National Library of Energy BETA

Sample records for juan basin energy

  1. San Juan Basin EC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,Sage Resources JumpDimas, California:County,Basin EC Jump to:

  2. EIS-0477: San Juan Basin Energy Connect Project, San Juan County, New Mexico and La Plata County, Colorado

    Broader source: Energy.gov [DOE]

    The Department of the Interior’s Bureau of Land Management is preparing an EIS to evaluate the potential environmental impacts of a proposal to construct a 230-kilovolt transmission line from the Farmington area in northwest New Mexico to Ignacio, Colorado, to relieve transmission constraints, serve new loads, and offer economic development through renewable energy development in the San Juan Basin. DOE’s Western Area Power Administration is a cooperating agency; the proposed transmission line would require an interconnection with Western's Shiprock Substation, near Farmington, and a new Three Rivers Substation on Western's reserved lands.

  3. The Thermal Regime Of The San Juan Basin Since Late Cretaceous...

    Open Energy Info (EERE)

    Times And Its Relationship To San Juan Mountains Thermal Sources Abstract Heat-flow and coal-maturation data suggest that the thermal history of the San Juan Basin has...

  4. Site Characterization Activities with a focus on NETL MMV efforts: Southwest Regional Partnership, San Juan Basin Pilot, New Mexico

    E-Print Network [OSTI]

    Wilson, Thomas H.

    Regional Carbon Sequestration Partnership's San Juan Basin pilot site to aid in the deploymentSite Characterization Activities with a focus on NETL MMV efforts: Southwest Regional Partnership Juan Basin of northwestern New Mexico as part of the Southwest Regional Partnership's (SWP) pilot

  5. Appropriation of Rio San Juan water by Monterrey City, Mexico: implications for agriculture and basin water sharing

    E-Print Network [OSTI]

    Scott, Christopher

    ARTICLE Appropriation of Ri´o San Juan water by Monterrey City, Mexico: implications Abstract Monterrey metropolitan area's growth has resulted in water transfers from the Ri´o San Juan basin to Monterrey plus 60% of the water diverted to be returned to farmers as treated effluent via the Ayancual

  6. Diagenesis and petrophysics of the Upper Cretaceous, Pictured Cliffs Formation of the San Juan Basin, North West New Mexico and South West Colorado 

    E-Print Network [OSTI]

    Goberdhan, Helene C

    1996-01-01

    Diagenesis is the major factor affecting reservoir producibility of the Upper Cretaceous Pictured Cliffs Formation across the San Juan Basin. Four diagenetic periods have been delineated, early, burial, maximum burial, and recent. Basinal variations...

  7. San Juan Volcanic Field Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,Sage Resources JumpDimas, California:County,BasinSan Juan

  8. Sequence Stratigraphy of the Dakota Sandstone, Eastern San Juan Basin, New Mexico, and its Relationship to Reservoir Compartmentalization

    SciTech Connect (OSTI)

    Varney, Peter J.

    2002-04-23

    This research established the Dakota-outcrop sequence stratigraphy in part of the eastern San Juan Basin, New Mexico, and relates reservoir quality lithologies in depositional sequences to structure and reservoir compartmentalization in the South Lindrith Field area. The result was a predictive tool that will help guide further exploration and development.

  9. Shallow gas well drilling with coiled tubing in the San Juan Basin

    SciTech Connect (OSTI)

    Moon, R.G.; Ovitz, R.W.; Guild, G.J.; Biggs, M.D.

    1996-12-31

    Coiled tubing is being utilized to drill new wells, for re-entry drilling to deepen or laterally extend existing wells, and for underbalanced drilling to prevent formation damage. Less than a decade old, coiled tubing drilling technology is still in its inaugral development stage. Initially, utilizing coiled tubing was viewed as a {open_quotes}science project{close_quotes} to determine the validity of performing drilling operations in-lieu of the conventional rotary rig. Like any new technology, the initial attempts were not always successful, but did show promise as an economical alternative if continued efforts were made in the refinement of equipment and operational procedures. A multiwell project has been completed in the San Juan Basin of Northwestern New Mexico which provides documentation indicating that coiled tubing can be an alternative to the conventional rotary rig. A 3-well pilot project, a 6-well project was completed uniquely utilizing the combined resources of a coiled tubing service company, a producing company, and a drilling contractor. This combination of resources aided in the refinement of surface equipment, personnel, mud systems, jointed pipe handling, and mobilization. The results of the project indicate that utilization of coiled tubing for the specific wells drilled was an economical alternative to the conventional rotary rig for drilling shallow gas wells.

  10. San Juan Volcanic Field Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,EnergyEastCarbon DevelopmentValley Clean EnergySan Juan

  11. Petrophysical Analysis and Geographic Information System for San Juan Basin Tight Gas Reservoirs

    SciTech Connect (OSTI)

    Martha Cather; Robert Lee; Robert Balch; Tom Engler; Roger Ruan; Shaojie Ma

    2008-10-01

    The primary goal of this project is to increase the availability and ease of access to critical data on the Mesaverde and Dakota tight gas reservoirs of the San Juan Basin. Secondary goals include tuning well log interpretations through integration of core, water chemistry and production analysis data to help identify bypassed pay zones; increased knowledge of permeability ratios and how they affect well drainage and thus infill drilling plans; improved time-depth correlations through regional mapping of sonic logs; and improved understanding of the variability of formation waters within the basin through spatial analysis of water chemistry data. The project will collect, integrate, and analyze a variety of petrophysical and well data concerning the Mesaverde and Dakota reservoirs of the San Juan Basin, with particular emphasis on data available in the areas defined as tight gas areas for purpose of FERC. A relational, geo-referenced database (a geographic information system, or GIS) will be created to archive this data. The information will be analyzed using neural networks, kriging, and other statistical interpolation/extrapolation techniques to fine-tune regional well log interpretations, improve pay zone recognition from old logs or cased-hole logs, determine permeability ratios, and also to analyze water chemistries and compatibilities within the study area. This single-phase project will be accomplished through four major tasks: Data Collection, Data Integration, Data Analysis, and User Interface Design. Data will be extracted from existing databases as well as paper records, then cleaned and integrated into a single GIS database. Once the data warehouse is built, several methods of data analysis will be used both to improve pay zone recognition in single wells, and to extrapolate a variety of petrophysical properties on a regional basis. A user interface will provide tools to make the data and results of the study accessible and useful. The final deliverable for this project will be a web-based GIS providing data, interpretations, and user tools that will be accessible to anyone with Internet access. During this project, the following work has been performed: (1) Assimilation of most special core analysis data into a GIS database; (2) Inventorying of additional data, such as log images or LAS files that may exist for this area; (3) Analysis of geographic distribution of that data to pinpoint regional gaps in coverage; (4) Assessment of the data within both public and proprietary data sets to begin tuning of regional well logging analyses and improve payzone recognition; (5) Development of an integrated web and GIS interface for all the information collected in this effort, including data from northwest New Mexico; (6) Acquisition and digitization of logs to create LAS files for a subset of the wells in the special core analysis data set; and (7) Petrophysical analysis of the final set of well logs.

  12. Using Cable Suspended Submersible Pumps to Reduce Production Costs to Increase Ultimate Recovery in the Red Mountain Field of the San Juan Basin Region

    SciTech Connect (OSTI)

    Don L. Hanosh

    2006-08-15

    A joint venture between Enerdyne LLC, a small independent oil and gas producer, and Pumping Solutions Inc., developer of a low volume electric submersible pump, suspended from a cable, both based in Albuquerque, New Mexico, has re-established marginal oil production from Red Mountain Oil Field, located in the San Juan Basin, New Mexico by working over 17 existing wells, installing cable suspended submersible pumps ( Phase I ) and operating the oil field for approximately one year ( Phase II ). Upon the completion of Phases I and II ( Budget Period I ), Enerdyne LLC commenced work on Phase III which required additional drilling in an attempt to improve field economics ( Budget Period II ). The project was funded through a cooperative 50% cost sharing agreement between Enerdyne LLC and the National Energy Technology Laboratory (NETL), United States Department of Energy, executed on April 16, 2003. The total estimated cost for the two Budget Periods, of the Agreement, was $1,205,008.00 as detailed in Phase I, II & III Authorization for Expenditures (AFE). This report describes tasks performed and results experienced by Enerdyne LLC during the three phases of the cooperative agreement.

  13. San Juan County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,Sage Resources JumpDimas, California:County,Basin EC Jump

  14. San Juan County, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,Sage Resources JumpDimas, California:County,Basin EC JumpMexico:

  15. San Juan County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,Sage Resources JumpDimas, California:County,Basin EC

  16. San Juan County, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,Sage Resources JumpDimas, California:County,Basin ECWashington:

  17. Free energy basin-hopping

    E-Print Network [OSTI]

    Sutherland-Cash, K.H.; Wales, D.J.; Chakrabarti, D.

    2015-02-17

    A global optimisation scheme is presented using basin-hopping with the acceptance criterion based on approximate free energy for the corresponding local minima of the potential energy. The method is illustrated for atomic and colloidal clusters...

  18. EIS-0477: San Juan Basin Energy Connect Project, San Juan County, New

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatement |to Conduct ScopingDraftDepartment ofMexico and La

  19. The economic feasibility of enhanced coalbed methane recovery using CO2 sequestration in the San Juan Basin 

    E-Print Network [OSTI]

    Agrawal, Angeni

    2007-09-17

    , due to the chemical and physical properties of carbon dioxide, CO2 sequestration is a potential option for substantially enhancing coal bed methane recovery (ECBM). The San Juan Fruitland coal has the most prolific coal seams in the United States...

  20. Southwestern Regional Partnership For Carbon Sequestration (Phase 2) Pump Canyon CO2- ECBM/Sequestration Demonstration, San Juan Basin, New Mexico

    SciTech Connect (OSTI)

    Advanced Resources International

    2010-01-31

    Within the Southwest Regional Partnership on Carbon Sequestration (SWP), three demonstrations of geologic CO{sub 2} sequestration are being performed -- one in an oilfield (the SACROC Unit in the Permian basin of west Texas), one in a deep, unmineable coalbed (the Pump Canyon site in the San Juan basin of northern New Mexico), and one in a deep, saline reservoir (underlying the Aneth oilfield in the Paradox basin of southeast Utah). The Pump Canyon CO{sub 2}-enhanced coalbed methane (CO{sub 2}/ECBM) sequestration demonstration project plans to demonstrate the effectiveness of CO{sub 2} sequestration in deep, unmineable coal seams via a small-scale geologic sequestration project. The site is located in San Juan County, northern New Mexico, just within the limits of the high-permeability fairway of prolific coalbed methane production. The study area for the SWP project consists of 31 coalbed methane production wells located in a nine section area. CO{sub 2} was injected continuously for a year and different monitoring, verification and accounting (MVA) techniques were implemented to track the CO{sub 2} movement inside and outside the reservoir. Some of the MVA methods include continuous measurement of injection volumes, pressures and temperatures within the injection well, coalbed methane production rates, pressures and gas compositions collected at the offset production wells, and tracers in the injected CO{sub 2}. In addition, time-lapse vertical seismic profiling (VSP), surface tiltmeter arrays, a series of shallow monitoring wells with a regular fluid sampling program, surface measurements of soil composition, CO{sub 2} fluxes, and tracers were used to help in tracking the injected CO{sub 2}. Finally, a detailed reservoir model was constructed to help reproduce and understand the behavior of the reservoir under production and injection operation. This report summarizes the different phases of the project, from permitting through site closure, and gives the results of the different MVA techniques.

  1. Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarrensource HistoryOregon:WattQuizWaunitaWauseon,Basin

  2. Natural Tracers and Multi-Scale Assessment of Caprock Sealing Behavior: A Case Study of the Kirtland Formation, San Juan Basin

    SciTech Connect (OSTI)

    Jason Heath; Brian McPherson; Thomas Dewers

    2011-03-15

    The assessment of caprocks for geologic CO{sub 2} storage is a multi-scale endeavor. Investigation of a regional caprock - the Kirtland Formation, San Juan Basin, USA - at the pore-network scale indicates high capillary sealing capacity and low permeabilities. Core and wellscale data, however, indicate a potential seal bypass system as evidenced by multiple mineralized fractures and methane gas saturations within the caprock. Our interpretation of {sup 4}He concentrations, measured at the top and bottom of the caprock, suggests low fluid fluxes through the caprock: (1) Of the total {sup 4}He produced in situ (i.e., at the locations of sampling) by uranium and thorium decay since deposition of the Kirtland Formation, a large portion still resides in the pore fluids. (2) Simple advection-only and advection-diffusion models, using the measured {sup 4}He concentrations, indicate low permeability ({approx}10-20 m{sup 2} or lower) for the thickness of the Kirtland Formation. These findings, however, do not guarantee the lack of a large-scale bypass system. The measured data, located near the boundary conditions of the models (i.e., the overlying and underlying aquifers), limit our testing of conceptual models and the sensitivity of model parameterization. Thus, we suggest approaches for future studies to better assess the presence or lack of a seal bypass system at this particular site and for other sites in general.

  3. September 2012 BASIN RESEARCH AND ENERGY GEOLOGY

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    September 2012 BASIN RESEARCH AND ENERGY GEOLOGY STATE UNIVERSITY OF NEW YORK at BINGHAMTON research programs in geochemistry, sedimentary geology, or Earth surface processes with the potential the position, visit the Geological Sciences and Environmental Studies website (www.geology

  4. Data Basin | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to: navigation, searchDaimler Evonik JVDaofu CoBasin Jump to:

  5. Great Basin Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County, Georgia:Oregon: EnergyGreat Basin Geothermal Area Jump to:

  6. Alden Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: Energy ResourcesAirAlamoCalifornia:Wave Basin Jump to:

  7. NREL Response to the Report 'Study of the Effects on Employment of Public Aid to Renewable Energy Sources' from King Juan Carlos University (Spain) (White Paper)

    SciTech Connect (OSTI)

    Lantz, E.; Tegen, S.

    2009-08-01

    Job generation has been a part of the national dialogue surrounding energy policy and renewable energy (RE) for many years. RE advocates tout the ability of renewable energy to support new job opportunities in rural America and the manufacturing sector. Others argue that spending on renewable energy is an inefficient allocation of resources and can result in job losses in the broader economy. The report, Study of the Effects on Employment of Public Aid to Renewable Energy Sources, from King Juan Carlos University in Spain, is one recent addition to this debate. This report asserts that, on average, every renewable energy job in Spain 'destroyed' 2.2 jobs in the broader Spanish economy. The authors also apply this ratio to the U.S. context to estimate expected job loss from renewable energy development and policy in the United States. This memo discusses fundamental and technical limitations of the analysis by King Juan Carlos University and notes critical assumptions implicit in the ultimate conclusions of their work. The memo also includes a review of traditional employment impact analyses that rely on accepted, peer-reviewed methodologies, and it highlights specific variables that can significantly influence the results of traditional employment impact analysis.

  8. I N T H I S I S S U E Ruben Juanes: Exploring subsurface energy,

    E-Print Network [OSTI]

    Reif, Rafael

    policies curtail their growth? Sustainable Energy class cultivates critical thinking Making clean, high;#12;Spring 2015 | MIT Energy Initiative | Energy Futures | 1 U P D AT E S O N T H E M I T E N E R G Y I N I: New insights into a promising approach R E S E A R C H N E W S 24 MIT Energy Initiative announces new

  9. EIS-0516: Clean Path Energy Center Project; San Juan County, New Mexico

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing an EIS for the proposed interconnection of the Clean Path Energy Center Project to Western’s transmission system at the Shiprock Substation. The planned Clean Path Energy Center will consist of a 680 MW natural gas combined cycle power plant co-located with a 70 MW solar photovoltaic project.

  10. Juan Meza | Center for Gas SeparationsRelevant to Clean Energy Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate student Subtask 4Photo ofEnergyLiu2010.jpg17 No. 1

  11. Interactive Maps from the Great Basin Center for Geothermal Energy

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Great Basin Center for Geothermal Energy, part of the University of Nevada, Reno, conducts research towards the establishment of geothermal energy as an economically viable energy source within the Great Basin. The Center specializes in collecting and synthesizing geologic, geochemical, geodetic, geophysical, and tectonic data, and using Geographic Information System (GIS) technology to view and analyze this data and to produce favorability maps of geothermal potential. The interactive maps are built with layers of spatial data that are also available as direct file downloads (see DDE00299). The maps allow analysis of these many layers, with various data sets turned on or off, for determining potential areas that would be favorable for geothermal drilling or other activity. They provide information on current exploration projects and leases, Bureau of Land Management land status, and map presentation of each type of scientific spatial data: geothermal, geophysical, geologic, geodetic, groundwater, and geochemical.

  12. EA-64 Basin Electric Power Cooperative | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPL EnergyPlus, LLC to exportEndure Energy,VitolSaracen PowerBasin Electric

  13. EA-64-A Basin Electric Power Cooperative | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPL EnergyPlus, LLC to exportEndure Energy,VitolSaracen PowerBasin

  14. Sheets Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity for Low EmissionTianhongKansas: Energy Resources JumpSheets Wave

  15. NMOSE Basin Guidelines | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformationOliver,Minnesota:EnergyNARI|

  16. Hinsdale Wave Basin 1 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNew Jersey: Energy Resources Jump to:Hilltop,Hinsdale County,1

  17. Hinsdale Wave Basin 2 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNew Jersey: Energy Resources Jump to:Hilltop,Hinsdale County,12

  18. CD-1: Intracratonic Basin | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas: Energy Resources Jump to:Energy Inc -6CCC Federal2

  19. Non-native grasses alter evapotranspiration and energy balance in Great Basin sagebrush communities

    E-Print Network [OSTI]

    DeLucia, Evan H.

    Non-native grasses alter evapotranspiration and energy balance in Great Basin sagebrush communities key ecosystem processes in the Great Basin, including hydrology and energy balance. To determine how) and energy fluxes using the Bowen ratio-energy balance method with measurements of normalized difference

  20. PP-64 Basin Electric Power Cooperative | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuilding energy codes have a moreINCREASES5-246 Bonneville64 Basin

  1. Description of the Columbia Basin Wind Energy Study (CBWES)

    SciTech Connect (OSTI)

    Berg, Larry K.; Pekour, Mikhail S.; Nelson, Danny A.

    2012-10-01

    The purpose of this Technical Report is to provide background information about the Columbia Basin Wind Energy Study (CBWES). This study, which was supported by the U.S. Department of Energy’s Wind and Water Power Program, was conducted from 16 November 2010 through 21 March 2012 at a field site in northeastern Oregon. The primary goal of the study was to provide profiles of wind speed and wind direction over the depth of the boundary layer in an operating wind farm located in an area of complex terrain. Measurements from propeller and vane anemometers mounted on a 62 m tall tower, Doppler Sodar, and Radar Wind Profiler were combined into a single data product to provide the best estimate of the winds above the site during the first part of CBWES. An additional goal of the study was to provide measurements of Turbulence Kinetic Energy (TKE) near the surface. To address this specific goal, sonic anemometers were mounted at two heights on the 62 m tower on 23 April 2011. Prior to the deployment of the sonic anemometers on the tall tower, a single sonic anemometer was deployed on a short tower 3.1 m tall that was located just to the south of the radar wind profiler. Data from the radar wind profiler, as well as the wind profile data product are available from the Atmospheric Radiation Measurements (ARM) Data Archive (http://www.arm.gov/data/campaigns). Data from the sonic anemometers are available from the authors.

  2. South Snyderville Basin, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSiliciumEnergyHouston, Texas:588958°,River, NewSnyderville

  3. Judith Basin County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder atHills,New York: EnergyUnlimited previously JouleJuab

  4. Estimate of the Geothermal Energy Resource in the Major Sedimentary Basins in the United States (Presentation)

    SciTech Connect (OSTI)

    Esposito, A.; Porro, C.; Augustine, C.; Roberts, B.

    2012-09-01

    Because most sedimentary basins have been explored for oil and gas, well logs, temperatures at depth, and reservoir properties such as depth to basement and formation thickness are well known. The availability of this data reduces exploration risk and allows development of geologic exploration models for each basin. This study estimates the magnitude of recoverable geothermal energy from 15 major known U.S. sedimentary basins and ranks these basins relative to their potential. The total available thermal resource for each basin was estimated using the volumetric heat-in-place method originally proposed by (Muffler, 1979). A qualitative recovery factor was determined for each basin based on data on flow volume, hydrothermal recharge, and vertical and horizontal permeability. Total sedimentary thickness maps, stratigraphic columns, cross sections, and temperature gradient information was gathered for each basin from published articles, USGS reports, and state geological survey reports. When published data were insufficient, thermal gradients and reservoir properties were derived from oil and gas well logs obtained on oil and gas commission databases. Basin stratigraphy, structural history, and groundwater circulation patterns were studied in order to develop a model that estimates resource size, temperature distribution, and a probable quantitative recovery factor.

  5. North Snyderville Basin, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNew Hampshire:source HistoryRoyalton, Ohio: EnergySea,Snyderville

  6. Wave energy potential in the Eastern Mediterranean Levantine Basin. An integrated 10-year study

    E-Print Network [OSTI]

    Georgiou, Georgios

    that remains to be covered before wave energy science and technology reach the maturity level of its windData bank Wave energy potential in the Eastern Mediterranean Levantine Basin. An integrated 10-year Article history: Received 30 July 2013 Accepted 25 March 2014 Available online Keywords: Wave energy

  7. Energy Budget-Based Simulation of Evapotranspiration from Land in the Great Lakes Basin

    E-Print Network [OSTI]

    Energy Budget-Based Simulation of Evapotranspiration from Land in the Great Lakes Basin Primary-available data for change in net radiative energy for land surfaces in the same region in the same general energy available in this region according to the corresponding GCM. Thus there is a mismatch: While air

  8. Wave energy potential in the Eastern Mediterranean Levantine Basin. An integrated 10-year study

    E-Print Network [OSTI]

    Georgiou, Georgios

    Data bank Wave energy potential in the Eastern Mediterranean Levantine Basin. An integrated 10-year Article history: Received 30 July 2013 Accepted 25 March 2014 Available online Keywords: Wave energy Numerical atmospheric Wave modeling a b s t r a c t The main characteristics of wave energy potential over

  9. Estimate of Geothermal Energy Resource in Major U.S. Sedimentary Basins (Presentation)

    SciTech Connect (OSTI)

    Porro, C.; Augustine, C.

    2012-04-01

    This study estimates the magnitude of geothermal energy from fifteen major known US sedimentary basins and ranks these basins relative to their potential. Because most sedimentary basins have been explored for oil and gas, well logs, temperatures at depth, and reservoir properties are known. This reduces exploration risk and allows development of geologic exploration models for each basin as well as a relative assessment of geologic risk elements for each play. The total available thermal resource for each basin was estimated using the volumetric heat-in-place method originally proposed by Muffler (USGS). Total sedimentary thickness maps, stratigraphic columns, cross sections, and temperature gradient Information were gathered for each basin from published articles, USGS reports, and state geological survey reports. When published data was insufficient, thermal gradients and reservoir properties were derived from oil and gas well logs obtained on oil and gas commission websites. Basin stratigraphy, structural history, and groundwater circulation patterns were studied in order to develop a model that estimates resource size and temperature distribution, and to qualitatively assess reservoir productivity.

  10. Atmospheric and soil-gas monitoring for surface leakage at the San Juan Basin CO{sub 2} pilot test site at Pump Canyon New Mexico, using perfluorocarbon tracers, CO{sub 2} soil-gas flux and soil-gas hydrocarbons

    SciTech Connect (OSTI)

    Wells, Arthur W.; Diehl, J. Rodney; Strazisar, Brian R.; Wilson, Thomas; H Stanko, Dennis C.

    2012-05-01

    Near-surface monitoring and subsurface characterization activities were undertaken in collaboration with the Southwest Regional Carbon Sequestration Partnership on their San Juan Basin coal-bed methane pilot test site near Navajo City, New Mexico. Nearly 18,407 short tons (1.670 × 107 kg) of CO{sub 2} were injected into 3 seams of the Fruitland coal between July 2008 and April 2009. Between September 18 and October 30, 2008, two additions of approximately 20 L each of perfluorocarbon (PFC) tracers were mixed with the CO{sub 2} at the injection wellhead. PFC tracers in soil-gas and in the atmosphere were monitored over a period of 2 years using a rectangular array of permanent installations. Additional monitors were placed near existing well bores and at other locations of potential leakage identified during the pre-injection site survey. Monitoring was conducted using sorbent containing tubes to collect any released PFC tracer from soil-gas or the atmosphere. Near-surface monitoring activities also included CO{sub 2} surface flux and carbon isotopes, soil-gas hydrocarbon levels, and electrical conductivity in the soil. The value of the PFC tracers was demonstrated when a significant leakage event was detected near an offset production well. Subsurface characterization activities, including 3D seismic interpretation and attribute analysis, were conducted to evaluate reservoir integrity and the potential that leakage of injected CO{sub 2} might occur. Leakage from the injection reservoir was not detected. PFC tracers made breakthroughs at 2 of 3 offset wells which were not otherwise directly observable in produced gases containing 20–30% CO{sub 2}. These results have aided reservoir geophysical and simulation investigations to track the underground movement of CO{sub 2}. 3D seismic analysis provided a possible interpretation for the order of appearance of tracers at production wells.

  11. GRC Transactions, Vol. 31, 2007 Geothermal, energy resources, Great Basin, GPS, geodesy,

    E-Print Network [OSTI]

    GRC Transactions, Vol. 31, 2007 391 Keywords Geothermal, energy resources, Great Basin, GPS, and will be incorporated in future models. Introduction Geothermal energy resources have long been associated of active crustal deformation and its spatial relationship to active geothermal systems in the northern

  12. Striking a Balance Between Energy and the Environment in the Columbia River Basin Sockeye surprise

    E-Print Network [OSTI]

    Striking a Balance Between Energy and the Environment in the Columbia River Basin Sockeye surprise G & T Chair, Bill Drummond 5 Future Energy Savings Should Come From Innovations 8 Award Honors, final statistics had not been compiled but it appeared 90 percent of the sock- eye were Okanogan fish

  13. Faces of Science: Juan Duque

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES OctoberEvan Racah861 ANNUAL ELECTRIC POWER15ClarkeJuan Duque

  14. File:Denver Basin.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New Pages Recent Changes AllApschem.pdf Jump to:Colorado Water QualityDenver Basin.pdf Jump

  15. East Basin Creek Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to: navigation, searchEarthcare Products JumpEast Basin Creek

  16. Northwest Basin and Range Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:Information 3rd|Northfork Electric Coop, Inc Jump to:NorthlandBasin

  17. PRECIOS ELECTRICOS FLEXIBLES* JUAN-PABLO MONTERO**

    E-Print Network [OSTI]

    Dixon, Juan

    PRECIOS ELECTRICOS FLEXIBLES* JUAN-PABLO MONTERO** HUGH RUDNICK*** ABSTRACT One of the critiques.-P. Montero, Pontificia Universidad Católica de Chile (PUC), Ingeniería Industrial, Casilla 306, Correo 22

  18. Resistivity sections, Upper Arkansas River Basin, Colorado | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, New York: EnergyOpen EnergyInformation Fish

  19. Southern Basin and Range Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSiliciumEnergyHouston,Windsor,Southchase,Renewable FuelsR EBasin

  20. Juan José Millás y la estrategia narrativa de Papel mojado

    E-Print Network [OSTI]

    Martínez Latre, María Pilar

    1987-01-01

    Juan José Millas y la estrategia narrativa de Papel mojadouna novela que basa su estrategia narrativa en las pautas

  1. L-Shaped Flume Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: EnergyKulpsville, Pennsylvania: Energy Resources Jump to:Kyle, Texas:O

  2. Accomplishments At The Great Basin Center For Geothermal Energy | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar Energy LLC Jump to: navigation, searchWindpower JumpEnergy

  3. Oregon Willamette River Basin Mitigation Agreement | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio Program | Open EnergyInformationSitingSystems

  4. Colorado Division of Water Resources Denver Basin Webpage | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open Energy Information

  5. Columbia Basin Elec Cooperative, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler,Coal TechnologiesClio PowerElec Cooperative, Inc Jump to:

  6. University of Iowa Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin FilmUnited States: Energy ResourcesPark CommunityWindIowa Wave

  7. Adjudicated Groundwater Basins in California | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar Energy LLCAdema Technologies Inc Jump to:Adjudicated

  8. Basin Electric Power Coop (South Dakota) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYorkColorado StateWind ProjectVillage, IncBaryonyxWindCoop

  9. Carderock Maneuvering & Seakeeping Basin | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla, Georgia: Energy ResourcesRanchCirculating Water

  10. K Basins Sludge Treatment Process | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA Public CommentInverted Attic9: HSS/9/09 OfficeJuneofby:JustK

  11. K Basins Sludge Treatment Project Phase 1 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA Public CommentInverted Attic9: HSS/9/09 OfficeJuneofby:JustKK

  12. Basin analysis in the Illinois basin

    SciTech Connect (OSTI)

    Leighton, M.W. (Illinois State Geological Survey, Champaign (USA)); Haney, D. (Kentucky Geological Survey, Lexington (USA)); Hester, N. (Indiana Geological Survey, Bloomington (USA))

    1990-05-01

    In April 1989, the Illinois State Geological Survey and the Indiana and Kentucky Geological surveys formed the Illinois Basin Consortium (IBC) for the purpose of advancing the geologic understanding of the Illinois basin and of developing basin-wide studies for the assessment and wise development of the Illinois basin energy, mineral, and water resources. Cooperative efforts include work on the AAPG Interior Cratonic Sag Basin volume, Springfield coal study, Paducah CUSMAP study in cooperation with the US Geological Survey, Illinois Basin Cross Section Project, Geologic Society of America Coal Division field trip and workshop on Lower Pennsylvanian geology, workshops in basin analysis, and the Tri-State Committee on correlations in the Pennsylvanian System of the Illinois Basin. A network of 16 regional surface to basement cross sections portraying the structural and stratigraphic framework of the total sedimentary section of the entire basin is in preparation. Based on more than 140 of the deepest wells with wireline logs, the sections will show formation boundaries and gross lithofacies of the entire stratigraphic column. A set of basin-wide maps shows structure, thickness, and coal quality of the economically important Springfield coal seam. These maps were generated from recently joined computerized databases of the three member surveys of IBC. A unified stratigraphic nomenclature of the Pennsylvanian System is being developed, including seven new members and seven new formation names. The goal is to simplify, standardize, and gradually improve the stratigraphic terminology to be used in the Illinois basin.

  13. NREL Response to the Report Study of the Effects on Employment of Public Aid to Renewable Energy Sources from King Juan Carlos University (Spain)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Job generation has been a part of the national dialogue surrounding energy policy and renewable energy (RE) for many years. RE advocates tout the ability of renewable energy to support new job opportunities in rural locations and the manufacturing sector. Others argue that spending on renewable energy is an inefficient allocation of resources and can result in job losses in the broader economy.

  14. GIS Regional Spatial Data from the Great Basin Center for Geothermal Energy: Geochemical, Geodesic, Geologic, Geophysical, Geothermal, and Groundwater Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Great Basin Center for Geothermal Energy, part of the University of Nevada, Reno, conducts research towards the establishment of geothermal energy as an economically viable energy source within the Great Basin. The Center specializes in collecting and synthesizing geologic, geochemical, geodetic, geophysical, and tectonic data, and using Geographic Information System (GIS) technology to view and analyze this data and to produce favorability maps of geothermal potential. The center also makes its collections of spatial data available for direct download to the public. Data are in Lambert Conformable Conic Projection.

  15. Savannah River Site - R-Reactor Seepage Basins | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummaryDIST OFMEAG, Dalton2ProgramArea Burning/Rubble PitSeepage Basins

  16. EIS-0477: Draft Environmental Impact Statement | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    77: Draft Environmental Impact Statement EIS-0477: Draft Environmental Impact Statement San Juan Basin Energy Connect Project; San Juan County, New Mexico and La Plata County,...

  17. Potential for CO2 Sequestration and Enhanced Coalbed Methane Production, Blue Creek Field, NW Black Warrior Basin, Alabama 

    E-Print Network [OSTI]

    He, Ting

    2011-02-22

    and enhanced coalbed methane production in San Juan and Alberta basins, but reservoir modeling is needed to assess the potential of the Black Warrior basin. Alabama ranks 9th nationally in CO2 emissions from power plants; two electricity generation plants...

  18. Crivelli, Silvia; Meza, Juan 60 APPLIED LIFE SCIENCES Ernest...

    Office of Scientific and Technical Information (OSTI)

    folding via divide-and-conquer optimization Oliva, Ricardo; Crivelli, Silvia; Meza, Juan 60 APPLIED LIFE SCIENCES Ernest Orlando Lawrence Berkeley NationalLaboratory, Berkeley, CA...

  19. Extracting knowledge from data originated in web sites Juan D. Velsquez 2005

    E-Print Network [OSTI]

    Baeza-Yates, Ricardo

    Extracting knowledge from data originated in web sites Juan D. Velásquez © 2005 1 Web mining Extracting knowledge from data originated in web sites Juan D. VelJuan D. Veláásquez Silvasquez Silva knowledge from data originated in web sites Juan D. Velásquez © 2005 2 Outline 1. Motivation. 2. Web

  20. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    author Rush Robinett, Juan Torres year 2008 Our nation depends on secure, reliable, sustainable, and cost effective supplies of energy to support economic development and to...

  1. Field imaging spectroscopy and inferring a blind thrust earthquake history from secondary faulting : 1944 San Juan Earthquake, Argentina

    E-Print Network [OSTI]

    Ragona, Daniel Eduardo

    2007-01-01

    San Juan a proposito del terremoto del 15 de enero de 1944 (San Juan a proposito del terremoto del 15 de enero de 1944 (

  2. K Basin Hazard Analysis

    SciTech Connect (OSTI)

    PECH, S.H.

    2000-08-23

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  3. Comparison of explosive and vibroseis source energy penetration during COCORP deep seismic reflection profiling in the Williston basin

    SciTech Connect (OSTI)

    Steer, D.N.; Brown, L.D.; Knapp, J.H.; Baird, D.J. [Cornell Univ., Ithaca, NY (United States)] [Cornell Univ., Ithaca, NY (United States)

    1996-01-01

    Comparison of high-fold (50) vibroseis recordings with coincident low-fold (6) explosive source data from deep reflection surveys in the Williston Basin indicates that while vibroseis generated energy decays to ambient noise levels at 7--9 s two-way traveltime (twtt) (20--30 km depth), energy from explosive sources remains above ambient levels to 35--60 s twtt (105--180 km depth). Moreover, single, moderately sized (30 kg) and well-placed charges proved to be as effective as larger (90 kg) sources at penetrating to mantle traveltimes in this area. However, the explosive source energy proved highly variable, with source-to-ground coupling being a major limiting factor in shot efficacy. Stacked results from the vibroseis sources provide superior imagery of shallow and moderate crustal levels by virtue of greater redundancy and shot-to-shot uniformity; shot statics, low fold, and ray-path distortion across the relatively large (24--30 km aperture) spreads used during the explosive recording have proven to be especially problematic in producing conventional seismic sections. In spite of these complications, the explosive source recording served its primary purpose in confirming Moho truncation and the presence of a dipping reflection fabric in the upper mantle along the western flank of the Trans-Hudson orogen buried beneath the Williston Basin.

  4. ALGEBRAIC K-THEORY OF MAPPING CLASS ETHAN BERKOVE, DANIEL JUAN-PINEDA, AND QIN LU

    E-Print Network [OSTI]

    ALGEBRAIC K-THEORY OF MAPPING CLASS GROUPS ETHAN BERKOVE, DANIEL JUAN-PINEDA, AND QIN LU Abstract;guration Space, Fixed Point Data. 1 #12; 2 ETHAN BERKOVE, DANIEL JUAN-PINEDA, AND QIN LU The techniques

  5. National Account Energy Alliance Final Report for the Basin Electric Project at Northern Border Pipeline Company's Compressor Station #7, North Dakota

    SciTech Connect (OSTI)

    Sweetzer, Richard [Exergy Partners Corp.; Leslie, Neil [Gas Technology Institute

    2008-02-01

    A field research test and verification project was conducted at the recovered energy generation plant at Northern Border Pipeline Company Compressor Station #7 (CS#7) near St. Anthony. Recovered energy generation plant equipment was supplied and installed by ORMAT Technologies, Inc. Basin Electric is purchasing the electricity under a purchase power agreement with an ORMAT subsidiary, which owns and operates the plant.

  6. Don Juan Pond, Antarctica: Near-surface CaCl2-brine feeding Earth's most saline

    E-Print Network [OSTI]

    Marchant, David R.

    Don Juan Pond, Antarctica: Near-surface CaCl2-brine feeding Earth's most saline lake on Earth. We report on new studies of Don Juan Pond (DJP), which exists at the upper limit of ephemeral on Juan Pond (DJP), found at the lowest point in the South Fork of Upper Wright Valley, Antarctica (Figure

  7. EIS-0112: Rifle to San Juan 345-kV Transmission Line and Associated Facilities

    Broader source: Energy.gov [DOE]

    The U.S. Department of Agriculture - Rural Electrification Administration developed this statement to evaluate the environmental impacts of the Colorado-Ute Electric Association Inc. and the U.s. Department of Energy's Western Area Power Administration (WAPA) constructing and operating a 345-kilovolt transmission line from Rifle, Colorado, to the San Juan Generating Station near Farmington, New Mexico. WAPA served as a cooperating agency in the preparation of this statement and adopted it on 10/30/1984. WAPA assumed the lead role for project implementation after issuance of the final statement.

  8. The State of the Columbia River Basin

    E-Print Network [OSTI]

    1 The State of the Columbia River Basin Draft Fiscal Year 2009 ANNUAL REPORT To Congress and fish and wildlife policy in the Columbia River Basin and to inform the public about energy and fish Basin, and a synopsis of the major activities of the Council during the fiscal year ending September 30

  9. File:Willamette River Basin MOU 102210.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New Pages RecentTempCampApplicationWorksheet 2011.pdfSD.pdfWATERWillamette River Basin MOU

  10. Juan E. Santos Born: December 4, 1948, Buenos Aires, Argentina

    E-Print Network [OSTI]

    Santos, Juan

    Juan E. Santos Vita Born: December 4, 1948, Buenos Aires, Argentina Education Computador Cient´iferos Fiscales, Buenos Aires, Argentina 1973-1991 Visiting Postdoc Institute for Mathematics and its Applications Aires, Argentina 1983­1989 Researcher National Research Council of Argentina 1991- Profesor Titular

  11. Generating Potable Water from Fuel Cell Technology Juan E. Tibaquir

    E-Print Network [OSTI]

    Keller, Arturo A.

    Generating Potable Water from Fuel Cell Technology Juan E. Tibaquirá Associate Professor for research 2. Fuel-cell fundamentals 3. Implications of using water from fuel cells in a society water use2 . ·Pumping ·Distribution ·Treatment 4% of the nation's electricity use goes towards moving

  12. Customizing AOSE Methodologies by Reusing AOSE Thomas Juan Leon Sterling

    E-Print Network [OSTI]

    Mascardi, Viviana

    Customizing AOSE Methodologies by Reusing AOSE Features Thomas Juan Leon Sterling Department of Computer Science and Software Engineering, The University of Melbourne 221 Bouverie Street Carlton engineering support for a diverse range of software quality attributes, such as privacy and openness

  13. Juan Antonio Navarro Perez Contacto Technische Universitat Munchen (TUM)

    E-Print Network [OSTI]

    Navarro Pérez, Juan Antonio

    Computacionales Escuela de Ingenier´ia Tesis: Semantics for nonmonotonic reasoning: A logical approach Director de´aticas Escuela de Ciencias Tesis: L´ogica Aplicada a Answer Sets Director de tesis: Mauricio Osorio #12;Publicaciones Art´iculos de revista [1] Juan Antonio Navarro P´erez and Andrei Voronkov. Planning

  14. Carbon Smackdown: Visualizing Clean Energy (LBNL Summer Lecture...

    Office of Scientific and Technical Information (OSTI)

    and discuss the development of next-generation clean energy technologies such as wind turbines and solar cells. Authors: Meza, Juan 1 + Show Author Affiliations LBNL...

  15. Carbon Smackdown: Visualizing Clean Energy (LBNL Summer Lecture...

    Office of Scientific and Technical Information (OSTI)

    and discuss the development of next-generation clean energy technologies such as wind turbines and solar cells. Authors: Meza, Juan 1 + Show Author Affiliations LBNL,...

  16. Basin-Scale Leakage Risks from Geologic Carbon Sequestration: Impact on Carbon Capture and Storage Energy Market Competitiveness

    SciTech Connect (OSTI)

    Peters, Catherine; Fitts, Jeffrey; Wilson, Elizabeth; Pollak, Melisa; Bielicki, Jeffrey; Bhatt, Vatsal

    2013-03-13

    This three-year project, performed by Princeton University in partnership with the University of Minnesota and Brookhaven National Laboratory, examined geologic carbon sequestration in regard to CO{sub 2} leakage and potential subsurface liabilities. The research resulted in basin-scale analyses of CO{sub 2} and brine leakage in light of uncertainties in the characteristics of leakage processes, and generated frameworks to monetize the risks of leakage interference with competing subsurface resources. The geographic focus was the Michigan sedimentary basin, for which a 3D topographical model was constructed to represent the hydrostratigraphy. Specifically for Ottawa County, a statistical analysis of the hydraulic properties of underlying sedimentary formations was conducted. For plausible scenarios of injection into the Mt. Simon sandstone, leakage rates were estimated and fluxes into shallow drinking-water aquifers were found to be less than natural analogs of CO{sub 2} fluxes. We developed the Leakage Impact Valuation (LIV) model in which we identified stakeholders and estimated costs associated with leakage events. It was found that costs could be incurred even in the absence of legal action or other subsurface interference because there are substantial costs of finding and fixing the leak and from injection interruption. We developed a model framework called RISCS, which can be used to predict monetized risk of interference with subsurface resources by combining basin-scale leakage predictions with the LIV method. The project has also developed a cost calculator called the Economic and Policy Drivers Module (EPDM), which comprehensively calculates the costs of carbon sequestration and leakage, and can be used to examine major drivers for subsurface leakage liabilities in relation to specific injection scenarios and leakage events. Finally, we examined the competiveness of CCS in the energy market. This analysis, though qualitative, shows that financial incentives, such as a carbon tax, are needed for coal combustion with CCS to gain market share. In another part of the project we studied the role of geochemical reactions in affecting the probability of CO{sub 2} leakage. A basin-scale simulation tool was modified to account for changes in leakage rates due to permeability alterations, based on simplified mathematical rules for the important geochemical reactions between acidified brines and caprock minerals. In studies of reactive flows in fractured caprocks, we examined the potential for permeability increases, and the extent to which existing reactive transport models would or would not be able to predict it. Using caprock specimens from the Eau Claire and Amherstburg, we found that substantial increases in permeability are possible for caprocks that have significant carbonate content, but minimal alteration is expected otherwise. We also found that while the permeability increase may be substantial, it is much less than what would be predicted from hydrodynamic models based on mechanical aperture alone because the roughness that is generated tends to inhibit flow.

  17. EIS-0355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah

    Broader source: Energy.gov [DOE]

    The Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Environmental Impact Statement and associated supplements and amendments provides information on the environmental impacts of the U.S. Department of Energy’s (DOE’s) proposal to (1) remediate approximately 11.9 million tons of contaminated materials located on the Moab site and approximately 39,700 tons located on nearby vicinity properties and (2) develop and implement a ground water compliance strategy for the Moab site using the framework of the Programmatic Environmental Impact Statement for the Uranium Mill Tailings Remedial Action Ground Water Project (DOE/EIS-0198, October 1996). The surface remediation alternatives analyzed in the EIS include on-site disposal of the contaminated materials and off-site disposal at one of three alternative locations in Utah using one or more transportation options: truck, rail, or slurry pipeline.

  18. San Juan Capistrano, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewableSMUD WindI Jump to: navigation,Solar 1

  19. Economic and Financial Costs of Saving Water and Energy: Preliminary Analysis for Hidalgo County Irrigation District No. 2 (San Juan) – Replacement of Pipeline Units I-7A, I-18, and I-22 

    E-Print Network [OSTI]

    Sturdivant, Allen W.; Rister, M. Edward; Lacewell, Ronald D.

    2007-01-01

    Intermediate Calculation Values ........................................12 Construction Cost per ac-ft of Water Saved ...............................12 Construction Cost per Unit of Energy Saved ...............................12 Construction Cost per Dollar.... Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 485 ac-ft of water per year and 179,486,553 BTUs {52,604 kwh} of energy per year. The calculated economic and financial cost...

  20. US support for nuclear energy safety and cooperation in the Pacific Basin

    SciTech Connect (OSTI)

    Selin, I.

    1994-12-31

    Nuclear power plays an important role in the energy and economic development of Pacific Rim countries. Concurrent with the construction of commercial nuclear power plants, there is a vital need to develop strong nuclear safety infrastructures in all countries choosing to use nuclear energy for electricity production. One of the most important elements in developing a viable nuclear program is a nuclear safety culture, rigorously applied to nuclear plant siting, design, construction, operation and management. International cooperation provides an important mechanism for raising the level of nuclear safety worldwide. The NRC has recently increased its international efforts in the nuclear safety area, with particular emphasis on Central and Eastern Europe and the New Independent States of the former Soviet Union. The NRC will continue, and is prepared to expand, its cooperation with counterpart organizations in Pacific Rim countries to help establish and nurture a safety culture that will respond to the dynamic process of nuclear energy development over the next few years.

  1. Isotopic Analysis At Nw Basin & Range Region (Laney, 2005) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13RenewableIremInformation Goff, EtEnergyOpen

  2. Water Sampling At Northern Basin & Range Region (Laney, 2005) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPageEnergyDellechaie, 1976)

  3. Water Sampling At Nw Basin & Range Region (Laney, 2005) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPageEnergyDellechaie, 1976)Information

  4. Savannah River Site - D-Area Oil Seepage Basin | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-AA-1 SECTION JSTEM-ing theSummary ofEnergyD-Area Oil Seepage

  5. Geological Field Trips UHP eclogite and garnet ultramafic rock in the Cuaba Unit, Rio San Juan Metamorphic

    E-Print Network [OSTI]

    Abbott Jr., Richard N.

    1 Geological Field Trips UHP eclogite and garnet ultramafic rock in the Cuaba Unit, Rio San Juan eclogite and garnet ultramafic rock in the Cuaba Unit, Rio San Juan Metamorphic Complex, Dominican Republic) the UHP rocks in the Cuaba unit of the Rio San Juan complex in the Dominican Republic was the second

  6. BIOGEOCHEMISTRY OF BASEMENT FLUIDS FROM THE SEDIMENT-BURIED JUAN de FUCA RIDGE FLANKS

    E-Print Network [OSTI]

    Qiu, Bo

    quality ridge- flank basement fluid samples by developing a novel clean sampling system to obtain fluidsBIOGEOCHEMISTRY OF BASEMENT FLUIDS FROM THE SEDIMENT-BURIED JUAN de FUCA RIDGE FLANKS fluids is provided for the sediment-buried Juan de Fuca Ridge flank with a crustal age of 3.5 Ma

  7. Striking a Balance Between Energy and the Environment in the Columbia River Basin California's Renewable Energy Policies and

    E-Print Network [OSTI]

    's Renewable Energy Policies and Their Impact on the Northwest (Continued on page 2) Northwest Power. California's renewable energy policies are some of the most aggressive in the nation, and the state has utilities have to look outside the state to satisfy their renewable portfolio goals. Renewable energy

  8. Refraction Survey At Nw Basin & Range Region (Laney, 2005) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/WaterEnergyRedfield1989) Jump to:| Open1979) |Al.,

  9. Heat flow in the northern Basin and Range province | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea, California | Open Energy

  10. Fracture Model, Ground Displacements and Tracer Observations: Fruitland Coals, San Juan Basin, New Mexico,

    E-Print Network [OSTI]

    Wilson, Thomas H.

    Mexico, CO2 Pilot Test Tom Wilson1,2 , Matt Weber1,2,3 , Jim Bennett4 , Art Wells1 , Hema Siriwardane1 that structures in the Fruitland Formation and overlying Kirtland Shale are more complex than anticipated the site consist of two coal beds, each separated by a shale parting. This observation indicates

  11. The Thermal Regime Of The San Juan Basin Since Late Cretaceous Times And

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/Wind ResourcesProgramSulFerox processIts

  12. Geodetic Survey At Nw Basin & Range Region (Laney, 2005) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: EnergyGateway EditOpenTechniques Jump2004)

  13. Savannah River Site - F-Area Seepage Basins | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -RobSSL INDepartment of EnergyD-Area Oil Seepage

  14. Savannah River Site - H-Area Seepage Basins | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -RobSSL INDepartment of EnergyD-Area Oil SeepageGSA

  15. Magnetotellurics At Nw Basin & Range Region (Pritchett, 2004) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump| Open Energy|

  16. Imaginacion e identidad: los personajes de Juan Tovar 

    E-Print Network [OSTI]

    Dennis, Susan Michele

    1983-01-01

    imaginacibn EL MAR BAJO LA TIERRA: EL ARTE I IVA El ambiente Los personajes LA MUCHACHA EN EL BALCON 0 LA PRESENCIA D L R RET RAD : IPOS SI N ESP R TUAL 0 MA I A N P I FATA? Ambiguedades estilisticas y estructurales La encrucijada de dos vidas... propios impulsos y quedarse al margen de la corriente. Esta tesis sigue el estilo de Hispania. Entre estos estaba Juan Tovar. Tovar se considera "medio atipico" en su generacion, porque en sus libros la pre- sentacion de la adolescencia es escasa y muy...

  17. urricane activity in the Atlantic basin increased

    E-Print Network [OSTI]

    with levels in the 1970s and 1980s. For example, the accumulated cyclone energy (ACE) index in the Atlantic of disturbances. Bottom: annual number (Aug­Oct) of North Atlantic basin hurricanes (1980­2005). See figures 2, is a crucial question for the future outlook of hurricane activity in the basin. It is difficult to distinguish

  18. Laboratory characterization of a highly weathered old alluvium in San Juan, Puerto Rico

    E-Print Network [OSTI]

    Zhang, Guoping, 1968-

    2002-01-01

    The old alluvium underlying much of metropolitan San Juan was formed in early Pleistocene and has undergone substantial post-depositional weathering in the tropical climate of Puerto Rico, resulting in a special combination ...

  19. Identification and characterization of Hydraulic Flow Units in the San Juan Formation, Orocual Field, Venezuela 

    E-Print Network [OSTI]

    Deghirmandjian, Odilia

    2001-01-01

    This thesis focuses on the integration of core and well log data in order to provide a petrophysical characterization of the Hydraulic Flow Units (HFU) in the San Juan Formation, Orocual Field, Venezuela. We used three separate approaches...

  20. Fighting cheaters: How and how much to invest Juan Carlos Nu~no 1

    E-Print Network [OSTI]

    Primicerio, Mario

    Fighting cheaters: How and how much to invest Juan Carlos Nu~no 1 , Miguel A. Herrero 2 and Mario wealth and deplete resources which are always limited and often scarce. To fight cheaters, a society can

  1. Universidad Rey Juan Carlos Escuela Superior de Ciencias Experimentales y Tecnologia

    E-Print Network [OSTI]

    Pantrigo Fernández, Juan José

    Universidad Rey Juan Carlos Escuela Superior de Ciencias Experimentales y Tecnolog´ia Departamento), que es el ´area de estudio de sistemas que permiten al usuario transmitir informaci´on a un ordenador

  2. Manuel Palomar destaca la importante labor de transferencia de conocimiento que realiza el Juan Gil Albert

    E-Print Network [OSTI]

    Escolano, Francisco

    Manuel Palomar destaca la importante labor de transferencia de conocimiento que realiza el Juan Gil>> apuntaba ayer Manuel Palomar, rector de la Universidad de Alicante, al referirse a Alicante en la

  3. A review of "A Companion to Juan Luis Vives" by Charles Fantazzi 

    E-Print Network [OSTI]

    Wright, Elizabeth R.

    2010-01-01

    Armas Wilson, and Isabel Lozano Renieblas when seeking to understand The Labors of Persiles and Sigismunda. Charles Fantazzi. A Companion to Juan Luis Vives. Leiden and Boston: Brill, 2008. viii + 430 pp. $185.00. Review by elizabeth r. wright..., university of georgia. This volume offers detailed analysis and rigorous contextual- ization of the diverse writings of Juan Luis Vives (Valencia, Spain 1492/93?Bruges, Belgium, 1540). In the course of some sixty differ- ent publications, this Valencian...

  4. San Juan Mesa Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewableSMUD WindI Jump to: navigation,Solar 1Mesa

  5. Basin Destination State

    Gasoline and Diesel Fuel Update (EIA)

    Basin Michigan 0.0192 0.0202 W 0.0188 W W W W 0.0246 3.1 W Northern Appalachian Basin New Hampshire W W W W W W W W W W W Northern Appalachian Basin New Jersey W W W W W W W W...

  6. Basin Destination State

    Gasoline and Diesel Fuel Update (EIA)

    Basin Michigan 0.0174 0.0186 W 0.0182 W W W W 0.0269 5.6 W Northern Appalachian Basin New Hampshire W W W W W W W W W W W Northern Appalachian Basin New Jersey W W W W W W W W...

  7. Water Basins Civil Engineering

    E-Print Network [OSTI]

    Provancher, William

    Water Basins Civil Engineering Objective · Connect the study of water, water cycle, and ecosystems with engineering · Discuss how human impacts can effect our water basins, and how engineers lessen these impacts: · The basic concepts of water basins are why they are important · To use a topographic map · To delineate

  8. Fast Computational GPU Design with GT-Pin Melanie Kambadur, Sunpyo Hong, Juan Cabral, Harish Patil, Chi-Keung Luk, Sohaib Sajid, Martha A. Kim

    E-Print Network [OSTI]

    Fast Computational GPU Design with GT-Pin Melanie Kambadur, Sunpyo Hong, Juan Cabral, Harish Patil,martha}@cs.columbia.edu Intel Corporation, Hudson, MA {sunpyo.hong,juan.r.cabral,harish

  9. Aalborg Universitet Stored Energy Balance for Distributed PV-Based Active Generators in an AC Microgrid

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    Microgrid Aldana, Nelson Leonardo Diaz; Wu, Dan; Dragicevic, Tomislav; Quintero, Juan Carlos Vasquez). Stored Energy Balance for Distributed PV-Based Active Generators in an AC Microgrid. In Proceedings Microgrid Nelson L. Diaz, Dan Wu, Tomislav Dragicevic, Juan C. Vasquez, and Josep M. Guerrero Abstract

  10. Integrated simulation of snow and glacier melt in water and energy balance-based, distributed hydrological modeling framework at Hunza River Basin of Pakistan Karakoram region

    E-Print Network [OSTI]

    2015-01-01

    basin, Nepal Himalaya, in Snow and Glacier Hydrology, vol.274, 198–210. INTEGRATED SNOW AND GLACIERMELT MODEL Journalon water availability in snow-dominated regions, Nature,

  11. River Basin Commissions (Indiana)

    Broader source: Energy.gov [DOE]

    This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

  12. San Leandro, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,Sage Resources JumpDimas, California:County,BasinSan JuanLeandro,

  13. El mayor laboratorio en física del mundo Juan Antonio Rubio, candidato a dirigir el CERN

    E-Print Network [OSTI]

    2007-01-01

    The spanish Government presented last Friday at the CERN Council Juan Antonio Rubio, as candidate for the post of Director General of CERN. It's the first time that the spanish Government proposes a candidate for the Direction of this international research center. (2/3 page)

  14. Faulting and hydration of the Juan de Fuca plate system Mladen R. Nedimovi a,c,

    E-Print Network [OSTI]

    Bohnenstiehl, Delwayne

    Available online xxxx Editor: R.D. van der Hilst Keywords: Juan de Fuca plate system seismic reflection imaging faulting hydration earthquakes Multichannel seismic observations provide the first direct images faulting within this young and sediment insulated oceanic plate is primarily limited to approximately Moho

  15. Sensory Integration With Articulated Motion On A Humanoid Robot Juan Rojas and Richard Alan Peters II

    E-Print Network [OSTI]

    II Center for Intelligent Systems Vanderbilt University Nashville, Tennessee, USA. Email: Juan that mimic those of people. Such reflexes as reach-and-grasp behaviors can enable the robot to learn, through, and pneumatic arms and hands exhibited tightly coupled sensory-motor behaviors in four different demonstrations

  16. Controlling chaos in a fluid flow past a movable cylinder Juan C. Vallejo a

    E-Print Network [OSTI]

    Rey Juan Carlos, Universidad

    mechanisms are not yet well known. This paper analyzes the fluid flow past a cylinder in a laminar regime of an in- compressible, viscid, time-dependent fluid flow past a cylinder in the laminar vortex sheddingControlling chaos in a fluid flow past a movable cylinder Juan C. Vallejo a , Inees P. Mari

  17. Sediment Dynamics Simulation via Cellular Automata Artificial Intelligence -SYNOPSIS 1.0 Dr. Juan M. Restrepo

    E-Print Network [OSTI]

    Fatkullin, Ibrahim

    Sediment Dynamics Simulation via Cellular Automata Artificial Intelligence - SYNOPSIS 1.0 Dr. Juan dynamics and artificial intelligence. Sediment Dynamics Sediment dynamics is the physics of sedimentary's work, and proved to be quite a task indeed. Artificial Intelligence Because this research project

  18. Algoritmos Sociales Jerrquicos Abraham Duarte ngel Snchez Felipe Fernndez Juan Jos Pantrigo

    E-Print Network [OSTI]

    Pantrigo Fernández, Juan José

    Algoritmos Sociales Jerárquicos Abraham Duarte Ángel Sánchez Felipe Fernández Juan José Pantrigo Algoritmos Sociales Jerárquicos o algoritmos HS (Hierarchical Social (HS) Algorithms), inspirados en el algoritmos HS se basan en la optimiza- ción simultánea (competitiva) de un conjunto de so- luciones factibles

  19. INTERNET 2 : Las nuevas redes del futuro Juan Manuel Torres Moreno

    E-Print Network [OSTI]

    Avignon et des Pays de Vaucluse, Université de

    INTERNET 2 : Las nuevas redes del futuro Juan Manuel Torres Moreno Laboratorio Nacional de más virtual) pero aún mas impactante: la revolución de las redes de computadoras. Internet ha supuesto vistas. Internet constituye al mismo tiempo un mecanismo de difusión mundial, de propagación, interacción

  20. Crossflow instability of finite Bdewadt flows: Transients and spiral waves Juan M. Lopez,1,a

    E-Print Network [OSTI]

    Lopez, John M.

    Crossflow instability of finite Bödewadt flows: Transients and spiral waves Juan M. Lopez,1,a is not robust, suffering crossflow instability to multiarmed spiral waves via a supercritical Hopf bifurcation as a canonical three- dimensional flow which exemplifies the crossflow instability.1­4 In this flow

  1. Using Simulation and Virtual Reality for Distance Juan de Lara, Manuel Alfonseca

    E-Print Network [OSTI]

    de Lara, Juan

    by the compiler. An example of the simulation of the inner Solar System is presented. Introduction The growing-thinking their traditional philosophies and techniques to adapt to the new technologies [1]. One of these disciplines] and browser plug- #12;2 Juan de Lara, Manuel Alfonseca ins for this language [3] has made it possible to build

  2. Are ceramics and bricks reliable absolute geomagnetic intensity carriers? Juan Morales a,

    E-Print Network [OSTI]

    Cattin, Rodolphe

    Are ceramics and bricks reliable absolute geomagnetic intensity carriers? Juan Morales a, , Avto performed on the raw material (clay and paste) and on in situ prepared baked ceramics and bricks included indicate a mixture of multi- domain and a significant amount of single-domain grains. Ceramic pieces

  3. Correlation between the precipitation and energy production at hydropower plants to mitigate flooding in the Missouri River Basin

    E-Print Network [OSTI]

    Foley, Rachel (Rachel L.)

    2013-01-01

    Currently, hydropower plants serve as one source of green energy for power companies. These plants are located in various geographical regions throughout the United States and can be split into three main classifications: ...

  4. Energy - Water Nexus -- Meeting the Energy and Water Needs of the Snake/Columbia River Basin in the 21st CenturyScience and Technology SummitConference Results

    SciTech Connect (OSTI)

    Paul L. Wichlacz; Gerald Sehlke

    2008-02-01

    In June 2007, representatives from federal, state, and academic institutions met to discuss the role of innovative science, technology, and policy in meeting future energy and water demands in the Snake-Columbia River Basin. Conference members assessed the state-of-the-science, technology, and associated research to develop cost-effective and environmentally sound methodologies and technologies to maximize the production of energy and availability of water and to minimize the consumption of both water and energy in the Snake-Columbia River system. Information on all phases of science and technology development, theoretical analysis, laboratory experiments, pilot tests, and field applications were relevant topics for discussion. An overview of current management needs was presented the first day. On the second day, five focus groups were created: ? Energy Generation and Use ? Water Allocation and Use ? Energy/Water Storage ? Environmental Considerations ? Social, Economic, Political, and Regulatory Considerations. Each group started with a list of status items and trends, and discussed the future challenges and research needed to reach four goals: ? Balance energy production and resource consumption ? Balance water availability and competing needs ? Balance water consumption/energy production and competing needs ? Balance environmental impacts and water use/energy production ? Balance costs and benefits of water use. The resulting initiatives were further broken down into three categories of importance: critical, important, and nice to do but could be delayed. Each initiative was assigned a number of dots to show a more refined ranking. The results of each focus group are given in the pages that follow. These results are intended to help local and regional researchers 1. Develop a technical strategy for developing cost-effective science and technology to predict, measure, monitor, purify, conserve, and store water and to maximize power generation, storage, and efficiency in the region 2. Evaluate methods and technologies for reducing the impacts of energy and water development and use on the environment.

  5. Juan de la Cosa’s Projection: A Fresh Analysis of the Earliest Preserved Map of the Americas 

    E-Print Network [OSTI]

    Robles Macias, Luis A.

    2010-05-24

    Previous cartographic studies of the 1500 map by Juan de La Cosa have found substantial and difficult-to-explain errors in latitude, especially for the Antilles and the Caribbean coast. In this study, a mathematical ...

  6. Economic and Conservation Evaluation of Capital Renovation Projects: Hidalgo County Irrigation District No. 2 (San Juan) - Relining Lateral A - Final 

    E-Print Network [OSTI]

    Popp, Michael; Robinson, John; Sturdivant, Allen; Lacewell, Ronald; Rister, Edward

    2003-01-01

    Initial construction costs and net annual changes in operating and maintenance expenses are identified for a single-component capital renovation project proposed by Hidalgo County Irrigation District No. 2, (a.k.a. San Juan) to the North American...

  7. Economic and Conservation Evaluation of Capital Renovation Project: Hidalgo County Irrigation District No. 2 (San Juan) - Relining Lateral A – Preliminary 

    E-Print Network [OSTI]

    Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.

    2003-01-01

    Evaluation of Capital Renovation Projects: Hidalgo County Irrigation District No. 2 (San Juan) – Relining Lateral A – Preliminary M. Edward Rister Ronald D. Lacewell Allen W. Sturdivant John R. C. Robinson Michael C. Popp Texas Water Resources Institute... Texas A&M University TR-221 May 2003 Economic and Conservation Evaluation of Capital Renovation Projects: Hidalgo County Irrigation District No. 2 (San Juan) – Relining Lateral A – Preliminary M. Edward Rister Ronald D. Lacewell Allen W. Sturdivant John...

  8. Independent focuses Philippines exploration on Visayan basin

    SciTech Connect (OSTI)

    Rillera, F.G.

    1995-08-21

    Cophil Exploration Corp., a Filipino public company, spearheaded 1995 Philippine oil and gas exploration activity with the start of its gas delineation drilling operations in Libertad, northern Cebu. Cophil and its Australian partners, Coplex Resources NL and PacRim Energy NL, have set out to complete a seven well onshore drilling program within this block this year. The companies are testing two modest shallow gas plays, Libertad and Dalingding, and a small oil play, Maya, all in northern Cebu about 500 km southeast of Manila. Following a short discussion on the geology and exploration history of the Visayan basin, this article briefly summarizes Cophil`s ongoing Cebu onshore drilling program. Afterwards, discussion focuses on identified exploration opportunities in the basin`s offshore sector.

  9. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Chidsey Jr., Thomas C.

    2003-02-06

    The primary objective of this project was to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox Basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox Basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project was designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  10. Atlantic Mesozoic marginal basins: an Iberian view

    SciTech Connect (OSTI)

    Wilson, R.C.L.

    1987-05-01

    In the light of theoretical models for crustal stretching that precedes ocean opening, it is unlikely that Iberian basins have mirror image counterparts beneath North American or other European continental shelves. However, certain Iberian sedimentary sequences are comparable to those found in other basins. Of particular note are (1) the almost identical pre-rift sequences in all these areas, (2) the development of Upper Jurassic carbonate buildups in Portugal, Morocco, and beneath the Scotian Shelf, and (3) the hydrocarbon-bearing Upper Jurassic and Lower Cretaceous synrift and postrift siliciclastics of North America, Iberia, and Aquitaine. In the prerift sequences, Triassic red beds are capped by evaporites, which subsequently influenced the structural development of basins. Intertidal and supratidal carbonates occur at the base of the Jurassic and are overlain by Lower and Middle Jurassic limestone-shale sequences, which in places contain bituminous shales. In Portugal only, resedimented carbonates of Toarcian-Aalenian age are associated with an uplifted basement horst. In Portugal, Aquitaine, and eastern Canada, Middle Jurassic high-energy carbonate platforms developed. Synrift siliciclastic sequences show spectacular evidence for deposition within fault-bounded basins. In Portugal, lower Kimmeridgian clastics are up to 3 km thick, but Upper-Lower Cretaceous sequences are relatively thin (ca. 1 km), in contrast to those of the Basco-Cantabrian region where they exceed 10 km. In the latter region occurs the fluvially dominated Wealden (Upper Jurassic-Neocomian) and Urgonian carbonate platforms and associated basinal sediments. In the Asturias basin, Kimmeridgian shales and fluvially dominated deltaic sandstones succeed conglomeratic fluvial sandstones of uncertain age.

  11. Regional operations research program for commercialization of geothermal energy in the Rocky Mountain Basin and Range. Final report, August 1, 1978-February 28, 1980

    SciTech Connect (OSTI)

    Marlin, J.M.; Cunniff, R.; McDevitt, P.; Nowotny, K.; O'Dea, P.

    1981-01-01

    The work accomplished from August 1978 to February 1980 in the Regional Operations Research efforts for the Rocky Mountain Basin and Range Geothermal Commercialization Program are described. The work included continued data acquisition and extension of the data base, enhancement and refinement of the economic models for electric and direct use applications, site-specific and aggregated analyses in support of the state teams and special analyses in support of several federal agencies.

  12. Carbon Cycle 2.0: Robert Cheng and Juan Meza

    ScienceCinema (OSTI)

    Robert Cheng and Juan Meza

    2010-09-01

    Feb. 4, 2010: Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.

  13. Policy support activities Brazil Rural Energy

    E-Print Network [OSTI]

    through the National Network of NGOs for Renewable Energy (RENOVE). ·The aim is to support the Brazilian1 Policy support activities Brazil Rural Energy Enterprise Development (B-REED) Juan Zak UNEP Risoe makers implement Electricity Law 10.438 in ways that enable small rural energy enterprises to coexist

  14. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2005-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  15. GRC Transactions, Vol. 29, 2005 Geothermal, GIS, potential, favorability, Great Basin, map

    E-Print Network [OSTI]

    _gis2. htm) of the Great Basin Center for Geothermal Energy (GBC- GE). This map allows for separate to host high-temperature (> 150° C) geothermal systems capable of producing electrical energy. ThreeGRC Transactions, Vol. 29, 2005 223 Keywords Geothermal, GIS, potential, favorability, Great Basin

  16. De Fray Servando Teresa de Mier a Juan Bautista Muñozla disputa guadalupana en vísperas de la independencia.

    E-Print Network [OSTI]

    Arias, Santa

    2008-01-01

    pérdida de su ejemplar de la Historia de la Revolución de la Nueva España (1813) y de sus seis cartas dirigidas al intelectual valenciano Juan Bautista Muñoz (1745-1799), las que describe como “unos siete cuadernos que compondrán unos cuarenta pliegos” (60... el reinado de Carlos III, miembro de la Real Academia de la Historia y ha sido más conocido por su ardua labor como fundador del Archivo General de Indias. Véase el trabajo de Nicolás Bas Martín El cosmógrafo e historiador Juan Bautista Muñoz (1745...

  17. Basin-Scale Opportunity Assessment Initiative Background Literature Review

    SciTech Connect (OSTI)

    Saulsbury, Bo; Geerlofs, Simon H.; Cada, Glenn F; Bevelhimer, Mark S

    2010-10-01

    As called for in the March 24, 2010, Memorandum of Understanding (MOU) for Hydropower, the U.S. Department of Energy (DOE), the U.S. Department of the Interior (DOI), the U.S. Army Corps of Engineers (USACE), environmental stakeholders, and the hydropower industry are collaborating to identify opportunities to simultaneously increase electricity generation and improve environmental services in river basins of the United States. New analytical tools provide an improved ability to understand, model, and visualize environmental and hydropower systems. Efficiencies and opportunities that might not be apparent in site-by-site analyses can be revealed through assessments at the river-basin scale. Information from basin-scale assessments could lead to better coordination of existing hydropower projects, or to inform siting decisions (e.g., balancing the removal of some dams with the construction of others), in order to meet renewable energy production and environmental goals. Basin-scale opportunity assessments would inform energy and environmental planning and address the cumulative effects of hydropower development and operations on river basin environmental quality in a way that quantifies energy-environment tradeoffs. Opportunity assessments would create information products, develop scenarios, and identify specific actions that agencies, developers, and stakeholders can take to locate new sustainable hydropower projects, increase the efficiency and environmental performance of existing projects, and restore and protect environmental quality in our nation's river basins. Government agencies and non-governmental organizations (NGO) have done significant work to understand and assess opportunities for both hydropower and environmental protection at the basin scale. Some initiatives have been successful, others less so, and there is a need to better understand the legacy of work on which this current project can build. This background literature review is intended to promote that understanding. The literature review begins with a discussion in Section 2.0 of the Federal regulatory processes and mission areas pertaining to hydropower siting and licensing at the basin scale. This discussion of regulatory processes and mission areas sets the context for the next topic in Section 3.0, past and ongoing basin-scale hydropower planning and assessment activities. The final sections of the literature review provide some conclusions about past and ongoing basin-scale activities and their relevance to the current basin-scale opportunity assessment (Section 4.0), and a bibliography of existing planning and assessment documents (Section 5.0).

  18. Integrated simulation of snow and glacier melt in water and energy balance-based, distributed hydrological modeling framework at Hunza River Basin of Pakistan Karakoram region

    E-Print Network [OSTI]

    2015-01-01

    in the surface energy balance of Haut Glacier d’Arolla,2008), Distributed energy balance modeling of South CascadeA distributed energy balance model for complex topography

  19. Integrated simulation of snow and glacier melt in water and energy balance-based, distributed hydrological modeling framework at Hunza River Basin of Pakistan Karakoram region

    E-Print Network [OSTI]

    2015-01-01

    variations in the surface energy balance of Haut Glacier d’2005), A distributed energy balance model for complexat Fraser using a energy balance based snowmelt model (WEB-

  20. Integrated simulation of snow and glacier melt in water and energy balance-based, distributed hydrological modeling framework at Hunza River Basin of Pakistan Karakoram region

    E-Print Network [OSTI]

    2015-01-01

    variations in the surface energy balance of Haut Glacier d’Clark (2008), Distributed energy balance modeling of South2005), A distributed energy balance model for complex

  1. Sub-Seafloor Carbon Dioxide Storage Potential on the Juan de Fuca Plate, Western North America

    SciTech Connect (OSTI)

    Jerry Fairley; Robert Podgorney

    2012-11-01

    The Juan de Fuca plate, off the western coast of North America, has been suggested as a site for geological sequestration of waste carbon dioxide because of its many attractive characteristics (high permeability, large storage capacity, reactive rock types). Here we model CO2 injection into fractured basalts comprising the upper several hundred meters of the sub-seafloor basalt reservoir, overlain with low-permeability sediments and a large saline water column, to examine the feasibility of this reservoir for CO2 storage. Our simulations indicate that the sub-seafloor basalts of the Juan de Fuca plate may be an excellent CO2 storage candidate, as multiple trapping mechanisms (hydrodynamic, density inversions, and mineralization) act to keep the CO2 isolated from terrestrial environments. Questions remain about the lateral extent and connectivity of the high permeability basalts; however, the lack of wells or boreholes and thick sediment cover maximize storage potential while minimizing potential leakage pathways. Although promising, more study is needed to determine the economic viability of this option.

  2. Rappahannock River Basin Commission (Virginia)

    Broader source: Energy.gov [DOE]

    The Rappahannock River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the...

  3. Susquehanna River Basin Compact (Maryland)

    Broader source: Energy.gov [DOE]

    This legislation enables the state's entrance into the Susquehanna River Basin Compact, which provides for the conservation, development, and administration of the water resources of the...

  4. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox Basin, Utah, Class II

    SciTech Connect (OSTI)

    Chidsey, Thomas C.

    2000-07-28

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m{sup 3}) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  5. Energy Efficiency/ Renewable Energy (EE/RE) Projects in Texas Public Schools 

    E-Print Network [OSTI]

    Haberl, J.; Kim, H.; Mukhopadhyay, J.; Baltazar, J. C.; Do, S.; Kim, K.; Lewis, C.; Yazdani, B.; Yarborough, J.

    2011-01-01

    . 1 Energy Systems Laboratory Texas Engineering Experiment Station Texas A&M University System Energy Efficiency / Renewable Energy (EE/RE) Projects in Texas Public Schools Jeff Haberl, Hyojin Kim, Jaya Mukhopadhyay, Juan-Carlos Baltazar...-Cevantes, Sung Lok Do, Kee Han Kim, Cyndi Lewis, Bahman Yazdani – Energy Systems Laboratory James Yarborough, U.S.E.P.A. Energy Systems Laboratory p. 2 Why care about energy efficiency-renewable energy in schools? • Lower energy costs • May help...

  6. p-HARMONIC MEASURE IS NOT SUBADDITIVE JOSE G. LLORENTE, JUAN J. MANFREDI, AND JANG-MEI WU

    E-Print Network [OSTI]

    Wu, Jang-Mei

    p-HARMONIC MEASURE IS NOT SUBADDITIVE JOS´E G. LLORENTE, JUAN J. MANFREDI, AND JANG-MEI WU. When 1 harmonic mea- sure on the boundary of the half plane R2 + is not subadditive. In fact, there are finitely many sets E1, E2,...,E on R, of p-harmonic measure zero, such that E1

  7. Use of ATLAS Visual and Thermal Imagery to Study the Urban Heat Island Effect in San Juan, Puerto Rico

    E-Print Network [OSTI]

    Gilbes, Fernando

    Use of ATLAS Visual and Thermal Imagery to Study the Urban Heat Island Effect in San Juan, Puerto as Urban Heat Islands (UHI). The main scientific objective of this research is to investigate the impact was used as the main sensor for this study with the objective of investigating the Urban Heat Island (UHI

  8. Revisiting Hot Passive Replication Ruben de Juan-Marin, Hendrik Decker and Francesc D. Mu~noz-Escoi

    E-Print Network [OSTI]

    Muñoz, Francesc

    Revisiting Hot Passive Replication Rub´en de Juan-Mar´in, Hendrik Decker and Francesc D. Mu Valencia, Spain {rjuan, hendrik, fmunyoz}@iti.upv.es Abstract Passive replication has been extensively of communication synchrony. Therefore, we propose a new, detailed classification of hot passive replication

  9. Fiber-optic sensor for detection of hydrogen peroxide in PEM fuel cells Juan F. Botero-Cadavid

    E-Print Network [OSTI]

    Victoria, University of

    Fiber-optic sensor for detection of hydrogen peroxide in PEM fuel cells by Juan F. Botero, by photocopy or other means, without the permission of the author. #12;ii Supervisory Committee Fiber-optic on an emerging optical fiber sensing technology for the determination of the presence and concentration

  10. MHK Projects/San Juan Channel Tidal Energy Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoos BayOysterReliance LightSalemInformation

  11. Oil and Gas Resources of the West Siberian Basin, Russia

    Reports and Publications (EIA)

    1997-01-01

    Provides an assessment of the oil and gas potential of the West Siberian Basin of Russia. The report was prepared in cooperation with the U. S. Geological Survey (USGS) and is part of the Energy Information Administration's (EIA) Foreign Energy Supply Assessment Program (FESAP).

  12. Bibliography, geophysical data locations, and well core listings for the Mississippi Interior Salt Basin

    SciTech Connect (OSTI)

    1998-05-01

    To date, comprehensive basin analysis and petroleum system modeling studies have not been performed on any of the basins in the northeastern Gulf of Mexico. Of these basins, the Mississippi Interior Salt Basin has been selected for study because it is the most petroliferous basin in the northeastern Gulf of Mexico, small- and medium-size companies are drilling the majority of the exploration wells. These companies do not have the resources to perform basin analysis or petroleum system modeling research studies nor do they have the resources to undertake elaborate information searches through the volumes of publicly available data at the universities, geological surveys, and regulatory agencies in the region. The Advanced Geologic Basin Analysis Program of the US Department of Energy provides an avenue for studying and evaluating sedimentary basins. This program is designed to improve the efficiency of the discovery of the nation`s remaining undiscovered oil resources by providing improved access to information available in the public domain and by increasing the amount of public information on domestic basins. This report provides the information obtained from Year 1 of this study of the Mississippi Interior Salt Basin. The work during Year 1 focused on inventorying the data files and records of the major information repositories in the northeastern Gulf of Mexico and making these inventories easily accessible in an electronic format.

  13. Integrated simulation of snow and glacier melt in water and energy balance-based, distributed hydrological modeling framework at Hunza River Basin of Pakistan Karakoram region

    E-Print Network [OSTI]

    2015-01-01

    model of land surface water and energy ?uxes for GSMs, J.glacier melt in water and energy balance-based, distributedglacier melt in water and energy balance-based, distributed

  14. Advanced Chemistry Basins Model

    SciTech Connect (OSTI)

    Blanco, Mario; Cathles, Lawrence; Manhardt, Paul; Meulbroek, Peter; Tang, Yongchun

    2003-02-13

    The objective of this project is to: (1) Develop a database of additional and better maturity indicators for paleo-heat flow calibration; (2) Develop maturation models capable of predicting the chemical composition of hydrocarbons produced by a specific kerogen as a function of maturity, heating rate, etc.; assemble a compositional kinetic database of representative kerogens; (3) Develop a 4 phase equation of state-flash model that can define the physical properties (viscosity, density, etc.) of the products of kerogen maturation, and phase transitions that occur along secondary migration pathways; (4) Build a conventional basin model and incorporate new maturity indicators and data bases in a user-friendly way; (5) Develop an algorithm which combines the volume change and viscosities of the compositional maturation model to predict the chemistry of the hydrocarbons that will be expelled from the kerogen to the secondary migration pathways; (6) Develop an algorithm that predicts the flow of hydrocarbons along secondary migration pathways, accounts for mixing of miscible hydrocarbon components along the pathway, and calculates the phase fractionation that will occur as the hydrocarbons move upward down the geothermal and fluid pressure gradients in the basin; and (7) Integrate the above components into a functional model implemented on a PC or low cost workstation.

  15. Delay Optimal Scheduling for Energy Harvesting Based Communications

    E-Print Network [OSTI]

    Dai, Huaiyu

    1 Delay Optimal Scheduling for Energy Harvesting Based Communications Juan Liu, Huaiyu Dai, Senior research interest recently. Equipped with a rechargeable battery, a source node can harvest energy from ambient environments and rely on this free and regenerative energy supply to transmit packets. Due

  16. A scientific conference at the UA on Jorge Juan will open the celebration of the 3rd centennial of his birth

    E-Print Network [OSTI]

    Escolano, Francisco

    A scientific conference at the UA on Jorge Juan will open the celebration of the 3rd centennial of Alicante to celebrate the 3rd centennial of his birth this year (1713-2013) and disseminate the work

  17. Economic and Conservation Evaluation of Capital Renovation Projects: Hidalgo County Irrigation District No. 2 (San Juan) - 48" Pipeline Replacing Wisconsin Canal - Final 

    E-Print Network [OSTI]

    Rister, Edward; Lacewell, Ronald; Sturdivant, Allen; Robinson, John; Popp, Michael

    2003-01-01

    Initial construction costs and net annual changes in operating and maintenance expenses are identified for a single-component capital renovation project proposed by Hidalgo County Irrigation District No. 2, (a.k.a. San Juan) to the North American...

  18. An Overview of Operational Characteristics of Selected Irrigation Districts in the Texas Lower Rio Grande Valley: Hidalgo County Irrigation District No. 2 (San Juan

    E-Print Network [OSTI]

    Stubbs, Megan J.; Rister, M. Edward; Sturdivant, Allen W.; Lacewell, Ronald D.

    2005-01-01

    , Closner purchased large amounts of cheap land in Hidalgo County and created the San Juan Plantation six miles northeast from the city of Hidalgo (Allhands). It was here that he began experimenting with large-scale irrigation. In 1895, he began... of Operational Characteristics of Selected Irrigation Districts in the Texas Lower Rio Grande Valley: Hidalgo County Irrigation District No. 2 (San Juan) Megan J. Stubbs M. Edward Rister Allen W. Sturdivant Ronald D. Lacewell...

  19. Economic and Conservation Evaluation of Capital Renovation Projects: Hidalgo County Irrigation District No. 2 (San Juan) – 48" Pipeline Replacing Wisconsin Canal – Preliminary 

    E-Print Network [OSTI]

    Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.

    2003-01-01

    Evaluation of Capital Renovation Projects: Hidalgo County Irrigation District No. 2 (San Juan) – 48" Pipeline Replacing Wisconsin Canal – Preliminary M. Edward Rister Ronald D. Lacewell Allen W. Sturdivant John R. C. Robinson Michael C. Popp Texas Water... Resources Institute Texas A&M University TR-220 May 2003 Economic and Conservation Evaluation of Capital Renovation Projects: Hidalgo County Irrigation District No. 2 (San Juan) – 48" Pipeline Replacing Wisconsin Canal – Preliminary M. Edward Rister Ronald...

  20. Evolution of Extensional Basins and Basin and Range Topography...

    Open Energy Info (EERE)

    movements on an array of strike-slip and normal fault systems have resulted in the uplift and preservation of older basins in modern ranges. One of the best exposed of these is...

  1. Oil and gas resources of the Fergana Basin (Uzbekistan, Tadzhikistan, and Kyrgyzstan)

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    This analysis is part of the Energy Information Administration`s (EIA`s) Foreign Energy Supply Assessment Program (FESAP). This one for the Fergana Basin is an EIA first for republics of the former Soviet Union (FSU). This was a trial study of data availability and methodology, resulting in a reservoir-level assessment of ultimate recovery for both oil and gas. Ultimate recovery, as used here, is the sum of cumulative production and remaining Proved plus Probable reserves as of the end of 1987. Reasonable results were obtained when aggregating reservoir-level values to the basin level, and in determining general but important distributions of across-basin reservoir and fluid parameters. Currently, this report represents the most comprehensive assessment publicly available for oil and gas in the Fergana Basin. This full report provides additional descriptions, discussions and analysis illustrations that are beneficial to those considering oil and gas investments in the Fergana Basin. 57 refs., 22 figs., 6 tabs.

  2. Rivanna River Basin Commission (Virginia)

    Broader source: Energy.gov [DOE]

    The Rivanna River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the Rivanna River...

  3. Basin analog approach answers characterization challenges of unconventional gas potential in frontier basins 

    E-Print Network [OSTI]

    Singh, Kalwant

    2007-04-25

    in exploratory basins. We developed software, Basin Analog System (BAS), to perform and accelerate the process of identifying analog basins. Also, we built a database that includes geologic and petroleum systems information of intensely studied North America...

  4. Utilizing Divers in Support of Spent Fuel Basin Closure Subproject

    SciTech Connect (OSTI)

    Allen Nellesen

    2005-01-01

    A number of nuclear facilities in the world are aging and with this comes the fact that we have to either keep repairing them or decommission them. At the Department of Energy Idaho Site (DOEID) there are a number of facilities that are being decommissioned, but the facilities that pose the highest risk to the large aquifer that flows under the site are given highest priorities. Aging spent nuclear fuel pools at DOE-ID are among the facilities that pose the highest risk, therefore four pools were targeted for decommissioning in Fiscal Year 2004. To accomplish this task the Idaho Completion Project (ICP) of Bechtel BWXT Idaho, LLC, put together an integrated Basin Closure Subproject team. The team was assigned a goal to look beyond traditional practices at the Idaho National Engineering and Environmental Laboratory (INEEL) to find ways to get the basin closure work done safer and more efficiently. The Idaho Completion Project (ICP) was faced with a major challenge – cleaning and preparing aging spent nuclear fuel basins for closure by removing sludge and debris, as necessary, and removing water to eliminate a potential risk to the Snake River Plain Aquifer. The project included cleaning and removing water from four basins. Two of the main challenges to a project like this is the risk of contamination from the basin walls and floors becoming airborne as the water is removed and keeping personnel exposures ALARA. ICP’s baseline plan had workers standing at the edges of the basins and on rafts or bridge cranes and then using long-handled tools to manually scrub the walls of basin surfaces. This plan had significant risk of skin contamination events, workers falling into the water, or workers sustaining injuries from the awkward working position. Analysis of the safety and radiation dose risks presented by this approach drove the team to look for smarter ways to get the work done.

  5. Texas Emissions Reductions Program (TERP) Energy Efficiency/Renewable Energy (EE/RE) Update 

    E-Print Network [OSTI]

    Haberl, J. S.; Yazdani, B.; Culp, C.

    2012-01-01

    REDUCTIONS PROGRAM (TERP) ENERGY EFFICIENCY/RENEWABLE ENERGY (EE/RE) UPDATE October 2012 Jeff Haberl, Bahman Yazdani, Charles Culp Energy Systems Laboratory Texas A&M University p. 2 Energy Systems Laboratory ? 2012 Faculty/Staff: Juan... or renewable energy activity; or (3) Included under our voluntary measures policy. Record Keeping: The measure should be permanent throughout the term for which the credit is granted unless it is replaced by another measure or the State...

  6. Decision Support for Water Planning: the ZeroNet Water-Energy Initiative.

    SciTech Connect (OSTI)

    Rich, P. M. (Paul M.); Weintraub, Laura H. Z.; Ewers, Mary E.; Riggs, T. L. (Thomas L.); Wilson, C. J. (Cathy J.)

    2005-01-01

    Rapid population growth and severe drought are impacting water availability for all sectors (agriculture, energy, municipal, industry...), particularly in arid regions. New generation decision support tools, incorporating recent advances in informatics and geographic information systems (GIS), are essential for responsible water planning at the basin scale. The ZeroNet water-energy initiative is developing a decision support system (DSS) for the San Juan River Basin, with a focus on drought planning and economic analysis. The ZeroNet DSS provides a computing environment (cyberinfrastructure) with three major components: Watershed Tools, a Quick Scenario Tool, and a Knowledge Base. The Watershed Tools, based in the Watershed Analysis Risk Management Framework (WARMF), provides capabilities (1) to model surface flows, both the natural and controlled, as well as water withdrawals, via an engineering module, and (2) to analyze and visualize results via a stakeholder module. A new ZeroNet module for WARMF enables iterative modeling and production of 'what if' scenario libraries to examine consequences of changes in climate, landuse, and water allocation. The Quick Scenario Tool uses system dynamics modeling for rapid analysis and visualization for a variety of uses, including drought planning, economic analysis, evaluation of management alternatives, and risk assessment. The Knowledge Base serves simultaneously as the 'faithful scribe' to organize and archive data in easily accessible digital libraries, and as the 'universal translator' to share data from diverse sources and for diverse uses. All of the decision tools depend upon GIS capabilities for data/model integration, map-based analysis, and advanced visualization. The ZeroNet DSS offers stakeholders an effective means to address complex water problems.

  7. Exploiting Media Stream Similarity for Energy-Efficient Decoding and Resource Prediction

    E-Print Network [OSTI]

    Eeckhout, Lieven

    2 Exploiting Media Stream Similarity for Energy-Efficient Decoding and Resource Prediction JUAN evaluation, done using the H.264 AVC decoder and 12 reference video streams, shows an average energy, Video stream similarity, Scenario-based design, Energy- efficiency, Resource prediction ACM Reference

  8. Aalborg Universitet Optimal Utilization of Microgrids Supplemented with Battery Energy Storage Systems

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    of Microgrids Supplemented with Battery Energy Storage Systems in Grid Support Applications. In IEEE ICDCM 2015 Energy Storage Systems in Grid Support Applications Amjad Anvari-Moghaddam, Tomislav Dragicevic, Juan C the operating cost of a grid connected micro-grid supplemented by battery energy storage system (BESS). What

  9. Lidars in Wind Energy Jakob Mann, Ferhat Bingl, Torben Mikkelsen, Ioannis Antoniou, Mike

    E-Print Network [OSTI]

    Lidars in Wind Energy Jakob Mann, Ferhat Bingöl, Torben Mikkelsen, Ioannis Antoniou, Mike Courtney, Gunner Larsen, Ebba Dellwik Juan Jose Trujillo* and Hans E. Jørgensen Wind Energy Department Risø of the presentation · Introduction to wind energy · Accurate profiles of the mean wind speed · Wakes behind turbines

  10. Developing Financial Intermediation Mechanisms for Energy Efficiency Investments in Brazil, China and India

    E-Print Network [OSTI]

    1 Developing Financial Intermediation Mechanisms for Energy Efficiency Investments in Brazil, China and India Brazil-China-India Workshop on Energy Efficiency Financing Cross country exchange, outreach and dissemination Juan Zak URC Brazil, May 2004 #12;2 What is URC ? · URC is the UNEP Risoe Centre on Energy

  11. Improved Basin Analog System to Characterize Unconventional Gas Resource 

    E-Print Network [OSTI]

    Wu, Wenyan 1983-

    2012-10-02

    potential in a target basin by finding a geological analog that has been explored enough that its resource potential is fully understood. In 2006, Singh developed a basin analog system BASIN (Basin Analog Systems INvestigation) in detail that could rapidly...

  12. Sound field near hydrothermal vents on Axial Seamount, Juan de Fuca Ridge. Technical report

    SciTech Connect (OSTI)

    Little, S.A.; Stolzenbach, K.D.; Purdy, G.M.

    1990-08-10

    High-quality acoustic noise measurements were obtained by two hydrophones located 3 m and 40 m from an active hydrothermal vent on Axial Seamount, Juan de Fuca Ridge, in an effort to determine the feasibility of monitoring hydrothermal vent activity through flow noise generation. Most of the measured noise field could be attributed to ambient ocean noise sources of microseisms, distant shipping, and weather, punctuated by local ships and biological sources. Long-period, low-velocity, water/rock interface waves were detected with high amplitudes which rapidly decayed with distance from the seafloor. Detection of vent signals was hampered by unexpected spatial nonstationarity due to the shadowing effects of the calders wall. No continuous vent signals were deemed significant based on a criterion of 90% probability of detection and 5% probability of false alarm. However, a small signal near 40 Hz, with a power level of 0.0001 Pa sq/Hz was noticed on two records taken within 3 m of the Inferno black smoker. The frequency of this signal is consistent with predictions, and the power level suggests the occurrence of jet noise amplification due to convected density inhomogeneities. Keywords: Seamounts; Flow noise; Underwater acoustics; Acoustic measurement; Geothermy/noise; Ocean ridges; Underwater sound signals; Reprints; North Pacific Ocean. (EDC).

  13. Fifteenmile Basin Habitat Enhancement Project: Annual Report...

    Office of Scientific and Technical Information (OSTI)

    in the Fifteenmile Creek Basin. This goal was addressed under the Columbia River Basin Fish and Wildlife Program, Measure 703 (c) (1) - Action Item 4.2. Construction of fish...

  14. Water War in the Klamath Basin

    E-Print Network [OSTI]

    Carchidi, Victoria

    2011-01-01

    Review: Water War in the Klamath Basin: Macho Law, CombatHolly and A. Dan Tarlock. Water War in the Klamath Basin:has rights to the limited water. Birds and ecosystems; fish

  15. Rainfall Generator for the Rhine Basin

    E-Print Network [OSTI]

    Brandsma, Theo

    Rainfall Generator for the Rhine Basin Multi-site generation of weather variables by nearest +31.320.249218 #12;2 Rainfall Generator for the Rhine Basin #12;Multi-site generation of weather

  16. Delaware River Basin Commission (Multiple States)

    Broader source: Energy.gov [DOE]

    The Delaware River Basin Commission (DRBC) is a federal-interstate compact government agency that was formed by concurrent legislation enacted in 1961 by the United States and the four basin states...

  17. Multiple Oscillatory Modes of the Argentine Basin. Part II: The Spectral Origin of Basin Modes

    E-Print Network [OSTI]

    Weijer, Wilbert

    Multiple Oscillatory Modes of the Argentine Basin. Part II: The Spectral Origin of Basin Modes et Approches Numériques, Paris, France SARAH T. GILLE Scripps Institution of Oceanography, La Jolla In this paper the spectrum of barotropic basin modes of the Argentine Basin is shown to be connected

  18. Brown, E.H., Housen, B.A., and Schermer, E.R., 2007, Tectonic evolution of the San Juan Islands thrust system, Washington, in Stelling, P., and Tucker, D.S., eds., Floods, Faults, and Fire: Geological Field Trips in Washington State and Southwest British

    E-Print Network [OSTI]

    Housen, Bernie

    convergent margin tectonism. The area is underlain by the San Juan Islands­northwest Cascades thrust system, dispersal and final emplacement of terranes of the San Juan Islands­northwest Cascades thrust system evolution of the San Juan Islands thrust system, Washington E.H. Brown B.A. Housen E.R. Schermer Department

  19. EIS-0516: Clean Path Energy Center Project; San Juan County, New Mexico |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatement |toDepartment ofDepartment of2: Alaska

  20. H-Area Seepage Basins

    SciTech Connect (OSTI)

    Stejskal, G.

    1990-12-01

    During the third quarter of 1990 the wells which make up the H-Area Seepage Basins (H-HWMF) monitoring network were sampled. Laboratory analyses were performed to measure levels of hazardous constituents, indicator parameters, tritium, nonvolatile beta, and gross alpha. A Gas Chromatograph Mass Spectrometer (GCMS) scan was performed on all wells sampled to determine any hazardous organic constituents present in the groundwater. The primary contaminants observed at wells monitoring the H-Area Seepage Basins are tritium, nitrate, mercury, gross alpha, nonvolatile beta, trichloroethylene (TCE), tetrachloroethylene, lead, cadmium, arsenic, and total radium.

  1. Supplementary information on K-Basin sludges

    SciTech Connect (OSTI)

    MAKENAS, B.J.

    1999-03-15

    Three previous documents in this series have been published covering the analysis of: K East Basin Floor and Pit Sludge, K East Basin Canister Sludge, and K West Basin Canister Sludge. Since their publication, additional data have been acquired and analyses performed. It is the purpose of this volume to summarize the additional insights gained in the interim time period.

  2. K Basins Groundwater Monitoring Task, K Basins Closure Project: Report for July, August, and September 2006

    SciTech Connect (OSTI)

    Peterson, Robert E.

    2006-12-08

    This report provides information on groundwater monitoring at the K Basins during July, August, and September 2006. Conditions remain very similar to those reported in the previous quarterly report, with no evidence in monitoring results to suggest groundwater impact from current loss of basin water to the ground. The K Basins monitoring network will be modified in the coming quarters as a consequence of remedial action at KE Basin, i.e., removal of sludge and basin demolition.

  3. Basin and Petroleum System Dynamics

    E-Print Network [OSTI]

    Pfander, Götz

    and development costs of new reserves and existing fields is immense: drilling wells, for example, may consume up to 85% of the total exploratory funds. Thus, the decision to drill should be taken in a sensible way of sedimentary basins and their hydrocarbon fluids. Executive Master Programme Participants will be able

  4. San Juan Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,Sage Resources JumpDimas, California:County,Basin

  5. Fray Servando Teresa de Mier, Juan Bautista Muñoz y la disputa guadalupana: lectura y escritura en la epístola ensayística de la Ilustración

    E-Print Network [OSTI]

    Arias, Santa

    2008-02-05

    pérdida de su ejemplar de la Historia de la Revolución de la Nueva España (1813) y de sus seis cartas dirigidas al intelectual valenciano Juan Bautista Muñoz (1745-1799), las que describe como “unos siete cuadernos que compondrán unos cuarenta pliegos” (60... el reinado de Carlos III, miembro de la Real Academia de la Historia y ha sido más conocido por su ardua labor como fundador del Archivo General de Indias. Véase el trabajo de Nicolás Bas Martín El cosmógrafo e historiador Juan Bautista Muñoz (1745...

  6. Regional Energy Baseline 

    E-Print Network [OSTI]

    Kim, H.; Baltazar, J.C.; Haberl, J.

    2011-01-01

    -09-02 REGIONAL ENERGY BASELINE (1960 ~ 2009) 0 100 200 300 400 500 600 700 800 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 To tal En erg y U se pe r C ap ita (M MB tu) Year Total Energy Use per Capita (1960-2009) US... SEEC 12-States TX Hyojin Kim Juan-Carlos Baltazar, Ph.D. Jeff S. Haberl, Ph.D., P.E. September 2011 ENERGY SYSTEMS LABORATORY Texas Engineering Experiment Station Texas A&M University System 1960-2009 Regional Energy...

  7. Carbon Smackdown: Visualizing Clean Energy (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Meza, Juan [LBNL Computational Research Division

    2010-09-01

    The final Carbon Smackdown match took place Aug. 9, 2010. Juan Meza of the Computational Research Division revealed how scientists use computer visualizations to accelerate climate research and discuss the development of next-generation clean energy technologies such as wind turbines and solar cells.

  8. Rocky Mountain Basins Produced Water Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Historical records for produced water data were collected from multiple sources, including Amoco, British Petroleum, Anadarko Petroleum Corporation, United States Geological Survey (USGS), Wyoming Oil and Gas Commission (WOGC), Denver Earth Resources Library (DERL), Bill Barrett Corporation, Stone Energy, and other operators. In addition, 86 new samples were collected during the summers of 2003 and 2004 from the following areas: Waltman-Cave Gulch, Pinedale, Tablerock and Wild Rose. Samples were tested for standard seven component "Stiff analyses", and strontium and oxygen isotopes. 16,035 analyses were winnowed to 8028 unique records for 3276 wells after a data screening process was completed. [Copied from the Readme document in the zipped file available at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the Zipped file to your PC. When opened, it will contain four versions of the database: ACCESS, EXCEL, DBF, and CSV formats. The information consists of detailed water analyses from basins in the Rocky Mountain region.

  9. New basins invigorate U.S. gas shales play

    SciTech Connect (OSTI)

    Reeves, S.R.; Kuuskraa, V.A.; Hill, D.G.

    1996-01-22

    While actually the first and oldest of unconventional gas plays, gas shales have lagged the other main unconventional gas resources--tight gas and coalbed methane--in production and proved reserves. Recently, however, with active drilling of the Antrim shales in Michigan and promising results from the Barnett shales of North Texas, this gas play is growing in importance. While once thought of as only an Appalachian basin Devonian-age Ohio shales play and the exclusive domain of regional independents, development of gas shales has expanded to new basins and has began to attract larger E and P firms. Companies such as Amoco, Chevron, and Shell in the Michigan basin and Mitchell Energy and Development and Anadarko Petroleum Corporation in the Fort Worth basin are aggressively pursuing this gas resource. This report, the third of a four part series assessing unconventional gas development in the US, examines the state of the gas shales industry following the 1992 expiration of the Sec. 29 Nonconventional Fuels Tax Credit. The main questions being addressed are first, to what extent are these gas sources viable without the tax credit, and second, what advances in understanding of these reservoirs and what progress in extraction technologies have changed the outlook for this large but complex gas resource?

  10. Atmospheric and soil-gas monitoring for surface leakage at the San Juan

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing Bacteria (Technical Report) | SciTech Connect AssessingBasin CO{sub 2} pilot test

  11. Influences of the Juan de Fuca Eddy on circulation, nutrients, and phytoplankton1 production in the northern California Current System2

    E-Print Network [OSTI]

    Hickey, Barbara

    Current. Results from three years of field studies5 demonstrate that the eddy increases in spatial extent-driven currents in the surface Ekman12 layer cause the eddy to be "leaky" on its southern perimeter. Eddy surfaceInfluences of the Juan de Fuca Eddy on circulation, nutrients, and phytoplankton1 production

  12. Covalent Virus Layer for Mass-Based Biosensing Li-Mei C. Yang, Juan E. Diaz, Theresa M. McIntire, Gregory A. Weiss,* and Reginald M. Penner*

    E-Print Network [OSTI]

    Weiss, Gregory A.

    Covalent Virus Layer for Mass-Based Biosensing Li-Mei C. Yang, Juan E. Diaz, Theresa M. Mc, California 92697-2025 M13 virus particles were covalently attached to a planar gold-coated quartz crystal produced a phage multilayer hav- ing a coverage equivalent to 6.5 close-packed monolay- ers of the virus

  13. Impacts of Peer Churn on P2P Streaming Networks* Xiaohan Kang1, Juan Jose Jaramillo2 and Lei Ying1

    E-Print Network [OSTI]

    Zhang, Junshan

    Impacts of Peer Churn on P2P Streaming Networks* Xiaohan Kang1, Juan Jos´e Jaramillo2 and Lei Ying1 assuming no peer arrival or departure, the impact of peer churn on P2P live streaming has not been well result in higher playout probability in the presence of peer churn. We further analyze the relation

  14. Dinamica poblacional de la plaga Sirex noctilio: endemias y epidemias Juan C.Corley, Jos M.Villacide y Julieta Bettinelli

    E-Print Network [OSTI]

    1 Dinamica poblacional de la plaga Sirex noctilio: endemias y epidemias Juan C.Corley, José M forestaciones de Pinus radiata, cerca del 1900, ocasionando daños menores hasta el primer estallido poblacional árboles debilitados. Esto hace que a bajas densidades sea, en apariencia, beneficiosa ya que ejerce un

  15. K Basins Groundwater Monitoring Task, K Basins Closure Project: Report for January, February, and March 2007

    SciTech Connect (OSTI)

    Peterson, Robert E.

    2007-04-01

    This report describes the results of groundwater monitoring near the K Basins for the period January, February, and March 2007.

  16. Origin Basin Destination State STB EIA STB EIA Northern Appalachian...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Appalachian Basin Florida W - - - - - - - Northern Appalachian Basin Indiana W 20.35 W 64.82 31.4% 1,715 W 75.9% Northern Appalachian Basin Maryland 19.73 19.64 -0.4%...

  17. Sandia Energy - Decision Support for Integrated Energy-Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    versus out of basin production (i.e., tradeoff in energy reliability versus reduced pollution and water use)? The decision support framework will be designed to link a...

  18. Energy Efficiency / Renewable Energy (EE/RE) Projects in Texas Public Schools 

    E-Print Network [OSTI]

    Haberl, J.; Kim, H.; Mukhopadhyay, J.; Cervantes, J.C.; Do, S.; Kim, K.; Cyndi Lewis, C.; Yazdani, B.; Yarborough, J.

    2011-01-01

    . 1 Energy Systems Laboratory Texas Engineering Experiment Station Texas A&M University System Energy Efficiency / Renewable Energy (EE/RE) Projects in Texas Public Schools Jeff Haberl, Hyojin Kim, Jaya Mukhopadhyay, Juan-Carlos Baltazar...-Cevantes, Sung Lok Do, Kee Han Kim, Cyndi Lewis, Bahman Yazdani – Energy Systems Laboratory James Yarborough, U.S.E.P.A. ESL-TR-11-11-01 Energy Systems Laboratory p. 2 Why care about energy efficiency-renewable energy in schools? • Lower energy costs...

  19. Sedimentary basin geochemistry and fluid/rock interactions workshop

    SciTech Connect (OSTI)

    NONE

    1991-12-31

    Fundamental research related to organic geochemistry, fluid-rock interactions, and the processes by which fluids migrate through basins has long been a part of the U.S. Department of Energy Geosciences program. Objectives of this program were to emphasize those principles and processes which would be applicable to a wide range of problems associated with petroleum discovery, occurrence and extraction, waste disposal of all kinds, and environmental management. To gain a better understanding of the progress being made in understanding basinal fluids, their geochemistry and movement, and related research, and to enhance communication and interaction between principal investigators and DOE and other Federal program managers interested in this topic, this workshop was organized by the School of Geology and Geophysics and held in Norman, Oklahoma in November, 1991.

  20. Timing and Tectonic implications of basin inversion in the Nam Con Son Basin and adjacent areas, southern South China Sea 

    E-Print Network [OSTI]

    Olson, Christopher Charles

    2001-01-01

    The Nam Con Son (NCS) Basin, located offshore of SE Vietnam, is one of several Tertiary rift basins that formed during initial Eocene(?)-Oligocene rifting. Following cessation of rifting at the end of Oligocene time, these basins were subjected...

  1. Haynes Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynnMassachusetts:Ohio:WebsiteInformationHawthorneNewHayfield,Wave

  2. Denver Basin Map | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments IncMississippi:DeltaFish Lake Valley Area (DOEDenton

  3. OTRC Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt. Louis, Minnesota:Nulato,Nyack, - Mining andChapterOTRC Wave

  4. Sediment Basin Flume | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewableSMUDSectional Model Flume FacilitiesSediment

  5. Basin Electric Power Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminexInformation Bartholomew County,Creek,Basile, Louisiana:Coop

  6. K Basins Groundwater Monitoring Task, K Basins Closure Project: Report for October, November, and December 2006

    SciTech Connect (OSTI)

    Peterson, Robert E.

    2007-03-22

    This report provides information on groundwater monitoring at the K Basins during October, November, and December 2006. Conditions remained very similar to those reported in the previous quarterly report, with no evidence in monitoring results to suggest groundwater impact from current loss of basin water to the ground. The K Basins monitoring network will be modified in the coming months as a consequence of new wells having been installed near KW Basin as part of a pump-and-treat system for chromium contamination, and new wells installed between the KE Basin and the river to augment long-term monitoring in that area.

  7. CRAD, Emergency Management - Office of River Protection K Basin...

    Energy Savers [EERE]

    CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System May 2004 A...

  8. Structure and Groundwater Flow in the Espanola Basin Near Rio...

    Office of Environmental Management (EM)

    Structure and Groundwater Flow in the Espanola Basin Near Rio Grande and Buckman Wellfield Structure and Groundwater Flow in the Espanola Basin Near Rio Grande and Buckman...

  9. Compound and Elemental Analysis At Northern Basin & Range Region...

    Open Energy Info (EERE)

    Compound and Elemental Analysis At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration...

  10. CRAD, Engineering - Office of River Protection K Basin Sludge...

    Energy Savers [EERE]

    CRAD, Engineering - Office of River Protection K Basin Sludge Waste System CRAD, Engineering - Office of River Protection K Basin Sludge Waste System May 2004 A section of Appendix...

  11. EIS-0522: Melvin R. Sampson Hatchery, Yakima Basin Coho Project...

    Energy Savers [EERE]

    EIS-0522: Melvin R. Sampson Hatchery, Yakima Basin Coho Project; Kittitas County, Washington EIS-0522: Melvin R. Sampson Hatchery, Yakima Basin Coho Project; Kittitas County,...

  12. Selecting major Appalachian basin gas plays

    SciTech Connect (OSTI)

    Patchen, D.G.; Nuttall, B.C.; Baranoski, M.T.; Harper, J.A.; Schwietering, J.F.; Van Tyne, A.; Aminian, K.; Smosna, R.A.

    1992-01-01

    Under a cooperative agreement with the Morgantown Energy Technology Center (METC) the Appalachian Oil and Natural Gas Research Consortium (AONGRC) is preparing a geologic atlas of the major gas plays in the Appalachian basin, and compiling a database for all fields in each geologic play. the first obligation under this agreement was to prepare a topical report that identifies the major gas plays, briefly describes each play, and explains how the plays were selected. Four main objectives have been defined for this initial task: assign each gas reservoir to a geologic play, based on age, trap type, degree of structural control, and depositional environment; organize all plays into geologically-similar groups based on the main criteria that defines each play; prepare a topical report for METC; and transfer this technology to industry through posters and talks at regional geological and engineering meetings including the Appalachian Petroleum Geology Symposium, Northeastern Section meeting of the Geological Society of America, the METC Gas Contractors Review meeting, the Kentucky Oil and Gas Association, and the Appalachian Energy Group.

  13. Selecting major Appalachian basin gas plays

    SciTech Connect (OSTI)

    Patchen, D.G.; Nuttall, B.C.; Baranoski, M.T.; Harper, J.A.; Schwietering, J.F.; Van Tyne, A.; Aminian, K.; Smosna, R.A.

    1992-06-01

    Under a cooperative agreement with the Morgantown Energy Technology Center (METC) the Appalachian Oil and Natural Gas Research Consortium (AONGRC) is preparing a geologic atlas of the major gas plays in the Appalachian basin, and compiling a database for all fields in each geologic play. the first obligation under this agreement was to prepare a topical report that identifies the major gas plays, briefly describes each play, and explains how the plays were selected. Four main objectives have been defined for this initial task: assign each gas reservoir to a geologic play, based on age, trap type, degree of structural control, and depositional environment; organize all plays into geologically-similar groups based on the main criteria that defines each play; prepare a topical report for METC; and transfer this technology to industry through posters and talks at regional geological and engineering meetings including the Appalachian Petroleum Geology Symposium, Northeastern Section meeting of the Geological Society of America, the METC Gas Contractors Review meeting, the Kentucky Oil and Gas Association, and the Appalachian Energy Group.

  14. 2010 Expenditures Report Columbia River Basin Fish

    E-Print Network [OSTI]

    tables 27 Table 1A: Total Cost of BPA Fish & Wildlife Actions 29 Table 1B: Cumulative Expenditures 1978 and habitat, of the Columbia River Basin that have been affected by hydroelectric development. This program fish and wildlife affected by hydropower dams in the Columbia River Basin. The Power Act requires

  15. Great Salt Lake Basin Hydrologic Observatory

    E-Print Network [OSTI]

    Tarboton, David

    Great Salt Lake Basin Hydrologic Observatory Contact Information David Tarboton Utah State University of Utah 135 South 1460 East Rm 719 Salt Lake City, Utah (801) 581-5033 wjohnson. The Great Salt Lake Basin Hydrologic Observatory development team is highly committed to this concept

  16. 6, 839877, 2006 Mexico City basin

    E-Print Network [OSTI]

    Boyer, Edmond

    emitters of air pollutants leading to negative health effects and environmental degradation. The rate altitude basin with air pollutant concentrations above the health limits most days of the year. A mesoscale-dimensional wind patterns in25 the basin and found that the sea-breeze transports the polluted air mass up the moun

  17. Financial Sustainability of International River Basin Organizations

    E-Print Network [OSTI]

    Wolf, Aaron

    Financial Sustainability of International River Basin Organizations Final Report #12;Published by financing of a sample of African, Asian and European River Basin Organizations (RBOs). Its focus contributions to cov- er their regular run-ning costs. To a degree, the financial challenges some African RBOs

  18. IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 19, NO. 3, SEPTEMBER 2004 561 Performance Improvement of Alternators

    E-Print Network [OSTI]

    Perreault, Dave

    IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 19, NO. 3, SEPTEMBER 2004 561 Performance Improvement of Alternators With Switched-Mode Rectifiers Juan Rivas, Student Member, IEEE, David Perreault, Member, IEEE alternators to operate at a load-matched condition at all operating speeds, overcoming the limitation

  19. The second Pacific basin biofuels workshop: Volume 1, Report

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    Biomass is the most flexible renewable energy resource in Hawaii. Today it provides the state with cost-effective fuel for electrical generation and for thermal energy used in sugarcane processing; tomorrow it will provide feedstock to produce liquid and gaseous fuels, which will help meet Hawaii's transportation energy needs. With optimal growing conditions year round and a strong economy based in part on sugarcane and pineapple cultivation, Hawaii is an ideal place to develop fuels from biomass. In November 1984, the Hawaii Natural Energy Institute (HNEI) held the First Pacific Basin BioFuels Workshop. The Plan for Action resulting from this workshop led to significant new program efforts that addressed the advancement of biomass research, development, and use. The Second Pacific Basin BioFuels Workshop was held at the Kauai Resort Hotel in Kapaa, Kauai, April 22-24, 1987. Before and after the workshop, HNEI conducted field visits to biomass energy facilities and test sites on Hawaii, Maui, Oahu, and Kauai. The workshop consisted of presentations, discussion groups, and plenary sessions on growth and yield, conversion, end use, institutional issues, and other topics. The final session focused on recommendations for a Plan for Action update.

  20. VENTURA BASIN LOS ANGELES BASIN CENTRAL COASTAL BASIN W Y T

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSalesa.E. Great Basin OilVENTURA

  1. Received 17 Oct 2014 | Accepted 6 Mar 2015 | Published 21 Apr 2015 Skilful multi-year predictions of tropical trans-basin

    E-Print Network [OSTI]

    Chikamoto, Yoshimitsu

    ocean basins. State-of-the-art climate model forecasts initialized from a realistic ocean state show and energy sectors worldwide. Climate predictions may exhibit enhanced skill on timescales of years-year predictions of tropical trans-basin climate variability Yoshimitsu Chikamoto1, Axel Timmermann1,2, Jing

  2. Neuse River Basin, North Carolina Ecosystem Restoration Project

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Neuse River Basin, North Carolina Ecosystem Restoration Project 5 October 2012 ABSTRACT: The study area encompasses the Neuse River Basin, the third-largest river basin in North Carolina. The Basin, upstream of the city of New Bern, North Carolina. At New Bern the river broadens dramatically and changes

  3. SUTTER BASIN, SUTTER & BUTTE COUNTIES, CA FLOOD RISK MANAGEMENT PROJECT

    E-Print Network [OSTI]

    US Army Corps of Engineers

    SUTTER BASIN, SUTTER & BUTTE COUNTIES, CA FLOOD RISK MANAGEMENT PROJECT 22 October 2013 ABSTRACT: The purpose of the Sutter Basin Project is to reduce overall flood risk to the Sutter Basin study area the risk to property damage due to flooding to the Sutter Basin area located in the Sutter and Butte

  4. Enforceable Security Policies Revisited DAVID BASIN, ETH Zurich

    E-Print Network [OSTI]

    Basin, David

    A Enforceable Security Policies Revisited DAVID BASIN, ETH Zurich VINCENT JUG´E, MINES Paris: Basin, D., Jug´e, V., Klaedtke, F., Zalinescu, E. Enforceable Security Policies Revisited. To appear is an extended version of the conference paper [Basin et al. 2012a]. Author's addresses: D. Basin, F. Klaedtke

  5. Oil and gas resources of the Fergana basin (Uzbekistan, Tadzhikistan, and Kyrgyzstan). Advance summary

    SciTech Connect (OSTI)

    Not Available

    1993-12-07

    The Energy Information Administration (EIA), in cooperation with the US Geological Survey (USGS), has assessed 13 major petroleum producing regions outside of the United States. This series of assessments has been performed under EIA`s Foreign Energy Supply Assessment Program (FESAP). The basic approach used in these assessments was to combine historical drilling, discovery, and production data with EIA reserve estimates and USGS undiscovered resource estimates. Field-level data for discovered oil were used for these previous assessments. In FESAP, supply projections through depletion were typically formulated for the country or major producing region. Until now, EIA has not prepared an assessment of oil and gas provinces in the former Soviet Union (FSU). Before breakup of the Soviet Union in 1991, the Fergana basin was selected for a trial assessment of its discovered and undiscovered oil and gas. The object was to see if enough data could be collected and estimated to perform reasonable field-level estimates of oil and gas in this basin. If so, then assessments of other basins in the FSU could be considered. The objective was met and assessments of other basins can be considered. Collected data for this assessment cover discoveries through 1987. Compared to most other oil and gas provinces in the FSU, the Fergana basin is relatively small in geographic size, and in number and size of most of its oil and gas fields. However, with recent emphasis given to the central graben as a result of the relatively large Mingbulak field, the basin`s oil and gas potential has significantly increased. At least 7 additional fields to the 53 fields analyzed are known and are assumed to have been discovered after 1987.

  6. K Basins Groundwater Monitoring Task, K Basins Closure Project: Report for April, May, and June 2007

    SciTech Connect (OSTI)

    Peterson, Robert E.

    2007-08-08

    This report provides information on groundwater monitoring near the K Basins during April, May, and June 2007. Conditions remained similar to those reported in the previous quarter’s report, with no evidence in monitoring results to suggest groundwater impact from current loss of shielding water from either basin to the ground. During the current quarter, the first results from two new wells installed between KE Basin and the river became available. Groundwater conditions at each new well are reasonably consistent with adjacent wells and expectations, with the exception of anomalously high chromium concentrations at one of the new wells. The K Basins monitoring network will be modified for FY 2008 to take advantage of new wells recently installed near KW Basin as part of a pump-and-treat system for chromium contamination, and also the new wells recently installed between the KE Basin and the river, which augment long-term monitoring capability in that area.

  7. Progress Update: H4 Basin Concrete Pour

    ScienceCinema (OSTI)

    None

    2012-06-14

    The Recovery Act funded project in the H area basin. A concrete ditch built longer than half a mile to prevent contaminated water from expanding and to reduce the footprint on the environment.

  8. The Uinta Basin Case Robert J. Bayer

    E-Print Network [OSTI]

    Utah, University of

    Overburden Tailings Oil Shale Mining Open Pit Underground Ex situ extraction Ex situ thermal conversion EIS for Oil Sands and Oil Shale Ongoing concerns with Basin-wide air quality Wildlife and wildlife

  9. K-Basins S/RIDS

    SciTech Connect (OSTI)

    Watson, D.J.

    1995-09-22

    The Standards/Requirements Identification Document(S/RID) is a list of the Environmental, Safety, and Health (ES&H) and Safeguards and Security (SAS) standards/requirements applicable to the K Basins facility

  10. K-Basins S/RIDS

    SciTech Connect (OSTI)

    Watson, D.J.

    1997-08-01

    The Standards/Requirements Identification Document (S/RID) is a list of the Environmental, Safety, and Health (ES{ampersand}H) and Safeguards and Security (SAS) standards/requirements applicable to the K Basins facility.

  11. Flathead Basin Commission Act of 1983 (Montana)

    Broader source: Energy.gov [DOE]

    This Act establishes the Flathead Basin Commission, the purpose of which is to protect the Flathead Lake aquatic environment, its waters, and surrounding lands and natural resources. The Commission...

  12. River Basins Advisory Commissions (South Carolina)

    Broader source: Energy.gov [DOE]

    The Catawba/Wateree and Yadkin/Pee Dee River Basins Advisory Commissions are permanent public bodies jointly established by North and South Carolina. The commissions are responsible for assessing...

  13. Geologic Characterization of Young Alluvial Basin-Fill Deposits from Drill Hole Data in Yucca Flat, Nye County, Nevada.

    SciTech Connect (OSTI)

    Donald S. Sweetkind; Ronald M. Drake II

    2007-01-22

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada, that has been the site of numerous underground nuclear tests; many of these tests occurred within the young alluvial basin-fill deposits. The migration of radionuclides to the Paleozoic carbonate aquifer involves passage through this thick, heterogeneous section of Tertiary and Quaternary rock. An understanding of the lateral and vertical changes in the material properties of young alluvial basin-fill deposits will aid in the further development of the hydrogeologic framework and the delineation of hydrostratigraphic units and hydraulic properties required for simulating ground-water flow in the Yucca Flat area. This report by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, presents data and interpretation regarding the three-dimensional variability of the shallow alluvial aquifers in areas of testing at Yucca Flat, data that are potentially useful in the understanding of the subsurface flow system. This report includes a summary and interpretation of alluvial basin-fill stratigraphy in the Yucca Flat area based on drill hole data from 285 selected drill holes. Spatial variations in lithology and grain size of the Neogene basin-fill sediments can be established when data from numerous drill holes are considered together. Lithologic variations are related to different depositional environments within the basin including alluvial fan, channel, basin axis, and playa deposits.

  14. Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Columbia River Mainstem Facilities, 1984 Final Report.

    SciTech Connect (OSTI)

    Howerton, Jack; Hwang, Diana

    1984-11-01

    This report reviews the status of past, present, and proposed future wildlife planning and mitigation programs at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Each hydropower facility report is abstracted separately for inclusion in the Energy Data Base.

  15. The role of blowing snow in the hydrometeorology of the Mackenzie River Basin

    E-Print Network [OSTI]

    Dery, Stephen

    ´ery Department of Atmospheric and Oceanic Sciences McGill University Montr´eal, Qu´ebec A thesis submitted in the Mackenzie River Basin (MRB) of Canada, the role of snow in its energy and water budgets are still open

  16. CRAD, Management- Office of River Protection K Basin Sludge Waste System

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2004 assessment of the Management at the Office of River Protection K Basin Sludge Waste System.

  17. CRAD, Conduct of Operations- Office of River Protection K Basin Sludge Waste System

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2004 assessment of the Conduct of Operations program at the Office of River Protection, K Basin Sludge Waste System.

  18. CRAD, Training- Office of River Protection K Basin Sludge Waste System

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2004 assessment of the Environment, Safety and Health program at the Office of River Protection K Basin Sludge Waste System.

  19. CRAD, Occupational Safety & Health- Office of River Protection K Basin Sludge Waste System

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2004 assessment of the Environment, Safety and Health program at the Office of River Protection K Basin Sludge Waste System.

  20. 2007 WTE Conference San Juan, Puerto Rico, March 14, 2007 UNITED STATES ENVIRONMENTAL

    E-Print Network [OSTI]

    Columbia University

    and (MC) Carl Soderberg, Director, USEPA R2, CEPA The management of solid waste in Puerto Rico presents AGENCY, REGION 2 2007 WASTE-TO-ENERGY CONFERENCE Waste-to-Energy: An Integrated Waste Management Option recycling, and source reduction has enormous potential to significantly reduce the amount of solid waste

  1. Role of the basin boundary conditions in gravity wave turbulence

    E-Print Network [OSTI]

    Luc Deike; Benjamin Miquel; Pablo Gutiérrez-Matus; Timothée Jamin; Benoit Semin; Michael Berhanu; Eric Falcon; Félicien Bonnefoy

    2015-09-02

    Gravity wave turbulence is studied experimentally in a large wave basin where irregular waves are generated unidirectionally. The role of the basin boundary conditions (absorbing or reflecting) and of the forcing properties are investigated. To that purpose, an absorbing sloping beach opposite to the wavemaker can be replaced by a reflecting vertical wall. We observe that the wave field properties depend strongly on these boundary conditions. Quasi-one dimensional field of nonlinear waves propagate before to be damped by the beach whereas a more multidirectional wave field is observed with the wall. In both cases, the wave spectrum scales as a frequency-power law with an exponent that increases continuously with the forcing amplitude up to a value close to -4, which is the value predicted by the weak turbulence theory. The physical mechanisms involved are probably different according to the boundary condition used, but cannot be easily discriminated with only temporal measurements. We have also studied freely decaying gravity wave turbulence in the closed basin. No self-similar decay of the spectrum is observed, whereas its Fourier modes decay first as a time power law due to nonlinear mechanisms, and then exponentially due to linear viscous damping. We estimate the linear, nonlinear and dissipative time scales to test the time scale separation that highlights the important role of a large scale Fourier mode. By estimation of the mean energy flux from the initial decay of wave energy, the Kolmogorov-Zakharov constant is evaluated and found to be compatible with a recent theoretical value.

  2. Role of the basin boundary conditions in gravity wave turbulence

    E-Print Network [OSTI]

    Luc Deike; Benjamin Miquel; Pablo Gutiérrez-Matus; Timothée Jamin; Benoit Semin; Sébastien Aumaitre; Michael Berhanu; Eric Falcon; Félicien BONNEFOY

    2014-12-16

    Gravity wave turbulence is studied experimentally in a large wave basin where irregular waves are generated unidirectionally. The role of the basin boundary conditions (absorbing or reflecting) and of the forcing properties are investigated. To that purpose, an absorbing sloping beach opposite to the wavemaker can be replaced by a reflecting vertical wall. We observe that the wave field properties depend strongly on these boundary conditions. Quasi-one dimensional field of nonlinear waves propagate before to be damped by the beach whereas a more multidirectional wave field is observed with the wall. In both cases, the wave spectrum scales as a frequency-power law with an exponent that increases continuously with the forcing amplitude up to a value close to -4, which is the value predicted by the weak turbulence theory. The physical mechanisms involved are probably different according to the boundary condition used, but cannot be easily discriminated with only temporal measurements. We have also studied freely decaying gravity wave turbulence in the closed basin. No self-similar decay of the spectrum is observed, whereas its Fourier modes decay first as a time power law due to nonlinear mechanisms, and then exponentially due to linear viscous damping. We estimate the linear, nonlinear and dissipative time scales to test the time scale separation that highlights the important role of a large scale Fourier mode. By estimation of the mean energy flux from the initial decay of wave energy, the Kolmogorov-Zakharov constant is evaluated and found to be compatible with a recent theoretical value.

  3. Structural and stratigraphic evolution of Shira Mountains, central Ucayali Basin, Peru? 

    E-Print Network [OSTI]

    Sanchez Alvarez, Jaime Orlando

    2008-10-10

    The Ucayali Basin is a Peruvian sub-Andean basin that initially formed during the extensive tectonics of the Early Paleozoic. Originally, the Ucayali Basin was part of a larger basin that extended east of the current ...

  4. Constraints on Neoproterozoic paleogeography and Paleozoic orogenesis from paleomagnetic records of the Bitter Springs Formation, Amadeus Basin, central Australia

    E-Print Network [OSTI]

    Swanson-Hysell, N. L; Maloof, A. C; Kirschvink, J. L; Evans, D. A. D; Halverson, G. P; Hurtgen, M. T

    2012-01-01

    carbonate rocks of the Paris Basin, France: implications forand Kodama, 2009) Paris Basin Limestones (Belkaaloul and

  5. Idaho Cleanup Project CPP-603A basin deactivation waste management 2007

    SciTech Connect (OSTI)

    Croson, D.V.; Davis, R.H.; Cooper, W.B.

    2007-07-01

    The CPP-603A basin facility is located at the Idaho Nuclear Technology and Engineering Center (INTEC) at the U.S. Department of Energy's (DOE) Idaho National Laboratory (INL). CPP-603A operations are part of the Idaho Cleanup Project (ICP) that is managed by CH2M-WG Idaho, LLC (CWI). Once the inventoried fuel was removed from the basins, they were no longer needed for fuel storage. However, they were still filled with water to provide shielding from high activity debris and contamination, and had to either be maintained so the basins did not present a threat to public or worker health and safety, or be isolated from the environment. The CPP-603A basins contained an estimated 50,000 kg (110,200 lbs) of sludge. The sludge was composed of desert sand, dust, precipitated corrosion products, and metal particles from past cutting operations. The sediment also contained hazardous constituents and radioactive contamination, including cadmium, lead, and U-235. An Engineering Evaluation/Cost Analysis (EE/CA), conducted pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), evaluated the risks associated with deactivation of the basins and the alternatives for addressing those risks. The recommended action identified in the Action Memorandum was to perform interim stabilization of the basins. The sludge in the basins was removed and treated in accordance with the Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) and disposed at the INL Radioactive Waste Management Complex (RWMC). A Non-Time Critical Removal Action (NTCRA) was conducted under CERCLA to reduce or eliminate other hazards associated with maintaining the facility. The CERCLA NTCRA included removing a small high-activity debris object (SHADO 1); consolidating and mapping the location of debris objects containing Co-60; removing, treating, and disposing of the basin water; and filling the basins with grout/controlled low strength material (CLSM). The NTCRA is an interim action that reduces the risks to human health and the environment by minimizing the potential for release of hazardous substances. The interim action does not prejudice the final end-state alternative. (authors)

  6. Estimates of Energy Cost Savings Achieved from 2009 IECC Code-Compliant, Single Family Residences in Texas 

    E-Print Network [OSTI]

    Kim, H.; Baltazar, J. C.; Haberl, J.

    2011-01-01

    -01-01 ESTIMATES OF ENERGY COST SAVINGS ACHIEVED FROM 2009 IECC CODE-COMPLIANT, SINGLE-FAMILY RESIDENCES IN TEXAS Hyojin Kim Juan-Carlos Baltazar, Ph.D. Jeff Haberl, Ph.D., P.E. January 2011 (Revised...) ENERGY SYSTEMS LABORATORY Texas Engineering Experiment Station Texas A&M University System 2009 IECC Cost Savings Report, p.i January 2011 Energy Systems Laboratory, Texas A&M University EXECUTIVE SUMMARY This report presents estimates...

  7. Independent External Evaluation of The Columbia Basin Water Transactions Program

    E-Print Network [OSTI]

    Independent External Evaluation of The Columbia Basin Water Transactions Program (2003 of Water Transactions...............................................32 Program Administration......................................................................................................45 Annex 1: Evaluation Matrix Annex 2: Limiting Factors to Water Transactions in the Columbia Basin

  8. Fossil flat-slab subduction beneath the Illinois basin, USA Heather Bedle , Suzan van der Lee

    E-Print Network [OSTI]

    van der Lee, Suzan

    .tecto.2006.06.003 #12;basin and mechanisms of basin formation, and interpret the Illinois basinFossil flat-slab subduction beneath the Illinois basin, USA Heather Bedle , Suzan van der Lee August 2006 Abstract The Illinois basin is one of several well-studied intracratonic sedimentary basins

  9. Methodologies for Estimating Building Energy Savings Uncertainty: Review and Comparison 

    E-Print Network [OSTI]

    Baltazar, J.C.; Sun, Y.; Claridge, D.

    2014-01-01

    CONFERENCE FOR ENHANCED BUILDING OPERATIONS TSINGHUA UNIVERSITY – BEIJING, CHINA –SEPTEMBER 14 -17, 2014 Methodologies for Estimating Building Energy Savings Uncertainty: Review and Comparison Juan-Carlos Baltazar PhD, PE, Yifu Sun EIT, and David Claridge... PhD, P.E. International Conference for Enhanced Building Operations Tsinghua University – Beijing, China –September 14 -17, 2014 ESL-IC-14-09-11a Proceedings of the 14th International Conference for Enhanced Building Operations, Beijing, China...

  10. Geographic Information System At Northern Basin & Range Region...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Northern Basin & Range Region (Blewitt, Et Al., 2003) Exploration...

  11. Columbia River Basin Research Plan Northwest Power and Conservation Council

    E-Print Network [OSTI]

    Columbia River Basin Research Plan By the Northwest Power and Conservation Council February 2006................................................................................................................. 20 (11) Human Development

  12. Tectonic & Structural Controls of Great Basin Geothermal Systems...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Characterizing Structural Controls of EGS Candidate and Conventional Geothermal Reservoirs in the Great Basin: Developing...

  13. Simplified vibratory characterization of alluvial basins

    E-Print Network [OSTI]

    Semblat, Jean-François; Duval, Anne-Marie

    2011-01-01

    For the analysis of seismic wave amplification, modal methods are interesting tools to study the modal properties of geological structures. Modal approaches mainly lead to information on such parameters as fundamental frequencies and eigenmodes of alluvial basins. For a specific alluvial deposit in Nice (France), a simplified modal approach involving the Rayleigh method is considered. This approach assumes a set of admissible shape functions for the eigenmodes and allows a fast estimation of the fundamental frequency of the basin. The agreement between modal numerical results and experimental ones is satisfactory. The simplified modal method then appears as an efficient mean for the global vibratory characterization of geological structures towards resonance.

  14. Atlas of major Appalachian basin gas plays

    SciTech Connect (OSTI)

    Aminian, K.; Avary, K.L.; Baranoski, M.T.; Flaherty, K.; Humphreys, M.; Smosna, R.A.

    1995-06-01

    This regional study of gas reservoirs in the Appalachian basin has four main objectives: to organize all of the -as reservoirs in the Appalachian basin into unique plays based on common age, lithology, trap type and other geologic similarities; to write, illustrate and publish an atlas of major gas plays; to prepare and submit a digital data base of geologic, engineering and reservoir parameters for each gas field; and technology transfer to the oil and gas industry during the preparation of the atlas and data base.

  15. West Basin Municipal Water District, California; Water/Sewer

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Exhibit D #12;Summary: West Basin Municipal Water District, California; Water/Sewer Primary Credi90023!! #12;Sttmma1·y: West Basin Municipal Water District, California; Water/Sewer Credit Profile US$16.STANDARDANDPOORS.COM/RATJNGSDJRECT MAY31 2013 2 I126639 I 301008236 #12;Summary: West Basin Municipal Water District, California; Water/Sewer

  16. Part One: Overview I. The Columbia River Basin

    E-Print Network [OSTI]

    included the construction of dams throughout the basin for such purposes as hydroelectric power, flood tributaries comprise one of the most intensively developed river basins for hydroelectric power in the world. Hydroelectric dams in the basin (Links marked are external, not part of the adopted Program) 7 #12;produce

  17. POLLUTION IN THE LOWER COLUMBIA BASIN IN 1948-

    E-Print Network [OSTI]

    POLLUTION IN THE LOWER COLUMBIA BASIN IN 1948- With particular reference to the Willamette River, intended to aid or direct management or utilization praotices and as gi.\\ides for administrative POLLUTION IN THE LOTOR COLIMRIA BASIN IN 1948 WITH PARTI CirW.R REFERENCE TO THE WTLLAJTETTE BASIN

  18. NE Pacific Basin --Tagging Data Kate Myers, Ph.D.

    E-Print Network [OSTI]

    Ocean B: NE Pacific Basin --Tagging Data Kate Myers, Ph.D. Principal Investigator, High Seas Salmon ocean tagging research on Columbia River salmon and steelhead migrating in the NE Pacific Basin R. Basin in 1995-2004. Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, B

  19. Modeling thermal convection in supradetachment basins: example from western Norway

    E-Print Network [OSTI]

    Andersen, Torgeir Bjørge

    Modeling thermal convection in supradetachment basins: example from western Norway A. SOUCHE*, M. DABROWSKI AND T. B. ANDERSEN Physics of Geological Processes (PGP), University of Oslo, Oslo, Norway basins of western Norway are examples of supradetachment basins that formed in the hanging wall

  20. Recommendations for 15% Above-Code Energy Efficiency Measures for Commercial Office Building 

    E-Print Network [OSTI]

    Cho, S.; Mukhopadhyay, J.; Culp, C.; Haberl, J.; Yazdani, B.

    2007-01-01

    FOR 15% ABOVE-CODE ENERGY EFFICIENCY MEASURES FOR COMMERCIAL OFFICE BUILDINGS Soolyeon Cho Graduate Research Assistant Jaya Mukhopadhyay Research Associate Charles Culp, Ph.D., P.E. Associate Director Jeff Haberl, Ph.D., P.E. Associate Director... Bahman Yazdani, P.E. Associate Director Energy Systems Laboratory Texas Engineering Experiment Station Texas A&M University System ACKNOWLEDGEMENTS Faculty/Staff: Tom Fitzpatrick, Don Gilman, Mushtaq Ahmed, Betty Liu, Juan-Carlos Baltazar, Sherrie...

  1. BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO

    SciTech Connect (OSTI)

    Ernest A. Mancini; Donald A. Goddard

    2005-08-01

    The principal research effort for Year 3 of the project is basin modeling and petroleum system identification, comparative basin evaluation and resource assessment. In the first six (6) months of Year 3, the research focus is on basin modeling and petroleum system identification and the remainder of the year the emphasis is on the comparative basin evaluation and resource assessment. No major problems have been encountered to date, and the project is on schedule.

  2. ZEBRA plus ultracapacitors: A good match for energy efficient EVs Juan Dixon, Micah Ortzar, Eduardo Arcos and Ian Nakashima.

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    to be improved for fast acceleration and good regenerative braking. With this purpose in mind, an ultra capacitor of batteries show reduced acceleration and reduced regenerative braking capability. One example of this kind be observed, the ZEBRA does not have a good specific power for braking and acceleration [2]. To improve

  3. Rock Sampling At San Juan Volcanic Field Area (Larson & Jr, 1986) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewable Energy|Gas and Electric

  4. Isotopic Analysis At San Juan Volcanic Field Area (Larson & Jr, 1986) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on OpeneiAlbanianStudy)savings time.EnergyInformationOpen

  5. Modeling-Computer Simulations At San Juan Volcanic Field Area (Clarkson &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsource History View NewOpenEnergy

  6. Evolution of extensional basins and basin and range topography west of Death Valley, California

    E-Print Network [OSTI]

    Hodges, K. V.; McKenna, L. W.; Stock, J.; Knapp, J.; Page, L.; Sternlof, K.; Silverberg, D.; Wust, G.; Walker, J. Douglas

    1989-06-01

    complex in late Miocene (?) – early Pliocene time. The principal growth structure for the basin was the Emigrant detachment, which initiated and moved at a low angle. Modern Panamint Valley, west of the range, developed as a consequence of Late Pliocene...

  7. 8 River Basin Closure and Institutional Change in Mexico's LermaChapala Basin

    E-Print Network [OSTI]

    Scott, Christopher

    for irrigation expansion, and the drilling of new wells and the construction of new dams has been prohibited-exploitation, and influenced by the vested interests of the hydraulic ©CAB International 2005. Irrigation and River Basin

  8. Lower crustal ow and the role of shear in basin subsidence: an example from the Dead Sea basin

    E-Print Network [OSTI]

    ten Brink, Uri S.

    Lower crustal £ow and the role of shear in basin subsidence: an example from the Dead Sea basin, MA 02543, USA Abstract We interpret large-scale subsidence (5^6 km depth) with little attendant that lower crustal flow would occur within the time frame of basin subsidence if the viscosity is 9 7U1019 ^1

  9. Columbia Basin Data Center The development of a Columbia Basin Data Center will provide extensive benefits for the

    E-Print Network [OSTI]

    Columbia Basin Data Center 4/24/06 The Vision The development of a Columbia Basin Data Center, with the working title of the Columbia Basin Data Center would be charged with ensuring that important data. The Data Center would not be responsible for collecting and compiling data. That function would remain

  10. BLUE RIVER BASIN (Dodson Industrial District)

    E-Print Network [OSTI]

    US Army Corps of Engineers

    BLUE RIVER BASIN (Dodson Industrial District) Kansas City, Missouri MODIFICATION REQUEST capability to support this request. PROJECT PURPOSE Dodson Industrial District is located along the Blue of a 6,800 foot long levee- floodwall along the north bank of the Blue River from the Bannister Road

  11. TURKEY CREEK BASIN Kansas and Missouri

    E-Print Network [OSTI]

    US Army Corps of Engineers

    TURKEY CREEK BASIN Kansas and Missouri MODIFICATION REQUEST Modification to the authorized total the Turkey Creek channel and runoff from the adjacent hillsides, and the current depth of flooding along in the past decade. Additionally, the Turkey Creek tunnel constructed in 1919 to divert the channel away from

  12. Fast Facts About the Columbia River Basin

    E-Print Network [OSTI]

    cost and availability, and the effect of the hydropower system on fish and wildlife. columbia River, and fish and wildlife affected by, the columbia River Basin hydropower dams. the council is a unique of the Council under the Act are to: 1. Develop a regional power plan to assure the Northwest an adequate

  13. Geological Modeling of Dahomey and Liberian Basins 

    E-Print Network [OSTI]

    Gbadamosi, Hakeem B.

    2010-01-16

    in the last 10 years or so. We proposed geological descriptions of these two Basins. The key characteristics of the two models are the presence of channels and pinch-outs for depths of between 1 km and 2 km (these values are rescaled for our numerical purposes...

  14. Summary status of K Basins sludge characterization

    SciTech Connect (OSTI)

    Baker, R.B.

    1995-01-20

    A number of activities are underway as part of the Spent Nuclear Fuels Project (SNFP) related to the processing and disposing of sludge in the 105-K Basins (K Basins). Efforts to rigorously define data requirements for these activities are being made using the Data Quality Objectives (DQO) process. Summaries of current sludge characterization data are required to both help support this DQO process and to allow continued progress with on-going engineering activities (e.g., evaluations of disposal alternatives). This document provides the status of K Basins sludge characterization data currently available to the Nuclear Fuel Evaluations group. This group is tasked by the SNFP to help develop and maintain the characterization baseline for the K Basins. The specific objectives of this document are to: (1) provide a current summary (and set of references) of sludge characterization data for use by SNFP initiatives, to avoid unnecessary duplication of effort and to support on-going initiatives; (2) submit these data to an open forum for review and comment, and identify additional sources of significant data that may be available; (3) provide a summary of current data to use as part of the basis to develop requirements for additional sludge characterization data through the DQO process; (4) provide an overview of the intended activities that will be used to develop and maintain the sludge characterization baseline.

  15. Okanogan Basin Spring Spawner Report for 2007.

    SciTech Connect (OSTI)

    Colville Tribes, Department of Fish & Wildlife

    2007-09-01

    The Okanogan Basin Monitoring and Evaluation Program collected data related to spring spawning anadromous salmonid stocks across the entire Okanogan River basin. Data were collected using redd surveys, traps, underwater video, and PIT-tag technology then summarized and analyzed using simple estimate models. From these efforts we estimated that 1,266 summer steelhead spawned in the Okanogan River basin and constructed 552 redds;152 of these fish where of natural origin. Of these, 121 summer steelhead, including 29 of natural origin, created an estimated 70 redds in the Canadian portion of the Okanagan basin. We estimated summer steelhead spawner escapement into each sub-watershed along with the number from natural origin and the number and density of redds. We documented redd desiccation in Loup Loup Creek, habitat utilization in Salmon Creek as a result of a new water lease program, and 10 spring Chinook returning to Omak Creek. High water through most of the redd survey period resulted in development of new modeling techniques and allowed us to survey additional tributaries including the observation of summer steelhead spawning in Wanacut Creek. These 2007 data provide additional support that redd surveys conducted within the United States are well founded and provide essential information for tracking the recovery of listed summer steelhead. Conversely, redd surveys do not appear to be the best approach for enumerating steelhead spawners or there distribution within Canada. We also identified that spawning distributions within the Okanogan River basin vary widely and stocking location may play an over riding roll in this variability.

  16. EA-1689: Final Environmental Assessment | Department of Energy

    Office of Environmental Management (EM)

    - ND 1 Basin Electric Power Cooperative After considering many possible locations for wind energy development, two sites in North Dakota were identified that have a sufficient...

  17. Carbon Dioxide Capture and Transportation Options in the Illinois Basin

    SciTech Connect (OSTI)

    M. Rostam-Abadi; S. S. Chen; Y. Lu

    2004-09-30

    This report describes carbon dioxide (CO{sub 2}) capture options from large stationary emission sources in the Illinois Basin, primarily focusing on coal-fired utility power plants. The CO{sub 2} emissions data were collected for utility power plants and industrial facilities over most of Illinois, southwestern Indiana, and western Kentucky. Coal-fired power plants are by far the largest CO{sub 2} emission sources in the Illinois Basin. The data revealed that sources within the Illinois Basin emit about 276 million tonnes of CO2 annually from 122 utility power plants and industrial facilities. Industrial facilities include 48 emission sources and contribute about 10% of total emissions. A process analysis study was conducted to review the suitability of various CO{sub 2} capture technologies for large stationary sources. The advantages and disadvantages of each class of technology were investigated. Based on these analyses, a suitable CO{sub 2} capture technology was assigned to each type of emission source in the Illinois Basin. Techno-economic studies were then conducted to evaluate the energy and economic performances of three coal-based power generation plants with CO{sub 2} capture facilities. The three plants considered were (1) pulverized coal (PC) + post combustion chemical absorption (monoethanolamine, or MEA), (2) integrated gasification combined cycle (IGCC) + pre-combustion physical absorption (Selexol), and (3) oxygen-enriched coal combustion plants. A conventional PC power plant without CO2 capture was also investigated as a baseline plant for comparison. Gross capacities of 266, 533, and 1,054 MW were investigated at each power plant. The economic study considered the burning of both Illinois No. 6 coal and Powder River Basin (PRB) coal. The cost estimation included the cost for compressing the CO{sub 2} stream to pipeline pressure. A process simulation software, CHEMCAD, was employed to perform steady-state simulations of power generation systems and CO{sub 2} capture processes. Financial models were developed to estimate the capital cost, operations and maintenance cost, cost of electricity, and CO{sub 2} avoidance cost. Results showed that, depending on the plant size and the type of coal burned, CO{sub 2} avoidance cost is between $47/t to $67/t for a PC +MEA plant, between $22.03/t to $32.05/t for an oxygen combustion plant, and between $13.58/t to $26.78/t for an IGCC + Selexol plant. A sensitivity analysis was conducted to evaluate the impact on the CO2 avoidance cost of the heat of absorption of solvent in an MEA plant and energy consumption of the ASU in an oxy-coal combustion plant. An economic analysis of CO{sub 2} capture from an ethanol plant was also conducted. The cost of CO{sub 2} capture from an ethanol plant with a production capacity of 100 million gallons/year was estimated to be about $13.92/t.

  18. Thickness of proximal ejecta from the Orientale Basin from Lunar Orbiter Laser Altimeter (LOLA) data: Implications for multi-ring basin formation

    E-Print Network [OSTI]

    Fassett, Caleb I.

    Quantifying the ejecta distribution around large lunar basins is important to understanding the origin of basin rings, the volume of the transient cavity, the depth of sampling, and the nature of the basin formation ...

  19. Free Energy Surfaces from Single-Distance Information Philipp Schuetz,

    E-Print Network [OSTI]

    Caflisch, Amedeo

    Free Energy Surfaces from Single-Distance Information Philipp Schuetz, Rene´ Wuttke, Benjamin We propose a network-based method for determining basins and barriers of complex free energy surfaces for the iterative determination of individual basins by the minimum-cut-based free energy profile, a barrier

  20. Study of gas production potential of New Albany Shale (group) in the Illinois basin

    SciTech Connect (OSTI)

    Hasenmueller, N.R.; Boberg, W.S.; Comer, J.; Smidchens, Z. (Indiana Geological Survey, Bloomington (United States)); Frankie, W.T.; Lumm, D.K. (Illinois State Geological Survey, Champaign (United States)); Hamilton-Smith, T.; Walker, J.D. (Kentucky Geological Survey, Lexington (United States))

    1991-08-01

    The New Albany Shale (Devonian and Mississippian) is recognized as both a source rock and gas-producing reservoir in the Illinois basin. The first gas discovery was made in 1885, and was followed by the development of several small fields in Harrison County, Indiana, and Meade County, Kentucky. Recently, exploration for and production of New Albany gas has been encouraged by the IRS Section 29 tax credit. To identify technology gaps that have restricted the development of gas production form the shale gas resource in the basin, the Illinois Basin Consortium (IBC), composed of the Illinois, Indiana, and Kentucky geological surveys, is conducting a cooperative research project with the Gas Research Institute (GRI). An earlier study of the geological and geochemical aspects of the New Albany was conducted during 1976-1978 as part of the Eastern Gas Shales Project (EGSP) sponsored by the Department of Energy (DOE). The current IBC/GRI study is designed to update and reinterpret EGSP data and incorporate new data obtained since 1978. During the project, relationships between gas production and basement structures are being emphasized by constructing cross sections and maps showing thickness, structure, basement features, and thermal maturity. The results of the project will be published in a comprehensive final report in 1992. The information will provide a sound geological basis for ongoing shale-gas research, exploration, and development in the basin.

  1. Using seismic refraction to assess geothermal potential: an updated view of crustal thickness in the Great Basin

    E-Print Network [OSTI]

    , heat flow can be higher, and the potential for geothermal energy may be greater. In addition, crustalUsing seismic refraction to assess geothermal potential: an updated view of crustal thickness, Great Basin, crustal thickness, geothermal potential, Battle Mountain, Walker Lane, Nevada, geophysics

  2. SPATIAL ATTACHMENT-SITE PREFERENCES OF MACROECTOPARASITES ON ATLANTIC STURGEONS ACIPENSER OXYRINCHUS IN MINAS BASIN, BAY OF FUNDY, CANADA

    E-Print Network [OSTI]

    Shutler, Dave

    some parasites affect fish health and population biology. Parasites can cause hosts to use energy coast of North America, from Labrador to the Gulf of Mexico (Dadswell, 2006). They are the largest, New Brunswick, Canada (Dadswell, 2006). In the summer, they aggregate in Minas Basin and feed

  3. Groundwater availability and flow processes in the Williston and Powder River basins in the Northern Great Plains

    E-Print Network [OSTI]

    Torgersen, Christian

    Groundwater availability and flow processes in the Williston and Powder River basins Center, Cheyenne, WY 4 Office of Groundwater, Denver, CO 5 Oklahoma Water Science Center, Oklahoma City in Montana and Wyoming, provides an opportunity to study the water-energy nexus within a groundwater context

  4. Groundwater Availability Within the Salton Sea Basin Final Report

    SciTech Connect (OSTI)

    Tompson, A; Demir, Z; Moran, J; Mason, D; Wagoner, J; Kollet, S; Mansoor, K; McKereghan, P

    2008-01-11

    It is widely recognized that increasing demands for water in Southern California are being affected by actions to reduce and redirect the amount of water imported from the Colorado River. In the Imperial Valley region, for example, import reductions will not only affect agricultural users but also could produce significant collateral impacts on the level and quality of water in the Salton Sea, its regional ecology, or even the long term air quality in the greater basin. The notion of using groundwater in the Imperial Valley as an additional source for agricultural or domestic needs, energy production, or Salton Sea restoration efforts, so as to offset reductions in imported water, is not a new concept. Even though it has been discussed recently (e.g., LLNL, 2002), the idea goes back, in part, to several studies performed by the US Department of Interior and other agencies that have indicated that there may be substantial, usable amounts of groundwater in some portions of the Imperial Valley. It has been estimated, for example, that between 1.1 and 3 billion acre-feet (AF) of groundwater lie within the extended, deep basin underlying the valley and Salton Sea region, even though much of it may be unrecoverable or too poor in its quality (Imperial County, 1997). This is a significant volume with respect to the total annual precipitation volume received in California, whose average is close to 200 million (or 0.2 billion) AF per year (DWR, 1998), and especially with respect to the total annual precipitation received in the Salton Sea watershed itself, which we estimate (Appendix A) to be approximately 2.5 million acre feet (MAF) per year. Clearly, a thorough appraisal of the groundwater resources in the Imperial Valley and Salton Sea region--i.e., an assessment of their overall physical availability--will be needed to determine how they can be used and managed to suit new or redirected demands in the region. Development of an improved or updated groundwater assessment in the Salton Sea Basin is the subject of the project described in this report. Much of the project work was done in cooperation with the US Bureau of Reclamation, Lower Colorado Region Office ('Reclamation'), which manages the Salton Sea Restoration project for the US Department of the Interior, and complements other recent assessment efforts (e.g., Imperial County, 1995). In this context, the notion of groundwater availability is defined by four separate, but interrelated concepts or components: (1) Volume and Capacity--This refers to the volume of groundwater available in storage in (or the related storage capacity of) the sediments and geologic media that comprise a groundwater basin. The volume of groundwater in a basin will vary in time as a function of recharge, well production, and land subsidence. (2) Producibility--This refers to the ease or difficulty of extracting groundwater in a basin from wells. Groundwater producibility will be affected by well depth and the formation permeability surrounding the open intervals in wells. (3) Quality--This refers to the extent that water produced from wells is potable or otherwise suitable for domestic or other uses. It may also refer to the chemical compositions of groundwater that are unrelated to potability or suitability issues. Groundwater quality will be affected by its residence time and flow pathway in the formation and will also be influenced by the quality of its original source before entering the groundwater regime. (4) Renewability and Recharge--This refers to the extent that groundwater is recharged to the basin as part of the natural hydrologic cycle or other artificial means. Groundwater renewability is normally a function of recharge derived from precipitation (and thus a function of regional climate), but may also be affected in local areas by irrigation, leaking canals, aquifer storage and recovery operations, and so forth. Along with the other factors, renewability will strongly affect how much water can be safely produced from a basin from one year to the next. In this report, we specificall

  5. Caribbean basin framework, 2: Northern Central America

    SciTech Connect (OSTI)

    Tyburski, S.A.; Gordon, M.B.; Mann, P. (Univ. of Texas, Austin (United States))

    1991-03-01

    There are four Jurassic to Recent basin-forming periods in northern Central America (honduras, Honduran Borderlands, Belize, Guatemala, northern Nicaragua): (1) Middle Jurassic-Early Cretaceous rifting and subsidence along normal faults in Honduras and Guatemala; rifts are suggested but are not well defined in Honduras by the distribution of clastic sediments and associated volcanic rocks. Rifting is attributed to the separation of Central America from the southern margin of the North American plate; (2) Cretaceous subsidence recorded by the development of a Cretaceous carbonate platform in Honduras, Guatemala, and Belize; subsidence is attributed to thermal subsidence of the rifted margins of the various blocks; (3) Late Cretaceous-Recent development of a volcanic arc along the western margin of Middle America and the northern margin of Honduras; (4) Late Cretaceous large-scale folding in Honduras, ophiolite obduction, and formation of a foredeep basin in Guatemala (Sepur trough); deformation is attributed to the collision between a north-facing arc in northern Honduras and the Nicaraguan Rise and the passive margin of Guatemala and Belize; and (5) Eocene to Recent strike-slip faulting along the present-day North American-Caribbean plate boundary in Guatemala, northern Honduras, and Belize. Strike-slip faults and basins form a California-type borderlands characterized by elongate basins that appear as half-grabens in profile. Counterclockwise rotation of the central honduras plateau, a thicker and topographically higher-than-average block within the plate boundary zone, is accommodated by rifting or strike-slip faults at its edges.

  6. Hydrocarbon habitat of the west Netherlands basin

    SciTech Connect (OSTI)

    De Jager, J. (Nederlandse Aardolie Maatschappij, Assen (Netherlands)); Doyle, M. (Petroleum Development Oman, Muscat (Oman)); Grantham, P. (KSEPL/Shell Research, Rijswijk (Netherlands)); Mabillard, J. (Shell Nigeria, Port Harcourt (Nigeria))

    1993-09-01

    The complex West Netherlands Basin contains oil and gas in Triassic and Upper Jurassic to Cretaceous clastic reservoir sequences. The understanding has always been that the Carboniferous coal measures have generated only gas and the Jurassic marine Posidonia Shale only oil. However, detailed geochemical analyses show that both source rocks have generated oil and gas. Geochemical fingerprinting established a correlation of the hydrocarbons with the main source rocks. The occurrence of these different hydrocarbons is consistent with migration routes. Map-based charge modeling shows that the main phase of hydrocarbon generation occurred prior to the Late Cretaceous inversion of the West Netherlands Basin. However, along the southwest flank of the basin and in lows between the inversion highs, significant charge continued during the Tertiary. Biodegradation of oils in Jurassic and Cretaceous reservoirs occurred during the earliest Tertiary, but only in reservoirs that were at that time at temperatures of less then 70 to 80[degrees]C, where bacteria could survive. This study shows that also in a mature hydrocarbon province an integrated hydrocarbon habitat study with modern analyses and state-of-the-art technology can lead to a much improved understanding of the distribution of oil and gas in the subsurface. The results of this study will allow a better risk assessment for remaining prospects, and an improved prediction of the type of trapped hydrocarbons in terms of gas, oil, and biodegraded oil.

  7. 105-K Basin Material Design Basis Feed Description for Spent Nuclear Fuel (SNF) Project Facilities VOL 1 Fuel

    SciTech Connect (OSTI)

    PACKER, M.J.

    1999-11-04

    Metallic uranium Spent Nuclear Fuel (SNF) is currently stored within two water filled pools, 105-KE Basin (KE Basin) and 105-KW Basin (KW Basin), at the United States Department of Energy (U.S. DOE) Hanford Site, in southeastern Washington State. The Spent Nuclear Fuel Project (SNF Project) is responsible to DOE for operation of these fuel storage pools and for the 2100 metric tons of SNF materials that they contain. The SNF Project mission includes safe removal and transportation of all SNF from these storage basins to a new storage facility in the 200 East Area. To accomplish this mission, the SNF Project modifies the existing KE Basin and KW Basin facilities and constructs two new facilities: the 100 K Area Cold Vacuum Drying Facility (CVDF), which drains and dries the SNF; and the 200 East Area Canister Storage Building (CSB), which stores the SNF. The purpose of this document is to describe the design basis feed compositions for materials stored or processed by SNF Project facilities and activities. This document is not intended to replace the Hanford Spent Fuel Inventory Baseline (WHC 1994b), but only to supplement it by providing more detail on the chemical and radiological inventories in the fuel (this volume) and sludge. A variety of feed definitions is required to support evaluation of specific facility and process considerations during the development of these new facilities. Six separate feed types have been identified for development of new storage or processing facilities. The approach for using each feed during design evaluations is to calculate the proposed facility flowsheet assuming each feed. The process flowsheet would then provide a basis for material compositions and quantities which are used in follow-on calculations.

  8. STP K Basin Sludge Sample Archive at the Pacific Northwest National Laboratory FY2014

    SciTech Connect (OSTI)

    Fiskum, Sandra K.; Smoot, Margaret R.; Schmidt, Andrew J.

    2014-06-01

    The Pacific Northwest National Laboratory (PNNL) currently houses 88 samples (~10.5 kg) of K Basin sludge (81 wet and seven dry samples) on behalf of the Sludge Treatment Project (STP), which is managed for the U.S. Department of Energy (DOE) by the CH2M Hill Plateau Remediation Company (CHPRC). Selected samples are intended to serve, in part, as sentinels to enhance understanding of sludge properties after long-term storage, and thus enhance understanding of sludge behavior following transfer to sludge transfer and storage containers (STSCs) and storage at the Hanford 200 Area central plateau. In addition, remaining samples serve in contingency for future testing requirements. At PNNL, the samples are tracked and maintained under a prescriptive and disciplined monthly sample-monitoring program implemented by PNNL staff. This report updates the status of the K Basin archive sludge sample inventory to April 2014. The previous inventory status report, PNNL 22245 (Fiskum et al. 2013, limited distribution report), was issued in February of 2013. This update incorporates changes in the inventory related to repackaging of 17 samples under test instructions 52578 TI052, K Basin Sludge Sample Repackaging for Continued Long Term Storage, and 52578 TI053, K Basin Sludge Sample Repackaging Post-2014 Shear Strength Measurements. Note that shear strength measurement results acquired in 2014 are provided separately. Specifically, this report provides the following: • a description of the K Basin sludge sample archive program and the sample inventory • a summary and images of the samples that were repackaged in April 2014 • up-to-date images and plots of the settled density and water loss from all applicable samples in the inventory • updated sample pedigree charts, which provide a roadmap of the genesis and processing history of each sample in the inventory • occurrence and deficiency reports associated with sample storage and repackaging

  9. Playa basin development, southern High Plains, Texas and New Mexico

    SciTech Connect (OSTI)

    Gustavson, T.C. (Univ. of Texas, Austin, TX (United States)); Holliday, V.T. (Univ. of Wisconsin, Madison, WI (United States))

    1992-01-01

    More than 20,000 playa basins have formed on fine-grained eolian sediments of the Quaternary Blackwater Draw and Tertiary Ogallala Formations on the High Plains of TX and NM. Numerous hypotheses have been proposed for the development of playa basins: (1) subsidence due to dissolution of underlying Permian bedded salt, (2) dissolution of soil carbonate and piping of clastic sediment into the subsurface, (3) animal activity, and (4) deflation. Evidence of eolian processes includes lee dunes and straightened shorelines on the eastern and southern margins of many playas. Lee dunes, which occur on the eastern side of ca 15% of playa basins and contain sediment deflated from adjacent playas, are cresentic to oval in plain view and typically account for 15--40% of the volume of the playa basin. Quaternary fossil biotas and buried calcic soils indicate that grasslands and semi-arid to aid climatic conditions prevailed as these basins formed. Evidence of fluviolacustrine processes in playa basins includes centripetal drainage leading to fan deltas at playa margins and preserved deltaic and lacustrine sediments. Playa basins expanded as fluvial processes eroded basin slopes and carried sediment to the basin floor where, during periods of minimal vegetation cover, loose sediment was removed by deflation. Other processes that played secondary roles in the development of certain playa basins include subsidence induced by dissolution of deeply buried Permian salt, dissolution of soil carbonate and piping, and animal activity. Two small lake basins in Gray County, TX, occur above strata affected by dissolution-induced subsidence. Dissolution of soil carbonate was observed in exposures and cores of strata underlying playa basins. Cattle, and in the past vast numbers of migrating buffalo, destroy soil crusts in dry playas, making these sediments more susceptible to deflation, and carry sediment out of flooded playas on their hooves.

  10. K basins interim remedial action health and safety plan

    SciTech Connect (OSTI)

    DAY, P.T.

    1999-09-14

    The K Basins Interim Remedial Action Health and Safety Plan addresses the requirements of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), as they apply to the CERCLA work that will take place at the K East and K West Basins. The provisions of this plan become effective on the date the US Environmental Protection Agency issues the Record of Decision for the K Basins Interim Remedial Action, currently planned in late August 1999.

  11. NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS

    SciTech Connect (OSTI)

    Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

    2002-02-05

    From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory pyrolysis methods have provided much information on the origins of deep gas. Technologic problems are one of the greatest challenges to deep drilling. Problems associated with overcoming hostile drilling environments (e.g. high temperatures and pressures, and acid gases such as CO{sub 2} and H{sub 2}S) for successful well completion, present the greatest obstacles to drilling, evaluating, and developing deep gas fields. Even though the overall success ratio for deep wells is about 50 percent, a lack of geological and geophysical information such as reservoir quality, trap development, and gas composition continues to be a major barrier to deep gas exploration. Results of recent finding-cost studies by depth interval for the onshore U.S. indicate that, on average, deep wells cost nearly 10 times more to drill than shallow wells, but well costs and gas recoveries vary widely among different gas plays in different basins. Based on an analysis of natural gas assessments, many topical areas hold significant promise for future exploration and development. One such area involves re-evaluating and assessing hypothetical unconventional basin-center gas plays. Poorly-understood basin-center gas plays could contain significant deep undiscovered technically-recoverable gas resources.

  12. Geographic Information System At Northern Basin & Range Region...

    Open Energy Info (EERE)

    Nash & Johnson, 2003) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness...

  13. Geographic Information System At Northern Basin & Range Region...

    Open Energy Info (EERE)

    Location Northern Basin and Range Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown...

  14. Thermal Gradient Holes At Northern Basin & Range Region (Pritchett...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Northern Basin & Range Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes...

  15. COAL QUALITY AND GEOCHEMISTRY, POWDER RIVER BASIN, WYOMING AND MONTANA

    E-Print Network [OSTI]

    in the Powder River Basin in Wyoming and Montana (fig. PQ-1) is considered to be "clean coal." For the location

  16. Targeting Of Potential Geothermal Resources In The Great Basin...

    Open Energy Info (EERE)

    From Regional To Basin-Scale Relationship Between Geodetic Strain And Geological Structures Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

  17. Geographic Information System At Northern Basin & Range Region...

    Open Energy Info (EERE)

    for Geothermal Systems in The Great Basin Using a Geographic Information System (GIS) - Part II, Coolbaugh, Zehner, Raines, Shevenell, Minor, Sawatzky and Oppliger. The...

  18. Variable Crustal Thickness In The Western Great Basin- A Compilation...

    Open Energy Info (EERE)

    php?titleVariableCrustalThicknessInTheWesternGreatBasin-ACompilationOfOldAndNewRefractionData&oldid793047" Categories: Missing Required Information Reference...

  19. Refraction Survey At Northern Basin & Range Region (Heimgartner...

    Open Energy Info (EERE)

    Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Refraction Survey At Northern Basin & Range Region (Heimgartner, Et Al., 2005)...

  20. Data Acquisition-Manipulation At Northern Basin & Range Region...

    Open Energy Info (EERE)

    Data Acquisition-Manipulation At Northern Basin & Range Region (Coolbaugh, Et Al., 2005 - 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data...

  1. Geographic Information System At Nw Basin & Range Region (Nash...

    Open Energy Info (EERE)

    Geographic Information System At Nw Basin & Range Region (Nash & Johnson, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic...

  2. Modeling-Computer Simulations At Nw Basin & Range Region (Pritchett...

    Open Energy Info (EERE)

    Modeling-Computer Simulations At Nw Basin & Range Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer...

  3. Data Acquisition-Manipulation At Nw Basin & Range Region (Coolbaugh...

    Open Energy Info (EERE)

    Data Acquisition-Manipulation At Nw Basin & Range Region (Coolbaugh, Et Al., 2005 - 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data...

  4. Compound and Elemental Analysis At Nw Basin & Range Region (Coolbaugh...

    Open Energy Info (EERE)

    Compound and Elemental Analysis At Nw Basin & Range Region (Coolbaugh, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and...

  5. Geographic Information System At Nw Basin & Range Region (Coolbaugh...

    Open Energy Info (EERE)

    Geographic Information System At Nw Basin & Range Region (Coolbaugh, Et Al., 2005 - 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic...

  6. Geothermometry At Nw Basin & Range Region (Shevenell & De Rocher...

    Open Energy Info (EERE)

    Geothermometry At Nw Basin & Range Region (Shevenell & De Rocher, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Nw...

  7. Trace Element Analysis At Nw Basin & Range Region (Coolbaugh...

    Open Energy Info (EERE)

    Trace Element Analysis At Nw Basin & Range Region (Coolbaugh, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Trace Element...

  8. Modeling-Computer Simulations At Nw Basin & Range Region (Biasi...

    Open Energy Info (EERE)

    Modeling-Computer Simulations At Nw Basin & Range Region (Biasi, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer...

  9. Geographic Information System At Nw Basin & Range Region (Blewitt...

    Open Energy Info (EERE)

    Geographic Information System At Nw Basin & Range Region (Blewitt, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic...

  10. Data Acquisition-Manipulation At Northern Basin & Range Region...

    Open Energy Info (EERE)

    References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range...

  11. Data Acquisition-Manipulation At Nw Basin & Range Region (Blackwell...

    Open Energy Info (EERE)

    References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range...

  12. Paleoecology and Paleobiogeography of the New York Appalachian Basin Eurypterids

    E-Print Network [OSTI]

    Paleoecology and Paleobiogeography of the New York Appalachian Basin Eurypterids Kimberly Lau resulted in a better understanding of the paleoecology and paleobiogeography of a poorly studied group

  13. Direct-Current Resistivity Survey At Northern Basin & Range Region...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Northern Basin & Range Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  14. Direct-Current Resistivity Survey At Nw Basin & Range Region...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Nw Basin & Range Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current...

  15. Geothermal Reservoir Assessment Case Study, Northern Basin and...

    Open Energy Info (EERE)

    Assessment Case Study, Northern Basin and Range Province, Northern Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal...

  16. Abraham Hot Springs Geothermal Area Northern Basin and Range...

    Open Energy Info (EERE)

    Basin and Range Geothermal Region Medical Hot Springs Geothermal Area Idaho Batholith Medicine Lake Geothermal Area Cascades Melozi Hot Springs Geothermal Area Alaska Geothermal...

  17. Great Basin College Direct Use Geothermal Demonstration Project

    SciTech Connect (OSTI)

    Rice, John

    2014-10-21

    This is the final technical report for the Great Basin College Direct Use Geothermal Demonstrationn Project, outlining the technical aspects of the User Group System.

  18. Two-Phase Westward Encroachment of Basin and Range Extension...

    Open Energy Info (EERE)

    Nevada Abstract 1 Structural, geophysical, and thermochronological data from the transition zone between the Sierra Nevada and the Basin and Range province at latitude 39N...

  19. Teleseismic-Seismic Monitoring At Nw Basin & Range Region (Biasi...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Nw Basin & Range Region (Biasi, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  20. Teleseismic-Seismic Monitoring At Nw Basin & Range Region (Biasi...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Nw Basin & Range Region (Biasi, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  1. Teleseismic-Seismic Monitoring At Northern Basin & Range Region...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Northern Basin & Range Region (Biasi, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  2. Teleseismic-Seismic Monitoring At Northern Basin & Range Region...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Northern Basin & Range Region (Biasi, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  3. Preparing T Plant to Store K-Basin Sludge

    SciTech Connect (OSTI)

    MCKENNEY, D.E.

    2003-01-01

    This paper will explain the history and status of the modification of the Hanford T Plant facility for storage of K Basin sludge.

  4. GEOCHEMICAL MODELING OF F AREA SEEPAGE BASIN COMPOSITION AND VARIABILITY

    SciTech Connect (OSTI)

    Millings, M.; Denham, M.; Looney, B.

    2012-05-08

    From the 1950s through 1989, the F Area Seepage Basins at the Savannah River Site (SRS) received low level radioactive wastes resulting from processing nuclear materials. Discharges of process wastes to the F Area Seepage Basins followed by subsequent mixing processes within the basins and eventual infiltration into the subsurface resulted in contamination of the underlying vadose zone and downgradient groundwater. For simulating contaminant behavior and subsurface transport, a quantitative understanding of the interrelated discharge-mixing-infiltration system along with the resulting chemistry of fluids entering the subsurface is needed. An example of this need emerged as the F Area Seepage Basins was selected as a key case study demonstration site for the Advanced Simulation Capability for Environmental Management (ASCEM) Program. This modeling evaluation explored the importance of the wide variability in bulk wastewater chemistry as it propagated through the basins. The results are intended to generally improve and refine the conceptualization of infiltration of chemical wastes from seepage basins receiving variable waste streams and to specifically support the ASCEM case study model for the F Area Seepage Basins. Specific goals of this work included: (1) develop a technically-based 'charge-balanced' nominal source term chemistry for water infiltrating into the subsurface during basin operations, (2) estimate the nature of short term and long term variability in infiltrating water to support scenario development for uncertainty quantification (i.e., UQ analysis), (3) identify key geochemical factors that control overall basin water chemistry and the projected variability/stability, and (4) link wastewater chemistry to the subsurface based on monitoring well data. Results from this study provide data and understanding that can be used in further modeling efforts of the F Area groundwater plume. As identified in this study, key geochemical factors affecting basin chemistry and variability included: (1) the nature or chemistry of the waste streams, (2) the open system of the basins, and (3) duration of discharge of the waste stream types. Mixing models of the archetype waste streams indicated that the overall basin system would likely remain acidic much of the time. Only an extended periods of predominantly alkaline waste discharge (e.g., >70% alkaline waste) would dramatically alter the average pH of wastewater entering the basins. Short term and long term variability were evaluated by performing multiple stepwise modeling runs to calculate the oscillation of bulk chemistry in the basins in response to short term variations in waste stream chemistry. Short term (1/2 month and 1 month) oscillations in the waste stream types only affected the chemistry in Basin 1; little variation was observed in Basin 2 and 3. As the largest basin, Basin 3 is considered the primary source to the groundwater. Modeling showed that the fluctuation in chemistry of the waste streams is not directly representative of the source term to the groundwater (i.e. Basin 3). The sequence of receiving basins and the large volume of water in Basin 3 'smooth' or nullify the short term variability in waste stream composition. As part of this study, a technically-based 'charge-balanced' nominal source term chemistry was developed for Basin 3 for a narrow range of pH (2.7 to 3.4). An example is also provided of how these data could be used to quantify uncertainty over the long term variations in waste stream chemistry and hence, Basin 3 chemistry.

  5. A Methodology for Calculating Emissions Reductions from Renewable Energy Programs and its Application to the Wind Farms in the Texas ERCOT Region 

    E-Print Network [OSTI]

    Liu, Z.; Haberl, J.; Baltazar, J. C.; Subbarao, K.; Culp, C.; Yazdani, B.

    2007-01-01

    , 07/2010 46 Ector, 300 MW, Notrees Windpower, 2008 47 Kenedy, 400 MW, Penascal Wind, 2008 48 150 MW, Galveston Offshore Wind, 2010 Wind Projects Retired: ERCOT Region ? 7MW 49 Jeff Davis, 7MW, Ft. Davis Wind Farm, 1996 Source: http... Laboratory 1 A METHODOLOGY FOR CALCULATING EMISSIONS REDUCTIONS FROM RENEWABLE ENERGY PROGRAMS AND ITS APPLICATION TO THE WIND FARMS IN THE TEXAS ERCOT REGION Zi Liu, Jeff Haberl, Juan-Carlos Baltazar, Kris Subbarao, Charles Culp, Bahman Yazdani Energy...

  6. Statewide Electrical Energy Cost Savings and Peak Demand Reduction from the IECC Code-Compliant, Single-Family Residences in Texas (2002-2009) 

    E-Print Network [OSTI]

    Kim, H; Baltazar, J.C.; Haberl, J.

    2011-01-01

    -02-01 STATEWIDE ELECTRICITY AND DEMAND CAPACITY SAVINGS FROM THE INTERNATIONAL ENERGY CONSERVATION CODE (IECC) ADOPTION FOR SINGLE-FAMILY RESIDENCES IN TEXAS (2002-2009) Hyojin Kim Juan-Carlos Baltazar, Ph.D. Jeff Haberl, Ph.D., P... SUMMARY Statewide electricity and electric demand savings achieved from the adoption of the different International Energy Conservation Code (IECC) versions for single-family residences in Texas and the corresponding construction cost increases over...

  7. RIFLE TO SAN JUAN

    Office of Environmental Management (EM)

    Di r ec to r Wes t e r n A r e a - E l ec tric Ru r al E l ec t rifica tio n Adminis t r a tio n 14 th & Inde p e nde nce Ave., S.W. Washi n g ton, D.C. 20250 Tele pho n e:...

  8. HIGH HONORS Juan Acosta

    E-Print Network [OSTI]

    Spirtes, Peter

    Ruiyang Lin Ruoshu Liu Xingnan Liu Yu Liu Angela Liu Zhuoran Liu Tristan Lockwood Chloe Lula Sophia Makal

  9. Linear depressions and collapse features in the Northwest Hueco Basin, West Texas 

    E-Print Network [OSTI]

    Henderson, Scott D

    1997-01-01

    The Northwest Hueco Basin, located in the Northern Chihuahuan Desert, is a fault bounded basin filled predominantly with Plio-Pleistocene unconsolidated sediments. The basin contains long linear depressions that dominate the surface topography...

  10. Simulation of the Impact of the SO2 Emissions from the Proposed Sithe Power Plant on the Grand Canyon and other Class I Areas

    E-Print Network [OSTI]

    Fischer, Emily V.

    . Rodriguez Abstract A 1500 MW coal-fired power plant is proposed to be built by Sithe Energies IncSimulation of the Impact of the SO2 Emissions from the Proposed Sithe Power Plant on the Grand. in the Four Corners basin near the existing Four Corners and San Juan power plants. Four Corners is located

  11. INCREASED OIL PRODUCTION AND RESERVES UTILIZING SECONDARY/TERTIARY RECOVERY TECHNIQUES ON SMALL RESERVOIRS IN THE PARADOX BASIN, UTAH

    SciTech Connect (OSTI)

    Thomas C. Chidsey, Jr.

    2002-11-01

    The Paradox Basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from shallow-shelf carbonate buildups or mounds within the Desert Creek zone of the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field at a 15 to 20 percent recovery rate. Five fields in southeastern Utah were evaluated for waterflood or carbon-dioxide (CO{sub 2})-miscible flood projects based upon geological characterization and reservoir modeling. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity as well as possible compartmentalization within each of the five project fields. The Desert Creek zone includes three generalized facies belts: (1) open-marine, (2) shallow-shelf and shelf-margin, and (3) intra-shelf, salinity-restricted facies. These deposits have modern analogs near the coasts of the Bahamas, Florida, and Australia, respectively, and outcrop analogs along the San Juan River of southeastern Utah. The analogs display reservoir heterogeneity, flow barriers and baffles, and lithofacies geometry observed in the fields; thus, these properties were incorporated in the reservoir simulation models. Productive carbonate buildups consist of three types: (1) phylloid algal, (2) coralline algal, and (3) bryozoan. Phylloid-algal buildups have a mound-core interval and a supra-mound interval. Hydrocarbons are stratigraphically trapped in porous and permeable lithotypes within the mound-core intervals of the lower part of the buildups and the more heterogeneous supramound intervals. To adequately represent the observed spatial heterogeneities in reservoir properties, the phylloid-algal bafflestones of the mound-core interval and the dolomites of the overlying supra-mound interval were subdivided into ten architecturally distinct lithotypes, each of which exhibits a characteristic set of reservoir properties obtained from outcrop analogs, cores, and geophysical logs. The Anasazi and Runway fields were selected for geostatistical modeling and reservoir compositional simulations. Models and simulations incorporated variations in carbonate lithotypes, porosity, and permeability to accurately predict reservoir responses. History matches tied previous production and reservoir pressure histories so that future reservoir performances could be confidently predicted. The simulation studies showed that despite most of the production being from the mound-core intervals, there were no corresponding decreases in the oil in place in these intervals. This behavior indicates gravity drainage of oil from the supra-mound intervals into the lower mound-core intervals from which the producing wells' major share of production arises. The key to increasing ultimate recovery from these fields (and similar fields in the basin) is to design either waterflood or CO{sub 2}-miscible flood projects capable of forcing oil from high-storage-capacity but low-recovery supra-mound units into the high-recovery mound-core units. Simulation of Anasazi field shows that a CO{sub 2} flood is technically superior to a waterflood and economically feasible. For Anasazi field, an optimized CO{sub 2} flood is predicted to recover a total 4.21 million barrels (0.67 million m3) of oil representing in excess of 89 percent of the original oil in place. For Runway field, the best CO{sub 2} flood is predicted to recover a total of 2.4 million barrels (0.38 million m3) of oil representing 71 percent of the original oil in place. If the CO{sub 2} flood performed as predicted, it is a financially robust process for increasing the reserves in the many small fields in the Paradox Basin. The results can be applied to other fields in the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent.

  12. Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada

    SciTech Connect (OSTI)

    David Blackwell; Kenneth Wisian; Maria Richards; Mark Leidig; Richard Smith; Jason McKenna

    2003-08-14

    Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dizie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems. Documented a relation between natural heat loss for geothermal and electrical power production potential and determined heat flow for 27 different geothermal systems. Prepared data set for generation of a new geothermal map of North American including industry data totaling over 25,000 points in the US alone.

  13. Carbon Capture and Storage in the Permian Basin, a Regional Technology Transfer and Training Program

    SciTech Connect (OSTI)

    Rychel, Dwight

    2013-09-30

    The Permian Basin Carbon Capture, Utilization and Storage (CCUS) Training Center was one of seven regional centers formed in 2009 under the American Recovery and Reinvestment Act of 2009 and managed by the Department of Energy. Based in the Permian Basin, it is focused on the utilization of CO2 Enhanced Oil Recovery (EOR) projects for the long term storage of CO2 while producing a domestic oil and revenue stream. It delivers training to students, oil and gas professionals, regulators, environmental and academia through a robust web site, newsletter, tech alerts, webinars, self-paced online courses, one day workshops, and two day high level forums. While course material prominently features all aspects of the capture, transportation and EOR utilization of CO2, the audience focus is represented by its high level forums where selected graduate students with an interest in CCUS interact with Industry experts and in-house workshops for the regulatory community.

  14. Management Of Hanford KW Basin Knockout Pot Sludge As Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Raymond, R. E. [CH2M HIll Plateau Remediation Company, Richland, WA (United States); Evans, K. M. [AREVA, Avignon (France)

    2012-10-22

    CH2M HILL Plateau Remediation Company (CHPRC) and AREVA Federal Services, LLC (AFS) have been working collaboratively to develop and deploy technologies to remove, transport, and interim store remote-handled sludge from the 10S-K West Reactor Fuel Storage Basin on the U.S. Department of Energy (DOE) Hanford Site near Richland, WA, USA. Two disposal paths exist for the different types of sludge found in the K West (KW) Basin. One path is to be managed as Spent Nuclear Fuel (SNF) with eventual disposal at an SNF at a yet to be licensed repository. The second path will be disposed as remote-handled transuranic (RH-TRU) waste at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, NM. This paper describes the systems developed and executed by the Knockout Pot (KOP) Disposition Subproject for processing and interim storage of the sludge managed as SNF, (i.e., KOP material).

  15. National emission standards for hazardous air pollutants application for approval to stabilize the 105N Basin

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The 105N Basin (basin) Stabilization will place the basin in a radiologically and environmentally safe condition so that it can be decommissioned at a later date. The basin stabilization objectives are to inspect for Special Nuclear Material (SNM) (i.e., fuel assemblies and fuel pieces), remove the water from the basin and associated pits, and stabilize the basin surface. The stabilization will involve removal of basin hardware, removal of basin sediments, draining of basin water, and cleaning and stabilizing basin surfaces-to prevent resuspension of radioactive emissions to the air. These activities will be conducted in accordance with all applicable regulations. The basin is in the 105N Building, which is located in the 100N Area. The 100N Area is located in the Northern portion of the Hanford Site approximately 35 miles northwest of the city of Richland, Washington. The basin is a reinforced unlined concrete structure 150 feet long, 50 feet wide, and 24 feet deep. The basin is segregated into seven areas sharing a common pool of water; the Discharge/Viewing (``D``) Pit, the fuel segregation pit (including a water tunnel that connects the ``D`` pit and segregation pit), two storage basins designated as North Basin and South Basin, two cask load-out pits, and a fuel examination area. The North Basin floor is entirely covered and the South Basin is partly covered by a modular array of cubicles formed by boron concrete posts and boron concrete panels.

  16. Using Renewable Energy to Pump Water 

    E-Print Network [OSTI]

    Enciso, J.; Mecke, M.

    2004-01-01

    electricity for small communities. The most comon wind device used is the American farm and ranch windmil (Fig. 1). These windmils are common on the North American Great Plains and acros the Southwest. A windmill consists of: ?A very large fan with 15 to 40... Water Juan Enciso and Michael Mecke* Wind power Wind is often used as an energy source to operate pumps and supply water to livestock. Because of the large amount of water needed for crops, wind power is rarely used for irrigation. As larger and/or more...

  17. Origin Basin Destination State STB EIA STB EIA Northern Appalachian...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Michigan 13.74 16.13 17.4% 99.82 16.2% 840 32.1% 100.0% Northern Appalachian Basin New Hampshire W 40.18 W 94.03 42.7% 699 W 100.0% Northern Appalachian Basin New Jersey W...

  18. Enhancing Sustainability in River Basin Management through Conflict

    E-Print Network [OSTI]

    Delaware, University of

    11 Enhancing Sustainability in River Basin Management through Conflict Resolution: Comparative channels, and effluents of massive quantities of point and non-point pollution from pipe, earth and sky .to be achieved. Conflict is inherent in river basin management,1 wherein diverse 'stakes' are held

  19. Progress in Understanding the Structural Geology, Basin Evolution,

    E-Print Network [OSTI]

    and local geologic mapping, drilling and coring, and seismic reflection profiling have in- creased vastly by intrabasinal highs. 4. Integration of stratigraphy and structural geology. The sedimentary deposits of half-graben are influenced by basin geometry; consequently, stratigraphy can be used to infer aspects of basin evolution

  20. Fraser River Basin &ssment Program Conceptual Monitoring Design

    E-Print Network [OSTI]

    #12;Fraser River Basin &ssment Program Conceptual Monitoring Design Prepared for Environment Canada Vancouver, B.C. V6J 5C6 Michael Paine EVS Environment Consultants 195 Pemberton Avenue North Vancouver, B. 1993. Fraser River Basin Assessment Program: Conceptual Monitoring Design. Pqared for Conservation

  1. NOAA Technical Memorandum ERL GLERL-1 LAKE ONTARIO BASIN

    E-Print Network [OSTI]

    NOAA Technical Memorandum ERL GLERL-1 LAKE ONTARIO BASIN: OVERLAND PRECIPITATION, 1972-73 David C. BASIC DATA 3. PROCEDURE 4. ACKNOWLEDGMBNTS APPENDIX. LAKE ONTARIO STATION SUMMARY Page iv 1 1 2 5 10 FIGURES 1. The United States portion of the Lake Ontario drainage basin with the precipitation stations

  2. Burialand exhumation historyof Pennsylvanian strata, central Appalachian basin: anintegrated study

    E-Print Network [OSTI]

    Bodnar, Robert J.

    Burialand exhumation historyof Pennsylvanian strata, central Appalachian basin: anintegrated study of Pennsylvanian strata in the central Appalachian foreland basin is constrained by integrating palaeothermometers homogenization temperatures indicate thatburial ofLower andUpperPennsylvanian strata of theAppalachianPlateau in

  3. Analysis of Ignition Testing on K-West Basin Fuel

    SciTech Connect (OSTI)

    J. Abrefah; F.H. Huang; W.M. Gerry; W.J. Gray; S.C. Marschman; T.A. Thornton

    1999-08-10

    Approximately 2100 metric tons of spent nuclear fuel (SNF) discharged from the N-Reactor have been stored underwater at the K-Basins in the 100 Area of the Hanford Site. The spent fuel has been stored in the K-East Basin since 1975 and in the K-West Basin since 1981. Some of the SNF elements in these basins have corroded because of various breaches in the Zircaloy cladding that occurred during fuel discharge operations and/or subsequent handling and storage in the basins. Consequently, radioactive material in the fuel has been released into the basin water, and water has leaked from the K-East Basin into the soil below. To protect the Columbia River, which is only 380 m from the basins, the SNF is scheduled to be removed and transported for interim dry storage in the 200 East Area, in the central portion of the Site. However, before being shipped, the corroded fuel elements will be loaded into Multi-Canister OverPacks and conditioned. The conditioning process will be selected based on the Integrated Process Strategy (IPS) (WHC 1995), which was prepared on the basis of the dry storage concept developed by the Independent Technical Assessment (ITA) team (ITA 1994).

  4. Basin Resonances in the Equatorial Indian Ocean WEIQING HAN

    E-Print Network [OSTI]

    Han, Weiqing

    Basin Resonances in the Equatorial Indian Ocean WEIQING HAN Department of Atmospheric and Oceanic, LOCEAN, Paris, France BENE´ T DUNCAN Department of Atmospheric and Oceanic Sciences, University in the equatorial Indian Ocean (IO) interact to form basin resonances at the semiannual (180 day) and 90-day periods

  5. Current Trends in Logical Frameworks and Metalanguages David Basin

    E-Print Network [OSTI]

    Basin, David

    Current Trends in Logical Frameworks and Metalanguages David Basin Universitat Freiburg, Institut-Level Programming Languages (PLI'99) in Paris in September 1999. This workshop brought together designers, im Academic Publishers. Printed in the Netherlands. intro-final.tex; 24/01/2001; 17:13; p.1 #12; 2 Basin

  6. Licking River Basin, Cynthiana, Kentucky 24 March 2006

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Licking River Basin, Cynthiana, Kentucky 24 March 2006 Abstract: The recommended project would reduce flood damages in the communities of Cynthiana, Millersburg, and Paris, in the Licking River B Kentucky, by the construction of two dry bed detention basins on tributaries of the South Fork

  7. Modal Decay in the AustraliaAntarctic Basin WILBERT WEIJER

    E-Print Network [OSTI]

    Griesel, Alexa

    Modal Decay in the Australia­Antarctic Basin WILBERT WEIJER Los Alamos National Laboratory, Los VIVIER LOCEAN IPSL, Paris, France (Manuscript received 5 January 2009, in final form 11 June 2009) ABSTRACT The barotropic intraseasonal variability in the Australia­Antarctic Basin (AAB) is studied

  8. QUALITATIVE DISCUSSION OF ATLANTIC BASIN SEASONAL HURRICANE ACTIVITY FOR 2012

    E-Print Network [OSTI]

    Connors, Daniel A.

    QUALITATIVE DISCUSSION OF ATLANTIC BASIN SEASONAL HURRICANE ACTIVITY FOR 2012 We are discontinuing our early December quantitative hurricane forecast for the next year and giving a more qualitative discussion of the factors which will determine next year's Atlantic basin hurricane activity. Our early

  9. QUALITATIVE DISCUSSION OF ATLANTIC BASIN SEASONAL HURRICANE ACTIVITY FOR 2015

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    1 QUALITATIVE DISCUSSION OF ATLANTIC BASIN SEASONAL HURRICANE ACTIVITY FOR 2015 We discontinued our early December quantitative hurricane forecast in 2012 and are now giving a more qualitative discussion of the factors which will determine next year's Atlantic basin hurricane activity. One of the big uncertainties

  10. Radioactive air emissions notice of construction for the 105N Basin Stabilization

    SciTech Connect (OSTI)

    Coenenberg, E.T. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-05-01

    The 105N Basin (basin) Stabilization will place the basin in a radiologically and environmentally safe condition so that it can be decommissioned at a later date. The basin is in the 105N Building, which is located in the 100N Area. The 100N Area is located in the Northern portion of the Hanford Site approximately 35 miles northwest of the city of Richland, Washington. The basin stabilization objectives are to inspect for Special Nuclear Material (SNM) (i.e., fuel assemblies and fuel pieces), remove the water from the basin and associated pits, and stabilize the basin surface. The stabilization will involve removal of basin hardware, removal of basin sediments, draining of basin water, and cleaning and stabilizing basin surfaces to prevent resuspension of radioactive emissions to the air. These activities will be conducted in accordance with all applicable regulations.

  11. Assessment of Basin-Scale Hydrologic Impacts of CO2 Sequestration, Illinois Basin1 Mark Person*1

    E-Print Network [OSTI]

    Gable, Carl W.

    technical constraints on the injection of CO2 into deep (>1.5 km) reservoirs under supercritical75 this amount of annual CO2 production. Assuming that CO2 is emplaced as a80 supercritical fluid havingPage | 1 Assessment of Basin-Scale Hydrologic Impacts of CO2 Sequestration, Illinois Basin1 2 3 4

  12. THE INTRACONTINENTAL BASINS (ICONS) ATLAS APPLICATIONS IN EASTERN AUSTRALIA PESA Eastern Australasian Basins Symposium III Sydney, 1417 September, 2008 275

    E-Print Network [OSTI]

    Müller, Dietmar

    & Johnson 2001). Up to eleven different mechanisms are listed by Klein (1995) to explain the cause crustal and lithospheric structure data of intracontinental basins extracted from our global analysis data. Secondly, the crustal structure of these basins is put into a plate kinematic and geodynamic

  13. RIVERTON DOME GAS EXPLORATION AND STIMULATION TECHNOLOGY DEMONSTRATION, WIND RIVER BASIN, WYOMING

    SciTech Connect (OSTI)

    Ronald C. Surdam; Zunsheng Jiao; Nicholas K. Boyd

    1999-11-01

    The new exploration technology for basin center gas accumulations developed by R.C. Surdam and Associates at the Institute for Energy Research, University of Wyoming, was applied to the Riverton Dome 3-D seismic area. Application of the technology resulted in the development of important new exploration leads in the Frontier, Muddy, and Nugget formations. The new leads are adjacent to a major north-south trending fault, which is downdip from the crest of the major structure in the area. In a blind test, the drilling results from six new Muddy test wells were accurately predicted. The initial production values, IP, for the six test wells ranged from < one mmcf/day to four mmcf/day. The three wells with the highest IP values (i.e., three to four mmcf/day) were drilled into an intense velocity anomaly (i.e., anomalously slow velocities). The well drilled at the end of the velocity anomaly had an IP value of one mmcf/day, and the two wells drilled outside of the velocity anomaly had IP values of < one mmcf/day and are presently shut in. Based on these test results, it is concluded that the new IER exploration strategy for detecting and delineating commercial, anomalously pressured gas accumulation is valid in the southwestern portions of the Wind River Basin, and can be utilized to significantly reduce exploration risk and to increase profitability of so-called basin center gas accumulations.

  14. DEMONSTRATION OF LONG-TERM STORAGE CAPABILITY FOR SPENT NUCLEAR FUEL IN L BASIN

    SciTech Connect (OSTI)

    Sindelar, R.; Deible, R.

    2011-04-27

    The U.S. Department of Energy decisions for the ultimate disposition of its inventory of used nuclear fuel presently in, and to be received and stored in, the L Basin at the Savannah River Site, and schedule for project execution have not been established. A logical decision timeframe for the DOE is following the review of the overall options for fuel management and disposition by the Blue Ribbon Commission on America's Nuclear Future (BRC). The focus of the BRC review is commercial fuel; however, the BRC has included the DOE fuel inventory in their review. Even though the final report by the BRC to the U.S. Department of Energy is expected in January 2012, no timetable has been established for decisions by the U.S. Department of Energy on alternatives selection. Furthermore, with the imminent lay-up and potential closure of H-canyon, no ready path for fuel disposition would be available, and new technologies and/or facilities would need to be established. The fuel inventory in wet storage in the 3.375 million gallon L Basin is primarily aluminum-clad, aluminum-based fuel of the Materials Test Reactor equivalent design. An inventory of non-aluminum-clad fuel of various designs is also stored in L Basin. Safe storage of fuel in wet storage mandates several high-level 'safety functions' that would be provided by the Structures, Systems, and Components (SSCs) of the storage system. A large inventory of aluminum-clad, aluminum-based spent nuclear fuel, and other nonaluminum fuel owned by the U.S. Department of Energy is in wet storage in L Basin at the Savannah River Site. An evaluation of the present condition of the fuel, and the Structures, Systems, or Components (SSCs) necessary for its wet storage, and the present programs and storage practices for fuel management have been performed. Activities necessary to validate the technical bases for, and verify the condition of the fuel and the SSCs under long-term wet storage have also been identified. The overall conclusion is that the fuel can be stored in L Basin, meeting general safety functions for fuel storage, for an additional 50 years and possibly beyond contingent upon continuation of existing fuel management activities and several augmented program activities. It is concluded that the technical bases and well-founded technologies have been established to store spent nuclear fuel in the L Basin. Methodologies to evaluate the fuel condition and characteristics, and systems to prepare fuel, isolate damaged fuel, and maintain water quality storage conditions have been established. Basin structural analyses have been performed against present NPH criteria. The aluminum fuel storage experience to date, supported by the understanding of the effects of environmental variables on materials performance, demonstrates that storage systems that minimize degradation and provide full retrievability of the fuel up to and greater than 50 additional years will require maintaining the present management programs, and with the recommended augmented/additional activities in this report.

  15. BASIN-CENTERED GAS SYSTEMS OF THE U.S.

    SciTech Connect (OSTI)

    Marin A. Popov; Vito F. Nuccio; Thaddeus S. Dyman; Timothy A. Gognat; Ronald C. Johnson; James W. Schmoker; Michael S. Wilson; Charles Bartberger

    2000-11-01

    The USGS is re-evaluating the resource potential of basin-centered gas accumulations in the U.S. because of changing perceptions of the geology of these accumulations, and the availability of new data since the USGS 1995 National Assessment of United States oil and gas resources (Gautier et al., 1996). To attain these objectives, this project used knowledge of basin-centered gas systems and procedures such as stratigraphic analysis, organic geochemistry, modeling of basin thermal dynamics, reservoir characterization, and pressure analysis. This project proceeded in two phases which had the following objectives: Phase I (4/1998 through 5/1999): Identify and describe the geologic and geographic distribution of potential basin-centered gas systems, and Phase II (6/1999 through 11/2000): For selected systems, estimate the location of those basin-centered gas resources that are likely to be produced over the next 30 years. In Phase I, we characterize thirty-three (33) potential basin-centered gas systems (or accumulations) based on information published in the literature or acquired from internal computerized well and reservoir data files. These newly defined potential accumulations vary from low to high risk and may or may not survive the rigorous geologic scrutiny leading towards full assessment by the USGS. For logistical reasons, not all basins received the level of detail desired or required.

  16. Biothem-based Mississippian transect from the Basin and Range Province to the Anadarko basin

    SciTech Connect (OSTI)

    Frye, M.W. ); Lane, H.R. ); Couples, G.D. )

    1991-03-01

    A west-to-east transect, constructed using the 'Biostratigraphic Package Approach' of Lane and Frye and illustrating the biostratigraphic, lithologic, and depositional sequence relationships within the Mississippian system, extends from the basin and range province across the Transcontinental Arch (TA) and into the Anadarko basin. The transect is based on both published and proprietary biostratigraphic data. It was constructed primarily to portray the regional distribution and exploration significance of biotherms relative to the axis of the TA. These biotherms are biostratigraphic units that are wedge- or lens-shaped bodies of strata that are bounded by paleontologically recognizable unconformities in their updip extents, are conformable with underlying and overlying biothems in their maximum shelfal development, are conformable or bounded by surfaces of nondeposition and or submarine erosion in their downdip, basinal extremities, and also contain a logical sequence of depositionally related facies. An unexpected result of constructing the transect was the recognition of an apparent compensatory temporal and spatial distribution of Mississippian biothems. This distribution is interpreted to imply that biothems deposited during relative highstand events on one flank of the TA are time-equivalent to biothems deposited during relative lowstand events on the opposite flank of the TA. Platescale tilting, along with local subsidence and uplift, is suggested as the overriding mechanism controlling deposition along the extent of the transect.

  17. Climate-and eustasy-driven cyclicity in Pennsylvanian fusulinid assemblages, Donets Basin (Ukraine)

    E-Print Network [OSTI]

    Montañez, Isabel Patricia

    to the formation of economically productive coal seams in the Donets Basin, western Europe, North America

  18. Figure 1: Basin specific histograms for alternative tilting angle. Histograms of 2 tilting angle for subbasins A, B and C. For subbasin A the average angle is 26 with

    E-Print Network [OSTI]

    Caflisch, Amedeo

    : Structure, Function, and Bioinformatics June 4, 2012 #12;Figure S1: Cut-based free energy profiles for apo of holo PDZ3 consists of a single free energy basin. The lack of barriers for holo PDZ3 hinders the optimization of RC. For apo PDZ3, the cut-based free energy profile projected onto the optimized RC is shown

  19. The geochemistry of uranium in the Orca Basin 

    E-Print Network [OSTI]

    Weber, Frederick Fewell

    1979-01-01

    in each sample was also measur. ed to gain insight concerning the origin and nature of Urea Basin deposits. For comparison, cores from the brine- filled Suakin and Atlantis II Deeps, both in the Red Sea, were also analyzed. Ores Basin sediments show... Deep where no uranium enrichment was also observed. The Atlantis II Deep, however, contains sediments significantly enriched in uranium. This basin differs from the other two in that its brin. e temperature is close to 40'C warmer. than average Red...

  20. Western Gas Sands Project: stratigrapy of the Piceance Basin

    SciTech Connect (OSTI)

    Anderson, S. (comp.)

    1980-08-01

    The Western Gas Sands Project Core Program was initiated by US DOE to investigate various low permeability, gas bearing sandstones. Research to gain a better geological understanding of these sandstones and improve evaluation and stimulation techniques is being conducted. Tight gas sands are located in several mid-continent and western basins. This report deals with the Piceance Basin in northwestern Colorado. This discussion is an attempt to provide a general overview of the Piceance Basin stratigraphy and to be a useful reference of stratigraphic units and accompanying descriptions.

  1. BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO

    SciTech Connect (OSTI)

    Ernest A. Mancini; Donald A. Goddard; Ronald K. Zimmerman

    2005-05-10

    The principal research effort for Year 2 of the project has been data compilation and the determination of the burial and thermal maturation histories of the North Louisiana Salt Basin and basin modeling and petroleum system identification. In the first nine (9) months of Year 2, the research focus was on the determination of the burial and thermal maturation histories, and during the remainder of the year the emphasis has basin modeling and petroleum system identification. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, regional cross sections have been prepared, structure and isopach maps have been constructed, and burial history, thermal maturation history and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface maps and related profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs are mainly Upper Jurassic and Lower Cretaceous fluvial-deltaic sandstone facies and Lower Cretaceous and Upper Cretaceous shoreline, marine bar and shallow shelf sandstone facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary. Hydrocarbon expulsion commenced during the Early Cretaceous and continued into the Tertiary with peak expulsion occurring mainly during the Late Cretaceous.

  2. Intrashelf basins: A geologic model for source-bed and reservoir facies deposition within carbonate shelves

    SciTech Connect (OSTI)

    Grover, G. Jr. (Sauid Aramco, Dhahran (Saudi Arabia))

    1993-09-01

    Intrashelf basins (moats, inshore basins, shelf basins, differentiated shelf, and deep-water lagoons of others) are depressions of varying sizes and shapes that occur within tectonically passive and regionally extensive carbonate shelves. Intrashelf basins grade laterally and downdip (seaward) into shallow-water carbonates of the regional shelf, are separated from the open marine basin by the shelf margin, and are largely filled by fine-grained subtidal sediments having attributes of shallow- and deeper water sedimentation. These basins are commonly fringed or overlain by carbonate sands, reefs, or buildups. These facies may mimic those that occur along the regional shelf margin, and they can have trends that are at a high angle to that of the regional shelf. Intrashelf basins are not intracratonic basins. The history of most intrashelf basins is a few million to a few tens of million of years. Examples of intrashelf basins are known throughout the Phanerozoic; the southern portion of the Holocene Belize shelf is a modern example of an intrashelf basin. Two types of intrashelf basins are recognized. Coastal basins pass updip into coastal clastics of the craton with the basin primarily filled by fine clastics. Shelf basins occur on the outer part of the shelf, are surrounded by shallow-water carbonate facies, and are filled by peloidal lime mud, pelagics, and argillaceous carbonates. Intrashelf basins are commonly the site of organic-rich, source-bed deposition, resulting in the close proximity of source beds and reservoir facies that may fringe or overlie the basin. Examples of hydrocarbon-charged reservoirs that were sourced by an intrashelf basin include the Miocene Bombay High field, offshore India; the giant Jurassic (Arab-D) and Cretaceous (Shuaiba) reservoirs of the Arabian Shelf; the Lower Cretaceous Sunniland trend, South Florida basin; and the Permian-Pennsylvanian reservoirs surrounding the Tatum basin in southeastern New Mexico.

  3. Determination of Uranium Metal Concentration in Irradiated Fuel Storage Basin Sludge Using Selective Dissolution

    SciTech Connect (OSTI)

    Delegard, Calvin H.; Sinkov, Sergey I.; Chenault, Jeffrey W.; Schmidt, Andrew J.; Welsh, Terri L.; Pool, Karl N.

    2014-03-01

    Uranium metal corroding in water-saturated sludges now held in the US Department of Energy Hanford Site K West irradiated fuel storage basin can create hazardous hydrogen atmospheres during handling, immobilization, or subsequent transport and storage. Knowledge of uranium metal concentration in sludge thus is essential to safe sludge management and process design, requiring an expeditious routine analytical method to detect uranium metal concentrations as low as 0.03 wt% in sludge even in the presence of 30 wt% or higher total uranium concentrations.

  4. Diachroneity of Basin and Range Extension and Yellowstone Hotspot...

    Open Energy Info (EERE)

    against a direct link between the Yellowstone hotspot and the initiation of extension, casting additional doubt on the role of the hotspot in extension across the broader Basin and...

  5. Hydrology and Glaciers in the Upper Indus Basin

    E-Print Network [OSTI]

    Yu, Winston

    Examines the state of the science associated with the snow and ice hydrology in the Upper Indus Basin (IUB), reviewing the literature and data available on the present and projected role of glaciers, snow fields, and stream ...

  6. Oil and gas resources in the West Siberian Basin, Russia

    SciTech Connect (OSTI)

    1997-12-01

    The primary objective of this study is to assess the oil and gas potential of the West Siberian Basin of Russia. The study does not analyze the costs or technology necessary to achieve the estimates of the ultimate recoverable oil and gas. This study uses reservoir data to estimate recoverable oil and gas quantities which were aggregated to the field level. Field totals were summed to a basin total for discovered fields. An estimate of undiscovered oil and gas, from work of the US Geological Survey (USGS), was added to give a total basin resource volume. Recent production decline points out Russia`s need to continue development of its discovered recoverable oil and gas. Continued exploration is required to discover additional oil and gas that remains undiscovered in the basin.

  7. Negotiating nature : expertise and environment in the Klamath River Basin

    E-Print Network [OSTI]

    Buchanan, Nicholas Seong Chul

    2010-01-01

    "Negotiating Nature" explores resource management in action and the intertwined roles of law and science in environmental conflicts in the Upper Klamath River Basin in southern Oregon. I follow disputes over the management ...

  8. EIA - Natural Gas Pipeline Network - Natural Gas Supply Basins...

    Gasoline and Diesel Fuel Update (EIA)

    with selected updates U.S. Natural Gas Supply Basins Relative to Major Natural Gas Pipeline Transportation Corridors, 2008 U.S. Natural Gas Transporation Corridors out of Major...

  9. Cenozoic volcanic geology of the Basin and Range province in...

    Open Energy Info (EERE)

    Cenozoic volcanic geology of the Basin and Range province in Hidalgo County, southwestern New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

  10. River Basin Economics and Management: International Trade, Allocation and Quality

    E-Print Network [OSTI]

    Kong, Wen

    2015-01-01

    Agricultural and Resource Economics, 27(1):16–39. Knapp, K.river basin. Agricultural Economics, 24:33–46. Schoup, G. ,satiable agents. Games and Economics Behavior, 64:35–50.

  11. Modeling-Computer Simulations At Nw Basin & Range Region (Blackwell...

    Open Energy Info (EERE)

    systems References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range...

  12. Modeling-Computer Simulations At Northern Basin & Range Region...

    Open Energy Info (EERE)

    systems References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range...

  13. Post-Formative Ceramics in the Eastern Grat Basin

    E-Print Network [OSTI]

    Forsyth, Donald W

    1986-01-01

    Great Salt Lake Fremont Ceramics. In: The Levee Site and the1986). Post-Formative Ceramics in the Eastern Great Basin: A1977 Prehistoric Ceramics of the Fremont. Museiun of

  14. Roanoke River Basin Bi-State Commission (Multiple States)

    Broader source: Energy.gov [DOE]

    The Roanoke River Basin Bi-State Commission was established as a bi-state commission composed of members from the Commonwealth of Virginia and the State of North Carolina. The purpose of the...

  15. Interstate Commission on the Potomac River Basin (Multiple States)

    Broader source: Energy.gov [DOE]

    The Interstate Commission on the Potomac River Basin's (ICPRB) mission is to enhance, protect, and conserve the water and associated land resources of the Potomac River and its tributaries through...

  16. SAVANNAH RIVER SITE R REACTOR DISASSEMBLY BASIN IN SITU DECOMMISSIONING

    SciTech Connect (OSTI)

    Langton, C.; Blankenship, J.; Griffin, W.; Serrato, M.

    2009-12-03

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate if from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,424 cubic meters or 31,945 cubic yards. Portland cement-based structural fill materials were design and tested for the reactor ISD project and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and work flow considerations, the recommended maximum lift height is 5 feet with 24 hours between lifts. Pertinent data and information related to the SRS 105-R-Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs and testing, and fill placement strategy. This information is applicable to decommissioning both the 105-P and 105-R facilities. The ISD process for the entire 105-P and 105-R reactor facilities will require approximately 250,000 cubic yards (191,140 cubic meters) of grout and 2,400 cubic yards (1,840 cubic meters) of structural concrete which will be placed over a twelve month period to meet the accelerated schedule ISD schedule. The status and lessons learned in the SRS Reactor Facility ISD process will be described.

  17. Repository site definition in basalt: Pasco Basin, Washington

    SciTech Connect (OSTI)

    Guzowski, R.V.; Nimick, F.B.; Muller, A.B.

    1982-03-01

    Discussion of the regional setting, geology, hydrology, and geochemistry of the Pasco Basin are included in this report. Pasco basin is a structural and topographic basin of approximately 2000 mi/sup 2/ (5180 km/sup 2/) located within the Yakima Fold Belt Subprovince of the Columbia Plateau. The stratigraphic sequence within the basin consists of an undetermined thickness of lower Miocene and younger flood basalts with interbedded and overlying sedimentary units. This sequence rests upon a basement of probably diverse rock types that may range in age from precambrian through early Tertiary. Although a large amount of information is available on the hydrology of the unconfined aquifer system, ground-water flow within the basin is, in general, poorly understood. Recharge areas for the Mabton interbed and the Saddle Mountains Formation are the highlands surrounding the basin with the flow for these units toward Gable Butte - Gable Mountain and Lake Wallula. Gable Butte - Gable Mountain probably is a ground-water sink, although the vertical flow direction in this zone is uncertain. The amount of upward vertical leakage from the Saddle Mountains Formation into the overlying sediments or to the Columbia River is unknown. Units underlying the Mabton interbed may have a flow scheme similar to those higher units or a flow scheme dominated by interbasin flow. Upward vertical leakage either throughout the basin, dominantly to the Columbia River, or dominantly to Lake Wallula has been proposed for the discharge of the lower units. None of these proposals is verified. The lateral and vertical distribution of major and minor ions in solution, Eh and pH, and ion exchange between basalt and ground-water are not well defined for the basin. Changes in the redox potential from the level of the subsurface facility to the higher stratigraphic levels along with the numerous other factors influencing K/sub d/, result in a poor understanding of the retardation process.

  18. Basin Analysis of the Mississippi Interior Salt Basin and Petroleum System Modeling of the Jurassic Smackover Formation, Eastern Gulf Coastal Plain

    SciTech Connect (OSTI)

    Mancini, Ernest A.

    2003-02-06

    The project objectives are improving access to information for the Mississippi Interior Salt Basin by inventorying data files and records of the major information repositories in the region, making these inventories easily accessible in electronic format, increasing the amount of information available on domestic sedimentary basins through a comprehensive analysis of the Mississippi Interior Salt Basin, and enhancing the understanding of the petroleum systems operating in the Mississippi Interior Salt Basin.

  19. Distribution of Permo-Carboniferous clastics of Greater Arabian basin

    SciTech Connect (OSTI)

    Al-Laboun, A.A.

    1987-05-01

    Strikingly correlative sequences of sediments composed of sandstones, siltstones, shales, and thin argillaceous carbonate beds are present, practically everywhere, underlying the Late Permian carbonates in the Greater Arabian basin. The Greater Arabian basin as defined here occupies the broad Arabian Shelf that borders the Arabian shield. This basin is composed of several smaller basins. These clastics are exposed as thin bands and scattered small exposures in several localities around the margins of the basin. The Permo-Carboniferous clastics are represented by the Unayzah Formation of Arabia, the Doubayat Group of Syria, the Hazro Formation of southeast Turkey, the Ga'arah Formation of Iraq, the Faraghan Formation of southwest Iran, and the Haushi Group of Oman. A Late Carboniferous-Early Permian age is assigned to these clastics because they contain fossil plants and palynomorphs. These sediments represent time-transgressive fluctuating sea deposits following a phase of regional emergence, erosion, and structural disturbance which preceded the Permian transgression. The basal contact of these clastics is marked by a well-pronounced angular unconformity with various older units, ranging in age from early Carboniferous to late Precambrian. This regional unconformity is probably related to the Hercynian movements. The upper contact is conformable with the Permian carbonates. The porous sandstones of the Permo-Carboniferous sediments are important hydrocarbon exploration targets. These reservoir rocks sometimes overlie mature source rocks and are capped by shales, marls, and tight carbonates. Significant quantities of hydrocarbons are contained in these reservoirs in different parts of the Greater Arabian basin.

  20. Visayan Basin - the birthplace of Philippine petroleum exploration revisited

    SciTech Connect (OSTI)

    Rillera, F.G. ); Durkee, E.F. )

    1994-07-01

    Petroleum exploration in the Philippines has its roots in the Visayan Basin in the central Philippines. This is a Tertiary basin with up to 30,000 ft of sedimentary fill. With numerous surface oil and gas manifestations known as early as 1888, the area was the site of the first attempts to establish commercial petroleum production in the country. Over the past 100 years, more than 200 wells have been drilled in the basin. Several of these have yielded significant oil and gas shows. Production, albeit noncommercial in scale, has been demonstrated to be present in some places. A review of past exploration data reveals that many of the earlier efforts failed due to poorly located tests from both structural and stratigraphic standpoints. Poor drilling and completion technology and lack of funding compounded the problems of early explorationists. Because of this, the basin remains relatively underexplored. A recent assessment by COPLEX and E.F. Durkee and Associates demonstrates the presence of many untested prospects in the basin. These prospects may contain recoverable oil and gas potential on the order of 5 to 10 MMBO onshore and 25 to 100 MMBO offshore. With new exploration ideas, innovative development concepts, and the benefit of modern technology, commercial oil and gas production from the basin may yet be realized.

  1. Petroleum systems of Jianghan Basin, Hubel Province, China

    SciTech Connect (OSTI)

    Cunningham, A.E.; Schaps, S.; McGregor, D.

    1996-12-31

    The Jianghan Basin is a Cretaceous-Tertiary nonmarine rift basin superimposed on a late Precambrian to Jurassic passive margin and foreland basin succession deformed by mid-Mesozoic folding and thrusting. Hence the basin has potential for superimposed petroleum systems. Oil production is established in a Tertiary petroleum system developed in two major depocenters, the Jiangling (west) and Qianjiang (east) Depressions. Lacustrine source beds in the early Eocene Xingouzhui and late Eocene Qianjiang Formations generated hydrocarbons during local maximum basin fill in the Oligocene to present. Very early, low temperature generation of petroleum occurs where Type 1S Qianjiang Formation kerogen is present. Tertiary fluvial and deltaic sandstones form reservoirs that trap oil in highs or rollover structures formed by normal faulting and salt movement. The pre-rift section contains large folds and good source-beds, but has high exploration risk. Factors limiting effectiveness of older petroleum systems are: (1) Uplift and erosion of thrust structures; (2) Overmaturation of pre-Permian source rocks prior to folding and thrusting; (3) Limited extent of secondary maturation of Late Paleozoic and Mesozoic source beds; and (4) Disruption of older traps and seals by widespread normal faulting. Production of hydrocarbons from Permian and Triassic rocks to the west of Hubei suggests that further seismic work and drilling are merited to evaluate pre-Tertiary potential in the Jianghan Basin.

  2. Petroleum systems of Jianghan Basin, Hubel Province, China

    SciTech Connect (OSTI)

    Cunningham, A.E. ); Schaps, S.; McGregor, D. )

    1996-01-01

    The Jianghan Basin is a Cretaceous-Tertiary nonmarine rift basin superimposed on a late Precambrian to Jurassic passive margin and foreland basin succession deformed by mid-Mesozoic folding and thrusting. Hence the basin has potential for superimposed petroleum systems. Oil production is established in a Tertiary petroleum system developed in two major depocenters, the Jiangling (west) and Qianjiang (east) Depressions. Lacustrine source beds in the early Eocene Xingouzhui and late Eocene Qianjiang Formations generated hydrocarbons during local maximum basin fill in the Oligocene to present. Very early, low temperature generation of petroleum occurs where Type 1S Qianjiang Formation kerogen is present. Tertiary fluvial and deltaic sandstones form reservoirs that trap oil in highs or rollover structures formed by normal faulting and salt movement. The pre-rift section contains large folds and good source-beds, but has high exploration risk. Factors limiting effectiveness of older petroleum systems are: (1) Uplift and erosion of thrust structures; (2) Overmaturation of pre-Permian source rocks prior to folding and thrusting; (3) Limited extent of secondary maturation of Late Paleozoic and Mesozoic source beds; and (4) Disruption of older traps and seals by widespread normal faulting. Production of hydrocarbons from Permian and Triassic rocks to the west of Hubei suggests that further seismic work and drilling are merited to evaluate pre-Tertiary potential in the Jianghan Basin.

  3. PETROGRAPHY AND PROVENANCE OF VOLCANICLASTIC SANDS AND SANDSTONES RECOVERED FROM THE WOODLARK RIFT BASIN AND TROBRIAND FOREARC BASIN, LEG 180 

    E-Print Network [OSTI]

    Sharp, Timothy R; Robertson, Alastair H F

    2002-01-01

    Modal analysis of middle Miocene to Pleistocene volcaniclastic sands and sandstones recovered from Sites 1108, 1109, 1118, 1112, 1115, 1116, and 1114 within the Woodlark Basin during Leg 180 of the Ocean Drilling Program ...

  4. Enhanced Coal Bed Methane Recovery and CO2 Sequestration in the Powder River Basin

    SciTech Connect (OSTI)

    Eric P. Robertson

    2010-06-01

    Unminable coal beds are potentially large storage reservoirs for the sequestration of anthropogenic CO2 and offer the benefit of enhanced methane production, which can offset some of the costs associated with CO2 sequestration. The objective of this report is to provide a final topical report on enhanced coal bed methane recovery and CO2 sequestration to the U.S. Department of Energy in fulfillment of a Big Sky Carbon Sequestration Partnership milestone. This report summarizes work done at Idaho National Laboratory in support of Phase II of the Big Sky Carbon Sequestration Partnership. Research that elucidates the interaction of CO2 and coal is discussed with work centering on the Powder River Basin of Wyoming and Montana. Sorption-induced strain, also referred to as coal swelling/shrinkage, was investigated. A new method of obtaining sorption-induced strain was developed that greatly decreases the time necessary for data collection and increases the reliability of the strain data. As coal permeability is a strong function of sorption-induced strain, common permeability models were used to fit measured permeability data, but were found inadequate. A new permeability model was developed that can be directly applied to coal permeability data obtained under laboratory stress conditions, which are different than field stress conditions. The coal permeability model can be used to obtain critical coal parameters that can be applied in field models. An economic feasibility study of CO2 sequestration in unminable coal seams in the Powder River Basin of Wyoming was done. Economic analyses of CO2 injection options are compared. Results show that injecting flue gas to recover methane from CBM fields is marginally economical; however, this method will not significantly contribute to the need to sequester large quantities of CO2. Separating CO2 from flue gas and injecting it into the unminable coal zones of the Powder River Basin seam is currently uneconomical, but can effectively sequester over 86,000 tons (78,200 Mg) of CO2 per acre while recovering methane to offset costs. The cost to separate CO2 from flue gas was identified as the major cost driver associated with CO2 sequestration in unminable coal seams. Improvements in separations technology alone are unlikely to drive costs low enough for CO2 sequestration in unminable coal seams in the Powder River Basin to become economically viable. Breakthroughs in separations technology could aid the economics, but in the Powder River Basin, they cannot achieve the necessary cost reductions for breakeven economics without incentives.

  5. The State of the Columbia River Basin

    E-Print Network [OSTI]

    .............................................................................. 16 Natural gas price forecast, 2014 Document 2014-07 #12;Submitted to the Committee on Energy and Natural Resources United States Senate Committee on Energy and Commerce United States House of Representatives and Committee on Natural

  6. Geothermal Resources Of California Sedimentary Basins | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky:Bore TechnologiesAssessment In Hawaii Jump

  7. DeFrees Large Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments Inc JumpIowa:Minnesota:DaylightingDeFrees Flume 1

  8. DeFrees Small Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments Inc JumpIowa:Minnesota:DaylightingDeFrees Flume 1Small Wave

  9. ARM - Field Campaign - Columbia Basin Wind Energy Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22,Microphysical

  10. Town of Basin, Wyoming (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeterInformation PolicyTinna GroupToppan

  11. Kinematic model for postorogenic Basin and Range extension | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:onItronKanoshKetchikan Public UtilitiesKilo

  12. Designated Ground Water Basin Map | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9) WindGridDeepiSolar and

  13. Northern Basin and Range Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:Information 3rd| OpenInformationConsortium NAVC Jump

  14. Numerical Modeling Of Basin And Range Geothermal Systems | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:Information 3rd|Northfork ElectricName Nueces Electric7)

  15. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III

    SciTech Connect (OSTI)

    Murphy, Mark B.

    2000-10-25

    The Nash Draw Brushy Canyon Pool (NDP) is southeast New Mexico is one of the nine projects selected in 1995 by the U.S. Department of Energy (DOE) for participation in the Class III Reservoir Field Demonstration Program. The goals of the DOE cost-shared Class Program are to: (1) extend economic production, (2) increase ultimate recovery, and (3) broaden information exchange and technology application. Reservoirs in the Class III Program are focused on slope-basin and deep-basin clastic depositional types.

  16. Architectural Support for System Software on Large-Scale Clusters Juan Fernandez Eitan Frachtenberg Fabrizio Petrini Kei Davis

    E-Print Network [OSTI]

    Frachtenberg, Eitan

    , the role of the This work is supported by the U.S. Department of Energy through Los Alamos National Computer and Computational Sciences (CCS) Division Los Alamos National Laboratory, Los Alamos, NM 87545 USA include the communication library, the resource manager, the parallel file system, the cluster monitoring

  17. A STUDY OF ROCK-WATER-NUCLEAR WASTE INTERACTIONS IN THE PASCO BASIN, WASHINGTON -- Part: Distribution and Composition of Secondary and Primary Mineral Phases in Basalts of the Pasco Basin, Washington

    E-Print Network [OSTI]

    Benson, L.V.

    2010-01-01

    IN THE PASCO BASIN, WASHINGTON PART I DISTRIBUTION ANDOF THE PASCO BASIN, WASHINGTON L. V. Benson and L. S. TeagueBasin of southeastern Washington. In particular, we have

  18. RECONNAISSANCE ASSESSMENT OF CO2 SEQUESTRATION POTENTIAL IN THE TRIASSIC AGE RIFT BASIN TREND OF SOUTH CAROLINA, GEORGIA, AND NORTHERN FLORIDA

    SciTech Connect (OSTI)

    Blount, G.; Millings, M.

    2011-08-01

    A reconnaissance assessment of the carbon dioxide (CO{sub 2}) sequestration potential within the Triassic age rift trend sediments of South Carolina, Georgia and the northern Florida Rift trend was performed for the Office of Fossil Energy, National Energy Technology Laboratory (NETL). This rift trend also extends into eastern Alabama, and has been termed the South Georgia Rift by previous authors, but is termed the South Carolina, Georgia, northern Florida, and eastern Alabama Rift (SGFAR) trend in this report to better describe the extent of the trend. The objectives of the study were to: (1) integrate all pertinent geologic information (literature reviews, drilling logs, seismic data, etc.) to create an understanding of the structural aspects of the basin trend (basin trend location and configuration, and the thickness of the sedimentary rock fill), (2) estimate the rough CO{sub 2} storage capacity (using conservative inputs), and (3) assess the general viability of the basins as sites of large-scale CO{sub 2} sequestration (determine if additional studies are appropriate). The CO{sub 2} estimates for the trend include South Carolina, Georgia, and northern Florida only. The study determined that the basins within the SGFAR trend have sufficient sedimentary fill to have a large potential storage capacity for CO{sub 2}. The deeper basins appear to have sedimentary fill of over 15,000 feet. Much of this fill is likely to be alluvial and fluvial sedimentary rock with higher porosity and permeability. This report estimates an order of magnitude potential capacity of approximately 137 billion metric tons for supercritical CO{sub 2}. The pore space within the basins represent hundreds of years of potential storage for supercritical CO{sub 2} and CO{sub 2} stored in aqueous form. There are many sources of CO{sub 2} within the region that could use the trend for geologic storage. Thirty one coal fired power plants are located within 100 miles of the deepest portions of these basins. There are also several cement and ammonia plants near the basins. Sixteen coal fired power plants are present on or adjacent to the basins which could support a low pipeline transportation cost. The current geological information is not sufficient to quantify specific storage reservoirs, seals, or traps. There is insufficient hydrogeologic information to quantify the saline nature of the water present within all of the basins. Water data in the Dunbarton Basin of the Savannah River Site indicates dissolved solids concentrations of greater than 10,000 parts per million (not potential drinking water). Additional reservoir characterization is needed to take advantage of the SGFAR trend for anthropogenic CO{sub 2} storage. The authors of this report believe it would be appropriate to study the reservoir potential in the deeper basins that are in close proximity to the current larger coal fired power plants (Albany-Arabi, Camilla-Ocilla, Alamo-Ehrhardt, and Jedburg basin).

  19. Reprinted from JOURNAL OF GEOLOGY, 1990, vol. 98, p. 135-155. QUANTITATIVE FILLING MODEL FOR CONTINENTAL EXTENSIONAL BASINS WITH

    E-Print Network [OSTI]

    in the Blackheath region of the hinge area of the Triassic Richmond basin of Virginia. Outcrop studies and coal mine the hanging wall block of the basins, indicating that both the basins and their depositional surface areas

  20. The role of the Early Tertiary Uluk?sla Basin, southern Turkey, in suturing of the Mesozoic Tethys ocean 

    E-Print Network [OSTI]

    Clark, Matthew; Robertson, Alastair H F

    2002-01-01

    The Maastrichtian–Late Eocene Uluk?sla Basin is representative of the tectonic and sedimentary evolution of prominent Early Tertiary basins in central Anatolia, including the Tuzgolu and S ark?sla basins. The Uluk?sla ...

  1. Case Study: Continuous Commissioning and Energy Management at Alamo Colleges, San Antonio, TX 

    E-Print Network [OSTI]

    Martinez, J. T.

    2014-01-01

    Commissioning® Process Joseph T. Martinez, PCC Carlos Yagua, PE Hiroko Masuda, Juan-Carlos Baltazar, PhD, PE Ahmet Ugursal, PhD Clean Air Through Energy Efficiency (CATEE) Conference, Dallas, Texas. November 18, 2014 ESL-KT-14-11-40 CATEE 2014: Clean Air.... Measurement and Verification 7. Case Study: Alamo Colleges 2 ESL-KT-14-11-40 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 Case Study: Continuous Commissioning® and Energy Management at Alamo Colleges, San Antonio, TX. Joseph...

  2. AIR QUALITY IMPACTS OF LIQUEFIED NATURAL GAS IN THE SOUTH COAST AIR BASIN OF CALIFORNIA

    SciTech Connect (OSTI)

    Carerras-Sospedra, Marc; Brouwer, Jack; Dabdub, Donald; Lunden, Melissa; Singer, Brett

    2011-07-01

    The effects of liquefied natural gas (LNG) on pollutant emission inventories and air quality in the South Coast Air Basin of California were evaluated using recent LNG emission measurements by Lawrence Berkeley National Laboratory and the Southern California Gas Company (SoCalGas), and with a state-of-the-art air quality model. Pollutant emissions can be affected by LNG owing to differences in composition and physical properties, including the Wobbe index, a measure of energy delivery rate. This analysis uses LNG distribution scenarios developed by modeling Southern California gas flows, including supplies from the LNG receiving terminal in Baja California, Mexico. Based on these scenarios, the projected penetratino of LNG in the South Coast Air Basin is expected to be limited. In addition, the increased Wobbe index of delivered gas (resulting from mixtures of LNG and conventional gas supplies) is expected to cause increases smaller than 0.05 percent in overall (area-wide) emissions of nitrogen oxides (NOx). BAsed on the photochemical state of the South Coast Air Basin, any increase in NOx is expected to cause an increase in the highest local ozone concentrations, and this is reflected in model results. However, the magnitude of the increase is well below the generally accepted accuracy of the model and would not be discernible with the existing monitoring network. Modeling of hypothetical scenarios indicates that discernible changes to ambient ozone and particulate matter concentrations would occur only at LNG distribution rates that are not achievable with current or planned infrastructure and with Wobbe index vlaues that exceed current gas quality tariffs. Results of these hypothetical scenarios are presented for consideration of any proposed substantial expansion of LNG supply infrastructure in Southern California.

  3. A multi-proxy approach to assessing isolation basin stratigraphy from the Lofoten Islands, Norway

    E-Print Network [OSTI]

    Bradley, Raymond S.

    A multi-proxy approach to assessing isolation basin stratigraphy from the Lofoten Islands, Norway Lofoten Islands Norway This study takes a comprehensive approach to characterizing the isolation sequence source. Methods of characterizing isolation basin stratigraphy traditionally rely on microfossil

  4. Natural Salt Pollution and Water Supply Reliability in the Brazos River Basin 

    E-Print Network [OSTI]

    Wurbs, Ralph A.; Karama, Awes S.; Saleh, Ishtiaque; Ganze, C. Keith

    1993-01-01

    The Brazos River Basin is representative of several major river basins in the Southwestern United States in regard to natural salt pollution. Geologic formations underlying portions of the upper watersheds of the Brazos, Colorado, Pecos, Canadian...

  5. Postglacial adjustment of steep, low-order drainage basins, Canadian Rocky Mountains

    E-Print Network [OSTI]

    Johnson, Edward A.

    Postglacial adjustment of steep, low-order drainage basins, Canadian Rocky Mountains T. Hoffmann,1 sediment flux in mountain systems. An important, but not well constrained, aspect of Pleistocene glacial for mountain headwaters (with basin area

  6. Acoustic impedance inversion of the Lower Permian carbonate buildups in the Permian Basin, Texas 

    E-Print Network [OSTI]

    Pablo, Buenafama Aleman

    2004-11-15

    Carbonate reservoirs are usually diffcult to map and identify in seismic sections due to their complex structure, lithology and diagenetic frabrics. The Midland Basin, located in the Permian Basin of West Texas, is an excellent example...

  7. Master1GologiedesRservoirsDynamiquedesBassins-MichelSranne 2-Geodynamics of Sedimentary Basins

    E-Print Network [OSTI]

    Cattin, Rodolphe

    ) N. Faults => initial subsidence d) LAB isotherm uplift =>increased geotherm a) Stop of extensional subsidence in rift basins (measured in borehole) True for any type of basin #12;13 Master1Géologiedes

  8. The structure of a Mesozoic basin beneath the Lake Tana area, Ethiopia, revealed by magnetotelluric imaging

    E-Print Network [OSTI]

    that electrically resistive features in the model are related to volcanic materials intruded within the rift basin basin, northwest Ethiopia is an uplifted dome possibly related to the Afar mantle plume (Pik et al

  9. Screening model optimization for Panay River Basin planning in the Philippines

    E-Print Network [OSTI]

    Millspaugh, John Henry

    2010-01-01

    The state of the water resources of the Panay River Basin have motivated studies and initial basin planning to mitigate flood damages, to produce hydroelectricity, and to increase irrigated rice areas. The goal of this ...

  10. Syn-tectonic sedimentary evolution of the Miocene atallar Basin, southwestern Turkey

    E-Print Network [OSTI]

    Boyer, Edmond

    and sedimentological data are now presented. The Çatallar Basin lies in paraconformity on the Bey Dalari carbonate: Sedimentology; Biostratigraphy; Source of detritals; Miocene; Basin analyses; Lycian Nappes 1. Introduction

  11. Rock-water interactions of the Madison Aquifer, Mission Canyon Formation, Williston Basin, North Dakota 

    E-Print Network [OSTI]

    Spicer, James Frank

    1994-01-01

    The Williston Basin is located in the northern Great Plains of the United States. This area includes eastern Montana, northwestern South Dakota, and western North Dakota. The stratigraphy and geologic history of this basin are well understood...

  12. Depositional history of Lower Permian (Wolfcampian-Leonardian) carbonate buildups, Midland Basin, Upton County, Texas 

    E-Print Network [OSTI]

    Merriam, Catherine O'Hara

    1999-01-01

    A north-south oriented trend of Wolfcampian-Leonardian carbonate buildups is located in the southwestern Midland Basin, Upton County, Texas. The buildup trend is located west of the eastern faulted margin of the Central Basin Platform and north...

  13. Equivalent hydraulic conductivity of an experimental stratigraphy: Implications for basin-scale flow

    E-Print Network [OSTI]

    Gable, Carl W.

    Equivalent hydraulic conductivity of an experimental stratigraphy: Implications for basin by scaling up an experimental stratigraphy created by physical sedimentation processes and by assuming. Person (2006), Equivalent hydraulic conductivity of an experimental stratigraphy: Implications for basin

  14. The use of turbulent jets to destratify the Charles River Basin

    E-Print Network [OSTI]

    Church, Jeffrey H. (Jeffrey Harrison)

    2012-01-01

    This study examines the feasibility of using turbulent jets to destratify the Lower Charles River Basin between the Longfellow and Craigie Bridges between Boston and Cambridge. The basin is currently filled with salt water ...

  15. Great Lakes-St. Lawrence River Basin Water Resources Compact (multi-state)

    Broader source: Energy.gov [DOE]

    This Act describes the management of the Great Lakes - St. Lawrence River basin, and regulates water withdrawals, diversions, and consumptive uses from the basin. The Act establishes a Council,...

  16. K Basins Groundwater Monitoring Task, Spent Nuclear Fuels Project: Report for April, May, and June 2006

    SciTech Connect (OSTI)

    Peterson, Robert E.

    2006-08-30

    This report provides a summary of groundwater monitoring at the K Basins during April, May, and June 2006

  17. DOWNSTREAM PASSAGE FOR SALMON AT HYDROELECTRIC PROJECTS IN THE COLUMBIA RIVER BASIN

    E-Print Network [OSTI]

    DOWNSTREAM PASSAGE FOR SALMON AT HYDROELECTRIC PROJECTS IN THE COLUMBIA RIVER BASIN: DEVELOPMENT ..........................................................................25 Division Barriers Upstream of the Powerhouse

  18. Regional tectonostratigraphy of the pre-salt in the Benguela-Namibe Basins, Angola

    E-Print Network [OSTI]

    Henderson, Gideon

    .manchester.ac.uk/people/staff/profile/?ea=Jonathan.Redfern) Overview The discovery of pre-salt carbonate reservoirs in the Santos Basin (Brazil) and the Kwanza Basin to potential reservoirs means domination of siliciclastics, with rapid facies transition to common carbonates, but heterogeneous reservoir potential in carbonates, controlled by complex diagenesis. #12;Fig 1. Namibe Basin

  19. The Loreto basin formed by rapid west-ward tilting and asymmetric subsidence with-

    E-Print Network [OSTI]

    Dorsey, Becky

    ABSTRACT The Loreto basin formed by rapid west- ward tilting and asymmetric subsidence with subsidence histories and stratigraphic evolution. Sedimentary rocks of the Loreto basin are divided into four stratigraphic se- quences that record discrete phases of fault- controlled subsidence and basin filling. Se

  20. Effect of mineral phase transitions on sedimentary basin subsidence and uplift

    E-Print Network [OSTI]

    Podladchikov, Yuri

    Effect of mineral phase transitions on sedimentary basin subsidence and uplift Boris J.P. Kausa influence rock density, which is a major parameter affecting lithosphere dynamics and basin subsidence are incorporated into one- and two-dimensional kinematic models of basin subsidence. The results demonstrate that

  1. Three-Dimensional Tidal Flow in an Elongated, Rotating Basin CLINTON D. WINANT

    E-Print Network [OSTI]

    Winant, Clinton D.

    Three-Dimensional Tidal Flow in an Elongated, Rotating Basin CLINTON D. WINANT Integrative-dimensional tidal circulation in an elongated basin of arbitrary depth is described with a linear, constant parcels tend to corkscrew into and out of the basin in a tidal period. The axial flow is only weakly

  2. Patterns and processes of wood debris accumulation in the Queets river basin, Washington

    E-Print Network [OSTI]

    Montgomery, David R.

    Patterns and processes of wood debris accumulation in the Queets river basin, Washington Tim B Mountains in NW Washington reveal basin-wide patterns of distinctive wood debris (WD) accumulations development. The classification of wood debris accumulations in the Queets river basin is based on physical

  3. Investigations into Sequence and Conformational Dependence of Backbone Entropy, Inter-basin

    E-Print Network [OSTI]

    Berry, R. Stephen

    and employing seven commonly used force-fields. Both the basin populations and inter-conversion rates-fields produces large variations in the populations and inter-conversion rates between the dominant helical pep- tide unit to be in one Ramachandran basin or another and the inter-basin hopping rates directly

  4. Columbia River Basin Accords -Narrative Proposal Form 1 200880000 ISRP FAN1B

    E-Print Network [OSTI]

    : The Columbia Basin Fish Accords (Accords) are ten-year agreements between the federal action agencies and states and tribes. The Accords supplement the Columbia Basin Fish and Wildlife Program and are intended substantial biological benefits for Columbia Basin fish. The Accords also acknowledge the tribes' and states

  5. Gravity and magnetic anomalies and the deep structure of the Parnaiba cratonic basin, Brazil

    E-Print Network [OSTI]

    Watts, A. B. "Tony"

    Gravity and magnetic anomalies and the deep structure of the Parnaiba cratonic basin, Brazil A. B profile across the Parnaiba cratonic basin in NorthEast Brazil. The purpose of this project is to acquire margin of Parnaíba Basin, Brazil. Geophysics 64: 337-356. Ussami N, Cogo de Sa N, Molina EC. 1993

  6. Rainfall Generator for the Rhine Basin Multi-site generation of weather variables

    E-Print Network [OSTI]

    Beersma, Jules

    Rainfall Generator for the Rhine Basin Multi-site generation of weather variables for the entire generator for the Rhine Basin 38 3 #12;Summary This is the final report of a project on the development of a rainfall generator for the Rhine basin. The request for this generator arose from the need to study

  7. Rainfall Generator for the Rhine Basin Description of 1000-year simulations

    E-Print Network [OSTI]

    Beersma, Jules

    Rainfall Generator for the Rhine Basin Description of 1000-year simulations Jules J. Beersma KNMI References 14 List of publications on the rainfall generator for the Rhine basin 15 Appendix 17 #12;4 1. Introduction In this report ten 1000-year simulations with the rainfall generator for the Rhine basin

  8. Early Jurassic eolian dune field, Pomperaug basin, Connecticut and related synrift deposits

    E-Print Network [OSTI]

    LeTourneau, Peter M.

    Early Jurassic eolian dune field, Pomperaug basin, Connecticut and related synrift deposits eolian sandstone in the Pomperaug basin, Connecticut is noteworthy because it is the most significant from the Hartford (Connecticut, USA), Fundy (Nova Scotia, Canada), and Argana (Morocco) basins. Using

  9. Water masses and circulation pathways through the Iceland Basin during Vivaldi 1996

    E-Print Network [OSTI]

    Water masses and circulation pathways through the Iceland Basin during Vivaldi 1996 R. T. Pollard through the middle of the Iceland Basin as far as 60°N, 20°W. A second branch (the Northern Branch or Sub into the northern Iceland Basin between Rockall and Lousy Banks. This saline, weakly stratified tongue can be traced

  10. Nitrogen isotope dynamics of the Cariaco Basin, Venezuela Robert C. Thunell,1

    E-Print Network [OSTI]

    Sigman, Daniel M.

    Nitrogen isotope dynamics of the Cariaco Basin, Venezuela Robert C. Thunell,1 Daniel M. Sigman,2 of Venezuela. Water column denitrification occurring in the basin has only a very small isotopic imprint-Karger, Y. Astor, and R. Varela (2004), Nitrogen isotope dynamics of the Cariaco Basin, Venezuela, Global

  11. Sediment mixing and basin-wide cosmogenic nuclide analysis in rapidly-eroding mountainous environments

    E-Print Network [OSTI]

    1 Sediment mixing and basin-wide cosmogenic nuclide analysis in rapidly-eroding mountainous, W.M., Summerfield, M.A., and Fifield, L.K., 2006, Sediment mixing and basin-wide cosmogenic nuclide nuclide concentrations in alluvial sediments have been widely used to estimate basin-wide denudation rates

  12. Enigmatic formation of the Norfolk Basin, SW Pacific: A plume influence on back-arc extension

    E-Print Network [OSTI]

    Müller, Dietmar

    Enigmatic formation of the Norfolk Basin, SW Pacific: A plume influence on back-arc extension Maria Jussieu Paris cedex 5, France (alain.mauffret@lgs.jussieu.fr) George Bernardel Geoscience Australia, Cnr] The Norfolk Basin is a small back-arc basin in the SW Pacific with an unknown age and origin for its formation

  13. Subsidence in the Michigan basin produced ~5 km of sedimentation over a period of more

    E-Print Network [OSTI]

    other cra- tonic settings, such as the Illinois, Paris, and North Sea basins (Heidlauf et al., 1986ABSTRACT Subsidence in the Michigan basin produced ~5 km of sedimentation over a period of more corrections and estimates of paleo- bathymetry, we recognize four different styles of subsidence in the basin

  14. Modeling of CBM production, CO{sub 2} injection, and tracer movement...

    Office of Scientific and Technical Information (OSTI)

    study was performed to simulate a pilot sequestration site located in the San Juan coal basin of northern New Mexico. Several unknown reservoir properties at the field site...

  15. CREATING A GEOLOGIC PLAY BOOK FOR TRENTON-BLACK RIVER APPALACHIAN BASIN EXPLORATION

    SciTech Connect (OSTI)

    Douglas G. Patchen; Katharine Lee Avary; John M. Bocan; Michael Hohn; John B. Hickman; Paul D. Lake; James A. Drahovzal; Christopher D. Laughrey; Jaime Kostelnik; Taury Smith; Ron Riley; Mark Baranoski

    2005-04-01

    The Trenton-Black River Appalachian Basin Research Consortium has made significant progress toward their goal of producing a geologic play book for the Trenton-Black River gas play. The final product will include a resource assessment model of Trenton-Black River reservoirs; possible fairways within which to concentrate further studies and seismic programs; and a model for the origin of Trenton-Black River hydrothermal dolomite reservoirs. All seismic data available to the consortium have been examined. Synthetic seismograms constructed for specific wells have enabled researchers to correlate the tops of 15 stratigraphic units determined from well logs to seismic profiles in New York, Pennsylvania, Ohio, West Virginia and Kentucky. In addition, three surfaces for the area have been depth converted, gridded and mapped. A 16-layer velocity model has been developed to help constrain time-to-depth conversions. Considerable progress was made in fault trend delineation and seismic-stratigraphic correlation within the project area. Isopach maps and a network of gamma-ray cross sections supplemented with core descriptions allowed researchers to more clearly define the architecture of the basin during Middle and Late Ordovician time, the control of basin architecture on carbonate and shale deposition and eventually, the location of reservoirs in Trenton Limestone and Black River Group carbonates. The basin architecture itself may be structurally controlled, and this fault-related structural control along platform margins influenced the formation of hydrothermal dolomite reservoirs in original limestone facies deposited in high energy environments. This resulted in productive trends along the northwest margin of the Trenton platform in Ohio. The continuation of this platform margin into New York should provide further areas with good exploration potential. The focus of the petrographic study shifted from cataloging a broad spectrum of carbonate rocks that occur in the Trenton-Black River interval to delineation of regional limestone diagenesis in the basin. A consistent basin-wide pattern of marine and burial diagenesis that resulted in relatively low porosity and permeability in the subtidal facies of these rocks has been documented across the study area. Six diagenetic stages have been recognized: four marine diagenesis stages and two burial diagenesis stages. This dominance of extensive marine and burial diagenesis yielded rocks with low reservoir potential, with the exception of fractured limestone and dolostone reservoirs. Commercial amounts of porosity, permeability and petroleum accumulation appear to be restricted to areas where secondary porosity developed in association with hydrothermal fluid flow along faults and fractures related to basement tectonics. A broad range of geochemical and fluid inclusion analyses have aided in a better understanding of the origin of the dolomites in the Trenton and Black River Groups over the study area. The results of these analyses support a hydrothermal origin for all of the various dolomite types found to date. The fluid inclusion data suggest that all of the dolomite types analyzed formed from hot saline brines. The dolomite is enriched in iron and manganese, which supports a subsurface origin for the dolomitizing brine. Strontium isotope data suggest that the fluids passed through basement rocks or immature siliciclastic rocks prior to forming the dolomites. All of these data suggest a hot, subsurface origin for the dolomites. The project database continued to be redesigned, developed and deployed. Production data are being reformatted for standard relational database management system requirements. Use of the project intranet by industry partners essentially doubled during the reporting period.

  16. Reservoir compartmentalization and management strategies: Lessons learned in the Illinois basin

    SciTech Connect (OSTI)

    Grube, J.P.; Crockett, J.E.; Huff, B.G.

    1997-08-01

    A research project jointly sponsored by the US Department of Energy and the Illinois State Geological Survey focused on the Cypress and Aux Vases Formations (Mississippian), major clastic reservoirs in the Illinois Basin. Results from the research showed that understanding the nature and distribution of reservoir compartments, and using effective reservoir management strategies, can significantly improve recovery efficiencies from oil fields in this mature basin. Compartments can be most effectively drained where they are geologically well defined and reservoir management practices are coordinated through unified, compartment-wide, development programs. Our studies showed that the Cypress and Aux Vases reservoirs contain lateral and vertical permeability barriers forming compartments that range in size from isolated, interlaminated sandstone and shale beds to sandstone bodies tens of feet in thickness and more than a mile in length. Stacked or shingled, genetically similar sandstone bodies are commonly separated by thin impermeable intervals that can be difficult to distinguish on logs and can, therefore, cause correlation problems, even between wells drilled on spacing of less than ten acres. Lateral separation of sandstone bodies causes similar problems. Reservoir compartmentalization reduces primary and particularly secondary recovery by trapping pockets of by-passed or banked oil. Compartments can be detected by comparing recovery factors of genetically similar sandstone bodies within a field; using packers to separate commingled intervals and analyzing fluid recoveries and pressures; making detailed core-to-log calibrations that identify compartment boundaries; and analyzing pressure data from waterflood programs.

  17. Technology Transfer David Basin and Thai Son Hoang

    E-Print Network [OSTI]

    Basin, David

    Technology Transfer David Basin and Thai Son Hoang Institute of Information Security, ETH Zurich, Switzerland Abstract. This paper presents our experience of knowledge and technology transfer within the lessons learned and what we would do differently in future technology transfer projects. Keywords

  18. 2011Columbia River Basin Fish and Wildlife Program

    E-Print Network [OSTI]

    2011Columbia River Basin Fish and Wildlife Program Costs Report AnnuAl RePoRt to the noRthWest Gove | Northwest Power & Conservation Council Document 2012-11 | September 2012 #12;FIsh & WIlDlIFe Costs ANNUAL REPORt tO thE NORthWESt GOvERNORS costs 08

  19. Lithosphere structure beneath the Phanerozoic intracratonic basins of North America

    E-Print Network [OSTI]

    Kaminski, Edouard

    for vertical heat transport, each basin requires a different lithosphere thickness or a different boundary American craton, the lithosphere is too thick for the assumption of purely vertical heat transfer, the downward extrapolation of crustal geotherms deal with the upper part where heat transport occurs

  20. Cape Fear River Basin Action Plan for Migratory Fish

    E-Print Network [OSTI]

    Cape Fear River Basin Action Plan for Migratory Fish C ape Fear Rive r Pa rt n er ship developed with a vision of a healthy Cape Fear River for fish and people. The partnership's mission is to restore and demonstrate the value of robust, productive, and self-sustaining stocks of migratory fish in the Cape Fear

  1. Fates of Eroded Soil Organic Carbon: Mississippi Basin Case Study

    E-Print Network [OSTI]

    Smith, S. V.; Sleezer, R. O.; Renwick, W. H.; Buddemeier, Robert W.

    2005-01-01

    We have developed a mass balance analysis of organic carbon (OC) across the five major river subsystems of the Mississippi (MS) Basin (an area of 3.2 3 106 km2). This largely agricultural landscape undergoes a bulk soil erosion rate of ;480 t·km22...

  2. Sediment fluxes and bufferingin the post-glacial Indus Basin

    E-Print Network [OSTI]

    Clift, Peter

    Sediment fluxes and bufferingin the post-glacial Indus Basin P. D. Clift*, and L. Giosan and compositions of the sediment reaching the ocean since that time. We here present a comprehensive first-order source-to-sink budget spanning the time since the LGM. We show that buffering of sediment

  3. NITROGEN LOADINGS FROM SEPTIC SYSTEMS IN THE LOWER FRASER BASIN

    E-Print Network [OSTI]

    Waste Management Zone" (AMZ) as defined in the "Agricultural Inventory of the Lower Fraser Valley Data the data base (acquired from the B.C. Assessment Authority in 1993) in the Ministry of Health report#12;NITROGEN LOADINGS FROM SEPTIC SYSTEMS IN THE LOWER FRASER BASIN DOE FRAP 1997-25 Prepared for

  4. Arsenic incorporation into authigenic pyrite, Bengal Basin sediment, Bangladesh

    E-Print Network [OSTI]

    Arsenic incorporation into authigenic pyrite, Bengal Basin sediment, Bangladesh Heather A. Lowers a, CA, USA c U.S. Geological Survey, MS 980, Denver, CO, USA d Geological Survey of Bangladesh, Segenbagicha, Dhaka, Bangladesh Received 11 October 2006; accepted in revised form 22 March 2007; available

  5. Building Full Cost Accounting Resource Decisions for the Fraser Basin

    E-Print Network [OSTI]

    #12;Building Full Cost Accounting into Resource Decisions for the Fraser Basin Prepared by: Tim Mc for this study. I #12;Executive Summary ! T& report is concerned with the potential use of full cost accounting accounting (FCA) is an analytical process that involves systematic comparison of all broadly defined costs

  6. Coupon Surveillance For Corrosion Monitoring In Nuclear Fuel Basin

    SciTech Connect (OSTI)

    Mickalonis, J. I.; Murphy, T. R.; Deible, R.

    2012-10-01

    Aluminum and stainless steel coupons were put into a nuclear fuel basin to monitor the effect of water chemistry on the corrosion of fuel cladding. These coupons have been monitored for over ten years. The corrosion and pitting data is being used to model the kinetics and estimate the damage that is occurring to the fuel cladding.

  7. FRASER BASIN LANDFILL INVENTORY DOE FRAP 1997-19

    E-Print Network [OSTI]

    in the Fraser River Basin and characterize any associated leachate discharges. The objectives of this desktop; 2. Develop a quantitative estimate of landfill leachate discharges for each landfill; 3. Assess landfill compliance with regulatory requirements; 4. Assess leachate discharge impacts on the receiving

  8. Columbia River Basin Accords -Narrative Proposal Project Number 200845800 1

    E-Print Network [OSTI]

    steelhead productivity in the upper Columbia River region, where the run size tripled (5,000 fish to 15Columbia River Basin Accords - Narrative Proposal Project Number 200845800 1 Narrative Table 1@easystreet.net Information transfer: A. Abstract Upper Columbia River (UCR) steelhead are listed as "Endangered" under

  9. 5Stratigraphy, Tectonics, and Basin Evolution in the

    E-Print Network [OSTI]

    Dorsey, Becky

    5Stratigraphy, Tectonics, and Basin Evolution in the Anza-Borrego Desert Region Rebecca Dorsey and animals. Through integrative studies of stratigraphy, sedimentology, and paleontology, we can reconstruct overview of existing knowledge about the regional stratigraphy, tectonic evolu- tion, and major sedimentary

  10. COAL QUALITY AND GEOCHEMISTRY, HANNA AND CARBON BASINS, WYOMING

    E-Print Network [OSTI]

    Chapter HQ COAL QUALITY AND GEOCHEMISTRY, HANNA AND CARBON BASINS, WYOMING By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

  11. SUMMARY OF TERTIARY COAL RESOURCES OF THE DENVER BASIN, COLORADO

    E-Print Network [OSTI]

    Chapter SD SUMMARY OF TERTIARY COAL RESOURCES OF THE DENVER BASIN, COLORADO By D. J. Nichols in U.S. Geological Survey Professional Paper 1625-A 1999 Resource assessment of selected Tertiary coal beds and zones here or on this symbol in the toolbar to return. 1999 Resource assessment of selected Tertiary coal

  12. COAL QUALITY AND GEOCHEMISTRY, WILLISTON BASIN, NORTH DAKOTA

    E-Print Network [OSTI]

    Chapter WQ COAL QUALITY AND GEOCHEMISTRY, WILLISTON BASIN, NORTH DAKOTA By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

  13. COAL QUALITY AND GEOCHEMISTRY, GREATER GREEN RIVER BASIN, WYOMING

    E-Print Network [OSTI]

    Chapter GQ COAL QUALITY AND GEOCHEMISTRY, GREATER GREEN RIVER BASIN, WYOMING By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

  14. Mariner's Guide For Hurricane Awareness In The North Atlantic Basin

    E-Print Network [OSTI]

    Mariner's Guide For Hurricane Awareness In The North Atlantic Basin Eric J. Holweg eholweg.navy.mil/data/oceans/gulfstream.html Hurricane Preparedness & Tracks: http://www.fema.gov/fema/trop.htm Time Zone Conversions: http.....................................................................................................2 · Tropical Wave · Tropical Disturbance · Tropical Depression · Tropical Storm · Hurricane

  15. Regional Slip Tendency Analysis of the Great Basin Region

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-09-30

    - The resulting along?fault and fault?to?fault variation in slip or dilation potential is a proxy for along fault and fault?to?fault variation in fluid flow conduit potential. Stress Magnitudes and directions were calculated across the entire Great Basin. Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson?Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005). The minimum horizontal stress direction (Shmin) was contoured, and spatial bins with common Shmin directions were calculated. Based on this technique, we subdivided the Great Basin into nine regions (Shmin <070, 070140). Slip and dilation tendency were calculated using 3DStress for the faults within each region using the mean Shmin for the region. Shmin variation throughout Great Basin are shown on Figure 3. For faults within the Great Basin proper, we applied a normal faulting stress regime, where the vertical stress (sv) is larger than the maximum horizontal stress (shmax), which is larger than the minimum horizontal stress (sv>shmax>shmin). Based on visual inspection of the limited stress magnitude data in the Great Basin, we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46. These values are consistent with stress magnitude data at both Dixie Valley (Hickman et al., 2000) and Yucca Mountain (Stock et al., 1985). For faults within the Walker Lane/Eastern California Shear Zone, we applied a strike?slip faulting stress, where shmax > sv > shmin. Upon visual inspection of limited stress magnitude data from the Walker Lane and Eastern California Shear zone, we chose values such that SHmin/SHmax = .46 and Shmin/Sv= .527 representative of the region. Results: The results of our slip and dilation tendency analysis are shown in Figures 4 (dilation tendency), 5 (slip tendency) and 6 (slip tendency + dilation tendency). Shmin varies from northwest to east?west trending throughout much of the Great Basin. As such, north? to northeast?striking faults have the highest tendency to slip and to dilate, depending on the local trend of shmin. These results provide a first order filter on faults and fault systems in the Great Basin, affording focusing of local?scale exploration efforts for blind or hidden geothermal resources.

  16. Regional Slip Tendency Analysis of the Great Basin Region

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    - The resulting along?fault and fault?to?fault variation in slip or dilation potential is a proxy for along fault and fault?to?fault variation in fluid flow conduit potential. Stress Magnitudes and directions were calculated across the entire Great Basin. Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson?Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005). The minimum horizontal stress direction (Shmin) was contoured, and spatial bins with common Shmin directions were calculated. Based on this technique, we subdivided the Great Basin into nine regions (Shmin <070, 070140). Slip and dilation tendency were calculated using 3DStress for the faults within each region using the mean Shmin for the region. Shmin variation throughout Great Basin are shown on Figure 3. For faults within the Great Basin proper, we applied a normal faulting stress regime, where the vertical stress (sv) is larger than the maximum horizontal stress (shmax), which is larger than the minimum horizontal stress (sv>shmax>shmin). Based on visual inspection of the limited stress magnitude data in the Great Basin, we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46. These values are consistent with stress magnitude data at both Dixie Valley (Hickman et al., 2000) and Yucca Mountain (Stock et al., 1985). For faults within the Walker Lane/Eastern California Shear Zone, we applied a strike?slip faulting stress, where shmax > sv > shmin. Upon visual inspection of limited stress magnitude data from the Walker Lane and Eastern California Shear zone, we chose values such that SHmin/SHmax = .46 and Shmin/Sv= .527 representative of the region. Results: The results of our slip and dilation tendency analysis are shown in Figures 4 (dilation tendency), 5 (slip tendency) and 6 (slip tendency + dilation tendency). Shmin varies from northwest to east?west trending throughout much of the Great Basin. As such, north? to northeast?striking faults have the highest tendency to slip and to dilate, depending on the local trend of shmin. These results provide a first order filter on faults and fault systems in the Great Basin, affording focusing of local?scale exploration efforts for blind or hidden geothermal resources.

  17. The State of the Columbia River Basin

    E-Print Network [OSTI]

    30, 2013 Document 2013-07 #12;2 Submitted to the Committee on Energy and Natural Resources United on Natural Resources United States House of Representatives 851 S.W. Sixth Avenue Suite 1100 Portland, Oregon.................................................. 13 Effectiveness of actions taken under the fish and wildlife program

  18. Multi-scale and Integrated Characterization of the Marcellus Shale in the Appalachian Basin: From Microscopes to Mapping

    SciTech Connect (OSTI)

    Crandall, Dustin; Soeder, Daniel J; McDannell, Kalin T.; Mroz, Thomas

    2010-01-01

    Historic data from the Department of Energy Eastern Gas Shale Project (ESGP) were compiled to develop a database of geochemical analyses, well logs, lithological and natural fracture descriptions from oriented core, and reservoir parameters. The nine EGSP wells were located throughout the Appalachian Basin and intercepted the Marcellus Shale from depths of 750 meters (2500 ft) to 2500 meters (8200 ft). A primary goal of this research is to use these existing data to help construct a geologic framework model of the Marcellus Shale across the basin and link rock properties to gas productivity. In addition to the historic data, x-ray computerized tomography (CT) of entire cores with a voxel resolution of 240mm and optical microscopy to quantify mineral and organic volumes was performed. Porosity and permeability measurements in a high resolution, steady-state flow apparatus are also planned. Earth Vision software was utilized to display and perform volumetric calculations on individual wells, small areas with several horizontal wells, and on a regional basis. The results indicate that the lithologic character of the Marcellus Shale changes across the basin. Gas productivity appears to be influenced by the properties of the organic material and the mineral composition of the rock, local and regional structural features, the current state of in-situ stress, and lithologic controls on the geometry of induced fractures during stimulations. The recoverable gas volume from the Marcellus Shale is variable over the vertical stratigraphic section, as well as laterally across the basin. The results from this study are expected to help improve the assessment of the resource, and help optimize the recovery of natural gas.

  19. Geophys. J. Int. (1991) 107, 433-447 Paris Basin VSPs: case history establishing combinations of fine-layer

    E-Print Network [OSTI]

    Edinburgh, University of

    1991-01-01

    Geophys. J. Int. (1991) 107, 433-447 Paris Basin VSPs: case history establishing combinations This paper examines shear-wave splitting in multi-offset VSPs at a borehole site in the Paris Basin basins. Key words: crack (EDA) and fine-layer (PTL) anisotropy, sedimentary basins, shear

  20. A First Record of a Strike-slip Basin in Western Anatolia and Its Tectonic Implication: The Cumaovasi Basin

    E-Print Network [OSTI]

    Utrecht, Universiteit

    of Cumaovasi basin and kinematic analysis on the striated fault planes support two senses of movements, each having opposite kinematic indicators. Quantitative indications are presented for the polyphase evolution, as indicated by active fault planes and focal mechanisms of shallow earthquakes. The transition from

  1. Improving snow albedo processes in WRF/SSiB regional climate model to assess impact of dust and black carbon in snow on surface energy balance and hydrology over western U.S.

    E-Print Network [OSTI]

    2015-01-01

    Basin: 1. A 6 year record of energy balance, radiation, andorganic carbon aerosol from energy-related combustion, 1850–carbon in snow on surface energy balance and hydrology over

  2. Carbonate seismic stratigraphy of Cretaceous Paso Caballos basin, Guatemala: new structures in a structureless basin

    SciTech Connect (OSTI)

    Pigott, J.D.; Mazariegos, R.; Forgotson, J.M. Jr.

    1989-03-01

    Previous exploration in the carbonate and evaporite sequences of the Paso Caballos basin focused primarily upon structural plays. Early data acquisition and processing purposely excluded the resolution advantages of broad frequency ranges and ignored the problems of statics. Interpretations based on these data were predictably unsuccessful in this large, presently karsted, Cretaceous shallow marine platform. Seismic stratigraphic analysis of 735.5 km of statics-corrected, broad-band, zero-phase dynamic and Vibroseis data acquired in 1981 and 1982 delineates four seismic sequences within the Cretaceous (in increasing age): The Lacandon-Barton Creek limestone sequence, the upper Coban salt sequence, the middle Coban dolomitic salt sequence, and the Lower Cretaceous dolomitic sequence. The sequences overlying the faulted and folded Lower Cretaceous dolomitic sequence are relatively smooth and dip at a low angle toward a depocenter to the northwest. Within the carbonate section of the upper Coban salt sequence are several large (45 km/sup 2/), mounded structures with substantial lateral and vertical variations in both reflection group configurations and wavelet characteristics. Detailed modeling and attribute analysis offer additional insight into the interpretation of these structures. For example, analysis of one such feature, the Santa Amelia structure, shows notched frequency attenuation off structure, which suggests permeable hydrocarbon-filled porosities on the flank isolated and sealed from a wet structural center.

  3. Receiving Basin for Offsite Fuels and the Resin Regeneration Facility Safety Analysis Report, Executive Summary

    SciTech Connect (OSTI)

    Shedrow, C.B.

    1999-11-29

    The Safety Analysis Report documents the safety authorization basis for the Receiving Basin for Offsite Fuels (RBOF) and the Resin Regeneration Facility (RRF) at the Savannah River Site (SRS). The present mission of the RBOF and RRF is to continue in providing a facility for the safe receipt, storage, handling, and shipping of spent nuclear fuel assemblies from power and research reactors in the United States, fuel from SRS and other Department of Energy (DOE) reactors, and foreign research reactors fuel, in support of the nonproliferation policy. The RBOF and RRF provide the capability to handle, separate, and transfer wastes generated from nuclear fuel element storage. The DOE and Westinghouse Savannah River Company, the prime operating contractor, are committed to managing these activities in such a manner that the health and safety of the offsite general public, the site worker, the facility worker, and the environment are protected.

  4. Gas Geochemistry of the Dogger Geothermal Aquifer (Paris Basin, France)

    SciTech Connect (OSTI)

    Criaud, A.; Fouillac, C.; Marty, B.; Brach, M.; Wei, H.F.

    1987-01-20

    The low enthalpy program developed in the Paris Basin provides the opportunity for studying the gas geochemistry of the calcareous aquifer of the Dogger. Hydrocarbons and CO{sub 2} are mainly biogenic, He displays high concentrations. He, Ar and N{sub 2} have multiple origins (radioactive decay, atmospheric migration, biochemical processes). The distribution of the gases in the zones of the basin varies in relation to the general chemistry, sedimentology and hydrodynamics. The gas geothermometers do not apply to this environment but useful estimations of the redox potential of the fluid can be derived from CO{sub 2}/CH{sub 4} and N{sub 2}/NH{sub 4}{sup +} ratios. H{sub 2} and H{sub 2}S are involved in corrosion processes and scaling in the pipes. 12 refs., 3 figs., 2 tabs.

  5. INTEC CPP-603 Basin Water Treatment System Closure: Process Design

    SciTech Connect (OSTI)

    Kimmitt, Raymond Rodney; Faultersack, Wendell Gale; Foster, Jonathan Kay; Berry, Stephen Michael

    2002-09-01

    This document describes the engineering activities that have been completed in support of the closure plan for the Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603 Basin Water Treatment System. This effort includes detailed assessments of methods and equipment for performing work in four areas: 1. A cold (nonradioactive) mockup system for testing equipment and procedures for vessel cleanout and vessel demolition. 2. Cleanout of process vessels to meet standards identified in the closure plan. 3. Dismantlement and removal of vessels, should it not be possible to clean them to required standards in the closure plan. 4. Cleanout or removal of pipelines and pumps associated with the CPP-603 basin water treatment system. Cleanout standards for the pipes will be the same as those used for the process vessels.

  6. Petroleum geology of Benue trough and southeastern Chad basin, Nigeria

    SciTech Connect (OSTI)

    Petters, S.W.; Ekweozor, C.M.

    1982-08-01

    Cretaceous cyclic sedimentation in the southern Benue trough, together with unconformities, provide a tripartite subdivision of the sedimentary succession into (1) the Albian Asu River Group, (2) the late Cenomanian to early Santonian Cross River Group (new name) and interfingering marginal marine sandstones, and (3) the post-Santonian coal measures sequence. Most of the Albian to Eocene marine shales in the Benue trough and the Turonian shales in the southern Chad basin contain well over 0.5% total organic carbon, with values of up to 7.4% in Turonian anaerobic shales. Based on the high content of soluble organic matter, thermal maturity, and the predominantly terrigenous character of the Late Cretaceous shales, mostly natural gas was probably generated in both basins. The late Santonian folding and uplift would have disrupted petroleum reservoirs. Also, crude oil accumulations which were not dissipated by tectonism would be relocated at relatively shallow depths and hence become accessible to invading meteoric waters.

  7. Regional Service Plan For Coordinated Transportation In the Permian Basin 

    E-Print Network [OSTI]

    Permian Basin Regional Planning Commission

    2010-10-27

    Regional Service Plan Permian Basin ? Region 9 Table of Contents I. Acknowledgements 4 II. Executive Summary 5 III. Background 6 A. Regional Description 6 i. Geography and Demographics 6 ii. Transportation... Planning Partners 12 iii. Current Transportation Services/Providers 13 B. History of Regional Coordination of Public Transportation 14 i. Past/Continuing Planning Activities 14 ii. Past/Current Implemented Projects/Services 15 IV...

  8. FRAMEWORK GEOLOGY OF FORT UNION COAL IN THE WILLISTON BASIN

    E-Print Network [OSTI]

    Chapter WF FRAMEWORK GEOLOGY OF FORT UNION COAL IN THE WILLISTON BASIN By R.M. Flores,1 C.W. Keighin,1 A.M. Ochs,2 P.D. Warwick,1 L.R. Bader,1 and E.C. Murphy3 in U.S. Geological Survey Professional Paper 1625-A 1 U.S. Geological Survey 2 Consultant, U.S. Geological Survey, Denver, Colorado 3 North

  9. Maintenance and Operations study for K basins sludge treatment

    SciTech Connect (OSTI)

    WESTRA, A.G.

    1998-11-30

    This study evaluates maintenance and operating concepts for the chemical treatment of sludge from the 100 K Basins at Hanford. The sludge treatment equipment that will require remote operation or maintenance was identified. Then various maintenance and operating concepts used in the nuclear industry were evaluated for applicability to sludge treatment. A hot cell or cells is recommended as the best maintenance and operating concept for a sludge treatment facility.

  10. GIS-based Geospatial Infrastructure of Water Resource Assessment for Supporting Oil Shale Development in Piceance Basin of Northwestern Colorado

    SciTech Connect (OSTI)

    Zhou, Wei; Minnick, Matthew D; Mattson, Earl D; Geza, Mengistu; Murray, Kyle E.

    2015-04-01

    Oil shale deposits of the Green River Formation (GRF) in Northwestern Colorado, Southwestern Wyoming, and Northeastern Utah may become one of the first oil shale deposits to be developed in the U.S. because of their richness, accessibility, and extensive prior characterization. Oil shale is an organic-rich fine-grained sedimentary rock that contains significant amounts of kerogen from which liquid hydrocarbons can be produced. Water is needed to retort or extract oil shale at an approximate rate of three volumes of water for every volume of oil produced. Concerns have been raised over the demand and availability of water to produce oil shale, particularly in semiarid regions where water consumption must be limited and optimized to meet demands from other sectors. The economic benefit of oil shale development in this region may have tradeoffs within the local and regional environment. Due to these potential environmental impacts of oil shale development, water usage issues need to be further studied. A basin-wide baseline for oil shale and water resource data is the foundation of the study. This paper focuses on the design and construction of a centralized geospatial infrastructure for managing a large amount of oil shale and water resource related baseline data, and for setting up the frameworks for analytical and numerical models including but not limited to three-dimensional (3D) geologic, energy resource development systems, and surface water models. Such a centralized geospatial infrastructure made it possible to directly generate model inputs from the same database and to indirectly couple the different models through inputs/outputs. Thus ensures consistency of analyses conducted by researchers from different institutions, and help decision makers to balance water budget based on the spatial distribution of the oil shale and water resources, and the spatial variations of geologic, topographic, and hydrogeological Characterization of the basin. This endeavor encountered many technical challenging and hasn't been done in the past for any oil shale basin. The database built during this study remains valuable for any other future studies involving oil shale and water resource management in the Piceance Basin. The methodology applied in the development of the GIS based Geospatial Infrastructure can be readily adapted for other professionals to develop database structure for other similar basins.

  11. Research (2013) Juan M. Restrepo

    E-Print Network [OSTI]

    Restrepo, Juan M.

    2013-01-01

    if this is at the expense of physical consistency of all dynamic variables. Two such problems are the tracking of hurricanes, or the determination of sharp heat-transport boundaries in the gulf stream, oil spills, and tracking of lost objects

  12. Juan J. Alonso Associate Professor

    E-Print Network [OSTI]

    Alonso, Juan J.

    for best doctoral thesis in Aeronautics & Astronautics 1998-99 Terman Fellow 1996 Ray Grimm Memorial Price, Stanford PSAAP Center Steering Committee 2009-2010, ICAO/CAEP Independent Expert Group for Aircraft Fuel to solve the flow through entire jet engines. He is the author of over 100 technical publications

  13. Faces of Science: Juan Duque

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunitiesofExtrans -ORGANIZATION FYMicrotransferJosé Olivares March

  14. LIQUID EFFLUENT RETENTION FACILITY (LERF) BASIN 42 STUDIES

    SciTech Connect (OSTI)

    DUNCAN JB

    2004-10-29

    This report documents laboratory results obtained under test plan RPP-21533 for samples submitted by the Effluent Treatment Facility (ETF) from the Liquid Effluent Retention Facility (LERF) Basin 42 (Reference 1). The LERF Basin 42 contains process condensate (PC) from the 242-A Evaporator and landfill leachate. The ETF processes one PC campaign approximately every 12 to 18 months. A typical PC campaign volume can range from 1.5 to 2.5 million gallons. During the September 2003 ETF Basin 42 processing campaign, a recurring problem with 'gelatinous buildup' on the outlet filters from 60A-TK-I (surge tank) was observed (Figure 1). This buildup appeared on the filters after the contents of the surge tank were adjusted to a pH of between 5 and 6 using sulfuric acid. Biological activity in the PC feed was suspected to be the cause of the gelatinous material. Due to this buildup, the filters (10 {micro}m CUNO) required daily change out to maintain process throughput.

  15. Characterization of the surface properties of Illinois Basin Coals

    SciTech Connect (OSTI)

    Demir, I.

    1991-01-01

    The overall objective of this research project is to provide fundamental data on the physical and chemical surface properties of Illinois coals, specifically those of the Illinois Basin Coal Sample Program (IBCSP). This will help coal researchers achieve an optimal match between Illinois Basin coals and potential coal cleaning and conversion processes (or at least reduce the number of coals suitable for a particular process) and may lead to improved desulfurization and increased utilization of Illinois Basin coals. The specific tasks scheduled to meet our objective are: (1) Physical Characterization: Determine total surface area, porosity, pore size and volume distributions of IBCSP coals crushed to two particle sizes, {minus}100 and {minus}400 mesh (exclusive of IBC-108 which is available only in {minus}400 mesh form), in both an unoxidized and oxidized state. (2) Chemical Characterization: Determine the surface charge (electrokinetic mobility) as a function of pH by electrophoresis and analyze the surface chemical structure of the above samples using Diffuse Reflectance Infrared Spectroscopy (DRIS). (3) Multivariate Statistical Analyses: Explore possible relationships among the newly determined surface properties and other available characterization data, including chemical and petrographic compositions, vitrinite reflectance, free swelling index, ash yield, sulfur forms, and other relevant properties.

  16. Information technology and decision support tools for stakeholder-driven river basin salinity management

    SciTech Connect (OSTI)

    Quinn, N.W.T; Cozad, D.B.; Lee, G.

    2010-01-01

    Innovative strategies for effective basin-scale salinity management have been developed in the Hunter River Basin of Australia and more recently in the San Joaquin River Basin of California. In both instances web-based stakeholder information dissemination has been a key to achieving a high level of stakeholder involvement and the formulation of effective decision support salinity management tools. A common element to implementation of salinity management strategies in both river basins has been the concept of river assimilative capacity for controlling export salt loading and the potential for trading of the right to discharge salt load to the river - the Hunter River in Australia and the San Joaquin River in California. Both rivers provide basin drainage and the means of exporting salt to the ocean. The paper compares and contrasts the use of monitoring, modeling and information dissemination in the two basins to achieve environmental compliance and sustain irrigated agriculture in an equitable and socially and politically acceptable manner.

  17. PHASE ROTATION AT THE FRONT END OF A NEUTRINO FACTORY Harold Kirk , Juan Gallardo, Robert Palmer, BNL, Upton, NY 11973, USA

    E-Print Network [OSTI]

    McDonald, Kirk

    INTRODUCTION The function of the phase-rotation section of the Neu- trino Factory is to reduce the energy such that the initially high-energy par- ticles emerge with a larger energy spread than those with initially low energy pulses have been avoided in our design. In the case of the first linac, a subsequent hydro- gen absorber

  18. Regional geological assessment of the Devonian-Mississippian shale sequence of the Appalachian, Illinois, and Michigan basins relative to potential storage/disposal of radioactive wastes

    SciTech Connect (OSTI)

    Lomenick, T.F.; Gonzales, S.; Johnson, K.S.; Byerly, D.

    1983-01-01

    The thick and regionally extensive sequence of shales and associated clastic sedimentary rocks of Late Devonian and Early Mississippian age has been considered among the nonsalt geologies for deep subsurface containment of high-level radioactive wastes. This report examines some of the regional and basin-specific characteristics of the black and associated nonblack shales of this sequence within the Appalachian, Illinois, and Michigan basins of the north-central and eastern United States. Principal areas where the thickness and depth of this shale sequence are sufficient to warrant further evaluation are identified, but no attempt is made to identify specific storage/disposal sites. Also identified are other areas with less promise for further study because of known potential conflicts such as geologic-hydrologic factors, competing subsurface priorities involving mineral resources and groundwater, or other parameters. Data have been compiled for each basin in an effort to indicate thickness, distribution, and depth relationships for the entire shale sequence as well as individual shale units in the sequence. Included as parts of this geologic assessment are isopach, depth information, structure contour, tectonic elements, and energy-resource maps covering the three basins. Summary evaluations are given for each basin as well as an overall general evaluation of the waste storage/disposal potential of the Devonian-Mississippian shale sequence,including recommendations for future studies to more fully characterize the shale sequence for that purpose. Based on data compiled in this cursory investigation, certain rock units have reasonable promise for radioactive waste storage/disposal and do warrant additional study.

  19. Stresses and fractures in the Frontier Formation, Green River Basin, predicted from basin-margin tectonic element interactions

    SciTech Connect (OSTI)

    Lorenz, J.C.

    1996-01-01

    Natural fractures and in situ stresses commonly dictate subsurface reservoir permeability and permeability anisotropy, as well as the effectiveness of stimulation techniques in low-permeability, natural gas reservoirs. This paper offers an initial prediction for the orientations of the fracture and stress systems in the tight gas reservoirs of the Frontier Formation, in the Green River basin of southwestern Wyoming. It builds on a previous report that addressed fractures and stresses in the western part of the basin and on ideas developed for the rest of the basin, using the principle that thrust faults are capable of affecting the stress magnitudes and orientations in little-deformed strata several hundreds of kilometers in front of a thrust. The prediction of subsurface stresses and natural fracture orientations is an undertaking that requires the willingness to revise models as definitive data are acquired during drilling. The predictions made in this paper are offered with the caveat that geology in the subsurface is always full of surprises.

  20. System Description for the KW Basin Integrated Water Treatment System (IWTS) (70.3)

    SciTech Connect (OSTI)

    DERUSSEAU, R.R.

    2000-04-18

    This is a description of the system that collects and processes the sludge and radioactive ions released by the spent nuclear fuel (SNF) processing operations conducted in the 105 KW Basin. The system screens, settles, filters, and conditions the basin water for reuse. Sludge and most radioactive ions are removed before the water is distributed back to the basin pool. This system is part of the Spent Nuclear Fuel Project (SNFP).