Colorado Economic Impact Study for the US Department of Energy and Colorado Department of Health Uranium Mill Tailings Remedial Action (UMTRA) Project. Preliminary final  

SciTech Connect (OSTI)

The findings of the 1992 Colorado Economic Impact Study (CEIS) for the Uranium Mill Tailings Remedial Action (UMTRA) Project are outlined below. All dollar amounts used in the study are in year-of-expenditure dollars. The total funding requirement for the State of Colorado for the UMTRA Project is estimated to be $66.8 million, or 10 percent of the remedial action costs for the UMTRA Project in Colorado. The UMTRA Project will generate $487.5 million in gross labor income in Colorado between 1983 and 1996. This includes $54.4 million in state and local tax revenues and $41.2 million in federal individual income tax revenues. The net economic benefit of the UMTRA Project to Colorado is $355.1 million. For every dollar the State of Colorado invests in the UMTRA Project, it will realize $5.32 in gross labor income. The employment impact to the Western Slope region is significant. The UMTRA Project will create a total employment impact of 13,749 fulltime equivalents (FTES) spread over. a period of 13 years in seven site areas. Nearly 100 percent of the labor will be drawn from the local communities. The State of Colorado`s Western Slope is anticipated to be minimally impacted by the phaseout of the UMTRA Project. Unlike industries that shut down operations without warning, the UMTRA Project workers, local government, and businesses know the schedule for completion and can consider and prepare for the impact of UMTRA Project conclusion. Further, because the majority of the work force is local, there has not been a significant investment in each community`s infrastructure. Any small increases in the infrastructure will not be abandoned at the end of the UMTRA Project due to a marked increase in migration out of the local community.

Not Available

1991-10-22T23:59:59.000Z

289

Josephson junction Q-spoiler  

DOE Patents [OSTI]

An automatic Q-spoiler comprising at least one Josephson tunnel junction connected in an LC circuit for flow of resonant current therethrough. When in use in a system for detecting the magnetic resonance of a gyromagnetic particle system, a high energy pulse of high frequency energy irradiating the particle system will cause the critical current through the Josephson tunnel junctions to be exceeded, causing the tunnel junctions to act as resistors and thereby damp the ringing of the high-Q detection circuit after the pulse. When the current has damped to below the critical current, the Josephson tunnel junctions revert to their zero-resistance state, restoring the Q of the detection circuit and enabling the low energy magnetic resonance signals to be detected.

Clarke, John (Berkeley, CA); Hilbert, Claude (Austin, TX); Hahn, Erwin L. (Berkeley, CA); Sleator, Tycho (Berkeley, CA)

1988-01-01T23:59:59.000Z

290

Josephson junction Q-spoiler  

DOE Patents [OSTI]

An automatic Q-spoiler comprising at least one Josephson tunnel junction connected in an LC circuit for flow of resonant current therethrough. When in use in a system for detecting the magnetic resonance of a gyromagnetic particle system, a high energy pulse of high frequency energy irradiating the particle system will cause the critical current through the Josephson tunnel junctions to be exceeded, causing the tunnel junctions to act as resistors and thereby damp the ringing of the high-Q detection circuit after the pulse. When the current has damped to below the critical current, the Josephson tunnel junctions revert to their zero-resistance state, restoring the Q of the detection circuit and enabling the low energy magnetic resonance signals to be detected.

Clarke, J.; Hilbert, C.; Hahn, E.L.; Sleator, T.

1986-03-25T23:59:59.000Z

291

Duality in Josephson Junction Arrays  

E-Print Network [OSTI]

Various properties of mesoscopic two-dimensional Josephson junction arrays are reviewed. Particular attention is paid to structure of the topological excitations, charges and vortices, which are shown to be dual to each other. This duality persists in the presence of external magnetic fields and offset charges, which influence vortices and charges in an equivalent way. A double-layer junction array is also considered, where an even further reaching duality is discovered.

Ya. M. Blanter; Rosario Fazio; Gerd Schoen

1997-01-30T23:59:59.000Z

292

Rural recycling in southeast Colorado  

SciTech Connect (OSTI)

This article describes a recycling effort developed for rural southeast Colorado. The program was inspired and manned by local volunteers and based on a drop-off method used in Europe. The topics of the article include getting started, funding, problems encountered, level of participation, and estimated savings in waste collection and landfilling fees.

Lariviere, R. (Prowers County Development, Inc., Lamar, CO (United States))

1993-05-01T23:59:59.000Z

293

EA-1968 Site-Wide Environmental Assessment of the U.S. Department...  

Broader source: Energy.gov (indexed) [DOE]

National Renewable Energy Laboratory (NREL) South Table Mountain Campus, Golden, Colorado EA-1968 Site-Wide Environmental Assessment of the U.S. Department of Energy National...

294

The Colorado Rare Plant Technical Committee Rare Plant Symposium  

E-Print Network [OSTI]

The Colorado Rare Plant Technical Committee presents: 4th Annual Rare Plant Symposium Sponsored by: Colorado Native Plant Society University of Colorado Herbarium US Fish and Wildlife Service Colorado: G2G3/S2S3 Global distribution: Colorado (Larimer and Boulder counties). Possibly extending

295

University of Colorado, Boulder Computer Science Technical Reports Computer Science  

E-Print Network [OSTI]

University of Colorado, Boulder CU Scholar Computer Science Technical Reports Computer Science- CS-1054-09 Aaron Beach University of Colorado Boulder Mike Gartrell University of Colorado Boulder Baishakhi Ray University of Colorado Boulder Richard Han University of Colorado Boulder Follow

Han, Richard Y.

296

University of Colorado, Boulder Computer Science Technical Reports Computer Science  

E-Print Network [OSTI]

University of Colorado, Boulder CU Scholar Computer Science Technical Reports Computer Science-04 Jing Deng University of Colorado Boulder Richard Han University of Colorado Boulder Shivakant Mishra University of Colorado Boulder Follow this and additional works at: http://scholar.colorado

Han, Richard Y.

297

Colorado Climate 21 Summer 2000 Vol. 1, No. 3  

E-Print Network [OSTI]

Colorado Climate 21 Colorado Climate Summer 2000 Vol. 1, No. 3 Inside: · COAGMET ­ Weather Data to Help Colorado Agriculture · Trends in Cloudiness · Learning about Hail · Hot Summers of the 20th Century · Colorado State University's CHILL Radar #12;22 ColoradoClimate Table of Contents COAGMET

298

Colorado Forestry Advisory Board Members: Don Ament Tom Stone  

E-Print Network [OSTI]

#12;Colorado Forestry Advisory Board Members: Don Ament Tom Stone Commissioner of Agriculture Commissioner, Eagle County, Colorado Tom Borden Greg Walcher Private Landowner, Fort Collins, Colorado Director, Colorado Dept. of Natural Resources Nancy Fishering Al Yates Colorado Timber Industry Association President

299

University of Colorado, Boulder Computer Science Technical Reports Computer Science  

E-Print Network [OSTI]

University of Colorado, Boulder CU Scholar Computer Science Technical Reports Computer Science of Colorado Boulder Mike Gartrell University of Colorado Boulder Richard Han University of Colorado Boulder Follow this and additional works at: http://scholar.colorado.edu/csci_techreports This Technical Report

Han, Richard Y.

300

A Classification of Riparian Wetland Plant Associations of Colorado  

E-Print Network [OSTI]

A Classification of Riparian Wetland Plant Associations of Colorado A Users Guide: Colorado Natural Heritage Program 254 General Services Bldg. Colorado State University Fort Collins, CO of Riparian Wetland Plant Associations of Colorado: User Guide to the Classification Project. Colorado Natural

Note: This page contains sample records for the topic "junction colorado site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Colorado Forestry Advisory Board Members: Don Ament Tom Stone  

E-Print Network [OSTI]

#12;Colorado Forestry Advisory Board Members: Don Ament Tom Stone Commissioner of Agriculture Commissioner, Eagle County, Colorado Tom Borden Greg Walcher Private Landowner, Fort Collins, Colorado Director, Colorado Dept. of Natural Resources Nancy Fishering Al Yates Colorado Timber Industry Association Former

302

Measure Guideline: Optimizing the Configuration of Flexible Duct Junction Boxes  

SciTech Connect (OSTI)

This measure guideline offers additional recommendations to heating, ventilation, and air conditioning (HVAC) system designers for optimizing flexible duct, constant-volume HVAC systems using junction boxes within Air Conditioning Contractors of America (ACCA) Manual D guidance (Rutkowski, H. Manual D -- Residential Duct Systems, 3rd edition, Version 1.00. Arlington, VA: Air Conditioning Contractors of America, 2009.). IBACOS used computational fluid dynamics software to explore and develop guidance to better control the airflow effects of factors that may impact pressure losses within junction boxes among various design configurations (Beach, R., Prahl, D., and Lange, R. CFD Analysis of Flexible Duct Junction Box Design. Golden, CO: National Renewable Energy Laboratory, submitted for publication 2013). These recommendations can help to ensure that a system aligns more closely with the design and the occupants' comfort expectations. Specifically, the recommendations described herein show how to configure a rectangular box with four outlets, a triangular box with three outlets, metal wyes with two outlets, and multiple configurations for more than four outlets. Designers of HVAC systems, contractors who are fabricating junction boxes on site, and anyone using the ACCA Manual D process for sizing duct runs will find this measure guideline invaluable for more accurately minimizing pressure losses when using junction boxes with flexible ducts.

Beach, R.; Burdick, A.

2014-03-01T23:59:59.000Z

303

Theoretical exploration of Josephson Plasma Emission in Intrinsic Josephson Junctions  

SciTech Connect (OSTI)

In this paper, the authors theoretically predict the best efficient way for electromagnetic wave emission by Josephson plasma excitation in intrinsic Josephson junctions. First, they briefly derive basic equations describing dynamics of phase differences inside junction sites in intrinsic Josephson junctions, and review the nature of Josephson plasma excitation modes based on the equations. Especially, they make an attention to that Josephson plasma modes have much different dispersion relations depending on the propagating directions and their different modes can be recognized as N standing waves propagating along ah-plane in cases of finite stacked systems composed of N junctions. Second, they consider how to excite their modes and point out that excitations of in-phase mode with the highest propagation velocity among their N modes are the most efficient way for electromagnetic wave emissions. Finally, they clarify that in-phase excitations over all junctions are possible by using Josephson vortex flow states. They show simulation results of Josephson vortex flow states resonating with some Josephson plasma modes and predict that superradiance of electromagnetic field may occur in rectangular vortex flow state in which spatiotemporal oscillations of electromagnetic fields are perfectly in-phase.

Tachiki, M.; Machida, M.

2000-07-18T23:59:59.000Z

304

Electromagnetically Induced Transparency in a Double Well Atomic Josephson Junction  

E-Print Network [OSTI]

observation of these Josephson junction resonances. 2.dressed Bose condensed Josephson junction Let us consider ain a Double Well Atomic Josephson Junction J.O. Weatherall

Weatherall, J. O.; Search, C. P.

2009-01-01T23:59:59.000Z

305

7th Annual Colorado Rare Plant Symposium Conservation Efforts and Status Review of G1 Plants of Colorado  

E-Print Network [OSTI]

7th Annual Colorado Rare Plant Symposium Conservation Efforts and Status Review of G1 Plants of Colorado September 10, 2010; 9:00 am-4:00 pm UC Denver Auraria Campus Denver, Colorado Join members of the Colorado Rare Plant Technical Committee (RPTC) for the 7th Annual Colorado Rare Plant Symposium. The RPTC

306

Colorado Cattlemen's Agricultural Land Trust 8833 Ralston Road Arvada, Colorado 80002 303-225-8677 www.ccalt.org  

E-Print Network [OSTI]

Colorado Cattlemen's Agricultural Land Trust 8833 Ralston Road · Arvada, Colorado 80002 · 303-225-8677 · www.ccalt.org About Colorado Cattlemen's Agricultural Land Trust The Colorado Cattlemen's Agricultural Land Trust (CCALT) was formed in 1995 by the membership of the Colorado Cattlemen's Association (CCA

Lawrence, Rick L.

307

Nolan DoeskenNolan Doesken State Climatologist, Colorado Climate CenterState Climatologist, Colorado Climate Center  

E-Print Network [OSTI]

, Colorado Prepared by Odie Bliss, Wendy Ryan and Daniel Denison Living in the Past ­ What Does Colorado% from a very dry year to a very wet year Fort Collins Total Water Year Precipitation (1890 through 2006

308

Economic impact study of the Uranium Mill Tailings Remedial Action project in Colorado: Colorado state fiscal year 1995. Revision 1  

SciTech Connect (OSTI)

As required by the Romer-Twining Agreement of 1990, the US Department of Energy (DOE) has prepared this annual economic impact study for the state of Colorado. This report assesses the economic impacts related to the DOE Uranium Mill Tailings Remedial Action (UMTRA) Project in Colorado during the state fiscal year (FY) between 1 July 1994 and 30 June 1995. To estimate net economic benefit, employment, salaries and wages, and other related economic benefits are discussed, quantified, and then compared to the state`s 10 percent share of the remedial action costs. Actual data obtained from sites currently undergoing remedial action were used as the basis for analyses. If data were not available, estimates were used to derive economic indicators. This study describes the types of employment associated with the UMTRA Project and estimates of the numbers of people employed by UMTRA Project subcontractors in Colorado during state FY 1995. Employment totals are reported in estimated average annual jobs; however, the actual number of workers at the site fluctuates depending on weather and on the status of remedial action activities. In addition, the actual number of people employed on the Project during the year may be higher than the average annual employment reported due to the temporary nature of some of the jobs.

NONE

1995-12-01T23:59:59.000Z

309

The Colorado Compendium: An Article-Based Literature Review Program  

E-Print Network [OSTI]

Druck, MD. University of Colorado Denver School of Medicine,R eview The Colorado Compendium: An Article-Based LiteratureMD, MBA * University of Colorado Health Sciences Center,

Druck, Jeffrey; Pearson, David; Claud, Jonathan

2009-01-01T23:59:59.000Z

310

Colorado Springs Utilities- Energy Efficient Builder Program  

Broader source: Energy.gov [DOE]

The Colorado Springs Utilities (CSU) Energy Efficient Builder Program offers an incentive to builders who construct ENERGY STAR qualified homes within the CSU service area. The incentive range...

311

Athletic Training Coordinator Hometown: Colorado Springs, CO  

E-Print Network [OSTI]

WHO WE ARE Gaby Bell Athletic Training Coordinator Hometown: Colorado Springs, CO Certifications Athletic Training Graduate Assistant Jonathan Hodapp Student Athletic Trainer Mike Carlson Student Athletic

Van Stryland, Eric

312

Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer,...

313

,"Colorado Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

314

,"Colorado Heat Content of Natural Gas Consumed"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Heat Content of Natural Gas Consumed",1,"Monthly","112014","1152013" ,"Release...

315

,"Colorado Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Consumption by End Use",6,"Monthly","112014","1151989" ,"Release...

316

1992 Colorado Economic Impact Study for the US Department of Energy and Colorado Department of Health Uranium Mill Tailings Remedial Action (UMTRA) Project  

SciTech Connect (OSTI)

The findings of the 1992 Colorado Economic Impact Study (CEIS) for the Uranium Mill Tailings Remedial Action (UMTRA) Project are outlined below. All dollar amounts used in the study are in year-of-expenditure dollars. The total funding requirement for the State of Colorado for the UMTRA Project is estimated to be $66.8 million, or 10 percent of the remedial action costs for the UMTRA Project in Colorado. The UMTRA Project will generate $487.5 million in gross labor income in Colorado between 1983 and 1996. This includes $54.4 million in state and local tax revenues and $41.2 million in federal individual income tax revenues. The net economic benefit of the UMTRA Project to Colorado is $355.1 million. For every dollar the State of Colorado invests in the UMTRA Project, it will realize $5.32 in gross labor income. The employment impact to the Western Slope region is significant. The UMTRA Project will create a total employment impact of 13,749 fulltime equivalents (FTES) spread over. a period of 13 years in seven site areas. Nearly 100 percent of the labor will be drawn from the local communities. The State of Colorado's Western Slope is anticipated to be minimally impacted by the phaseout of the UMTRA Project. Unlike industries that shut down operations without warning, the UMTRA Project workers, local government, and businesses know the schedule for completion and can consider and prepare for the impact of UMTRA Project conclusion. Further, because the majority of the work force is local, there has not been a significant investment in each community's infrastructure. Any small increases in the infrastructure will not be abandoned at the end of the UMTRA Project due to a marked increase in migration out of the local community.

Not Available

1991-10-22T23:59:59.000Z

317

area northwestern colorado: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Southwestern Colorado and Northwestern New Mexico: How the Past and Environmental Management and Restoration Websites Summary: The Forests of Southwestern Colorado and...

318

Truckee Meadows Community College and Colorado School of Mines...  

Broader source: Energy.gov (indexed) [DOE]

student teams-from Truckee Meadows Community College in Reno, Nevada and Colorado School of Mines in Denver, Colorado-demonstrated exceptional rigor in their research and...

319

Colorado Firm Develops Innovative Materials for Geothermal Systems...  

Energy Savers [EERE]

Colorado Firm Develops Innovative Materials for Geothermal Systems Colorado Firm Develops Innovative Materials for Geothermal Systems April 18, 2013 - 12:00am Addthis With support...

320

Vehicle Technologies Office Merit Review 2014: Refuel Colorado  

Broader source: Energy.gov [DOE]

Presentation given by Colorado Energy Office at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Refuel Colorado.

Note: This page contains sample records for the topic "junction colorado site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Bureau of Land Management, Colorado collaborate to advance efficient...  

Open Energy Info (EERE)

Colorado collaborate to advance efficient geothermal development Jump to: navigation, search OpenEI Reference LibraryAdd to library Memorandum: Bureau of Land Management, Colorado...

322

Denver, Colorado: Solar in Action (Brochure), Solar America Cities...  

Energy Savers [EERE]

Denver, Colorado: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Denver, Colorado: Solar in Action (Brochure), Solar America Cities,...

323

Eagle County, Colorado Data Dashboard | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Data Dashboard Eagle County, Colorado Data Dashboard The data dashboard for Eagle County, Colorado, a partner in the Better Buildings Neighborhood Program. bbnpbban0003798pmcd...

324

Eagle County, Colorado Summary of Reported Data | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Summary of Reported Data Eagle County, Colorado Summary of Reported Data Summary of data reported by Better Buildings Neighborhood Program partner Eagle County, Colorado. Eagle...

325

Alexey Ustinov Two-level fluctuators in Josephson junctions Josephson junction as a tool to  

E-Print Network [OSTI]

Alexey Ustinov Two-level fluctuators in Josephson junctions Josephson junction as a tool;Alexey Ustinov Two-level fluctuators in Josephson junctions Outline JJ phase qubit Microwave spectroscopy. Ustinov. ArXiv:0909.3425 #12;Alexey Ustinov Two-level fluctuators in Josephson junctions Josephson tunnel

Fominov, Yakov

326

Precision measurement with an optical Josephson junction  

E-Print Network [OSTI]

We study a new type of Josephson device, the so-called "optical Josephson junction" as proposed in Phys. Rev. Lett. {\\bf 95}, 170402 (2005). Two condensates are optically coupled through a waveguide by a pair of Bragg beams. This optical Josephson junction is analogous to the usual Josephson junction of two condensates weakly coupled via tunneling. We discuss the use of this optical Josephson junction, for making precision measurements.

H. T. Ng; K. Burnett; J. A. Dunningham

2006-11-18T23:59:59.000Z

327

Precision measurement with an optical Josephson junction  

SciTech Connect (OSTI)

We present a theoretical study of a type of Josephson device, the so-called 'optical Josephson junction' [Y. Shin et al. Phys. Rev. Lett. 95, 170402 (2005).]. In this device, two condensates are optically coupled through a waveguide by a pair of Bragg beams. This optical Josephson junction differs from the usual Josephson junction where condensates are weakly coupled by tunneling through a barrier. We discuss the use of this optical Josephson junction, for making precision measurements.

Ng, H. T.; Burnett, K. [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Dunningham, J. A. [School of Physics and Astronomy, University of Leeds, LS2 9JT (United Kingdom)

2007-06-15T23:59:59.000Z

328

Dynamics of Josephson-junction ladders  

SciTech Connect (OSTI)

We have numerically studied dynamical behaviors of Josephson-junction ladders consisting of [ital N][sub [ital p

Kim, J. (Department of Physics, Basic Science Research Institute, Pohang Institute of Science and Technology, Pohang P.O. Box 125, Kyungbuk 790-600 (Korea, Republic of) Division of Basic Science Research, Research Institute of Industrial Science and Technology, Pohang P.O. Box 135, Kyungbuk 790-600 (Korea, Republic of)); Choe, W.G.; Kim, S. (Department of Physics, Basic Science Research Institute, Pohang Institute of Science and Technology, Pohang P.O. Box 125, Kyungbuk 790-600 (Korea, Republic of)); Lee, H.J. (Department of Physics, Basic Science Research Institute, Pohang Institute of Science and Technology, Pohang P.O. Box 125, Kyungbuk 790-600 (Korea, Republic of) Division of Basic Science Research, Research Institute of Industrial Science and Technology, Pohang P.O. Box 135, Kyungbuk 790-600 (Korea, Republic of))

1994-01-01T23:59:59.000Z

329

1996 monitoring report for the Gunnison, Colorado, wetlands mitigation plan  

SciTech Connect (OSTI)

The US Department of Energy (DOE) administers the Uranium Mill Tailings Remedial Action (UMTRA) Project to clean up uranium mill tailings and other surface contamination at 24 abandoned uranium mill sites in 10 states. One of these abandoned mill sites was near the town of Gunnison, Colorado. Surface remediation was completed at the Gunnison site in December 1995. Remedial action resulted in the elimination of 4.3 acres of wetlands and mitigation of this loss is through the enhancement of 17.8 acres of riparian plant communities in six spring-fed areas on US Bureau of Land Management mitigation sites. A five-year monitoring program was then implemented to document the response of vegetation and wildlife to the exclusion of livestock. This report provides the results of the third year of the monitoring program.

NONE

1996-12-01T23:59:59.000Z

330

UMTRA project water sampling and analysis plan, Maybell, Colorado  

SciTech Connect (OSTI)

This water sampling and analysis plan (WSAP) describes planned water sampling activities and provides the regulatory and technical basis for ground water sampling in 1994 at the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site in Maybell, Colorado. The WSAP identifies and justifies sampling locations, analytical parameters, and sampling frequencies at the site. The ground water data will be used for site characterization and risk assessment. The regulatory basis for the ground water and surface water monitoring activities is derived from the EPA regulations in 40 CFR Part 192 (1993) and the proposed EPA standards of 1987 (52 FR 36000). Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), the Technical Approach Document (TAD) (DOE, 1989), and the most effective technical approach for the site. This WSAP also includes a summary and the results of water sampling activities from 1989 through 1992 (no sampling was performed in 1993).

Not Available

1994-06-01T23:59:59.000Z

331

Quantum effects in nanoscale Josephson junction circuits  

E-Print Network [OSTI]

Quantum effects in nanoscale Josephson junction circuits SILVIA CORLEVI Doctoral Thesis Stockholm Josephson junction arrays with SQUID geometry. TRITA FYS 2006:31 ISSN 0280-316X ISRN KTH/FYS/­06:31­SE ISBN study on single-charge effects in nanoscale Josephson junctions and Cooper pair transistors (CPTs

Haviland, David

332

Josephson Junctions and AdS/CFT Networks  

E-Print Network [OSTI]

We propose a new holographic model of Josephson junctions (and networks thereof) based on designer multi-gravity, namely multi-(super)gravity theories on products of distinct asymptotically AdS spacetimes coupled by mixed boundary conditions. We present a simple model of a Josephson junction (JJ) that reproduces trivially the well-known current-phase sine relation of JJs. In one-dimensional chains of holographic superconductors we find that the Cooper-pair condensates are described by a discretized Schrodinger-type equation. Such non-integrable equations, which have been studied extensively in the past in condensed matter and optics applications, are known to exhibit complex behavior that includes periodic and quasiperiodic solutions, chaotic dynamics, soliton and kink solutions. In our setup these solutions translate to holographic configurations of strongly-coupled superconductors in networks with weak site-to-site interactions that exhibit interesting patterns of modulated superconductivity. In a continuum...

Kiritsis, Elias

2011-01-01T23:59:59.000Z

333

Josephson-junction logic device  

SciTech Connect (OSTI)

A Josephson-junction logic device having inductances and forming and AND circuit is described comprising: at least two superconductive loops, each having at least two Josephson-junction elements and a loop inductance connected between each of at least two Josephson-junction elements; at least two logic input signal lines, operatively connected to receive input currents, for supplying logic input signals; a bias line, operatively connected to at least two super conductive loops, for supplying a bias current to at least two superconductive loops, the bias current satisfying the condition vertical bar I/sub ml/ vertical bar > vertical bar I/sub mo/ vertical bar, where I/sub ml/ is a first threshold current, for switching the AND circuit, determined when at least two logic input signal lines receive different magnitude input currents and where I/sub mo/ is a second threshold current for switching the AND circuit, determined when at least two logic input signal lines receive the same magnitude input currents; and output terminals, operatively connected to one of at least two Josephson-junction elements, for outputting a logic output signal as a result of a logic operation performed on the logic input signals, whereby an operating margin of the AND circuit is expanded.

Suzuki, H.

1987-12-01T23:59:59.000Z

334

EA-1611: Colorado Highlands Wind Project, Logan County, Colorado  

Broader source: Energy.gov [DOE]

DOEs Western Area Power Administration prepared an EA in 2009 to assess the potential environmental impacts of interconnecting the proposed Colorado Highlands Wind Project to Westerns transmission system. The EA analyzed a proposal for 60 wind turbine generators with a total output nameplate capacity of 90 megawatts (MW). Western is preparing a supplemental EA to assess the potential environmental impacts of the proposed expansion of the project by 11 wind turbine generators that would add approximately 20 MW. Additional information is available on the Western Area Power Administration webpage for this project.

335

Colorado State University Computer Programmer Research Associate  

E-Print Network [OSTI]

of the positives cited in the ranking include: practically every new road has a bike lane and bicycles can even be checked out of a bike #12;library; Colorado State University occupies a scenic spot in the middle of town identity or expression. Colorado State University is an equal opportunity/equal access/affirmative action

336

,"Colorado Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

"Sourcekey","N5030CO2","N5010CO2","N5020CO2","N5070CO2","N5050CO2","N5060CO2" "Date","Colorado Natural Gas Underground Storage Volume (MMcf)","Colorado Natural Gas in Underground...

337

Method of manufacturing Josephson junction integrated circuits  

SciTech Connect (OSTI)

Josephson junction integrated circuits of the current injection type and magnetically controlled type utilize a superconductive layer that forms both Josephson junction electrode for the Josephson junction devices on the integrated circuit as well as a ground plane for the integrated circuit. Large area Josephson junctions are utilized for effecting contact to lower superconductive layers and islands are formed in superconductive layers to provide isolation between the groudplane function and the Josephson junction electrode function as well as to effect crossovers. A superconductor-barrier-superconductor trilayer patterned by local anodization is also utilized with additional layers formed thereover. Methods of manufacturing the embodiments of the invention are disclosed.

Jillie Jr., D. W.; Smith, L. N.

1985-02-12T23:59:59.000Z

338

Hyperpycnal wave-modified turbidites of the Pennsylvanian Minturn Formation, north-central Colorado  

E-Print Network [OSTI]

Hyperpycnal wave-modified turbidites of the Pennsylvanian Minturn Formation, north-central Colorado Paul M. Myrow Department of Geology, The Colorado College, Colorado Springs, Colorado, 80903 USA Lukens The Colorado College, Colorado Springs, Colorado, 80903 USA Karen Houck Department of Geography

339

AMF Deployment, Steamboat Springs, Colorado  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011Astudies Colorado Steamboat Deployment AMF Home

340

Recovery Act State Memos Colorado  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartment ofList?Department09 Section 9990|UpdatedColorado For

Note: This page contains sample records for the topic "junction colorado site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

And Our State's Economic Vitality Colorado's Recreation Economy  

E-Print Network [OSTI]

And Our State's Economic Vitality Colorado's Recreation Economy Bryan Martin, The Colorado Mountain Club #12;Colorado's Recreation Economy The Colorado Mountain Club · 8,000 Members · 14 Chapters's Recreation Economy By the Numbers · $10 Billion Annually · 107,000 Jobs · $500 Million in State Tax Revenue

342

November 15, 1999 TAX EXEMPT STATUS OF UNIVERSITY OF COLORADO  

E-Print Network [OSTI]

November 15, 1999 TAX EXEMPT STATUS OF UNIVERSITY OF COLORADO The University of Colorado, as a public institution of higher education of the State of Colorado, is exempt from all federal excise taxes under Chapters 32 and 33 of the Internal Revenue Code and from all Colorado State and local government

Ryan, Joe

343

University of Colorado, Boulder Computer Science Technical Reports Computer Science  

E-Print Network [OSTI]

University of Colorado, Boulder CU Scholar Computer Science Technical Reports Computer Science-CS-1068-10 Xinyu Xing University of Colorado Boulder Jianxun Dang McGill University Richard Han University of Colorado Boulder Xue Liu McGill University Follow this and additional works at: http://scholar.colorado

Han, Richard Y.

344

Colorado Climate Spring 2000 Vol. 1, No. 2  

E-Print Network [OSTI]

Colorado Climate Spring 2000 Vol. 1, No. 2 Inside: · Growing Season Trends · Urban Heat Islands · Where Do Climate Data Come From · Climate Prediction in the 21st Century #12;22 ColoradoClimate Colorado Climate Center Atmospheric Science Department Colorado State University Fort Collins, CO 80523-1371 ISSN

345

University of Colorado, Boulder Computer Science Technical Reports Computer Science  

E-Print Network [OSTI]

University of Colorado, Boulder CU Scholar Computer Science Technical Reports Computer Science in Wildland Fire Environments ; CU-CS-999-05 Carl Hartung University of Colorado Boulder Carl Seielstad University of Colorado Boulder Saxon Holbrook University of Colorado Boulder Richard Han University

Han, Richard Y.

346

Colorado Advantage: PhD Preview Program Application Checklist  

E-Print Network [OSTI]

Colorado Advantage: PhD Preview Program Application Checklist Please make sure you have completed 1. Describe your interest in attending the Colorado Advantage program and how it will benefit you maximum) Official Transcripts: 1. Mail to: Colorado Diversity Initiative/Colorado Advantage University

Colorado at Boulder, University of

347

University of Colorado, Boulder Computer Science Technical Reports Computer Science  

E-Print Network [OSTI]

University of Colorado, Boulder CU Scholar Computer Science Technical Reports Computer Science-04 Anmol Sheth University of Colorado Boulder Richard Han University of Colorado Boulder Follow this and additional works at: http://scholar.colorado.edu/csci_techreports This Technical Report is brought to you

Han, Richard Y.

348

Colorado Water Resources Research Institute Annual Technical Report  

E-Print Network [OSTI]

Colorado Water Resources Research Institute Annual Technical Report FY 2001 Introduction Drought of Colorado, and in some other Western states as well. On April 22, 2002 Colorado Governor Bill Owens of Colorado. On the same day, Governor Owens requested activation of the Drought Mitigation and Response Plan

349

2013 Colorado Forest Health Report 2013 Report on the  

E-Print Network [OSTI]

2013 Colorado Forest Health Report 2013 Report on the Health of Colorado's Forests Caring Timm Schaubert, Outreach Division Supervisor. Thanks also to William M. Ciesla, Forest Health;A January 2014 2013 Colorado Forest Health Report As your new Colorado State Forester, it is my

350

OBSERVATION OF ZERO POINT FLUCTUATIONS IN A RESISTIVELY SHUNTED JOSEPHSON TUNNEL JUNCTION  

E-Print Network [OSTI]

resistively shunted Josephson junctions in which quantumresistively shunted Josephson junction. For measurementresistively shunted Josephson junction in the quantum limit.

Koch, Roger H.

2012-01-01T23:59:59.000Z

351

7th Annual Colorado Rare Plant Symposium G1 Plants of Colorado; Current Conservation Status and Needs  

E-Print Network [OSTI]

1 7th Annual Colorado Rare Plant Symposium G1 Plants of Colorado; Current Conservation Status, Colorado Meeting Minutes Sponsors: CoNPS, CNHP, DBG, CU Herbarium, USFS, USFW Recorders: David Anderson symposium was held in Steamboat Springs in 2004, and covered all of Colorado's threatened, endangered

352

STATE OF COLORADO 1560 Broadway, Suite 1600, Denver, Colorado 80202 (303) 866-2723 fax (303) 866-4266  

E-Print Network [OSTI]

STATE OF COLORADO 1560 Broadway, Suite 1600, Denver, Colorado 80202 (303) 866-2723 fax (303) 866-4266 http://highered.colorado.gov DEPARTMENT OF HIGHER EDUCATION John Hickenlooper Governor Lt. Gov. Joseph A. Garcia Executive Director EARLY CHILDHOOD TEACHER EDUCATION TRANSFER AGREEMENT Between COLORADO

Collett Jr., Jeffrey L.

353

Colorado State Forest Service HB09-1199 --Colorado Healthy Forests and Vibrant Communities Act of 2009  

E-Print Network [OSTI]

Colorado State Forest Service HB09-1199 -- Colorado Healthy Forests and Vibrant Communities Act of 2009 Summary The Colorado Healthy Forests and Vibrant Communities Act of 2009 increases efforts to address wildfire risk and provides resources to the Colorado State Forest Service (CSFS) to augment its

354

Purple is not a Primary Color: Budget Politics in Colorado, 2012  

E-Print Network [OSTI]

and Blue in the state of Colorado colors every aspect of itscounty__ proposition-103/ Colorado Legislative CouncilSection. (2011a) Focus Colorado: Economic and Revenue

Bickers, Kenneth N.

2013-01-01T23:59:59.000Z

355

Ultrasound Guidance for Central Venous Access by Emergency Physicians in Colorado  

E-Print Network [OSTI]

by Emergency Physicians in Colorado Brandon H. Backlund, MD*of Emergency Medicine, Denver, Colorado Universityof Colorado School of Medicine, Department of Emergency

Backlund, Brandon H; Hopkins, Emily; Kendall, John L

2012-01-01T23:59:59.000Z

356

E-Print Network 3.0 - animas county colorado Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

animas county colorado Search Powered by Explorit Topic List Advanced Search Sample search results for: animas county colorado Page: << < 1 2 3 4 5 > >> 1 2011 Colorado Wildfire...

357

Energy Smart Colorado, Final Report  

SciTech Connect (OSTI)

Energy Smart Colorado is an energy efficiency program established in 2011 in the central mountain region of Colorado. The program was funded through a grant of $4.9 million, awarded in August 2010 by the U.S. Department of Energys Better Buildings Program. As primary grant recipient, Eagle County coordinated program activities, managed the budget, and reported results. Eagle County staff worked closely with local community education and outreach partner Eagle Valley Alliance for Sustainability (now Walking Mountains Science Center) to engage residents in the program. Sub-recipients Pitkin County and Gunnison County assigned local implementation of the program in their regions to their respective community efficiency organizations, Community Office for Resource Efficiency (CORE) in Pitkin County, and Office for Resource Efficiency (ORE) in Gunnison County. Utility partners contributed $166,600 to support Home Energy Assessments for their customers. Program staff opened Energy Resource Centers, engaged a network of qualified contractors, developed a work-flow, an enrollment website, a loan program, and a data management system to track results.

Gitchell, John M. [Program Administrator] [Program Administrator; Palmer, Adam L. [Program Manager] [Program Manager

2014-03-31T23:59:59.000Z

358

Josephson junctions and dark energy  

E-Print Network [OSTI]

In a recent paper Beck and Mackey [astro-ph/0603397] argue that the argument we gave in our paper [Phys. Lett. B 606, 77 (2005)] to disprove their claim that dark energy can be discovered in the Lab through noise measurements of Josephson junctions is incorrect. In particular, they emphasize that the measured noise spectrum in Josephson junctions is a consequence of the fluctuation dissipation theorem, while our argument was based on equilibrium statistical mechanics. In this note we show that the fluctuation dissipation relation does not depend upon any shift of vacuum (zero-point) energies, and therefore, as already concluded in our previous paper, dark energy has nothing to do with the proposed measurements.

Philippe Jetzer; Norbert Straumann

2006-04-25T23:59:59.000Z

359

Colorado geothermal commercialization program. Geothermal energy opportunities at four Colorado towns: Durango, Glenwood Springs, Idaho Springs, Ouray  

SciTech Connect (OSTI)

The potential of four prospective geothermal development sites in Colorado was analyzed and hypothetical plans prepared for their development. Several broad areas were investigated for each site. The first area of investigation was the site itself: its geographic, population, economic, energy demand characteristics and the attitudes of its residents relative to geothermal development potential. Secondly, the resource potential was described, to the extent it was known, along with information concerning any exploration or development that has been conducted. The third item investigated was the process required for development. There are financial, institutional, environmental, technological and economic criteria for development that must be known in order to realistically gauge the possible development. Using that information, the next concern, the geothermal energy potential, was then addressed. Planned, proposed and potential development are all described, along with a possible schedule for that development. An assessment of the development opportunities and constraints are included. Technical methodologies are described in the Appendix. (MHR)

Coe, B.A.; Zimmerman, J.

1981-01-01T23:59:59.000Z

360

Colorado  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOil andMCKEESPORTfor thePrices for

Note: This page contains sample records for the topic "junction colorado site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Colorado Springs Utilities- Renewable Energy Rebate Program  

Broader source: Energy.gov [DOE]

Through its Renewable Energy Rebate Program, Colorado Springs Utilities (CSU) offers a rebate to customers who install grid-connected solar-electric (PV) systems, wind systems, and solar water...

362

Colorado State University Public Forums concerning the  

E-Print Network [OSTI]

· Statewide dropout rate · Colorado Health Care Reform · NIF "Energy Problem" forums · Improving higher · Water and growth issues · PSD Innovation plans · Child care quality and affordability Ongoing Projects

Stephens, Graeme L.

363

Colorado Coalbed Methane Proved Reserves Revision Increases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

364

Colorado Coalbed Methane Proved Reserves Extensions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

365

Colorado Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

366

Colorado Coalbed Methane Proved Reserves Acquisitions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

367

Colorado Coalbed Methane Proved Reserves Revision Decreases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

368

A Colorado Perspective: The New Energy Economy  

E-Print Network [OSTI]

continue to be a part of our energy mix for decades to come.comprise 33 percent of the energy supply mix from Colorado'swith a mix of natu- ral gas generation and renewable energy

Martin, Jim; Brannon, Ginny

2009-01-01T23:59:59.000Z

369

Colorado Statewide Forest Products Industry Profile  

E-Print Network [OSTI]

Colorado Statewide Forest Products Industry Profile Economic Sustainability and Ecological and Comparisons Production and Processing Sales and Markets Economic and Ecological Contributions Sawmills 1/4 for Roundwood (post and pole, vigas, house logs), furniture, excelsior etc. Sawmill

370

Aspen, Colorado: Community Energy Strategic Planning Process  

Broader source: Energy.gov [DOE]

This presentation features Lee Ledesma, utilities operations manager with the City of Aspen, Colorado. Ledesma provides an overview of the City of Aspen's experience in putting together a financing...

371

Microwave photonics with Josephson junction arrays  

E-Print Network [OSTI]

We introduce an architecture for a photonic crystal in the microwave regime based on superconducting transmission lines interrupted by Josephson junctions. A study of the scattering properties of a single junction in the line shows that the junction behaves as a perfect mirror when the photon frequency matches the Josephson plasma frequency. We generalize our calculations to periodic arrangements of junctions, demonstrating that they can be used for tunable band engineering, forming what we call a quantum circuit crystal. As a relevant application, we discuss the creation of stationary entanglement between two superconducting qubits interacting through a disordered media.

Zueco, David; Solano, Enrique; Garca-Ripoll, Juan Jos

2011-01-01T23:59:59.000Z

372

Holographic p-wave Josephson junction  

E-Print Network [OSTI]

In this work we generalized holographic model for s-wave DC Josephson junction constructed in arXiv:1101.3326[hep-th] to a holographic description for p-wave Josephson junction. By solving numerically the coupled equations of motion of Yang-Mills theory for a non-Abelian SU(2) gauge fields in (3+1)-dimensional AdS spacetimes, we shown that DC current of the p-wave Josephson junction is proportional to the sine of the phase difference across the junction like the s-wave case.

Wang, Yong-Qiang; Zhao, Zhen-Hua

2011-01-01T23:59:59.000Z

373

Holographic p-wave Josephson junction  

E-Print Network [OSTI]

In this work we generalized holographic model for s-wave DC Josephson junction constructed in arXiv:1101.3326[hep-th] to a holographic description for p-wave Josephson junction. By solving numerically the coupled equations of motion of Yang-Mills theory for a non-Abelian SU(2) gauge fields in (3+1)-dimensional AdS spacetimes, we shown that DC current of the p-wave Josephson junction is proportional to the sine of the phase difference across the junction like the s-wave case.

Yong-Qiang Wang; Yu-Xiao Liu; Zhen-Hua Zhao

2011-09-20T23:59:59.000Z

374

Method for shallow junction formation  

DOE Patents [OSTI]

A doping sequence that reduces the cost and complexity of forming source/drain regions in complementary metal oxide silicon (CMOS) integrated circuit technologies. The process combines the use of patterned excimer laser annealing, dopant-saturated spin-on glass, silicide contact structures and interference effects creates by thin dielectric layers to produce source and drain junctions that are ultrashallow in depth but exhibit low sheet and contact resistance. The process utilizes no photolithography and can be achieved without the use of expensive vacuum equipment. The process margins are wide, and yield loss due to contact of the ultrashallow dopants is eliminated.

Weiner, Kurt H. (San Jose, CA)

1996-01-01T23:59:59.000Z

375

Method for shallow junction formation  

DOE Patents [OSTI]

A doping sequence is disclosed that reduces the cost and complexity of forming source/drain regions in complementary metal oxide silicon (CMOS) integrated circuit technologies. The process combines the use of patterned excimer laser annealing, dopant-saturated spin-on glass, silicide contact structures and interference effects creates by thin dielectric layers to produce source and drain junctions that are ultrashallow in depth but exhibit low sheet and contact resistance. The process utilizes no photolithography and can be achieved without the use of expensive vacuum equipment. The process margins are wide, and yield loss due to contact of the ultrashallow dopants is eliminated. 8 figs.

Weiner, K.H.

1996-10-29T23:59:59.000Z

376

Josephson junction between anisotropic superconductors Roman G. Mints  

E-Print Network [OSTI]

Josephson junction between anisotropic superconductors Roman G. Mints School of Physics 50011 Received 1 February 1999 Sin-Gordon equation for Josephson junctions with arbitrary misaligned, the contacts have Josephson properties. Hence, physical charac- teristics of Josephson junctions

Mints, Roman G.

377

Superconducting Tunnel Junctions as Direct Detectors for Submillimeter Astronomy  

E-Print Network [OSTI]

Superconducting Tunnel Junctions as Direct Detectors for Submillimeter Astronomy A Dissertation 2008 by John Daniel Teufel. All rights reserved. #12;Abstract Superconducting Tunnel Junctions on the of performance of superconducting tunnel junctions (STJ) as direct detectors for submillimeter radiation. Over

378

Nolan DoeskenNolan Doesken Colorado Climate CenterColorado Climate Center  

E-Print Network [OSTI]

://ccc.atmos.colostate.edu Prepared by Odie Bliss #12;2 Colorado Climate in PerspectiveColorado Climate in Perspective Strasburg, Colo 1970 1975 1980 1985 1990 1995 2000 2005 2010 Precipitation(inches) #12;8 Fort CollinsFort Collins Fort

379

EA-1406: Ground Water Compliance at the New Rifle, Colorado, UMTRA Project Site, Rifle, Colorado  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposed compliance strategy of natural flushing combined with institutional controls and continued monitoring for the New Rifle uranium mill...

380

The Importance of the Oil & Gas Industry to Northern Colorado and  

E-Print Network [OSTI]

The Importance of the Oil & Gas Industry to Northern Colorado and the Colorado Economy Dr. Martin Shields Regional Economics Institute Colorado State University #12;Outline · The Geography of Oil and Gas in Colorado · Industry Job Growth · Relevant Issues #12;Colorado's Oil and Gas Basins Source: Colorado

Note: This page contains sample records for the topic "junction colorado site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Dark energy and Josephson junctions  

SciTech Connect (OSTI)

It has been recently claimed that dark energy can be (and has been) observed in laboratory experiments by measuring the power spectrum S{sub I}(?) of the noise current in a resistively shunted Josephson junction and that in new dedicated experiments, which will soon test a higher frequency range, S{sub I}(?) should show a deviation from the linear rising observed in the lower frequency region because higher frequencies should not contribute to dark energy. Based on previous work on theoretical aspects of the fluctuation-dissipation theorem, we carefully investigate these issues and show that these claims are based on a misunderstanding of the physical origin of the spectral function S{sub I}(?). According to our analysis, dark energy has never been (and will never be) observed in Josephson junctions experiments. We also predict that no deviation from the linear rising behavior of S{sub I}(?) will be observed in forthcoming experiments. Our findings provide new (we believe definite) arguments which strongly support previous criticisms.

Branchina, Vincenzo [Department of Physics, University of Catania, Via Santa Sofia 64, I-95123, Catania (Italy); Liberto, Marco Di; Lodato, Ivano, E-mail: vincenzo.branchina@ct.infn.it, E-mail: madiliberto@ssc.unict.it, E-mail: ivlodato@ssc.unict.it [Scuola Superiore di Catania, Via S. Nullo 5/i, Catania (Italy)

2009-08-01T23:59:59.000Z

382

Favorable Geochemistry from Springs and Wells in COlorado  

SciTech Connect (OSTI)

Citation Information: Originator: Geothermal Development Associates, Reno Nevada Originator: United States Geological Survey (USGS) Originator: Colorado Geological Survey Publication Date: 2012 Title: Favorable Geochemistry Edition: First Publication Information: Publication Place: Reno Nevada Publisher: Geothermal Development Associates, Reno, Nevada Description: This layer contains favorable geochemistry for high-temperature geothermal systems, as interpreted by Richard "Rick" Zehner. The data is compiled from the data obtained from the USGS. The original data set combines 15,622 samples collected in the State of Colorado from several sources including 1) the original Geotherm geochemical database, 2) USGS NWIS (National Water Information System), 3) Colorado Geological Survey geothermal sample data, and 4) original samples collected by R. Zehner at various sites during the 2011 field season. These samples are also available in a separate shapefile FlintWaterSamples.shp. Data from all samples were reportedly collected using standard water sampling protocols (filtering through 0.45 micron filter, etc.) Sample information was standardized to ppm (micrograms/liter) in spreadsheet columns. Commonly-used cation and silica geothermometer temperature estimates are included. Spatial Domain: Extent: Top: 4515595.841032 m Left: 149699.513964 m Right: 757959.309388 m Bottom: 4104156.435530 m Contact Information: Contact Organization: Geothermal Development Associates, Reno, Nevada Contact Person: Richard Rick Zehner Address: 3740 Barron Way City: Reno State: NV Postal Code: 89511 Country: USA Contact Telephone: 775-737-7806 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

Zehner, Richard E.

2012-02-01T23:59:59.000Z

383

Quantum Junction Solar Cells Jiang Tang,,  

E-Print Network [OSTI]

Quantum Junction Solar Cells Jiang Tang,, Huan Liu,, David Zhitomirsky, Sjoerd Hoogland, Xihua, 1037 Luoyu Road, Wuhan, Hubei 430074, China Department of Electrical and Computer Engineering-type and p-type materials to create the first quantum junction solar cells. We present a family

384

Modeling In situ sediment oxygen demand in the Arroyo Colorado  

E-Print Network [OSTI]

The Arroyo Colorado River is the principal source of fresh water inflow to the Southern Laguna Madre, an economically and ecologically important resource for the Lower Rio Grande Valley region of Texas. The Arroyo Colorado serves as a principal...

Kasprzak, Kevin Ray

2001-01-01T23:59:59.000Z

385

Colorado's Economic Recovery since the Great Recession Professor Martin Shields  

E-Print Network [OSTI]

1 Colorado's Economic Recovery since the Great Recession Professor Martin Shields Regional Economics Institute Colorado State University csurei, economic performance has been mixed. The northern Front Range has fared best

386

Moving to a Clean Energy Economy:Opportunities for Colorado ...  

Broader source: Energy.gov (indexed) [DOE]

Moving to a Clean Energy Economy:Opportunities for Colorado Moving to a Clean Energy Economy:Opportunities for Colorado A report on the ways in which moving towards a clean energy...

387

Solar variability of four sites across the state of Colorado  

E-Print Network [OSTI]

term prediction. J. Wind Energy Eng. Ind. Aerodyn 2002; 90:the penetration of wind energy in the European electricityof distant wind turbines. Wind Energy 2004; 7(2): 7585. Apt

Lave, Matthew; Kleissl, Jan

2010-01-01T23:59:59.000Z

388

Solar variability of four sites across the state of Colorado  

E-Print Network [OSTI]

dampen fluctuations in solar power output of the average ofthat solar radiation is proportional to PV power output and

Lave, Matthew; Kleissl, Jan

2010-01-01T23:59:59.000Z

389

Water Monitoring Flume Replaced at the Rocky Flats, Colorado, Site |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energy WhileTankless Electric - v1.0.xlsx MoreDepartment of

390

Thinking Outside the Box: Materials Reuse-Durango, Colorado, Site |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment ofPoweredEngine-Powered2 DOEDepartment of

391

DOE and Colorado Mesa University Education Agreement Expands LM's Site  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof EnergyAllianceDepartment of Energy

392

RAPID/Geothermal/Transmission Siting & Interconnection/Colorado | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPID Regulatory and Permitting< RAPID‎Energy Information

393

RAPID/Overview/BulkTransmission/Siting/Colorado | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado < RAPID‎ | Geothermal‎ |RAPID Jump

394

Durango, Colorado, Processing and Disposal Sites Fact Sheet  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545*. . : '* FEB1 Rev.DATA DECISION

395

Design and Management of Colorado Landscapes Goal: Colorado State University will enhance its focus and depth in undergraduate education, graduate education, research,  

E-Print Network [OSTI]

Design and Management of Colorado Landscapes Goal: Colorado State University will enhance its focus of Colorado landscapes, serve as the primary provider of new management talent for Colorado's green industry, be recognized as the primary source of knowledge for Colorado's landscape industries, and be recognized

396

School of Social Work Fort Collins, Colorado 80523-1586  

E-Print Network [OSTI]

School of Social Work Fort Collins, Colorado 80523-1586 Phone (970) 491-6612 Fax (970) 491-7280 Colorado State University College of Health and Human Sciences School of Social Work http or disability. #12;ii Greetings! Welcome to the School of Social Work at Colorado State University! Central

Rutledge, Steven

397

STATE OF COLORADO DEPARTMENT OF HIGHER EDUCATION John Hickenlooper  

E-Print Network [OSTI]

STATE OF COLORADO DEPARTMENT OF HIGHER EDUCATION John Hickenlooper Governor Lt. Gov. Joseph A. Garcia Executive Director 1560 Broadway, Suite 1600, Denver, Colorado 80202 (303) 866-2723 fax (303) 866-4266 http://highered.colorado.gov STATEWIDE TRANSFER ARTICULATION AGREEMENT for a Bachelor of Arts

398

STATE OF COLORADO DEPARTMENT OF HIGHER EDUCATION John Hickenlooper  

E-Print Network [OSTI]

STATE OF COLORADO DEPARTMENT OF HIGHER EDUCATION John Hickenlooper Governor Lt. Gov. Joseph A. Garcia Executive Director 1560 Broadway, Suite 1600, Denver, Colorado 80202 (303) 866-2723 fax (303) 866-4266 http://highered.colorado.gov STATEWIDE TRANSFER ARTICULATION AGREEMENT for a Bachelor

399

2011 Colorado Wildfire Season September 12, 2011 Weekly Update  

E-Print Network [OSTI]

Page 1 2011 Colorado Wildfire Season September 12, 2011 Weekly Update About this report: This weekly wildfire report is provided by the Colorado State Forest Service to keep you current on the fire situation in Colorado. The report will be released every Monday from May 2 to Oct. 24, along with daily

Hardy, Darel

400

Colorado Water Resources Research Institute Annual Technical Report  

E-Print Network [OSTI]

Colorado Water Resources Research Institute Annual Technical Report FY 1999 Introduction WATER PROBLEMS AND ISSUES IN COLORADO With restoration of a small amount of research funds in the federal State) for the Colorado Water Resources Research Institute (CWRRI) was activated. The Council held its initial meeting

Note: This page contains sample records for the topic "junction colorado site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Colorado School of Mines Financial Statements and Independent Accountants' Reports  

E-Print Network [OSTI]

Colorado School of Mines Financial Statements and Independent Accountants' Reports Financial Audit Years Ended June 30, 2011 and 2010 #12;Colorado School of Mines Years Ended June 30, 2011 and 2010 TABLE statements of the business-type activities and the discretely presented component unit of the Colorado School

402

Colorado Forestry Advisory Board Members: April 6, 2005  

E-Print Network [OSTI]

#12;Colorado Forestry Advisory Board Members: April 6, 2005 The 2004 Report on the Health of Colorado's Forests explores the unique issues and chal- lenges of sustaining and managing ponderosa pine types that characterize Colora- do's unique landscapes. As members of the Colorado Forestry Advisory

403

State DOT: Colorado State Report Questions on MEPDG Implementation  

E-Print Network [OSTI]

State DOT: Colorado State Report Questions on MEPDG Implementation 1. Summarize your state's status as far as MEPDG Implementation. Currently, CDOT is in the process of validating the MEPDG in Colorado and calibrating it to Colorado performance data. 2. What efforts have been made toward local calibration? CDOT has

404

DPA/DHR Rev 9/2006 State of Colorado  

E-Print Network [OSTI]

DPA/DHR Rev 9/2006 State of Colorado Affidavit of Common Law Marriage Upon signing this form, we of Colorado employee and __________________________________, is my spouse who desires to be covered as an eligible dependent pursuant to the rules and procedures of the State of Colorado Department of Personnel

405

Colorado School of Mines Graduate Bulletin 2007-08  

E-Print Network [OSTI]

Colorado School of Mines Graduate Bulletin 2007-08 nitelluBetaudarGseniMfoloohcSodaroloC80-7002 #12;Colorado School of Mines 20072008 Graduate Bulletin #12;To CSM Graduate Students: This Bulletin is for your use as a source of continuing reference. Please save it. Published by Colorado School of Mines, Golden

406

Colorado School of Mines 1 Tuition, Fees, Financial  

E-Print Network [OSTI]

Colorado School of Mines 1 Tuition, Fees, Financial Assistance, Housing & Dining Rates 2014-2015 Tuition and fees are established by the Board of Trustees of Colorado School of Mines following the annual budget process and action by the Colorado General Assembly and Governor. Undergraduate Tuition

407

Lessons Learned: The Grand Junction Office Site Transfer to Private  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |EnergyonSupport0.pdf5 OPAM SEMIANNUAL REPORT TOJaredKansas1 - Energy Basics LessonOwnership |

408

delta-biased Josephson tunnel junctions  

SciTech Connect (OSTI)

The behavior of a long Josephson tunnel junction drastically depends on the distribution of the dc bias current. We investigate the case in which the bias current is fed in the central point of a one-dimensional junction. Such junction configuration has been recently used to detect the persistent currents circulating in a superconducting loop. Analytical and numerical results indicate that the presence of fractional vortices leads to remarkable differences from the conventional case of uniformly distributed dc bias current. The theoretical findings are supported by detailed measurements on a number of delta-biased samples having different electrical and geometrical parameters.

Monaco, R.; Mygind, J.; Koshelets, V. P.; Dmitriev, P. [Istituto di Cibernetica del CNR, 80078 Pozzuoli (Italy) and Dipartimento di Fisica, Universita di Salerno, 84081 Baronissi (Italy); DTU Physics, Technical University of Denmark, B309, DK-2800 Lyngby (Denmark); Institute of Radio Engineering and Electronics, Russian Academy of Science, Mokhovaya 11, Bldg. 7, 125009 Moscow (Russian Federation)

2010-02-01T23:59:59.000Z

409

Rio Blanco, Colorado, Long-Term Hydrologic Monitoring Program Sampling and Analysis Results for 2009  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rio Blanco, Colorado, Site, for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 13 and 14, 2009. Samples were analyzed by the U.S. Environmental Protection Agency (EPA) Radiation&Indoor Environments National Laboratory in Las Vegas, Nevada. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectroscopy and tritium using the conventional and enriched methods.

None

2009-12-21T23:59:59.000Z

410

The Colorado School of Mines (Mines) Career Center supports the mission, academic programs, and advancement of the Colorado School  

E-Print Network [OSTI]

TMS: TEYJS #12;M The Colorado School of Mines (Mines) Career Center supports the mission, academic programs, and advancement of the Colorado School of Mines. The CSM Career Center of CSM graduates and to the mission of CSM. All Colorado School of Mines graduates will be able

411

1997 Monitoring report for the Gunnison, Colorado Wetlands Mitigation Plan  

SciTech Connect (OSTI)

Under the Uranium Mill Tailings Remedial Action (UMTRA) Project, the U.S. Department of Energy (DOE) cleaned up uranium mill tailings and other surface contamination near the town of Gunnison, Colorado. Remedial action resulted in the elimination of 4.3 acres (ac) (1.7 hectares [ha]) of wetlands. This loss is mitigated by the enhancement of six spring-fed areas on Bureau of Land Management (BLM) land (mitigation sites). Approximately 254 ac (1 03.3 ha) were fenced at the six sites to exclude grazing livestock. Of the 254 ac (103.3 ha), 17.8 ac (7.2 ha) are riparian plant communities; the rest are sagebrush communities. Baseline grazed conditions of the riparian plant communities at the mitigation sites were measured prior to fencing. This report discusses results of the fourth year of a monitoring program implemented to document the response of vegetation and wildlife to the exclusion of livestock. Three criteria for determining success of the mitigation were established: plant height, vegetation density (bare ground), and vegetation diversity. By 1996, Prospector Spring, Upper Long`s Gulch, and Camp Kettle met the criteria. The DOE requested transfer of these sites to BLM for long-term oversight. The 1997 evaluation of the three remaining sites, discussed in this report, showed two sites (Houston Gulch and Lower Long`s Gulch) meet the criteria. The DOE will request the transfer of these two sites to the BLM for long-term oversight. The last remaining site, Sage Hen Spring, has met only two of the criteria (percent bare ground and plant height). The third criterion, vegetation diversity, was not met. The vegetation appears to be changing from predominantly wet species to drier upland species, although the reason for this change is uncertain. It may be due to below-normal precipitation in recent years, diversion of water from the spring to the stock tank, or manipulation of the hydrology farther up gradient.

NONE

1997-11-01T23:59:59.000Z

412

Tuning a short coherence length Josephson junction through a  

E-Print Network [OSTI]

Tuning a short coherence length Josephson junction through a metal-insulator transition J. K University, Josephson Junction talk, 2001 #12;Josephson Tunnel Junctions · A Superconductor maintaining nonhysteretic behavior. J. K. Freericks, Georgetown University, Josephson Junction talk, 2001 S N

Freericks, Jim

413

THE USE OF SUPERCONDUCTING JUNCTIONS IN MAGNETOMETRY By J. CLARKE,  

E-Print Network [OSTI]

-8 gauss. In the second part, we discuss the properties of a type of Josephson junction in which] junctions in parallel. A Josephson junction consists of two superconductors separated by an insulating =|03C8|ei~, where 1 03C8|2 represents the density of condensed pairs. In a Josephson junction

Boyer, Edmond

414

JOSEPHSON JUNCTION MIXER USING AN EXTERNAL LOCAL OSCILLATOR (*)  

E-Print Network [OSTI]

255 JOSEPHSON JUNCTION MIXER USING AN EXTERNAL LOCAL OSCILLATOR (*) H. KANTER Electronic Research, studied the use of Josephson junctions as microwave mixers on the basis of the highly damped junction indicate that conversion as well as noise properties of Josephson junctions require more detailed studies

Paris-Sud XI, Université de

415

Tunnel junction multiple wavelength light-emitting diodes  

DOE Patents [OSTI]

A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect. 5 figs.

Olson, J.M.; Kurtz, S.R.

1992-11-24T23:59:59.000Z

416

Tunnel junction multiple wavelength light-emitting diodes  

DOE Patents [OSTI]

A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect.

Olson, Jerry M. (Lakewood, CO); Kurtz, Sarah R. (Golden, CO)

1992-01-01T23:59:59.000Z

417

Self-consistent modeling of charge redistributions in Josephson junctions  

E-Print Network [OSTI]

Self-consistent modeling of charge redistributions in Josephson junctions J. K. Freericks, Josephson Junction talk, 2000 #12;Josephson Proximity-Effect Junctions · A Superconductor-Normal metal, Georgetown University, Josephson Junction talk, 2000 S N S I I V V Ic #12;Andreev Bound States · At an N

Freericks, Jim

418

Superconductor-Correlated metal-Superconductor Josephson junctions  

E-Print Network [OSTI]

Superconductor-Correlated metal- Superconductor Josephson junctions for high-speed digital. Freericks, Georgetown University, Josephson Junction talk, 2002 #12;Josephson Tunnel Junctions). J. K. Freericks, Georgetown University, Josephson Junction talk, 2002 S I S I I V V Ic #12

Freericks, Jim

419

Self-consistent modeling of SINIS and SNSNS Josephson junctions  

E-Print Network [OSTI]

Self-consistent modeling of SINIS and SNSNS Josephson junctions J. K. Freericks Collaborators: Paul of Naval Research. J. K. Freericks, Georgetown University, Josephson Junction talk, 2000 #12;Josephson University, Josephson Junction talk, 2000 S I S I I V V Ic #12;Josephson Proximity-Effect Junctions

Freericks, Jim

420

U.S. Army- Ft. Carson, Colorado  

Broader source: Energy.gov [DOE]

Fort Carson U.S. Army Base is located south of Colorado Springs, Colorado. It was the first Federal facility to install a "solar wall"a solar ventilation air preheating system. The solar wall heats Ft. Carson's new high-bay aviation maintenance facility at Butts Army Airfield by pre-warming air as much as 54F and supplying the heated air to the building's central heating system. This collector system is especially advantageous for buildings that require large volumes of heated air.

Note: This page contains sample records for the topic "junction colorado site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Strongly-coupled Josephson junction array for simulation of frustrated one-dimensional spin models  

E-Print Network [OSTI]

We study the capacitance-coupled Josephson junction array beyond the small-coupling limit. We find that, when the scale of the system is large, its Hamiltonian can be obtained without the small-coupling approximation and the system can be used to simulate strongly frustrated one-dimensional Ising spin problems. To engineer the system Hamiltonian for an ideal theoretical model, we apply a dynamical decoupling technique to eliminate undesirable couplings in the system. Using a 6-site junction array as an example, we numerically evaluate the system to show that it exhibits important characteristics of the frustrated spin model.

Liang-Hui Du; Xingxiang Zhou; Yong-Jian Han; Guang-Can Guo; Zheng-Wei Zhou

2012-12-20T23:59:59.000Z

422

Small Wind Electric Systems: A Colorado Consumer's Guide  

SciTech Connect (OSTI)

Small Wind Electric Systems: A Colorado Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2006-12-01T23:59:59.000Z

423

Nolan DoeskenNolan Doesken State Climatologist, Colorado Climate CenterState Climatologist, Colorado Climate Center  

E-Print Network [OSTI]

, Colorado, Thursday, January 25, 2007 Prepared by Odie Bliss, Wendy Ryan and Daniel Denison What Recent by as much as 400% from a very dry year to a very wet year Fort Collins Total Water Year Precipitation (1890

424

Drought in Colorado:Drought in Colorado: Past, Present, FuturePast, Present, Future  

E-Print Network [OSTI]

Expo, Denver Convention Center, January 30, 2004 Prepared by Odie Bliss #12;Colorado Average Annual, City of Fort Collins. #12;Oct 2001Oct 2001 ­­ Mar 2002 Water YearMar 2002 Water Year Precipitation

425

Optoelectronic switching of addressable molecular crossbar junctions  

E-Print Network [OSTI]

This letter reports on the observation of optoelectronic switching in addressable molecular crossbar junctions fabricated using polymer stamp-printing method. The active medium in the junction is a molecular self-assembled monolayer softly sandwiched between gold electrodes. The molecular junctions are investigated through currentvoltage measurements at varied temperature (from 95 to 300 K) in high vacuum condition. The junctions show reversible optoelectronic switching with the highest on/off ratio of 3 orders of magnitude at 95 K. The switching behavior is independent of both optical wavelength and molecular structure, while it strongly depends on the temperature. Initial analysis indicates that the distinct binding nature of the molecule/electrode interfaces play a dominant role in the switching performance.

J. C. Li

2006-11-22T23:59:59.000Z

426

Process-level controls on CO2 fluxes from a seasonally snow-covered subalpine meadow soil, Niwot Ridge, Colorado  

E-Print Network [OSTI]

Research, University of Colorado, Boulder, CO, USA e-mail:of Geography, University of Colorado, Boulder, CO, USA B.Sciences, University of Colorado, Boulder, CO, USA G.

2009-01-01T23:59:59.000Z

427

Colorado stride (COSTRIDE): testing genetic and physiological moderators of response to an intervention to increase physical activity  

E-Print Network [OSTI]

details University of Colorado Boulder, Boulder, CO 80309,data and rationale for Colorado STRIDE. J Behav Med 2013,as: Bryan et al. : Colorado stride (COSTRIDE): testing

Bryan, Angela D; Magnan, Renee E; Hooper, Ann E; Ciccolo, Joseph T; Marcus, Bess; Hutchison, Kent E

2013-01-01T23:59:59.000Z

428

Josephson Junctions and AdS/CFT Networks  

E-Print Network [OSTI]

We propose a new holographic model of Josephson junctions (and networks thereof) based on designer multi-gravity, namely multi-(super)gravity theories on products of distinct asymptotically AdS spacetimes coupled by mixed boundary conditions. We present a simple model of a Josephson junction (JJ) that exhibits the well-known current-phase sine relation of JJs. In one-dimensional chains of holographic superconductors we find that the Cooper-pair condensates are described by a discretized Schrodinger-type equation. Such non-integrable equations, which have been studied extensively in the past in condensed matter and optics applications, are known to exhibit complex behavior that includes periodic and quasiperiodic solutions, chaotic dynamics, soliton and kink solutions. In our setup these solutions translate to holographic configurations of strongly-coupled superconductors in networks with weak site-to-site interactions that exhibit interesting patterns of modulated superconductivity. In a continuum limit our equations reduce to generalizations of the Gross-Pitaevskii equation. We comment on the many possible extensions and applications of this new approach.

Elias Kiritsis; Vasilis Niarchos

2011-10-06T23:59:59.000Z

429

Connecting Colorado's Renewable Resources to the Markets in a Cabon-Constrained Electricity Sector  

SciTech Connect (OSTI)

The benchmark goal that drives the report is to achieve a 20 percent reduction in carbon dioxide (CO{sub 2}) emissions in Colorado's electricity sector below 2005 levels by 2020. We refer to this as the '20 x 20 goal.' In discussing how to meet this goal, the report concentrates particularly on the role of utility-scale renewable energy and high-voltage transmission. An underlying recognition is that any proposed actions must not interfere with electric system reliability and should minimize financial impacts on customers and utilities. The report also describes the goals of Colorado's New Energy Economy5 - identified here, in summary, as the integration of energy, environment, and economic policies that leads to an increased quality of life in Colorado. We recognize that a wide array of options are under constant consideration by professionals in the electric industry, and the regulatory community. Many options are under discussion on this topic, and the costs and benefits of the options are inherently difficult to quantify. Accordingly, this report should not be viewed as a blueprint with specific recommendations for the timing, siting, and sizing of generating plants and high-voltage transmission lines. We convened the project with the goal of supplying information inputs for consideration by the state's electric utilities, legislators, regulators, and others as we work creatively to shape our electricity sector in a carbon-constrained world. The report addresses various issues that were raised in the Connecting Colorado's Renewable Resources to the Markets report, also known as the SB07-91 Report. That report was produced by the Senate Bill 2007-91 Renewable Resource Generation Development Areas Task Force and presented to the Colorado General Assembly in 2007. The SB07-91 Report provided the Governor, the General Assembly, and the people of Colorado with an assessment of the capability of Colorado's utility-scale renewable resources to contribute electric power in the state from 10 Colorado generation development areas (GDAs) that have the capacity for more than 96,000 megawatts (MW) of wind generation and 26,000 MW of solar generation. The SB07-91 Report recognized that only a small fraction of these large capacity opportunities are destined to be developed. As a rough comparison, 13,964 MW of installed nameplate capacity was available in Colorado in 2008. The legislature did not direct the SB07-91 task force to examine several issues that are addressed in the REDI report. These issues include topics such as transmission, regulation, wildlife, land use, permitting, electricity demand, and the roles that different combinations of supply-side resources, demand-side resources, and transmission can play to meet a CO{sub 2} emissions reduction goal. This report, which expands upon research from a wide array of sources, serves as a sequel to the SB07-91 Report. Reports and research on renewable energy and transmission abound. This report builds on the work of many, including professionals who have dedicated their careers to these topics. A bibliography of information resources is provided, along with many citations to the work of others. The REDI Project was designed to present baseline information regarding the current status of Colorado's generation and transmission infrastructure. The report discusses proposals to expand the infrastructure, and identifies opportunities to make further improvements in the state's regulatory and policy environment. The report offers a variety of options for consideration as Colorado seeks pathways to meet the 20 x 20 goal. The primary goal of the report is to foster broader discussion regarding how the 20 x 20 goal interacts with electric resource portfolio choices, particularly the expansion of utility-scale renewable energy and the high-voltage transmission infrastructure. The report also is intended to serve as a resource when identifying opportunities stemming from the American Recovery and Reinvestment Act of 2009.

None

2009-12-31T23:59:59.000Z

430

Quantum Coherence in a Superfluid Josephson Junction  

SciTech Connect (OSTI)

We report a new kind of experiment in which we take an array of nanoscale apertures that form a superfluid {sup 4}He Josephson junction and apply quantum phase gradients directly along the array. We observe collective coherent behaviors from aperture elements, leading to quantum interference. Connections to superconducting and Bose-Einstein condensate Josephson junctions as well as phase coherence among the superfluid aperture array are discussed.

Narayana, Supradeep; Sato, Yuki [Rowland Institute at Harvard, Harvard University, Cambridge, Massachusetts 02142 (United States)

2011-02-04T23:59:59.000Z

431

Multi-junction solar cell device  

DOE Patents [OSTI]

A multi-junction solar cell device (10) is provided. The multi-junction solar cell device (10) comprises either two or three active solar cells connected in series in a monolithic structure. The multi-junction device (10) comprises a bottom active cell (20) having a single-crystal silicon substrate base and an emitter layer (23). The multi-junction device (10) further comprises one or two subsequent active cells each having a base layer (32) and an emitter layer (23) with interconnecting tunnel junctions between each active cell. At least one layer that forms each of the top and middle active cells is composed of a single-crystal III-V semiconductor alloy that is substantially lattice-matched to the silicon substrate (22). The polarity of the active p-n junction cells is either p-on-n or n-on-p. The present invention further includes a method for substantially lattice matching single-crystal III-V semiconductor layers with the silicon substrate (22) by including boron and/or nitrogen in the chemical structure of these layers.

Friedman, Daniel J. (Lakewood, CO); Geisz, John F. (Wheat Ridge, CO)

2007-12-18T23:59:59.000Z

432

Potential for Photovoltaic Solar Installation in Non-Irrigated Corners of Center Pivot Irrigation Fields in the State of Colorado  

SciTech Connect (OSTI)

The State of Colorado expressed an interest in assessing the potential for photovoltaic (PV) solar installations on non-irrigated corners of center-pivot irrigation (CPI) fields throughout the state. Using aerial imagery and irrigated land data available from the Colorado Water Conservation Board, an assessment of potentially suitable sites was produced. Productivity estimates were calculated from that assessment. The total area of non-irrigated corners of CPI fields in Colorado was estimated to be 314,674 acres, which could yield 223,418 acres of installed PV panels assuming 71% coverage in triangular plots. The total potential annual electricity production for the state was estimated to be 56,821 gigawatt hours (GWH), with an average of 1.3 GWH per available plot.

Roberts, B.

2011-07-01T23:59:59.000Z

433

Denver, Colorado: Solar in Action (Brochure)  

SciTech Connect (OSTI)

This brochure provides an overview of the challenges and successes of Denver, Colorado, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

Not Available

2011-10-01T23:59:59.000Z

434

Air Pollution, ATS555 Colorado State University  

E-Print Network [OSTI]

Air Pollution, ATS555 Colorado State University Fall 2014 Mondays and Wednesdays @ 4:00 ­ 5:30 Room://ramct.colostate.edu/) Textbooks: Air Pollution: Its Origin and Control, 3rd Edition, by Wark, Warner and Davis, Addison Wesley. Specific objectives include: 1. Develop an understanding of types and sources of air pollution. 2. Examine

Collett Jr., Jeffrey L.

435

ASTER Thermal Anomalies in western Colorado  

SciTech Connect (OSTI)

Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: ASTER Thermal Anomalies Western Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the areas identified as areas of anomalous surface temperature from ASTER satellite imagery. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. Areas that had temperature greater than 2?, and areas with temperature equal to 1? to 2?, were considered ASTER modeled very warm and warm surface exposures (thermal anomalies), respectively Spatial Domain: Extent: Top: 4547052.446651 m Left: 158917.090117 m Right: 4101162.228281 m Bottom: 4101162.228281 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

Zehner, Richard E.

2013-01-01T23:59:59.000Z

436

Geospatial Data Store Colorado School of Mines  

E-Print Network [OSTI]

Geospatial Data Store Colorado School of Mines White Paper February 2006 Martin Spann, Adjunct Professor EPICS #12;2 A Geospatial Data Store Contents Executive Summary Proposed Budget (short version) General Information Geospatial Data Geospatial Data Store Library Geospatial Committee Academic

437

Public Involvment Plan - Rifle, Colorado  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledo SiteTonawandaUniversity21Prepared by Oak

438

BLACK-TAILED PRAIRIE DOG SURVEYS IN CROWLEY, OTERO, PUEBLO AND EASTERN HUERFANO COUNTIES, COLORADO  

E-Print Network [OSTI]

BLACK-TAILED PRAIRIE DOG SURVEYS IN CROWLEY, OTERO, PUEBLO AND EASTERN HUERFANO COUNTIES, COLORADO A Report to the Bureau of Land Management, Canon City Office By The Colorado Natural Heritage Program Colorado State University January 2003 John R Sovell Colorado Natural Heritage Program Colorado State

439

Field Guide to the Wetland and Riparian Plant Associations of Colorado  

E-Print Network [OSTI]

#12;2 Field Guide to the Wetland and Riparian Plant Associations of Colorado Colorado Natural Heritage Program College of Natural Resources Colorado State University 254 General Services Building 8002. Colorado Natural Areas Program file photo. 2. Slope (1) - iron fen at Chattanooga, San Juan Co. Colorado

440

Chandra Turpen Dept. of Physics, UCB-390 chandra.turpen@colorado.edu  

E-Print Network [OSTI]

Chandra Turpen Dept. of Physics, UCB-390 chandra.turpen@colorado.edu University of Colorado http://per.colorado.edu Boulder, Colorado 80309-0390 303.817.0250 EDUCATION PhD Candidate-Post Oral comprehensives, Physics, Present University of Colorado, Boulder CO (Anticipated graduation-Summer 2009) B.S., Physics, 2004

Colorado at Boulder, University of

Note: This page contains sample records for the topic "junction colorado site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

SURVEY AND ASSESSMENT OF THE "ALAMOSA MARSHES" AREA, SAN LUIS VALLEY, COLORADO  

E-Print Network [OSTI]

SURVEY AND ASSESSMENT OF THE "ALAMOSA MARSHES" AREA, SAN LUIS VALLEY, COLORADO Colorado Natural Heritage Program College of Natural Resources, 8002 Campus Delivery Colorado State University Fort Collins, Colorado 80523-8002 #12;SURVEY AND ASSESSMENT OF THE "ALAMOSA MARSHES" AREA, SAN LUIS VALLEY, COLORADO

442

Thermodynamic Signatures of Half-Quantum Vortices in p+ip Josephson Junction Arrays  

E-Print Network [OSTI]

bind a Majorana Fermion . . 3 Josephson Junction Arrays 3.14 p + ip Josephson Junction Arrays 4.1Bind a Majorana Fermion . . . . . . . . . Josephson Junction

Krahn, Graham Joel

2012-01-01T23:59:59.000Z

443

Temporal stability of Y Ba Cu O nano Josephson junctions from ion irradiation  

E-Print Network [OSTI]

planar high temperature Josephson junctions fabricated usingYBa 2 Cu 3 O 7-? Josephson junctions via nanolithography andsuperconductor Josephson junctions, J. Vac. Sci. Technol.

Cybart, Shane A.

2014-01-01T23:59:59.000Z

444

E-Print Network 3.0 - addressable three-way junctions Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

junctions can... Project Description: page 1 Project Description I. Introduction: Josephson junction networks Over... the past 25 years, superconducting Josephson junctions...

445

COLORADO STATE UNIVERSITY Position Announcement  

E-Print Network [OSTI]

communities in support of a vegetation mapping project in and around the Bighorn Canyon National Recreation a combination of daytrips and multi-day backpack and car camping trips. Crews will navigate daily to remote sites to establish plot locations and document plant community characteristics. Duties 1. Work

446

Addendum to the 1996 Gunnison Monitoring Report for the Gunnison, Colorado Wetlands Mitigation Plan  

SciTech Connect (OSTI)

This document is an addendum to the 1996 Gunnison Monitoring Report for the Gunnison, Colorado, Wetlands Mitigation Report, dated July 1997. The purpose of this addendum is to: (1) modify how information on plant height and plant species criteria are presented; and (2) provide more detailed information regarding the evaluation of the bare ground criteria at the Camp Ketle site. The information in this addendum is provided at the request of the Bureau of Land Management to aid in future monitoring and evaluation of the wetland mitigation sites.

NONE

1997-10-01T23:59:59.000Z

447

Geologic and production characteristics of the Tight Mesaverde Group: Piceance Basin, Colorado  

SciTech Connect (OSTI)

The Mesaverde Group of the Piceance Basin in western Colorado has been a pilot study area for government-sponsored tight gas sand research for over 20 years. This study provides a critical comparison of the geologic, production and reservoir characteristics of existing Mesaverde gas producing areas within the basin to those same characteristics at the MWX site near Rifle, Colorado. As will be discussed, the basin has been partitioned into three areas having similar geologic and production characteristics. Stimulation techniques have been reviewed for each partitioned area to determine the most effective stimulation technique currently used in the Mesaverde. This study emphasizes predominantly the southern Piceance Basin because of the much greater production and geologic data there. There may be Mesaverde gas production in northern areas but because of the lack of production and relatively few penetrations, the northern Piceance Basin was not included in the detailed parts of this study. 54 refs., 31 figs., 7 tabs.

Myal, F.R.; Price, E.H.; Hill, R.E.; Kukal, G.C.; Abadie, P.A.; Riecken, C.C.

1989-07-01T23:59:59.000Z

448

UMTRA Project water sampling and analysis plan, Durango, Colorado. Revision 1  

SciTech Connect (OSTI)

Planned, routine ground water sampling activities at the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site in Durango, Colorado, are described in this water sampling and analysis plan. The plan identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the routine monitoring stations at the site. The ground water data are used to characterize the site ground water compliance strategies and to monitor contaminants of potential concern identified in the baseline risk assessment (DOE, 1995a). Regulatory basis for routine ground water monitoring at UMTRA Project sites is derived from the US EPA regulations in 40 CFR Part 192 (1994) and EPA standards of 1995 (60 FR 2854). Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), the Technical Approach Document (TAD) (DOE, 1989), and the most effective technical approach for the site.

NONE

1995-09-01T23:59:59.000Z

449

Radiological survey of the inactive uranium-mill tailings at Rifle, Colorado  

SciTech Connect (OSTI)

Results of radiological surveys of two inactive uranium-mill sites near Rifle, Colorado, in May 1976 are presented. These sites are referred to as Old Rifle and New Rifle. The calculated /sup 226/Ra inventory of the latter site is much higher than at the older mill location. Data on above-ground measurements of gamma exposure rates, surface and near-surface concentration of /sup 226/Ra in soil and sediment samples, concentration of /sup 226/Ra in water, calculated subsurface distribution of /sup 226/Ra, and particulate radionuclide concentrations in air samples are given. The data serve to define the extent of contamination in the vicinity of the mill sites and their immediate surrounding areas with tailings particles. Results of these measurements were utilized as technical input for an engineering assessment of these two sites.

Haywood, F.F.; Jacobs, D.J.; Ellis, B.S.; Hubbard, H.M. Jr.; Shinpaugh, W.H.

1980-06-01T23:59:59.000Z

450

Heuristics for Creating Assignments to Incorporate Simulations REU Report, University of Colorado  

E-Print Network [OSTI]

of Colorado daniel.rehn@colorado.edu Abstract The use of simulations in learning physics is a topic of growing of the simulations. The PhET Interactive Simulations Project at the University of Colorado develops simulations

Colorado at Boulder, University of

451

Colorado Sexual Orientation and Gender Identity Law and Documentation of Discrimination  

E-Print Network [OSTI]

See infra Section III.A.2. COLORADO Williams Instituteof the Legislative Council of Colorado General Assembly, AnO . 369, 9-12 (1992). COLORADO Williams Institute Employment

Sears, Brad

2009-01-01T23:59:59.000Z

452

Final Independent External Peer Review Report Cache la Poudre at Greeley, Colorado  

E-Print Network [OSTI]

Final Independent External Peer Review Report Cache la Poudre at Greeley, Colorado General Report Cache la Poudre at Greeley, Colorado General Investigation Feasibility Study Prepared by Battelle at Greeley, Colorado General Investigation Feasibility Study Executive Summary PROJECT BACKGROUND AND PURPOSE

US Army Corps of Engineers

453

h"p://per.colorado.edu/Electrodynamics Charles Baily, Michael Dubson & Steven Pollock  

E-Print Network [OSTI]

7/27/12 1 h"p://per.colorado.edu/Electrodynamics Charles Baily, Michael Dubson & Steven Pollock Department of Physics University of Colorado Boulder Contact: Charles.Baily@Colorado.EDU 2nd semester upper-division physics course

Colorado at Boulder, University of

454

Recent Economic Trends in Colorado's Oil and Gas Industry Martin Shields, Ph.D.  

E-Print Network [OSTI]

's Oil and Gas Industry Martin Shields, Ph.D. Regional Economics Institute Trends in Colorado's Oil and Gas Industry Summary Colorado's economy lost issues affecting its prospects in Colorado. Although the oil and gas industry

455

Special Collections Department/University Libraries University of Colorado at Boulder spc@colorado.edu, 303-492-6144 Page 1  

E-Print Network [OSTI]

©Special Collections Department/University Libraries University of Colorado at Boulder spc at Boulder Libraries Norlin Library Room N345, 303-492-6144, spc@colorado.edu http Collections Department/University Libraries University of Colorado at Boulder spc@colorado.edu, 303

Mojzsis, Stephen J.

456

UPPER COLORADO RIVER BASIN COMPACT The state of Arizona, the state of Colorado, the state of New Mexico, the state of Utah  

E-Print Network [OSTI]

UPPER COLORADO RIVER BASIN COMPACT The state of Arizona, the state of Colorado, the state of New for the state of Arizona, Clifford H. Stone for the state of Colorado, Fred. E. Wilson for the state of New of the United States of America, have agreed, subject to the provisions of the Colorado River Compact [72

Johnson, Eric E.

457

COLORADO NATIONAL GUARD TUITION ADJUSTMENT FORM Indicate the term for which you are requesting the Colorado National Guard Tuition Adjustment: Term Year  

E-Print Network [OSTI]

COLORADO NATIONAL GUARD TUITION ADJUSTMENT FORM Indicate the term for which you are requesting the Colorado National Guard Tuition Adjustment: Term Year Certification of this form must be signed to appeal. Colorado National Guard tuition adjustment eligibility expires the first term following Colorado

458

Decoherence in a Josephson junction qubit  

E-Print Network [OSTI]

The zero-voltage state of a Josephson junction biased with constant current consists of a set of metastable quantum energy levels. We probe the spacings of these levels by using microwave spectroscopy to enhance the escape rate to the voltage state. The widths of the resonances give a measurement of the coherence time of the two states involved in the transitions. We observe a decoherence time shorter than that expected from dissipation alone in resonantly isolated 20 um x 5 um Al/AlOx/Al junctions at 60 mK. The data is well fit by a model including dephasing effects of both low-frequency current noise and the escape rate to the continuum voltage states. We discuss implications for quantum computation using current-biased Josephson junction qubits, including the minimum number of levels needed in the well to obtain an acceptable error limit per gate.

A. J. Berkley; H. Xu; M. A. Gubrud; R. C. Ramos; J. R. Anderson; C. J. Lobb; F. C. Wellstood

2003-03-01T23:59:59.000Z

459

Junction-side illuminated silicon detector arrays  

DOE Patents [OSTI]

A junction-side illuminated detector array of pixelated detectors is constructed on a silicon wafer. A junction contact on the front-side may cover the whole detector array, and may be used as an entrance window for light, x-ray, gamma ray and/or other particles. The back-side has an array of individual ohmic contact pixels. Each of the ohmic contact pixels on the back-side may be surrounded by a grid or a ring of junction separation implants. Effective pixel size may be changed by separately biasing different sections of the grid. A scintillator may be coupled directly to the entrance window while readout electronics may be coupled directly to the ohmic contact pixels. The detector array may be used as a radiation hardened detector for high-energy physics research or as avalanche imaging arrays.

Iwanczyk, Jan S.; Patt, Bradley E.; Tull, Carolyn

2004-03-30T23:59:59.000Z

460

Numerical Investigation of Josephson Junction Structures  

SciTech Connect (OSTI)

Multilayered long Josephson Junction Structures form an interesting physical system where both nonlinearity and interaction between subsystems play an important role. Such systems allow to study physical effects that do not occur in single Josephson junction.The Sakai-Bodin-Pedersen model--a system of perturbed sine-Gordon equations--is used to study the dynamic states of stacks of inductively coupled long Josephson Junctions (LJJs). The corresponding static problem is numerically investigated as well. In order to study the stability of possible static solutions a Sturm-Liouville problem is generated and solved.The transitions from static to dynamic state and the scenario of these transitions are analyzed depending on the model parameters. Different physical characteristics--current-voltage characteristics, individual instant voltages and internal magnetic fields, are calculated and interpreted.

Hristov, I.; Dimova, S.; Boyadjiev, T. [Faculty of Mathematics and Informatics, Sofia University 5 James Bourchier Blvd., 1164 Sofia (Bulgaria)

2009-10-29T23:59:59.000Z

Note: This page contains sample records for the topic "junction colorado site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Northglenn, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)References ↑ USNorthglenn, Colorado: Energy Resources Jump to:

462

Nunn, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut, Alaska: EnergyColorado: Energy Resources Jump

463

Laporte, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington:Lakeville, MN) Jump to:LamarJumpElectricLaporte, Colorado:

464

Lochbuie, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster AndLittletown, Arizona: Energy59334°,LoFLochbuie, Colorado:

465

Loveland, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster AndLittletown,LongweiLoveland, Colorado: Energy Resources Jump

466

Wellington, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDSWawarsing,Webb County,EnergyWellington, Colorado: Energy

467

Colorado/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPowerRaft RiverInformationColorado Wind

468

Aguilar, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy Information Lightning DockAguilar, Colorado: Energy Resources

469

Golden, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: Energy Resources Jump to:GloriaGoldenGolden, Colorado: Energy

470

Golden, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: Energy Resources Jump to:GloriaGoldenGolden, Colorado: EnergyJump to:

471

Rangely, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosource HistoryRaftRamsey,Rangely, Colorado: Energy

472

Colorado Solar Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORT Americium/CuriumSunways JVGroupChoice Logo: Colorado Solar Inc Name:

473

Colorado/Geothermal | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORT Americium/CuriumSunways JVGroupChoice Logo: Colorado Solar Inc

474

Pierce, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine: EnergyPierce County, Nebraska: Energy ResourcesPierce, Colorado:

475

Dynamical properties of high-temperature-superconductor granular bridge junctions: Inhomogeneous Josephson-junction-array model  

SciTech Connect (OSTI)

As an attempt to understand the dynamical behavior of the high-temperature-superconductor (HTSC) granular bridge junction, we model the granular HTSC bridge junction consisting of many small grains inside by an inhomogeneous Josephson junction array, i.e., randomly arranged Josephson junction arrays (JJA). To describe randomly distributed critical currents between the grains inside the HTSC granular bridge junction, we chose various possible configurations in {l_brace}{ital I}{sub {ital ij}}{sup {ital c}}{r_brace} and {l_brace}{ital R}{sub {ital ij}}{r_brace} for the one-dimensional (1D) and 2D inhomogeneous Josephson junctions, and calculated the current-voltage ({ital IV}) characteristics and self-radiation spectral densities of the 1D and 2D inhomogeneous Josephson junctions. As a result, depending upon the distribution of critical currents and shunted resistances, it is found that there are large variations of {ital IV} characteristics. In contrast to the appearance of giant Shapiro steps in the regular ordered array, such Shapiro steps disappear in the case of the disordered JJA due to the increased randomness in the distribution of critical currents. On the contrary, however, when there exists a correlation between critical currents and resistances, i.e., a constant Josephson voltage, {ital I}{sub {ital ij}}{sup {ital c}}{ital R}{sub {ital ij}}={ital V}{sub {ital J}} (constant), the fundamental Shapiro step emerges despite the disordered distribution of {ital I}{sub {ital ij}}{sup {ital c}}. The relevance of this model to the HTSC granular bridge junctions is discussed. In particular, experimentally observed dynamical behaviors of the HTSC granular bridge junctions are shown to be closely related to the case of the correlated distribution with constant Josephson voltage. {copyright} {ital 1996 The American Physical Society.}

Lee, J.; Lee, S.; Yu, J.; Park, G. [Department of Physics, Sogang University, Seoul 121-742 (Korea)] [Department of Physics, Sogang University, Seoul 121-742 (Korea)

1996-02-01T23:59:59.000Z

476

,"Colorado Crude Oil plus Lease Condensate Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2013,"6302009" ,"Release...

477

applications laboratory colorado: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plasma Physics Laboratory 13 O:CSUEHorticultureNative Plant Masters20132013 NPM Application.doc432013 Colorado State University Extension 2009 Geosciences Websites...

478

Colorado Springs Utilities- Commercial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

The Colorado Springs Utilities (CSU) Business Energy and Water Efficiency Rebate Program offers a variety of incentives to business customers who upgrade evaporative cooling, HVAC, irrigation,...

479

Colorado Springs Utilities- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Colorado Springs Utilities offers a variety of energy and water efficiency incentives to its residential customers through the Residential Rebate Program. Rebates are offered for single and multi...

480

Radiation Research Society 2005 Annual Meeting, Denver, Colorado  

SciTech Connect (OSTI)

Abstracts and proceedings of the 2005 Annual Meeting of the Radiation Research Society held in Denver, Colorado on October 16-19, 2005.

Robert Ullrich, PhD

2005-10-04T23:59:59.000Z

Note: This page contains sample records for the topic "junction colorado site" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Application for a Colorado State Permit for Achaeological or...  

Open Energy Info (EERE)

Form: Application for a Colorado State Permit for Achaeological or Paleontological Work Abstract This application must be submitted and approved prior to commencing...

482

TODAY: Secretary Chu, Secretary LaHood, Colorado Governor Hickenlooper...  

Energy Savers [EERE]

TODAY: Secretary Chu, Secretary LaHood, Colorado Governor Hickenlooper, St. Paul Mayor Coleman, Tucson Mayor Walkup to Discuss Success of DOE's Clean Cities Program TODAY:...

483

Complementary junction heterostructure field-effect transistor  

DOE Patents [OSTI]

A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits.

Baca, Albert G. (Albuquerque, NM); Drummond, Timothy J. (Albuquerque, NM); Robertson, Perry J. (Albuquerque, NM); Zipperian, Thomas E. (Albuquerque, NM)

1995-01-01T23:59:59.000Z

484

Axion physics in a Josephson junction environment  

E-Print Network [OSTI]

We show that recent experiments based on Josephson junctions, SQUIDS, and coupled Josephson qubits have a cosmological interpretation in terms of axionic dark matter physics, in the sense that they allow for analogue simulation of early-universe axion physics. We propose new experimental setups in which SQUID-like axionic interactions in a resonant Josephson junction environment can be tested, similar in nature to recent experiments that test for quantum entanglement of two coupled Josephson qubits. We point out that the parameter values relevant for early-universe axion cosmology are accessible with present day's achievements in nanotechnology.

Christian Beck

2011-11-23T23:59:59.000Z

485

Complementary junction heterostructure field-effect transistor  

DOE Patents [OSTI]

A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits. 10 figs.

Baca, A.G.; Drummond, T.J.; Robertson, P.J.; Zipperian, T.E.

1995-12-26T23:59:59.000Z

486

E-Print Network 3.0 - adult colorado potato Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

colorado potato Search Powered by Explorit Topic List Advanced Search Sample search results for: adult colorado potato Page: << < 1 2 3 4 5 > >> 1 POPULATION ECOLOGY Population...

487

EECBG Success Story: Colorado Springs Gets an Energy Saving-Facelift...  

Energy Savers [EERE]

energy-saving streetlights on Colorado Avenue. | Photo courtesy of Springs Sustainability A worker installs energy-saving streetlights on Colorado Avenue. | Photo courtesy...

488

Microsoft Word - DOE-ID-12-022 Colorado State.doc  

Broader source: Energy.gov (indexed) [DOE]

A. Project Title: Revitalizing Health Physics Education for Nuclear Energy Careers - Colorado State University SECTION B. Project Description The objectives of this Colorado State...

489

E-Print Network 3.0 - area golden colorado Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

golden colorado Search Powered by Explorit Topic List Advanced Search Sample search results for: area golden colorado Page: << < 1 2 3 4 5 > >> 1 Environmental Health and Safety...

490

E-Print Network 3.0 - activity pueblo colorado Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

pueblo colorado Search Powered by Explorit Topic List Advanced Search Sample search results for: activity pueblo colorado Page: << < 1 2 3 4 5 > >> 1 ALERTS | CUSTOMER SERVICE |...

491

Quantum interference in thermoelectric molecular junctions: A toy model perspective  

SciTech Connect (OSTI)

Quantum interference (QI) phenomena between electronic states in molecular circuits offer a new opportunity to design new types of molecular devices such as molecular sensors, interferometers, and thermoelectric devices. Controlling the QI effect is a key challenge for such applications. For the development of single molecular devices employing QI effects, a systematic study of the relationship between electronic structure and the quantum interference is needed. In order to uncover the essential topological requirements for the appearance of QI effects and the relationship between the QI-affected line shape of the transmission spectra and the electronic structures, we consider a homogeneous toy model where all on-site energies are identical and model four types of molecular junctions due to their topological connectivities. We systematically analyze their transmission spectra, density of states, and thermoelectric properties. Even without the degree of freedom for on-site energies an asymmetric Fano peak could be realized in the homogeneous systems with the cyclic configuration. We also calculate the thermoelectric properties of the model systems with and without fluctuation of on-site energies. Even under the fluctuation of the on-site energies, the finite thermoelectrics are preserved for the Fano resonance, thus cyclic configuration is promising for thermoelectric applications. This result also suggests the possibility to detect the cyclic configuration in the homogeneous systems and the presence of the QI features from thermoelectric measurements.

Nozaki, Daijiro, E-mail: daijiro.nozaki@gmail.com, E-mail: research@nano.tu-dresden.de [Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Avdoshenko, Stas M. [Department of Chemistry and Institute for Computational Engineering and Sciences, University of Texas at Austin, 100 E. 24th St. A1590, Austin, Texas 78712 (United States); Sevinli, Hldun [Department of Materials Science and Engineering, Izmir Institute of Technology, Gulbahce Kampusu 35430 Urla, Izmir (Turkey); Cuniberti, Gianaurelio [Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Dresden Center for Computational Materials Science (DCCMS), TU Dresden, 01062 Dresden (Germany); Center for Advancing Electronics Dresden (cfAED), TU Dresden, 01062 Dresden (Germany)

2014-08-21T23:59:59.000Z

492

Phase Transition in Compact QED(3) and the Josephson Junction  

E-Print Network [OSTI]

We study the finite temperature phase transition in 2+1 dimensional compact QED and its dual theory: Josephson junction. Duality of these theories at zero temperature was established long time ago by Hosotani. Phase transition in compact QED is well studied and we employ the `duality' to study the superconductivity phase transition in a Josephson junction. For a thick junction we obtain a critical temperature in terms of the geometrical properties of the junction.

Vakif K. Onemli; Murat Tas; Bayram Tekin

2001-08-22T23:59:59.000Z

493

Holographic Josephson Junction in 3+1 dimensions  

E-Print Network [OSTI]

In arXiv:1101.3326[hep-th], a (2+1)-dimensional holographic Josephson junction was constructed, and it was shown that the DC Josephson current is proportional to the sine of the phase difference across the junction. In this paper, we extend this study to a holographic description for the (3+1)-dimensional holographic DC Josephson junction. By solving numerically the coupled differential equations, we also obtain the familiar characteristics of Josephson junctions.

Yong-Qiang Wang; Yu-Xiao Liu; Zhen-Hua Zhao

2011-04-21T23:59:59.000Z

494

Holographic Josephson Junction in 3+1 dimensions  

E-Print Network [OSTI]

In arXiv:1101.3326[hep-th], a (2+1)-dimensional holographic Josephson junction was constructed, and it was shown that the DC Josephson current is proportional to the sine of the phase difference across the junction. In this paper, we extend this study to a holographic description for the (3+1)-dimensional holographic DC Josephson junction. By solving numerically the coupled differential equations, we also obtain the familiar characteristics of Josephson junctions.

Wang, Yong-Qiang; Zhao, Zhen-Hua

2011-01-01T23:59:59.000Z

495

Shallow (2-meter) temperature surveys in Colorado  

SciTech Connect (OSTI)

Citation Information: Originator: Geothermal Development Associates, Reno, Nevada Publication Date: 2012 Title: Colorado 2m Survey Edition: First Publication Information: Publication Place: Reno Nevada Publisher: Geothermal Development Associates, Reno, Nevada Description: Shallow temperature surveys are useful in early-stage geothermal exploration to delineate surface outflow zones, with the intent to identify the source of upwelling, usually a fault. Detailed descriptions of the 2-meter survey method and equipment design can be found in Coolbaugh et al. (2007) and Sladek et al. (2007), and are summarized here. The survey method was devised to measure temperature as far below the zone of solar influence as possible, have minimal equilibration time, and yet be portable enough to fit on the back of an all-terrain vehicle (ATV); Figure 2). This method utilizes a direct push technology (DPT) technique where 2.3 m long, 0.54 outer diameter hollow steel rods are pounded into the ground using a demolition hammer. Resistance temperature devices (RTD) are then inserted into the rods at 2-meter depths, and allowed to equilibrate for one hour. The temperatures are then measured and recorded, the rods pulled out of the ground, and re-used at future sites. Usually multiple rods are planted over the course of an hour, and then the sampler returns back to the first station, measures the temperatures, pulls the rods, and so on, to eliminate waiting time. At Wagon Wheel Gap, 32 rods were planted around the hot springs between June 20 and July 1, 2012. The purpose was to determine the direction of a possible upflow fault or other structure. Temperatures at 1.5m and 2m depths were measured and recorded in the attribute table of this point shapefile. Several anomalous temperatures suggest that outflow is coming from a ~N60W striking fault or shear zone that contains the quartz-fluorite-barite veins of the adjacent patented mining claims. It should be noted that temperatures at 2m depth vary according to the amount of solar heating from above, as well as possible geothermal heating from below. Spatial Domain: Extent: Top: 4490310.560635 m Left: 150307.008238 m Right: 433163.213617 m Bottom: 4009565.915398 m Contact Information: Contact Organization: Geothermal Development Associates, Reno, Nevada Contact Person: Richard Rick Zehner Address: 3740 Barron Way City: Reno State: NV Postal Code: 89511 Country: USA Contact Telephone: 775-737-7806 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

Zehner, Richard E.

2012-02-01T23:59:59.000Z

496

Theory of Proximity Effect in Junctions with Unconventional Superconductors  

E-Print Network [OSTI]

Theory of Proximity Effect in Junctions with Unconventional Superconductors Relevance to odd)Singlet superconductor junctions ()Triplet superconductor junctions [PRB 70, 012507 (2004), PRB71 024506 spectroscopy of Unconventional superconductors Tunneling spectroscopy has phase sensitivity px- wave dx2 -y2

Fominov, Yakov

497

SOME CHARACTERISTICS OF JOSEPHSON JUNCTIONS AS RADIATION DETECTORS  

E-Print Network [OSTI]

125 SOME CHARACTERISTICS OF JOSEPHSON JUNCTIONS AS RADIATION DETECTORS Yu. Ya. DIVIN, F. Ya. NAD les microponts. Abstract. 2014 The V-I characteristic of Josephson junction with an external parallel admittance, the high frequency impedance and high frequency response of a Josephson junction to small

Paris-Sud XI, Université de

498

PARAMETRIC EXCITATION OF PLASMA OSCILLATIONS IN JOSEPHSON JUNCTIONS  

E-Print Network [OSTI]

223 PARAMETRIC EXCITATION OF PLASMA OSCILLATIONS IN JOSEPHSON JUNCTIONS N. F. PEDERSEN, M. R'équation différentielle de Mathieu. Abstract. 2014 Experiments on a Josephson junction analog showed a parametric in Josephson junctions at finite voltages have been discussed earlier [1]-[4]. In this communication we report

Boyer, Edmond

499

JOSEPHSON JUNCTION DETECTOR FOR ASTRONOMICAL APPLICATIONS B. T. ULRICH  

E-Print Network [OSTI]

111 JOSEPHSON JUNCTION DETECTOR FOR ASTRONOMICAL APPLICATIONS B. T. ULRICH Department of Astronomy at the NRAO 11 m telescope. The detector uses a point contact Josephson junction, with a niobium point against-band Josephson junction radiometer for the 1.0 to 1.6 mm spectral region, and have used it to make astronomical

Paris-Sud XI, Université de

500

AN ELECTRONIC EQUIVALENT SCHEME OF A JOSEPHSON JUNCTION  

E-Print Network [OSTI]

AN ELECTRONIC EQUIVALENT SCHEME OF A JOSEPHSON JUNCTION C. K. BAK Physics Laboratory I. A lot of phenomena observed in Josephson junctions are easily identified in the « equi- valent circuit ~. The lock range Ji corresponds to the supercurrent in a Josephson junction. The loop gain A(co) can

Paris-Sud XI, Université de